WorldWideScience

Sample records for susy breaking terms

  1. Unification of SUSY breaking and GUT breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Omura, Yuji [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-02-18

    We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.

  2. Spontaneous SUSY breaking without R symmetry in supergravity

    Science.gov (United States)

    Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu

    2018-03-01

    We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.

  3. Lifshitz-sector mediated SUSY breaking

    OpenAIRE

    Pospelov, MaximDepartment of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada; Tamarit, Carlos(Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada)

    2014-01-01

    We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by $ {{{\\Lambda_{\\mathrm{HL}}^2}} \\left/ {{M_P^2}} \\righ...

  4. Stable SUSY breaking model with O(10) eV gravitino from combined D-term gauge mediation and U(1)' mediation

    International Nuclear Information System (INIS)

    Nakayama, Yu

    2008-01-01

    We show a calculable example of stable supersymmetry (SUSY) breaking models with O(10) eV gravitino mass based on the combination of D-term gauge mediation and U(1)' mediation. A potential problem of the negative mass squared for the SUSY standard model (SSM) sfermions in the D-term gauge mediation is solved by the contribution from the U(1)' mediation. On the other hand, the splitting between the SSM gauginos and sfermions in the U(1)' mediation is circumvented by the contributions from the D-term gauge mediation. Since the U(1)' mediation does not introduce any new SUSY vacua, we achieve a completely stable model under thermal effects. Our model, therefore, has no cosmological difficulty

  5. Non-universal SUSY breaking, hierarchy and squark degeneracty

    International Nuclear Information System (INIS)

    Murayama, Hitoshi.

    1995-01-01

    I discuss non-trivial effects in the soft SUSY breaking terms which appear when one integrates out heavy fields. The effects exist only when the SUSY breaking terms are non-universal. They may spoil (1) the hierarchy between the weak and high-energy scales, or (2) degeneracy among the squark masses even in the presense of a horizontal symmetry. I argue, in the end, that such new effects may be useful in probing physics at high-energy scales from TeV-scale experiments

  6. Lifshitz-sector mediated SUSY breaking

    International Nuclear Information System (INIS)

    Pospelov, Maxim; Tamarit, Carlos

    2014-01-01

    We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by Λ HL 2 /M P 2 , the ratio of the Hořava-Lifshitz cross-over scale Λ HL to the Planck scale M P . This ratio can be kept very small, providing a novel way of explicitly breaking supersymmetry without reintroducing fine-tuning. We illustrate our idea by considering a model of scalar gravity with Hořava-Lifshitz scaling coupled to a supersymmetric Wess-Zumino matter sector, in which we compute the two-loop SUSY breaking corrections to the masses of the light scalars due to the gravitational interactions and the heavy fields

  7. Improved GUT and SUSY breaking by the same field

    International Nuclear Information System (INIS)

    Agashe, Kaustubh

    2000-01-01

    In a previous paper [hep-ph/9809421; Phys. Lett. B 444 (1998) 61], we presented a model in which the same modulus field breaks SUSY and a simple GUT gauge group, and which has dynamical origins for both SUSY breaking and GUT scales. In this model, the supergravity (SUGRA) and gauge mediated contributions to MSSM scalar and gaugino masses are comparable -- this enables a realistic spectrum to be attained since the gauge mediated contribution to the right-handed (RH) slepton (mass) 2 (at the weak scale) by itself (i.e., neglecting SUGRA contribution to sfermion and gaugino masses) is negative. But, in general, the SUGRA contribution to sfermion masses (from non-renormalizable contact Kaehler terms) leads to flavor violation. In this paper, we use the recently proposed idea of gaugino mediated SUSY breaking ( g-tilde MSB) to improve the above model. With MSSM matter and SUSY breaking fields localized on separate branes in an extra dimension of size R∼5M -1 Pl (in which gauge fields propagate), the SUGRA contribution to sfermion masses (which violates flavor) is suppressed. As in 4 dimensions, MSSM gauginos acquire non-universal masses from both SUGRA and gauge mediation - gaugino masses (in particular the SUGRA contribution to gaugino masses), in turn, generate acceptable sfermion masses through renormalization group evolution; the phenomenology is discussed briefly. We also point out that (a) in models where SUSY is broken by a GUT non-singlet field, there is, in general, a contribution to MSSM gaugino (and scalar) masses from the coupling to heavy gauge multiplet which might be comparable to the SUGRA contribution and (b) models of gauge mediation proposed earlier which also have negative RH slepton (mass) 2 can be rendered viable using the g-tilde MSB idea

  8. Neutrino masses from SUSY breaking in radiative seesaw models

    International Nuclear Information System (INIS)

    Figueiredo, Antonio J.R.

    2015-01-01

    Radiatively generated neutrino masses (m ν ) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY EWSB contributions), and which are manifest from left angle F H † right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum H left angle H † x H H right angle ≠ 0, radiatively generated m ν can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY EWS contributions). We point out that recent literature overlooks pure-SUSY EWSB contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY EWS . We show that there exist realistic radiative seesaw models in which the leading order contribution to m ν is proportional to SUSY EWS . To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m soft /M 3 or m soft 2 /M 3 . We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m ν can be quite small without conflicting with lower limits on the mass of new particles. (orig.)

  9. Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models

    International Nuclear Information System (INIS)

    Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2002-01-01

    In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m 1/2 is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M c beyond the GUT scale, and that additional renormalization group running takes place between M c and M GUT as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m 1/2 =1000 (1160) GeV can be probed with 10 (100) fb -1 of integrated luminosity, corresponding to a reach in terms of m g-tilde of 2150 (2500) GeV. The gMSB model and MSUGRA can likely only be differentiated at a linear e + e - collider with sufficient energy to produce sleptons and charginos

  10. Yukawa unification in moduli-dominant SUSY breaking

    International Nuclear Information System (INIS)

    Khalil, S.; Tatsuo Kobayashi

    1997-07-01

    We study Yukawa in string models with moduli-dominant SUSY breaking. This type of SUSY breaking in general leads to non-universal soft masses, i.e. soft scalar masses and gaugino masses. Such non-universality is important for phenomenological aspects of Yukawa unification, i.e., successful electroweak breaking, SUSY corrections to the bottom mass and the branching ratio of b → sγ. We show three regions in the whole parameter space which lead to successful electroweak breaking and allow small SUSY corrections to the bottom mass. For these three regions we investigated the b → sγ decay and mass spectra. (author). 26 refs, 6 figs

  11. Some features of SUSY breaking in N=2 supergravity

    International Nuclear Information System (INIS)

    Cecotti, S.; Giradello, L.; Porrati, M.

    1984-08-01

    We discuss some features of SUSY breaking in N=2 Supergravity. Firstly, we show that in a general N=2 Sugra model (constructed according to the tensor calculus) all stationary points of the potential, at Λ=0, are fully supersymmetric if the compensating multiplet is not gauged. Thus a viable super-Higgs effect in N=2 supergravity can occur only in the presence of a Fayet-Iliopoulos term. Then we present an explicit model with two scales of breaking in anti-de Sitter space. Moreover, the ratio of the two gravitino masses is sliding i.e. not determined by the classical potential. In the extreme situation one of the gravitino mass equals √-Λ/3, and thus we have partial super-Higgs (in AdS space). The cosmological constant may be arranged to an arbitrary small value while keeping the mass of the heavy gravitino constant. (author)

  12. SUSY breaking mediation by throat fields

    International Nuclear Information System (INIS)

    Bruemmer, F.; Hebecker, A.; Trapletti, M.

    2006-01-01

    We investigate, in the general framework of KKLT, the mediation of supersymmetry breaking by fields propagating in the strongly warped region of the compactification manifold ('throat fields'). Such fields can couple both to the supersymmetry breaking sector at the IR end of the throat and to the visible sector at the UV end. We model the supersymmetry breaking sector by a chiral superfield which develops an F term vacuum expectation value (also responsible for the uplift). It turns out that the mediation effect of vector multiplets propagating in the throat can compete with modulus-anomaly mediation. Moreover, such vector fields are naturally present as the gauge fields arising from isometries of the throat (most notably the SO(4) isometry of the Klebanov-Strassler solution). Their mediation effect is important in spite of their large 4d mass. The latter is due to the breaking of the throat isometry by the compact manifold at the UV end of the throat. The contribution from heavy chiral superfields is found to be subdominant

  13. A low energy dynamical SUSY breaking scenario motivated from superstring derived unification

    CERN Document Server

    Faraggi, Alon E.

    1996-01-01

    Recently there has been a resurgence of interest in gauge mediated dynamical supersymmetry breaking scenarios. I investigate how low energy dynamical SUSY breaking may arise from superstring models. In a three generation string derived model I propose that the unbroken hidden non--Abelian gauge group at the string scale is SU(3)_H with matter multiplets. Due to the small gauge content of the hidden gauge group the supersymmetry breaking scale may be consistent with the dynamical SUSY breaking scenarios. The messenger states are obtained in the superstring model from sectors which arise due to the ``Wilson--line'' breaking of the unifying non--Abelian gauge symmetry. An important property of the string motivated messenger states is the absence of superpotential terms with the Standard Model states. The stringy symmetries therefore forbid the flavor changing processes which may arise due to couplings between the messenger sector states and the Standard Model states. Motivated from the problem of string gauge co...

  14. B-L mediated SUSY breaking with radiative B-L symmetry breaking

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuru; Kubo, Takayuki

    2008-01-01

    We explore a mechanism of radiative B-L symmetry breaking in analogous to the radiative electroweak symmetry breaking. The breaking scale of B-L symmetry is related to the neutrino masses through the see-saw mechanism. Once we incorporate the U(1) B-L gauge symmetry in SUSY models, the U(1) B-L gaugino, Z-tilde B-L appears, and it can mediate the SUSY breaking (Z-prime mediated SUSY breaking) at around the scale of 10 6 GeV. Then we find a links between the neutrino mass (more precisly the see-saw or B-L scale of order 10 6 GeV) and the Z-prime mediated SUSY breaking scale. It is also very interesting that the gluino at the weak scale becomes relatively light, and almost compressed mass spectra for the gaugino sector can be realized in this scenario, which is very interesting in scope of the LHC.

  15. Predictions from a flavour GUT model combined with a SUSY breaking sector

    Science.gov (United States)

    Antusch, Stefan; Hohl, Christian

    2017-10-01

    We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.

  16. A realistic extension of gauge-mediated SUSY-breaking model with superconformal hidden sector

    International Nuclear Information System (INIS)

    Asano, Masaki; Hisano, Junji; Okada, Takashi; Sugiyama, Shohei

    2009-01-01

    The sequestering of supersymmetry (SUSY) breaking parameters, which is induced by superconformal hidden sector, is one of the solutions for the μ/B μ problem in gauge-mediated SUSY-breaking scenario. However, it is found that the minimal messenger model does not derive the correct electroweak symmetry breaking. In this Letter we present a model which has the coupling of the messengers with the SO(10) GUT-symmetry breaking Higgs fields. The model is one of the realistic extensions of the gauge mediation model with superconformal hidden sector. It is shown that the extension is applicable for a broad range of conformality breaking scale

  17. Primordial cosmological inflation versus local supersymmetry breaking in SUSY GUTs coupled to N = 1 supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Ramon-Medrano, M.

    1984-01-01

    We present a model for a SUSY GUT coupled to N=1 supergravity in which local supersymmetry breaks down in the gauge singlet sector. The constraints for the model to be physically acceptable are incompatible with inflation. The simultaneous breaking of local supersymmetry and gauge symmetry is proposed as a good prospect for inflation. (orig.)

  18. Metastable SUSY breaking, de Sitter moduli stabilisation and Kaehler moduli inflation

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Quevedo, Fernando

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N = 1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kaehler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kaehler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kaehler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.

  19. Flavour symmetries and SUSY soft breaking in the LHC era

    International Nuclear Information System (INIS)

    Vives, O

    2008-01-01

    The so-called supersymmetric flavour problem does not exist in isolation to the Standard Model flavour problem. We show that a realistic flavour symmetry can simultaneously solve both problems without ad hoc modifications of the SUSY model. Furthermore, departures from the SM expectations in these models can be used to discriminate among different possibilities. In particular we present the expected values for the electron EDM in a flavour model solving the supersymmetric flavour and CP problems

  20. Muon g−2 in anomaly mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debtosh; Yokozaki, Norimi [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2015-08-24

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  1. Muon g−2 in anomaly mediated SUSY breaking

    International Nuclear Information System (INIS)

    Chowdhury, Debtosh; Yokozaki, Norimi

    2015-01-01

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  2. Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua

    International Nuclear Information System (INIS)

    Froggatt, C.D.; Nevzorov, R.; Nielsen, H.B.; Thomas, A.W.

    2014-01-01

    The empirical mass of the Higgs boson suggests small to vanishing values of the quartic Higgs self-coupling and the corresponding beta function at the Planck scale, leading to degenerate vacua. This leads us to suggest that the measured value of the cosmological constant can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2) W ×U(1) Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than Λ QCD in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale

  3. On the diversity of gauge mediation: footprints of dynamical SUSY breaking

    International Nuclear Information System (INIS)

    Abel, Steven; Jaeckel, Joerg; Khoze, Valentin V.; Matos, Luis

    2009-01-01

    Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that there are generic new and striking predictions. These include new particles with masses comparable to those of the Standard Model superpartners, associated with the pseudo-Goldstone modes of the dynamical SUSY breaking sector. Consequently there is an unavoidable departure from the MSSM. In addition the gaugino masses are typically significantly lighter than the sfermions, and their mass ratios can be different from the pattern dictated by the gauge couplings in standard (i.e. explicit) gauge mediation. We investigate these features in two distinct realisations of the dynamical SUSY breaking sector.

  4. On SUSY breaking and χSB from string duals

    International Nuclear Information System (INIS)

    Gomis, Jaume

    2002-01-01

    We find regular string duals of three-dimensional N=1 SYM with a Chern-Simons interaction at level k for SO and Sp gauge groups. Using the string dual we exactly reproduce the conjectured pattern of supersymmetry breaking proposed by Witten by showing that there is dynamical supersymmetry breaking for k 2h →Z 2 by analyzing the symmetries of the string solution

  5. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    International Nuclear Information System (INIS)

    Carena, Marcela; Liu, Tao

    2010-12-01

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb -1 per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb -1 , our projection shows that evidence at the 3σ level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  6. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Fermi National Accelerator Laboratory, Batavia, IL (United States); Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Draper, Patrick [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Liu, Tao [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; California Univ., Santa Barbara, CA (United States). Dept. of Physics; Wagner, Carlos E.M. [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Argonne National Laboratory, Argonne, IL (United States). HEP Div.; Chicago Univ., Chicago, IL (United States). KICP and Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  7. Dynamical SUSY breaking in meta-stable vacua

    International Nuclear Information System (INIS)

    Intriligator, Kenneth; Seiberg, Nathan; Shih, David

    2006-01-01

    Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua

  8. Sgoldstino-less inflation and low energy SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles, CP231, B-1050 Brussels (Belgium); Coone, Dries; Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Heurtier, Lucien, E-mail: rargurio@ulb.ac.be, E-mail: a.a.coone@rug.nl, E-mail: lucien.heurtier@ulb.ac.be, E-mail: alberto.mariotti@vub.ac.be [Service de Physique Théorique, Université Libre de Bruxelles, CP225, B-1050 Brussels (Belgium)

    2017-07-01

    We assess the range of validity of sgoldstino-less inflation in a scenario of low energy supersymmetry breaking. We first analyze the consistency conditions that an effective theory of the inflaton and goldstino superfields should satisfy in order to be faithfully described by a sgoldstino-less model. Enlarging the scope of previous studies, we investigate the case where the effective field theory cut-off, and hence also the sgoldstino mass, are inflaton-dependent. We then introduce a UV complete model where one can realize successfully sgoldstino-less inflation and gauge mediation of supersymmetry breaking, combining the α-attractor mechanism and a weakly coupled model of spontaneous breaking of supersymmetry. In this class of models we find that, given current limits on superpartner masses, the gravitino mass has a lower bound of the order of the MeV, i.e. we cannot reach very low supersymmetry breaking scales. On the plus side, we recognize that in this framework, one can derive the complete superpartner spectrum as well as compute inflation observables, the reheating temperature, and address the gravitino overabundance problem. We then show that further constraints come from collider results and inflation observables. Their non trivial interplay seems a staple feature of phenomenological studies of supersymmetric inflationary models.

  9. Anatomy of new SUSY breaking holographic RG flows

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [International Center of Theoretical Physics (ICTP),Strada Costiera 11, I 34014 Trieste (Italy); Redigolo, Diego [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France)

    2015-03-17

    We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1){sub R} symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1){sub F} symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are spontaneously broken, and their lifting when the breaking is explicit. We further comment on the application of such class of backgrounds as archetypes of strongly coupled hidden sectors for gauge mediation of supersymmetry breaking. In particular, we show that it is possible to model in this way all types of hierarchies between the visible sector gaugino and sfermion masses.

  10. Low-scale SUSY breaking and the (s)goldstino physics

    CERN Document Server

    Antoniadis, I.

    2013-01-01

    For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->\\infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in ...

  11. Initial conditions for inflation and the energy scale of SUSY-breaking from the (nearly) gaussian sky

    CERN Document Server

    Álvarez-Gaumé, Luis; Jimenez, Raul

    We show how general initial conditions for small field inflation can be obtained in multi-field models. This is provided by non-linear angular friction terms in the inflaton that provide a phase of non-slow-roll inflation before the slow-roll inflation phase. This in turn provides a natural mechanism to star small-field slow-roll at nearly zero velocity for arbitrary initial conditions. We also show that there is a relation between the scale of SUSY breaking sqrt (f) and the amount of non-gaussian fluctuations generated by the inflaton. In particular, we show that in the local non-gaussian shape there exists the relation sqrt (f) = 10^{13} GeV sqrt (f_NL). With current observational limits from Planck, and adopting the minimum amount of non-gaussian fluctuations allowed by single-field inflation, this provides a very tight constraint for the SUSY breaking energy scale sqrt (f) = 3-7 x 10^{13} GeV at 95% confidence. Further limits, or detection, from next year's Planck polarisation data will further tighten th...

  12. Dark matter and Bs→μ+μ- with minimal SO10 soft SUSY breaking

    International Nuclear Information System (INIS)

    Dermisek, R.; Roszkowski, L.; Ruiz de Austri, R.; Raby, S.

    2003-01-01

    CMSSM boundary conditions are usually used when calculating cosmological dark matter densities. In this paper we calculate the cosmological density of dark matter in the MSSM using minimal SO 10 soft SUSY breaking boundary conditions. These boundary conditions incorporate several attractive features: they are consistent with SO 10 Yukawa unification, they result in a 'natural' inverted scalar mass hierarchy and they reduce the dimension 5 operator contribution to the proton decay rate. With regards to dark matter, on the other hand, this is to a large extent an unexplored territory with large squark and slepton masses m 16 , large A 0 and small {μ,M 1/2 }. We find that in most regions of parameter space the cosmological density of dark matter is considerably less than required by the data. However there is a well-defined, narrow region of parameter space which provides the observed relic density of dark matter, as well as a good fit to precision electroweak data, including top, bottom and tau masses, and acceptable bounds on the branching fraction of B s →μ + μ - . We present predictions for Higgs and SUSY spectra, the dark matter detection cross section and the branching ratio BR(B s →μ + μ - ) in this region of parameter space. (author)

  13. D-term contributions and CEDM constraints in E6 × SU(2)F × U(1)A SUSY GUT model

    Science.gov (United States)

    Shigekami, Yoshihiro

    2017-11-01

    We focus on E6 × SU(2)F × U(1)A supersymmetric (SUSY) grand unified theory (GUT) model. In this model, realistic Yukawa hierarchies and mixings are realized by introducing all allowed interactions with 𝓞(1) coefficients. Moreover, we can take stop mass is smaller than the other sfermion masses. This type of spectrum called by natural SUSY type sfermion mass spectrum can suppress the SUSY contributions to flavor changing neutral current (FCNC) and stabilize weak scale at the same time. However, light stop predicts large up quark CEDM and stop contributions are not decoupled. Since there is Kobayashi-Maskawa phase, stop contributions to the up quark CEDM is severely constrained even if all SUSY breaking parameters and Higgsino mass parameter μ are real. In this model, real up Yukawa couplings are realized at the GUT scale because of spontaneous CP violation. Therefore CEDM bounds are satisfied, although up Yukawa couplings are complex at the SUSY scale through the renormalization equation group effects. We calculated the CEDMs and found that EDM constraints can be satisfied even if stop mass is 𝓞(1) TeV. In addition, we investigate the size of D-terms in this model. Since these D-term contributions is flavor dependent, the degeneracy of sfermion mass spectrum is destroyed and the size of D-term is strongly constrained by FCNCs when SUSY breaking scale is the weak scale. However, SUSY breaking scale is larger than 1 TeV in order to obtain 125 GeV Higgs mass, and therefore sizable D-term contribution is allowed. Furthermore, we obtained the non-trivial prediction for the difference of squared sfermion mass.

  14. Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale

    Science.gov (United States)

    Singh, K. Sashikanta; Roy, Subhankar; Singh, N. Nimai

    2018-03-01

    The scale at which supersymmetry (SUSY) breaks (ms) is still unknown. The present article, following a top-down approach, endeavors to study the effect of varying ms on the radiative stability of the observational parameters associated with the neutrino mixing. These parameters get additional contributions in the minimal supersymmetric model (MSSM). A variation in ms will influence the bounds for which the Standard Model (SM) and MSSM work and hence, will account for the different radiative contributions received from both sectors, respectively, while running the renormalization group equations (RGE). The present work establishes the invariance of the self complementarity relation among the three mixing angles, θ13+θ12≈θ23 against the radiative evolution. A similar result concerning the mass ratio, m2:m1 is also found to be valid. In addition to varying ms, the work incorporates a range of different seesaw (SS) scales and tries to see how the latter affects the parameters.

  15. Large tan β in gauge-mediated SUSY-breaking models

    International Nuclear Information System (INIS)

    Rattazzi, R.

    1997-01-01

    We explore some topics in the phenomenology of gauge-mediated SUSY-breaking scenarios having a large hierarchy of Higgs VEVs, v U /v D = tan β>>1. Some motivation for this scenario is first presented. We then use a systematic, analytic expansion (including some threshold corrections) to calculate the μ-parameter needed for proper electroweak breaking and the radiative corrections to the B-parameter, which fortuitously cancel at leading order. If B = 0 at the messenger scale then tan β is naturally large and calculable; we calculate it. We then confront this prediction with classical and quantum vacuum stability constraints arising from the Higgs-slepton potential, and indicate the preferred values of the top quark mass and messenger scale(s). The possibility of vacuum instability in a different direction yields an upper bound on the messenger mass scale complementary to the familiar bound from gravitino relic abundance. Next, we calculate the rate for b→sγ and show the possibility of large deviations (in the direction currently favored by experiment) from standard-model and small tan β predictions. Finally, we discuss the implications of these findings and their applicability to future, broader and more detailed investigations. (orig.)

  16. Search for the decay stau --> tau + gravitino in the framework of the Minimal Gauge Mediated SUSY Breaking models

    CERN Document Server

    Cavallo, F R

    1997-01-01

    A search for these decays was carried out in the context of Gauge Mediated SUSY Breaking models, using the data collected by DELPHI in 1995 and 1996 at the center of mass energies of 133, 161 and 172 GeV. No evidence of these processes was found for a decay length ranging from ~ 1mm to ~ 20cm and limits were derived on the gravitino and scalar tau masses.

  17. Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking

    Science.gov (United States)

    Sperling, Marcus; Steinacker, Harold C.

    2018-04-01

    We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.

  18. Exploring non-holomorphic soft terms in the framework of gauge mediated supersymmetry breaking

    Science.gov (United States)

    Chattopadhyay, Utpal; Das, Debottam; Mukherjee, Samadrita

    2018-01-01

    It is known that in the absence of a gauge singlet field, a specific class of supersymmetry (SUSY) breaking non-holomorphic (NH) terms can be soft breaking in nature so that they may be considered along with the Minimal Supersymmetric Standard Model (MSSM) and beyond. There have been studies related to these terms in minimal supergravity based models. Consideration of an F-type SUSY breaking scenario in the hidden sector with two chiral superfields however showed Planck scale suppression of such terms. In an unbiased point of view for the sources of SUSY breaking, the NH terms in a phenomenological MSSM (pMSSM) type of analysis showed a possibility of a large SUSY contribution to muon g - 2, a reasonable amount of corrections to the Higgs boson mass and a drastic reduction of the electroweak fine-tuning for a higgsino dominated {\\tilde{χ}}_1^0 in some regions of parameter space. We first investigate here the effects of the NH terms in a low scale SUSY breaking scenario. In our analysis with minimal gauge mediated supersymmetry breaking (mGMSB) we probe how far the results can be compared with the previous pMSSM plus NH terms based study. We particularly analyze the Higgs, stop and the electroweakino sectors focusing on a higgsino dominated {\\tilde{χ}}_1^0 and {\\tilde{χ}}_1^{± } , a feature typically different from what appears in mGMSB. The effect of a limited degree of RG evolutions and vanishing of the trilinear coupling terms at the messenger scale can be overcome by choosing a non-minimal GMSB scenario, such as one with a matter-messenger interaction.

  19. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2010-01-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP 4 [1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the 'big' divisor Σ B (as opposed to the 'small' divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 12 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  20. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2010-03-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  1. Muon g - 2 through a flavor structure on soft SUSY terms

    International Nuclear Information System (INIS)

    Flores-Baez, F.V.; Gomez Bock, M.; Mondragon, M.

    2016-01-01

    In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l_i → l_jγ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)

  2. Muon g - 2 through a flavor structure on soft SUSY terms

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Baez, F.V. [Universidad Autonoma de Nuevo Leon, UANL Ciudad Universitaria, FCFM, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez Bock, M. [Universidad de las Americas Puebla, UDLAP, Ex-Hacienda Sta. Catarina Martir, DAFM, Cholula, Puebla (Mexico); Mondragon, M. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Apdo. Postal 20-364, Mexico, D.F. (Mexico)

    2016-10-15

    In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l{sub i} → l{sub j}γ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)

  3. SUSY Unparticle and Conformal Sequestering

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu; Nakayama, Yu

    2007-07-17

    We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.

  4. Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation

    CERN Document Server

    Krippendorf, Sven

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...

  5. A new two-faced scalar solution and cosmological SUSY breaking

    International Nuclear Information System (INIS)

    Shmakova, Marina

    2010-01-01

    We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.

  6. Reducing the fine-tuning of gauge-mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Casas, J.A.; Moreno, Jesus M. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Robles, Sandra [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2016-08-15

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A{sub t} = 0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A{sub t} ≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A{sub t} at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called ''little A{sub t}{sup 2}/m{sup 2} problem'', i.e. the fact that a large A{sub t}-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning. (orig.)

  7. Search for SUSY in gauge mediated and anomaly mediated supersymmetry breaking models

    International Nuclear Information System (INIS)

    Nunnnemann, Thomas

    2004-01-01

    In this note, recent results on the search for Gauge Mediated Supersymmetry Breaking (GMSB) and Anomaly Mediated Supersymmetry Breaking (AMSB) at the LEP and Tevatron colliders are summarized. We report on DOe's search for GMSB in di-photon events with large missing transverse energy and discuss the sensitivity of similar searches based on future Tevatron integrated luminosities. (orig.)

  8. Preheating Mechanism in F-term SUSY Hybrid Inflation

    International Nuclear Information System (INIS)

    Mazumdar, Arindam

    2012-01-01

    Supersymmetric F-term hybrid inflation is one of the most popular models of inflation. Preheating process occurs in this model via two different mechanism. Firstly the standard parametric resonance and secondly, the tachyonic preheating. Generally tachyonic preheating dominates the parametric resonance for this type of models. For different values of the parameters of the theory dominance of tachyonic preheating can vary.

  9. Naturalness, SUSY heavy higgses and flavor constraints

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    I will demonstrate that supersymmetric (SUSY) higgses provide an important diagnostic for electroweak naturalness in the SUSY paradigm. I first review the naturalness problem of the Standard Model (SM) and SUSY as one of its most promising solutions. I study the masses of heavy Higgses in SUSY theories under broad assumptions, and show how they are constrained by their role in Electroweak symmetry breaking. I then show how Flavor Physics severely constrains large parts of SUSY parameter space, otherwise favored by naturalness. If SUSY Higgses are not discovered at relatively low mass during the next LHC run, this tension will further increase, disfavoring naturalness from SUSY.

  10. R-symmetry violation in N=2 SUSY

    International Nuclear Information System (INIS)

    Volkov, G.G.; Maslikov, A.A.

    1990-01-01

    The present paper discusses the spontaneous R-symmetry violation in the N=2 SUSY SU(4)xU(1) model with soft SUSY breaking terms preserving finiteness. (In this case an invisible axion appears). In particular, the mechanism producting a light photino mass up to some GeV is suggested. In R-odd version of this model the mechanisms of enhancement of the neutrino decay is discussed. 10 refs.; 3 figs

  11. SUSY meets her twin

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève,24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Pokorski, Stefan [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Redigolo, Diego [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Tel-Aviv 69978 (Israel); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Ziegler, Robert [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-01-31

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  12. SUSY breaking mediation mechanisms and (g-2)μ, B→Xsγ, B→Xsl+l- and Bs→μ+μ-

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, P.; Song, Wan Young

    2003-01-01

    We show that there are qualitative differences in correlations among (g-2)μ, B→X s γ, B→X l + l - and B s →μ + μ - in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), guagino mediation (g-tildeMSB), weakly and strongly interacting string theories, and D brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and B→X s γ branching ratio, we find all the scenarios can accommodate the aμ≡(g-2)μ/2 in the range of (a few tens) x 10 -10 , and predict that the branching ratio for B→X s l + l - can differ from the standard model (SM) prediction by ±20% but no more. On the other hand, the B s →μ + μ - is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (m A and mt-tilde 1 ), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g-tildeMSB and the noscale scenarios, one finds that B(B s →μ + μ - ) -8 , which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay. (author)

  13. Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum

    CERN Document Server

    Antoniadis, Ignatios

    2016-01-01

    We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.

  14. Dynamical SUSY Breaking at Meta-Stable Minima from D-branes at Obstructed Geometries

    CERN Document Server

    Franco, S; Franco, Sebastian; Uranga, Angel M .

    2006-01-01

    We study the existence of long-lived meta-stable supersymmetry breaking vacua in gauge theories with massless quarks, upon the addition of extra massive flavors. A simple realization is provided by a modified version of SQCD with N_{f,0} < N_c massless flavors, N_{f,1} massive flavors and additional singlet chiral fields. This theory has local meta-stable minima separated from a runaway behavior at infinity by a potential barrier. We find further examples of such meta-stable minima in flavored versions of quiver gauge theories on fractional branes at singularities with obstructed complex deformations, and study the case of the dP_1 theory in detail. Finally, we provide an explicit String Theory construction of such theories. The additional flavors arise from D7-branes on non-compact 4-cycles of the singularity, for which we find a new efficient description using dimer techniques.

  15. Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter)

    CERN Document Server

    Arbey, A; Tarhini, A

    2011-01-01

    Anomaly mediation is a popular and well motivated supersymmetry breaking scenario. Different possible detailed realisations of this set-up are studied and actively searched for at colliders. Apart from limits coming from flavour, low energy physics and direct collider searches, these models are usually constrained by the requirement of reproducing the observations on dark matter density in the universe. We reanalyse these bounds and in particular we focus on the dark matter bounds both considering the standard cosmological model and alternative cosmological scenarios. These scenarios do not change the observable cosmology but relic dark matter density bounds strongly depend on them. We consider few benchmark points excluded by standard cosmology dark matter bounds and suggest that loosening the dark matter constraints is necessary in order to avoid a too strong (cosmological) model dependence in the limits that are obtained for these models. We also discuss briefly the implications for phenomenology and in pa...

  16. SUSY Without Prejudice

    International Nuclear Information System (INIS)

    Berger, C.

    2008-01-01

    We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, i.e., the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC

  17. Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields

    International Nuclear Information System (INIS)

    Hernández-Ortíz, S; Raya, A; Murguía, G

    2012-01-01

    Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one. (paper)

  18. Electric dipole moments from spontaneous CP violation in SU(3)-flavoured SUSY

    International Nuclear Information System (INIS)

    Jones Perez, J

    2009-01-01

    The SUSY flavour problem is deeply related to the origin of flavour and hence to the origin of the SM Yukawa couplings themselves. Since all CP-violation in the SM is restricted to the flavour sector, it is possible that the SUSY CP problem is related to the origin of flavour as well. In this work, we present three variations of an SU(3) flavour model with spontaneous CP violation. Such models explain the hierarchy in the fermion masses and mixings, and predict the structure of the flavoured soft SUSY breaking terms. In such a situation, both SUSY flavour and CP problems do not exist. We use electric dipole moments and lepton flavour violation processes to distinguish between these models, and place constraints on the SUSY parameter space.

  19. Soft see-saw: Radiative origin of neutrino masses in SUSY theories

    Directory of Open Access Journals (Sweden)

    Luka Megrelidze

    2017-01-01

    Full Text Available Radiative neutrino mass generation within supersymmetric (SUSY construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.

  20. The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions

    Directory of Open Access Journals (Sweden)

    Hiroyuki Abe

    2014-11-01

    Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.

  1. SUSY Searches at ATLAS and CMS

    CERN Document Server

    Urquijo, P; The ATLAS collaboration

    2009-01-01

    We review the current strategies to search for Supersymmetry (SUSY) with the ATLAS and CMS detectors at the LHC. The early data discovery potential will be presented for search channels based on missing transverse momentum from undetected neutralinos and multiple high transverse momentum jets. We describe the search for models of gauge-mediated SUSY breaking for which the next to lightest SUSY particle is a neutralino that decays into a photon and gravitino. Examples of measurement techniques that probe the SUSY mass scale in the first data, through reconstruction of kinematic endpoints, are also shown.

  2. SUSY particles

    CERN Document Server

    Nath, Pran

    1994-01-01

    Analysis of the SUSY spectrum in supergravity unified models is given under the naturalness criterion that the universal scalar mass (m_0) and the gluino mass (m_{\\tilde g}) satisfy the constraint m_0, m_{\\tilde g} less than or equal to 1 TeV. The SUSY spectrum is analysed in four different scenarios: (1) minimal supergravity models ignoring proton decay from dimension five operators, (2) imposing proton stability constraint in supergravity models with SU(5) type embedding which allow proton decay via dimension five operators, (3) with inclusion of dark matter constraints in models of type (1), and (4) with inclusion of dark matter constraint in models of type (2). It is found that there is a very strong upper limit on the light chargino mass in models of type (4), i.e., the light chargino mass is less than or equals 120 GeV.

  3. Testing SUSY

    CERN Document Server

    Cassel, S; Ross, G G

    2010-01-01

    If SUSY provides a solution to the hierarchy problem then supersymmetric states should not be too heavy. This requirement is quantified by the Barbieri-Giudice fine tuning measure that provides a quantitative test of SUSY as a solution to the hierarchy problem. The measure is useful in correlating the impact of the various experimental measurements relevant to the search for supersymmetry and also in identifying the most sensitive measurements for testing SUSY. In this paper we apply the measure to the CMSSM, computing it to two-loop order and taking account of current experimental limits and the constraint on dark matter abundance. Using this we determine the present limits on the CMSSM parameter space and identify the measurements at the LHC that are most significant in covering the remaining parameter space. Without imposing the LEP Higgs mass bound we show that the smallest fine tuning (1:14.5) consistent with a saturation of the relic density within the 1$\\sigma$ WMAP bounds corresponds to a Higgs mass o...

  4. Natural SUSY endures

    Energy Technology Data Exchange (ETDEWEB)

    Papucci, Michele; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.

    2011-10-31

    The first 1 fb{sup -1} of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb{sup -1} searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb{sup -1} of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space. (orig.)

  5. Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)

    2015-05-13

    Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.

  6. Simplified SUSY at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, Mikael

    2013-08-15

    At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.

  7. Simplified SUSY at the ILC

    International Nuclear Information System (INIS)

    Berggren, Mikael

    2013-08-01

    At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.

  8. Naturalness in low-scale SUSY models and "non-linear" MSSM

    CERN Document Server

    Antoniadis, I; Ghilencea, D M

    2014-01-01

    In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Delta\\approx 800 to 1000 for the constrained MSSM and Delta\\approx 500 for non-universal gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (\\sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Delta\\approx 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(\\sqrt f) of the visible to the hidden sector SUSY breaking...

  9. Towards N = 2 SUSY homogeneous quantum cosmology; Einstein-Yang-Mills systems

    International Nuclear Information System (INIS)

    Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.

    1998-01-01

    The application of N = 2 supersymmetric Quantum Mechanics for the quantization of homogeneous systems coupled with gravity is discussed. Starting with the superfield formulation of N = 2 SUSY sigma-model, Hermitian self-adjoint expressions for quantum Hamiltonians and Lagrangians for any signature of a sigma-model metric are obtained. This approach is then applied to coupled SU (2) Einstein-Yang-Mills (EYM) systems in axially-symmetric Bianchi - I,II,VIII, IX, Kantowski-Sachs and closed Friedmann-Robertson-Walker cosmological models. It is shown that all these models admit the embedding into N = 2 SUSY sigma-model with the explicit expressions for superpotentials, being direct sums of gravitational and Yang-Mills (YM) parts. In addition, YM parts of superpotentials exactly coincide with the corresponding Chern-Simons terms. The spontaneous SUSY breaking, caused by YM instantons in EYM systems is discussed in a number of examples

  10. Breaking democracy with non renormalizable mass terms

    CERN Document Server

    Silva-Marcos, Joaquim I

    2001-01-01

    The exact democratic structure for the quark mass matrix, resulting from the action of the family symmetry group $A_{3L}\\times A_{3R}$, is broken by the vacuum expectation values of heavy singlet fields appearing in non renormalizable dimension 6 operators. Within this specific context of breaking of the family symmetry we formulate a very simple ansatz which leads to correct quark masses and mixings.

  11. Where is SUSY?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Recent information from the LHC experiments, the relatively low mass of the new boson and other data coming from experiments looking for dark matter worldwide are placing new constraints on the existence of supersymmetry (SUSY). However, there is a large community of scientists that still believes that SUSY particles are out there. Like lost keys at night, perhaps we have been looking for SUSY under the wrong lamp-posts…   Can you work out this rebus? Source: Caroline Duc. So far, SUSY is “just” a theoretical physics model, which could solve problems beyond the Standard Model by accounting for dark matter and other phenomena in the Universe. However, SUSY has not been spotted so far, and might be hiding because of features different from what physicists previously expected. “Currently, there is no evidence for SUSY, but neither has any experimental data ruled it out. Many searches have focused on simplified versions of the theory but, given the recen...

  12. SUSY Searches at ATLAS

    CERN Document Server

    Mamuzic, Judita; The ATLAS collaboration

    2017-01-01

    Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.

  13. Supernatural A-Term Inflation

    Science.gov (United States)

    Lin, Chia-Min; Cheung, Kingman

    Following Ref. 10, we explore the parameter space of the case when the supersymmetry (SUSY) breaking scale is lower, for example, in gauge mediated SUSY breaking model. During inflation, the form of the potential is V0 plus MSSM (or A-term) inflation. We show that the model works for a wide range of the potential V0 with the soft SUSY breaking mass m O(1) TeV. The implication to MSSM (or A-term) inflation is that the flat directions which is lifted by the non-renormalizable terms described by the superpotential W=λ p φ p-1/Mp-3 P with p = 4 and p = 5 are also suitable to be an inflaton field for λp = O(1) provided there is an additional false vacuum term V0 with appropriate magnitude. The flat directions correspond to p = 6 also works for 0 < ˜ V0/M_ P4 < ˜ 10-40.

  14. Susy and Such

    International Nuclear Information System (INIS)

    Dawson, S.

    1997-01-01

    In these lectures, the author discusses the theoretical motivation for supersymmetric theories and introduce the minimal low energy effective supersymmetric theory, (MSSM). I consider only the MSSM and its simplest grand unified extension here. Some of the other possible low-energy SUSY models are summarized. The particles and their interactions are examined in detail in the next sections and a grand unified SUSY model presented which gives additional motivation for pursuing supersymmetric theories

  15. Dynamically sequestered F-term uplifting in extra dimension

    International Nuclear Information System (INIS)

    Abe, Hiroyuki; Higaki, Tetsutaro; Kobayashi, Tatsuo; Omura, Yuji

    2008-01-01

    We study moduli stabilization, the dynamical supersymmetry (SUSY) breaking, the uplifting of SUSY anti-de Sitter (AdS) vacuum and the sequestering of hidden sector in a five-dimensional supergravity model, where all modes of the visible sector and the hidden sector are originated from bulk fields. We clarify couplings between the visible and hidden sectors. The expressions for the visible sector soft SUSY breaking terms as well as the hidden sector potential are shown explicitly in our model. The sequestering is achieved dynamically by a wavefunction localization in extra dimension. We find that the tree-level soft scalar mass and the A-term can be suppressed at a SUSY breaking Minkowski minimum where the radius modulus is stabilized, while gaugino masses would be a mirage type

  16. Improving long term driving comfort by taking breaks - how break activity affects effectiveness

    OpenAIRE

    Sammonds, GM; Mansfield, NJ; Fray, M

    2017-01-01

    During long duration journeys, drivers are encouraged to take regular breaks. The benefits of breaks have been documented for safety; breaks may also be beneficial for comfort. The activity undertaken during a break may influence its effectiveness. Volunteers completed 3 journeys on a driving simulator. Each 130 min journey included a 10 min break after the first hour. During the break volunteers either stayed seated, left the simulator and sat in an adjacent room, or took a walk on a treadmi...

  17. SUSY naturalness without prejudice

    CERN Document Server

    Ghilencea, D M

    2014-01-01

    Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale $v$ at the quantum level and {\\it predict} that $v$ is a function of the TeV-valued SUSY parameters ($\\gamma_\\alpha$) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation $\\delta\\chi^2$ (from $\\chi^2_{min}$ of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, {\\it provided that} the EW scale $v\\sim m_Z$ is indeed regarded as a function $v=v(\\gamma)$. It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among $\\gamma_\\alpha$ exist (due to GUT symmetries, etc). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the $\\delta\\chi^2$ and the s-standard deviation conf...

  18. SUSY naturalness without prejudice

    Science.gov (United States)

    Ghilencea, D. M.

    2014-05-01

    Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale v at the quantum level and predict that v is a function of the TeV-valued SUSY parameters (γα) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation δχ2 (from χmin2 of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, provided that the EW scale v ˜mZ is indeed regarded as a function v =v(γ). It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among γα exist (due to GUT symmetries, etc.). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the δχ2 and the s-standard deviation confidence interval by using v =v(γ) and the theoretical approximation (loop order) considered for the calculation of the observables. This upper bound avoids subjective criteria for the "acceptable" level of EW fine-tuning for which the model is still "natural."

  19. SUSY: Quo Vadis?

    International Nuclear Information System (INIS)

    Ross, G.G.

    2014-01-01

    Given that there is currently no direct evidence for supersymmetric particles at the LHC it is timely to re-evaluate the need for low scale supersymmetry and to ask whether it is likely to be discoverable by the LHC running at its full energy. We review the status of simple SUSY extensions of the Standard Model in the light of the Higgs discovery and the non-observation of evidence for SUSY at the LHC. The need for large radiative corrections to drive the Higgs mass up to 126 GeV and for the coloured SUSY states to be heavy to explain their non-observation introduces a little hierarchy problem and we discuss how to quantify the associated fine tuning. The requirement of low fine tuning requires non-minimal SUSY extensions and we discuss the nature and phenomenology of models which still have perfectly acceptable low fine tuning. A brief discussion of SUSY flavour-changing and CP-violation problems and their resolution is presented. (orig.)

  20. Electroweak SUSY production searches at ATLAS and CMS

    CERN Document Server

    Flowerdew, M; The ATLAS collaboration

    2014-01-01

    The discovery of weak-scale supersymmetric (SUSY) particles is one of the primary goals of the Large Hadron Collider experiments. Depending on the mechanism of SUSY breaking, it could be that strongly interacting squarks and gluinos are too massive to produce at the LHC. In this case, the primary SUSY production mode is of charginos, neutralinos and sleptons, mediated by electroweak interactions. However, the experimental signatures for discovery vary widely, depending on the mass hierarchy, SUSY particle mixing parameters and conservation/violation of R-parity, necessitating a large and complex suite of experimental search strategies. These strategies include searching for events with multiple charged leptons, photons, reconstructed higgs bosons or new long-lived particles. In this presentation, the latest ATLAS and CMS search results in these channels are presented, based mainly on $20~$fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} = 8~$TeV collected in 2012. The resulting constraints on the parameter spaces of...

  1. EW SUSY production searches at ATLAS and CMS

    CERN Document Server

    Flowerdew, MJ; The ATLAS collaboration

    2014-01-01

    The discovery of weak-scale supersymmetric (SUSY) particles is one of the primary goals of the Large Hadron Collider experiments. Depending on the mechanism of SUSY breaking, it could be that strongly interacting squarks and gluinos are too massive to produce at the LHC. In this case, the primary SUSY production mode is of charginos, neutralinos and sleptons, mediated by electroweak interactions. However, the experimental signatures for discovery vary widely, depending on the mass hierarchy, SUSY particle mixing parameters and conservation/violation of R-parity, necessitating a large and complex suite of experimental search strategies. These strategies include searching for events with multiple charged leptons, photons, reconstructed higgs bosons or new long-lived particles. In this presentation, the latest ATLAS and CMS search results in these channels are presented, based mainly on 20 fb$^{-1}$ of pp collisions at $\\sqrt{s} = 8$ TeV collected in 2012. The resulting constraints on the parameter spaces of var...

  2. Searches for SUSY at LHC

    International Nuclear Information System (INIS)

    Kharchilava, A.

    1997-01-01

    One of the main motivations of experiments at the LHC is to search for SUSY particles. The talk is based on recent analyses, performed by CMS Collaboration, within the framework of the Supergravity motivated minimal SUSY extension of the Standard Model. The emphasis is put on leptonic channels. The strategies for obtaining experimental signatures for strongly and weakly interacting sparticles productions, as well as examples of determination of SUSY masses and model parameters are discussed. The domain of parameter space where SUSY can be discovered is investigated. Results show, that if SUSY is of relevance at Electro-Weak scale it could hardly escape detection at LHC. (author)

  3. One-loop stabilization of the fuzzy four-sphere via softly broken SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)

    2015-12-17

    We describe a stabilization mechanism for fuzzy S{sub N}{sup 4} in the Euclidean IIB matrix model due to vacuum energy in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.

  4. Susy seesaw inflation and NMSO(10)GUT

    International Nuclear Information System (INIS)

    Aulakh, Charanjit S.

    2013-01-01

    We show that Supersymmetric models with Type I seesaw neutrino masses support slow roll inflection point inflation. The inflaton is the D-flat direction labelled by the chiral invariant HLN composed of the Higgs(H), slepton(L) and conjugate sneutrino(N) superfields. The scale of inflation and fine tuning is set by the conjugate neutrino Majorana mass M ν c ∼ 10 6 - 10 12 GeV. The cubic term in the (quartic) inflaton potential is dominantly from superpotential (not soft Susy breaking) couplings. The tuning conditions are thus insensitive to soft supersymmetry breaking parameters and are generically much less stringent than for previous 'A-term' inflation scenarios controlled by mass scales ∼TeV. WMAP limits on the ratio of tensor to scalar perturbations limit the scale M controlling inflection point inflation: M 13 GeV. 'Instant preheating' is operative and dumps the inflaton energy into MSSM modes giving a high reheat temperature: T rh ≈M ν c (3/4) 10 6 GeV ∼ 10 11 - 10 15 GeV. A large gravitino mass > 50 TeV is therefore required to avoid over closure by reheat produced gravitinos. 'Instant preheating' and NLH inflaton facilitate production of right handed neutrinos during inflaton decay and thus non-thermal leptogenesis in addition to thermal leptogenesis. We show that the embedding in the fully realistic New Minimal Supersymmetric SO(10) GUT requires use of the heaviest righthanded neutrino mass as the controlling scale but the possibility of a measurable tensor scalar perturbation ratio seems marginal. We examine the parametric difficulties remaining.

  5. We still love SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-11-15

    Supersymmetry, affectionately known as SUSY, is still the darling of theoretical particle physics. Invented some 20 years ago, the charismatic idea really took off at the beginning of the 1980s. At the time, a workshop at CERN reflected the youthful enthusiasm for these new ideas.

  6. SUSY Search at LHC

    CERN Document Server

    Xu, Da; The ATLAS collaboration

    2018-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk gives an overview of the most recent SUSY searches in ATLAS and CMS experiments using 13 TeV ATLAS Run2 data.

  7. SUSY GUT Model Building

    International Nuclear Information System (INIS)

    Raby, Stuart

    2008-01-01

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.

  8. We still love SUSY

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Supersymmetry, affectionately known as SUSY, is still the darling of theoretical particle physics. Invented some 20 years ago, the charismatic idea really took off at the beginning of the 1980s. At the time, a workshop at CERN reflected the youthful enthusiasm for these new ideas

  9. On a generalized Dirac oscillator interaction for the nonrelativistic limit 3 D generalized SUSY model oscillator Hamiltonian of Celka and Hussin

    International Nuclear Information System (INIS)

    Jayaraman, Jambunatha; Lima Rodrigues, R. de

    1994-01-01

    In the context of the 3 D generalized SUSY model oscillator Hamiltonian of Celka and Hussin (CH), a generalized Dirac oscillator interaction is studied, that leads, in the non-relativistic limit considered for both signs of energy, to the CH's generalized 3 D SUSY oscillator. The relevance of this interaction to the CH's SUSY model and the SUSY breaking dependent on the Wigner parameter is brought out. (author). 6 refs

  10. Hilltop supernatural inflation and SUSY unified models

    Science.gov (United States)

    Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.

  11. Hilltop supernatural inflation and SUSY unified models

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.

  12. Hilltop supernatural inflation and SUSY unified models

    International Nuclear Information System (INIS)

    Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min; Mimura, Yukihiro

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n s = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton

  13. Improving long term driving comfort by taking breaks - How break activity affects effectiveness.

    Science.gov (United States)

    Sammonds, George M; Mansfield, Neil J; Fray, Mike

    2017-11-01

    During long duration journeys, drivers are encouraged to take regular breaks. The benefits of breaks have been documented for safety; breaks may also be beneficial for comfort. The activity undertaken during a break may influence its effectiveness. Volunteers completed 3 journeys on a driving simulator. Each 130 min journey included a 10 min break after the first hour. During the break volunteers either stayed seated, left the simulator and sat in an adjacent room, or took a walk on a treadmill. The results show a reduction in driver discomfort during the break for all 3 conditions, but the effectiveness of the break was dependent on activity undertaken. Remaining seated in the vehicle provided some improvement in comfort, but more was experienced after leaving the simulator and sitting in an adjacent room. The most effective break occurred when the driver walked for 10 min on a treadmill. The benefits from taking a break continued until the end of the study (after a further hour of driving), such that comfort remained the best after taking a walk and worst for those who remained seated. It is concluded that taking a break and taking a walk is an effective method for relieving driving discomfort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Interpretation of Higgs and Susy searches in MSUGRA and GMSB Models

    International Nuclear Information System (INIS)

    Vivie, J.B. de

    1999-10-01

    HIGGS and SUSY searches performed by the ALEPH Experiment at LEP are interpreted in the framework of two constrained R-parity conserving models: Minimal Supergravity and minimal Gauge Mediated Supersymmetry Breaking. (author)

  15. SUSY Without Prejudice at Linear Colliders

    International Nuclear Information System (INIS)

    Rizzo, T.

    2008-01-01

    We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale e + e - linear colliders (LC) are discussed

  16. Natural SUSY dark matter model

    International Nuclear Information System (INIS)

    Mohanty, Subhendra; Rao, Soumya; Roy, D.P.

    2013-01-01

    The most natural region of cosmologically compatible dark matter relic density in terms of low fine-tuning in a minimal supersymmetric standard model with nonuniversal gaugino masses is the so called bulk annihilation region. We study this region in a simple and predictive SUSY- GUT model of nonuniversal gaugino masses, where the latter transform as a combination of singlet plus a nonsinglet representation of the GUTgroup SU(5). The model prediction for the direct dark matter detection rates is well below the present CDMS and XENON100 limits, but within the reach of a future 1Ton XENON experiment. The most interesting and robust model prediction is an indirect detection signal of hard positron events, which resembles closely the shape of the observed positron spectrum from the PAMELA experiment. (author)

  17. Kaehler geometry and SUSY mechanics

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen

    2001-01-01

    We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed

  18. Implications for new physics from fine-tuning arguments 1. Application to SUSY and seesaw cases

    International Nuclear Information System (INIS)

    Alberto Casas, J.; Hidalgo, Irene; Espinosa, Jose R.

    2004-01-01

    We revisit the standard argument to estimate the scale of new physics (NP) beyond the SM, based on the sensitivity of the Higgs mass to quadratic divergences. Although this argument is arguably naive, the corresponding estimate, Λ SM SM . One can obtain more precise implications from fine-tuning arguments in specific examples of NP. Here we consider SUSY and right-handed (seesaw) neutrinos. SUSY is a typical example for which the previous general estimate is indeed conservative: the MSSM is fine-tuned a few %, even for soft masses of a few hundred GeV. In contrast, other SUSY scenarios, in particular those with low-scale SUSY breaking, can easily saturate the general bound on Λ SM . The seesaw mechanism requires large fine-tuning if M R > or approx.10 7 GeV, unless there is additional NP (SUSY being a favourite option). (author)

  19. FlexibleSUSY-A spectrum generator generator for supersymmetric models

    Science.gov (United States)

    Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander

    2015-05-01

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  20. SUSY long-lived massive particles. Detection and physics at the LHC

    International Nuclear Information System (INIS)

    Ambrosiano, S.; Mele, B.; Nisati, A.; Petrarca, S.; Polesello, G.; Rimoldi, A.; Salvini, G.

    2001-01-01

    It was drawn a possible scenario for the observation of massive long-lived charged particles at the LHC detector ATLAS. The required flexibility of the detector triggers and of the identification and reconstruction systems are discussed. As an example, it was focused on the measurement of the mass and lifetime of long-lived charged sleptons predicted in the framework of supersymmetric models with gauge-mediated supersymmetry (SUSY) breaking. In this case the next-to-lightest SUSY particle can be the light scalar partner of the tau lepton (τ 1 ), possibly decaying slowly into a gravitino. A wide region of the SUSY parameters space was explored. The accessible range and precision on the measurement of the SUSY breaking scale parameter of √ F achievable with a counting method are assessed [it

  1. Searching for vortex solutions in graphene within an N=2 SUSY framework

    International Nuclear Information System (INIS)

    Abreu, Everton M.C.; Assis, Leonardo P.G. de; Helayel-Neto, Jose Abdalla; Nogueira, Alvaro L.M.A.; Paschoal, Ricardo C.

    2011-01-01

    Full text: In a recent work, we proposed an N=1-D=3 supersymmetric (SUSY) extension of Jackiw's et al. chiral gauge theory for graphene. As a first approach, we explored the idea that the chiral gauge formulation for Dirac fermions in graphene could be a sector of a wider SUSY theoretical setup, namely, the N=1 π 3 -QED. As a matter of fact, adding a superpotential operator to the N=1 π 3 -QED prescription, properly endowed with the constitutive chiral gauge and discrete symmetries that prevail in Jackiw's proposal, allows for the recognition of the Yukawa-like terms, along with spontaneous symmetry breaking configurations and corresponding non-null mass eigenvalues to the physical degrees of freedom. However, the additional requirement of invariance under a global phase transformation (GPT), meant to be associated to the electric charge, severely constrains the superpotential, leading to the exclusion of the sector that contains Jackiw's operators. As we proceed to investigate how the GP symmetry could be accommodated in a SUSY formulation, in the work of Ref. [E.M.C. Abreu, M.A. De Andrade, L.P.G. de Assis, J.A. Helayel-Neto, A.L.M.A. Nogueira and R.C. Paschoal, N=2-D=3 Supersymmetry and the Electric Charge in Graphene] we assess the straightforward N=1-generalization of Jackiw-Pi's chiral gauge theory, obtained at the cost of adding an extra superfield to the original SUSY-π 3 -QED field content. Moreover, we are able to construct an N=2-D=3 further extension of the chiral gauge theory for electrons in graphene. Such an N=2 SUSY framework provides an algebraic structure rich enough to imply a set of equations that minimizes the energy functional, namely, the well-known Bogomol'nyi equations. In this work, by taking the action of one of the supersymmetry charges to be trivial, we obtain the proper set of Bogomol'nyi equations. We finally impose a vortex-like trial solution, as we wish to discuss the resulting non-perturbative spectrum of the present N=2 setup

  2. Searching for vortex solutions in graphene within an N=2 SUSY framework

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Everton M.C. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Fisica; Andrade, Marco A. de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil); Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil); Nogueira, Alvaro L.M.A.; Paschoal, Ricardo C. [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)

    2011-07-01

    Full text: In a recent work, we proposed an N=1-D=3 supersymmetric (SUSY) extension of Jackiw's et al. chiral gauge theory for graphene. As a first approach, we explored the idea that the chiral gauge formulation for Dirac fermions in graphene could be a sector of a wider SUSY theoretical setup, namely, the N=1 {pi}{sub 3}-QED. As a matter of fact, adding a superpotential operator to the N=1 {pi}{sub 3}-QED prescription, properly endowed with the constitutive chiral gauge and discrete symmetries that prevail in Jackiw's proposal, allows for the recognition of the Yukawa-like terms, along with spontaneous symmetry breaking configurations and corresponding non-null mass eigenvalues to the physical degrees of freedom. However, the additional requirement of invariance under a global phase transformation (GPT), meant to be associated to the electric charge, severely constrains the superpotential, leading to the exclusion of the sector that contains Jackiw's operators. As we proceed to investigate how the GP symmetry could be accommodated in a SUSY formulation, in the work of Ref. [E.M.C. Abreu, M.A. De Andrade, L.P.G. de Assis, J.A. Helayel-Neto, A.L.M.A. Nogueira and R.C. Paschoal, N=2-D=3 Supersymmetry and the Electric Charge in Graphene] we assess the straightforward N=1-generalization of Jackiw-Pi's chiral gauge theory, obtained at the cost of adding an extra superfield to the original SUSY-{pi}{sub 3}-QED field content. Moreover, we are able to construct an N=2-D=3 further extension of the chiral gauge theory for electrons in graphene. Such an N=2 SUSY framework provides an algebraic structure rich enough to imply a set of equations that minimizes the energy functional, namely, the well-known Bogomol'nyi equations. In this work, by taking the action of one of the supersymmetry charges to be trivial, we obtain the proper set of Bogomol'nyi equations. We finally impose a vortex-like trial solution, as we wish to discuss the resulting non

  3. Recent SUSY results in ATLAS

    CERN Document Server

    Mamuzic, Judita; The ATLAS collaboration

    2018-01-01

    Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and natu- ralness problem, gives a solution to the gauge couplings unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, R-parity violation models, and long lived particles are being studied at the LHC. An overview of most recent results in SUSY searches using Run 2 ATLAS data, at 13 TeV with 36.1 fb−1 of integrated luminosity, was presented.

  4. Instantons versus SUSY

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vainstejn, A.I.; Zakharov, V.I.

    1985-01-01

    This survey is a written version of lectures given at the Bakuriani Workshop on High Energy Physics, January, 1985. The authors discuss the recent discovery on a new phenomenon - dynamical symmetry breaking in supersymmetric gauge theories with matter - which is generated by instantons. Under a certain choice of the matter multiplets the gauge invariance is inevitably spontaneously broken, gauge bosons acquire masses, the evolution of the running coupling constant is frozen and there is a weak coupling regime. Sometimes the pattern includes also spontaneous supersymmetry breaking. Both basic aspects of the mechanism and particular dynamical scenarios realized in typical models are described

  5. What is a natural SUSY scenario?

    Energy Technology Data Exchange (ETDEWEB)

    Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof [Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Zaldívar, Bryan [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)

    2015-06-11

    The idea of “Natural SUSY', understood as a supersymmetric scenario where the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric phenomenology. In this paper, we re-examine this issue in the context of the MSSM including several improvements, such as the mixing of the fine-tuning conditions for different soft terms and the presence of potential extra fine-tunings that must be combined with the electroweak one. We give tables and plots that allow to easily evaluate the fine-tuning and the corresponding naturalness bounds for any theoretical model defined at any high-energy (HE) scale. Then, we analyze in detail the complete fine-tuning bounds for the unconstrained MSSM, defined at any HE scale. We show that Natural SUSY does not demand light stops. Actually, an average stop mass below 800 GeV is disfavored, though one of the stops might be very light. Regarding phenomenology, the most stringent upper bound from naturalness is the one on the gluino mass, which typically sets the present level fine-tuning at O(1%). However, this result presents a strong dependence on the HE scale. E.g. if the latter is 10{sup 7} GeV the level of fine-tuning is ∼ four times less severe. Finally, the most robust result of Natural SUSY is by far that Higgsinos should be rather light, certainly below 700 GeV for a fine-tuning of O(1%) or milder. Incidentally, this upper bound is not far from ≃1 TeV, which is the value required if dark matter is made of Higgsinos.

  6. SUSY/non-SUSY duality in U(N gauge model with partially broken N=2 supersymmetry

    Directory of Open Access Journals (Sweden)

    Kazunobu Maruyoshi

    2009-03-01

    Full Text Available We study the vacuum structure of the U(N gauge model with partially broken N=2 supersymmetry. From the analysis of the classical vacua of this model, we point out that in addition to the ordinary N=1 supersymmetric vacua, there are vacua with negative gauge coupling constants, which preserve another N=1 supersymmetry. These latter vacua can be analyzed by using SUSY/non-SUSY duality which is recently proposed by Aganagic, Beem, Seo and Vafa. A dual description of these in UV is U(N gauge theory where the supersymmetry is broken by spurion superfields. Following them, we see that there are supersymmetry preserving vacua as well as supersymmetry breaking vacua of low energy effective theory.

  7. Short-term break in the French love for diesel?

    International Nuclear Information System (INIS)

    Hivert, Laurent

    2013-01-01

    From 1980 to 1995, France was the first European country in which diesel cars became more popular than petrol cars. In addition to offering improved performance, this preference was notably due to a much cheaper cost of use, in line with the taxation on both fuel types. But the advantage of diesel technology does not clearly seem to extend to energy and CO2 savings. In this paper, French trends over the last 15 years and latest annual available statistics about both diesel car ownership and use are analysed, on the basis of the “ParcAuto” panel data source. The results notably show that, from the moment the gap between fuel prices was reduced, the annual mileage amounts of diesel cars have fallen faster than those of petrol cars. A specific section summarizes the results of our work on the behaviour of French households who chose to replace their petrol car with a diesel. Detailed examination of these switching behaviours, involving a complex set of variables, confirms that there are increases in driving associated with “new diesel motorists”. The final section of this paper briefly discusses recent evolutions of fuel expenditures. - Highlights: ► Latest figures/long-term trends about French diesel cars analysed using panel data. ► French preference for diesel was notably due to a much cheaper cost of use. ► Switching from petrol to diesel car commonly induced an increase in driving. ► Diesel sales and mileages have fallen faster when the gap between fuel prices reduced. ► Recent fuel prices sharp increase involved major changes in car use behaviours

  8. Highlights on SUSY phenomenology

    International Nuclear Information System (INIS)

    Masiero, Antonio

    2004-01-01

    In spite of the extraordinary success of the Standard Model (SM) supplemented with massive neutrinos in accounting for the whole huge bulk of phenomenology which has been accumulating in the last three decades, there exist strong theoretical reasons in particle physics and significant 'observational' hints in astroparticle physics for new physics beyond it. My lecture is devoted to a critical assessment of our belief in such new physics at the electroweak scale, in particular identifying it with low-energy supersymmetric extensions of the SM. I'll explain why we have concrete hopes that this decade will shed definite light on what stands behind the phenomenon of electroweak symmetry breaking

  9. Soft supersymmetry breaking in KKLT flux compactification

    International Nuclear Information System (INIS)

    Choi, K.; Falkowski, A.; Nilles, H.P.; Olechowski, M.

    2005-01-01

    We examine the structure of soft supersymmetry breaking terms in KKLT models of flux compactification with low energy supersymmetry. Moduli are stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum is obtained by adding supersymmetry breaking anti-branes. We discuss the characteristic pattern of mass scales in such a set-up as well as some features of 4D N=1 supergravity breakdown by anti-branes. Anomaly mediation is found to always give an important contribution and one can easily arrange for flavor-independent soft terms. In its most attractive realization, the modulus mediation is comparable to the anomaly mediation, yielding a quite distinctive sparticle spectrum. In addition, the axion component of the modulus/dilaton superfield dynamically cancels the relative CP phase between the contributions of anomaly and modulus mediation, thereby avoiding dangerous SUSY CP violation

  10. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  11. Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity

    International Nuclear Information System (INIS)

    Maru, Nobuhito

    2010-01-01

    We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.

  12. Status of SUSY searches at the LHC (including SUSY Higgs bosons)

    CERN Document Server

    Marshall, Zach; The ATLAS collaboration

    2017-01-01

    We review the status of SUSY searches at the LHC, including searches for SUSY Higgs Bosons. ATLAS and CMS have both prepared a large number of search results on the full 2015+2016 dataset, pushing the bounds on SUSY further than ever before.

  13. Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts

    Science.gov (United States)

    2015-09-30

    dissipation and breaking, nonlinear wave-wave interaction, bottom friction, wave-mud interaction, wave-current interaction as well as sea spray flux. These...shallow water outside the surf zone. After careful testing within a comprehensive suite of test bed cases, these refined source terms will be...aim to refine the parameterization of air-sea and upper ocean fluxes, including wind input and sea spray as well as dissipation, and hence improve

  14. Search for SUSY in the AMSB scenario with the DELPHI detector

    CERN Document Server

    Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.

    2004-01-01

    The DELPHI experiment at the LEP e+e- collider collected almost 700 pb^-1 at centre-of-mass energies above the Z0 mass pole and up to 208 GeV. Those data were used to search for SUSY in the Anomaly Mediated SUSY Breaking (AMSB) scenario with a flavour independent common sfermion mass parameter. The searches covered several possible signatures experimentally accessible at LEP, with either the neutralino, the sneutrino or the stau being the Lightest Supersymmetric Particle (LSP). They included: the search for nearly mass-degenerate chargino and neutralino, which is a typical feature of AMSB; the search for Standard-Model-like or invisibly decaying Higgs boson; the search for stable staus; the search for cascade decays of SUSY particles resulting in the LSP and a low multiplicity final state containing neutrinos. No evidence of a signal was found, and thus constraints were set in the space of the parameters of the model.

  15. Metastable Supersymmetry Breaking in a Cooling Universe

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim S.

    2007-01-01

    I put metastable supersymmetry breaking in a cosmological context. I argue that under reasonable assumptions, the cooling down early Universe favors metastable SUSY-breaking vacua over the stable supersymmetric vacua. To illustrate the general argument, I analyze the early-Universe history of the Intriligator-Seiberg-Shih model

  16. Gauge-mediated supersymmetry breaking in string compactifications

    International Nuclear Information System (INIS)

    Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Kachru, Shamit; Svrcek, Peter

    2006-01-01

    We provide string theory examples where a toy model of a SUSY GUT or the MSSM is embedded in a compactification along with a gauge sector which dynamically breaks supersymmetry. We argue that by changing microscopic details of the model (such as precise choices of flux), one can arrange for the dominant mediation mechanism transmitting SUSY breaking to the Standard Model to be either gravity mediation or gauge mediation. Systematic improvement of such examples may lead to top-down models incorporating a solution to the SUSY flavor problem

  17. Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    CERN Document Server

    Abada, A; Romao, J C; Teixeira, A M

    2010-01-01

    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in $ \\chi_2^0\\to \\tilde \\ell \\,\\ell \\to \\ell \\,\\ell\\,\\chi_1^0$ decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Worki...

  18. Breaking Up is Hard to Do… Why do long-term couples decide to break-up?

    Czech Academy of Sciences Publication Activity Database

    Vohlídalová, Marta

    2009-01-01

    Roč. 7, 7-8 (2009), s. 5-7 ISSN 1214-1720 Grant - others:GA UK(CZ) 9864/2009 Institutional research plan: CEZ:AV0Z70280505 Keywords : family * divorce s * unmarried cohabitation break-ups Subject RIV: AO - Sociology, Demography http://www.socioweb.cz

  19. The flavour of natural SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Felix [SISSA/ISAS, Trieste (Italy); Kraml, Sabine; Kulkarni, Suchita; Smith, Christopher [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France)

    2014-09-15

    An inverted mass hierarchy in the squark sector, as in so-called ''natural supersymmetry'', requires non-universal boundary conditions at the mediation scale of supersymmetry breaking. We propose a formalism to define such boundary conditions in a basis-independent manner and apply it to generic scenarios where the third-generation squarks are light, while the first two-generation squarks are heavy and near-degenerate. We show that not only is our formalism particularly well suited to study such hierarchical squark mass patterns, but in addition the resulting soft terms at the TeV scale are manifestly compatible with the principle of minimal flavour violation, and thus automatically obey constraints from flavour physics. (orig.)

  20. Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale

    Directory of Open Access Journals (Sweden)

    Fredrik Björkeroth

    2017-03-01

    Full Text Available We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O(10−8. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (sneutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2≥O(100 TeV.

  1. Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears

    CERN Document Server

    Guadagnoli, Diego; Straub, David M

    2009-01-01

    We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...

  2. RPV SUSY searches at ATLAS and CMS

    CERN Document Server

    Pettersson, Nora Emilia; The ATLAS collaboration

    2015-01-01

    Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence RPC is that it implies a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. This talk aims to summarise a few of the experimental searches for both prompt and long-lived RPV ...

  3. On SUSY inspired minimal lepton number violation

    International Nuclear Information System (INIS)

    Chkareuli, J.L.; Gogoladze, I.G.; Green, M.G.; Hutchroft, D.E.; Kobakhidze, A.B.

    2000-03-01

    A minimal lepton number violation (LNV) is proposed which could naturally appear in SUSY theories, if Yukawa and LNV couplings had a common origin. According to this idea properly implemented into MSSM with an additional abelian flavor symmetry the prototype LNV appears due to a mixing of leptons with superheavy Higgs doublet mediating Yukawa couplings. As a result, all significant physical manifestations of LNV reduce to those of the effective trilinear couplings LLE-bar and LQD-bar aligned, by magnitude and orientation in a flavor space, with the down fermion (charged lepton and down quark) effective Yukawa couplings, while the effective bilinear terms appear generically suppressed relative to an ordinary μ-term of MSSM. Detailed phenomenology of the model related to the flavor-changing processes both in quark and lepton sectors, radiatively induced neutrino masses and decays of the LSP is presented. Remarkably, the model can straightforwardly be extended to a Grand Unified framework and an explicit example with SU(7) GUT is thoroughly discussed. (author)

  4. Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Sluka, Constantin [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2016-07-21

    Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In supersymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP http://dx.doi.org/10.1088/1126-6708/2005/03/024, where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the full down-type quark, up-type quark and charged lepton Yukawa coupling matrices in the electroweak-unbroken phase. Among other useful features, SusyTC calculates the one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson as well as provides output in SLHA conventions, i.e. the necessary input for external software, e.g. for performing a two-loop Higgs mass calculation. We apply SusyTC to study the predictions for the parameters of the CMSSM (mSUGRA) SUSY scenario from the set of GUT scale Yukawa relations ((y{sub e})/(y{sub d}))=−(1/2), ((y{sub μ})/(y{sub s}))=6, and ((y{sub τ})/(y{sub b}))=−(3/2), which has been proposed recently in the context of SUSY GUT flavour models.

  5. Low Scale Supersymmetry Breaking and its LHC Signatures

    CERN Document Server

    Dudas, Emilian; Tziveloglou, Pantelis

    2013-01-01

    We study the most general extension of the MSSM Lagrangian that includes scenarios in which supersymmetry is spontaneously broken at a low scale f. The spurion that parametrizes supersymmetry breaking in the MSSM is promoted to a dynamical superfield involving the goldstino, with (and without) its scalar superpartner, the sgoldstino. The low energy effective Lagrangian is written as an expansion in terms of m_{SUSY}/sqrt{f}, where m_{SUSY} is the induced supersymmetry breaking scale, and contains, in addition to the usual MSSM Lagrangian with the soft terms, couplings involving the component fields of the goldstino superfield and the MSSM fields. This Lagrangian can provide significant corrections to the usual couplings in the Standard Model and the MSSM. We study how these new corrections affect the Higgs couplings to gauge bosons and fermions, and how LHC bounds can be used in order to constrain f. We also discuss that, from the effective field theory point of view, the couplings of the goldstino interactio...

  6. Supersimplicity: a Remarkable High Energy SUSY Property

    International Nuclear Information System (INIS)

    Gounaris, G.J.; Renard, F.M.

    2011-01-01

    It is known that for any 2-to-2 process in MSSM, only the helicity conserving (HC) amplitudes survive asymptotically. Studying many such processes, at the 1-loop Electroweak (EW) order, it is found that their high energy HC amplitudes are determined by just three forms: a log-squared function of the ratio of two of the (s, t, u) variables, to which a π 2 is added; and two Sudakov-like ln- and ln 2 -terms accompanied by respective mass-dependent constants. Apart from a possible additional residual constant (which is also discussed), these HC amplitudes, may be expressed as linear combinations of the above three forms, with coefficients being rational functions of the (s, t, u) variables. This 1-loop property, called supersimplicity, is of course claimed for the 2-to-2 processes considered; but no violating examples are known at present. For ug → dW, supersimplicity is found to be a very good approximation at LHC energies, provided the SUSY scale is not too high. SM processes are also discussed, and their differences are explored. (authors)

  7. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Csaki, Csaba

    2010-01-01

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  8. Natural inflation in SUSY and gauge-mediated curvature of the flat directions

    CERN Document Server

    Dvali, Gia

    1996-01-01

    Supersymmetric theories often include the non-compact directions in the field space along which the tree level potential grows only up to a certain limited value (determined by the mass scale of the theory) and then stays constant for the arbitrarily large expectation value of the field parametrizing the direction. Above the critical value, the tree-level curvature is large and positive in the other directions. Such plateaux are natural candidates for the hybrid inflaton. The non-zero F-term density along the plateau spontaneously breaks SUSY and induces the one-loop logarithmic slope for the inflaton potential. The coupling of the inflaton to the Higgs fields in the complex representations of the gauge group, may result in a radiatively induced Fayet--Iliopoulos D-term during inflation, which destabilizes some of the squark and slepton flat directions. Corresponding soft masses can be larger than the Hubble parameter and thus, play a crucial role for the Affleck--Dine baryogenesis.

  9. SUSY S4×SU(5) revisited

    International Nuclear Information System (INIS)

    Hagedorn, Claudia; King, Stephen F.; Luhn, Christoph

    2012-01-01

    Following the recent results from Daya Bay and RENO, which measure the lepton mixing angle θ 13 l ≈0.15, we revisit a supersymmetric (SUSY) S 4 ×SU(5) model, which predicts tri-bimaximal (TB) mixing in the neutrino sector with θ 13 l being too small in its original version. We show that introducing one additional S 4 singlet flavon into the model gives rise to a sizable θ 13 l via an operator which leads to the breaking of one of the two Z 2 symmetries preserved in the neutrino sector at leading order (LO). The results of the original model for fermion masses, quark mixing and the solar mixing angle are maintained to good precision. The atmospheric and solar mixing angle deviations from TB mixing are subject to simple sum rule bounds.

  10. Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion

    Science.gov (United States)

    Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu

    2017-03-01

    We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.

  11. A continuous family of realistic SUSY SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bajc, Borut, E-mail: borut.bajc@ijs.si [J. Stefan Institute, Jamova cesta 39, 1000, Ljubljana (Slovenia)

    2016-06-21

    It is shown that the minimal renormalizable supersymmetric SU(5) is still realistic providing the supersymmetric scale is at least few tens of TeV or large R-parity violating terms are considered. In the first case the vacuum is metastable, and different consistency constraints can give a bounded allowed region in the tan β − m{sub susy} plane. In the second case the mass eigenstate electron (down quark) is a linear combination of the original electron (down quark) and Higgsino (heavy colour triplet), and the mass ratio of bino and wino is determined. Both limits lead to light gravitino dark matter.

  12. SUSY searches with the ATLAS detector

    CERN Document Server

    Ventura, Andrea; The ATLAS collaboration

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.

  13. The status of 'standard' SUSY

    CERN Document Server

    Zwirner, F

    1992-01-01

    We summarize the present status of low-energy supersymmetry, exemplified by the Minimal Supersymmetric extension of the Standard Model (MSSM). We review the searches for Supersymmetric particles and supersymmetric Higgs bosons. We conclude with some comments on the open theoretical problems related to spontaneous supersymmetry breaking in the underlying fundamental theory.

  14. Constraints of chromoelectric dipole moments to natural SUSY type sfermion spectrum

    Science.gov (United States)

    Maekawa, Nobuhiro; Muramatsu, Yu; Shigekami, Yoshihiro

    2017-06-01

    We investigate the lower bounds of sfermion masses from the constraints of chromoelectric dipole moments (CEDMs) in the natural SUSY-type sfermion mass spectrum, in which stop mass mt ˜ is much smaller than the other sfermion masses m0. The natural SUSY-type sfermion mass spectrum has been studied since the supersymmetric (SUSY) flavor-changing neutral currents (FCNC) are suppressed because of large sfermion masses of the first two generations, and the weak scale is stabilized because of the light stop. However, this type of sfermion mass spectrum is severely constrained by CEDM, because the light stop contributions to the up quark CEDM are not decoupled in the limit m0→∞ , while the down quark CEDM is decoupled in the limit. It is important that the constraints are severe even if SUSY-breaking parameters (and Higgsino mass) are taken to be real because complex diagonalizing matrices of Yukawa matrices, which are from complex Yukawa couplings, generate nonvanishing C P phases in off-diagonal elements of sfermion mass matrices. We calculate the CEDM of up and down quarks numerically in the minimal SUSY standard model, and give the lower bounds for stop mass and the other sfermion masses. We show that the lower bound of stop mass becomes 7 TeV to satisfy the CEDM constraints from Hg EDM. The result is not acceptable if the weak scale stability is considered seriously. We show that if the up-type Yukawa couplings are taken to be real at the grand unification scale, the CEDM constraints are satisfied even if mt ˜˜1 TeV .

  15. Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chih-Lung

    2005-04-05

    The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.

  16. Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum

    International Nuclear Information System (INIS)

    Marques, Diego

    2009-01-01

    We consider a generic renormalizable and gauge invariant messenger sector and derive the sparticle mass spectrum using the formalism introduced for General Gauge Mediation. Our results recover many expressions found in the literature in various limits. Constraining the messenger sector with a global symmetry under which the spurion field is charged, we analyze Extraordinary Gauge Mediation beyond the small SUSY breaking limit. Finally, we include D-term contributions and compute their corrections to the soft masses. This leads to a perturbative framework allowing to explore models capable of fully covering the parameter space of General Gauge Mediation to the Supersymmetric Standard Model.

  17. Recent results on SUSY searches from CMS

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The latest results on searches for Supersymmetry from CMS are reviewed. We present searches for direct stop production, searches in final states with four W bosons and multiple b-quarks, and searches for R-Parity violating SUSY. The results use up to 20/fb of data from the 8 TeV LHC run of 2012.

  18. Kepribadian Dan Komunikasi Susi Pudjiastuti Dalam Membentuk Personal Branding

    Directory of Open Access Journals (Sweden)

    Stevani

    2017-07-01

    Full Text Available The life story of Susi Pudjiastuti is admired by many people for her hard work, until becoming successful by having so much company in the field of aviation and fisheries. Susi Pudjiastuti is also well known to the public for his work in the ministry. Good performance makes Susi Pudjiastuti popular among Jokowi's working cabinet. Currently, the Brand Name in humans is personal branding which is the trend of the formation of self-image and the creation of good perception from others to us. This research will discuss about personality, communication and personal branding Susi Pudjiastuti with qualitative research method. Good personality makes Susi Pudjiastuti has the ability to communicate well and liked by the community. Personality and communication can form a personal branding Susi Pudjiastuti a natural. By exposing the personality and communication of Susi Pudjiastuti in forming personal branding, then people will realize the importance of personality and Communication in forming a natural personal branding. Kisah hidup Susi Pudjiastuti banyak dikagumi oleh banyak orang atas kerja kerasnya hingga menjadi sukses dengan memiliki banyak perusahaan di bidang penerbangan dan perikanan. Susi Pudjiastuti juga dikenal baik oleh masyarakat akan kinerjanya dalam bekerja di kementerian. Kinerja yang baik menjadikan Susi Pudjiastuti popular diantara kabinet kerja Jokowi. Saat ini, Sebutan merek pada manusia adalah personal branding yang merupakan trend dari pembentukan pencitraan diri dan penciptaan persepsi yang baik dari orang lain kepada kita. Penelitian ini akan membahas mengenai kepribadian, komunikasi serta personal branding Susi Pudjiastuti dengan metode penelitian kualitatif. Kepribadian yang baik menjadikan Susi Pudjiastuti memiliki kemampuan berkomunikasi dengan baik dan disenangi oleh masyarakat. Kepribadian dan komunikasi tersebut dapat membentuk personal branding Susi Pudjiastuti yang alami. Dengan memaparkan kepribadian dan komunikasi Susi

  19. Prospects for R-Parity Conserving SUSY searches at the LHC

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    The talk reviews the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data is presented for different search channels based on missing transverse momentum from undetected neutralinos and multiple jets. The talk will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. In this scenario, the search strategy exploits the distinct signature of a non-pointing photon. Finally, we present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of final-state exclusive decay chains.

  20. Prospects for R-Parity Conserving SUSY searches at the LHC

    CERN Document Server

    Genest, Marie-Helene

    2009-01-01

    We review the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data will be presented for the different search channels based on missing transverse momentum from undetected neutralinos and multiple jets. We will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. Finally, we will present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of final-state exclusive decay chains.

  1. Mass terms of CP-violating Weinberg three-Higgs-doublet model at a charge-breaking vacuum

    International Nuclear Information System (INIS)

    Zarrinkamar, S.; Hassanabadi, H.; Rajabi, A.A.

    2010-01-01

    Weinberg three-Higgs-doublet model attracts interest in many aspects including the study of CP-violation as well as calculating the muon transverse polarization and neutron electric dipole moment. In the present work, we calculate the mass terms of CP-violating Weinberg 3HDM at a charge-breaking vacuum using an elaborate basis. (author)

  2. Lungmen ABWR containment analyses during short-term main steam line break LOCA using GOTHIC

    International Nuclear Information System (INIS)

    Chen, Yen-Shu; Yuann, Yng-Ruey; Dai, Liang-Che

    2012-01-01

    Highlights: ► The Lungmen ABWR containment responses due to the main steam line break are analyzed. ► In the Lungmen FSAR, the peak drywell temperature is greater than the designed value. ► GOTHIC is used to calculate the containment responses in this study. ► With more realistic conditions, the drywell temperature can be reasonably suppressed. - Abstract: Lungmen Nuclear Power Plant in Taiwan is a GE-designed twin-unit Advanced Boiling Water Reactor (ABWR) plant with rated thermal power of 3926 MWt. Both units are currently under construction. In the Lungmen Final Safety Analysis Report (FSAR) section 6.2, the calculated peak drywell temperature during the short-term Main Steam Line Break (MSLB) event is 176.3 °C, which is greater than the designed temperature of 171.1 °C. It resulted in a controversial issue in the FSAR review process conducted by the Atomic Energy Council in Taiwan. The purpose of this study is to independently investigate the Lungmen ABWR containment pressure and temperature responses to the MSLB using the GOTHIC program. Blowdown conditions are either calculated by using a simplified reactor vessel volume in GOTHIC model, or provided by the RELAP5 transient analysis. The blowdown flow rate from the steam header side is calculated with a more reasonable pressure loss coefficient of the open main steam isolation valves, and the peak drywell temperature is then reduced. By using the RELAP5 blowdown data, the peak drywell temperature can be further reduced because of the initial liquid entrainment in the blowdown flow. The drywell space is either treated as a single volume, or separated into a upper drywell and a lower drywell to reflect the real configuration of the Lungmen containment. It is also found that a single drywell volume may not present the overheating of the upper drywell. With more realistic approaches and assumptions, the drywell temperature can be reasonably below the design value and the Lungmen containment integrity

  3. Extraction of the Susy and Higgs parameters

    International Nuclear Information System (INIS)

    Adam-Bourdarios, Claire

    2010-01-01

    If supersymmetry is discovered by the next generation of collider experiments, it will be crucial to determine its fundamental high-scale parameters. Three scenarios have been recently investigated by the SFitter collaboration : the case where the LHC 'only' measures a light Higgs like signal, the case where SUSY signal are discovered at the LHC, and the dream scenario, where LHC and ILC measurements can be combined.

  4. Long-term hormonal contraceptive use is associated with a reversible suppression of antral follicle count and a break from hormonal contraception may improve oocyte yield.

    Science.gov (United States)

    Letourneau, Joseph M; Cakmak, Hakan; Quinn, Molly; Sinha, Nikita; I Cedars, Marcelle; Rosen, Mitchell P

    2017-09-01

    Unlike infertility, patients presenting for fertility preservation (FP) are often using combined hormonal contraceptives (CHC). We studied whether long-term (≥6 months) CHC use is associated with reversible suppression of antral follicle count (AFC). This is a longitudinal study of FP cycles from 2012 to 2016. We studied three groups: those without CHC exposure (NO CHC), those with CHC usage with a CHC break (BREAK), and without a break (NO BREAK) prior to ovarian stimulation. We assessed ovarian reserve by AFC at initial consultation and discussed the possibility of CHC suppression of AFC. Patients chose between ovarian stimulation with no CHC break versus ovarian stimulation after a CHC break. AFC was measured serially in the BREAK group. We assessed whether AFC suppression was reversed in the BREAK group. Total oocyte yield was compared among the NO CHC, BREAK, and NO BREAK groups. T tests, ANOVA, and linear/logistic regressions were used. Seven hundred forty-three women underwent FP. Twenty-one percent (n = 154) were taking long-term CHC (≥6 months). AFC suppression was more likely with CHC use (OR 1.6, 95% CI 1.1-2.4, P = 0.011). The BREAK group (n = 79) stopped CHC for an average of 4 months. AFC improvement started at 1 month and plateaued at approximately 6- to 7-month break. The BREAK group had approximately twice as many oocytes per initial AFC as NO BREAK (2.8 ± 3.8 vs. 1.4 ± 0.9, P women present for FP on CHC, AFC may be suppressed. A CHC break of several months is associated with an increase in AFC and a potential improvement in overall egg yield.

  5. Status of the SUSY Les Houches Accord II Project

    International Nuclear Information System (INIS)

    Allanch, B.C.; Balazs, C.; Belanger, G.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Guasch, J.; Guchait, M.; Heinemeyer, S.; Hugonie, C.; Hurth, T.; Kraml, S.; Lykken, J.; Mangano, M.; Moortgat, F.; Moretti, S.; Penaranda, S.; Porod, W.; Fermilab

    2005-01-01

    Supersymmetric (SUSY) spectrum generators, decay packages, Monte-Carlo programs, dark matter evaluators, and SUSY fitting programs often need to communicate in the process of an analysis. The SUSY Les Houches Accord provides a common interface that conveys spectral and decay information between the various packages. Here, we propose extensions of the conventions of the first SUSY Les Houches Accord to include various generalizations: violation of CP, R-parity and flavor as well as the simplest next-to-minimal supersymmetric standard model (NMSSM)

  6. Neutrino oscillations in a predictive SUSY GUT

    International Nuclear Information System (INIS)

    Blazek, T.; Raby, S.; Tobe, K.

    1999-01-01

    In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society

  7. Results from GRACE/SUSY at one-loop

    Indian Academy of Sciences (India)

    We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body decay widths ...

  8. Searches for Electroweak SUSY by ATLAS and CMS

    CERN Document Server

    Khoo, Teng Jian; The ATLAS collaboration

    2018-01-01

    While strongly-produced SUSY and third-generation squark searches have already breached the TeV mass range, direct production of electroweak gauginos is less tightly constrained. New searches are presented, showcasing novel strategies for filling in the gaps in sensitivity to electroweak SUSY at ATLAS and CMS.

  9. SUSY searches in early CMS data

    International Nuclear Information System (INIS)

    Tricomi, A

    2008-01-01

    In the first year of data taking at LHC, the CMS experiment expects to collect about 1 fb -1 of data, which make possible the first searches for new phenomena. All such searches require however the measurement of the SM background and a detailed understanding of the detector performance, reconstruction algorithms and triggering. The CMS efforts are hence addressed to designing a realistic analysis plan in preparation to the data taking. In this paper, the CMS perspectives and analysis strategies for Supersymmetry (SUSY) discovery with early data are presented

  10. Mandelstam cuts and light-like Wilson loops in N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2010-08-15

    We perform an analytic continuation of the two-loop remainder function for the six-point planar MHV amplitude in N=4 SUSY, found by Goncharov, Spradlin, Vergu and Volovich from the light-like Wilson loop representation. The remainder function is continued into a physical region, where all but two energy invariants are negative. It turns out to be pure imaginary in the multi-Regge kinematics, which is in an agreement with the predictions based on the Steinmann relations for the Regge poles and Mandelstam cut contributions. The leading term reproduces correctly the expression calculated by one of the authors in the BFKL approach, while the subleading term presents a result, that was not yet found with the use of the unitarity techniques. This supports the applicability of the Wilson loop approach to the planar MHV amplitudes in N=4 SUSY. (orig.)

  11. Mandelstam cuts and light-like Wilson loops in N=4 SUSY

    International Nuclear Information System (INIS)

    Lipatov, L.N.; Prygarin, A.

    2010-08-01

    We perform an analytic continuation of the two-loop remainder function for the six-point planar MHV amplitude in N=4 SUSY, found by Goncharov, Spradlin, Vergu and Volovich from the light-like Wilson loop representation. The remainder function is continued into a physical region, where all but two energy invariants are negative. It turns out to be pure imaginary in the multi-Regge kinematics, which is in an agreement with the predictions based on the Steinmann relations for the Regge poles and Mandelstam cut contributions. The leading term reproduces correctly the expression calculated by one of the authors in the BFKL approach, while the subleading term presents a result, that was not yet found with the use of the unitarity techniques. This supports the applicability of the Wilson loop approach to the planar MHV amplitudes in N=4 SUSY. (orig.)

  12. Signatures of non-universal soft breaking sfermion masses at Hadron colliders

    International Nuclear Information System (INIS)

    Datta, Amitava; Datta, Aseshkrishna; Parida, M.K.

    1997-12-01

    We identify several mass patterns, within the framework of N = 1 SUGRA with nonuniversal soft breaking masses for the sfermions, which may significantly alter SUSY signals and the current squark-gluino mass limits from the Tevatron. These effects are illustrated in a SO(10) SUSY GUT with an intermediate mass scale, but the conclusions are also valid in SUSU SO(10) models with grand deserts. (author)

  13. METing SUSY on the Z peak

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)

    2016-02-15

    Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g} or similar 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out. (orig.)

  14. METing SUSY on the Z peak

    International Nuclear Information System (INIS)

    Barenboim, G.; Bernabeu, J.; Vives, O.; Mitsou, V.A.; Romero, E.

    2016-01-01

    Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E T miss > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m g or similar 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out. (orig.)

  15. Breaks in MODIS time series portend vegetation change: verification using long-term data in an arid grassland ecosystem.

    Science.gov (United States)

    Browning, Dawn M; Maynard, Jonathan J; Karl, Jason W; Peters, Debra C

    2017-07-01

    Frequency and severity of extreme climatic events are forecast to increase in the 21st century. Predicting how managed ecosystems may respond to climatic extremes is intensified by uncertainty associated with knowing when, where, and how long effects of extreme events will be manifest in an ecosystem. In water-limited ecosystems with high inter-annual variability in rainfall, it is important to be able to distinguish responses that result from seasonal fluctuations in rainfall from long-term directional increases or decreases in precipitation. A tool that successfully distinguishes seasonal from directional biomass responses would allow land managers to make informed decisions about prioritizing mitigation strategies, allocating human resource monitoring efforts, and mobilizing resources to withstand extreme climatic events. We leveraged long-term observations (2000-2013) of quadrat-level plant biomass at multiple locations across a semiarid landscape in southern New Mexico to verify the use of Normalized Difference Vegetation Index (NDVI) time series derived from 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) data as a proxy for changes in aboveground productivity. This period encompassed years of sustained drought (2000-2003) and record-breaking high rainfall (2006 and 2008) followed by subsequent drought years (2011 through 2013) that resulted in a restructuring of plant community composition in some locations. Our objective was to decompose vegetation patterns derived from MODIS NDVI over this period into contributions from (1) the long-term trend, (2) seasonal cycle, and (3) unexplained variance using the Breaks for Additive Season and Trend (BFAST) model. BFAST breakpoints in NDVI trend and seasonal components were verified with field-estimated biomass at 15 sites that differed in species richness, vegetation cover, and soil properties. We found that 34 of 45 breaks in NDVI trend reflected large changes in mean biomass and 16 of 19 seasonal

  16. Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)

    2016-04-29

    A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.

  17. Finite N=1 SUSY gauge field theories

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1986-01-01

    The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established

  18. Concordia elas tuleviku arvelt / Mart Susi ; interv. Krister Kivi

    Index Scriptorium Estoniae

    Susi, Mart, 1965-

    2003-01-01

    Ilmunud ka: Infopress 21. märts nr. 12 lk. 30-31. Concordia Ülikooli rektor Mart Susi räägib kooli senisest juhtimisest ning asjaoludest, mis on põhjustanud pankroti. Tabel: Concordia kronoloogia

  19. Search for non-standard SUSY signatures in CMS

    International Nuclear Information System (INIS)

    Teyssier, Daniel

    2008-01-01

    New studies of the CMS collaboration are presented on the sensitivity to searches for non-standard signatures of particular SUSY scenarios. These signatures include non-pointing photons as well as pairs of prompt photons as expected GMSB SUSY models, as well as heavy stable charged particles produced in split supersymmetry models, long lived staus from GMSB SUSY and long lived stops in other SUSY scenarios. Detailed detector simulation is used for the study, and all relevant Standard Model background and detector effects that can mimic these special signatures are included. It is shown that with already with less than 100 pb -1 the CMS sensitivity will probe an interesting as yet by data unexplored parameter range of these models.

  20. Results from GRACE/SUSY at one-loop

    International Nuclear Information System (INIS)

    Fujimoto, J.; Ishikawa, T.; Kurihara, Y.; Jimbo, M.; Yasui, Y.; Kaneko, T.; Kon, T.; Kuroda, M.; Shimizu, Y.

    2007-01-01

    We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body widths and chargino pair production at ILC (international linear collider) at one-loop level. (author)

  1. Latest news on SUSY from the ATLAS experiment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.

  2. R-Parity Violating SUSY Results from ATLAS and CMS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00360876; The ATLAS collaboration

    2016-01-01

    Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence of RPC is that it implies the existence of a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. A summarization a few of the experimental searches for both prompt and long-li...

  3. Effect of the long-term memory on the beam break-up instability of a single bunch in storage rings

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    2009-01-01

    We study modifications of the beam break-up instability of transverse coherent oscillations of a single bunch which occur in storage rings due to weak wakefields decaying longer than the revolution period of particles. The long-term part of the wake results in the eigenmode spectra of coherent oscillations. Both stable and unstable modes are found for coherent oscillations of a monochromatic bunch. The single turn wakefields result in the beam break-up coherent oscillations of the bunch. The found eigenmode spectrum does not contain a leading unstable mode. Despite the exponential increase in time of the eigenmodes, both self-consistent and the beam break-up parts of the coherent oscillations indicate similar and non-exponential time dependencies. The beam break-up behavior dominates, if the wake memory is weak.

  4. Fine-tuning implications for complementary dark matter and LHC SUSY searches

    CERN Document Server

    Cassel, S; Kraml, S; Lessa, A; Ross, G G

    2011-01-01

    The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with ...

  5. Long-term recovery of pressurized water reactors following a large break loss-of-coolant accident

    International Nuclear Information System (INIS)

    Fletcher, C.D.; Callow, R.A.

    1989-01-01

    The USNRC recently identified a possible safety concern for PWR's. Following the reflood phase of a large break loss-of-coolant accident, long-term cooling of the reactor core may not be ensured. Specifically, the concern is that, for a pump discharge cold leg break, the loop seals in the reactor coolant pump suction piping will refill with liquid and the post-reflood steam production may depress the liquid levels in the downflow sides of the loop seals. A loop seal depression would cause a corresponding depression of the core liquid levels and possibly a fuel rod heatup in the upper core region. This paper is intended as an introduction of the safety issue that: 1) describes the important aspects of the problem, 2) provides an initial analysis of the consequences, and 3) discusses ongoing work in this area. Because the elevation of the loop seals is near the mid-core elevation in plants of WE design, the concern is greatest for those plants. There is less concern for most plants of CE design, and likely no concern for plants of BW design. This issue was addressed by employing both steady-state and transient systems analysis approaches. Two approaches were used because of uncertainties regarding actual reactor coolant system behavior during the post-reflood period. The steady-state approach involved the development and application of a simple computer program to investigate reactor coolant system behavior assuming quiescent post-reflood conditions. The transient systems approach involved investigating this behavior using the RELAP5/MOD2 computer code and a comprehensive RELAP5 model of a WE PWR. The steady-state analysis indicated only a moderate fuel rod heatup is possible. The transient systems analysis indicated boiling and condensation-induced flow oscillations are sufficient to prevent fuel rod heatup. Analysis uncertainties are discussed. (orig./HP)

  6. Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets

    Index Scriptorium Estoniae

    Maimets, Andri, 1979-

    2003-01-01

    Concordia Ülikooli rektor Mart Susi esitas kohtule avalduse, milles taotleb ülikooli pidanud Concordia Varahalduse OÜ pankroti väljakuulutamist. Vt. samas: Mari-Ann Susi õigustas ülikooli raha kasutamist

  7. Post LHC8 SUSY benchmark points for ILC physics

    International Nuclear Information System (INIS)

    Baer, Howard; List, Jenny

    2013-07-01

    We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with ∝5 fb -1 of pp collisions at √(s)=7 TeV and LHC8 with ∝20 fb -1 at √(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m h ≅125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m A , a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, τ-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at √(s)≅ 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  8. Duality after supersymmetry breaking

    International Nuclear Information System (INIS)

    Shadmi, Yael; Cheng, Hsin-Chia

    1998-05-01

    Starting with two supersymmetric dual theories, we imagine adding a chiral perturbation that breaks supersymmetry dynamically. At low energy we then get two theories with soft supersymmetry-breaking terms that are generated dynamically. With a canonical Kaehler potential, some of the scalars of the ''magnetic'' theory typically have negative mass-squared, and the vector-like symmetry is broken. Since for large supersymmetry breaking the ''electric'' theory becomes ordinary QCD, the two theories are then incompatible. For small supersymmetry breaking, if duality still holds, the magnetic theory analysis implies specific patterns of chiral symmetry breaking in supersymmetric QCD with small soft masses

  9. Loss of Coolant Accident Simulation for the Top-Slot break at Cold Leg Focusing on the Loop Seal Reformation under Long Term Cooling with the ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Rok; Park, Yu Sun; Bae, Byoung Uhn; Choi, Nam Hyun; Kang, Kyoung Ho; Choi, Ki Yong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the present paper, loss of coolant accident for the top-slot break at cold leg was simulated with the ATLAS, which is a thermal-hydraulic integral effect test facility for evolutionary pressurized water reactors (PWRs) of an advanced power reactor of 1400 MWe (APR1400). The simulation was focused on the loop seal reformation under long term cooling condition. During a certain class of Loss of Coolant Accident (LOCA) in a PWR like an advanced power reactor of 1400 MWe (APR1400), the steam volume in the reactor vessel upper plenum and/or upper head may continue expanding until steam blows liquid out of the intermediate leg (U-shaped pump suction cold leg), called loop seal clearing (LSC), opening a path for the steam to be relieved from the break. Prediction of the LSC phenomena is difficult because they are varies for many parameters, which are break location, type, size, etc. This LSC is the major factor that affects the coolant inventory in the small break LOCA (SBLOCA) or intermediate break LOCA (IBLOCA). There is an issue about the loop seal reformation that liquid refills intermediate leg and blocks the steam path after LSC. During the SBLOCA or IBLOCA, the Emergency Core Cooling System (ECCS) is operated. For long term of the top slot small or intermediate break at cold leg, the primary steam condensation by SG heat transfer or SIP, SIT water flooding (reverse flow to loop seal) make loop seal reformation possibly. The primary pressure increase at the top core region due to the steam release blockage by loop seal reformation. And then core level decreases and partial core uncover may occur. The loss of coolant accident for the top-slot break at cold leg was simulated with the ATLAS. The loop seal clearing and loop seal reformation were occurred repeatedly.

  10. Coupling between scattering channels with SUSY transformations for equal thresholds

    International Nuclear Information System (INIS)

    Pupasov, Andrey M; Samsonov, Boris F; Sparenberg, Jean-Marc; Baye, Daniel

    2009-01-01

    Supersymmetric (SUSY) transformations of the multichannel Schroedinger equation with equal thresholds and arbitrary partial waves in all channels are studied. The structures of the transformation function and the superpotential are analysed. Relations between Jost and scattering matrices of superpartner potentials are obtained. In particular, we show that a special type of SUSY transformation allows us to introduce a coupling between scattering channels starting from a potential with an uncoupled scattering matrix. The possibility for this coupling to be trivial is discussed. We show that the transformation introduces bound and virtual states with a definite degeneracy at the factorization energy. A detailed study of the potential and scattering matrices is given for the 2 x 2 case. The possibility of inverting coupled-channel scattering data by such a SUSY transformation is demonstrated by several examples (s-s, s-p and s-d partial waves)

  11. Cornering natural SUSY at LHC Run II and beyond

    Science.gov (United States)

    Buckley, Matthew R.; Feld, David; Macaluso, Sebastian; Monteux, Angelo; Shih, David

    2017-08-01

    We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ˜ 15 fb-1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ( model-building directions for natural SUSY that are motivated by this work.

  12. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility

    International Nuclear Information System (INIS)

    Godon, C.; Cordelieres, F.P.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Godon, C.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Cordelieres, F.P.; Cordelieres, F.P.; Biard, D.

    2008-01-01

    The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, iso-genic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway.PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1(KD) and XRCC1(KD) cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1(KD) cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity. (authors)

  13. Minimal SUSY SO(10) and Yukawa unification

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2013-01-01

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {10⊕126-bar} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y 126 ) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of β(10 14 GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - τ Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - τ Yukawa coupling unification is very accurate, the largest element in Y 126 can become β(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - τ Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  14. DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing.

    Science.gov (United States)

    Simara, Pavel; Tesarova, Lenka; Rehakova, Daniela; Matula, Pavel; Stejskal, Stanislav; Hampl, Ales; Koutna, Irena

    2017-03-21

    Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs). We measured spontaneously occurring DSBs throughout the process of fibroblast reprogramming and during long-term in vitro culturing. To assess the variations in the functionality of the DNA repair system among the samples, the number of DSBs induced by γ-irradiation and the decrease over time was analysed. The foci number was detected by fluorescence microscopy separately for the G1 and S/G2 cell cycle phases. We demonstrated that fibroblasts contained a low number of non-replication-related DSBs, while this number increased after reprogramming into hiPSCs and then decreased again after long-term in vitro passaging. The artificial induction of DSBs revealed that the repair mechanisms function well in the source cells and hiPSCs at low passages, but fail to recognize a substantial proportion of DSBs at high passages. Our observations suggest that cellular reprogramming increases the DSB number but that the repair mechanism functions well. However, after prolonged in vitro culturing of hiPSCs, the repair capacity decreases.

  15. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  16. A Bottom-Up Approach to SUSY Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Claus; /SLAC

    2011-11-11

    This paper proposes a new way to do event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.

  17. Reconstruction of tau leptons and prospects for SUSY in ATLAS

    International Nuclear Information System (INIS)

    Zendler, Carolin

    2010-01-01

    Final states with tau leptons may play a special role among the broad variety of signatures for the production of supersymmetric particles at the LHC. The algorithms for tau reconstruction and identification are discussed, which are essential ingredients to reject the huge background from QCD processes. The status of analyses of SUSY tau lepton final states within the ATLAS experiment at the LHC are presented, which range from a study of semi-inclusive discovery prospects to more exclusive processes with two tau leptons from χ-tilde 2 0 decays and their implications for the determination of SUSY parameters. Also, the prospects for exploiting tau lepton polarization are discussed.

  18. Natural X-ray lines from the low scale supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhaofeng, E-mail: zhaofengkang@gmail.com [Center for High-Energy Physics, Peking University, Beijing 100871 (China); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Ko, P., E-mail: pko@kias.re.kr [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Li, Tianjun, E-mail: tli@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Yandong, E-mail: ydliu@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-03-06

    In the supersymmetric models with low scale supersymmetry (SUSY) breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I) a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM) candidate; (II) the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s). A highly supersymmetric dark sector may readily provide such kind of system; (III) the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.

  19. Validation and operational measurements with SUSIE – A sar ice motion processing chain developed within promice (Programme for monitoring of Greenland ice-sheet)

    DEFF Research Database (Denmark)

    Merryman Boncori, John Peter; Dall, Jørgen; Ahlstrøm, A. P.

    2010-01-01

    This paper describes the validation of an ice-motion processing chain developed for the PROMICE project – a long-term program funded by the Danish ministry of Climate and Energy to monitor the mass budget of the Greenland ice-sheet. The processor, named SUSIE, (Scripts and Utilities for SAR Ice...

  20. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.

  1. Post LHC7 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.

  2. Post LHC7 SUSY benchmark points for ILC physics

    International Nuclear Information System (INIS)

    Baer, Howard; List, Jenny

    2012-05-01

    We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first year of serious data taking at LHC with √(s)=7 TeV and ∝5 fb -1 of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m h ∝125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m A , non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at √(s)∝0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.

  3. Vast antimatter regions and SUSY-condensate baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-10-01

    Natural and abundant creation of antimatter in the Universe in a SUSY baryogenesis model is described. The scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales, separated from the matter ones by baryonically empty voids. Observational constraints on such antimatter regions are discussed. (author)

  4. Determination of the in-containment source term for a Large-Break Loss of Coolant Accident

    International Nuclear Information System (INIS)

    2001-04-01

    This is the report of a project that focused on one of the most important design basis accidents: the Large Break Loss Of Coolant Accident (LBLOCA) (for pressurised water reactors). The first step in the calculation of the radiological consequences of this accident is the determination of the source term inside the containment. This work deals with this part of the calculation of the LBLOCA radiological consequences for which a previous benchmark (1988) has shown wide variations in the licensing practices adopted by European countries. The calculation of this source term may naturally be split in several steps (see chapter II), corresponding to several physical stages in the release of fission products: fraction of core failure, release from the damaged fuel, airborne part of the release and the release into the reactor coolant system and the sumps, chemical behaviour of iodine in the aqueous and gas phases, natural and spray removal in the containment atmosphere. A chapter is devoted to each of these topics. In addition, two other chapters deal with the basic assumptions to define the accidental sequence and the nuclides to be considered when computing doses associated with the LBLOCA. The report describes where there is agreement between the partner organisations and where there are still differences in approach. For example, there is agreement concerning the percentage of failed fuel which could be used in future licensing assessments (however this subject is still under discussion in France, a lower value is thinkable). For existing plants, AVN (Belgium) wishes to keep the initial licensing assumptions. For the release from damaged fuel, there is not complete agreement: AVN (Belgium) wishes to maintain its present approach. IPSN (France), GRS (Germany) and NNC (UK) prefer to use their own methodologies that result in slightly different values to the proposed values for a common position. There are presently no recommendations of the release of fuel particulates

  5. Energy analysis of four dimensional extended hyperbolic Scarf I plus three dimensional separable trigonometric noncentral potentials using SUSY QM approach

    International Nuclear Information System (INIS)

    Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.

    2016-01-01

    The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)

  6. Post LHC8 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  7. Breaking Bat

    Science.gov (United States)

    Aguilar, Isaac-Cesar; Kagan, David

    2013-01-01

    The sight of a broken bat in Major League Baseball can produce anything from a humorous dribbler in the infield to a frightening pointed projectile headed for the stands. Bats usually break at the weakest point, typically in the handle. Breaking happens because the wood gets bent beyond the breaking point due to the wave sent down the bat created…

  8. Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo

    2000-01-01

    We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)

  9. SLAM, a Mathematica interface for SUSY spectrum generators

    International Nuclear Information System (INIS)

    Marquard, Peter; Zerf, Nikolai

    2013-09-01

    We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m h max and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.

  10. Heavy colored SUSY partners from deflected anomaly mediation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [Department of Physics and Engineering, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Wang, Wenyu [Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Yang, Jin Min; Zhang, Yang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China)

    2015-07-27

    We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven g{sub μ}−2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the g{sub μ}−2 anomaly at 1σ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.

  11. SLAM, a Mathematica interface for SUSY spectrum generators

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zerf, Nikolai [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics

    2013-09-15

    We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m{sub h}{sup max} and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.

  12. New two-dimensional integrable quantum models from SUSY intertwining

    International Nuclear Information System (INIS)

    Ioffe, M V; Negro, J; Nieto, L M; Nishnianidze, D N

    2006-01-01

    Supersymmetrical intertwining relations of second order in the derivatives are investigated for the case of supercharges with deformed hyperbolic metric g ik = diag(1, - a 2 ). Several classes of particular solutions of these relations are found. The corresponding Hamiltonians do not allow the conventional separation of variables, but they commute with symmetry operators of fourth order in momenta. For some of these models the specific SUSY procedure of separation of variables is applied

  13. Search for compressed SUSY scenarios with the ATLAS detector

    CERN Document Server

    Maurer, Julien; The ATLAS collaboration

    2017-01-01

    Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This talk presents recent results of analyses explicitly targeting such “compressed” scenarios with a variety of experimental techniques. All results make use of proton-proton collisions collected at a centre of mass of 13 TeV with the ATLAS detector.

  14. Search for compressed SUSY scenarios with the ATLAS detector

    CERN Document Server

    Maurer, Julien; The ATLAS collaboration

    2017-01-01

    Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.

  15. SUSY Flat Directions - to get a VEV or not?

    International Nuclear Information System (INIS)

    Basboell, Anders

    2010-01-01

    We investigate the potential of SUSY flat directions (FDs). Large FD vacuum expectation values (VEVs) can delay thermalisation and solve the gravitino problem--if FDs decay perturbatively. This depends on how many and which directions get the VEVs. Recently the decay of the FDs have been studied with the VEVs as input. Here we look at how the VEVs come about--statistically and analytically.

  16. Electroweak contributions to SUSY particle production processes at the LHC

    International Nuclear Information System (INIS)

    Mirabella, Edoardo

    2009-01-01

    In this thesis we have computed the electroweak contributions of O(α s α), O(α 2 ) and O(α s 2 ) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.

  17. Dual descriptions of supersymmetry breaking

    International Nuclear Information System (INIS)

    Intrilligator, K.; Thomas, S.

    1996-08-01

    Dynamical supersymmetry breaking is considered in models which admit descriptions in terms of electric, confined, or magnetic degrees of freedom in various limits. In this way, a variety of seemingly different theories which break supersymmetry are actually interrelated by confinement or duality. Specific examples are given in which there are two dual descriptions of the supersymmetry breaking ground state

  18. Precision natural SUSY at CEPC, FCC-ee, and ILC

    International Nuclear Information System (INIS)

    Fan, JiJi; Reece, Matthew; Wang, Lian-Tao

    2015-01-01

    Testing the idea of naturalness is and will continue to be one of the most important goals of high energy physics experiments. It will play a central role in the physics program of future colliders. In this paper, we present projections of the reach of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the observables which give the strongest reach, the electroweak precision observables (for left-handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed stops). There is a “blind spot” when the stop mixing parameter X t is approximately equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy Higgs bosons from tree-level mixing effects that modify the hbb̄ coupling together with bounds from b→sγ play a complementary role in probing the blind spot region. For specific natural SUSY scenarios such as folded SUSY in which the top partners do not carry Standard Model color charges, electroweak precision observables could be the most sensitive probe. In all the scenarios discussed in this paper, the combined set of precision measurements will probe down to a few percent in fine-tuning.

  19. Optimization of Markov chains for a SUSY fitter: Fittino

    Energy Technology Data Exchange (ETDEWEB)

    Prudent, Xavier [IKTP, Technische Universitaet, Dresden (Germany); Bechtle, Philip [DESY, Hamburg (Germany); Desch, Klaus; Wienemann, Peter [Universitaet Bonn (Germany)

    2010-07-01

    A Markov chains is a ''random walk'' algorithm which allows an efficient scan of a given profile and the search of the absolute minimum, even when this profil suffers from the presence of many secondary minima. This property makes them particularly suited to the study of Supersymmetry (SUSY) models, where minima have to be found in up-to 18-dimensional space for the general MSSM. Hence the SUSY fitter ''Fittino'' uses a Metropolis*Hastings Markov chain in a frequentist interpretation to study the impact of current low -energy measurements, as well as expected measurements from LHC and ILC, on the SUSY parameter space. The expected properties of an optimal Markov chain should be the independence of final results with respect to the starting point and a fast convergence. These two points can be achieved by optimizing the width of the proposal distribution, that is the ''average step length'' between two links in the chain. We developped an algorithm for the optimization of the proposal width, by modifying iteratively the width so that the rejection rate be around fifty percent. This optimization leads to a starting point independent chain as well as a faster convergence.

  20. Nucleon decay in a realistic SO(10) SUSY GUT

    International Nuclear Information System (INIS)

    Lucas, V.; Raby, S.

    1997-01-01

    In this paper, we calculate neutron and proton decay rates and branching ratios in a predictive SO(10) SUSY GUT which agrees well with low energy data. We show that the nucleon lifetimes are consistent with the experimental bounds. The nucleon decay rates are calculated using all one-loop chargino and gluino-dressed diagrams regardless of their chiral structure. We show that the four-fermion operator C jk (u R d jR )(d kL ν τL ), commonly neglected in previous nucleon decay calculations, not only contributes significantly to nucleon decay, but, for many values of the initial GUT parameters and for large tanβ, actually dominates the decay rate. As a consequence, we find that τ p /τ n is often substantially larger than the prediction obtained in small tanβ models. We also find that gluino-dressed diagrams, often neglected in nucleon decay calculations, contribute significantly to nucleon decay. In addition we find that the branching ratios obtained from this realistic SO(10) SUSY GUT differ significantly from the predictions obtained from open-quotes genericclose quotes SU(5) SUSY GUT close-quote s. Thus, nucleon decay branching ratios, when observed, can be used to test theories of fermion masses. copyright 1997 The American Physical Society

  1. Implications of low and high energy measurements on SUSY models

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-04-15

    New Physics searches at the LHC have increased significantly lower bounds on unknown particle masses. This increases quite dramatically the tension in the interpretation of the data: low energy precision data which are predicted accurately by the SM (LEP observables like M{sub W} or loop induced rare processes like B {yields}X{sub s}{gamma} or B{sub s}{yields}{mu}{sup +}{mu}{sup -}) and quantities exhibiting an observed discrepancy between SM theory and experiment, most significantly found for the muon g-2 seem to be in conflict now. (g-2){sub {mu}} appears to be the most precisely understood observable which at the same time reveals a 3-4 {sigma} deviation between theory and experiment and thus requires a significant new physics contribution. The hints for a Higgs of mass about 125 GeV, which is precisely what SUSY extensions of the SM predict, seem to provide a strong indication for SUSY. At the same time it brings into serious trouble the interpretation of the (g-2){sub {mu}} deviation as a SUSY contribution.

  2. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-09-14

    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  3. The minimal SUSY B−L model: simultaneous Wilson lines and string thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Deen, Rehan; Ovrut, Burt A. [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Purves, Austin [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Department of Physics, Manhattanville College,2900 Purchase Street, Purchase, NY 10577 (United States)

    2016-07-08

    In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B−L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ℤ{sub 3}×ℤ{sub 3} Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass 〈M{sub U}〉. The present analysis is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from 〈M{sub U}〉 to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.

  4. Generic evaluation of feedwater transients and small break loss-of-coolant accidents in GE-designed operating plants and near-term operating license applications

    International Nuclear Information System (INIS)

    1980-01-01

    The results are presented of a generic evaluation of feedwater transients, small-break loss-of-coolant accidents (LOCAs), and other TMI-2-related events for General Electric Company (GE)-designed operating plants and near-term operating license applications to confirm or establish the bases for the continued safe operation of the operating plants. The results of this evaluation are presented in this report in the form of a set of findings and recommendations in each of the principal review areas. Additional review of the accident is continuing and further information is being obtained and evaluated. Any new information will be reviewed and modifications will be made as appropriate

  5. On estimates of the pion-nucleon sigma term by the dispersion relations and taking into account the interrelation between the chiral and scale invariance breaking

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1983-01-01

    Possible reasons of disagreement between estimates of the pion-nucleon σ term obtained by the method of dispersion relations with extrapolation to the Chang-Dashen point and by alternative methods, making no use of such extrapolation are investigated. One of the reasons may be, that the πN amplitude is not analytic in the variable t at ν=0. A method, which is not so strongly influenced by the nonanalyticity, is suggested to estimate the σ term making use of the threshold data for the πN amplitude. Relation between the scale and chiral invariance breakings is discussed and the resulting estimate of the σ term is presented. Both estimates give close results (42 and 34 MeV) which do not contradict one another within the uncertainties of the methods

  6. Estimates of the pion-nucleon sigma term using dispersion relations and taking into account the relation between chiral and scale invariance breaking

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1983-01-01

    We study the possible reasons for the disagreement between the estimates of the pion-nucleon sigma term obtained by the method of dispersion relations with extrapolation to the Cheng-Dashen point and by other methods which do not involve this extrapolation. One reason for the disagreement may be the nonanalyticity of the πN amplitude in the variable t for ν = 0. We propose a method for estimating the sigma term using the threshold data for the πN amplitude, in which the effect of this nonanalyticity is minimized. We discuss the relation between scale invariance violation and chiral symmetry breaking and give the corresponding estimate of the sigma term. The two estimates are similar (42 and 34 MeV) and are in agreement when the uncertainties of the two methods are taken into consideration

  7. Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets

    Index Scriptorium Estoniae

    Maimets, Andri

    2003-01-01

    Concordia Ülikooli rektori kohast loobunud Mart Susi ning prorektori ametikohalt lahkunud Mari-Ann Susi taotlevad neile kuuluvat ülikooli pidanud miljonivõlgades firma pankrotti. Hiljuti loodi õppejõududest, tudengitest js töötajatest mittetulundusühing Concordia Akadeemiline Ühisus (CAU), selle nõukogu esimees on Hagi Šein

  8. Non-linear way to supersymmetry and N-extended SUSY

    International Nuclear Information System (INIS)

    Akulov, V.

    2001-01-01

    In this report I give a short historical review of some of the first steps that were done towards the invention of SUSY by the Kharkov team headed by D. Volkov. This article is dedicated to the memory of Prof. Yuri Golfand, whose ideas of SUSY inspired the most active developments in High Energy Physics over thirty years

  9. SUSY field theories in higher dimensions and integrable spin chains

    International Nuclear Information System (INIS)

    Gorsky, A.; Gukov, S.; Mironov, A.

    1998-01-01

    Five- and six-dimensional SUSY gauge theories, with one or two compactified directions, are discussed. The 5d theories with the matter hypermultiplets in the fundamental representation are associated with the twisted XXZ spin chain, while the group product case with bi-fundamental matter corresponds to the higher rank spin chains. The Riemann surfaces for 6d theories with fundamental matter and two compact directions are proposed to correspond to the XYZ spin chain based on the Sklyanin algebra. We also discuss the obtained results within the brane and geometrical engineering frameworks and explain the relation to the toric diagrams. (orig.)

  10. Electroweak contributions to SUSY particle production processes at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Mirabella, Edoardo

    2009-07-22

    In this thesis we have computed the electroweak contributions of O({alpha}{sub s}{alpha}), O({alpha}{sup 2}) and O({alpha}{sub s}{sup 2}) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.

  11. Hilkka Punainen & Susi : mediakasvatuksellisen iPad-kirjan suunnittelu

    OpenAIRE

    Kontiola, Sanna

    2012-01-01

    Opinnäytetyön tavoitteena oli tehdä mediakasvatuksellinen iPad-kirja "Hilkka Punainen & Susi", jota voitaisiin käyttää kirjastoissa, kouluissa ja kotona mediakasvatuksen apuvälineenä. Mediakasvatus ei ole ainoastaan medioiden ja välineiden käyttötaidon opettelua, vaan myös sellaisten turvataitojen opettelua, joiden tarkoituksena on parantaa lasten taitoja selviytyä uhkaavissa tilanteissa ja ohjata heitä turvautumaan luotettaviin aikuisiin. Teoksella on useita mediakasvatuksellisia tasoja. Teo...

  12. A Layman's guide to SUSY GUTs

    CERN Document Server

    López, Jorge L; Zichichi, A

    1994-01-01

    The determination of the most straightforward evidence for the existence of the Superworld requires a guide for non-experts (especially experimental physicists) for them to make their own judgement on the value of such predictions. For this purpose we review the most basic results of Super-Grand unification in a simple and clear way. We focus the attention on two specific models and their predictions. These two models represent an example of a direct comparison between a traditional unified-theory and a string-inspired approach to the solution of the many open problems of the Standard Model. We emphasize that viable models must satisfy {\\em all} available experimental constraints and be as simple as theoretically possible. The two well defined supergravity models, $SU(5)$ and $SU(5)\\times U(1)$, can be described in terms of only a few parameters (five and three respectively) instead of the more than twenty needed in the MSSM model, \\ie, the Minimal Supersymmetric extension of the Standard Model. A case of spe...

  13. SUSY-hierarchy of one-dimensional reflectionless potentials

    International Nuclear Information System (INIS)

    Maydanyuk, Sergei P.

    2005-01-01

    A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed

  14. Overview of SUSY results from the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Federico Brazzale Simone

    2014-04-01

    Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.

  15. The Break

    DEFF Research Database (Denmark)

    Strand, Anete Mikkala Camille

    2018-01-01

    storytelling to enact fruitful breakings of patterns unbecoming. The claim being, that the hamster wheel of Work-life anno 2016 needs reconfiguration and the simple yet fruitful manner by which this is done is through acknowledging the benefits of bodies, spaces and artifacts – and the benefits of actually...... taking a break, discontinuing for a moment in order to continue better, wiser and more at ease. Both within and as part of the daily routines, and – now and then – outside these routines in the majesty of nature with time to explore and redirect the course of life in companionships with fellow man...

  16. Simulation of long-term cooling in the VVER-640 power plant after a large break LOKA on the PACTEL facility

    International Nuclear Information System (INIS)

    Banati, J.

    2000-01-01

    The present report gives a short introduction to the safety features of the new Russian VVER-640 reactor design. In order to analyze the complex thermal hydraulic phenomena during long-term cooling after a large-break LOCA, experiments will be carried out in the PACTEL facility. For preparation, pre-test calculations were performed using the RELAPS/MOD3.2 computer code. The main part of the report discusses the results obtained by the program. The structure and options used in the input deck, as well as the efforts of code application to the simulation of proposed experiments are reviewed. A short sensitivity study is provided on the calculated results. Finally, conclusions are drawn for the code capabilities to represent the expectable trends in the upcoming tests. (orig.)

  17. 'BREAKS' Protocol for Breaking Bad News.

    Science.gov (United States)

    Narayanan, Vijayakumar; Bista, Bibek; Koshy, Cheriyan

    2010-05-01

    Information that drastically alters the life world of the patient is termed as bad news. Conveying bad news is a skilled communication, and not at all easy. The amount of truth to be disclosed is subjective. A properly structured and well-orchestrated communication has a positive therapeutic effect. This is a process of negotiation between patient and physician, but physicians often find it difficult due to many reasons. They feel incompetent and are afraid of unleashing a negative reaction from the patient or their relatives. The physician is reminded of his or her own vulnerability to terminal illness, and find themselves powerless over emotional distress. Lack of sufficient training in breaking bad news is a handicap to most physicians and health care workers. Adherence to the principles of client-centered counseling is helpful in attaining this skill. Fundamental insight of the patient is exploited and the bad news is delivered in a structured manner, because the patient is the one who knows what is hurting him most and he is the one who knows how to move forward. Six-step SPIKES protocol is widely used for breaking bad news. In this paper, we put forward another six-step protocol, the BREAKS protocol as a systematic and easy communication strategy for breaking bad news. Development of competence in dealing with difficult situations has positive therapeutic outcome and is a professionally satisfying one.

  18. Possible constraints on SUSY-model parameters from direct dark matter search

    International Nuclear Information System (INIS)

    Bednyakov, V.A.; Kovalenko, S.G.

    1993-01-01

    We consider the SUSY-model neutralino as a dominant Dark Matter particle in the galactic halo and investigate some general issues of direct DM searches via elastic neutralino-nucleus scattering. On the basis of conventional assumptions about the nuclear and nucleon structure, without referring to a specific SUSY-model, we prove that it is impossible in principle to extract more than three constrains on fundamental SUSY-model parameters from the direct Dark Matter searches. Three types of Dark Matter detector probing different groups of parameters are recognized. 21 refs., 1 tab

  19. Supersymmetry Breaking, Gauge Mediation, and the LHC

    International Nuclear Information System (INIS)

    Shih, David

    2015-01-01

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called 'General Gauge Mediation' (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  20. Large neutrino mixings in MSSM and SUSY GUTs: Democratic approach

    International Nuclear Information System (INIS)

    Shafi, Qaisar; Tavartkiladze, Zurab

    2003-01-01

    We show how, with aid from a U (1) flavor symmetry, the hierarchical structure in the charged fermion sector and a democratic approach for neutrinos that yields large solar and atmospheric neutrino mixings can be simultaneously realized in the MSSM framework. In SU(5), due to the unified multiplets, we encounter difficulties. Namely, democracy for the neutrinos leads to a wrong hierarchical pattern for charged fermion masses and mixings. We discuss how this is overcome in flipped SU(5). We then proceed to an example based on 5D SUSY SU(5) GUT in which the neutrino democracy idea can be realized. A crucial role is played by bulk states, the so-called 'copies', which are split by compactifying the fifth dimension on an S(1)/Z2 x Z'2 orbifold

  1. SUSY-hierarchy of one-dimensional reflectionless potentials

    CERN Document Server

    Maydanyuk, Sergei P

    2004-01-01

    A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...

  2. Flavour and collider interplay for SUSY at LHC7

    International Nuclear Information System (INIS)

    Calibbi, L.; Hodgkinson, R.N.; Vives, O.; Jones Perez, J.; Masiero, A.

    2012-01-01

    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb -1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s →μμ and μ→e γ. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models. (orig.)

  3. Supersymmetric grand unified theories from quarks to strings via SUSY GUTs

    CERN Document Server

    Raby, Stuart

    2017-01-01

    These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...

  4. SUSY WT identity in a lattice formulation of 2D N=(2,2) SYM

    International Nuclear Information System (INIS)

    Kadoh, Daisuke; Suzuki, Hiroshi

    2010-01-01

    We address some issues relating to a supersymmetric (SUSY) Ward-Takahashi (WT) identity in Sugino's lattice formulation of two-dimensional (2D) N=(2,2)SU(k) supersymmetric Yang-Mills theory (SYM). A perturbative argument shows that the SUSY WT identity in the continuum theory is reproduced in the continuum limit without any operator renormalization/mixing and tuning of lattice parameters. As application of the lattice SUSY WT identity, we show that a prescription for the Hamiltonian density in this lattice formulation, proposed by Kanamori, Sugino and Suzuki, is justified also from a perspective of an operator algebra among correctly-normalized supercurrents. We explicitly confirm the SUSY WT identity in the continuum limit to the first nontrivial order in a semi-perturbative expansion.

  5. Effective Lagrangians for SUSY QCD with properties seen in perturbation theory

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1984-06-01

    We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)

  6. Prospects for SUSY discovery based on inclusive searches with the ATLAS detector

    International Nuclear Information System (INIS)

    Ventura, Andrea

    2009-01-01

    The search for Supersymmetry (SUSY) among the possible scenarios of new physics is one of the most relevant goals of the ATLAS experiment running at CERN's Large Hadron Collider. In the present work the expected prospects for discovering SUSY with the ATLAS detector are reviewed, in particular for the first fb -1 of collected integrated luminosity. All studies and results reported here are based on inclusive search analyses realized with Monte Carlo signal and background data simulated through the ATLAS apparatus.

  7. Post-sphaleron baryogenesis and n- anti n oscillation in non-SUSY SO(10) GUT with gauge coupling unification

    International Nuclear Information System (INIS)

    Patra, Sudhanwa; Pritimita, Prativa

    2014-01-01

    ''Post-sphaleron baryogenesis'', a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati-Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron-antineutron oscillation in a rational manner. The Pati-Salam symmetry based on the gauge group SU(2) L x SU(2) R x SU(4) C is realized in our model at 10 5 -10 6 GeV and the mixing time for the neutron-antineutron oscillation process having ΔB = 2 is found to be τ n- anti n ≅ 10 8 -10 10 s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed W R ± , Z R gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable n- anti n oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars. (orig.)

  8. Searches for Gauge-Mediated Supersymmetry Breaking Topologies in $e^{+}e^{-}$ collisions at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Roeck, A.De; Wolf, E.A.De; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A.; Krieger, P.; Krogh, J.von; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    Searches were performed for topologies predicted by gauge-mediated Supersymmetry breaking models (GMSB). All possible lifetimes of the next-to-lightest SUSY particle (NLSP), either the lightest neutralino or slepton, decaying into the lightest SUSY particle, the gravitino, were considered. No evidence for GMSB signatures was found in the OPAL data sample collected at centre-of-mass energies of sqrt{s}=189-209 GeV at LEP. Limits on the product of the production cross-sections and branching fractions are presented for all search topologies. To test the impact of the searches, a complete scan over the parameters of the minimal model of GMSB was performed. NLSP masses below 53.5 GeV/c^2 in the neutralino NLSP scenario, below 87.4 GeV/c^2 in the stau NLSP scenario and below 91.9 GeV/c^2 in the slepton co-NLSP scenario are excluded at 95% confidence level for all NLSP lifetimes. The scan determines constraints on the universal SUSY mass scale Lambda from the direct SUSY particle searches of Lambda > 40,27,21,17,15 ...

  9. Breaking away.

    Science.gov (United States)

    Innes, G M; Sosnow, P L

    1995-05-01

    While life as hospital employees was comfortable, the lure of independence won out for these two emergency department physicians. Breaking away to develop a new company was not easy, but it's paid off for the entrepreneurs of the Capital Region Emergency Medicine, P.C. Developing an emergency medicine business meant learning all aspects of business: billing services, evaluating legal services, raising capital, and becoming employers. The advantage has been an ability to use profits to improve the moral of staff, an increase in salary, and an overall sense of satisfaction.

  10. Sparticle mass hierarchies, simplified models from SUGRA unification, and benchmarks for LHC Run-II SUSY searches

    International Nuclear Information System (INIS)

    Francescone, David; Akula, Sujeet; Altunkaynak, Baris; Nath, Pran

    2015-01-01

    Sparticle mass hierarchies contain significant information regarding the origin and nature of supersymmetry breaking. The hierarchical patterns are severely constrained by electroweak symmetry breaking as well as by the astrophysical and particle physics data. They are further constrained by the Higgs boson mass measurement. The sparticle mass hierarchies can be used to generate simplified models consistent with the high scale models. In this work we consider supergravity models with universal boundary conditions for soft parameters at the unification scale as well as supergravity models with nonuniversalities and delineate the list of sparticle mass hierarchies for the five lightest sparticles. Simplified models can be obtained by a truncation of these, retaining a smaller set of lightest particles. The mass hierarchies and their truncated versions enlarge significantly the list of simplified models currently being used in the literature. Benchmarks for a variety of supergravity unified models appropriate for SUSY searches at future colliders are also presented. The signature analysis of two benchmark models has been carried out and a discussion of the searches needed for their discovery at LHC Run-II is given. An analysis of the spin-independent neutralino-proton cross section exhibiting the Higgs boson mass dependence and the hierarchical patterns is also carried out. It is seen that a knowledge of the spin-independent neutralino-proton cross section and the neutralino mass will narrow down the list of the allowed sparticle mass hierarchies. Thus dark matter experiments along with analyses for the LHC Run-II will provide strong clues to the nature of symmetry breaking at the unification scale.

  11. Landfast sea ice break-out events in the Chukchi Sea: Two case studies illuminating long-term observations at Barrow, Alaska

    Science.gov (United States)

    Jones, J.; Eicken, H.; Mahoney, A. R.; Mv, R.; Kambhamettu, C.; Fukamachi, Y.; Ohshima, K. I.

    2012-12-01

    Landfast sea ice in northern Alaska is an important coastal feature. It protects coasts from the impacts of storms, acts as a platform for travel and subsistence activities by native communities, and can be an obstacle to near-shore maritime enterprise. These services provided by landfast ice depend upon its presence and extent, as well as the ice cover's capacity to remain stably in place for long periods of time during the ice season. Along the eastern Chukchi coast and specifically at Barrow, Alaska, the near-shore ice conditions are highly dynamic. In recent years, break-outs of the landfast ice have been observed at Barrow, removing larger stretches of previously immobile landfast ice from shore and potentially threatening people and equipment. Indigenous knowledge by local Iñupiaq ice experts extending back several decades indicates that such events were rare or absent until the 1990s. Using imagery from a land-based marine radar, a component of the Barrow Sea Ice Observatory of the University of Alaska Fairbanks, landfast ice formation at Barrow, AK, has been tracked each season since 2005, and a number of break-out events have been identified. A detailed analysis of atmospheric, oceanic and sea ice conditions associated with such events can shed light on local knowledge and understanding of such events, and help develop approaches to predict and respond to break-outs. Here, two break-out events (on February 27, 2009 and March 24, 2010) are the subjects of case studies aimed at determining primary causes of break-outs. The radar imagery is used to track near-shore ice deformation prior to the break-out and to estimate the extent of grounded sea ice ridges. Oceanic and atmospheric data are used to estimate current and wind stress on the landfast ice cover. Sea level measurements provide insight as to whether or not a grounded ridge's keel could be lifted out of its bed, a potential precondition for a break-out to occur. Preliminary results suggest different

  12. Soft masses in theories with supersymmetry breaking by TeV compactification

    International Nuclear Information System (INIS)

    Antoniadis, I.; Dimopoulos, S.; Pomarol, A.; Quiros, M.

    1999-01-01

    We study the sparticle spectroscopy and electroweak breaking of theories where supersymmetry is broken by compactification (Scherk-Schwarz mechanism) at a TeV The evolution of the soft terms above the compactification scale and the resulting sparticle spectrum are very different from those of the usual MSSM and gauge-mediated theories. This is traced to the softness of the Scherk-Schwarz mechanism which leads to scalar sparticle masses that are only logarithmically sensitive to the cutoff starting at two loops. As a result, the mass-squareds of the squarks and sleptons are a loop factor smaller than those of the gauginos. In addition, the mechanism is very predictive and the sparticle spectrum depends on just two new parameters. A significant advantage of this mechanism relative to gauge mediation is that a Higgsino mass μ ∼ M susy is automatically generated when supersymmetry is broken. Our analysis applies equally well to theories where the cutoff is near a TeV or M Pl or some intermediate scale. We also use these observations to show how we may obtain compactification radii which are hierarchically larger than the fundamental cutoff scale

  13. The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Sascha [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Kim, Jong Soo [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Stienen, Bob [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands)

    2017-04-15

    A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)

  14. The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning

    International Nuclear Information System (INIS)

    Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; Ruiz de Austri, Roberto; Stienen, Bob

    2017-01-01

    A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)

  15. The Break

    DEFF Research Database (Denmark)

    Strand, Anete Mikkala Camille; Larsen, Jens

    2015-01-01

    the challenges of the million-dollar question is stemming from the ‘bets on the future’ – or what David Boje coins as ‘antenarratives’, (Boje, 2008) that emerged through various reconfiguring story actions, on two different occasions. The paper thus elaborates on two cases of restorying events; One taking place...... that language and the social has been granted too much power on the dispense of the bodily, physical and biological – or in short, in dispense of the material. The break To be or not to be poses the theoretical notion of dis-/continuity (Barad, 2007, 2010) from the quantum approach to storytelling (Strand 2012...... in their use of the communicative platform of Object theatre from the methodology of Material Storytelling (Strand 2012). The Bets on the Future piece discusses the extend to which the cases of using this kind of technologies may provide fruitful ‘bets on the future’ in regard to the million-dollar question...

  16. Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics

    CERN Document Server

    Jones-Pérez, Joel

    2014-01-01

    In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.

  17. Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence

    International Nuclear Information System (INIS)

    Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.

    2015-01-01

    The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)

  18. Bose-fermi symmetries and SUSY in nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.

    1986-01-01

    Most of the comparison with theory has compared energy levels and we have seen many beautiful examples of one-to-one level correspondences, sometimes supported with a few B(E2) values. However, what we really need to check, the author thinks, is the structural correspondence, to make sure these levels really correspond to each other, and that the energy level agreement is not just accidental; for that we need to look at transfer reactions, and more B(E2)'s. This brings up the very important question of the transfer operator. The author hopes that its importance can be seen in recent cases where a few B(E2)'s for a few transfer strengths have substantially changed the correspondence between theoretical and experimental levels even though the overall energy level agreement is neither better or worse. So it's clearly sensitive to that question. Also cases have been seen now where several different supergroups have been applied to the same regions, U(6/4) and U(6/20) for example, to the mass 130 region, and so the question of the single-particle spaces and the single-particle energies is an important one. The question of microscopic understanding of the parameters and the interactions, these bose-fermi symmetries is important since it probes the underlying physical basis. And finally there have be some very interesting, what the author calls ''exotic'' extensions of bose-fermi symmetry ideas presented at this meeting. One is the extension to odd-odd nuclei, another is the generalized SUSY extension that can apply to transition regions, and this is the interesting beta decay calculations of Dobes that were reported yesterday, and probably some others the author has missed

  19. Long-lived and compressed SUSY searches at CMS and ATLAS

    CERN Document Server

    Barlow, Nick; The ATLAS collaboration

    2015-01-01

    Two challenging scenarios for SUSY searches at the LHC are when there are small mass differences between particles in the decay chain ("compressed" spectra) and where the SUSY particles have a non-negligible lifetime. The compressed case can be addressed by looking at events containing Initial State Radiation (ISR), while long-lifetimes can give rise to a wide range of possible detector signatures. This talk describes these diverse and interesting searches, performed by the ATLAS and CMS collaborations on the Run 1 LHC data.

  20. Generalized Jaynes-Cummings Hamiltonians by shape-invariant hierarchies and their SUSY partners

    International Nuclear Information System (INIS)

    Hussin, V; Kuru, S; Negro, J

    2006-01-01

    A generalization of the matrix Jaynes-Cummings model in the rotating wave approximation is proposed by means of the shape-invariant hierarchies of scalar factorized Hamiltonians. A class of Darboux transformations (sometimes called SUSY transformations in this context) suitable for these generalized Jaynes-Cummings models is constructed. Finally one example is worked out using the methods developed

  1. High scale parity invariance as a solution to the SUSY CP problem ...

    Indian Academy of Sciences (India)

    scale SUSY ДК model provides a solution to the CP problems of the MSSM. A minimal version of this .... the renormalizable seesaw model so that К-parity conservation remains automatic. Pramana – J. Phys., Vol ... from the Planck scale to ЪК in the squark sector is to split the third generation squarks slightly from the first two ...

  2. Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane

    Science.gov (United States)

    Bhattacharya, Aranya; Roy, Shibaji

    2018-06-01

    Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.

  3. Bremsstrahlung and Ion Beam Current Measurements with SuSI ECR Ion Source

    International Nuclear Information System (INIS)

    Ropponen, T.

    2012-01-01

    This series of slides presents: the Superconducting Source for Ions (SuSI), the X-ray measurement setup, the different collimation schemes, the flat B operation versus B(min) operation, and the impact of tuning ∇B while keeping fixed field profile

  4. SUSY method for the three-dimensional Schrödinger equation with effective mass

    International Nuclear Information System (INIS)

    Ioffe, M.V.; Kolevatova, E.V.; Nishnianidze, D.N.

    2016-01-01

    Highlights: • SUSY intertwining relations for the 3-dim Schrödinger equation with effective mass were studied. • The general solution of these intertwining relations with first order supercharges was obtained. • Four different options for parameters values were considered separately to find the mass functions and partner potentials. - Abstract: The three-dimensional Schrödinger equation with a position-dependent (effective) mass is studied in the framework of Supersymmetrical (SUSY) Quantum Mechanics. The general solution of SUSY intertwining relations with first order supercharges is obtained without any preliminary constraints. Several forms of coefficient functions of the supercharges are investigated and analytical expressions for the mass function and partner potentials are found. As usual for SUSY Quantum Mechanics with nonsingular superpotentials, the spectra of intertwined Hamiltonians coincide up to zero modes of supercharges, and the corresponding wave functions are connected by intertwining relations. All models are partially integrable by construction: each of them has at least one second order symmetry operator.

  5. Decoupling limit and throat geometry of non-susy D3 brane

    Energy Technology Data Exchange (ETDEWEB)

    Nayek, Kuntal, E-mail: kuntal.nayek@saha.ac.in; Roy, Shibaji, E-mail: shibaji.roy@saha.ac.in

    2017-03-10

    Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.

  6. Chromosomal aberrations and deoxyribonucleic acid single-strand breaks in adipose-derived stem cells during long-term expansion in vitro.

    Science.gov (United States)

    Froelich, Katrin; Mickler, Johannes; Steusloff, Gudrun; Technau, Antje; Ramos Tirado, Mario; Scherzed, Agmal; Hackenberg, Stephan; Radeloff, Andreas; Hagen, Rudolf; Kleinsasser, Norbert

    2013-07-01

    Adipose-derived stem cells (ASCs) are a promising mesenchymal cell source for tissue engineering approaches. To obtain an adequate cell amount, in vitro expansion of the cells may be required in some cases. To monitor potential contraindications for therapeutic applications in humans, DNA strand breaks and chromosomal aberrations in ASCs during in vitro expansion were examined. After isolation of ASC from human lipoaspirates of seven patients, in vitro expansion over 10 passages was performed. Cells from passages 1, 2, 3, 5 and 10 were used for the alkaline single-cell microgel electrophoresis (comet) assay to detect DNA single-strand breaks and alkali labile as well as incomplete excision repair sites. Chromosomal changes were examined by means of the chromosomal aberration test. During in vitro expansion, ASC showed no DNA single-strand breaks in the comet assay. With the chromosomal aberration test, however, a significant increase in chromosomal aberrations were detected. The study showed that although no DNA fragmentation could be determined, the safety of ASC cannot be ensured with respect to chromosome stability during in vitro expansion. Thus, reliable analyses for detecting ASC populations, which accumulate chromosomal aberrations or even undergo malignant transformation during extensive in vitro expansion, must be implemented as part of the safety evaluation of these cells for stem cell-based therapy. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Short-term music-induced hearing loss after sound exposure to discotheque music: the effectiveness of a break in reducing temporary threshold shift.

    Science.gov (United States)

    Helleman, Hiske W; Dreschler, Wouter A

    2015-02-01

    To investigate the effect of a break in music exposure on temporary threshold shifts. A cross-over design where subjects are exposed to dance music for either two hours consecutively, or exposed to two hours of dance music with a one-hour break in between. Outcome measure was the change in hearing threshold, measured in 1-dB steps at different time points after ending the music. Eighteen normal-hearing subjects participated in this study. Changes in pure-tone threshold were observed in both conditions and were similar, regardless of the break. Threshold shifts could be averaged for 1000, 2000, and 4000 Hz. The shift immediately after the ending of the music was 1.7 dB for right ears, and 3.4 dB for left ears. The difference between left and right ears was significant. One hour after the exposure, right ears were recovered to baseline conditions whereas left ears showed a small but clinically irrelevant remaining shift of approximately 1 dB. The advice to use chill-out zones is still valid, because this helps to reduce the duration to the exposure. This study does not provide evidence that a rest period gives an additional reduction of temporary threshold shifts.

  8. Radiative breaking of the minimal supersymmetric left–right model

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2016-05-01

    Full Text Available We study a variation to the SUSY Left–Right symmetric model based on the gauge group SU(3c×SU(2L×SU(2R×U(1BL. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any SU(2R triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an SU(2R slepton doublet acquires a negative mass squared at low energies, so that the breaking of SU(2R×U(1BL→U(1Y is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the SU(2R×U(1BL sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.

  9. Give me a better break: Choosing workday break activities to maximize resource recovery.

    Science.gov (United States)

    Hunter, Emily M; Wu, Cindy

    2016-02-01

    Surprisingly little research investigates employee breaks at work, and even less research provides prescriptive suggestions for better workday breaks in terms of when, where, and how break activities are most beneficial. Based on the effort-recovery model and using experience sampling methodology, we examined the characteristics of employee workday breaks with 95 employees across 5 workdays. In addition, we examined resources as a mediator between break characteristics and well-being. Multilevel analysis results indicated that activities that were preferred and earlier in the work shift related to more resource recovery following the break. We also found that resources mediated the influence of preferred break activities and time of break on health symptoms and that resource recovery benefited person-level outcomes of emotional exhaustion, job satisfaction, and organizational citizenship behavior. Finally, break length interacted with the number of breaks per day such that longer breaks and frequent short breaks were associated with more resources than infrequent short breaks. (c) 2016 APA, all rights reserved).

  10. Inflationary implications of supersymmetry breaking

    NARCIS (Netherlands)

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne

    2013-01-01

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll

  11. Identifying fake leptons in ATLAS while hunting SUSY in 8 TeV proton-proton collisions

    CERN Document Server

    Gillam, Thomas P S

    For several theoretically and experimentally motivated reasons, super- symmetry (SUSY) has for some time been identified as an interesting candidate for a theory of fundamental particle physics beyond the Stan- dard Model. The ATLAS collaboration, of which I am a member, possess a detector emplaced in the Large Hadron Collider experiment at CERN. If SUSY does in fact describe our universe, then it is hoped that evidence of it will be visible in data collected in the ATLAS detector. I present an analysis looking for a particular signature that could indicate the presence of SUSY; events containing two like-charge leptons (e or μ). This signature benefits from having both low Standard Model backgrounds as well as potential to observe several SUSY scenarios, par- ticularly those involving strong production processes. These include pair production of squarks and gluinos. The latter of these are particularly relevant for the analysis presented herein since gluinos are Majorana fermions; hence they can decay to...

  12. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    loss of symmetric behaviour requires both the existence of non-symmetric ground states and the infinite extension of the system. The book is divided into two parts, treating respectively the classical and quantum regimes. In classical field theory the symmetry breaking is explained in terms of the occurrence of disjoint sectors, or different phases, of a physical system. In the quantum regime the mechanism is characterized by a symmetry breaking order parameter, for which non-perturbative criteria are discussed, following the work of Wightman, in contrast to the usual Goldstone perturbative strategy. Strocchi's main interest is in condensed matter, rather than particle, physics, and the topics he covers include spin systems, Fermi and Bose gases and finite temperature field theory. The book is based on lectures given over a number of years. It is written in a pleasing style at a level suitable for graduate students in theoretical physics. While mathematically proper, it is not forbidding for a physics readership; the author is always aware this subject is a branch of physics. It should make profitable reading for many theoretical physicists.

  13. Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyu Jung [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051 (Korea, Republic of); Baer, Howard; Serce, Hasan, E-mail: kyujungbae@ibs.re.kr, E-mail: baer@nhn.ou.edu, E-mail: serce@ou.edu [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2017-06-01

    Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ∼ f {sub a} {sup 2}/ M {sub P} {sub ∼} 100−300 GeV while the SUSY particle mass scale m {sub SUSY}∼ 1−10 TeV >> μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m {sub a} depends on the mixed axion-higgsino relic density. The range of m {sub a} is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.

  14. Source term analysis in severe accident induced by large break loss of coolant accident coincident with ship blackout for ship reactor

    International Nuclear Information System (INIS)

    Zhang Yanzhao; Zhang Fan; Zhao Xinwen; Zheng Yingfeng

    2013-01-01

    Using MELCOR code, the accident analysis model was established for a ship reactor. The behaviors of radioactive fission products were analyzed in the case of severe accident induced by large break loss of coolant accident coincident with ship blackout. The research mainly focused on the behaviors of release, transport, retention and the final distribution of inert gas and CsI. The results show that 83.12% of inert gas releases from the core, and the most of inert gas exists in the containment. About 83.08% of CsI release from the core, 72.66% of which is detained in the debris and the primary system, and 27.34% releases into the containment. The results can give a reference for the evaluation of cabin dose and nuclear emergency management. (authors)

  15. Benchmark models, planes lines and points for future SUSY searches at the LHC

    International Nuclear Information System (INIS)

    AbdusSalam, S.S.; Allanach, B.C.; Dreiner, H.K.

    2012-03-01

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  16. Benchmark models, planes lines and points for future SUSY searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)

    2012-03-15

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  17. Analytic properties of high energy production amplitudes in N=4 SUSY

    International Nuclear Information System (INIS)

    Lipatov, L.N.; Hamburg Univ.

    2010-08-01

    We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)

  18. Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC

    CERN Document Server

    AbdusSalam, S S; Dreiner, H K; Ellis, J; Ellwanger, U; Gunion, J; Heinemeyer, S; Krämer, M; Mangano, M L; Olive, K A; Rogerson, S; Roszkowski, L; Schlaffer, M; Weiglein, G

    2011-01-01

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  19. Analytic properties of high energy production amplitudes in N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, L.N. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik

    2010-08-15

    We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)

  20. The di-photon excess in a perturbative SUSY model

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, Karim, E-mail: kbenakli@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Darmé, Luc, E-mail: darme@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Goodsell, Mark D., E-mail: goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Harz, Julia, E-mail: jharz@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France)

    2016-10-15

    We show that a 750 GeV di-photon excess as reported by the ATLAS and CMS experiments can be reproduced by the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) without the need of any ad-hoc addition of new states. The scalar resonance is identified with the spin-0 partner of the Dirac bino. We perform a thorough analysis of constraints coming from the mixing of the scalar with the Higgs boson, the stability of the vacuum and the requirement of perturbativity of the couplings up to very high energy scales. We exhibit examples of regions of the parameter space that respect all the constraints while reproducing the excess. We point out how trilinear couplings that are expected to arise in supersymmetry-breaking mediation scenarios, but were ignored in the previous literature on the subject, play an important role.

  1. Search for SUSY in final states with photons at CMS

    Directory of Open Access Journals (Sweden)

    Ntomari Eleni

    2013-05-01

    Full Text Available Résumé The Compact Muon Solenoid (CMS collaboration has developed a complete program of searches beyond the Standard Model (SM covering a wide range of final states. This document focuses on searches in final states with photons and missing transverse energy ETmiss organised in three analyses. The first two include comparison of the ETmiss distribution (isolation sideband method in events with either at least two photons plus at least one hadronic jet, or at least one photon plus at least two hadronic jets. The third analysis corresponds to a new approach, the Jet-Gamma Balance (JGB method, for events with at least one photon plus at least three hadronic jets.We observe no significant deviations from the SM expectation and thus derive upper limits on the signal cross section at the 95% confidence level (CL for a range of squark, gluino and neutralino mass points in the Gauge Mediated Supersymmetry Breaking scenario.

  2. The fine-tuning cost of the likelihood in SUSY models

    International Nuclear Information System (INIS)

    Ghilencea, D.M.; Ross, G.G.

    2013-01-01

    In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γ i ={m 0 ,m 1/2 ,μ 0 ,A 0 ,B 0 ,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γ i }, that can be written as a surface integral of the ratio L/Δ, with the surface in γ i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χ new 2 =χ old 2 +2lnΔ. This shows the fine-tuning cost to the likelihood (χ new 2 ) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χ new 2 /d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ 2 /d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.

  3. Symmetric neutrino mass matrix with two zeros in SUSY SO(10) GUT

    International Nuclear Information System (INIS)

    Bando, Masako; Kaneko, Satoru; Obara, Midori; Tanimoto, Morimitsu

    2004-01-01

    We study the symmetric 2-zero texture of lepton and quark mass matrix, for the SUSY SO(10) GUT model including the Pati-Salam symmetry. We show that our model can simultaneously explain the current neutrino experimental data, predicted rate of lepton flavor violating processes are safely below the experimental bounds and baryon asymmetry of the universe can be obtained through thermal leptogenesis. (author)

  4. Extension of the SUSY Les Houches Accord 2 for see-saw mechanisms

    International Nuclear Information System (INIS)

    Basso, L.; Belyaev, A.; Chowdhury, D.; Ghosh, D.K.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F.

    2012-01-01

    The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. (authors)

  5. Lie-algebra approach to symmetry breaking

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1981-01-01

    A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian

  6. Post accidental small breaks analysis

    International Nuclear Information System (INIS)

    Depond, G.; Gandrille, J.

    1980-04-01

    EDF ordered to FRAMATOME by 1977 to complete post accidental long term studies on 'First Contrat-Programme' reactors, in order to demonstrate the safety criteria long term compliance, to get information on NSSS behaviour and to improve the post accidental procedures. Convenient analytical models were needed and EDF and FRAMATOME respectively developped the AXEL and FRARELAP codes. The main results of these studies is that for the smallest breaks, it is possible to manually undertake cooling and pressure reducing actions by dumping the steam generators secondary side in order to meet the RHR operating specifications and perform long term cooling through this system. A specific small breaks procedure was written on this basis. The EDF and FRAMATOME codes are continuously improved; the results of a French set of separate effects experiments will be incorporated as well as integral system verification

  7. Calculating the renormalisation group equations of a SUSY model with Susyno

    Science.gov (United States)

    Fonseca, Renato M.

    2012-10-01

    Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features

  8. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  9. Leptogenesis in a Δ(27)×SO(10) SUSY GUT

    Energy Technology Data Exchange (ETDEWEB)

    Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom)

    2017-01-17

    Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N{sub 1} due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N{sub 1} leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y{sub B} from flavoured N{sub 1} leptogenesis in a recently proposed Δ(27)×SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y{sub B} places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.

  10. Spontaneous symmetry breaking in N=3 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1986-01-01

    The possibility of the spontaneous symmetry breaking without a cosmological term in N=3 supergravity is investigated. A new, dual version of N=3 supergravity - U(3)-supergravity is constructed. Such a theory is shown to admit a spontaneous supersymmetry breaking without a cosmological term and with three arbitrary scales, including partial super-Higgs effect N=3 → N=2 and N=3 → N=1

  11. Non-minimal and non-universal supersymmetry

    Indian Academy of Sciences (India)

    The motivations for TeV scale supersymmetry (SUSY) [1] remain as good as ever: 1. TeV scale SUSY cancels the ... Terms in the expansion of V then lead to soft SUSY breaking masses in the ... strongest motivation for low energy supersymmetry, and the widespread belief that super- partners should be found before or at ...

  12. SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD

    Directory of Open Access Journals (Sweden)

    H. P. Thamm

    2012-09-01

    Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for

  13. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    Science.gov (United States)

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Genetic algorithms and experimental discrimination of SUSY models

    International Nuclear Information System (INIS)

    Allanach, B.C.; Quevedo, F.; Grellscheid, D.

    2004-01-01

    We introduce genetic algorithms as a means to estimate the accuracy required to discriminate among different models using experimental observables. We exemplify the technique in the context of the minimal supersymmetric standard model. If supersymmetric particles are discovered, models of supersymmetry breaking will be fit to the observed spectrum and it is beneficial to ask beforehand: what accuracy is required to always allow the discrimination of two particular models and which are the most important masses to observe? Each model predicts a bounded patch in the space of observables once unknown parameters are scanned over. The questions can be answered by minimising a 'distance' measure between the two hypersurfaces. We construct a distance measure that scales like a constant fraction of an observable, since that is how the experimental errors are expected to scale. Genetic algorithms, including concepts such as natural selection, fitness and mutations, provide a solution to the minimisation problem. We illustrate the efficiency of the method by comparing three different classes of string models for which the above questions could not be answered with previous techniques. The required accuracy is in the range accessible to the Large Hadron Collider (LHC) when combined with a future linear collider (LC) facility. The technique presented here can be applied to more general classes of models or observables. (author)

  15. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  16. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  17. Radiative breaking of cosmologically acceptable grand unified theories

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Quiros, M.

    1984-01-01

    We present a cosmologically acceptable grand unified model where the breaking of SU(5) proceeds through radiative corrections induced by supergravity soft-breaking terms. The breaking scale is determined by dimensional transmutation. The model is compatible with the radiative breaking of SU(2)sub(L)xU(1)sub(Y) which provides an experimentally accessible low energy particle spectrum and small top quark mass. (orig.)

  18. Sparticle spectrum and constraints in anomaly mediated supersymmetry breaking models

    International Nuclear Information System (INIS)

    Huitu, K.; Laamanen, J.; Pandita, P.N.

    2002-01-01

    We study in detail the particle spectrum in anomaly mediated supersymmetry breaking models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. We investigate the minimal anomaly mediated supersymmetry breaking models, gaugino assisted supersymmetry breaking models, as well as models with additional residual nondecoupling D-term contributions due to an extra U(1) gauge symmetry at a high energy scale. We derive sum rules for the sparticle masses in these models which can help in differentiating between them. We also obtain the sparticle spectrum numerically, and compare and contrast the results so obtained for the different types of anomaly mediated supersymmetry breaking models

  19. Measuring Gauge-Mediated SuperSymmetry Breaking Parameters at a 500 GeV $e^{+}e^{-}$ Linear Collider

    CERN Document Server

    Ambrosanio, S; Ambrosanio, Sandro; Blair, Grahame A.

    2000-01-01

    We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. Our focus is on the case where a neutralino (N1) is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass...

  20. Nonstandard Supersymmetry Breaking and Dirac Gaugino Masses without Supersoftness

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Northern Illinois U.

    2015-08-05

    I consider models in which nonstandard supersymmetry-breaking terms, including Dirac gaugino masses, arise from F-term breaking mediated by operators with a 1/M3 suppression. In these models, the supersoft properties found in the case of D-term breaking are absent in general, but can be obtained as a special case that is a fixed point of the renormalization group equations. The μ term is replaced by three distinct supersymmetry-breaking parameters, decoupling the Higgs scalar potential from the Higgsino masses. Both holomorphic and nonholomorphic scalar cubic interactions with minimal flavor violation are induced in the supersymmetric Standard Model Lagrangian.

  1. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  2. Dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Affleck, I.

    1985-03-01

    Supersymmetry, and in particular, dynamical supersymmetry breaking, offers the hope of a natural solution of the gauge hierarchy problem in grand unification. I briefly review recent work on dynamical supersymmetry breaking in four-dimensional Higgs theories and its application to grand unified model building

  3. Inflationary implications of supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2013-07-23

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll parameters and the geometry of the Kähler manifold of the chiral scalars. We analyse the inflationary implications of this bound, and in particular discuss to what extent the requirements of single field and slow-roll can both be met in F-term inflation.

  4. Inflation from supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. [UMR CNRS 7589 Sorbonne Universites, UPMC Paris 6, LPTHE, Paris (France); University of Bern, Albert Einstein Center, Institute for Theoretical Physics, Bern (Switzerland); Chatrabhuti, A.; Isono, H.; Knoops, R. [Chulalongkorn University, Department of Physics, Faculty of Science, Pathumwan, Bangkok (Thailand)

    2017-11-15

    We explore the possibility that inflation is driven by supersymmetry breaking with the superpartner of the goldstino (sgoldstino) playing the role of the inflaton. Moreover, we impose an R-symmetry that allows one to satisfy easily the slow-roll conditions, avoiding the so-called η-problem, and leads to two different classes of small-field inflation models; they are characterised by an inflationary plateau around the maximum of the scalar potential, where R-symmetry is either restored or spontaneously broken, with the inflaton rolling down to a minimum describing the present phase of our Universe. To avoid the Goldstone boson and be left with a single (real) scalar field (the inflaton), R-symmetry is gauged with the corresponding gauge boson becoming massive. This framework generalises a model studied recently by the present authors, with the inflaton identified by the string dilaton and R-symmetry together with supersymmetry restored at weak coupling, at infinity of the dilaton potential. The presence of the D-term allows a tuning of the vacuum energy at the minimum. The proposed models agree with cosmological observations and predict a tensor-to-scalar ratio of primordial perturbations 10{sup -9}

  5. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    Science.gov (United States)

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Neutralino Dark Matter in non-universal and non-minimal SUSY

    International Nuclear Information System (INIS)

    King, S.F.

    2010-01-01

    We discuss neutralino dark matter in non-universal SUSY including the NUHM, SU(5) with non-universal gauginos. In the MSSM we argue from naturalness that non-universal soft mass parameters are preferred, with non-universal gaugino masses enabling supernatural dark matter beyond the MSSM, we also discuss neutralino dark matter in the U SSM and E 6 SSM. In the E 6 SSM a light neutralino LSP coming from the inert Higgsino and singlino sector is unavoidable and makes an attractive dark matter candidate.

  7. Susy-QCD corrections to neutrlino pair production in association with a jet

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Gavin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas; Heinrich, Gudrun [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2012-12-15

    We present the NLO Susy-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam for automated one-loop calculations in combination with MadDipole/- MadGraph for the real radiation part.

  8. SUSY-QCD corrections to Higgs boson production at hadron colliders

    International Nuclear Information System (INIS)

    Djouadi, A.; Spira, M.

    1999-12-01

    We analyze the next-to-leading order SUSY-QCD corrections to the production of Higgs particles at hadron colliders in supersymmetric extensions of the standard model. Besides the standard QCD corrections due to gluon exchange and emission, genuine supersymmetric corrections due to the virtual exchange of squarks and gluinos are present. At both the Tevatron and the LHC, these corrections are found to be small in the Higgs-strahlung, Drell-Yan-like Higgs pair production and vector boson fusion processes. (orig.)

  9. Prospects for (non-SUSY) new physics with first LHC data

    International Nuclear Information System (INIS)

    Butterworth, Jonathan

    2007-01-01

    The ATLAS and CMS experiments will take first data soon. I consider here the prospects for new physics (excluding SUSY) with a few fb -1 of data. This means processes with signal cross sections of a few 100 fb or less, with clear and fairly simple signatures--precision comparison of data to Standard Model tails will take longer, needing more luminosity and very good understanding of detector calibrations, resolutions and trigger efficiencies. The approach I take here is signature rather than model based, but examples of models will be given

  10. Combining high-scale inflation with low-energy SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    2011-12-15

    We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)

  11. Consistency of Trend Break Point Estimator with Underspecified Break Number

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2017-01-01

    Full Text Available This paper discusses the consistency of trend break point estimators when the number of breaks is underspecified. The consistency of break point estimators in a simple location model with level shifts has been well documented by researchers under various settings, including extensions such as allowing a time trend in the model. Despite the consistency of break point estimators of level shifts, there are few papers on the consistency of trend shift break point estimators in the presence of an underspecified break number. The simulation study and asymptotic analysis in this paper show that the trend shift break point estimator does not converge to the true break points when the break number is underspecified. In the case of two trend shifts, the inconsistency problem worsens if the magnitudes of the breaks are similar and the breaks are either both positive or both negative. The limiting distribution for the trend break point estimator is developed and closely approximates the finite sample performance.

  12. The Trochanteric Localization is a Mediator of Slower Short-Term Functional Recovery in Overweight and Obese Elderly Women with Recent Hip Fracture: The BREAK Study.

    Science.gov (United States)

    Gonnelli, Stefano; Caffarelli, Carla; Rossi, Stefania; Siviero, Paola; Maggi, Stefania; Crepaldi, Gaetano; Nuti, Ranuccio

    2015-12-01

    The hypothesis tested in this study, carried out on elderly Italian women with recent hip fracture, was to assess the extent to which the effect of a condition of being overweight/obese on short-term functional recovery as evaluated by the "time to permitted load" could be explained by a mediator variable (type of hip fracture). We studied 727 women aged 60 years or over with a recent low trauma surgically treated hip fracture and for whom an information on post-surgery complications and on the time to permitted load was available. To assess for mediation, the statistical analyses were carried out following the procedure described by Baron and Kenny. In this study, 46 % of women with hip fracture presented a time to permitted load of ≥ 10 days. The women with a post-surgery time to permitted load of ≥ 10 days showed a significantly higher proportion of trochanteric fracture localization (72.1 vs 42 %), of total overweight/obesity (46.5 vs 36.8 %) and of post-surgery complications (38.8 vs 18.8 %). The mediating effect of hip fracture localization on the association between overweight/obesity and the time of permitted load was demonstrated and confirmed in a multivariate logistic regression model. This study, carried out using a "mediator" statistical analysis, suggests that in elderly women with hip fracture being overweight/obese is associated with a slower short-term functional recovery as evaluated by the time to permitted load and that this association is mediated by the trochanteric localization of hip fracture.

  13. More than a break: the impact of a social-pedagogical intervention during young persons' long-term hospital admission--a qualitative study.

    Science.gov (United States)

    Villadsen, Katrine Weiersoe; Blix, Charlotte; Boisen, Kirsten A

    2015-02-01

    Critical illness and long-term or repeated hospitalization can affect normal adolescent development. As a result, adolescents may feel isolated and "misplaced" on both pediatric and adult departments. The mission of the Center of Adolescent Medicine is to improve conditions for adolescent patients. To achieve this, the social educator offers an individualized social-pedagogical intervention for young people during long-term or repeated hospitalization. The aim of this study was to identify the impact of the social-pedagogical intervention using a qualitative approach. A trained anthropologist interviewed seven adolescents who had individual sessions with a social educator during their hospital stay. The interviews were recorded and transcribed verbatim, and the transcripts were coded and thematized continuously. Through qualitative analysis, the following themes emerged: Recreation; Structure, participation, and motivation; and Friends and social network. The social-pedagogical approach is a combination of interpersonal relationships and individually tailored recreational activities. Even small entertaining activities changed the focus from patient identity and contributed to the feeling of being "normal." All young patients reported that the increased opportunities for decision-making and influence on the daily structure supported the feeling of being recognized and respected as an individual person as well as increased their motivation to go through their treatment. The interviewees emphasized the importance of experiencing something that was worth telling their friends about to help them stay in touch. Although the young patients emphasized the recreational aspects, the time spent with the social educator facilitated training in social competencies as well as conversations about emotional and sensitive topics.

  14. Dynamical Compactification as a Mechanism of Spontaneous Supersymmetry Breaking

    CERN Document Server

    Dvali, Gia

    1997-01-01

    Supersymmetry breaking and compactification of extra space-time dimensions may have a common dynamical origin if our universe is spontaneously generated in the form of a four-dimensional topological or non-topological defect in higher dimensional space-time. Within such an approach the conventional particles are zero modes trapped in the core of the defect. In many cases solutions of this type spontaneously break all supersymmetries of the original theory, so that the low-energy observer from ``our'' universe inside the core would not detect supersymmetry. Since the extra dimensions are not compact but, rather, inaccessible to low-energy observers, the usual infinite tower of the Kaluza-Klein excitations does not exist. Production of superpartners at the energy scale of SUSY restoration will be accompanied by four-momentum non-conservation. (Depending on the nature of the solution at hand, the non-conservation may either happen above some threshold energy or be continuous). In either case, the door to extra d...

  15. Cardy formula for 4d SUSY theories and localization

    Energy Technology Data Exchange (ETDEWEB)

    Pietro, Lorenzo Di [Perimeter Institute for Theoretical Physics,Caroline Street N 31, Waterloo (Canada); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel); Honda, Masazumi [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel)

    2017-04-11

    We study 4d N=1 supersymmetric theories on a compact Euclidean manifold of the form S{sup 1}×M{sub 3}. Partition functions of gauge theories on this background can be computed using localization, and explicit formulas have been derived for different choices of the compact manifold M{sub 3}. Taking the limit of shrinking S{sup 1}, we present a general formula for the limit of the localization integrand, derived by simple effective theory considerations, generalizing the result of https://www.doi.org/10.1007/JHEP07(2016)025. The limit is given in terms of an effective potential for the holonomies around the S{sup 1}, whose minima determine the asymptotic behavior of the partition function. If the potential is minimized in the origin, where it vanishes, the partition function has a Cardy-like behavior fixed by Tr(R), while a nontrivial minimum gives a shift in the coefficient. In all the examples that we consider, the origin is a minimum if Tr(R)≤0.

  16. Global fits of GUT-scale SUSY models with GAMBIT

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; de Austri, Roberto Ruiz; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-12-01

    We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.

  17. Global fits of GUT-scale SUSY models with GAMBIT

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Mahmoudi, Farvah [Univ Lyon, Univ Lyon 1, CNRS, ENS de Lyon, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); Theoretical Physics Department, CERN, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Camperdown, NSW (Australia); Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-12-15

    We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos. (orig.)

  18. Study of SUSY particles properties at the future International Linear Collider with the International Large Detector

    International Nuclear Information System (INIS)

    Wichmann, K.

    2009-01-01

    Recently, Letters of Intent (LoI) for experiments at the International Linear Collider (ILC) have been submitted. Among the three proposals is the International Large Detector (ILD) concept which is at the focus of these studies. From various subjects addressed in the LoI, a wide spectrum of studies of SUSY particle properties is presented here. Most of them are benchmark reactions for the ILC and can be used both in physics studies and in work on detector design and optimization, respectively. All studies were performed with a full detector simulation using GEANT4, which is a great improvement compared to the previous results with much less detailed, so called f ast , simulation (SIMDET). The importance of this improved simulation is reflected in the results. The presented analyzes have been chosen to be the most challenging for the detector to study its performance and guide the detector development. Additionally an important problem of unavoidable beam induced backgrounds at linear colliders is addressed and ways of reducing its impact on physics studies are shown for an example SUSY analysis. (author)

  19. Rencontres de Moriond QCD 2012: Searches for Dark Matter, SUSY and other exotic particles

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fact that SUSY and other new physics signals do not seem to hide in “obvious” places is bringing a healthy excitement to Moriond. Yesterday’s presentations confirmed that, with the 2012 LHC data, experiments will concentrate on searches for exotic particles that might decay into yet unexplored modes. In the meantime, they are setting unprecedented boundaries to regions where new particles (not just SUSY) could exist. The limits of what particle accelerators can bring to enlighten the mystery of Dark Matter were also presented and discussed.   Each bar on the picture represents a decay channel that the ATLAS Collaboration (top) and the CMS Collaborations (bottom) have analysed.  The value indicated on the scale (or on the relevant bar) defines the maximum mass that the particle in that search cannot have. Not knowing what kind of new physics we should really expect, and given the fact that it does not seem to be hiding in any of the obvious places, e...

  20. Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order

    CERN Document Server

    Cassel, S; Ross, G G

    2010-01-01

    In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum $\\Delta=8.8$ corresponding to a Higgs mass $m_h=114\\pm 2$ GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find $\\Delta=15$ corresponding to $m_h=114.7\\pm 2$ GeV and this rises to $\\Delta=17.8$ ($m_h=115.9\\pm 2$ GeV) for SUSY dark matter abundance within 3$\\sigma$ of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mas...

  1. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    International Nuclear Information System (INIS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-01

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼ 100–300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ|| m 3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T R vs. m 3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f a . These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f a∼  10 10 –10 12 GeV which is also favored by naturalness: f a  ∼ √μM P /λ μ  ∼ 10 10 –10 12 GeV . These f a values correspond to axion masses somewhat above the projected ADMX search regions

  2. Non-simplified SUSY. {tau}-coannihilation at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.

    2013-07-15

    Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.

  3. Supersymmetry breaking from superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.; Lawrence Berkeley Lab., CA; California Univ., Berkeley

    1990-01-01

    The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a clasical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated

  4. Supersymmetry breaking from superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1990-05-01

    The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 26 refs

  5. SU(2) symmetry and degeneracy from SUSY QM of a neutron in the magnetic field of a linear current

    International Nuclear Information System (INIS)

    Martinez, D.; Granados, V.D.; Mota, R.D.

    2006-01-01

    From SUSY ladder operators in momentum space of a neutron in the magnetic field of a linear current, we construct 2x2 matrix operators that together with the z-component of the total angular momentum satisfy the su(2) Lie algebra. We use this fact to explain the degeneracy of the energy spectrum

  6. Calculation of the single lepton SUSY analysis limits in the cMSSM m0-m1/2 plane

    CERN Document Server

    Megas, Efstathios

    2014-01-01

    The goal of the summer student project was the calculation of the single lepton SUSY analysis limits in the cMSSM $m_0$-$m_{1/2}$ plane. To this end, the analysis code, the production of the ntuples and a familarization with the higgs combination tool was needed.

  7. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    Energy Technology Data Exchange (ETDEWEB)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  8. Dirac neutrino masses from generalized supersymmetry breaking

    International Nuclear Information System (INIS)

    Demir, D.A.; Everett, L.L.; Langacker, P.

    2007-12-01

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1) ' ), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)

  9. Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw

    Directory of Open Access Journals (Sweden)

    Shaaban Khalil

    2016-12-01

    Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.

  10. Determination of excited states of quantum systems by finite difference time domain method (FDTD) with supersymmetric quantum mechanics (SUSY-QM)

    Energy Technology Data Exchange (ETDEWEB)

    Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)

    2016-04-19

    We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.

  11. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  12. Safe SUSY

    DEFF Research Database (Denmark)

    Bajc, Borut; Dondi, Nicola Andrea; Sannino, Francesco

    2018-01-01

    We investigate the short distance fate of distinct classes of not asymptotically free supersymmetric gauge theories. Examples include super QCD with two adjoint fields and generalised superpotentials, gauge theories without superpotentials and with two types of matter representation and semi-simp...

  13. Hadronic EDMs in SUSY SU(5) GUTs with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru; Shimizu, Yasuhiro

    2004-01-01

    We discuss hadronic EDM constraints on the neutrino sector in the SUSY SU(5) GUT with the right-handed neutrinos. The hadronic EDMs are sensitive to the right-handed down-type squark mixings, especially between the second and third generations and between the first and third ones, compared with the other low-energy hadronic observables, and the flavor mixings are induced by the neutrino Yukawa interaction. The current experimental bound of the neutron EDM may imply that the right-handed tau neutrino mass is smaller than about 10 14 GeV in the minimal supergravity scenario, and it may be improved furthermore in future experiments, such as the deuteron EDM measurement

  14. Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections

    Energy Technology Data Exchange (ETDEWEB)

    Diessner, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kotlarski, Wojciech [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik; Warsaw Univ. (Poland). Faculty of Physics; Liebschner, Sebastian; Stoeckinger, Dominik [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik

    2017-11-15

    R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.

  15. The Challenge of Determining SUSY Parameters in Focus-Point-Inspired Cases

    CERN Document Server

    Rolbiecki, K.; Kalinowski, J.; Moortgat-Pick, G.

    2006-01-01

    We discuss the potential of combined LHC and ILC experiments for SUSY searches in a difficult region of the parameter space, in which all sfermion masses are above the TeV scale. Precision analyses of cross sections of light chargino production and forward--backward asymmetries of decay leptons and hadrons at the ILC, together with mass information on \\tilde{\\chi}^0_2 and squarks from the LHC, allow us to fit rather precisely the underlying fundamental gaugino/higgsino MSSM parameters and to constrain the masses of the heavy virtual sparticles. For such analyses the complete spin correlations between the production and decay processes have to be taken into account. We also took into account expected experimental uncertainties.

  16. SUSY simplified models at 14, 33, and 100 TeV proton colliders

    International Nuclear Information System (INIS)

    Cohen, Timothy; Golling, Tobias; Hance, Mike; Henrichs, Anna; Howe, Kiel; Loyal, Joshua; Padhi, Sanjay; Wacker, Jay G.

    2014-01-01

    Results are presented for a variety of SUSY Simplified Models at the 14 TeV LHC as well as a 33 and 100 TeV proton collider. Our focus is on models whose signals are driven by colored production. We present projections of the upper limit and discovery reach in the gluino-neutralino (for both light and heavy flavor decays), squark-neutralino, and gluino-squark Simplified Model planes. Depending on the model a jets + E T miss , mono-jet, or same-sign di-lepton search is applied. The impact of pileup is explored. This study utilizes the Snowmass backgrounds and combined detector. Assuming 3000/,fb −1 of integrated luminosity, a gluino that decays to light flavor quarks can be discovered below 2.3 TeV at the 14 TeV LHC and below 11 TeV at a 100 TeV machine

  17. Matching conditions and duality in N=1 SUSY gauge theories in the conformal window

    International Nuclear Information System (INIS)

    Kogan, I.I.; Shifman, M.; Vainshtein, A.

    1996-01-01

    We discuss duality in N=1 SUSY gauge theories in Seiberg close-quote s conformal window, 3N c /2 f c . The close-quote t Hooft consistency conditions, the basic tool for establishing the infrared duality, are considered taking into account higher order α corrections. The conserved (anomaly-free) R current is built to all orders in α. Although this current contains all orders in α the close-quote t Hooft consistency conditions for this current are shown to be one loop. This observation thus justifies Seiberg close-quote s matching procedure. We also briefly discuss the inequivalence of the open-quote open-quote electric close-quote close-quote and open-quote open-quote magnetic close-quote close-quote theories at short distances. copyright 1996 The American Physical Society

  18. Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections

    International Nuclear Information System (INIS)

    Diessner, Philip; Kotlarski, Wojciech; Warsaw Univ.; Liebschner, Sebastian; Stoeckinger, Dominik

    2017-11-01

    R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.

  19. Search for resonant sneutrino production in R-parity violating SUSY scenarios with CMS

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Henning; Erdweg, Soeren; Gueth, Andreas; Hebbeker, Thomas; Meyer, Arnd; Mukherjee, Swagata [III. Physikalisches Institut A, RWTH Aachen (Germany)

    2016-07-01

    Supersymmetric models are among the most promising extensions of the standard model. In many models R-parity is said to be conserved. However, allowing R-parity violation can permit interesting final states and signatures that are not covered by SUSY scenarios with R-parity conservation. The decay of a resonant sneutrino to two standard model leptons of different flavour is analyzed. The focus lies on the electron-muon final state investigating the R-parity violating couplings and the mass of the resonantly produced sneutrino. The analysis is based on the 2015 data of proton-proton collisions corresponding to an integrated luminosity of 2.5 fb{sup -1} at a centre-of-mass energy of 13 TeV recorded with the CMS detector at the LHC.

  20. PySLHA: a Pythonic interface to SUSY Les Houches accord data

    International Nuclear Information System (INIS)

    Buckley, Andy

    2015-01-01

    This paper describes the PySLHA package, a Python language module and program collection for reading, writing and visualising SUSY model data in the SLHA format. PySLHA can read and write SLHA data in a very general way, including the official SLHA2 extension and user customisations, and with arbitrarily deep indexing of data block entries and a dedicated, intuitive interface for particle data and decay information. The draft SLHA3 XSECTION feature is also fully supported. PySLHA can additionally read and write the legacy ISAWIG model format, and provides format conversion scripts. A publication-quality mass spectrum and decay chain plotting tool, slhaplot, is included in the package. (orig.)

  1. The spontaneous ℤ_2 breaking Twin Higgs

    International Nuclear Information System (INIS)

    Beauchesne, Hugues; Earl, Kevin; Grégoire, Thomas

    2016-01-01

    The Twin Higgs model seeks to address the little hierarchy problem by making the Higgs a pseudo-Goldstone of a global SU(4) symmetry that is spontaneously broken to SU(3). Gauge and Yukawa couplings, which explicitly break SU(4), enjoy a discrete ℤ_2 symmetry that accidentally maintains SU(4) at the quadratic level and therefore keeps the Higgs light. Contrary to most beyond the Standard Model theories, the quadratically divergent corrections to the Higgs mass are cancelled by a mirror sector, which is uncharged under the Standard Model groups. However, the Twin Higgs with an exact ℤ_2 symmetry leads to equal vevs in the Standard Model and mirror sectors, which is phenomenologically unviable. An explicit ℤ_2 breaking potential must then be introduced and tuned against the SU(4) breaking terms to produce a hierarchy of vevs between the two sectors. This leads to a moderate but non-negligible tuning. We propose a model to alleviate this tuning, without the need for an explicit ℤ_2 breaking sector. The model consists of two SU(4) fundamental Higgses, one whose vacuum preserves ℤ_2 and one whose vacuum breaks it. As the interactions between the two Higgses are turned on, the ℤ_2 breaking is transmitted from the broken to the unbroken sector and a small hierarchy of vevs is naturally produced. The presence of an effective tadpole and feedback between the two Higgses lead to a sizable improvement of the tuning. The resulting Higgs boson is naturally very Standard Model like.

  2. Supernatural supersymmetry and its classic example: M-theory inspired NMSSM

    Science.gov (United States)

    Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan

    2016-06-01

    We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.

  3. Finding viable models in SUSY parameter spaces with signal specific discovery potential

    Science.gov (United States)

    Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi

    2013-08-01

    Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.

  4. Breaking the silence

    DEFF Research Database (Denmark)

    Konradsen, Hanne; Kirkevold, Marit; McCallin, Antoinette

    2012-01-01

    and individual interviews were analyzed using the grounded theory method. The findings revealed that the main concern of the patients was feeling isolated, which was resolved using a process of interactional integration. Interactional integration begins by breaking the silence to enable the progression from...

  5. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.

    2009-01-01

    When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain a bet...

  6. Spontaneous symmetry breaking in N = 2 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Y.M.

    1987-01-01

    A model describing the interaction of N = 2 supergravity with a vector and a linear multiplet is constructed. The model admits the introduction of spontaneous supersymmetry breaking with two arbitrary scales, one of which can be equal to zero, corresponding to the partial super-Higgs effect (N = 2→N = 1). The cosmological term is automatically equal to zero

  7. Higgs mass prediction with non-universal soft supersymmetry breaking in MSSM

    International Nuclear Information System (INIS)

    Codoban, S.; Jurcisin, M.; Kazakov, D.

    2001-01-01

    In the framework of the MSSM (Minimal supersymmetric extension of the standard model) the non-universal boundary conditions of soft SUSY breaking parameters are considered. Taking as input the top, bottom and Z-boson masses, the values of the gauge couplings at the EW scale and the infrared quasi-fixed points for Yukawa couplings and the soft parameters the mass of the lightest CP-even Higgs boson is found to be m h = 92.7 -4.9 +10 ± 5 ± 0.4 GeV/c 2 for the low tan(β) case and m h 125.7 -9.0 +6.4 ± 5 ± 0.4 GeV/c 2 (μ > 0) or m h 125.4 -9.0 +6.6 ± 5 ± 0.4 Ge V/c 2 (μ < 0) in the case of large tan(β). (authors)

  8. Rencontres de Moriond EW 2012: Addressing symmetry breaking and mass hierarchy

    CERN Multimedia

    Pauline Gagnon

    2012-01-01

    Last Friday at the Moriond conference in La Thuile in Italy, Lisa Randall from Harvard University reminded the audience how all fields are related: electroweak symmetry breaking must take into account flavour physics for example. Every good model should address this intrinsic connection.   Despite many expectations, no signs for supersymmetry (SUSY) of any type has been found to date. So Lisa Randall worked with Csaba Csaki and John Terning to explore alternatives and developed a version of supersymmetry built on the Minimal Composite Supersymmetry Standard Model (MCSSM) that Csaki, Shirman, and Terning had developed, incorporating a strongly interacting theory with compositeness that addresses among other things the fact that the top quark is so much heavier than all other quarks. Randall and collaborators showed that this model, when supersymmetry is incorporated, naturally accommodates both a Higgs boson around 125 GeV and a light stop, the supersymmetric partner to the top quark. &a...

  9. Optimal charge and color breaking conditions in the MSSM

    International Nuclear Information System (INIS)

    Le Moueel, C.

    2001-01-01

    In the MSSM, we make a careful tree-level study of charge and color breaking conditions in the plane (H 2 ,u-tilde L ,u-tilde R ), focusing on the top quark scalar case. A simple and fast procedure to compute the VEVs of the dangerous vacuum is presented and used to derive a model-independent optimal CCB bound on A t . This bound takes into account all possible deviations of the CCB vacuum from the D-flat directions. For large tanβ, it provides a CCB maximal mixing for the stop scalar fields t-tilde 1 ,t-tilde 2 , which automatically rules out the Higgs maximal mixing vertical bar A t vertical bar = √6 m t-tilde . As a result, strong limits on the stop mass spectrum and a reduction, in some cases substantial, of the one-loop upper bound on the CP-even lightest Higgs boson mass, m h , are obtained. To incorporate one-loop leading corrections, this tree-level CCB condition should be evaluated at an appropriate renormalization scale which proves to be the SUSY scale

  10. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)

    2013-08-15

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  11. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Mariz, T.; Nascimento, J.R.; Petrov, A.Yu.

    2013-01-01

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  12. Routinizing Breaking News

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller

    2011-01-01

    This chapter revisits seminal theoretical categorizations of news proposed three decades earlier by US sociologist Gaye Tuchman. By exploring the definition of ”breaking news” in the contemporary online newsrooms of three Danish news organisations, the author offers us a long overdue re-theorizat......-theorization of journalistic practice in the online context and helpfully explores well-evidenced limitations to online news production, such as the relationship between original reporting and the use of ”shovelware.”......This chapter revisits seminal theoretical categorizations of news proposed three decades earlier by US sociologist Gaye Tuchman. By exploring the definition of ”breaking news” in the contemporary online newsrooms of three Danish news organisations, the author offers us a long overdue re...

  13. Breaking News as Radicalisation

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller

    The aim of the paper is to make explicit how the different categories are applied in the online newsroom and thus how new categories can be seen as positioning strategies in the form of radicalisations of already existing categories. Thus field theory provides us with tools to analyse how online...... journalists are using the categorisations to create hierarchies within the journalistic field in order to position themselves as specialists in what Tuchman has called developing news, aiming and striving for what today is know as breaking news and the “exclusive scoop,” as the trademark of online journalism...... in a media environment where immediacy rules (Domingo 2008a). Following this research the primary focus of this paper is the category breaking news and Tuchmans developing news, but as they are all connected the analysis will also draw upon the other categories in Tuchmans typology. The theoretical framework...

  14. Predicting appointment breaking.

    Science.gov (United States)

    Bean, A G; Talaga, J

    1995-01-01

    The goal of physician referral services is to schedule appointments, but if too many patients fail to show up, the value of the service will be compromised. The authors found that appointment breaking can be predicted by the number of days to the scheduled appointment, the doctor's specialty, and the patient's age and gender. They also offer specific suggestions for modifying the marketing mix to reduce the incidence of no-shows.

  15. Single sector supersymmetry breaking

    International Nuclear Information System (INIS)

    Luty, Markus A.; Terning, John

    1999-01-01

    We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses

  16. Automated calculation of sinθ{sub W} and M{sub W} from muon decay within FlexibleSUSY

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Markus; Stoeckinger, Dominik [IKTP, TU Dresden (Germany); Voigt, Alexander [DESY, Hamburg (Germany)

    2016-07-01

    The spectrum generator generator FlexibleSUSY can be utilized to investigate a variety of supersymmetric and non-supersymmetric models. We present an implementation which calculates the weak mixing angle from the precisely measured muon decay, especially taking vertex and box diagram corrections of the respective model into account. This framework also offers a prediction of the W boson mass which can be compared to the experimental value and thus used to exclude parameter regions.

  17. Search for EWK production of SUSY in final states with multiple leptons at the CMS experiment at the CERN LHC

    CERN Document Server

    Heidegger, Constantin

    2017-01-01

    This poster reports on the search for the production of charginos and neutralinos in events with either two leptons of the same charge or three or more leptons using the full 2016 proton-proton collision dataset of $35.9\\,\\mathrm{fb}^{-1}$ at $\\sqrt{s}=13\\,\\mathrm{TeV}$ collected by the CMS detector. Exclusion limits at $95\\,\\%$ confidence level range between $450-1100\\,\\mathrm{GeV}$ depending on the SUSY scenario.

  18. U(1) mediation of flux supersymmetry breaking

    Science.gov (United States)

    Grimm, Thomas W.; Klemm, Albrecht

    2008-10-01

    We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.

  19. U(1) mediation of flux supersymmetry breaking

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Klemm, Albrecht

    2008-01-01

    We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kaehler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.

  20. SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Moritz

    2015-06-15

    Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY

  1. Isospin breaking in octet baryon mass splittings

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics

    2012-06-15

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.

  2. Inertial Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2018-03-19

    We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.

  3. Break the Pattern!

    DEFF Research Database (Denmark)

    Hasse, Cathrine; Trentemøller, Stine

    Break the Pattern! A critical enquiry into three scientific workplace cultures: Hercules, Caretakers and Worker Bees is the third publication of the international three year long project "Understanding Puzzles in the Gendered European Map" (UPGEM). By contrasting empirical findings from academic ...... (physics in culture) and discuss how physics as and in culture influence the perception of science, of work and family life, of the interplay between religion and science as well as how physics as culture can either hinder or promote the career of female scientists....

  4. Breaking the Waves

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Kirketerp, Anne

    2006-01-01

    The paper shortly reveals the history of a small school - the KaosPilots - dedicated to educate young people to carriers as entrepreneurs. In this contribution we want to explore how the KaosPilots managed to break the waves of institutionalised concepts and practices of teaching entrepreneurship....... Following the so-called 'Dogma' concept developed by Danish filmmakers, this contribution aim to explore the key elements making up the recipes guiding the entrepreneurship training program exercised by the school. Key factors forming a community of learning practice are outlined as well as the critical...... pedagogical elements on which the education in entrepreneurship rests....

  5. Dynamical symmetry breaking as an alternative for Higg's mechanics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1979-01-01

    The effective action of a theory where dynamical symmetry breaking occurs is expanded in terms of loops, producing a Ginzburg-Landau-like Lagrangian reproducing fenomenologically the Higg's potencial. (L.C.) [pt

  6. Dam-Break Flood Analysis Upper Hurricane Reservoir, Hartford, Vermont

    National Research Council Canada - National Science Library

    Acone, Scott

    1995-01-01

    .... Various dam break flood conditions were modeled and inundation maps developed. Based on this analysis the dam is rated a Class 2 or significant hazard category in terms of its potential to cause downstream damage...

  7. The fine-tuning cost of the likelihood in SUSY models

    CERN Document Server

    Ghilencea, D M

    2013-01-01

    In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood ...

  8. Top-squark in natural SUSY under current LHC run-2 data

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chengcheng [University of Tokyo, Kavli IPMU (WPI), UTIAS, Kashiwa (Japan); Ren, Jie [Chinese Academy of Sciences, Computer Network Information Center, Beijing (China); Wu, Lei [Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing, Jiangsu (China); The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yang, Jin Min [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhang, Mengchao [Institute for Basic Science (IBS), Center for Theoretical Physics and Universe, Taejon (Korea, Republic of)

    2017-02-15

    We utilize the recent LHC-13 TeV data to study the lower mass bound on the top-squark (stop) in natural supersymmetry. We recast the LHC sparticle inclusive search of (≥1)jets + E{sub T} with α{sub T} variable, the direct stop pair search (1-lepton channel and all-hadronic channel) and the monojet analyses. We find that these searches are complementary depending on stop and higgsino masses: for a heavy stop the all-hadronic stop pair search provides the strongest bound, for an intermediate stop the inclusive SUSY analysis with α{sub T} variable is most efficient, while for a compressed stop-higgsino scenario the monojet search plays the key role. Finally, the lower mass bound on a stop is: (1) 320 GeV for compressed stop-higgsino scenario (mass splitting less than 20 GeV); (2) 765 (860) GeV for higgsinos lighter than 300 (100) GeV. (orig.)

  9. SUSY Higgs at the LHC large stop mixing effects and associated production

    CERN Document Server

    Bélanger, G; Sridhar, K

    2000-01-01

    We revisit the effect of the large stop mixing on the decay and production of the lightest SUSY Higgs at the LHC. We stress that whenever the inclusive 2-photon signature is substantially reduced, associated production, $Wh$ and $t\\bar t h$, with the subsequent decay of the Higgs into photons is enhanced and becomes an even more important discovery channel. We also point out that these reductions in the inclusive channel do not occur for the smallest Higgs mass where the significance is known to be lowest. We show that in such scenarios the Higgs can be produced in the decay of the heaviest stop. For not too heavy masses of the pseudo-scalar Higgs where the inclusive channel is even further reduced, we show that large stop mixing also allows the production of the pseudo-scalar Higgs through stop decays. These large mixing scenarios therefore offer much better prospects than previously thought. As a by-product we have recalculated stop1-stop1-h production at the LHC and give a first evaluation of stop1-stop1-Z...

  10. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    Science.gov (United States)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-01

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

  11. Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Desch, Klaus; Uhlenbrock, Mathias; Wienemann, Peter [Bonn Univ. (Germany). Physikalisches Inst.

    2009-07-15

    We investigate the constraints on Supersymmetry (SUSY) arising from available precision measurements using a global fit approach.When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e. g. sign({mu}) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude. (orig.)

  12. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  13. SUSY non-Abelian gauge models: exact beta function from one loop of perturbation theory

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.

    1985-01-01

    The method for calculating the exact β function (to all orders in the coupling constant) proposed earlier in supersymmetric electrodynamics is extended. The starting point is the observation that the low-energy effective action is exhausted by one loop provided that the theory is regularized supersymmetrically both in the ultraviolet and infrared domains in four dimensions. The Pouli-Villars method of the ultraviolet regularization is used. Two methods for the infrared regularization are considered. The first one - quantization in a box with a finite volume L 3 - is universally applicable to anygauge theory. The second method is based on the effective Higgs mechanism for mass generation and requires the presence of certain matter superfields in the lagrangian. Within this method the necessary condition is the existence of flat directions, so called valeys, along which the vacuum energy vanishes. The theory is quantized near epsilon non-vanishing value of the scalar field from the bottom of the valley. After calculating the one-loop effective action one and the same exact expression is obtained for the β function within the both approaches, and it also coincides with our earlier result extracted from instanton calculus. A few remarks on the problem of anomalies in SUSY gauge theories are presented

  14. Non-simplified SUSY. τ-coannihilation at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.; Kruecker, D.; List, J.; Melzer-Pellmann, I.A.; Seitz, C. [DESY, Hamburg (Germany); Cakir, A. [DESY, Hamburg (Germany); Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Samani, B.S. [DESY, Hamburg (Germany); IPM, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wayand, S. [KIT IEKP, Karlsruhe (Germany)

    2016-04-15

    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small τ-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states. (orig.)

  15. SUSY see-saw and NMSO(10)GUT inflation after BICEP2

    International Nuclear Information System (INIS)

    Garg, Ila

    2016-01-01

    Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, s lepton and right-handed s neutrino at a scale set by the right-handed neutrino mass M vc ∼ 10 6 -10 13 GeV. The tensor to scalar perturbation ratio r ∼ 10 -3 can be achieved in this scenario. However, this scenario faced difficulty in being embedded in the realistic new minimal supersymmetric SO(10) grand unified theory (NMSO(10)GUT). The recent discovery of B-mode polarization by BICEP2, changes the prospects of NMSO(10) GUT inflation. Inflection point models become strongly disfavoured, as the trilinear coupling of SUSY see-saw inflation potential gets suppressed relative to the mass parameter favoured by BICEP2. Large values of r ≈ 0.2 can be achieved with super-Planck scale inflaton values and mass scales of inflaton ≥10 13 GeV. In NMSO(10)GUT, this can be made possible with an admixture of heavy Higgs doublet fields, i.e., other than MSSM Higgs field, which are present and have masses of order GUT scale. (author)

  16. Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin

    International Nuclear Information System (INIS)

    Gorsky, A.; Gukov, S.; Mironov, A.

    1998-01-01

    We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)

  17. More dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Csaki, C.; Randall, L.; Skiba, W.

    1996-01-01

    In this paper we introduce a new class of theories which dynamically break supersymmetry based on the gauge group SU(n) x SU(3) x U(1) for even n. These theories are interesting in that no dynamical superpotential is generated in the absence of perturbations. For the example SU(4) x SU(3) x U(1) we explicitly demonstrate that all flat directions can be lifted through a renormalizable superpotential and that supersymmetry is dynamically broken. We derive the exact superpotential for this theory, which exhibits new and interesting dynamical phenomena. For example, modifications to classical constraints can be field dependent. We also consider the generalization to SU(n) x SU(3) x U(1) models (with even n>4). We present a renormalizable superpotential which lifts all flat directions. Because SU(3) is not confining in the absence of perturbations, the analysis of supersymmetry breaking is very different in these theories from the n=4 example. When the SU(n) gauge group confines, the Yukawa couplings drive the SU(3) theory into a regime with a dynamically generated superpotential. By considering a simplified version of these theories we argue that supersymmetry is probably broken. (orig.)

  18. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  19. Breaking of ocean surface waves

    International Nuclear Information System (INIS)

    Babanin, A.V.

    2009-01-01

    Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)

  20. Small break loss of coolant accidents: Bottom and side break

    International Nuclear Information System (INIS)

    Hardy, P.G.; Richter, H.J.

    1987-01-01

    A LOCA can be caused, e.g. by a small break in the primary cooling system. The rate of fluid escaping through such a break will define the time until the core will be uncovered. Therefore the prediction of fluid loss and pressure transient is of major importance to plan for timely action in response to such an event. Stratification of the two phases might be present upstream of the break, thus, the location of the break relative to the vapor-liquid interface and the overall upstream fluid conditions are relevant for the calculation of fluid loss. Experimental results and analyses are presented here for small breaks at the bottom or at the side of a small pressure vessel. It was found that in such a case the onset of the so-called ''vapor pull through'' is important but swelling at sufficient depressurization rates of the liquid due to flashing is also of significance. It was also discovered that in the bottom break the flow rate is strongly dependent on the break entrance quality of the vapour-liquid mixture. The side break can be treated similarly to the bottom break if the interface level is above the break. The analyses developed on the basis of experimental observations showed reasonable agreement of predicted and measured pressure transients. It was possible to calculate the changing interface level and mixture void fraction history in a way compatible with the behavior observed during the experiments. Even though the experiments were performed at low pressures, this work should help to get a better understanding of physical phenomena occurring in a full scale small break LOCA. (orig./HP)

  1. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  2. Pair breaking and charge relaxation in superconductors

    International Nuclear Information System (INIS)

    Nielson, J.B.; Pethick, C.J.; Rammer, J.; Smith, H.

    1982-01-01

    We present a general formalism based on the quasiclassical Green's function for calculating charge imbalance in nonequilibrium superconductors. Our discussion is sufficiently general that it applies at arbitrary temperatures, and under conditions when the width of quasiparticle states are appreciable due to pair breaking processes, and when strong coupling effects are significant. As a first application we demonstrate in detail how in the limit of smallpair breaking and for a weak coupling superconductor the collision term in the formalism reduces to the one in the quasiparticle Boltzmann equation. We next treat the case of charge imbalance generated by tunnel injection, with pair breaking by phonons and magnetic impurities. Over the range of temperatures investigated exerimentally to date, the calculated charge imbalance is rather close to that evaluated using the Boltzmann equation, even if pair braeking is so strong as almost to destroy superconductivity. Finally we consider charge imbalance generated by the combined influence of a supercurrent and a temperature gradient. We give calculations for a dirty superconductor with scattering by phonons as the pair breaking mechanism, and the results give a reasonable account of the experimental data of Clarke, Fjordboge, and Lindelof. We carry out calculations for the case of impurity scattering along which are valid not only in the clean and dirty limits, but also for intermediate situations. These enable us to see how the large contribution to the charge imbalance found for energies close to the gap edge in the clean case is reduced with increasing impurity scattering

  3. Search for SUSY with two same-sign leptons or three leptons and jets at $\\sqrt{s} = 13 \\text{ TeV}$ with the ATLAS Detector

    CERN Document Server

    Liu, Yang; The ATLAS collaboration

    2017-01-01

    Supersymmetry (SUSY) is a well motivated extension of the Standard Model (SM) that postulates the existence of a superpartner for each SM particle. A search for strongly produced SUSY particles decaying to a pair of two isolated \\textbf{same-sign leptons (SS)} or \\textbf{three leptons (3L)} has been carried out using the complete data set collected by the ATLAS experiment in 2015-16 at 13 TeV ($36.5 fb^{-1}$). The analysis benefits from a low SM background and uses looser kinematic requirements compared to other beyond the SM (BSM) searches which increases its sensitivity to scenarios with small mass differences between the SUSY particles, or in which R-parity is not conserved. The results are interpreted in the context of \\textbf{R-parity conserving (RPC)} or \\textbf{R-parity violating (RPV)} simplified signal models

  4. Analytical Solution of Dirac Equation for q-Deformed Hyperbolic Manning-Rosen Potential in D Dimensions using SUSY QM and its Thermodynamics Application

    International Nuclear Information System (INIS)

    Cari, C; Suparmi, A; Yunianto, M; Pratiwi, B N

    2016-01-01

    The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen potential were obtained by using the SUSY raising and lowering operators. In the nonrelativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into nonrelativistic energy spectra and so for the wave functions. In the classical regime, the partition function, the vibrational specific heat, and the vibrational mean energy of some diatomic molecules were calculated from the non-relativistic energy spectra with the help of error function and imaginary error function. (paper)

  5. Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard; Savoy, Michael; Sengupta, Dibyashree [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Barger, Vernon [University of Wisconsin, Department of Physics, Madison, WI (United States); Gainer, James S.; Tata, Xerxes [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Huang, Peisi [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); HEP Division, Argonne National Laboratory, Argonne, IL (United States); Texas A and M University, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States)

    2017-07-15

    Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above m{sub h} ∝ 125 GeV. Within the RNS framework, gluinos dominantly decay via g → tt{sub 1}{sup *}, anti tt{sub 1} → t anti tZ{sub 1,2} or t anti bW{sub 1}{sup -} + c.c., where the decay products of the higgsino-like W{sub 1} and Z{sub 2} are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large E{sub T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for m{sub g} < 2400 (2800) GeV for an integrated luminosity of 300 (3000) fb{sup -1}. We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of m{sub g} with a statistical precision of 2-5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC. (orig.)

  6. Direct SUSY dark matter detection-theoretical rates due to the spin

    International Nuclear Information System (INIS)

    Vergados, J D

    2004-01-01

    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: (i) the coherent mode, due to the scalar interaction and (ii) the spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and in directional experiments the correlation of the event rates with the sun's motion. In standard non-directional experiments the modulation is small, less than 2 per cent. In the case of the directional event rates we would like to suggest that the experiments exploit two features of the process, which are essentially independent of the SUSY model employed, namely: (1) the forward-backward asymmetry, with respect to the sun's direction of motion, is very large and (2) the modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the earth at the maximum is direction dependent

  7. Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Palencia, Jose Enrique; /Fermilab

    2009-01-01

    We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.

  8. R-parity breaking phenomenology

    International Nuclear Information System (INIS)

    Vissani, F.

    1996-02-01

    We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs

  9. Symmetry breaking by bifundamentals

    Science.gov (United States)

    Schellekens, A. N.

    2018-03-01

    We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.

  10. Symmetry and symmetry breaking

    International Nuclear Information System (INIS)

    Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.

    1999-01-01

    The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)

  11. Quantum break-time of de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München (Germany)

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.

  12. Quantum break-time of de Sitter

    Science.gov (United States)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  13. CP-violation in K0(K-bar0) → 3π decays from chiral Lagrangians with fourth-order derivative terms, including isospin-breaking and rescattering effects

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanyov, A.V.; Ebert, D.

    1990-08-01

    In the framework of recently proposed effective Lagrangians for weak nonleptonic meson interactions the amplitudes of the decays K 0 → 3π have been calculated with inclusion of isospin breaking and meson rescattering effects. The imaginary part of the penguin diagram contribution, which determines direct CP-violation in nonleptonic kaon decays, has been fixed with the help of the measured ratio ε'/ε of CP-violation parameters. The modification of the Li-Wolfenstein relation for the direct CP-violation parameter in K 0 (K-bar 0 ) → π + π - π 0 decays is discussed. (author). 27 refs, 3 figs, 1 tab

  14. New mechanisms of gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Randall, L.

    1997-01-01

    New mechanisms for the communication of supersymmetry breaking via gauge interactions are introduced. These models do not require complicated dynamics to induce a non-vanishing F term for a singlet. The first class of models communicates supersymmetry breaking to the visible sector through a ''mediator'' field that transforms under both a messenger gauge group of the dynamical supersymmetry breaking sector and the standard model gauge group. This model has a distinctive phenomenology; in particular, the scalar superpartners should be heavier than the gaugino superpartners by at least an order of magnitude. The second class of models has a phenomenology more similar to the ''standard'' messenger sectors. A singlet is incorporated, but the model does not require complicated mechanisms to generate a singlet F term. The role of the singlet is to couple fields from the dynamical symmetry breaking sector to fields transforming under the standard model gauge group. We also mention a potential solution to the μ problem. (orig.)

  15. 4D constructions of supersymmetric extra dimensions and gaugino mediation

    International Nuclear Information System (INIS)

    Csaki, Csaba; Erlich, Joshua; Grojean, Christophe; Kribs, Graham D.

    2002-01-01

    We present 4D gauge theories which at low energies coincide with higher dimensional supersymmetric (SUSY) gauge theories on a transverse lattice. We show that in the simplest case of pure 5D SUSY Yang-Mills theory there is an enhancement of SUSY in the continuum limit without fine tuning. This result no longer holds in the presence of matter fields, in which case fine tuning is necessary to ensure higher dimensional Lorentz invariance and supersymmetry. We use this construction to generate 4D models which mimic gaugino mediation of SUSY breaking. The way supersymmetry breaking is mediated in these models to the MSSM is by assuming that the physical gauginos are a mixture of a number of gauge eigenstate gauginos: one of these couples to the SUSY breaking sector, while another couples to the MSSM matter fields. The lattice can be as coarse as just two gauge groups while still obtaining the characteristic gaugino-mediated soft breaking terms

  16. Dual realizations of dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe

    2006-01-01

    We show the infrared equivalence between a recently proposed model containing a six dimensional scalar field with a four-dimensional localized Higgs type potential and the four-dimensional Nambu-Jona-Lasinio (NJL) model. In the dual NJL description, the fermions are localized at the origin of a large two-dimensional compact space. Due to a classical running effect above the compactification scale, the four-fermion coupling of the NJL model increases from the cutoff scale down to the compactification scale, providing the large Fermi coupling needed for the dynamical symmetry breaking. We also present a string theory embedding of our field-theory construction. On more general grounds, our results suggest that 4d models with dynamical symmetry breaking can be given a higher dimensional description in terms of field theories with nontrivial boundary conditions in the internal space

  17. Fractional Branes and Dynamical Supersymmetry Breaking

    CERN Document Server

    Franco, S; Saad, F; Uranga, Angel M; Franco, Sebastian; Hanany, Amihay; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We study the dynamics of fractional branes at toric singularities, including cones over del Pezzo surfaces and the recently constructed Y^{p,q} theories. We find that generically the field theories on such fractional branes show dynamical supersymmetry breaking, due to the appearance of non-perturbative superpotentials. In special cases, one recovers the known cases of supersymmetric infrared behaviors, associated to SYM confinement (mapped to complex deformations of the dual geometries, in the gauge/string correspondence sense) or N=2 fractional branes. In the supersymmetry breaking cases, when the dynamics of closed string moduli at the singularity is included, the theories show a runaway behavior (involving moduli such as FI terms or equivalently dibaryonic operators), rather than stable non-supersymmetric minima. We comment on the implications of this gauge theory behavior for the infrared smoothing of the dual warped throat solutions with 3-form fluxes, describing duality cascades ending in such field th...

  18. Multijet Background Estimation For SUSY Searches And Particle Flow Offline Reconstruction Using The ATLAS Detector At The LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)731691

    This thesis describes the jet smearing method, a data-driven technique for estimating the multijet background to Supersymmetry (SUSY) searches using the ATLAS detector at the Large Hadron Collider (LHC). The final 2011 and 2012 “ATLAS jets, missing transverse energy and zero leptons analysis” searches for SUSY are also documented. These analyses used the full ATLAS 2011 4.7 fb^{-1} $\\sqrt{s}$ = 7 TeV and 2012 20.3 fb$^{-1}$ $\\sqrt{s}$ = 8 TeV data sets. No statistically significant excess was found in either of these analyses; therefore, 95% C.L. mass exclusion limits were set on the mSUGRA/CMSSM m$_{0}$-m$_{1/2}$ and $m_{\\tilde{q}}$-$m_{\\tilde{g}}$ mass planes, and the simplified squark-gluino-neutralino pMSSM model. The jet smearing method was used in these analyses to estimate the multijet distributions of the Signal, Validation and Control Regions and also to calculate the multijet background Transfer Factors. This thesis also describes the missing transverse energy (E$_{miss}^{T}$ ) performance studi...

  19. Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models

    Science.gov (United States)

    Nevzorov, R.

    2018-04-01

    We explore leptogenesis within the E6 inspired U (1) extension of the MSSM in which exact custodial symmetry forbids tree-level flavour-changing transitions and the most dangerous baryon and lepton number violating operators. This supersymmetric (SUSY) model involves extra exotic matter beyond the MSSM. In the simplest phenomenologically viable scenarios the lightest exotic fermions are neutral and stable. These states should be substantially lighter than 1eV forming hot dark matter in the Universe. The low-energy effective Lagrangian of the SUSY model under consideration possesses an approximate global U(1)E symmetry associated with the exotic states. The U(1)E symmetry is explicitly broken because of the interactions between the right-handed neutrino superfields and exotic matter supermultiplets. As a consequence the decays of the lightest right-handed neutrino/sneutrino give rise to both U(1)E and U(1) B - L asymmetries. When all right-handed neutrino/sneutrino are relatively light ∼106-107GeV the appropriate amount of the baryon asymmetry can be induced via these decays if the Yukawa couplings of the lightest right-handed neutrino superfields to the exotic matter supermultiplets vary between ∼10-4-10-3.

  20. Non-universal gaugino masses and fine tuning implications for SUSY searches in the MSSM and the GNMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Kaminska, Anna [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ross, Graham G. [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Schmidt-Hoberg, Kai [European Lab. for Particle Physics (CERN), Geneva (Switzerland)

    2013-08-15

    For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.

  1. Non-universal gaugino masses and fine tuning implications for SUSY searches in the MSSM and the GNMSSM

    CERN Document Server

    Kaminska, Anna; Schmidt-Hoberg, Kai

    2013-01-01

    For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.

  2. SUSY searches in events with two opposite-sign same-flavor leptons, jets and MET with the CMS detector

    CERN Document Server

    Schulte, Jan-Frederik

    2017-01-01

    Searches for Supersymmetry (SUSY) in events with two opposite-sign same-flavour leptons offer sensitivity to the production of sleptons or Z bosons in the cascade decays of initially produced heavy SUSY particles. In the considered models, this signature is accompanied by the presence of several jets and high missing transverse energy. Analysing their respective datasets recorded at √ s = 8 TeV, the ATLAS and CMS collaborations previously reported deviations from the pre- dicted Standard Model backgrounds in this final state, with significances between 2.6 and 3.0 σ . However, these excesses had been observed in different regions of the dilepton invariant mass. The dataset recorded with the CMS detector at √ s = 13 TeV in 2015, corresponding to 2.3 fb − 1 , offers the opportunity to substantiate or refute these interesting hints for new phenomena. Unfor- tunately, no significant deviation from the background estimates are observed in either of the two selections which had shown excesses in the √ s = ...

  3. Supersymmetry breaking with extra dimensions

    International Nuclear Information System (INIS)

    Zwirner, Fabio

    2004-01-01

    This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)

  4. On the ether-like Lorentz-breaking actions

    International Nuclear Information System (INIS)

    Petrov, A.Yu; Nascimento, J.R.; Gomes, M.; Silva, A. J. da

    2011-01-01

    We demonstrate the generation of the CPT-even, ether-like Lorentz-breaking actions for the scalar and electro-magnetic fields via their appropriate Lorentz-breaking coupling to spinor fields in three, four and five space-time dimensions. Besides, we show that the ether-like terms for the spinor field also can be generated as a consequence of the same couplings. The key result which will be presented here is the finiteness of the ether-like term for the electromagnetic field not only in three and five space-time dimensions where it is natural due to known effects of the dimensional regularization but also in four space-time dimensions. Moreover, we present the calculation of the last result within different calculational schemes and conclude that the result for the four-dimensional ether-like term for the electromagnetic field essentially depending on the calculation scheme, similarly to the result for the Carroll-Field-Jackiw (CFJ) term which probably signalizes a possibility for arising of a new anomaly. Also we discuss the dispersion relations in the theories with ether-like Lorentz-breaking terms which allows to discuss the consistency of the Lorentz-breaking modified theories for different (space-like or time-like) Lorentz-breaking vectors and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field. (author)

  5. Stochastic mechanism of symmetry breaking

    International Nuclear Information System (INIS)

    Baseyan, H.Z.

    1983-01-01

    A new symmetry breaking mechanism conditioned by presence of random fields in vacuum is proposed. Massive Yang-Mills fields finally arise, that may be interpreted as ''macroscopic'' manifestation of the ''microscopic'' Yang-Mills massless theory

  6. Mart Susi müüb Concordia ülikooli hüvanguks Kolu mõisa / Sigrid Laev

    Index Scriptorium Estoniae

    Laev, Sigrid

    2003-01-01

    Concordia ülikooli rektor Mart Susi pani müüki endale kuuluva Kolu mõisa, et sellest saadava rahaga katta ülikooli vajadusi. Tallinna Pedagoogikaülikool on Concordia ostmisest huvitatud. Concordia ülikooli tudengid on teinud üleskutse ühinemiseks, et kooli tuleviku suhtes kaasa rääkida

  7. Small extra dimensions from the interplay of gauge and supersymmetry breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Catena, R.; Schmidt-Hoberg, K.

    2008-03-01

    Higher-dimensional theories provide a promising framework for unified extensions of the supersymmetric standard model. Compactifications to four dimensions often lead to U(1) symmetries beyond the standard model gauge group, whose breaking scale is classically undetermined. Without supersymmetry breaking, this is also the case for the size of the compact dimensions. Fayet-Iliopoulos terms generically fix the scale M of gauge symmetry breaking. The interplay with supersymmetry breaking can then stabilize the compact dimensions at a size 1/M, much smaller than the inverse supersymmetry breaking scale 1/μ. We illustrate this mechanism with an SO(10) model in six dimensions, compactified on an orbifold. (orig.)

  8. Dynamic breaking of a single gold bond

    DEFF Research Database (Denmark)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji

    2017-01-01

    While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain...... of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces....

  9. Gauge unification, non-local breaking, open strings

    International Nuclear Information System (INIS)

    Trapletti, M.

    2005-01-01

    The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1

  10. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  11. The Coulomb break-up of 9Be

    International Nuclear Information System (INIS)

    Macdonald, E.W.; Shotter, A.C.; Branford, D.; Rahighi, J.; Davinson, T.; Davis, N.J.

    1992-01-01

    Kinematically complete data is presented on the break-up reaction 120 Sn( 9 Be, 8 Be g.s +n) 120 Sn g.s. at E beam =90 MeV for several scattering angles inside the grazing angle. These data are compared with the predictions of a Coulomb break-up model. It is shown that the data can be understood in terms of the Coulomb model provided some account is taken of the interactions of the break-up fragments with the target. Analysis of the 9 Be break-up data, using radio-isotope measurements of the 9 Be(γ, n) cross-section, indicates that for this photo-disintegration reaction there is probably a significant direct component to the threshold cross-section, in addition to a threshold resonance at 1.69 MeV. (orig.)

  12. Spontaneous charge breaking in the NMSSM: dangerous or not?

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Manuel E.; Opferkuch, Toby [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)

    2017-05-15

    We investigate the impact of charge-breaking minima on the vacuum stability of the NMSSM. We concentrate on the case of vanishing A-terms in the sfermion sector, i.e. the only potentially dangerous sources of charge breaking are vacuum expectation values of the charged Higgs fields. We find that, in contrast to Two-Higgs-Doublet Models like the MSSM, at both tree and loop level there exist global charge-breaking minima. Consequently, many regions of parameter space are rendered metastable, which otherwise would have been considered stable if these charge-breaking minima were neglected. However, the inclusion of these new scalar field directions has little impact on otherwise metastable vacuum configurations. (orig.)

  13. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  14. Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5 GUTs

    Directory of Open Access Journals (Sweden)

    Borut Bajc

    2016-09-01

    Full Text Available We calculate the high and low scale threshold corrections to the D=6 proton decay mode in supersymmetric SU(5 grand unified theories with higher-dimensional representation Higgs multiplets. In particular, we focus on a missing-partner model in which the grand unified group is spontaneously broken by the 75-dimensional Higgs multiplet and the doublet–triplet splitting problem is solved. We find that in the missing-partner model the D=6 proton decay rate gets suppressed by about 60%, mainly due to the threshold effect at the GUT scale, while the SUSY-scale threshold corrections are found to be less prominent when sfermions are heavy.

  15. SUSY search using trilepton events from p bar p collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    1993-08-01

    In a preliminary analysis, we have looked for evidence of the production and decay of SUSY chargino-neutralino (often referred to as Wino-Zino) pairs into the trilepton events using 11.1 pb -1 of p bar p collision data at √s = 1.8 TeV collected in 1992--1993 by CDF. Using all possible electron and muon decay channels, we observe two events which pass our trilepton criteria. Assuming, for the purposes of a conservative limit, that these events are all signal events, we exclude a point in the parameter space of the Minimal Supersymmetric Standard Model (MSSM) which corresponds to the limit of sensitivity of LEP measurements. Systematic errors have not been included in the result. Larger data samples and a more careful treatment should allow a large region of MSSM parameter space to be explored using the trilepton channel

  16. Search for SUSY using the missing ET signature with the ATLAS and CMS experiments at the LHC

    International Nuclear Information System (INIS)

    Janus, M.

    2014-01-01

    In this paper, a selection of current searches for supersymmetric particles in proton-proton collisions at the Large Hadron Collider (LHC) at √(s)= 7 TeV with the ATLAS and CMS detectors is presented. All these searches apply a requirement on large missing transverse energy, which is a signature of many SUSY scenarios. Many different final states sensitive to gluino and first and second generation squark production are discussed, including purely hadronic final states as well as with leptons or photons. As no excesses beyond Standard Model predictions have been found, further searches are anticipated, especially in final states that are sensitive to the production of super-partners of the third generation fermions or of the electroweak bosons. (author)

  17. S-duality, deconstruction and confinement for a marginal deformation of N=4 SUSY Yang-Mills

    International Nuclear Information System (INIS)

    Dorey, Nick

    2004-01-01

    We study an exactly marginal deformation of N=4 SUSY Yang-Mills with gauge group U(N) using field theory and string theory methods. The classical theory has a Higgs branch for rational values of the deformation parameter. We argue that the quantum theory also has an S-dual confining branch which cannot be seen classically. The low-energy effective theory on these branches is a six-dimensional non-commutative gauge theory with sixteen supercharges. Confinement of magnetic and electric charges, on the Higgs and confining branches respectively, occurs due to the formation of BPS-saturated strings in the low energy theory. The results also suggest a new way of deconstructing Little String Theory as a large-N limit of a confining gauge theory in four dimensions. (author)

  18. String breaking with Wilson loops?

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.

  19. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    Science.gov (United States)

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  20. The scale of supersymmetry breaking as a free parameter

    International Nuclear Information System (INIS)

    Polonsky, N.

    2001-01-01

    While supersymmetric extensions of the Standard Model can be fully described in terms of explicitly broken global supersymmetry, this description is only effective. Once related to spontaneous breaking in a more fundamental theory, the effective parameters translate to functions of two distinct scales, the scale of spontaneous supersymmetry breaking and the scale of its mediation to the standard-model fields. The scale dependence will be written explicitly and the full spectrum of supersymmetry breaking operators which emerges will be explored. It will be shown that, contrary to common lore, scale-dependent operators can play an important role in determining the phenomenology. For example, theories with low-energy supersymmetry breaking, such as gauge mediation, may correspond to a scalar potential which is quite different than in theories with high-energy supersymmetry breaking, such as gravity mediation. As a concrete example, the Higgs mass prediction will be discussed in some detail and its upper bound will be shown to be sensitive to the supersymmetry breaking scale

  1. Radiative gauge symmetry breaking in supersymmetric flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Drees, M.

    1988-05-19

    The radiative breaking of the SU(5)xU(1) symmetry in the flipped SU(5) model recently proposed by Antoniadis et al. is studied using renormalization group techniques. It is shown that gaugino masses can only be the dominant source of supersymmetry breaking at the Planck scale if the U(1) gaugino mass M/sub 1/ is at least 10 times larger than the SU(5) gaugino mass M/sub 5/. If M/sub 1/ approx. = M/sub 5/ at the Planck scale, non-vanishing trilinear soft breaking terms ('A-terms') are needed already at the Planck scale. In both cases consequences for the sparticle spectrum at the weak scale are discussed.

  2. Code breaking in the pacific

    CERN Document Server

    Donovan, Peter

    2014-01-01

    Covers the historical context and the evolution of the technically complex Allied Signals Intelligence (Sigint) activity against Japan from 1920 to 1945 Describes, explains and analyzes the code breaking techniques developed during the war in the Pacific Exposes the blunders (in code construction and use) made by the Japanese Navy that led to significant US Naval victories

  3. Strong coupling electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

  4. Appointment breaking: causes and solutions.

    Science.gov (United States)

    Bean, A G; Talaga, J

    1992-12-01

    From a review of research on health care appointment breaking, the authors find that patient demographic characteristics, psychosocial problems, previous appointment keeping, health beliefs, and situational factors predict no-show behavior. Suggestions are offered for designing the marketing mix to increase patient appointment keeping. Methods for mitigating the negative effects of no-shows on health care providers are described.

  5. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  6. Oil prices: Breaks and trends

    International Nuclear Information System (INIS)

    Noguera, José

    2013-01-01

    This paper contributes to the literature of the stationarity of financial time series and the literature on oil and macroeconomics in several ways. First, it uses Kejriwal and Perron (2010) sequential procedure to endogenously determine multiple structural changes in real oil prices without facing the circular testing problem between structural changes and stationary assumptions of previous tests. Second, it performs a diagnostic check to detect the significance and magnitude of the potential breaks. Third, it uses the above information to test for the existence of stochastic trends in real oil prices, and fourth, it speculates about possible explanations for the break dates found in order to encourage further work and discussions. The exercise uses monthly data from January 1861 to August 2011. - Highlights: ► The model endogenously determine multiple structural changes in real oil prices. ► The methods used does not face the circular testing problem. ► It also detect the significance and magnitude of the breaks detected. ► It tests for the existence of stochastic trends. ► It explains the reasons for the break dates found

  7. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; McDougall, N.A.

    1984-01-01

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  8. Instantons and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1984-10-22

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.

  9. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  10. Breaking Carbon Lock-in

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur

    2014-01-01

    This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...

  11. Parental Break-Ups and Stress

    DEFF Research Database (Denmark)

    Dissing, Agnete S.; Dich, Nadya; Nybo Andersen, Anne-Marie

    2017-01-01

    Background: Parental break-up is wide spread, and the effects of parental break-up on children’s well-being are known. The evidence regarding child age at break-up and subsequent family arrangements is inconclusive. Aim: to estimate the effects of parental break-up on stress in pre-adolescent chi......Background: Parental break-up is wide spread, and the effects of parental break-up on children’s well-being are known. The evidence regarding child age at break-up and subsequent family arrangements is inconclusive. Aim: to estimate the effects of parental break-up on stress in pre......-adolescent children with a specific focus on age at break-up and post-breakup family arrangements. Methods: We used data from the Danish National Birth Cohort. Participants included 44 509 children followed from birth to age 11. Stress was self-reported by children at age 11, when the children also reported...... on parental break-up and post break-up family arrangements. Results: Twenty-one percent of the children had experienced a parental break-up at age 11, and those who had experienced parental break-up showed a higher risk of stress (OR:1.72, 95%CI:1.55;1.91) regardless of the child’s age at break-up. Children...

  12. Radiative symmetry breaking from interacting UV fixed points

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This phenomenon, and the multiplicative running of the operators that lies behind it, is akin...

  13. Coupling-constant flows and dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Yamagishi, H.

    1981-01-01

    The Coleman-Weinberg theory is reformulated in terms of flows in coupling-constant space. It is shown that the existence of dynamical symmetry breaking is governed essentially by the b functions. An application is made to the massless Weinberg-Salam model

  14. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, I.; Tsulaya, M.

    2000-01-01

    A new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model is suggested. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the corresponding Fayet-Illiopoulos ξ-term

  15. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, Ilia

    2000-10-01

    We suggest a mechanism for electroweak symmetry breaking in the Supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four dimensional superstring theory, and heavily relies on the value of the corresponding Fayet-Illiopoulos ξ-term. (author)

  16. Active and break spells of the Indian summer monsoon

    Indian Academy of Sciences (India)

    (2001) used the term 'break' to denote weak spells of the daily all-India ... (2001) used the daily all-India rainfall based on ..... erned by a common spatial mode of variability. According ..... Waliser D E, Lau K M and Stern W 2003 Potential pre-.

  17. Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop

    CERN Document Server

    Ambrosanio, S.; Brignole, A.; Castro, A.; Chertok, M.B.; Cheung, King-man; Clavelli, L.; Cutts, D.; Cvetic, Mirjam; Dooling, D.; Dreiner, Herbert K.; Dutta, Bhaskar; Ellwanger, U.; Everett, L.L.; Feruglio, F.; Giudice, G.F.; Gunion, J.F.; Hewett, J.L.; Hugonie, C.; Kang, K.; Kang, S.K.; Landsberg, Greg L.; Langacker, P.; Mangano, Michelangelo L.; McKay, D.; Mohapatra, R.N.; Mrenna, S.; Muller, D.J.; Rattazzi, R.; Rizzo, T.; Wang, J.W.; Wells, J.D.; Zwirner, F.

    2000-01-01

    There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. In other cases, the parameters of the Lagrangian are unusual compared to commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.). The phenomenology of supersymmetry varies greatly between the different models. Correspondingly, particular aspects of the detectors assume greater or lesser importance. Detection of supersymmetry and the determination of all parameters may well depend upon having the widest possible view of supersymmetry phenomenology.

  18. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  19. Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models

    CERN Document Server

    Wang, Y

    2002-01-01

    We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.

  20. Hyperscaling violation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel, E-mail: pelander@purdue.edu [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lawrance, Robert; Piai, Maurizio [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom)

    2015-08-15

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV.

  1. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  2. On spontaneous parity breaking in three-dimensional gauge-Higgs systems

    International Nuclear Information System (INIS)

    Ambjoern, J.; Farakos, K.; Shaposhnikov, M.E.

    1991-04-01

    We address the question of spontaneous breaking of parity in three-dimensional euclidian SU(2) gauge-Higgs theory by Monte Carlo simulations. We observe no sign of spontaneous parity breaking in the behaviour of local gauge invariant operators. However, the presence of parity odd terms in the action can induce a phase transition to a parity odd ground state. (orig.)

  3. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  4. Supersymmetry breaking by gaugino condensation

    International Nuclear Information System (INIS)

    Casas, J.A.

    1991-01-01

    We briefly review the status and some of the recent work on supersymmetry breaking by gaugino condensation effects in the context of superstring theories. This issue is intimately related to the structure of the effective potential coming from superstrings. Minimization of this not only allows to find the scale of supersymmetry breaking, but also to determine dynamically other fundamental parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. In a multiple condensate scenario these get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. Some directions for future work are examined too. (author). 23 refs

  5. Prophylactic treatment of retinal breaks

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Grauslund, Jakob

    2015-01-01

    Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit...... published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal......-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks...

  6. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  7. Supersymmetry breaking at finite temperature

    International Nuclear Information System (INIS)

    Kratzert, K.

    2002-11-01

    The mechanism of supersymmetry breaking at finite temperature is still only partly understood. Though it has been proven that temperature always breaks supersymmetry, the spontaneous nature of this breaking remains unclear, in particular the role of the Goldstone fermion. The aim of this work is to unify two existing approaches to the subject. From a hydrodynamic point of view, it has been argued under very general assumptions that in any supersymmetric quantum field theory at finite temperature there should exist a massless fermionic collective excitation, named phonino because of the analogy to the phonon. In the framework of a self-consistent resummed perturbation theory, it is shown for the example of the Wess-Zumino model that this mode fits very well into the quantum field theoretical framework pursued by earlier works. Interpreted as a bound state of boson and fermion, it contributes to the supersymmetric Ward-Takahashi identities in a way showing that supersymmetry is indeed broken spontaneously with the phonino playing the role of the Goldstone fermion. The second part of the work addresses the case of supersymmetric quantum electrodynamics. It is shown that also here the phonino exists and must be interpreted as the Goldstone mode. This knowledge allows a generalization to a wider class of models. (orig.)

  8. Transmission of supersymmetry breaking from a four-dimensional boundary

    International Nuclear Information System (INIS)

    Mirabelli, E.A.; Peskin, M.E.

    1998-01-01

    In the strong-coupling limit of the heterotic string theory constructed by Horava and Witten, an 11-dimensional supergravity theory is coupled to matter multiplets confined to 10-dimensional mirror planes. This structure suggests that realistic unification models are obtained, after compactification of 6 dimensions, as theories of 5-dimensional supergravity in an interval, coupling to matter fields on 4-dimensional walls. Supersymmetry breaking may be communicated from one boundary to another by the 5-dimensional fields. In this paper, we study a toy model of this communication in which 5-dimensional super-Yang-Mills theory in the bulk couples to chiral multiplets on the walls. Using the auxiliary fields of the Yang-Mills multiplet, we find a simple algorithm for coupling the bulk and boundary fields. We demonstrate two different mechanisms for generating soft supersymmetry breaking terms in the boundary theory. We also compute the Casimir energy generated by supersymmetry breaking. copyright 1998 The American Physical Society

  9. Parameterization of planetary wave breaking in the middle atmosphere

    Science.gov (United States)

    Garcia, Rolando R.

    1991-01-01

    A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.

  10. Supersymmetry breaking and composite extra dimensions

    International Nuclear Information System (INIS)

    Luty, Markus A.; Sundrum, Raman

    2002-01-01

    We study supergravity models in four dimensions where the hidden sector is superconformal and strongly coupled over several decades of energy below the Planck scale, before undergoing spontaneous breakdown of scale invariance and supersymmetry. We show that large anomalous dimensions can suppress Kaehler contact terms between the hidden and visible sectors, leading to models in which the hidden sector is 'sequestered' and anomaly-mediated supersymmetry breaking can naturally dominate, thus solving the supersymmetric flavor problem. We construct simple, explicit models of the hidden sector based on supersymmetric QCD in the conformal window. The present approach can be usefully interpreted as having an extra dimension responsible for sequestering replaced by the many states of a (spontaneously broken) strongly coupled superconformal hidden sector, as dictated by the anti-de Sitter conformal field theory correspondence

  11. Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses

    CERN Document Server

    Huitu, Katri; Laamanen, Jari; Lehti, Sami; Roy, Sourov; Salminen, Tapio

    2008-01-01

    In grand unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale, and affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for the Higgs boson production in the SUSY cascade decay chain gluino --> squark quark, squark --> neutralino_2 quark, neutralino_2 --> neutralino_1 h/H/A, h/H/A --> b b-bar produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any poi...

  12. Pushing SUSY's boundaries Searches and prospects for strongly-produced supersymmetry at the LHC with the ATLAS detector

    CERN Document Server

    Besjes, Geert Jan; Caron, Sascha

    In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The results obtained in this search are also used in fits to a larger supersymmetric model, and combined with different analyses to obtain improved limits on simplified models. In addition, prospects for a similar search at the proposed high-luminosity LHC are discussed. Finally, HistFitter is presented, a program developed to perform searches in high-energy physics. Supersymmetry is searched for in a decay channel with 2 to 6 jets, missing energy, and no leptons in the final state. The coupling of squarks and gluinos to the strong force leads to a final state with many jets, in which the lightest supersymmetric particle produced in the cascade decay escapes the detector unseen. The analysis is designed using 15 signa...

  13. SUSY shape-invariant Hamiltonians for the generalized dirac-coulomb problem

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Vaidya, Arvind Narayan

    2007-02-01

    A spin 1/2 relativistic particle described by a general potential in terms of the sum of the Coulomb potential with a Lorentz scalar potential is investigated via supersymmetry in quantum mechanics. (author)

  14. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Kim, Ian-Woo

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  15. EXCHANGE RATE PASS-THROUGH, IMPORT PRICES AND INFLATION UNDER STRUCTURAL BREAKS

    Directory of Open Access Journals (Sweden)

    Arintoko Arintoko

    2011-09-01

    Full Text Available This research estimates the exchange rate pass-through (ERPT into import prices by applying an extension of the basic model of ERPT on Indonesia. It estimates models of cointegration and error-correction mechanism (ECM, with and without structural breaks. It uses the techniques of Zivot-Andrews and of Gregory-Hansen to test for structural breaks and cointegration with the structural breaks, respectively. The results show that with the control variables, inflation affects import prices and lower the pass-through for short term, in a condition of free floating exchange rate. In the short term, with the inclusion of structural breaks, significant inflation affects import prices and lowers the ERPT coefficient.  Keywords:    Exchange rate pass-through, inflation, structural breaks, cointegration, error-correction mechanismJEL classification numbers: C22, C32, E31, F41

  16. SARAH goes left and right looking beyond the Standard Model and meets SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Opferkuch, Toby Oliver

    2017-07-07

    Progress in the search for physics beyond the Standard Model (BSM) proceeds through two main avenues. The first requires the development of models that address the host of theoretical and experimental deficiencies of the Standard Model (SM). The second avenue requires scrutinising these models against all available data as well as checks for theoretical consistency. Unfortunately there exists a large number of strongly motivated models as well as an absence of any signs illuminating the correct path nature has chosen. With the lack of a clear direction, automated tools provide an effective means to test as many models as possible. In this thesis we demonstrate how the SARAH framework can be used in this context as well as its adaptability for confronting unexpected hints of new physics, such as the diphoton excess, that have arisen at the Large Hadron Collider (LHC) over the previous years. We then turn to more theoretical constraints namely, studying the stability of the electroweak vacuum in minimal supersymmetric models. Here we studied the impact of previously neglected directions when including non-standard vacuum expectation values. In the second half of this thesis we consider low-scale left-right symmetric models both with and without supersymmetry. In the non-supersymmetric case we consider constraints arising from charged lepton flavour violation. We have significantly improved existing parametrisations allowing for the new Yukawa couplings to be determined as a function of the underlying model parameters. The last scenario we consider is a model based on SO(10) unification at the high-scale. We build a complete model with TeV-scale breaking of the left-right phase studying in detail the phenomenology.

  17. Leaders break ground for INFINITY

    Science.gov (United States)

    2008-01-01

    Community leaders from Mississippi and Louisiana break ground for the new INFINITY at NASA Stennis Space Center facility during a Nov. 20 ceremony. Groundbreaking participants included (l to r): Gottfried Construction representative John Smith, Mississippi Highway Commissioner Wayne Brown, INFINITY board member and Apollo 13 astronaut Fred Haise, Stennis Director Gene Goldman, Studio South representative David Hardy, Leo Seal Jr. family representative Virginia Wagner, Hancock Bank President George Schloegel, Mississippi Rep. J.P. Compretta, Mississippi Band of Choctaw Indians representative Charlie Benn and Louisiana Sen. A.G. Crowe.

  18. Give Young Scientists a Break

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-11-01

    There has been much concern about the impact of tight funding on the careers of young scientists. When only a small percentage of grants are approved, even the smallest problem or error with an application can push it out of the funding range. Unfortunately, the relative lack of grant writing skills by new investigators often has this effect. To avoid a situation where only experienced investigators with polished writing skills are funded, the National Institutes of Health has instituted a more generous ranking scale for new investigators. Not surprisingly, some senior investigators have protested, calling it reverse discrimination. I say that their anger is misplaced. New investigators do deserve a break.

  19. History of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)

  20. Sediment transport under breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan

    2000-01-01

    The sediment transport in the surf zone is modelled by combining a Navier-Stokes solver, a free surface model, a turbulence model, and a sediment transport model. The flow solver is based on the finite volume technique for non-orthogonal grids. The model is capable of simulating the turbulence...... generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...

  1. Structural Break Tests Robust to Regression Misspecification

    Directory of Open Access Journals (Sweden)

    Alaa Abi Morshed

    2018-05-01

    Full Text Available Structural break tests for regression models are sensitive to model misspecification. We show—analytically and through simulations—that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the conditional mean dynamics are misspecified. We also show that the sup Wald test for breaks in the unconditional mean and variance does not have the same size distortions, yet benefits from similar power to its conditional counterpart in correctly specified models. Hence, we propose using it as an alternative and complementary test for breaks. We apply the unconditional and conditional mean and variance tests to three US series: unemployment, industrial production growth and interest rates. Both the unconditional and the conditional mean tests detect a break in the mean of interest rates. However, for the other two series, the unconditional mean test does not detect a break, while the conditional mean tests based on dynamic regression models occasionally detect a break, with the implied break-point estimator varying across different dynamic specifications. For all series, the unconditional variance does not detect a break while most tests for the conditional variance do detect a break which also varies across specifications.

  2. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  3. Time-reversal symmetry breaking in quantum billiards

    International Nuclear Information System (INIS)

    Schaefer, Florian

    2009-01-01

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  4. INTERVALS OF ACTIVE PLAY AND BREAK IN BASKETBALL GAMES

    Directory of Open Access Journals (Sweden)

    Pavle Rubin

    2010-09-01

    Full Text Available The problem of the research comes from the need for decomposition of a basketball game. The aim was to determine the intervals of active game (“live ball” - term defined by rules and break (“dead ball” - term defined by rules, by analyzing basketball games. In order to obtain the relevant information, basketball games from five different competitions (top level of quality were analyzed. The sample consists of seven games played in the 2006/2007 season: NCAA Play - Off Final game, Adriatic League finals, ULEB Cup final game, Euroleague (2 games and the NBA league (2 games. The most important information gained by this research is that the average interval of active play lasts approximately 47 seconds, while the average break interval lasts approximately 57 seconds. This information is significant for coaches and should be used in planning the training process.

  5. Symmetry breaking in gauge glasses

    International Nuclear Information System (INIS)

    Hansen, K.

    1988-09-01

    In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)

  6. Rotational Symmetry Breaking in Baby Skyrme Models

    Science.gov (United States)

    Karliner, Marek; Hen, Itay

    We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  7. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the

  8. On the static Casimir effect with parity-breaking mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, C.D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina); Remaggi, M.L. [Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza (Argentina)

    2017-03-15

    We study the Casimir interaction energy due to the vacuum fluctuations of the electromagnetic (EM) field in the presence of two mirrors, described by 2+1-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions and evaluate the interaction energy for several particular situations. (orig.)

  9. Fermion masses in potential models of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1983-01-01

    A class of models of spontaneous chiral symmetry breaking is considered, based on the Hamiltonian with an instantaneous potential interaction of fermions. An explicit mass term mΨ-barΨ is included and the physical meaning of the mass parameter is discussed. It is shown that if the Hamiltonian is normal-ordered (i.e. self-energy omitted), then the mass m introduced in the Hamiltonian is not the current mass appearing in the current algebra relations. (author)

  10. Breaking diffeomorphism invariance and tests for the emergence of gravity

    International Nuclear Information System (INIS)

    Anber, Mohamed M.; Aydemir, Ufuk; Donoghue, John F.

    2010-01-01

    If general relativity is an emergent phenomenon, there may be small violations of diffeomorphism invariance. We propose a phenomenology of perturbatively small violations of general relativity by the inclusion of terms which break general covariance. These can be tested by matching to the parameterized post-Newtonian formalism. The most sensitive tests involve pulsar timing and provide an extremely strong bound, with a dimensionless constraint of order 10 -20 relative to gravitational strength.

  11. Rock breaking methods to replace blasting

    Science.gov (United States)

    Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing

    2018-03-01

    The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.

  12. NPP Krsko small break LOCA analysis

    International Nuclear Information System (INIS)

    Mavko, B.; Petelin, S.; Peterlin, G.

    1987-01-01

    Parametric analysis of small break loss of coolant accident for the Krsko NPP was calculated by using RELAP5/MOD1 computer code. The model that was used in our calculations has been improved over several years and was previously tested in simulation (s) of start-up tests and known NPP Krsko transients. In our calculations we modelled automatic actions initiated by control, safety and protection systems. We also modelled the required operator actions as specified in emergency operating instructions. In small-break LOCA calculations, we varied break sizes in the cold leg. The influence of steam generator tube plugging on small break LOCA accidents was also analysed. (author)

  13. Moduli stabilization and supersymmetry breaking in deflected mirage mediation

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kaehler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.

  14. Quark confinement through hidden breaking of colour symmetry

    International Nuclear Information System (INIS)

    Werle, J.

    1993-01-01

    The aim of this paper is to study of a non-linear mechanism of quark confinement. The sets of coupled equation for Dirac fields carrying colours and flavours are discussed. They contain non-linear self-interaction and mutual interaction terms of the same fractional form that was studied before for single Dirac fields (Phys.Lett. 71B, 357 (1977); Phys.Lett. 76B, 391 (1980); Acta Phys.Pol. B12, 601 (1981)). It turns out that the only way of preventing creation of isolated coloured objects consists in breaking global colour symmetry. An explicit form of the symmetry breaking term is proposed (different from that used in Acta Phys.Pol. B19, 203 (1988)), which implies that only white currents are conserved and the three colours are truly inseparable. Moreover, the new equations have the advantage of having strictly colour symmetric (white) solution that correspond to an absolute minimum of the symmetry breaking term of energy. (author). 4 refs

  15. ‘BREAKS’ Protocol for Breaking Bad News

    Science.gov (United States)

    Narayanan, Vijayakumar; Bista, Bibek; Koshy, Cheriyan

    2010-01-01

    Information that drastically alters the life world of the patient is termed as bad news. Conveying bad news is a skilled communication, and not at all easy. The amount of truth to be disclosed is subjective. A properly structured and well-orchestrated communication has a positive therapeutic effect. This is a process of negotiation between patient and physician, but physicians often find it difficult due to many reasons. They feel incompetent and are afraid of unleashing a negative reaction from the patient or their relatives. The physician is reminded of his or her own vulnerability to terminal illness, and find themselves powerless over emotional distress. Lack of sufficient training in breaking bad news is a handicap to most physicians and health care workers. Adherence to the principles of client-centered counseling is helpful in attaining this skill. Fundamental insight of the patient is exploited and the bad news is delivered in a structured manner, because the patient is the one who knows what is hurting him most and he is the one who knows how to move forward. Six-step SPIKES protocol is widely used for breaking bad news. In this paper, we put forward another six-step protocol, the BREAKS protocol as a systematic and easy communication strategy for breaking bad news. Development of competence in dealing with difficult situations has positive therapeutic outcome and is a professionally satisfying one. PMID:21811349

  16. ′BREAKS′ protocol for breaking bad news

    Directory of Open Access Journals (Sweden)

    Vijayakumar Narayanan

    2010-01-01

    Full Text Available Information that drastically alters the life world of the patient is termed as bad news. Conveying bad news is a skilled communication, and not at all easy. The amount of truth to be disclosed is subjective. A properly structured and well-orchestrated communication has a positive therapeutic effect. This is a process of negotiation between patient and physician, but physicians often find it difficult due to many reasons. They feel incompetent and are afraid of unleashing a negative reaction from the patient or their relatives. The physician is reminded of his or her own vulnerability to terminal illness, and find themselves powerless over emotional distress. Lack of sufficient training in breaking bad news is a handicap to most physicians and health care workers. Adherence to the principles of client-centered counseling is helpful in attaining this skill. Fundamental insight of the patient is exploited and the bad news is delivered in a structured manner, because the patient is the one who knows what is hurting him most and he is the one who knows how to move forward. Six-step SPIKES protocol is widely used for breaking bad news. In this paper, we put forward another six-step protocol, the BREAKS protocol as a systematic and easy communication strategy for breaking bad news. Development of competence in dealing with difficult situations has positive therapeutic outcome and is a professionally satisfying one.

  17. On the Soft Supersymmetry Breaking Parameters in Gauge-Mediated Models

    CERN Document Server

    Wagner, C E M

    1998-01-01

    Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavour changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate $\\tan\\beta$ regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymm...

  18. Forthcoming Break-Even Conditions of Tokamak Plasma Performance for Fusion Energy Development

    Science.gov (United States)

    Hiwatari, Ryoji; Okano, Kunihiko; Asaoka, Yoshiyuki; Tokimatsu, Koji; Konishi, Satoshi; Ogawa, Yuichi

    The present study reveals forthcoming break-even conditions of tokamak plasma performance for the fusion energy development. The first condition is the electric break-even condition, which means that the gross electric power generation is equal to the circulating power in a power plant. This is required for fusion energy to be recognized as a suitable candidate for an alternative energy source. As for the plasma performance (normalized beta value ΒN), confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density fnGW), the electric break-even condition requires the simultaneous achievement of 1.2 market. By using a long-term world energy scenario, a break-even price for introduction of fusion energy in the year 2050 is estimated to lie between 65 mill/kWh and 135 mill/kWh under the constraint of 550 ppm CO2 concentration in the atmosphere. In the present study, this break-even price is applied to the economic break-even condition. However, because this break-even price is based on the present energy scenario including uncertainties, the economic break-even condition discussed here should not be considered the sufficient condition, but a necessary condition. Under the conditions of Btmax = 16 T, ηe = 40 %, plant availability 60 %, and a radial build with/without CS coil, the economic break-even condition requires ΒN ˜ 5.0 for 65 mill/kWh of lower break-even price case. Finally, the present study reveals that the demonstration of steady-state operation with ΒN ˜ 3.0 in the ITER project leads to the upper region of the break-even price in the present world energy scenario, which implies that it is necessary to improve the plasma performance beyond that of the ITER advanced plasma operation.

  19. Controlling break-the-glass through alignment

    NARCIS (Netherlands)

    Adriansyah, A.; Dongen, van B.F.; Zannone, N.

    2013-01-01

    Modern IT systems have to deal with unpredictable situations and exceptions more and more often. In contrast, security mechanisms are usually very rigid. Functionality like break-the-glass is thus employed to allow users to bypass security mechanisms in case of emergencies. However, break-the-glass

  20. Charge-symmetry-breaking nucleon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics (Germany)

    2011-11-15

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for {sup 4}He.

  1. Charge-symmetry-breaking nucleon form factors

    International Nuclear Information System (INIS)

    Kubis, Bastian

    2011-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon’s strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for 4 He.

  2. Breaking antidunes: Cyclic behavior due to hysteresis

    DEFF Research Database (Denmark)

    Deigaard, Rolf

    2006-01-01

    The cyclic behavior of breaking antidunes (growth, breaking of surface wave, obliteration) is investigated by use of a numerical model. The model includes the transition between supercritical and transcritical flow. As the antidune grows the flow becomes transcritical and a hydraulic jump is form...

  3. The new break-even analysis.

    Science.gov (United States)

    Laskaris, James; Regan, Katie

    2013-12-01

    Changes in the economic and legislative environment have complicated the capital acquisition landscape. Hospitals and health systems should: Question the assumptions that underlie their break-even analysis. Revamp the break-even calculator. Engage in discussions about the clinical aspects of equipment and technology acquisition decisions.

  4. Strongly coupled semidirect mediation of supersymmetry breaking

    International Nuclear Information System (INIS)

    Ibe, M.; Izawa, K.-I.; Nakai, Y.

    2009-01-01

    Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.

  5. Multiscale Simulation of Breaking Wave Impacts

    DEFF Research Database (Denmark)

    Lindberg, Ole

    compare reasonably well. The incompressible and inviscid ALE-WLS model is coupled with the potential flow model of Engsig-Karup et al. [2009], to perform multiscale calculation of breaking wave impacts on a vertical breakwater. The potential flow model provides accurate calculation of the wave...... with a potential flow model to provide multiscale calculation of forces from breaking wave impacts on structures....

  6. Research progress on dam-break floods

    KAUST Repository

    Wu, Jiansong; Bao, Kai; Zhang, Hui

    2011-01-01

    Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.

  7. Dynamical study of symmetries: breaking and restauration

    International Nuclear Information System (INIS)

    Schuck, P.

    1986-09-01

    First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr

  8. Research progress on dam-break floods

    KAUST Repository

    Wu, Jiansong

    2011-08-01

    Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors\\' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.

  9. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  10. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  11. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider

  12. ATLAS Cold Leg Top Slot Break Analysis using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Haejung; Lee, Sang Ik; Park, Ju-Hyun; Choi, Tong-Soo [KEPCO NF, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. Nuclear Regulatory Commission (US-NRC) has been reviewing the design certification application for APR1400 submitted by Korea Electric Power Corporation (KEPCO). The main concern about cold leg top slot break is that cladding temperature might be increased by core uncover due to four loop seal reformation following flooding of safety injection water. An integral effect test for cold leg top slot break was performed by KAERI (Korea Atomic Energy Research Institute) using ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation), which is a scaled down experimental facility for APR1400. In this study, RELAP5/MOD3.3/Patch04 is assessed by experimental result of ATLAS cold leg top slot break. Also, thermal hydraulic phenomena by four loop seals reformation is observed by RELAP5 result. The RELAP5/MOD3.3/Patch04 is assessed by the experimental result of ATLAS cold leg top slot break. The top slot break is described by offtake model, and the mass flow rate is fairly well estimated. The RELAP5 well predicts the correlation between general trend and four loop seal reformation. The pressure of the core region and the cladding temperature tends to increase during four loop seal reformation due to steam path blockage on four loop seals. It is presumed that the code cannot estimate two phase phenomena by loop seal clearing as same as experiments. In terms of cladding temperature, loop seal reformation due to loop seal elevation of APR1400 does not need to be the issue, since the void fraction at the active top core is maintained over 0.4.

  13. Radiative Symmetry Breaking in Brane Models

    CERN Document Server

    Antoniadis, Ignatios; Quirós, Mariano

    2000-01-01

    We propose a way to generate the electroweak symmetry breaking radiatively in non-supersymmetric type I models with string scale in the TeV region. By identifying the Higgs field with a tree-level massless open string state, we find that a negative squared mass term can be generated at one loop. It is finite, computable and typically a loop factor smaller than the string scale, that acts as an ultraviolet cutoff in the effective field theory. When the Higgs open string has both ends confined on our world brane, its mass is predicted to be around 120 GeV, i.e. that of the lightest Higgs in the minimal supersymmetric model for large $\\tan\\beta$ and $m_A$. Moreover, the string scale turns out to be one to two orders of magnitude higher than the weak scale. We also discuss possible effects of higher order string threshold corrections that might increase the string scale and the Higgs mass.

  14. No-go for tree-level R-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feihu [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Muyang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Sun, Zheng [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-11-15

    We show that in gauge mediation models with tree-level R-symmetry breaking where supersymmetry and R-symmetries are broken by different fields, the gaugino mass either vanishes at one loop or finds a contribution from loop-level R-symmetry breaking. Thus tree-level R-symmetry breaking for phenomenology is either no-go or redundant in the simplest type of models. Including explicit messenger mass terms in the superpotential with a particular R-charge arrangement is helpful to bypass the no-go theorem, and the resulting gaugino mass is suppressed by the messenger mass scale. (orig.)

  15. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part V μ , also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  16. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  17. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Murayama, H.

    1997-01-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m 2 q , m 2 l due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m 2 q and m 2 l can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. copyright 1997 The American Physical Society

  18. Smoothed Particle Hydrodynamics Simulations of Dam-Break Flows Around Movable Structures

    OpenAIRE

    Jian, Wei; Liang, Dongfang; Shao, Songdong; Chen, Ridong; Yang, Kejun

    2015-01-01

    In this paper, 3D weakly compressible and incompressible Smoothed Particle Hydrodynamics (WCSPH & ISPH) models are used to study dam-break flows impacting on either a fixed or a movable structure. First, the two models’ performances are compared in terms of CPU time efficiency and numerical accuracy, as well as the water surface shapes and pressure fields. Then, they are applied to investigate dam-break flow interactions with structures placed in the path of the flood. The study found that th...

  19. Science Illiteracy: Breaking the Cycle

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    2003-12-01

    At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.

  20. Searching for the standard model in the string landscape: SUSY GUTs

    Science.gov (United States)

    Raby, Stuart

    2011-03-01

    The standard model is the theory describing all observational data from the highest energies to the largest distances. (There is, however, one caveat: additional forms of energy, not part of the standard model, known as dark matter and dark energy must be included in order to describe the Universe at galactic scales and larger.) High energies refers to physics at the highest energy particle accelerators, including CERN's LEP II (which ceased operation in 2000 to begin construction of the Large Hadron Collider now in operation) and Fermilab's Tevatron, as well as to the energies obtained in particle jets created in so-called active galactic nuclei scattered throughout the visible Universe. Some of these extra-galactic particles bombard our own Earth in the form of cosmic rays, or super-energetic protons which scatter off nucei in the upper atmosphere. String theory is, on the other hand, an unfinished theoretical construct which attempts to describe all matter and their interactions in terms of the harmonic oscillations of open and/or closed strings. It is regarded as unfinished since at present it is a collection of ideas, tied together by powerful consistency conditions, called dualities, with the ultimate goal of finding the completed string theory. At the moment we only have descriptions which are valid in different mutually exclusive limits with names such as type I, IIA, IIB, heterotic, M and F theory. The string landscape has been described in the pages of many scholarly and popular works. It is perhaps best understood as the collection of possible solutions to the string equations; albeit these solutions look totally different in the different limiting descriptions. What do we know about the string landscape? We know that there are such a large number of possible solutions that the only way to represent this number is as 10500 or a 1 followed by 500 zeros. Note that this is not a precise value since the uncertainty is given by a number just as large

  1. Searching for the standard model in the string landscape: SUSY GUTs

    International Nuclear Information System (INIS)

    Raby, Stuart

    2011-01-01

    The standard model is the theory describing all observational data from the highest energies to the largest distances. (There is, however, one caveat: additional forms of energy, not part of the standard model, known as dark matter and dark energy must be included in order to describe the Universe at galactic scales and larger.) High energies refers to physics at the highest energy particle accelerators, including CERN's LEP II (which ceased operation in 2000 to begin construction of the Large Hadron Collider now in operation) and Fermilab's Tevatron, as well as to the energies obtained in particle jets created in so-called active galactic nuclei scattered throughout the visible Universe. Some of these extra-galactic particles bombard our own Earth in the form of cosmic rays, or super-energetic protons which scatter off nucei in the upper atmosphere. String theory is, on the other hand, an unfinished theoretical construct which attempts to describe all matter and their interactions in terms of the harmonic oscillations of open and/or closed strings. It is regarded as unfinished since at present it is a collection of ideas, tied together by powerful consistency conditions, called dualities, with the ultimate goal of finding the completed string theory. At the moment we only have descriptions which are valid in different mutually exclusive limits with names such as type I, IIA, IIB, heterotic, M and F theory. The string landscape has been described in the pages of many scholarly and popular works. It is perhaps best understood as the collection of possible solutions to the string equations; albeit these solutions look totally different in the different limiting descriptions. What do we know about the string landscape? We know that there are such a large number of possible solutions that the only way to represent this number is as 10 500 or a 1 followed by 500 zeros. Note that this is not a precise value since the uncertainty is given by a number just as large

  2. SUSY searches at $\\sqrt{s}=13$ TeV with two same-sign leptons or three leptons, jets and $E_T^{miss}$ at the ATLAS detector - Background estimation and latest analysis results.

    CERN Document Server

    Tornambe, Peter; The ATLAS collaboration

    2017-01-01

    Supersymmetry (SUSY) is one of the most studied theories to extend the Standard Model (SM) beyond the electroweak scale. If R-parity is conserved, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP), which is typically the lightest neutrino $\\tilde{\\chi}_1^0$, is stable. In many models the LSP can be a suitable candidate for dark matter. This poster presents a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. Except from the prompt production of same-sign lepton pairs or three leptons, the main source...

  3. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  4. Isospin-symmetry breaking in masses of N≃Z nuclei

    Directory of Open Access Journals (Sweden)

    P. Bączyk

    2018-03-01

    Full Text Available Effects of the isospin-symmetry breaking (ISB beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.

  5. Isospin-symmetry breaking in masses of N ≃ Z nuclei

    Science.gov (United States)

    Bączyk, P.; Dobaczewski, J.; Konieczka, M.; Satuła, W.; Nakatsukasa, T.; Sato, K.

    2018-03-01

    Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N = Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T = 1/2 doublets and T = 1 triplets, and TDEs for the T = 1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.

  6. Dynamical Symmetry Breaking of Extended Gauge Symmetries

    OpenAIRE

    Appelquist, Thomas; Shrock, Robert

    2003-01-01

    We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...

  7. Spontaneous symmetry breaking and its cosmological consequences

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.

    1975-01-01

    The concept of symmetry and of the spontaneous symmetry breaking are presented in popular form as applied to quantum physics. Though the presence of the spontaneous symmetry breaking is not proved directly for interactions of elementary particles, on considering the hypothesis of its presence as applied to the hot Universe theory a possibility of obtaining rather uncommon cosmological consequences is discussed. In particular, spontaneous symmetry breaking of vacuum and the rather hot Universe lead necessarily to the presence of the domain structure of the Universe with the surfase energy at the domain interface in the form of a real physical object

  8. Supersymmetry Breaking through Transparent Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Schmaltz, Martin

    1999-11-23

    We propose a new framework for mediating supersymmetry breaking through an extra dimension. It predicts positive scalar masses and solves the supersymmetric flavor problem. Supersymmetry breaks on a ''source'' brane that is spatially separated from a parallel brane on which the standard model matter fields and their superpartners live. The gauge and gaugino fields propagate in the bulk, the latter receiving a supersymmetry breaking mass from direct couplings to the source brane. Scalar masses are suppressed at the high scale but are generated via the renormalization group. We briefly discuss the spectrum and collider signals for a range of compactification scales.

  9. Schizophrenia: breaking down the barriers.

    Science.gov (United States)

    Haghighat, R

    1997-01-01

    This paper reviews the key issues presented during the Fourth International Conference on Schizophrenia, which was held in October 1996 in Vancouver, Canada. The main emphasis was placed on the problem of stigma, loneliness and work as well as on the necessity to further elucidate the physiopathology of schizophrenia. Some of the barriers discussed are unlikely to disappear from human societies in the short term with any possible cure for schizophrenia as they are part of any major long-term illness, of which there is a long and ever increasing list.

  10. Tidal Mixing at the Shelf Break

    National Research Council Canada - National Science Library

    Hogg, Nelson; Legg, Sonya

    2005-01-01

    The aim of this project was to study mixing forced by tidal flow over sudden changes in topographic slope such as near the shelf-break, using high-resolution nonhydrostatic numerical simulations employing the MIT gem...

  11. Higgsless grand unified theory breaking and trinification

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Conroy, Justin M.

    2004-01-01

    Boundary conditions on an extra dimensional interval can be chosen to break bulk gauge symmetries and to reduce the rank of the gauge group. We consider this mechanism in models with gauge trinification. We determine the boundary conditions necessary to break the trinified gauge group directly down to that of the standard model. Working in an effective theory for the gauge-symmetry-breaking parameters on a boundary, we examine the limit in which the grand-unified theory-breaking-sector is Higgsless and show how one may obtain the low-energy particle content of the minimal supersymmetric standard model. We find that gauge unification is preserved in this scenario, and that the differential gauge coupling running is logarithmic above the scale of compactification. We compare the phenomenology of our model to that of four dimensional 'trinified' theories

  12. Water Breaking: Understand This Sign of Labor

    Science.gov (United States)

    Healthy Lifestyle Labor and delivery, postpartum care Water breaking worries? Prepare yourself for childbirth by getting the facts about this important sign of labor. By Mayo Clinic Staff If you're ...

  13. On breaks of the Indian monsoon

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    quadrapole is a basic feature of weak spells of the intraseasonal variation over the Asia-west Pacific region. ... (Earth Planet. Sci.), 112 .... be useful to define the break monsoon (and active ... monsoon zone, different scientists have used the.

  14. The problem of symmetry breaking hierarchy

    International Nuclear Information System (INIS)

    Natale, A.A.

    1983-01-01

    The problem of symmetry breaking hierarchy in grand unified theories is discussed, proving the impossibility to get a big hierarchy of interactions, in a natural way within the framework of perturbation theory. (L.C.) [pt

  15. Why and How Java Developers Break APIs

    OpenAIRE

    Brito, Aline; Xavier, Laerte; Hora, Andre; Valente, Marco Tulio

    2018-01-01

    Modern software development depends on APIs to reuse code and increase productivity. As most software systems, these libraries and frameworks also evolve, which may break existing clients. However, the main reasons to introduce breaking changes in APIs are unclear. Therefore, in this paper, we report the results of an almost 4-month long field study with the developers of 400 popular Java libraries and frameworks. We configured an infrastructure to observe all changes in these libraries and t...

  16. Group theory of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Ghaboussi, F.

    1987-01-01

    The connection between the minimality of the Higgs field potential and the maximal little groups of its representation obtained by spontaneous symmetry breaking is analyzed. It is shown that for several representations the lowest minimum of the potential is related to the maximal little group of those representations. Furthermore, a practical necessity criterion is given for the representation of the Higgs field needed for spontaneous symmetry breaking

  17. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Science.gov (United States)

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  18. The structure of GUT breaking by orbifolding

    International Nuclear Information System (INIS)

    Hebecker, Arthur; March-Russell, John

    2002-01-01

    Recently, an attractive model of GUT breaking has been proposed in which a 5-dimensional supersymmetric SU(5) gauge theory on an S 1 /(Z 2 xZ 2 ') orbifold is broken down to the 4d MSSM by SU(5)-violating boundary conditions. Motivated by this construction and several related realistic models, we investigate the general structure of orbifolds in the effective field theory context, and of this orbifold symmetry breaking mechanism in particular. An analysis of the group theoretic structure of orbifold breaking is performed. This depends upon the existence of appropriate inner and outer automorphisms of the Lie algebra, and we show that a reduction of the rank of the GUT group is possible. Some aspects of larger GUT theories based on SO(10) and E 6 are discussed. We explore the possibilities of defining the theory directly on a space with boundaries and breaking the gauge symmetry by more general consistently chosen boundary conditions for the fields. Furthermore, we derive the relation of orbifold breaking with the familiar mechanism of Wilson line breaking, finding a one-to-one correspondence, both conceptually and technically. Finally, we analyse the consistency of orbifold models in the effective field theory context, emphasizing the necessity for self-adjoint extensions of the Hamiltonian and other conserved operators, and especially the highly restrictive anomaly cancellation conditions that apply if the bulk theory lives in more than 5 dimensions

  19. SUSY in the sky

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Rietdijk, R.H.; Holten, J.W. van

    1993-01-01

    Spinning particles in curved space-time can have fermionic symmetries generated by the square root of bosonic constants of motion other than the Hamiltonian. We present a general analysis of the conditions under which such new supersymmetries appear, and discuss the Poisson-Dirac algebra of the resulting set of charges, including the conditions of closure of the new algebra. An example of a new non-trivial supersymmetry is found in black-hole solutions of the Kerr-Newman type and corresponds to the Killing-Yano tensor, which plays an important role in solving the Dirac equation in these black-hole metrics. (orig.)

  20. Where is SUSY?

    Indian Academy of Sciences (India)

    Amitava Datta

    2017-10-05

    Oct 5, 2017 ... out in details how the production of strongly interacting sparticles can ... C2 is large have masses ∼1 TeV (see [1] for a lucid exposition ... the Planck satellites have accurately measured the. DM relic .... plane corresponding to.