WorldWideScience

Sample records for sustained-release delivery system

  1. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  2. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  3. Local sustained-release delivery systems of the antibiofilm agent thiazolidinedione-8 for prevention of catheter-associated urinary tract infections.

    Science.gov (United States)

    Shenderovich, Julia; Feldman, Mark; Kirmayer, David; Al-Quntar, Abed; Steinberg, Doron; Lavy, Eran; Friedman, Michael

    2015-05-15

    Thiazolidinedione-8 (TZD-8) is an anti-quorum-sensing molecule that has the potential to effectively prevent catheter-associated urinary tract infections, a major healthcare challenge. Sustained-release drug-delivery systems can enhance drugs' therapeutic potential, by maintaining their therapeutic level and reducing their side effects. Varnishes for sustained release of TZD-8 based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit(®) RL) were developed. The main factors affecting release rate were found to be film thickness and presence of a hydrophilic or swellable polymer in the matrix. The release mechanism of ethylcellulose-based systems matched the Higuchi model. Selected varnishes were retained on catheters for at least 8 days. Sustained-release delivery systems of TZD-8 were active against Candida albicans biofilms. The present study demonstrates promising results en route to developing applications for the prevention of catheter-associated infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  6. Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism

    Directory of Open Access Journals (Sweden)

    Abeer M. El-Kady

    2015-01-01

    Full Text Available Bioactive glass nanoparticles were synthesized and tested for the first time as a new delivery system for sustained 5-fluorouracil (5-FU release. They were characterized by TEM, DTA, TGA, and FT-IR. The porosity % and specific surface area of glass nanoparticles were 85.59% and 378.36 m2/g, respectively. The in vitro bioactivity evaluation confirmed that bioactive glass disks prepared from these nanoparticles could induce hydroxyapatite layer over their surfaces in simulated body fluid. The in vitro drug release experiment indicated that glass nanoparticles could serve as long-term local delivery vehicles for sustained 5-FU release. The release profile of 5-FU showed an initial fast release stage followed by a second stage of slower release. The initial burst release of 5-FU in the first day was about 23% (28.92 mg·L−1 of the total amount of loaded 5-FU, while the final cumulative percentage of the 5-FU released after 32 days was about 45.6% (57.31 mg·L−1 of the total amount of loaded 5-FU. The application of different mathematical models indicated that 5-FU was released by diffusion controlled mechanism and suggested that its release rate was dependent on glass particles dissolution, changes of surface area as well as diameter of glass particles, and concentration of loaded drug.

  7. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    Science.gov (United States)

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  8. Extracellular Matrix (ECM Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Soon Sim Yang

    Full Text Available Recombinant human transforming growth factor beta-3 (rhTGF-β3 is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs using western blot and circular dichroism (CD analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+ rhTGF-β3 EMLDS in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.

  9. Controlled release of simvastatin from biomimetic β-TCP drug delivery system.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.

  10. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  11. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.

    Science.gov (United States)

    Chen, Zhi; Wang, Ting; Yan, Qing

    2018-02-01

    Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.

  12. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  13. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  14. A biodegradable, sustained-released, prednisolone acetate microfilm drug delivery system effectively prolongs corneal allograft survival in the rat keratoplasty model.

    Directory of Open Access Journals (Sweden)

    Yu-Chi Liu

    Full Text Available Frequent and long-term use of topical corticosteroids after corneal transplantation is necessary to prevent graft rejection. However, it relies heavily on patient compliance, and sustained therapeutic drug levels are often not achieved with administration of topical eye drops. A biodegradable drug delivery system with a controlled and sustained drug release may circumvent these limitations. In this study, we investigated the efficacy of a prednisolone acetate (PA-loaded poly (d,l-lactide-co-ε-caprolactone (PLC microfilm drug delivery system on promoting the survival of allogeneic grafts after penetrating keratoplasty (PK using a rat model. The drug release profiles of the microfilms were characterized (group 1. Subsequently, forty-eight PK were performed in four experimental groups: syngeneic control grafts (group 2, allogeneic control grafts (group 3, allogeneic grafts with subconjunctivally-implanted PA microfilm (group 4, and allogeneic grafts with PA eye drops (group 5; n = 12 in each. PA-loaded microfilm achieved a sustained and steady release at a rate of 0.006-0.009 mg/day, with a consistent aqueous drug concentration of 207-209 ng/ml. The mean survival days was >28 days in group 2, 9.9±0.8 days in group 3, 26.8±2.7 days in group 4, and 26.4±3.4 days in group 5 (P = 0.023 and P = 0.027 compared with group 3. Statistically significant decrease in CD4+, CD163+, CD 25+, and CD54+ cell infiltration was observed in group 4 and group 5 compared with group 3 (P<0.001. There was no significant difference in the mean survival and immunohistochemical analysis between group 4 and group 5. These results showed that sustained PA-loaded microfilm effectively prolongs corneal allograft survival. It is as effective as conventional PA eye drops, providing a promising clinically applicable alternative for patients undergoing corneal transplantation.

  15. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  16. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation.

    Directory of Open Access Journals (Sweden)

    Juçara Ribeiro Franca

    Full Text Available The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM. Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a

  17. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  19. Physical-chemical aspects of a coaxial sustained release device based on Poly-Eva

    NARCIS (Netherlands)

    Laarhoven, Johannes Antonius Hendrikus van

    2005-01-01

    Sustained release of dugs offers several advantages like increased efficacy, safety, compliance and convenience. As a consequence sustained drug delivery is often preferred above daily administration of drugs. Furthermore, drug delivery systems can be designed to deliver one or more drugs at a

  20. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    Science.gov (United States)

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    Science.gov (United States)

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  2. Application of mathematical modeling in sustained release delivery systems.

    Science.gov (United States)

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  3. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  4. Polymer nanocomposite particles of S-nitrosoglutathione: A suitable formulation for protection and sustained oral delivery.

    Science.gov (United States)

    Wu, Wen; Gaucher, Caroline; Fries, Isabelle; Hu, Xian-Ming; Maincent, Philippe; Sapin-Minet, Anne

    2015-11-10

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor with therapeutic potential for cardiovascular disease treatment. Chronic oral treatment with GSNO is limited by high drug sensitivity to the environment and limited oral bioavailability, requiring the development of delivery systems able to sustain NO release. The present work describes new platforms based on polymer nanocomposite particles for the delivery of GSNO. Five types of optimized nanocomposite particles have been developed (three based on chitosan, two based on alginate sodium). Those nanocomposite particles encapsulate GSNO with high efficiency from 64% to 70% and an average size of 13 to 61 μm compatible with oral delivery. Sustained release of GSNO in vitro was achieved. Indeed, chitosan nanocomposites discharged their payload within 24h; whereas alginate nanocomposites released GSNO more slowly (10% of GSNO was still remaining in the dosage form after 24h). Their cytocompatibility toward intestinal Caco-2 cells (MTT assay) was acceptable (IC50: 6.07 ± 0.07-9.46 ± 0.08 mg/mL), demonstrating their suitability as oral delivery systems for GSNO. These delivery systems presented efficient GSNO loading and sustained release as well as cytocompatibility, showing their promise as a means of improving the oral bioavailability of GSNO and as a potential new treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  6. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics

    Science.gov (United States)

    Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing

    2013-01-01

    Background Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. Methods The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. Results The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. Conclusion PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity

  8. Storage and sustained release of volatile substances from a hollow silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiexin [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Ding Haomin [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Tao Xia [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Chen Jianfeng [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China)

    2007-06-20

    Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO{sub 3} template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 ml{sub perfume}/mg{sub carrier}) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.

  9. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  10. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  11. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    Science.gov (United States)

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  12. Ocular Insert: Dosage Form for Sustain Opthalmic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-06-01

    Full Text Available Except for skin, the eye is the most easily accessible site for topical administration of a medication. Traditional topical ophthalmic formulations (eye drops and ointments have poor bioavailability because of rapid pre-corneal elimination, conjunctival absorption, solution drainage by gravity, induced lacrimation and normal tear turnover. This leads to frequent installations of concentrated medication to achieve a therapeutic effect. The typical “pulse-entry” type drug release observed with ocular aqueous solutions (eye drops, suspensions and ointments can be replaced by more controlled, sustained, and continuous drug delivery, using a controlled-release ocular drug delivery system. Ocular inserts are solid or semisolid sterile preparations, of appropriate size and shape, designed to be inserted behind the eyelid or held on the eye and to deliver drugs for topical or systemic effect. These are polymeric systems into which the drug is incorporated as a solution or dispersion. They are better tolerated as to drainage and tear flow compared with other ophthalmic formulation and produce reliable drug release in the conjunctival cul-de-sac.

  13. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    International Nuclear Information System (INIS)

    Tan, Donna; Zhao Bin; Moochhala, Shabbir; Yang Yiyan

    2006-01-01

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved

  14. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, 04-01, The Nanos, Singapore 138669 (Singapore)

    2006-07-25

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved.

  15. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    Science.gov (United States)

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2018-01-01

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  16. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yang; Wu, Chao, E-mail: wuchao27@126.com; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-02-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption.

  17. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    International Nuclear Information System (INIS)

    Qiu, Yang; Wu, Chao; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-01-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption

  18. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Wang Xiaoyun; Xu Hui; Zhao Yanqiu; Wang Shaoning; Abe, Hiroya; Naito, Makio; Liu Yanli; Wang Guoqing

    2012-01-01

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  19. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.

    Science.gov (United States)

    McClements, David Julian; Li, Yan

    2010-09-15

    There is a need for edible delivery systems to encapsulate, protect and release bioactive and functional lipophilic constituents within the food and pharmaceutical industries. These delivery systems could be used for a number of purposes: controlling lipid bioavailability; targeting the delivery of bioactive components within the gastrointestinal tract; and designing food matrices that delay lipid digestion and induce satiety. Emulsion technology is particularly suited for the design and fabrication of delivery systems for lipids. In this article we provide an overview of a number of emulsion-based technologies that can be used as edible delivery systems by the food and other industries, including conventional emulsions, nanoemulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems can be produced from food-grade (GRAS) ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals) using relatively simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, preparation, and utilization of each type of delivery system for controlling lipid digestion are discussed. This knowledge can be used to select the most appropriate emulsion-based delivery system for specific applications, such as encapsulation, controlled digestion, and targeted release. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Inhibition of growth of experimental prostate cancer with sustained delivery systems (microcapsules and microgranules) of the luteinizing hormone-releasing hormone antagonist SB-75.

    Science.gov (United States)

    Korkut, E; Bokser, L; Comaru-Schally, A M; Groot, K; Schally, A V

    1991-02-01

    Inhibitory effects of the sustained delivery systems (microcapsules and microgranules) of a potent antagonist of luteinizing hormone-releasing hormone N-Ac-[3-(2-naphthyl)-D-alanine1, 4-chloro-D-phenylalanine2, 3-(3-pyridyl)-D-alanine3, D-citrulline6, D-alanine10]LH-RH (SB-75) on the growth of experimental prostate cancers were investigated. In the first experiment, three doses of a microcapsule preparation releasing 23.8, 47.6, and 71.4 micrograms of antagonist SB-75 per day were compared with microcapsules of agonist [D-Trp6]LH-RH liberating 25 micrograms/day in rats bearing Dunning R3327H transplantable prostate carcinoma. During 8 weeks of treatment, tumor growth was decreased by [D-Trp6]LH-RH and all three doses of SB-75 as compared to untreated controls. The highest dose of SB-75 (71.4 micrograms/day) caused a greater inhibition of prostate cancer growth than [D-Trp6]LH-RH as based on measurement of tumor volume and percentage change in tumor volume. Doses of 23.8 and 47.6 micrograms of SB-75 per day induced a partial and submaximal decrease, respectively, in tumor weight and volume. Tumor doubling time was the longest (50 days) with the high dose of SB-75 vs. 15 days for controls. The body weights were unchanged. The weights of testes, seminal vesicles, and ventral prostate were greatly reduced in all three groups that received SB-75, and testosterone levels were decreased to nondetectable values in the case of the two higher doses of SB-75. LH levels were also diminished. Similar results were obtained in the second experiment, in which the animals were treated for a period of 8 weeks with microgranules of SB-75. Therapy with microgranules of SB-75 significantly decreased tumor growth as measured by the final tumor volume, the percentage change from the initial tumor volume, and the reduction in tumor weight. The results indicate that antagonist SB-75, released from sustained delivery systems, can produce a state of chemical castration and effectively

  1. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  2. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  3. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.

    Science.gov (United States)

    Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.

  4. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems

    DEFF Research Database (Denmark)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil...... the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations...... with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate...

  5. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    International Nuclear Information System (INIS)

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  6. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds

    International Nuclear Information System (INIS)

    Zhai Peng; Chen, X B; Schreyer, David J

    2013-01-01

    Tissue engineering scaffolds are designed not only to provide structural support for the repair of damaged tissue, but can also serve the function of bioactive protein delivery. Here we present a study on the preparation and characterization of protein-loaded microspheres, either alone or incorporated into mock tissue scaffolds, for sustained protein delivery. Alginate microspheres were prepared by a novel, small-scale water-in-oil emulsion technique and loaded with fluorescently labeled immunoglobulin G (IgG). Microsphere size appears to be influenced by the magnitude and distribution of force generated by mechanical stirring during emulsion. Protein release studies show that sustained IgG release from microspheres could be achieved and that application of a secondary coating of chitosan could further slow the rate of protein release. Preservation of bioactivity of released IgG protein was confirmed using an immunohistochemical assay. When IgG-loaded microspheres were incorporated into mock scaffolds, initial protein release was diminished and the overall time course of release was extended. The present study demonstrates that protein-loaded microspheres can be prepared with a controlled release profile and preserved biological activity, and can be incorporated into scaffolds to achieve sustained and prolonged protein delivery in a tissue engineering application. (paper)

  7. Preparation and properties of a drug sustained-release hydrogel film

    International Nuclear Information System (INIS)

    Yue Ling; Yang Zhanshan; Yang Shuqin; Li Qinghua

    2009-01-01

    A hydrogel film of drug sustained-release was prepared to accelerate wound healing. The hydrogel films containing drug or not were prepared by the freezing and thawing process. Their properties such as the physicochemical property and the drug release behavior in vitro were studied. Effect of the freezing and thawing process on antimicrobial efficacy of the gentamicin was evaluated by diffusion method. The results indicate that swelling ratio of the hydrogel films freezed for 4h is 841.21% and their gel fraction, tensile strength and elongation at break is 96.10%, 0.222 MPa and 673.50% respectively. The antimicrobial efficacy of the gentamicin has no change. The hydrogel film contained gentamicin releases the antibiotic to peak during 6 h with the cumulative drug release rate of 59.57%. The drug releases continually up to the 5th day. The drug delivery conforms to Higuchi kinetic equation, and mechanism of the drug release is matrix diffusion. The results show that the hydrogel film prepared by the freezing and thawing process display satisfactory physicochemical properties and can be used as a drug delivery system. (authors)

  8. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiyue Zhang

    2012-01-01

    Full Text Available The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.

  9. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    International Nuclear Information System (INIS)

    Zhang, Z.; Huang, G.

    2012-01-01

    The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis

  10. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  11. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab

    Science.gov (United States)

    K.Yandrapu, Sarath; Upadhyay, Arun K.; Petrash, J. Mark; Kompella, Uday B.

    2014-01-01

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9 fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Flour 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases. PMID:24131101

  12. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

    Science.gov (United States)

    Yandrapu, Sarath K; Upadhyay, Arun K; Petrash, J Mark; Kompella, Uday B

    2013-12-02

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

  13. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  14. Advances in Hybrid Polymer-Based Materials for Sustained Drug Release

    Directory of Open Access Journals (Sweden)

    Lígia N. M. Ribeiro

    2017-01-01

    Full Text Available The use of biomaterials composed of organic pristine components has been successfully described in several purposes, such as tissue engineering and drug delivery. Drug delivery systems (DDS have shown several advantages over traditional drug therapy, such as greater therapeutic efficacy, prolonged delivery profile, and reduced drug toxicity, as evidenced by in vitro and in vivo studies as well as clinical trials. Despite that, there is no perfect delivery carrier, and issues such as undesirable viscosity and physicochemical stability or inability to efficiently encapsulate hydrophilic/hydrophobic molecules still persist, limiting DDS applications. To overcome that, biohybrid systems, originating from the synergistic assembly of polymers and other organic materials such as proteins and lipids, have recently been described, yielding molecularly planned biohybrid systems that are able to optimize structures to easily interact with the targets. This work revised the biohybrid DDS clarifying their advantages, limitations, and future perspectives in an attempt to contribute to further research of innovative and safe biohybrid polymer-based system as biomaterials for the sustained release of active molecules.

  15. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  16. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  18. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  19. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    Science.gov (United States)

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  20. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride.

    Science.gov (United States)

    Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A

    2016-01-01

    The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F 10 composed of 28.5% Eudragit RSPM, 3% NaHCO 3 , and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F 10 where the drug release percentage was 96.51%±1.75% after 24 hours ( P =0.031). The pharmacokinetic results indicated that the area under the curve (AUC 0-∞ ) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton ® ) and the relative bioavailability of the sustained-release formulation F 10 increased to 187.80% ( P =0.022). The prepared floating tablets of ITO HCl (F 10 ) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.

  2. Local drug delivery - the early Berlin experience: single drug administration versus sustained release.

    Science.gov (United States)

    Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena

    2011-05-01

    Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.

  3. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride

    Directory of Open Access Journals (Sweden)

    Ahmed SM

    2016-12-01

    Full Text Available Sayed M Ahmed,1 Adel Ahmed Ali,2 Ahmed MA Ali,2,3 Omiya A Hassan2,4 1Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 2Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; 3Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia; 4Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, El-Minia Gadida, Egypt Purpose: The aim of the present study was to improve the bioavailability of itopride (ITO and sustain its action by formulating as a floating dosage form. Materials and methods: Sustained-release floating tablets of ITO hydrochloride (HCl were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol. Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. Results: In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031.The pharmacokinetic results indicated that the area under the curve (AUC0–∞ of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton® and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022. Conclusion: The prepared floating tablets of ITO HCl (F10 could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability. Keywords: itopride HCl, oral drug delivery, stability study, bioavailability

  4. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  5. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Wang, Zhicheng; Nong, Jia; Nix, Camilla A; Zhong, Yinghui; Ji, Hai-Feng

    2015-01-01

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  6. How controlled release technology can aid gene delivery.

    Science.gov (United States)

    Jo, Jun-Ichiro; Tabata, Yasuhiko

    2015-01-01

    Many types of gene delivery systems have been developed to enhance the level of gene expression. Controlled release technology is a feasible gene delivery system which enables genes to extend the expression duration by maintaining and releasing them at the injection site in a controlled manner. This technology can reduce the adverse effects by the bolus dose administration and avoid the repeated administration. Biodegradable biomaterials are useful as materials for the controlled release-based gene delivery technology and various biodegradable biomaterials have been developed. Controlled release-based gene delivery plays a critical role in a conventional gene therapy and genetic engineering. In the gene therapy, the therapeutic gene is released from biodegradable biomaterial matrices around the tissue to be treated. On the other hand, the intracellular controlled release of gene from the sub-micro-sized matrices is required for genetic engineering. Genetic engineering is feasible for cell transplantation as well as research of stem cells biology and medicine. DNA hydrogel containing a sequence of therapeutic gene and the exosome including the individual specific nucleic acids may become candidates for controlled release carriers. Technologies to deliver genes to cell aggregates will play an important role in the promotion of regenerative research and therapy.

  7. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  8. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    OpenAIRE

    Muhammad Zaman; Junaid Qureshi; Hira Ejaz; Rai Muhammad Sarfraz; Hafeez ullah Khan; Fazal Rehman Sajid; Muhammad Shafiq ur Rehman

    2016-01-01

    Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes dif...

  9. Self-assembled pentablock copolymers for selective and sustained gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingqi [Iowa State Univ., Ames, IA (United States)

    2011-05-15

    The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.

  10. Sustained release of antibiotics from injectable and thermally responsive polypeptide depots.

    Science.gov (United States)

    Adams, Samuel B; Shamji, Mohammed F; Nettles, Dana L; Hwang, Priscilla; Setton, Lori A

    2009-07-01

    Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications. (c) 2008 Wiley Periodicals, Inc.

  11. Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Cha Yee Kuen

    2017-11-01

    Full Text Available Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB, a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS and Field Emission-Scanning Electron Microscopy (FESEM results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.

  12. A novel nanoparticle formulation for sustained paclitaxel delivery.

    Science.gov (United States)

    Trickler, W J; Nagvekar, A A; Dash, A K

    2008-01-01

    To develop a novel nanoparticle drug delivery system consisting of chitosan and glyceryl monooleate (GMO) for the delivery of a wide variety of therapeutics including paclitaxel. Chitosan/GMO nanoparticles were prepared by multiple emulsion (o/w/o) solvent evaporation methods. Particle size and surface charge were determined. The morphological characteristics and cellular adhesion were evaluated with surface or transmission electron microscopy methods. The drug loading, encapsulation efficiency, in vitro release and cellular uptake were determined using HPLC methods. The safety and efficacy were evaluated by MTT cytotoxicity assay in human breast cancer cells (MDA-MB-231). These studies provide conceptual proof that chitosan/GMO can form polycationic nano-sized particles (400 to 700 nm). The formulation demonstrates high yields (98 to 100%) and similar entrapment efficiencies. The lyophilized powder can be stored and easily be resuspended in an aqueous matrix. The nanoparticles have a hydrophobic inner-core with a hydrophilic coating that exhibits a significant positive charge and sustained release characteristics. This novel nanoparticle formulation shows evidence of mucoadhesive properties; a fourfold increased cellular uptake and a 1000-fold reduction in the IC(50) of PTX. These advantages allow lower doses of PTX to achieve a therapeutic effect, thus presumably minimizing the adverse side effects.

  13. Natural gums and modified natural gums as sustained-release carriers.

    Science.gov (United States)

    Bhardwaj, T R; Kanwar, M; Lal, R; Gupta, A

    2000-10-01

    Although natural gums and their derivatives are used widely in pharmaceutical dosage forms, their use as biodegradable polymeric materials to deliver bioactive agents has been hampered by the synthetic materials. These natural polysaccharides do hold advantages over the synthetic polymers, generally because they are nontoxic, less expensive, and freely available. Natural gums can also be modified to have tailor-made materials for drug delivery systems and thus can compete with the synthetic biodegradable excipients available in the market. In this review, recent developments in the area of natural gums and their derivatives as carriers in the sustained release of drugs are explored.

  14. Preparation and Application of Sustained-Release Potassium Ferrate(VI

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available In this study, a composite system for the sustained release of potassium ferrate(VI (sustained-release K2FeO4 was prepared and applied for water treatment. The objective of this research was to maximize the effectiveness of K2FeO4 for water treatment by enhancing its stability using diatomite. The sustained-release K2FeO4 was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that no new crystal phase was formed during the preparation and some K2FeO4 crystals entered the pores of the diatomite. From K2FeO4 release experiments, we found that the decomposition rate of K2FeO4 was obviously decreased, which greatly improved the contact rate between released K2FeO4 and pollutants. Via degradation of methyl orange, which was used as a model pollutant, the influential factor of K2FeO4 content within the complete sustained-release K2FeO4 system was studied. The optimal K2FeO4 content within the sustained-release K2FeO4 system was approximately 70%. In natural water samples, sustained-release K2FeO4 at a dosage of 0.06 g/L and with a reaction time of 20 minutes removed 36.84% of soluble microbial products and 17.03% of simple aromatic proteins, and these removal rates were better than those observed after traditional chlorine disinfection.

  15. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Luo YL

    2016-07-01

    Full Text Available Yuling Luo, Zhongbing Liu, Xiaoqin Zhang, Juan Huang, Xin Yu, Jinwei Li, Dan Xiong, Xiaoduan Sun, Zhirong Zhong Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan,People’s Republic of ChinaAbstract: The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 µm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy.Keywords: oleanolic acid, multivesicular liposomes, murine hepatocellular carcinoma, controlled release, cancer therapy

  16. In vitro-ex vivo correlations between a cell-laden hydrogel and mucosal tissue for screening composite delivery systems.

    Science.gov (United States)

    Blakney, Anna K; Little, Adam B; Jiang, Yonghou; Woodrow, Kim A

    2016-11-01

    Composite delivery systems where drugs are electrospun in different layers and vary the drug stacking-order are posited to affect bioavailability. We evaluated how the formulation characteristics of both burst- and sustained-release electrospun fibers containing three physicochemically diverse drugs: dapivirine (DPV), maraviroc (MVC) and tenofovir (TFV) affect in vitro and ex vivo release. We developed a poly(hydroxyethyl methacrylate) (pHEMA) hydrogel release platform for the rapid, inexpensive in vitro evaluation of burst- and sustained-release topical or dermal drug delivery systems with varying microarchitecture. We investigated properties of the hydrogel that could recapitulate ex vivo release into nonhuman primate vaginal tissue. Using a dimethyl sulfoxide extraction protocol and high-performance liquid chromatography analysis, we achieved >93% recovery from the hydrogels and >88% recovery from tissue explants for all three drugs. We found that DPV loading, but not stacking order (layers of fiber containing a single drug) or microarchitecture (layers with isolated drug compared to all drugs in the same layer) impacted the burst release in vitro and ex vivo. Our burst-release formulations showed a correlation for DPV accumulation between the hydrogel and tissue (R 2 =   0.80), but the correlation was not significant for MVC or TFV. For the sustained-release formulations, the PLGA/PCL content did not affect TFV release in vitro or ex vivo. Incorporation of cells into the hydrogel matrix improved the correlation between hydrogel and tissue explant release for TFV. We expect that this hydrogel-tissue mimic may be a promising preclinical model to evaluate topical or transdermal drug delivery systems with complex microarchitectures.

  17. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts.

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization.

  19. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization. PMID:26251592

  20. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  1. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release.

    Science.gov (United States)

    Prudhviraj, G; Vaidya, Yogyata; Singh, Sachin Kumar; Yadav, Ankit Kumar; Kaur, Puneet; Gulati, Monica; Gowthamarajan, K

    2015-11-01

    Significant clinical success of colon targeted dosage forms has been limited by their inappropriate release profile at the target site. Their failure to release the drug completely in the colon may be attributed to changes in the colonic milieu because of pathological state, drug effect and psychological stress accompanying the diseased state or, a combination of these. Alteration in normal colonic pH and bacterial picture leads to incomplete release of drug from the designed delivery system. We report the effectiveness of a targeted delivery system wherein the constant replenishment of the colonic microbiota is achieved by concomitant administration of probiotics along with the polysaccharide based drug delivery system. Guar gum coated spheroids of sulfasalazine were prepared. In the dissolution studies, these spheroids showed markedly higher release in the simulated colonic fluid. In vivo experiments conducted in rats clearly demonstrated the therapeutic advantage of co-administration of probiotics with guar gum coated spheroids. Our results suggest that concomitant use of probiotics along with the polysaccharide based delivery systems can be a simple strategy to achieve satisfactory colon targeting of drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Mazur Steven

    2010-09-01

    Full Text Available Abstract Background The mutation in the cystic fibrosis transmembrane conductance regulator (CFTR gene results in CF. The most common mutation, ΔF508-CFTR, is a temperature-sensitive, trafficking mutant with reduced chloride transport and exaggerated immune response. The ΔF508-CFTR is misfolded, ubiquitinated, and prematurely degraded by proteasome mediated- degradation. We recently demonstrated that selective inhibition of proteasomal pathway by the FDA approved drug PS-341 (pyrazylcarbonyl-Phe-Leuboronate, a.k.a. Velcade or bortezomib ameliorates the inflammatory pathophysiology of CF cells. This proteasomal drug is an extremely potent, stable, reversible and selective inhibitor of chymotryptic threonine protease-activity. The apprehension in considering the proteasome as a therapeutic target is that proteasome inhibitors may affect proteostasis and consecutive processes. The affect on multiple processes can be mitigated by nanoparticle mediated PS-341 lung-delivery resulting in favorable outcome observed in this study. Results To overcome this challenge, we developed a nano-based approach that uses drug loaded biodegradable nanoparticle (PLGA-PEGPS-341 to provide controlled and sustained drug delivery. The in vitro release kinetics of drug from nanoparticle was quantified by proteasomal activity assay from days 1-7 that showed slow drug release from day 2-7 with maximum inhibition at day 7. For in vivo release kinetics and biodistribution, these drug-loaded nanoparticles were fluorescently labeled, and administered to C57BL6 mice by intranasal route. Whole-body optical imaging of the treated live animals demonstrates efficient delivery of particles to murine lungs, 24 hrs post treatment, followed by biodegradation and release over time, day 1-11. The efficacy of drug release in CF mice (Cftr-/- lungs was determined by quantifying the changes in proteasomal activity (~2 fold decrease and ability to rescue the Pseudomonas aeruginosa LPS (Pa

  3. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems.

    Science.gov (United States)

    Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J

    2017-09-28

    We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Transscleral sustained vasohibin-1 delivery by a novel device suppressed experimentally-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Hideyuki Onami

    Full Text Available We established a sustained vasohibin-1 (a 42-kDa protein, delivery device by a novel method using photopolymerization of a mixture of polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and collagen microparticles. We evaluated its effects in a model of rat laser-induced choroidal neovascularization (CNV using a transscleral approach. We used variable concentrations of vasohibin-1 in the devices, and used an enzyme-linked immunosorbent assay and Western blotting to measure the released vasohibin-1 (0.31 nM/day when using the 10 μM vasohibin-1 delivery device [10VDD]. The released vasohibin-1 showed suppression activity comparable to native effects when evaluated using endothelial tube formation. We also used pelletized vasohibin-1 and fluorescein isothiocyanate-labeled 40 kDa dextran as controls. Strong fluorescein staining was observed on the sclera when the device was used for drug delivery, whereas pellet use produced strong staining in the conjunctiva and surrounding tissue, but not on the sclera. Vasohibin-1 was found in the sclera, choroid, retinal pigment epithelium (RPE, and neural retina after device implantation. Stronger immunoreactivity at the RPE and ganglion cell layers was observed than in other retinal regions. Significantly lower fluorescein angiography (FA scores and smaller CNV areas in the flat mounts of RPE-choroid-sclera were observed for the 10VDD, VDD (1 μM vasohibin-1 delivery device, and vasohibin-1 intravitreal direct injection (0.24 μM groups when compared to the pellet, non-vasohibin-1 delivery device, and intravitreal vehicle injection groups. Choroidal neovascularization can be treated with transscleral sustained protein delivery using our novel device. We offer a safer sustained protein release for treatment of retinal disease using the transscleral approach.

  5. Modification of concomitant drug release from oil vehicles using drug-prodrug combinations to achieve sustained balanced analgesia after joint installation

    DEFF Research Database (Denmark)

    Thing, Mette; Jensen, Sabrine Smedegaard; Larsen, Claus Selch

    2012-01-01

    Intra-articular injection of two drugs in a sustained drug delivery system combining the use of lipophilic solution with the prodrug approach may provide efficient and prolonged postoperative pain treatment after arthroscopic procedures. In the present study, the concomitant release of N...... using buffer. In both release models, the use of ropivacaine-prodrug combination provided concomitant release from the oil into synovial fluid with ropivacaine being released faster than naproxen. The use of lipophilic prodrugs that are converted fast to the parent drug in synovial fluid seems...

  6. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  7. Preparation of venlafaxine hydrochloride sustained-release tablets

    Directory of Open Access Journals (Sweden)

    GUO Lingling

    2013-08-01

    Full Text Available To prepare venlafxine hydrochloride sustained-release tablets.Hydroxypropylmethyl cellulose(HPMC and methyl cellulose(MC were used as main materials to prepare sustained-release tablets of velafaxine hydrochloride and the influence of important factors on in vitro release curves of venlafaxine hydrochloride sustained-release tablets was investigated.Results:The optimal prescription included 100 mg HPMC,25 mg MC,and 2.5% glidant in one tablet prepared with 30kN.The tablets were prepared with the method of wet granulation by NO.16 mesh sieve.The tablets exhibited good sustained-release property in phosphate buffered solution (pH=6.8.The as-prepared venlafxine hydrochloride sustained-release tablets have good sustained-release property.

  8. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes

    Directory of Open Access Journals (Sweden)

    Cai Y

    2014-07-01

    Full Text Available Yunpeng Cai,1,2 Mingxin Xu,2 Minglu Yuan,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, School of Medicine, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Abstract: Since the availability of recombinant human growth hormone (rhGH enabled the application of human growth hormone both in clinical and research use in the 1980s, millions of patients were prescribed a daily injection of rhGH, but noncompliance rates were high. To address the problem of noncompliance, numerous studies have been carried out, involving: sustained-release preparations, prolonged half-life derivatives, new injectors that cause less pain, and other noninvasive delivery methods such as intranasal, pulmonary and transdermal deliveries. Some accomplishments have been made and launched already, such as the Nutropin Depot® microsphere and injectors (Zomajet®, Serojet®, and NordiFlex®. Here, we provide a review of the different technologies and illustrate the key points of these studies to achieve an improved rhGH product. Keywords: intranasal, pulmonary, transdermal, microsphere, microneedle, hydrogel

  9. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  10. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  11. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye

    Directory of Open Access Journals (Sweden)

    Natarajan JV

    2012-01-01

    Full Text Available Jayaganesh V Natarajan1*, Marcus Ang2*, Anastasia Darwitan1, Sujay Chattopadhyay3, Tina T Wong2, Subbu S Venkatraman1 1Materials Science and Engineering, Nanyang Technological University, Singapore; 2Singapore Eye Research Institute, Singapore; 3Polymer Division, Indian Institute of Technology Roorkee, India*These authors contributed equally to this workPurpose: To report the development and therapeutic evaluation of a liposomal nanocarrier for sustained release of latanoprost, in the rabbit eye.Methods: We fabricated latanoprost-loaded egg-phosphatidylcholine (EggPC liposomes using the film hydration technique. The delivery vehicles were nano-sized (Z avg = 109 ± 18 nm, had a narrow poly dispersity index (PDI = 0.19 ± 0.04, and a very high loading efficiency (94% ± 5%. Based on in vitro data, we evaluated this formulation for lowering intraocular pressure (IOP in rabbit eyes. Following a single subconjunctival injection of the latanoprost loaded formulation, the eyes were clinically monitored and the IOP recorded.Results: Latanoprost-loaded EggPC liposomes demonstrated a high drug/lipid mole ratio of 0.181, remained stable for at least 6 months on storage (4°C, and at least 1 month at 25°C. A slow and sustained release of 60% of latanoprost was achieved by 14 days in the in vitro release study. The same formulation demonstrated a greater sustained IOP lowering effect compared with daily administration of topical latanoprost beyond 90 days (4.8 ± 1.5 vs 2.5 ± 0.9 mmHg; P < 0.001. No signs of inflammation were evident in the eyes from slit-lamp examination analysis.Conclusion: The loading required for a long-term sustained delivery of latanoprost for up to 90 days in the rabbit eyes was achieved with EggPC liposomes. A single injection of latanoprost-loaded EggPC liposomes can lower the IOP for up to 90 days, with a greater IOP lowering effect than daily topical administration of latanoprost.Keywords: nanomedicine, nanoliposomes, Egg

  12. An Injectable System for Local and Sustained Release of Antimicrobial Agents in the Periodontal Pocket.

    Science.gov (United States)

    Morelli, Laura; Cappelluti, Martino Alfredo; Ricotti, Leonardo; Lenardi, Cristina; Gerges, Irini

    2017-08-01

    Periodontitis treatments usually require local administration of antimicrobial drugs with the aim to reduce the bacterial load inside the periodontal pocket. Effective pharmaceutical treatments may require sustained local drug release for several days in the site of interest. Currently available solutions are still not able to fulfill the clinical need for high-quality treatments, mainly in terms of release profiles and patients' comfort. This work aims to fill this gap through the development of an in situ gelling system, capable to achieve controlled and sustained release of antimicrobial agents for medium-to-long-term treatments. The system is composed of micrometer-sized β-cyclodextrin-based hydrogel (bCD-Jef-MPs), featured by a strong hydrophilic character, suspended in a synthetic block-co-polymer solution (Poloxamer 407), which is capable to undergo rapid thermally induced sol-gel phase transition at body temperature. The chemical structure of bCD-Jef-MPs was confirmed by cross-correlating data from Fourier transform infrared (FTIR) spectroscopy, swelling test, and degradation kinetics. The thermally induced sol-gel phase transition is demonstrated by rheometric tests. The effectiveness of the described system to achieve sustained release of antimicrobial agents is demonstrated in vitro, using chlorhexidine digluconate as a drug model. The results achieved in this work disclose the potential of the mentioned system in effectively treating periodontitis lesions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: formulation and in vitro evaluation.

    Science.gov (United States)

    Kassem, Mohamed A A; ElMeshad, Aliaa N; Fares, Ahmed R

    2015-06-01

    This work aims to prepare sustained release buccal mucoadhesive lyophilized chitosan sponges of buspirone hydrochloride (BH) to improve its systemic bioavailability. Chitosan sponges were prepared using simple casting/freeze-drying technique according to 3(2) factorial design where chitosan grade was set at three levels (low, medium, and high molecular weight), and concentration of chitosan solution at three levels (0.5, 1, and 2%). Mucoadhesion force, ex vivo mucoadhesion time, percent BH released after 8 h (Q8h), and time for release of 50% BH (T50%) were chosen as dependent variables. Additional BH cup and core buccal chitosan sponge were prepared to achieve uni-directional BH release toward the buccal mucosa. Sponges were evaluated in terms of drug content, surface pH, scanning electron microscopy, swelling index, mucoadhesion strength, ex vivo mucoadhesion time, and in vitro drug release. Cup and core sponge (HCH 0.5E) were able to adhere to the buccal mucosa for 8 h. It showed Q8h of 68.89% and exhibited a uni-directional drug release profile following Higuchi diffusion model.

  14. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.

    Science.gov (United States)

    Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.

  15. Radiation crosslinked hydrogels as sustained release drug delivery systems

    International Nuclear Information System (INIS)

    Pekala, W.; Rosiak, J.; Rucinska-Rybus, A.; Burczak, K.; Galant, S.; Czolczynska, T.

    1986-01-01

    Radiation methods have been used for: i/modification of vascular prostheses, ii/ obtaining burn dressing materials enabling controlled drug release, iii/ the preparation of polymer ocular insert discs. The surface of polyester vascular prostheses, has been modified by deposition of acrylamide and inducing its polymerization in the solid state by γ-radiation. As a result of this treatment, tightness of the prosthesis walls and its surface hydrophilicity have been improved. Toxicological examinations and blood hemolysis studies of modified prostheses showed its good biocompatibility. Various burn dressings have been prepared and the most promising of all investigated turned to be composition consisting of a cotton gauze base and an active polyacrylamide hydrogel layer with addition of glycerin and immobilized Provital/protein preparation/. Preliminary clinical evaluations of this particular dressing showed that the process of burn healing is indeed fast and fully satisfactory. Ocular insert discs made of polymer and containing pilocarpin hydrochloride which is released at controlled rate have been prepared. It has been found that high hydrophilicity and good swelling properties of the ocular insert discs made possible to incorporate pilocarpin hydrochloride into hydrogel matrix. This work has been carried out under IAEA research contract RB 3379/R-1 POL. (author)

  16. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  17. Sustained release of a novel anti-quorum-sensing agent against oral fungal biofilms.

    Science.gov (United States)

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael; Steinberg, Doron

    2015-04-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  19. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein

    Science.gov (United States)

    Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.

    1996-01-01

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064

  20. Biophysical elucidation of the mechanism of enhanced drug release and topical delivery from polymeric film-forming systems.

    Science.gov (United States)

    Garvie-Cook, Hazel; Frederiksen, Kit; Petersson, Karsten; Guy, Richard H; Gordeev, Sergey N

    2015-08-28

    The effect of incorporating the lipidic medium-chain triglyceride (MCT) into polymeric film-forming systems (FFS) for topical drug delivery has been evaluated. First, the in vitro release of betamethasone-17-valerate (BMV), a representative dermatological drug, was determined from FFS comprising either hydrophobic polyacrylate co-polymers, or hydrophilic hydroxypropyl cellulose, with and without MCT. Release was enhanced from both polymers in the presence of MCT. Atomic force microscopy imaging and nanoindentation of FFS with MCT revealed two-phase structured films with softer inclusions (0.5 to 4μm in diameter) surrounded by a more rigid structure. Chemical mapping with Raman micro-spectroscopy showed that MCT was primarily confined to the inclusions within the polymer, which predominated in the surrounding film. BMV was distributed throughout the film but was more concentrated outside the inclusions. Furthermore, while BMV dissolved better into the hydrophobic films, it was more soluble in the MCT inclusions in hydrophilic films, suggesting its increased availability for diffusion from these softer regions of the polymer and explaining the release enhancement observed. Second, ex vivo skin penetration studies clearly revealed that uptake of BMV was higher from hydrophobic FFS than that from the more hydrophilic polymer due, at least in part, to the superior anti-nucleation efficiency of the former. Drug was quickly taken up into the SC from which it then diffused continuously over a sustained period into the lower, viable skin layers. In the presence of MCT, the overall uptake of BMV was increased and provides the basis for further optimisation of FFS as simple, convenient and sustained formulations for topical therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  2. Formulation of Dipyridamole Sustained Release Tablet Using Floating System

    Directory of Open Access Journals (Sweden)

    Lenny Mauilida Valentina

    2011-06-01

    Full Text Available Dipyridamole is a drug for prevention of postoperative thromboembolic complication of heart valve replacement and long term therapy of angina pectoris will be well absorbed in stomach. To maintain therapeutic plasma concentration in long time and to increase bioavalaibility is needed a sustained release dosage form having the long residence time in the stomach. The objective of this research was to make floating sustained release tablet of dipyridamole conforming to the requirement that was set up by dipyridamol therapeutic concentration. Tablets were made by wet granulation method using aquadest as a liquid binder, HPMC K4M, Ac-di-sol, Avicel PH 102, talk, and Mg stearat. Dissolution assay was carried out using type 2 release tester at rotation speed of 50 rpm in medium 900 mL HCl 0.1 N at 37 ± 0.5 °C for 8 hours. The formulation containing of 50 mg dipirydamole, HPMC K4M (30%, Ac-di-sol (20%, Avicel PH 102 (37%, talk (2%, and Mg stearat (1% released 59.61 ± 6.73% and 89.34 ± 5.87% of dipyridamole respectively after 4 and 8 hours that conformed to the requirement.

  3. Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins.

    Science.gov (United States)

    Lee, Sungmun; Kim, Yeu-Chun; Park, Ji-Ho

    2016-12-30

    Reactive oxygen species (ROS) play an important role in the development of inflammatory bowel diseases. Superoxide dismutase (SOD) has a great therapeutic potential by scavenging superoxide that is one of ROS; however, in vivo application is limited especially when it is orally administered. SOD is easily degraded in vivo by the harsh conditions of gastrointestinal tract. Here, we design a zein-alginate based oral drug delivery system that protects SOD from the harsh conditions of gastrointestinal tract and releases it in the environment of the small intestine. SOD is encapsulated in zein-alginate nanoparticles (ZAN) via a phase separation method. We demonstrate that ZAN protect SOD from the harsh conditions of the stomach or small intestine condition. ZAN (200:40) at the weight ratio of 200mg zein to 40mg of alginate releases SOD in a pH dependent manner, and it releases 90.8±1.2% of encapsulated SOD at pH 7.4 in 2h, while only 11.4±0.4% of SOD was released at pH 1.3. The encapsulation efficiency of SOD in ZAN (200:40) was 62.1±2.0%. SOD in ZAN (200:40) reduced the intracellular ROS level and it saved 88.9±7.5% of Caco-2 cells from the toxic superoxide in 4 hours. Based on the results, zein-alginate based oral drug delivery systems will have numerous applications to drugs that are easily degradable in the harsh conditions of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System.

    Science.gov (United States)

    Liu, Min; Song, Xia; Wen, Yuting; Zhu, Jing-Ling; Li, Jun

    2017-10-18

    In this work, we have synthesized a thermoresponsive copolymer, alginate-g-poly(N-isopropylacrylamide) (alginate-g-PNIPAAm) by conjugating PNIPAAm to alginate, where PNIPAAm with different molecular weights and narrow molecular weight distribution was synthesized by atomic transfer radical polymerization. The copolymer dissolved in water or phosphate-buffered saline buffer solution at room temperature and formed self-assembled micelles with low critical micellization concentrations when the temperature increased to above their critical micellization temperatures. At higher concentration, that is, 7.4 wt % in water, the copolymer formed solutions at 25 °C and turned into thermosensitive hydrogels when temperature increased to the body temperature (37 °C). Herein, we hypothesized that the thermoresponsive hydrogels could produce self-assembled micelles with the dissolution of the alginate-g-PNIPAAm hydrogels in a biological fluid or drug release medium. If the drug was hydrophobic, the hydrogel eventually could release and produce drug-encapsulated micelles. In our experiments, we loaded the anticancer drug doxorubicin (DOX) into the alginate-g-PNIPAAm hydrogels and demonstrated that the hydrogels released DOX-encapsulated micelles in a sustained manner. The slowly released DOX-loaded micelles enhanced the cellular uptake of DOX in multidrug resistant AT3B-1 cells, showing the effect of overcoming the drug resistance and achieving better efficiency for killing the cancer cells. Therefore, the injectable thermoresponsive hydrogels formed by alginate-g-PNIPAAm and loaded with DOX turned into a smart drug delivery system, releasing DOX-encapsulated micelles in a sustained manner, showing great potential for overcoming the drug resistance in cancer therapy.

  5. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    Science.gov (United States)

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. Copyright © 2012 Wiley Periodicals, Inc.

  6. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  7. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    International Nuclear Information System (INIS)

    Wanyika, Harrison

    2013-01-01

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol–gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil

  8. A mucoadhesive in situ gel delivery system for paclitaxel.

    Science.gov (United States)

    Jauhari, Saurabh; Dash, Alekha K

    2006-06-02

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

  9. Biodegradable polyesters for veterinary drug delivery systems: Characterization, in vitro degradation and release behavior of Oligolactides and Polytartrate

    OpenAIRE

    Schliecker, Gesine

    2004-01-01

    This thesis deals with the degradation and release behavior of aliphatic polyesters with special respect to the influence of oligomers on the degradation rate and the potential use of these biomaterials for the development of veterinary drug delivery systems. In Chapter 1 the animal health care market is introduced with regard to opportunities and challenges of veterinary drug delivery systems. . In the second part of this chapter...

  10. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  11. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering.

    Science.gov (United States)

    Sefcik, Lauren S; Petrie Aronin, Caren E; Wieghaus, Kristen A; Botchwey, Edward A

    2008-07-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that impacts migration, proliferation, and survival in diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. In this study, we investigated the effects of sustained release of S1P on microvascular remodeling and associated bone defect healing in vivo. The murine dorsal skinfold window chamber model was used to evaluate the structural remodeling response of the microvasculature. Our results demonstrated that 1:400 (w/w) loading and subsequent sustained release of S1P from poly(lactic-co-glycolic acid) (PLAGA) significantly enhanced lumenal diameter expansion of arterioles and venules after 3 and 7 days. Incorporation of 5-bromo-2-deoxyuridine (BrdU) at day 7 revealed significant increases in mural cell proliferation in response to S1P delivery. Additionally, three-dimensional (3D) scaffolds loaded with S1P (1:400) were implanted into critical-size rat calvarial defects, and healing of bony defects was assessed by radiograph X-ray, microcomputed tomography (muCT), and histology. Sustained release of S1P significantly increased the formation of new bone after 2 and 6 weeks of healing and histological results suggest increased numbers of blood vessels in the defect site. Taken together, these experiments support the use of S1P delivery for promoting microvessel diameter expansion and improving the healing outcomes of tissue-engineered therapies.

  12. Cephradin-plaga microspheres for sustained delivery to cattle.

    Science.gov (United States)

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  13. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation

    Science.gov (United States)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou; Xu, Yingqian

    2014-02-01

    Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core-shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core-shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.

  14. Assay of 6-gingerol in CO2 supercritical fluid extracts of ginger and evaluation of its sustained release from a transdermal delivery system across rat skin.

    Science.gov (United States)

    Chen, Yan; Zhang, Cuiping; Zhang, Mei; Fu, Xiaobing

    2014-07-01

    Ginger has been widely used as healthy food condiment as well as traditional Chinese medicine since antiquity. Multiple potentials of ginger for treatment of various ailments have been revealed. However, the biological half-life of 6-gingerol (a principal pungent ingredient of ginger) is only 7.23 minutes while taken orally. Delivery of ginger compositions by routes other than oral have scarcely been reported. Therefore, we studied a noninvasive transdermal drug delivery system (TDDS) of ginger to bypass hepatic first pass metabolism, avoid gastrointestinal degradation and achieve long persistent release of effective compositions. After establishment of a HPLC analysis method of 6-gingerol, assays of 6-gingerol were performed to compare two kinds of ginger extracts. Then, the characteristics of transdermal delivery of 6-gingerol in TDDS were exhibited. The results showed that the contents of 6-gingerol in two kinds of ginger extracts were significantly different. The maximal delivery percentage of 6-gingerol across rat skin at 20 h was more than 40% in different TDDS formulations. TDDS may provide long-lasting delivery of ginger compounds.

  15. Taste masking of ofloxacin and formation of interpenetrating polymer network beads for sustained release

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2017-08-01

    Full Text Available The objective of this study was to carry out taste masking of ofloxacin (Ofl by ion exchange resins (IERs followed by sustained release of Ofl by forming interpenetrating polymer network (IPN beads. Drug-resin complexes (DRCs with three different ratios of Ofl to IERs (1:1, 1:2, 1:4 were prepared by batch method and investigated for in vivo and in vitro taste masking. DRC of methacrylic acid-divinyl benzene (MD resin and Ofl prepared at a ratio of 1:4 was used to form IPN beads. IPN beads of MD 1:4 were prepared by following the ionic cross-linking method using sodium carboxymethyl xanthan gum (SCMXG and SCMXG-sodium carboxymethyl cellulose (SCMXG-SCMC. IPN beads were characterized with FT-IR and further studied on sustained release of Ofl at different pH. In vivo taste masking carried out by human volunteers showed that MD 1:4 significantly reduced the bitterness of Ofl. Characterization studies such as FT-IR, DSC, P-XRD and taste masking showed that complex formation took place between drug and resin. In vitro study at gastric pH showed complete release of drug from MD 1:4 within 30 min whereas IPN beads took 5 h at gastric pH and 10 h at salivary pH for the complete release of drug. As the crosslinking increased the release kinetics changed into non-Fickian diffusion to zero-order release mechanism. MD 1:4 showed better performance for the taste masking of Ofl and IPNs beads prepared from it were found useful for the sustained release of Ofl at both the pH, indicating a versatile drug delivery system.

  16. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  17. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baomei; Yang, Xiaoye; Wang, Yang; Zhai, Guangxi, E-mail: professorgxzhai@126.com

    2017-06-01

    A novel nanocarrier of heparin (Hep) modified graphene oxide (GO) was fabricated via a linker (adipic dihydrazide) and used as a pH-sensitive drug delivery system for controlling the release of anticancer drug doxorubicin (DOX) for anti-tumor therapy. The finally obtained nanocarrier was GO-ADH-Hep with better stability, blood compatibility and biocompatibility confirmed by the hemolytic test and in vitro cytotoxicity study. Its safety issue was greatly improved via Hep modification. The amount of DOX loaded onto GO-ADH-Hep was significantly high and dependent on pH value. The release rate of DOX from GO- ADH-Hep/DOX was pH-sensitive and much-slower than that of free DOX solution suggesting the sustained drug-release capacity of this prepared nanocomplexes. In addition, the results of cytotoxicity study illustrated that this fabricated nanocomplexes displayed effective cytotoxicity to MCF-7 and HepG2 cells. What's more, the results of the in vivo pharmacokinetic study was also indicated that the GO-ADH-Hep/DOX nanocomplexes could significantly prolong the retention time of DOX in vivo and this was consistent with the in vitro drug release performance. And finally, according to the biodistribution study, DOX delivered by GO-ADH-Hep could reduce cardiotoxicity deriving from DOX solution and also decrease the pulmonary toxicity deriving from unmodified GO. Based on the in vitro and in vivo investigations, the fabricated GO-ADH-Hep could be a promising candidate as an ideal nano-carrier for drug delivery and anti-cancer therapy. - Highlights: • Firstly, a novel nanocarrier-GO-ADH-Hep was fabricated with improved stability, little cytotoxicity and little hemolysis ratio. • Secondly, GO-ADH-Hep was used to load the anticancer drug (DOX) with high drug loading and pH-sensitive sustained drug release. • Thirdly, the anti-cancer efficacy of GO-ADH-Hep/DOX was dose- and time-dependent in vitro. • Finally, according to the in vivo studies, this synthesized nano

  18. 19 CFR 12.114 - Release or refusal of delivery.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Release or refusal of delivery. 12.114 Section 12... delivery. If the completed Notice of Arrival directs the port director to release the shipment of... directs the port director to refuse delivery of the shipment, the shipment shall be refused delivery and...

  19. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  20. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  1. Real-time Monitoring of Sustained Drug Release using the Optical Properties of Porous Silicon Photonic Crystal Particles

    Science.gov (United States)

    Wu, E.C.; Andrew, J.S.; Cheng, L; Freeman, W.R.; Pearson, L; Sailor, M.J.

    2011-01-01

    A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 micrometers thick and 35 micrometers across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change. PMID:21122914

  2. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  3. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  4. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Shraddha Patel

    2015-12-01

    Full Text Available The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate were then mixed with poly-e-caprolactone (PLC using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties.

  5. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    Science.gov (United States)

    Patel, Shraddha; Jammalamadaka, Uday; Sun, Lin; Tappa, Karthik; Mills, David K.

    2015-01-01

    The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs) as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL) scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate) were then mixed with poly-e-caprolactone (PLC) using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties. PMID:28952563

  6. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  7. A New Drug Release Method in Early Development of Transdermal Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Bing Cai

    2012-01-01

    Full Text Available In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2 were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.

  8. 5-Fluorouracil Encapsulated Chitosan Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled Release Kinetics

    Directory of Open Access Journals (Sweden)

    R. Seda Tığlı Aydın

    2012-01-01

    Full Text Available Nanoparticles consisting of human therapeutic drugs are suggested as a promising strategy for targeted and localized drug delivery to tumor cells. In this study, 5-fluorouracil (5-FU encapsulated chitosan nanoparticles were prepared in order to investigate potentials of localized drug delivery for tumor environment due to pH sensitivity of chitosan nanoparticles. Optimization of chitosan and 5-FU encapsulated nanoparticles production revealed 148.8±1.1 nm and 243.1±17.9 nm particle size diameters with narrow size distributions, which are confirmed by scanning electron microscope (SEM images. The challenge was to investigate drug delivery of 5-FU encapsulated chitosan nanoparticles due to varied pH changes. To achieve this objective, pH sensitivity of prepared chitosan nanoparticle was evaluated and results showed a significant swelling response for pH 5 with particle diameter of ∼450 nm. In vitro release studies indicated a controlled and sustained release of 5-FU from chitosan nanoparticles with the release amounts of 29.1–60.8% due to varied pH environments after 408 h of the incubation period. pH sensitivity is confirmed by mathematical modeling of release kinetics since chitosan nanoparticles showed stimuli-induced release. Results suggested that 5-FU encapsulated chitosan nanoparticles can be launched as pH-responsive smart drug delivery agents for possible applications of cancer treatments.

  9. Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.

    Science.gov (United States)

    Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M

    2012-01-01

    Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.

  10. Formulation and In Vitro, In Vivo Evaluation of Effervescent Floating Sustained-Release Imatinib Mesylate Tablet

    Science.gov (United States)

    Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim

    2015-01-01

    concentration of plasma up to 24 hours. Conclusion In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy. PMID:26035710

  11. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet.

    Directory of Open Access Journals (Sweden)

    Ali Kadivar

    .In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy.

  12. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    Science.gov (United States)

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J.; Freeman, William R.; Cheng, Lingyun

    2015-01-01

    Purpose. To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Methods. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. Results. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Conclusions. Porous silicon–based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. PMID:25613937

  15. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2015-01-22

    To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Porous silicon-based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  16. Development of Ocular Delivery System for Glaucoma Therapy Using Natural Hydrogel as Film Forming Agent and Release Modifier.

    Science.gov (United States)

    Kulkarni, Giriraj T; Sethi, Nitin; Awasthi, Rajendra; Pawar, Vivek Kumar; Pahuja, Vineet

    2016-01-01

    Glaucoma is characterized by increased intraocular pressure, which results in damage to the optic nerve. The existing therapy with conventional eye drops is inefficient due to nasolachrymal drainage, resulting in a reduced corneal residence of the drug. The objective was to develop controlled-release ocular films of timolol maleate using natural hydrogel from Tamarindus indica seeds as a sustaining and film-forming agent, to overcome the problems associated with eye drops. The hydrogel was isolated using hot aqueous extraction followed by precipitation with ethanol. Six batches of ocular films were prepared and evaluated for drug content, weight variation, thickness, diameter and in vitro release profile. The ideal batch of the films was subjected to stability, pharmacodynamic and ocular safety studies. The yield of the hydrogel was 58.29%. The thickness of the ocular films was in the range of 0.17 to 0.25 mm and the weight of the films was found to increase with the increase in polymer content. The drug release from the films was found to be controlled over a period of 8 h. The films were found to be stable and were able to reduce the intraocular pressure for 24 h in a more efficient manner than the eye drops. The films were found to be practically non-irritating to the eye. It can be concluded that the hydrogel from tamarind seeds can be used as a film-forming and release-controlling agent for the development of an ocular drug delivery system for the effective therapy of glaucoma.

  17. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  18. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    Science.gov (United States)

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  19. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    Science.gov (United States)

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.

  20. Chitosan and its derivatives for application in mucoadhesive drug delivery systems

    OpenAIRE

    Ways, Twana Mohammed M.; Lau, Wing Man; Khutoryanskiy, Vitaliy V.

    2018-01-01

    Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major ...

  1. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems

    OpenAIRE

    Twana Mohammed M. Ways; Wing Man Lau; Vitaliy V. Khutoryanskiy

    2018-01-01

    Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major ...

  2. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  3. Development of Novel Protocol for Preclinical Monitoring the Release of Adjuvants Encapsulated Mucosal Delivery Carriers

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim-Saeed

    2015-12-01

    Full Text Available This work contributes in vaccines down-stream process by introducing a novel platform for in-vitro monitoring of vaccine-adjuvant delivery profile as a crucial preclinical optimizing step in mucosal vaccines. Nano and micro particles of Calcium phosphate (Cap vaccine-adjuvant were encapsulated in Chitosan and Alginate polymeric carriers. Adjuvants release profiles monitored in a permeable bag at 37°C, pH 2, incubated in isotonic buffer for 96 hours. The released Calcium in the outer buffer was monitored and compared in-addition to the carrier’s swelling and biophysical properties. The adjuvants and carriers did not interfere with the proliferation of cultured hepatocytes an indicator of their safe use; Chitosan’s viscosity and swelling were higher than Alginate. Chitosan’s Zeta-potential was significantly high positive, while Cap and Alginate were negative. The prepared CaP and Chitosan particles were in nano-size, while the ready-made CaP adjuvant and Alginate were in micro-size using zeta-seizer and scanning electron-micrograph. The release of nano-size particle was in ascending, extended and controlled manner compared to micro-size adjuvant. Moreover, nano-adjuvant release profile from Chitosan was superior compared to Alginate. The core controlling factors in vaccine-adjuvant sustained release includes; smaller adjuvant particles (nano-size, carrier’s low swelling, high viscosity and importantly carrier-adjuvant entrapment reversibility. Chitosan offers sustained ascending superior capacity in releasing Nano-Cap adjuvant. This novel in-vitro pre-clinical study answer a crucial downstream preparative step for optimizing mucosal vaccines before their direct routine in-vivo trial on animal regardless of adjuvant’s particle size or delivery kinetics.

  4. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat

    Directory of Open Access Journals (Sweden)

    Chunhui eJiang

    2015-11-01

    Full Text Available Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide (PLGA, a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue (WAT depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  5. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  6. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release.

    Science.gov (United States)

    Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing

    2017-05-01

    In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers.

    Science.gov (United States)

    Wang, Yan; Cui, Haixin; Sun, Changjiao; Zhao, Xiang; Cui, Bo

    2014-12-01

    Photolysis and poor solubility in water of Abamectin are key issues to be addressed, which causes low bioavailability and residual pollution. In this study, a novel hydrophilic delivery system through loading Abamectin with porous silica nanoparticles (Abam-PSNs) was developed in order to improve the chemical stability, dispersity, and the controlled release of Abamectin. These results suggest that Abam-PSNs can significantly improve the performance of controllable release, photostability, and water solubility of Abamectin by changing the porous structure of silica nanoparticles, which is favorable to improve the bioavailability and reduce the residues of pesticides.

  8. Applications of nanoparticle systems in drug delivery technology

    Directory of Open Access Journals (Sweden)

    Syed A.A. Rizvi

    2018-01-01

    Full Text Available The development of nanoparticle-based drug formulations has yielded the opportunities to address and treat challenging diseases. Nanoparticles vary in size but are generally ranging from 100 to 500 nm. Through the manipulation of size, surface characteristics and material used, the nanoparticles can be developed into smart systems, encasing therapeutic and imaging agents as well as bearing stealth property. Further, these systems can deliver drug to specific tissues and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug related toxicity and increase patient’s compliance with less frequent dosing. Nanotechnology has proven beneficial in the treatment of cancer, AIDS and many other disease, also providing advancement in diagnostic testing.

  9. Injectable nanocomposite cryogels for versatile protein drug delivery.

    Science.gov (United States)

    Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J

    2018-01-01

    Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of

  10. Development of Modified-Release Tablets of Zolpidem Tartrate by Biphasic Quick/Slow Delivery System

    OpenAIRE

    Mahapatra, Anjan Kumar; Sameeraja, N. H.; Murthy, P. N.

    2014-01-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium s...

  11. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    Science.gov (United States)

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    Directory of Open Access Journals (Sweden)

    Wei Li Lee

    Full Text Available Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone (PCL coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose. The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  13. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages.

    Science.gov (United States)

    Trousil, Jiří; Filippov, Sergey K; Hrubý, Martin; Mazel, Tomáš; Syrová, Zdeňka; Cmarko, Dušan; Svidenská, Silvie; Matějková, Jana; Kováčik, Lubomír; Porsch, Bedřich; Konefał, Rafał; Lund, Reidar; Nyström, Bo; Raška, Ivan; Štěpánek, Petr

    2017-01-01

    We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy

    International Nuclear Information System (INIS)

    Barreto, A. C. H.; Santiago, V. R.; Mazzetto, S. E.; Denardin, J. C.; Lavín, R.; Mele, Giuseppe; Ribeiro, M. E. N. P.; Vieira, Icaro G. P.; Gonçalves, Tamara; Ricardo, N. M. P. S.

    2011-01-01

    Quercetin belongs to the chemical class of flavonoids and can be found in many common foods, such as apples, nuts, berries, etc. It has been demonstrated that quercetin has a wide array of biological effects that are considered beneficial to health treatment, mainly as anticancer. However, therapeutic applications of quercetin have been restricted to oral administration due to its sparing solubility in water and instability in physiological medium. A drug delivery methodology was proposed in this work to study a new quercetin release system in the form of magnetite–quercetin–copolymer (MQC). These materials were characterized through XRD, TEM, IR, and Thermal analysis. In addition, the magnetization curves and quercetin releasing experiments were performed. It was observed a nanoparticle average diameter of 11.5 and 32.5 nm at Fe 3 O 4 and MQC, respectively. The presence of magnetic nanoparticles in this system offers the promise of targeting specific organs within the body. These results indicate the great potential for future applications of the MQC to be used as a new quercetin release system.

  15. Sustainable water deliveries from the Colorado River in a changing climate.

    Science.gov (United States)

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  16. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Science.gov (United States)

    Dubald, Marion; Bourgeois, Sandrine; Andrieu, Véronique; Fessi, Hatem

    2018-01-01

    The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. PMID:29342879

  17. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  18. Levodopa delivery systems: advancements in delivery of the gold standard.

    Science.gov (United States)

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the

  19. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer.

    Science.gov (United States)

    Segovia, Nathaly; Pont, Maria; Oliva, Nuria; Ramos, Victor; Borrós, Salvador; Artzi, Natalie

    2015-01-28

    Of all the much hyped and pricy cancer drugs, the benefits from the promising siRNA small molecule drugs are limited. Lack of efficient delivery vehicles that would release the drug locally, protect it from degradation, and ensure high transfection efficiency, precludes it from fulfilling its full potential. This work presents a novel platform for local and sustained delivery of siRNA with high transfection efficiencies both in vitro and in vivo in a breast cancer mice model. siRNA protection and high transfection efficiency are enabled by their encapsulation in oligopeptide-terminated poly(β-aminoester) (pBAE) nanoparticles. Sustained delivery of the siRNA is achieved by the enhanced stability of the nanoparticles when embedded in a hydrogel scaffold based on polyamidoamine (PAMAM) dendrimer cross-linked with dextran aldehyde. The combination of oligopeptide-terminated pBAE polymers and biodegradable hydrogels shows improved transfection efficiency in vivo even when compared with the most potent commercially available transfection reagents. These results highlight the advantage of using composite materials for successful delivery of these highly promising small molecules to combat cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    International Nuclear Information System (INIS)

    Cai, Yun; Ling, Li; Li, Xiaofang; Chen, Meng; Su, Likai

    2015-01-01

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe 3 O 4 nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N 2 adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe 3 O 4 core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s

  1. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yun; Ling, Li; Li, Xiaofang [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Chen, Meng [Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Su, Likai, E-mail: zhangdong19992003@163.com [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China)

    2015-03-15

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.

  2. Evaluation of poly(2-ethyl-2-oxazoline) containing copolymer networks of varied composition as sustained metoprolol tartrate delivery systems.

    Science.gov (United States)

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-08-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. Swelling kinetics of SCNs in various media was followed, and the conditions for effective MT loading were specified. MT-loaded SCNs with drug content up to 80 wt.% were produced. The release kinetics of metoprolol tartrate from the systems was studied and it was shown that the conetworks of different structure and composition are able to sustain the metoprolol tartrate release without additional excipients.

  3. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    Science.gov (United States)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  4. Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.

    Science.gov (United States)

    Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N

    2015-06-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.

  5. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    Science.gov (United States)

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya

    2017-01-01

    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  6. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  7. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    Science.gov (United States)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  8. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet; Sharma, Sumit; Sinha, VR, E-mail: sinha_vr@rediffmail.com

    2017-03-01

    Poly(lactic-co-glycolic acid) (PLGA) (75:25) and polycaprolactone (PCL) microspheres were fabricated for prolonged release of aceclofenac by parenteral administration. Microspheres encapsulating aceclofenac were designed to release the drug at controlled rate for around one month. Biodegradable microspheres were prepared by solvent emulsification evaporation method in different polymer:drug ratios (1:1, 2:1 and 3:1). After drug loading, PLGA and PCL microspheres showed a controlled size distribution with an average size of 11.75 μm and 3.81 μm respectively and entrapment efficiency in the range of 90 ± 0.72% to 91.06 ± 4.01% with PLGA and 83.01 ± 2.13% to 90.4 ± 2.11% with PCL. Scanning electron microscopy has confirmed good spherical structures of microspheres. The percent yield of biodegradable polymeric microspheres ranged between 30.95 ± 10.14% to 92.84 ± 3.15% and 47.33 ± 4.72% to 80 ± 3.60% for PLGA and PCL microspheres respectively. PLGA microspheres followed Higuchi release pattern while Korsmeyer-Peppas explained the release pattern of PCL microspheres. Stability studies of microspheres were also carried out by storing the preparations at 2-8 °C for 30, 60 and 90 days and evaluating them for entrapment efficiency, residual drug content and polymer drug compatability. In-vivo studies showed significant anti-inflammatory activity of microspheres upto 48 hours using the carrageenan induced rat paw oedema model. - Highlights: • PLGA and PCL polymeric microspheres for parenteral prolonged drug delivery system were formulated. • Polymeric microspheres were characterized physically and drug excipient incompatability. • Three months accelerated stability studies were carried for drug loaded polymeric microspheres. • Pharmacodynamic studies prove the rationality of sustained therapeutic effect of designed drug delivery system.

  9. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  10. 19 CFR 12.9 - Release for final delivery to consignee.

    Science.gov (United States)

    2010-04-01

    ...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Meat and Meat-Food Products § 12.9 Release for final delivery to consignee. No meat, meat-food products, or animal casings shall be released for final... 19 Customs Duties 1 2010-04-01 2010-04-01 false Release for final delivery to consignee. 12.9...

  11. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  12. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-23

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  13. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-17

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  14. Bypassing the EPR effect with a nanomedicine harboring a sustained-release function allows better tumor control.

    Science.gov (United States)

    Shen, Yao An; Shyu, Ing Luen; Lu, Maggie; He, Chun Lin; Hsu, Yen Mei; Liang, Hsiang Fa; Liu, Chih Peng; Liu, Ren Shyan; Shen, Biing Jiun; Wei, Yau Huei; Chuang, Chi Mu

    2015-01-01

    The current enhanced permeability and retention (EPR)-based approved nanomedicines have had little impact in terms of prolongation of overall survival in patients with cancer. For example, the two Phase III trials comparing Doxil(®), the first nanomedicine approved by the US Food and Drug Administration, with free doxorubicin did not find an actual translation of the EPR effect into a statistically significant increase in overall survival but did show less cardiotoxicity. In the current work, we used a two-factor factorial experimental design with intraperitoneal versus intravenous delivery and nanomedicine versus free drug as factors to test our hypothesis that regional (intraperitoneal) delivery of nanomedicine may better increase survival when compared with systemic delivery. In this study, we demonstrate that bypassing, rather than exploiting, the EPR effect via intraperitoneal delivery of nanomedicine harboring a sustained-release function demonstrates dual pharmacokinetic advantages, producing more efficient tumor control and suppressing the expression of stemness markers, epithelial-mesenchymal transition, angiogenesis signals, and multidrug resistance in the tumor microenvironment. Metastases to vital organs (eg, lung, liver, and lymphatic system) are also better controlled by intraperitoneal delivery of nanomedicine than by standard systemic delivery of the corresponding free drug. Moreover, the intraperitoneal delivery of nanomedicine has the potential to replace hyperthermic intraperitoneal chemotherapy because it shows equal efficacy and lower toxicity. In terms of efficacy, exploiting the EPR effect may not be the best approach for developing a nanomedicine. Because intraperitoneal chemotherapy is a type of regional chemotherapy, the pharmaceutical industry might consider the regional delivery of nanomedicine as a valid alternative pathway to develop their nanomedicine(s) with the goal of better tumor control in the future.

  15. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  16. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system.

    Science.gov (United States)

    Rachmawati, Heni; Arvin, Yang Aryani; Asyarie, Sukmadjaja; Anggadiredja, Kusnandar; Tjandrawinata, Raymond Rubianto; Storm, Gert

    2018-06-01

    Bupivacaine HCl (1-butyl-2',6'-pipecoloxylidide hydrochloride), an amide local anesthetic compound, is a local anesthetic drug utilized for intraoperative local anesthesia, post-operative analgesia and in the treatment of chronic pain. However, its utility is limited by the relative short duration of analgesia after local administration (approximately 9 h after direct injection) and risk for side effects. This work is aimed to develop a nanoemulsion of bupivacaine HCl with sustained local anesthetics release kinetics for improved pain management, by exhibiting extended analgesic action and providing reduced peak levels in the circulation to minimize side effects. Herein, biodegradable oils were evaluated for use in nanoemulsions to enable sustained release kinetics of bupivacaine HCl. Only with castor oil, a clear and stable nanoemulsion was obtained without the occurrence of phase separation over a period of 3 months. High loading of bupivacaine HCl into the castor oil-based nanoemulsion system was achieved with about 98% entrapment efficiency and the resulting formulation showed high stability under stress conditions (accelerated stability test) regarding changes in visual appearance, drug content, and droplet size. We show herein that the in vitro release and in vivo pharmacokinetic profiles as well as pharmacodynamic outcome (pain relief test) after subcutaneous administration in rats correlate well and clearly demonstrate the prolonged release and extended duration of activity of our novel nanoformulation. In addition, the lower C max value achieved in the blood compartment suggests the possibility that the risk for systemic side effects is reduced. We conclude that castor oil-based nanomulsion represents an attractive pain treatment possibility to achieve prolonged local action of bupivacaine HCl.

  17. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  18. Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine

    Science.gov (United States)

    Chen, Yufei; Traore, Yannick Leandre; Li, Amanda; Fowke, Keith R; Ho, Emmanuel A

    2014-01-01

    Hydroxychloroquine (HCQ) has been shown to demonstrate anti-inflammatory properties and direct anti-HIV activity. In this study, we describe for the first time the fabrication and in vitro evaluation of two types of intravaginal ring (IVR) devices (a surfaced-modified matrix IVR and a reservoir segmental IVR) for achieving sustained delivery (>14 days) of HCQ as a strategy for preventing male-to-female transmission of HIV. Both IVRs were fabricated by hot-melt injection molding. Surface-modified matrix IVRs with polyvinylpyrrolidone or poly(vinyl alcohol) coatings exhibited significantly reduced burst release on the first day (6.45% and 15.72% reduction, respectively). Reservoir IVR segments designed to release lower amounts of HCQ displayed near-zero-order release kinetics with an average release rate of 28.38 μg/mL per day for IVRs loaded with aqueous HCQ and 32.23 μg/mL per day for IVRs loaded with HCQ mixed with a rate-controlling excipient. Stability studies demonstrated that HCQ was stable in coated or noncoated IVRs for 30 days. The IVR segments had no significant effect on cell viability, pro-inflammatory cytokine production, or colony formation of vaginal and ectocervical epithelial cells. Both IVR systems may be suitable for the prevention of HIV transmission and other sexually transmitted infections. PMID:25336923

  19. Application of ion exchange resin in floating drug delivery system.

    Science.gov (United States)

    Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant

    2008-10-01

    The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.

  20. Encapsulated oligodendrocyte precursor cell fate is dependent on PDGF-AA release kinetics in a 3D microparticle-hydrogel drug delivery system.

    Science.gov (United States)

    Pinezich, Meghan R; Russell, Lauren N; Murphy, Nicholas P; Lampe, Kyle J

    2018-04-16

    Biomaterial drug delivery systems (DDS) can be used to regulate growth factor release and combat the limited intrinsic regeneration capabilities of central nervous system (CNS) tissue following injury and disease. Of particular interest are systems that aid in oligodendrocyte regeneration, as oligodendrocytes generate myelin which surrounds neuronal axons and helps transmit signals throughout the CNS. Oligodendrocyte precursor cells (OPCs) are found in small numbers in the adult CNS, but are unable to effectively differentiate following CNS injury. Delivery of signaling molecules can initiate a favorable OPC response, such as proliferation or differentiation. Here, we investigate the delivery of one such molecule, platelet derived growth factor-AA (PDGF-AA), from poly(lactic-co-glycolic) acid microparticles to OPCs in a 3D polyethylene glycol-based hydrogel. The goal of this DDS was to better understand the relationship between PDGF-AA release kinetics and OPC fate. The system approximates native brain tissue stiffness, while incorporating PDGF-AA under seven different delivery scenarios. Within this DDS, supply of PDGF-AA followed by PDGF-AA withdrawal caused OPCs to upregulate gene expression of myelin basic protein (MBP) by factors of 1.6-9.2, whereas continuous supply of PDGF-AA caused OPCs to remain proliferative. At the protein expression level, we observed an upregulation in O1, a marker for mature oligodendrocytes. Together, these results show that burst release followed by withdrawal of PDGF-AA from a hydrogel DDS stimulates survival, proliferation, and differentiation of OPCs in vitro. Our results could inform the development of improved neural regeneration strategies that incorporate delivery of PDGF-AA to the injured CNS. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  1. Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Li, Qianqi; Han, Lin; Zhong, Yinghui

    2015-01-01

    Cortical neural prostheses (CNPs) hold great promise for paralyzed patients by recording neural signals from the brain and translating them into movement commands. However, these electrodes normally fail to record neural signals weeks to months after implantation due to inflammation and neuronal loss around the implanted neural electrodes. Sustained local delivery of neurotrophins from biocompatible coatings on CNPs can potentially promote neuron survival and attract the nearby neurons to migrate toward the electrodes to increase neuron density at the electrode/brain interface, which is important for maintaining the recording quality and long-term performance of the implanted CNPs. However, sustained release of neurotrophins from biocompatible ultrathin coatings is very difficult to achieve. In this study, we investigated the potential of several biocompatible natural polyanions including heparin, dextran sulfate, and gelatin to form layer-by-layer (LbL) assembly with positively charged neurotrophin nerve growth factor (NGF) and its model protein lysozyme, and whether sustained release of NGF and lysozyme can be achieved from the nanoscale thin LbL coatings. We found that gelatin, which is less negatively charged than heparin and dextran sulfate, showed the highest efficacy in loading proteins into the LbL films because other interactions in addition to electrostatic interactions were involved in LbL assembly. Sustained release of NGF and lysozymes for approximately 2 weeks was achieved from the gelatin-based LbL coatings. Released NGF maintained the bioactivity to stimulate neurite outgrowth from PC12 cells. Gelatin is generally recognized as safe by the FDA. Thus, the biocompatible LbL coating developed in this study is highly promising to be used for implanted CNPs to improve their long-term performance in human patients. (paper)

  2. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Directory of Open Access Journals (Sweden)

    Mareike Hütten

    Full Text Available Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX. To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  3. Pharmacokinetic profile of a sustained-delivery system for physostigmine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 04-01, Singapore 138669 (Singapore)

    2006-07-25

    Physostigmine (PHY) is involved in clinical treatments of glaucoma, Alzheimer's disease and has been suggested as an alternative prophylactic treatment against organophosphate poisoning. However, one of the therapeutic uses of physostigmine is limited by short elimination half-life. In this study, PHY-loaded microparticles, prepared by a spray-drying method with biodegradable poly(D,L-lactide-co-glycolide) (PLGA) with a size ranging from 1 to 5 {mu}M was developed on a sustained release preparation to prevent multiple dosing and yet maintaining constant plasma level. The release of PHY-loaded microparticles was characterized in vitro and in vivo after oral administration in Sprague-Dawley rats. After oral administration of physostigmine-loaded microparticles in rats, the time course of physostigmine in blood plasma was followed over 48 h and samples were analysed using a validated high-performance liquid chromatography (HPLC) assay. In the pharmacokinetics profile of physostigmine for the elimination half-life and area-under-curve, PHY release was sustained in vitro for over 1 week with a low initial burst release. The pharmacokinetics results show a 15-fold increase in the elimination half-life of physostigmine microparticle formulation, coupled with a larger area under the concentration-time curve (AUC), without affecting the peak concentration and the latency to peak concentration, when compared to the standard formulation.

  4. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  5. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  6. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    Science.gov (United States)

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Segmented polyurethane intravaginal rings for the sustained combined delivery of antiretroviral agents dapivirine and tenofovir.

    Science.gov (United States)

    Johnson, Todd J; Gupta, Kavita M; Fabian, Judit; Albright, Theodore H; Kiser, Patrick F

    2010-02-19

    Dual segment polyurethane intravaginal rings (IVRs) were fabricated to enable sustained release of antiretroviral agents dapivirine and tenofovir to prevent the male to female sexual transmission of the human immunodeficiency virus. Due to the contrasting hydrophilicity of the two drugs, dapivirine and tenofovir were separately formulated into polymers with matching hydrophilicity via solvent casting and hot melt extrusion. The resultant drug loaded rods were then joined together to form dual segment IVRs. Compression testing of the IVRs revealed that they are mechanically comparable to the widely accepted NuvaRing IVR. Physical characterization of the individual IVR segments using wide angle X-ray scattering and differential scanning calorimetry determined that dapivirine and tenofovir are amorphous and crystalline within their polymeric segments, respectively. In vitro release of tenofovir from the dual segment IVR was sustained over 30 days while dapivirine exhibited linear release over the time period. A 90 day accelerated stability study confirmed that dapivirine and tenofovir are stable in the IVR formulation. Altogether, these results suggest that multisegment polyurethane IVRs are an attractive formulation for the sustained vaginal delivery of drugs with contrasting hydrophilicity such as dapivirine and tenofovir. 2009 Elsevier B.V. All rights reserved.

  8. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Formulation of Sustained-Release Diltiazem Matrix Tablets Using Hydrophilic Gum Blends. A Moin, H.G Shivakumar. Abstract. Purpose: To develop sustained release matrix tablets of diltiazem hydrochloride (DTZ) using karaya gum (K) alone or in combination with locust bean gum (LB) and hydroxypropyl methylcellulose ...

  9. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview

    OpenAIRE

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Gra?a

    2017-01-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and ...

  10. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  11. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens.

    Science.gov (United States)

    Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui

    2018-06-10

    In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding

    2016-12-01

    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  13. Magnetothermal release of payload from iron oxide/silica drug delivery agents

    Energy Technology Data Exchange (ETDEWEB)

    Luong, T.T., E-mail: thientai.luong@chem.kuleuven.be [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Hanoi National University of Education, Faculty of Chemistry, Xuan Thuy 136, Cau Giay, Hanoi (Viet Nam); Knoppe, S.; Bloemen, M.; Brullot, W.; Strobbe, R. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Locquet, J.-P. [KU Leuven, Department of Physics, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Verbiest, T. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium)

    2016-10-15

    The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. The system acts as a model to study drug delivery and payload release under magnetothermal heating. - Graphical abstract: The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. - Highlights: • Iron oxide/mesoporous-SiO{sub 2} core-shell NPs were synthesized. • The dye was covalently bound to SiO{sub 2} shells. • The release of dye under magnetothermal heating was studied. • The results are relevant for controlled drug release.

  14. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy.

    Science.gov (United States)

    Nittayacharn, Pinunta; Nasongkla, Norased

    2017-07-01

    The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human

  15. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh.

    Science.gov (United States)

    Long, Danhong; Gong, Tao; Zhang, Zhirong; Ding, Rui; Fu, Yao

    2016-07-01

    A phospholipid-based injectable gel was developed for the sustained delivery of leuprolide acetate (LA). The gel system was prepared using biocompatible materials (SPME), including soya phosphatidyl choline (SPC), medium chain triglyceride (MCT) and ethanol. The system displayed a sol state with low viscosity in vitro and underwent in situ gelation in vivo after subcutaneous injection. An in vitro release study was performed using a dialysis setup with different release media containing different percentages of ethanol. The stability of LA in the SPME system was investigated under different temperatures and in the presence of various antioxidants. In vivo studies in male rats were performed to elucidate the pharmacokinetic profiles and pharmacodynamic efficacy. A sustained release of LA for 28 days was observed without obvious initial burst in vivo. The pharmacodynamic study showed that once-a-month injection of LA-loaded SPME (SPME-LA) led to comparable suppression effects on the serum testosterone level as observed in LA solution except for the onset time. These findings demonstrate excellent potential for this novel SPME system as a sustained release delivery system for LA.

  18. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  19. Design Project on Controlled-Release Drug Delivery Devices: Implementation, Management, and Learning Experiences

    Science.gov (United States)

    Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa

    2010-01-01

    A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…

  20. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications

    Directory of Open Access Journals (Sweden)

    Wang Q

    2016-12-01

    Full Text Available Qun Wang,1,2,* Jian-Ying Huang,2,* Hua-Qiong Li,3,4 Allan Zi-Jian Zhao,4 Yi Wang,4 Ke-Qin Zhang,2,5 Hong-Tao Sun,1 Yue-Kun Lai,2,5 1College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 3Institute of Biomaterials and Engineering, Wenzhou Medical University, 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 5Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: To address the limitations of traditional drug delivery, TiO2 nanotubes (TNTs are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future. Keywords: TiO2 nanotubes, electrochemical anodization, modification, stimulated drug delivery, drug-releasing implant

  1. New perspectives in cell delivery systems for tissue regeneration: natural-derived injectable hydrogels.

    Science.gov (United States)

    Munarin, Fabiola; Petrini, Paola; Bozzini, Sabrina; Tanzi, Maria Cristina

    2012-09-27

    Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.

  2. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  3. Benchmarking Sustainability Practices Use throughout Industrial Construction Project Delivery

    Directory of Open Access Journals (Sweden)

    Sungmin Yun

    2017-06-01

    Full Text Available Despite the efforts for sustainability studies in building and infrastructure construction, the sustainability issues in industrial construction remain understudied. Further, few studies evaluate sustainability and benchmark sustainability issues in industrial construction from a management perspective. This study presents a phase-based benchmarking framework for evaluating sustainability practices use focusing on industrial facilities project. Based on the framework, this study quantifies and assesses sustainability practices use, and further sorts the results by project phase and major project characteristics, including project type, project nature, and project delivery method. The results show that sustainability practices were implemented higher in the construction and startup phases relative to other phases, with a very broad range. An assessment by project type and project nature showed significant differences in sustainability practices use, but no significant difference in practices use by project delivery method. This study contributes to providing a benchmarking method for sustainability practices in industrial facilities projects at the project phase level. This study also discusses and provides an application of phase-based benchmarking for sustainability in industrial construction.

  4. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  5. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  6. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications

    International Nuclear Information System (INIS)

    Desai, Salil; Perkins, Jessica; Harrison, Benjamin S.; Sankar, Jag

    2010-01-01

    Drug delivery and dosage concentrations are considered as major focal points in conventional as well as battlefield emergency medicine. The concept of localizing drug delivery via microcapsules is an evolving field to confine the adverse side effects of high concentration drug doses. This paper focuses on understanding release kinetics through biopolymer microcapsules for time-dependent drug release. Calcium alginate microcapsules were manufactured using a direct-write inkjet technique. Rhodamine 6G was used as the release agent to observe the release kinetics from calcium alginate beads in distilled water. A design of experiments was constructed to compare the effect of the microcapsule diameter and different concentrations of calcium chloride (M) and sodium alginate (%, w/v) solutions on the release kinetics profiles of the microcapsules. This research gives insight to identify favorable sizes of microcapsules and concentrations of sodium alginate and calcium chloride solutions for controlled release behavior of drug delivery microcapsules.

  7. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  8. Characterization of gelation process and drug release profile of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen.

    Science.gov (United States)

    Djekic, Ljiljana; Krajisnik, Danina; Martinovic, Martina; Djordjevic, Dragana; Primorac, Marija

    2015-07-25

    Suitability of liquid lecithin (i.e., solution of lecithin in soy bean oil with ∼ 60% w/w of phospholipids) for formation of gels, upon addition of water solution of poloxamer 407, was investigated, and formulated systems were evaluated as carriers for percutaneous delivery of ibuprofen. Formulation study of pseudo-ternary system liquid lecithin/poloxamer 407/water at constant liquid lecithin/poloxamer 407 mass ratio (2.0) revealed that minimum concentrations of liquid lecithin and poloxamer 407 required for formation of gel like systems were 15.75% w/w and 13.13% w/w, respectively, while the maximum content of water was 60.62% w/w. The systems comprising water concentrations in a range from 55 to 60.62% w/w were soft semisolids suitable for topical application, and they were selected for physicochemical and biopharmaceutical evaluation. Analysis of conductivity results and light microscopy examination revealed that investigated systems were water dilutable dispersions of spherical oligolamellar associates of phospholipids and triglyceride molecules in the copolymer water solution. Rheological behavior evaluation results indicated that the investigated gels were thermosensitive shear thinning systems. Ibuprofen (5% w/w) was incorporated by dispersing into the previously prepared carriers. Drug-loaded systems were physically stable at storage temperature from 5 ± 3°C to 40 ± 2°C, for 30 days. In vitro ibuprofen release was in accordance with the Higuchi model (rH>0.95) and sustained for 12h. The obtained results implicated that formulated LLPBGs, optimized regarding drug release and organoleptic properties, represent promising carriers for sustained percutaneous drug delivery of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel.

    Science.gov (United States)

    Ozeki, Tetsuya; Kaneko, Daiki; Hashizawa, Kosuke; Imai, Yoshihiro; Tagami, Tatsuaki; Okada, Hiroaki

    2012-05-10

    A local drug delivery system based on sustained drug release is an attractive approach to treat brain tumors. We have developed a novel device using drug-incorporated poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in thermoreversible gelation polymer (TGP) formulation (drug/PLGA/TGP formulation). TGP forms a gel at body temperature but sol at room temperature. Therefore, when this formulation is injected into the brain tumor, the PLGA microspheres in TGP gel are localized at the injection site and do not diffuse throughout the brain tissue; eventually, sustained drug release from PLGA microspheres is achieved at the target site. In this study, two chemotherapeutic drugs (camptothecin (CPT) or vincristine (VCR)) were incorporated into PLGA microspheres to prepare drug/PLGA/TGP formulations. VCR/PLGA microspheres exhibited the higher encapsulation efficiency than CPT/PLGA microspheres (70.1% versus 30.1%). In addition, VCR/PLGA microspheres showed a higher sustained release profile than CPT/PLGA microspheres (54.5% versus 72.5% release, at 28 days). Therapeutic effect (mean survival) was evaluated in the C6 rat glioma model (control group, 18 days; CPT/PLGA/TGP treatment group, 24 days; VCR/PLGA/TGP treatment group, 33 days). In particular, the VCR/PLGA/TGP formulation produced long-term survivors (>60 days). Therefore, this formulation can be therapeutically effective formulation for the glioma therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  11. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Farahnaz Barahuie

    2014-05-01

    Full Text Available Layered hydroxides (LHs have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.

  12. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    Science.gov (United States)

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  13. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh

    Directory of Open Access Journals (Sweden)

    Danhong Long

    2016-07-01

    Full Text Available A phospholipid-based injectable gel was developed for the sustained delivery of leuprolide acetate (LA. The gel system was prepared using biocompatible materials (SPME, including soya phosphatidyl choline (SPC, medium chain triglyceride (MCT and ethanol. The system displayed a sol state with low viscosity in vitro and underwent in situ gelation in vivo after subcutaneous injection. An in vitro release study was performed using a dialysis setup with different release media containing different percentages of ethanol. The stability of LA in the SPME system was investigated under different temperatures and in the presence of various antioxidants. In vivo studies in male rats were performed to elucidate the pharmacokinetic profiles and pharmacodynamic efficacy. A sustained release of LA for 28 days was observed without obvious initial burst in vivo. The pharmacodynamic study showed that once-a-month injection of LA-loaded SPME (SPME-LA led to comparable suppression effects on the serum testosterone level as observed in LA solution except for the onset time. These findings demonstrate excellent potential for this novel SPME system as a sustained release delivery system for LA.

  14. Development and in vitro evaluation of diclofenac sodium loaded mucoadhesive microsphere with natural gum for sustained delivery.

    Science.gov (United States)

    Amin, Md Lutful; Jesmeen, Tasbira; Sutradhar, Kumar Bishwajit; Mannan, Md Abdul

    2013-12-01

    The objective of this study was to develop and evaluate mucoadhesive microsphere of diclofenac sodium with natural gums for sustained delivery. Guar gum and tragacanth were used along with sodium alginate as mucoadhesive polymers. Microspheres were formulated using orifice-ionic gelation method. Particle size, surface morphology, swelling study and drug entrapment efficiency of the prepared microspheres were determined. In vitro evaluation was carried out comprising of mucoadhesion and drug release study. The prepared microspheres were discrete and free flowing. Sodium alginate and natural gum, at a ratio of 1:0.25, showed good mucoadhesive property and they had high drug entrapment efficiencies. They also exhibited the best rate retarding effect among all the formulations. Drug entrapment efficiency of all the microspheres ranged from 80.42% to 91.67%. An inverse relationship was found between extent of crosslinking and drug release rate. Release rate was slow and extended in case of the formulations of 1:0.25 ratio (F1 and F3), releasing 68.36% and 70.56% drug respectively after 8 hours. Tragacanth-containing microspheres of F1 showed superiority over other formulations, with best mucoadhesive and rate retarding profile. The correlation value (r(2)) indicated that the drug release of all the formulations followed Higuchi's model. Overall, the results indicated that mucoadhesive microspheres containing natural gum can be promising in terms of prolonged delivery with good mucoadhesive action, targeting the absorption site to thrive oral drug delivery.

  15. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Klapková, E.; Horný, L.; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, R.; Veselý, J.; Chlup, H.; Denk, František

    2016-01-01

    Roč. 105, č. 3 (2016), 1288-1294 ISSN 0022-3549 R&D Projects: GA TA ČR(CZ) TA04010330 Institutional support: RVO:67985891 Keywords : anti-infectives * HPLC * coating * controlled release * degradation products * drug delivery systems * nanoparticles * pharmacokinetics * polymeric drug delivery systems Subject RIV: JI - Composite Materials Impact factor: 2.713, year: 2016

  16. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    Science.gov (United States)

    Wang, Chan; Lv, Piping; Wei, Wei; Tao, Shengyang; Hu, Tao; Yang, Jingbang; Meng, Changgong

    2011-10-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m2 g - 1, a pore size of 1.91 nm and a saturation magnetization of 32 emu g - 1. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  17. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    International Nuclear Information System (INIS)

    Wang Chan; Tao Shengyang; Hu Tao; Yang Jingbang; Meng Changgong; Lv Piping; Wei Wei

    2011-01-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N 2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m 2 g -1 , a pore size of 1.91 nm and a saturation magnetization of 32 emu g -1 . Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  18. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  19. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems.

    Science.gov (United States)

    Ueda, H; Hacker, M C; Haesslein, A; Jo, S; Ammon, D M; Borazjani, R N; Kunzler, J F; Salamone, J C; Mikos, A G

    2007-12-01

    This study sought to develop an injectable formulation for long-term ocular delivery of fluocinolone acetonide (FA) by dissolving the anti-inflammatory drug and the biodegradable polymer poly(propylene fumarate) (PPF) in the biocompatible, water-miscible, organic solvent N-methyl-2-pyrrolidone (NMP). Upon injection of the solution into an aqueous environment, a FA-loaded PPF matrix is precipitated in situ through the diffusion/extraction of NMP into surrounding aqueous fluids. Fabrication of the matrices and in vitro release studies were performed in phosphate buffered saline at 37 degrees C. Drug loadings up to 5% were achieved. High performance liquid chromatography was employed to determine the released amount of FA. The effects of drug loading, PPF content of the injectable formulation, and additional photo-crosslinking of the matrix surface were investigated. Overall, FA release was sustained in vitro over up to 400 days. After an initial burst release of 22 to 68% of initial FA loading, controlled drug release driven by diffusion and bulk erosion was observed. Drug release rates in a therapeutic range were demonstrated. Release kinetics were found to be dependent on drug loading, formulation PPF content, and extent of surface crosslinking. The results suggest that injectable, in situ formed PPF matrices are promising candidates for the formulation of long-term, controlled delivery devices for intraocular drug delivery. Copyright 2007 Wiley Periodicals, Inc.

  20. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system.

    Science.gov (United States)

    Barahuie, Farahnaz; Dorniani, Dena; Saifullah, Bullo; Gothai, Sivapragasam; Hussein, Mohd Zobir; Pandurangan, Ashok Kumar; Arulselvan, Palanisamy; Norhaizan, Mohd Esa

    2017-01-01

    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.

  1. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  2. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    Science.gov (United States)

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  3. Natural polymers, gums and mucilages as excipients in drug delivery.

    Science.gov (United States)

    Kumar, Shobhit; Gupta, Satish Kumar

    2012-01-01

    Use of natural polymers, gums and mucilages in drug delivery systems has been weighed down by the synthetic materials. Natural based excipients offered advantages such as non-toxicity, less cost and abundantly availablity. Aqueous solubility of natural excipients plays an important role in their selection for designing immediate, controlled or sustained release formulations. This review article provide an overview of natural gum, polymers and mucilages as excipients in dosage forms as well as novel drug delivery systems.

  4. [Sustained-release progesterone vaginal suppositories 3-development and clinical feasibility testing].

    Science.gov (United States)

    Nakayama, Ayako; Yamaguchi, Naho; Ohno, Yukiko; Miyata, Chihiro; Kondo, Haruomi; Sunada, Hisakazu; Okamoto, Hirokazu

    2013-01-01

      Although progesterone vaginal suppositories (hospital-formulated) are used for the treatment of infertility, their half-life is so short that multiple doses are required. In this study, we aimed to develop sustained-release vaginal suppositories suitable for clinical use which maintain an effective blood concentration by once-a-day treatment, and prepared 7 types of suppository containing the sustained-release progesterone tablets to characterize their sustained-release performance. We selected one candidate suppository among them, taking recovery rate, reproducibility, and hardness, as well as the sustained-release performance into consideration. The shell of the selected suppository is composed of VOSCO S-55 and progesterone for rapid release. The molded progesterone tablets for sustained release were embedded inside. The distribution of the weight and content of the suppository was limited, and the release rate of progesterone was significantly slower than that of a conventional progesterone suppository prepared in our hospital. The single-dose administration of the selected suppository to five healthy volunteers led to significant extension of the blood concentration. We also confirmed the rise of the basic value by multiple administration. The simulation comparison suggested that the blood progesterone concentration is controlled by once-a-day administration of the selected suppository better than twice-a-day administration of the conventional suppository. In conclusion, the sustained-release vaginal suppository prepared in this study was considered to be useful for clinical treatment.

  5. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor

    2015-10-01

    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  6. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  7. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    Directory of Open Access Journals (Sweden)

    Dharani Manickavasagam

    2013-01-01

    Full Text Available Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure. However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a patient tolerability and acceptance, (b drug stability and drug release profiles, (c therapeutic efficacy, and (d toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.

  8. [Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats].

    Science.gov (United States)

    Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming

    2016-03-01

    To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.

  9. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  10. pH- and thermo-responsive microcontainers as potential drug delivery systems: Morphological characteristic, release and cytotoxicity studies.

    Science.gov (United States)

    Efthimiadou, Eleni K; Tapeinos, Christos; Tziveleka, Leto-Aikaterini; Boukos, Nikos; Kordas, George

    2014-04-01

    Polymeric pH- and thermo-sensitive microcontainers (MCs) were developed as a potential drug delivery system for cancer therapy. It is well known that cancer cells exhibit notable characteristics such as acidic pH due to glycolytic cycle and higher temperature due to their higher proliferation rate. Based on these characteristics, we constructed a dual pH- and thermo-sensitive material for specific drug release on the pathological tissue. The MC's fabrication is based on a two-step procedure, in which, the first step involves the core synthesis and the second one is related to the shell formation. The core consists of poly(methyl methacrylate (PMMA), while the shell consists of PMMA, poly(isopropylacrylamide), poly(acrylic acid) and poly(divinylbenzene). Three different types of MCs were synthesized based on the seed polymerization method. The synthesized MCs were characterized structurally by Fourier transform infrared and morphologically by scanning electron microscopy. Dynamic light scattering was also used to study their behavior in aqueous solution under different pH and temperature conditions. For the loading and release study, the anthracycline drug daunorubicin (DNR) was used as a model drug, and its release properties were evaluated under different pH and thermo-conditions. Cytotoxicity studies were also carried out against MCF-7 breast cancer and 3T3 mouse embryonic fibroblast cells. According to our results, the synthesized microcontainers present desired pH and thermo behavior and can be applied in drug delivery systems. It is worth mentioning that the synthesized microcontainers which incorporated the drug DNR exhibit higher toxicity than the free drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy.

    Science.gov (United States)

    Ailincai, Daniela; Tartau Mititelu, Liliana; Marin, Luminita

    2018-11-01

    A series of drug delivery systems were prepared by chitosan hydrogelation with citral in the presence of an antineoplastic drug: 5-fluorouracil. The dynamic covalent chemistry of the imine linkage allowed the obtaining of supramolecular tridimensional architectures in which the drug has been homogenously dispersed. Fourier-transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXRD) and polarized light microscopy (POM) measurements were used in order to follow the hydrogelation and drug encapsulation processes. The ability of the prepared systems to release the drug has been investigated by UV-Vis spectroscopy using a calibration curve and by fitting the results with different mathematic models. To mimic the behavior of the hydrogel matrix in bio-environmental conditions in view of applications, their enzymatic degradability was monitored in the presence of lysozyme. The in vivo side effects of the systems, in terms of their influence on the blood elements, biochemical and immune parameters were monitored on white Swiss mice by intraperitoneal administration of the injectable obtained hydrogels. All the characteristics of the obtained systems, such as micro-porous morphology, uniform drug encapsulation, enzymatic degradability, lack of side effects, other than the one of the drug itself, along with their ability to release the drug in a sustained manner proved that these material meet the requirements for the development of drug delivery systems, making them suitable for being applied in intraperitoneal chemotherapy.

  12. Hydrocolloid-based nutraceutical delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Janaswamy, Srinivas; Youngren, Susanne R. (Purdue)

    2012-07-11

    Nutraceuticals are important due to their inherent health benefits. However, utilization and consumption are limited by their poor water solubility and instability at normal processing and storage conditions. Herein, we propose an elegant and novel approach for the delivery of nutraceuticals in their active form using hydrocolloid matrices that are inexpensive and non-toxic with generally recognized as safe (GRAS) status. Iota-carrageenan and curcumin have been chosen as models of hydrocolloid and nutraceutical compounds, respectively. The iota-carrageenan network maintains a stable organization after encapsulating curcumin molecules, protects them from melting and then releases them in a sustained manner. These findings lay a strong foundation for developing value-added functional and medicinal foods.

  13. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  14. Architecting for Sustainable Software Delivery

    Science.gov (United States)

    2012-06-01

    14 CrossTalk—May/June 2012 RAPID AND AGILE STABILITY Architecting for Sustainable Software Delivery Ronald J. Koontz , Boeing Robert L. Nord...Figure 2, and additional architecture documentation can be found in the work of Koontz [9, 10, 11]. Designing for extensibility promotes continued...Mapping of Practices to Agile and Architecture Criteria CrossTalk—May/June 2012 19 RAPID AND AGILE STABILITY ABOUT THE AUTHORS Ronald J. Koontz

  15. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chan; Tao Shengyang; Hu Tao; Yang Jingbang; Meng Changgong [School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning (China); Lv Piping; Wei Wei, E-mail: taosy@dlut.edu.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2011-10-14

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N{sub 2} adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m{sup 2} g{sup -1}, a pore size of 1.91 nm and a saturation magnetization of 32 emu g{sup -1}. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  16. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  17. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  19. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  20. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2015-07-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  1. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2013-12-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  2. Formulation and evaluation of sustained release matrix tablets of pioglitazone hydrochloride using processed Aloe vera mucilage as release modifier

    Directory of Open Access Journals (Sweden)

    Manoj Choudhary

    2015-01-01

    Full Text Available Background: Natural gums and mucilage which hydrates and swells on contact with aqueous media are used as additives in the formulation of hydrophilic drug delivery system. Aim: The purpose of this study was to develop a new monolithic matrix system for complete delivery of Pioglitazone hydrochloride (HCl, in a zero-order manner over an extended time period using processed Aloe vera gel mucilage (PAG as a release modifier. Materials and Methods: The matrices were prepared by dry blending of selected ratios of polymer and ingredients using direct compression technique. Physicochemical properties of dried powdered mucilage of A. vera were studied. Various formulations of pioglitazone HCl and A. vera mucilage were prepared using different drug: Polymer ratios viz., 1:1, 1:2, 1:3, 1:4, 1:5 for PAG by direct compression technique. Results: The formulated matrix tablets were found to have better uniformity of weight and drug content with low statistical deviation. The swelling behavior and in vitro release rate characteristics were also studied. Conclusion: The study proved that the dried A. vera mucilage can be used as a matrix forming material for controlled release of Pioglitazone HCl matrix tablets.

  3. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    Science.gov (United States)

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of Mebeverine HCl.

    Science.gov (United States)

    El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A

    2017-01-01

    To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin ® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the C max of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The t max was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action.

  5. Emulsion-based encapsulation and delivery of nanoparticles for the controlled release of alkalinity within the subsurface environment

    Science.gov (United States)

    Ramsburg, C. A.; Muller, K.; Gill, J.

    2012-12-01

    Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites

  6. Supporting Data for Multifunctional all-in-one drug delivery systems for tumor targeting and sequential release of three different anti-tumor drugs

    Directory of Open Access Journals (Sweden)

    Guowei Wu

    2016-06-01

    Full Text Available Although nanoparticulate drug delivery systems (NDDSs can preferentially accumulate in tumors, active targeting by targeting ligands (e.g. monoclonal antibody is necessary for increasing its targeting efficacy in vivo. We conjugated mAb198.3 on the SiO2@AuNP system surface to make it obtain active targeting efficacy. The FAT1 targeting capability of SiO2@AuNP system is the first issue to be solved. Thus, flow cytometry analysis was attempted to demonstrate that the SiO2@AuNP system could bind to native FAT1 molecules on the surface of Colo205 cells. Also, together with the drug release behavior study of self-decomposable SiO2 NPs, the continuous morphological evolution needed to be clarified. Therefore, to characterize the morphological evolution in vitro, we analyzed the morphology of inner self-decomposable NPs in different time intervals using transmission electron microscopy (TEM. A more comprehensive analysis of this data may be obtained from the article “Multifunctional all-in-one drug delivery systems for tumor targeting and sequential release of three different anti-tumor drugs” in Biomaterials.

  7. Sustained release of radioprotective agents

    International Nuclear Information System (INIS)

    Shani, J.

    1980-11-01

    New pharmaceutical formulations for the sustained release into the G.I. tract of radioprotective agents have been developed by the authors. The experimental method initially consisted in the production of methylcellulose microcapsules. This method failed apparently because of the premature ''explosion'' of the microcapsules and the consequent premature release of massive amounts of the drug. A new method has been developed which consists in drying and pulverising cysteamine and cysteine preparations, mixing them in various proportions with stearic acid and ethylcellulose as carriers. The mixture is then compressed into cylindrical tablets at several pressure values and the leaching rate of the radioprotective agents is then measured by spectrophotometry. The relation between the concentration of the active drug and its rate of release, and the effect on the release rate of the pressure applied to the tablet during its formation were also investigated. Results indicating that the release rate was linearly related to the square root of ''t'' seem to be in agreement with what is predictable, according to Higuchi's equation, save for the very initial and terminal phases. A clear correlation was also established between the stearic acid/ethylcellulose ratios and the release of 20% cysteine, namely a marked decrease in the rate of cysteine release was observed with increasing concentrations of stearic acid. Finally, it was observed that a higher formation pressure results in quicker release of the drug

  8. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying; Kosel, Jü rgen

    2017-01-01

    include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration

  9. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    DEFF Research Database (Denmark)

    Chen, Muwan; Le, Dang Q S; Hein, San

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone......, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount...... of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug....

  10. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  11. Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosis--A Review.

    Science.gov (United States)

    da Silva, Patricia Bento; de Freitas, Eduardo Sinésio; Bernegossi, Jessica; Gonçalez, Maíra Lima; Sato, Mariana Rillo; Leite, Clarice Queico Fujimura; Pavan, Fernando Rogério; Chorilli, Marlus

    2016-02-01

    Tuberculosis (TB) is an infectious and transmissible disease that is caused by Mycobacterium tuberculosis and primarily affects the lungs, although it can affect other organs and systems. The pulmonary presentation of TB, in addition to being more frequent, is also the most relevant to public health because it is primarily responsible for the transmission of the disease. The to their low World Health Organization (WHO) recommends a combined therapeutic regimen of several drugs, such as rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (ETB). These drugs have low plasma levels after oral administration, due to their low water solubility, poor permeability and ability to be rapidly metabolized by the liver and at high concentrations. Furthermore, they have short t₁/₂ (only 1-4 hours) indicating a short residence in the plasma and the need for multiple high doses, which can result in neurotoxicity and hepatotoxicity. Nanotechnology drug delivery systems have considerable potential for the treatment of TB. The systems can also be designed to allow for the sustained release of drugs from the matrix and drug delivery to a specific target. These properties of the systems enable the improvement of the bioavailability of drugs, can reduce the dosage and frequency of administration, and may solve the problem of non-adherence to prescribed therapy, which is a major obstacle to the control of TB. The purpose of this study was to systematically review nanotechnology-based drug delivery systems for the treatment of TB.

  12. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy

    2015-06-01

    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  13. Effects of membrane composition on release of model hydrophilic compound from osmotic delivery systems.

    Science.gov (United States)

    Ozdemir, N; Ozalp, Y; Ozkan, Y

    2000-01-01

    In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.

  14. Development and Evaluation of High Bioavailable Sustained-Release Nimodipine Tablets Prepared with Monolithic Osmotic Pump Technology.

    Science.gov (United States)

    Kong, Hua; Yu, Fanglin; Liu, Yan; Yang, Yang; Li, Mingyuan; Cheng, Xiaohui; Hu, Xiaoqin; Tang, Xuemei; Li, Zhiping; Mei, Xingguo

    2018-01-01

    Frequent administration caused by short half-life and low bioavailability due to poor solubility and low dissolution rate limit the further application of poorly water-soluble nimodipine, although several new indications have been developed. To overcome these shortcomings, sophisticated technologies had to be used since the dose of nimodipine was not too low and the addition of solubilizers could not resolve the problem of poor release. The purpose of this study was to obtain sustained and complete release of nimodipine with a simple and easily industrialized technology. The expandable monolithic osmotic pump tablets containing nimodipine combined with poloxamer 188 and carboxymethylcellulose sodium were prepared. The factors affecting drug release including the amount of solubilizing agent, expanding agent, retarding agent in core tablet and porogenic agent in semipermeable film were optimized. The release behavior was investigated both in vitro and in beagle dogs. It was proved that the anticipant release of nimodipine could be realized in vitro. The sustained and complete release of nimodipine was also realized in beagles because the mean residence time of nimodipine from the osmotic pump system was longer and Cmax was lower than those from the sustained-release tablets in market while there was no difference in AUC(0-t) of the monolithic osmotic pump tablets and the sustained release tablets in market. It was reasonable to believe that the sustained and complete release of poorly watersoluble nimodipine could be realized by using simple expandable monolithic osmotic pump technology combined with surfactant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tao [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tan, Lei [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Cheng, Ning; Yan, Qi; Zhang, Yu-Feng [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Liu, Chuan-Jun, E-mail: cjliu@whu.edu.cn [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Shi, Bin, E-mail: shibin_dentist@126.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2016-05-01

    This work presented a sustained release system of simvastatin (SIM) based on the mesoporous hydroxyapatite (MHA) capped with poly(N-isopropylacrylamide) (PNIPAAM). The MHA was prepared by using cetyltrimethylammonium bromide (CTAB) as a template and the modified PNIPAAM layer on the surface of MHA was fabricated through surface-initiated atom transfer radical polymerization (SI-ATRP). The SIM loaded MHA-PNIPAAM showed a sustained release of SIM at 37 °C over 16 days. The bone marrow mesenchymal stem cell (BMSC) proliferation was assessed by cell counting kit-8 (CCK-8) assay, and the osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity and Alizarin Red staining. The release profile showed that the release of SIM from MHA-SIM-PNIPAAM lasted 16 days and the cumulative amount of released SIM was almost seven-fold than MHA-SIM. Besides, SIM loaded MHA-PNIPAAM exhibited better performance on cell proliferation, ALP activity, and calcium deposition than pure MHA due to the sustained release of SIM. The quantity of ALP in MHA-SIM-PNIPAAM group was more than two fold than pure MHA group at 7 days. Compared to pure MHA, better BMSC attachment on PNIPAAM modified MHA was observed using fluorescent microscopy, indicating the better biocompatibility of MHA-PNIPAAM. - Highlights: • PNIPAAM modified mesoporous hydroxyapatite (MHA) was fabricated by SI-ATRP. • SIM loaded MHA-PNIPAAM continually released SIM in effect concentration for 16 days. • MHA-SIM-PNIPAAM behaved well on cell proliferation, ALP activity and calcium deposition.

  16. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  17. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    Science.gov (United States)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  18. Intracranial drug delivery for subarachnoid hemorrhage.

    Science.gov (United States)

    Macdonald, Robert Loch; Leung, Ming; Tice, Tom

    2012-01-01

    Tice and colleagues pioneered site-specific, sustained-release drug delivery to the brain almost 30 years ago. Currently there is one drug approved for use in this manner. Clinical trials in subarachnoid hemorrhage have led to approval of nimodipine for oral and intravenous use, but other drugs, such as clazosentan, hydroxymethylglutaryl CoA reductase inhibitors (statins) and magnesium, have not shown consistent clinical efficacy. We propose that intracranial delivery of drugs such as nimodipine, formulated in sustained-release preparations, are good candidates for improving outcome after subarachnoid hemorrhage because they can be administered to patients that are already undergoing surgery and who have a self-limited condition from which full recovery is possible.

  19. Near-infrared induced release for localized on-demand drug delivery

    NARCIS (Netherlands)

    Vertommen, M.A.M.E.

    2009-01-01

    By non-invasive external triggering of drug release from an implant, pulsewise administration can be realized according to the patient’s needs and at specific locations in the human body. In comparison to more traditional delivery forms (e.g. oral or by injection), externally triggered drug release

  20. Sustained Release of a Watermgoluble tiring from Directly ...

    African Journals Online (AJOL)

    Sustained Release of a Watermgoluble tiring from Directly Compressed Okra Gum Matrix. Tablets. Val). Mill, MA. Gilllllbll'ifl'l' AND KT. ... in near noromorder release of aspirin from the matrix tablets. The results indicate that okra gum is .... porous structure including alteration of the shape and size distribution of the pores.

  1. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  2. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Ramasamy, S; Ramakrishnan, V; Kumar, J

    2011-12-01

    Hydroxyapatite is a bioceramic which has a wide range of medical application for bone diseases. To enhance its usage, we have prepared ciprofloxacin loaded nano hydroxyapatite (HA) composite with a natural polymer, alginate, using wet chemical method at low temperature. The prepared composites were analyzed by various physicochemical methods. The results show that the nano HA crystallites are well intact with the alginate macromolecules. For the composite system FT-IR and micro Raman results are reported in this paper. Studies on the drug loading and drug release have been done. The drug is pre-adsorbed onto the ceramic particle before the formation of composite. The thermal behavior of composite has been studied using thermo gravimetric analysis (TGA). This work, reports that the nanocomposite prepared under optimum condition could prolong the release of ciprofloxacin compared with the ciprofloxacin loaded hydroxyapatite.

  3. Drug Delivery Research: The Invention Cycle.

    Science.gov (United States)

    Park, Kinam

    2016-07-05

    Controlled drug delivery systems have been successful in introducing improved formulations for better use of existing drugs and novel delivery of biologicals. The initial success of producing many oral products and some injectable depot formulations, however, reached a plateau, and the progress over the past three decades has been slow. This is likely due to the difficulties of formulating hydrophilic, high molecular weight drugs, such as proteins and nucleic acids, for targeting specific cells, month-long sustained delivery, and pulsatile release. Since the approaches that have served well for delivery of small molecules are not applicable to large molecules, it is time to develop new methods for biologicals. The process of developing future drug delivery systems, termed as the invention cycle, is proposed, and it starts with clearly defining the problems for developing certain formulations. Once the problems are well-defined, creative imagination examines all potential options and selects the best answer and alternatives. Then, innovation takes over to generate unique solutions for developing new formulations that resolve the previously identified problems. Ultimately, the new delivery systems will have to go through a translational process to produce the final formulations for clinical use. The invention cycle also emphasizes examining the reasons for success of certain formulations, not just the reasons for failure of many systems. Implementation of the new invention cycle requires new mechanisms of funding the younger generation of scientists and a new way of identifying their achievements, thereby releasing them from the burden of short-termism.

  4. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media.

    Science.gov (United States)

    Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J

    2016-01-01

    The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.

  5. Microemulsion-Based Mucoadhesive Buccal Wafers: Wafer Formation, In Vitro Release, and Ex Vivo Evaluation.

    Science.gov (United States)

    Pham, Minh Nguyet; Van Vo, Toi; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2017-10-01

    Microemulsion has the potentials to enhance dissolution as well as facilitate absorption and permeation of poorly water-soluble drugs through biological membranes. However, its application to govern a controlled release buccal delivery for local treatment has not been discovered. The aim of this study is to develop microemulsion-based mucoadhesive wafers for buccal delivery based on an incorporation of the microemulsion with mucoadhesive agents and mannitol. Ratio of oil to surfactant to water in the microemulsion significantly impacted quality of the wafers. Furthermore, the combination of carbopol and mannitol played a key role in forming the desired buccal wafers. The addition of an extra 50% of water to the formulation was suitable for wafer formation by freeze-drying, which affected the appearance and distribution of carbopol in the wafers. The amount of carbopol was critical for the enhancement of mucoadhesive properties and the sustained drug release patterns. Release study presented a significant improvement of the drug release profile following sustained release for 6 h. Ex vivo mucoadhesive studies provided decisive evidence to the increased retention time of wafers along with the increased carbopol content. The success of this study indicates an encouraging strategy to formulate a controlled drug delivery system by incorporating microemulsions into mucoadhesive wafers.

  6. Characterization and optimization of GMO-based gels with long term release for intraarticular administration.

    Science.gov (United States)

    Réeff, J; Gaignaux, A; Goole, J; Siepmann, J; Siepmann, F; Jerome, C; Thomassin, J M; De Vriese, C; Amighi, K

    2013-07-15

    Osteoarthritis is characterized by slow degenerative processes in the articular cartilage within synovial joints. It could be interesting to develop a sustained-release formulation that could be effective on both pain/inflammation and restoration of mechanical integrity of the joint. Recently, an injectable system based on glycerol monooleate (GMO), containing clonidine as a model hydrophilic analgesic/anti-inflammatory drug and hyaluronic acid as a viscoelastic scaffold, showed promising potential as a biodegradable and biocompatible preparation to sustain the drug activity. However, drug release from the system is relatively fast (complete within 1 week) and the underlying drug release mechanisms not fully understood. The aims of this study were: (i) to significantly improve this type of local controlled drug delivery system by further sustaining clonidine release, and (ii) to elucidate the underlying mass transport mechanisms. The addition of FDA-approved inactive ingredients such as sodium oleate or purified soybean oil was found to be highly effective. The release rate could be substantially reduced (e.g., 50% release after 10 days), due to the increased hydrophobicity of the systems, resulting in slower and reduced water uptake and reduced drug mobility. Interestingly, Fick's second law of diffusion could be used to quantitatively describe drug release. Copyright © 2013. Published by Elsevier B.V.

  7. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Dena Dorniani

    2014-01-01

    Full Text Available The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG and polyvinyl alcohol-GA (FPVAG, respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.

  8. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    Science.gov (United States)

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  9. Novel drug delivery systems for releasing growth factors to the CNS: focus on Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Herran, E; Igartua, M; Pedraz, J L; Hernandez, R M

    2014-01-01

    Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most common neurodegenerative disorders and affect more than 35 million people. Due to the limited effectiveness of available treatments in halting the neurodegenerative process, new therapies, such therapies based on growth factors (GFs), have been investigated. Nevertheless, the efficacies of these new treatments depend not only on the application of neurotrophins but also on the approaches used to deliver these proteins such that they can reach the brain. This review summarises the most widely used drug delivery systems (DDSs) for releasing GFs as possible treatments for AD and PD.

  10. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system.

    Science.gov (United States)

    Lim, Wei Meng; Rajinikanth, Paruvathanahalli Siddalingam; Mallikarjun, Chitneni; Kang, Yew Beng

    2014-01-01

    The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol(®) ATO 5 and Transcutol(®) HP were selected as the lipid phase, and Tween(®) 80 and Solutol(®) HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, -18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.

  11. An overview of the analytical characterization of nanostructured drug delivery systems: Towards green and sustainable pharmaceuticals: A review

    International Nuclear Information System (INIS)

    Domingo, Concepción; Saurina, Javier

    2012-01-01

    Highlights: ► Analytical evaluation of nanostructured drug delivery systems prepared by scCO 2 . ► Physicochemical characterization by chromatography and spectroscopy. ► Particle characterization by microscopy and thermal analysis. ► Release assessment by batch, continuous and diffusion devices. - Abstract: The analytical characterization of drug delivery systems prepared by means of green manufacturing technologies using CO 2 as a processing fluid is here reviewed. The assessment of the performance of nanopharmaceuticals designed for controlled drug release may result in a complex analytical issue and multidisciplinary studies focused on the evaluation of physicochemical, morphological and textural properties of the products may be required. The determination of the drug content as well as the detection of impurities and solvent residues are often carried out by chromatography. Assays on solid state samples relying on X-ray, vibrational and nuclear magnetic resonance spectroscopies are of great interests to study the composition and structure of pharmaceutical forms. The morphology and size of particles are commonly checked by microscopy and complementary chemical information can be extracted in combination with spectroscopic accessories. Regarding the thermal behavior, calorimetric and thermogravimetric techniques are applied to assess the thermal transitions and stability of the samples. The evaluation of drug release profiles from the nanopharmaceuticals can be based on various experimental set-ups depending on the administration route to be considered. Kinetic curves showing the evolution of the drug concentration as a function of time in various physiological conditions (e.g., gastric, plasmatic or topical) are recorded commonly by UV–vis spectroscopy and/or chromatography. Representative examples are commented in detail to illustrate the characterization strategies.

  12. Letter to the editor: naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Directory of Open Access Journals (Sweden)

    Buehler AM

    2015-01-01

    Full Text Available Anna M Buehler Hospital Alemao Oswaldo Cruz, Institute of Health Education and Sciences, Sao Paulo, BrazilI read with great interest the systematic review by Caixàs et al1 on the effect of naltrexone sustained-release/bupropion sustained-release (NB for the management of obesity. By comprehensively appraising five recent clinical trials, the authors concluded that the naltrexone/bupropion combination might represent an important new therapeutic option for the management of obesity, with a weight reduction effect that is similar to other drugs approved for the treatment of obesity.View original paper by Caixàs and colleagues.

  13. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system

    Directory of Open Access Journals (Sweden)

    Lim WM

    2014-05-01

    Full Text Available Wei Meng Lim,1 Paruvathanahalli Siddalingam Rajinikanth,2 Chitneni Mallikarjun,1 Yew Beng Kang11School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia; 2School of Pharmacy, Taylor’s University, Selangor, MalaysiaAbstract: The objectives of this study were to develop and characterize itraconazole (ITZ-loaded nanostructured lipid carriers (NLCs and to study their potential for drug delivery into the brain. Precirol® ATO 5 and Transcutol® HP were selected as the lipid phase, and Tween® 80 and Solutol® HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, –18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.Keywords: lipid nanoparticles, brain delivery, nanostructured lipid carrier

  14. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition.

    Science.gov (United States)

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Hu, Shuzhen; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The unsaturated fatty acid (linoleic acid) sustained-release microspheres were prepared with linoleic acid (LA) using alginate-chitosan microcapsule technology. These LA sustained-release microspheres had a high encapsulation efficiency (up to 62%) tested by high performance liquid chromatography with a photo diode array. The dry microspheres were characterized by a scanning electron microscope, X-ray diffraction measurement, dynamic thermogravimetric analysis and Fourier transform infrared spectral analysis. The results of characterization showed that the microspheres had good thermal stability (decomposition temperature of 236°C), stable and temperature independent release properties (release time of more than 40 d). Compared to direct dosing of LA, LA sustained-released microspheres could inhibit Microcystis aeruginosa growth to the non-growth state. The results of this study suggested that the LA sustained-release microspheres may be a potential candidate for algal inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. [Studies on preparation and dissolution test in vitro of sustained-release dropping pills of curcumin].

    Science.gov (United States)

    Fang, Yu; Xiang, Bai; Pan, Zhen-Hua; Cao, De-Ying

    2010-01-01

    To study the prescription and technique of sustained-release dropping pills of curcumin and inspect their release property in vitro. The orthogonal test was used to screen the prescription and technique which were definited with the colligation evaluation of release and formation of dropping pills. The optimization of prescription and technique were as follows: stearic acid 70 mg, glycery monostearate 25 mg, solutol 6 mg, viscosity of cooling liquid was 100 mm2/s; the temperature of material liquid was 80 degrees C; the cooling temperature was 30 - 0 degrees C; the dropping speed was (21 +/- 2) dripping/min. The release behavior of sustained-release dropping pills of curcumin coincidented with Higuchi equation well and the character of sustained-release was transparent. The sustained-release dropping pills of curcumin have good property of sustained-release in vitro and their release behavior in vivo need to be inspected.

  16. Formulation and Characterization of Sustained Release Floating ...

    African Journals Online (AJOL)

    Purpose: To formulate sustained release gastroretentive microballoons of metformin hydrochloride with the objective of improving its bioavailability. Methods: Microballoons of metformin hydrochloride were formulated by solvent evaporation and diffusion method using varying mixtures of hydroxypropyl methylcellulose ...

  17. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  18. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  19. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  20. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2006-04-01

    Full Text Available The article considers contemporary systems for controlled delivery of active agents, such as drugs, agricultural chemicals, pollutants and additives in the environment. A useful classification of the available controlled release systems (CRS is proposed according to the type of control (passive, active or self-preprogrammed and according to the main controlling mechanism (diffusion, swelling, dissolution or erosion. Special attention is given to some of the most used CRS - polymer monoliths. The structural and physical-chemical characteristics of CRS as well as the basic approaches to their production are examined. The basic mechanisms of controlled agent release are reviewed in detail and factors influencing the release kinetics are classified according to their importance. The present study can be helpful for understanding and applying the available mathematical models and for developing more comprehensive ones intended for design of new controlled delivery systems.

  1. Tailored release drug delivery system for rifampicin and isoniazid for enhanced bioavailability of rifampicin.

    Science.gov (United States)

    Avachat, Amelia M; Bhise, Satish B

    2011-04-01

    The front line antitubercular drugs rifampicin (RMP) and isoniazid (INH), when co-administered, face the problem of reduced bioavailability of RMP. Stabilization of RMP in the presence of INH under acidic environment may improve the bioavailability of RMP. In vitro degradation studies showed around 15-25% degradation of RMP under the aforesaid conditions if the ratio of RMP: INH is above 1:0.5.This degradation is reduced to less than 10% when the ratio of RMP: INH is below 1:0.25. Based on these findings, an innovative drug delivery system was designed with the immediate release of RMP and tailored prolonged release of INH. The bilayer tablets prepared with this concept were subjected to relative bioavailability studies in healthy human volunteers in an open label, balanced, randomized, single-dose, cross-over study under fasted state. A validated LC-MS/MS bioanalytical method was employed for estimation of RMP and INH in plasma. Bioavailability studies revealed that C(max) and AUC for RMP increased by 18 and 20%, respectively, confirming the above innovative concept. Even in the case of INH, AUC increased significantly by around 30% and thus time above minimum inhibitory concentration (MIC) would also increase, which may result in further improved clinical outcome.

  2. Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L

    2016-11-01

    Despite the biocompatibility and osteoinductive properties of calcium phosphate (CaP) cements their low biodegradability hampers full bone regeneration. Herein the incorporation of CaP cement with hyaluronic acid (HAc) microparticles loaded with platelet lysate (PL) to improve the degradability and biological performance of the cements is proposed. Cement formulations incorporating increasing weight ratios of either empty HAc microparticles or microparticles loaded with PL (10 and 20 wt%) are developed as well as cements directly incorporating PL. The direct incorporation of PL improves the mechanical properties of the plain cement, reaching values similar to native bone. Morphological analysis shows homogeneous particle distribution and high interconnectivity between the HAc microparticles. The cements incorporating PL (with or without the HAc microparticles) present a sustained release of PL proteins for up to 8 d. The sustained release of PL modulates the expression of osteogenic markers in seeded human adipose tissue derived stem cells, thus suggesting the stimulatory role of this hybrid system toward osteogenic commitment and bone regeneration applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Promising Approach to Provide Appropriate Colon Target Drug Delivery Systems of Vancomycin HCL: Pharmaceutical and Microbiological Studies

    Directory of Open Access Journals (Sweden)

    Kadria A. Elkhodairy

    2014-01-01

    Full Text Available Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10–60% of tablet weight of guar gum (F1–F6 were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6–F20 were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6–8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  4. A promising approach to provide appropriate colon target drug delivery systems of vancomycin HCL: pharmaceutical and microbiological studies.

    Science.gov (United States)

    Elkhodairy, Kadria A; Afifi, Samar A; Zakaria, Azza S

    2014-01-01

    Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10-60% of tablet weight of guar gum (F1-F6) were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6-F20) were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT) values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA) isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6-8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  5. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers

    Directory of Open Access Journals (Sweden)

    Xinkuan Liu

    2018-03-01

    Full Text Available Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2, in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1 that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  6. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers.

    Science.gov (United States)

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin; Yu, Deng-Guang

    2018-03-22

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  7. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    Science.gov (United States)

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  8. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  9. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  10. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying

    2017-05-08

    “On demand” implantable drug delivery systems can provide optimized treatments, due to their ability to provide targeted, flexible and precise dose release. However, two important issues that need to be carefully considered in a mature device include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration of a resonance-based wireless power transfer system, a constant voltage control circuit and an electrolytic pump. Upon the activation of the wireless power transfer system, the electrolytic actuator is remotely powered by a constant voltage regardless of movements of the device within an effective range of translation and rotation. This in turn contributes to a predictable dose release rate and greater flexibility in the positioning of external powering source. We have conducted proof-of-concept drug delivery studies using the liquid drug in reservoir approach and the solid drug in reservoir approach, respectively. Our experimental results demonstrate that the range of flow rate is mainly determined by the voltage controlled with a Zener diode and the resistance of the implantable device. The latter can be adjusted by connecting different resistors, providing control over the flow rate to meet different clinical needs. The flow rate can be maintained at a constant level within the effective movement range. When using a solid drug substitute with a low solubility, solvent blue 38, the dose release can be kept at 2.36μg/cycle within the effective movement range by using an input voltage of 10Vpp and a load of 1.5 kΩ, which indicates the feasibility and controllability of our system without any complicated closed-loop sensor.

  11. Evaluating the patient experience after implantation of a 0.4 mg sustained release dexamethasone intracanalicular insert (DextenzaTM: results of a qualitative survey

    Directory of Open Access Journals (Sweden)

    Gira JP

    2017-03-01

    patient experience is warranted, and future studies should help inform design of the next generation of sustained release drug delivery systems. Keywords: dexamethasone, cataract, sustained release, drug delivery, corticosteroid, Dextenza

  12. Development and evaluation of diclofenac sodium thermorevesible subcutaneous drug delivery system.

    Science.gov (United States)

    Nasir, Fazli; Iqbal, Zafar; Khan, Jamshaid A; Khan, Abad; Khuda, Fazli; Ahmad, Lateef; Khan, Amirzada; Khan, Abbas; Dayoo, Abdullah; Roohullah

    2012-12-15

    The objective of current work was to develop and evaluate thermoreversible subcutaneous drug delivery system for diclofenac sodium. The poloxamer 407, methyl cellulose, hydroxypropyl methyl cellulose and polyethylene glycol were used alone and in combination in different ratios to design the delivery system. The physical properties like Tsol-gel, viscosity, clarity of solution and gel were evaluated. The in vitro release of the drug delivery system was evaluated using membrane less method and the drug release kinetics and mechanism was predicted by applying various mathematical models to the in vitro dissolution data. Rabbits were used as in vivo model following subcutaneous injection to predict various pharmacokinetics parameters by applying Pk-Summit software. The in vitro and in vivo data revealed that the system consisting of the poloxamer 407 in concentration of 20% (DP20) was the most capable formulation for extending the drug release and maintaining therapeutic blood level of DS for longer duration (144 h). The data obtained for drug content after autoclaving the solutions indicate that autoclaving results in 6% degradation of DS. The data also suggested that the studied polymers poloxamer, MC and PG are good candidate to extend the drug release possessing a unique thermoreversible property. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems

    OpenAIRE

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-01-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron ...

  14. Development of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Hitesh Chavda

    2013-01-01

    Full Text Available Bioadhesive superporous hydrogel composite (SPHC particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32 full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content, in vitro drug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.

  15. Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs.

    Science.gov (United States)

    Pan, Liping; Qian, Yafang; Cheng, Minlu; Gu, Pan; He, Yanna; Xu, Xiaowen; Ding, Li

    2015-01-01

    This paper describes the development and validation of a liquid chromatography-mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test), as an instant-release tablet (IR-reference) and as the market leader sustained-release capsule (Rythmol, SR-reference) in male beagle dogs (n=8). In Study A comparing SR-test with IR-reference in a crossover design T max and t 1/2 of propafenone for SR-test were significantly higher than those for IR-reference while C max and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed C max and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively) were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively) although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.

  16. Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs

    Directory of Open Access Journals (Sweden)

    Liping Pan

    2015-01-01

    Full Text Available This paper describes the development and validation of a liquid chromatography–mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test, as an instant-release tablet (IR-reference and as the market leader sustained-release capsule (Rythmol, SR-reference in male beagle dogs (n=8. In Study A comparing SR-test with IR-reference in a crossover design Tmax and t1/2 of propafenone for SR-test were significantly higher than those for IR-reference while Cmax and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed Cmax and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.

  17. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  18. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    Science.gov (United States)

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of

  19. Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

    Directory of Open Access Journals (Sweden)

    Like Zeng

    2011-01-01

    Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

  20. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo.

    Science.gov (United States)

    Peng, Li-Hua; Wei, Wei; Shan, Ying-Hui; Chong, Yee-Song; Yu, Lian; Gao, Jian-Qing

    2017-01-01

    This study aims to investigate the solid lipid nanoparticle (SLN) as a novel vehicle for the sustained release and transdermal delivery of piroxicam, as well as to determine the anti-inflammation effect of piroxicam-loaded SLN. SLN formulation was optimized and the particle size, polydispersity index, zeta potential (ZP), encapsulation efficiency, drug release, and morphological properties were characterized. The transdermal efficiency and mechanism of the piroxicam-loaded SLNs were investigated in vitro. With the inflammation induced edema model in rat, the anti-inflammatory efficiency of piroxicam-enriched SLNs (Pir-SLNs) was evaluated. The SLN formulation was optimized as: lecithin 100 mg, glycerin monostearate 200 mg, and Tween (1%, w/w). The particle size is around 102 ± 5.2 nm with a PDI of 0.262. The ZP is 30.21 ± 2.05 mV. The prepared SLNs showed high entrapment efficiency of 87.5% for piroxicam. There is no interaction between piroxicam and the vehicle components. The presence of polymorphic form of lipid with higher drug content in the optimized Pir-SLNs enables the Pir-SLNs to release the drug with a sustained manner. Pir-SLNs with oleic acid as enhancer can radically diffuse into both the stratum corneum and dermal layer, as well as penetrate through the hair follicles and sebaceous glands with significantly higher density than the other control groups. Pir-SLNs promptly inhibited the inflammation since the 3rd hour after the treatment by decreasing the PGE 2 level. SLN was demonstrated to be a promising carrier for encapsulation and sustained release of piroxicam. Pir-SLN is a novel topical preparation with great potential for anti-inflammation application.

  1. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  2. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  3. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

  4. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  5. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2011-07-01

    Full Text Available Anticancer drugs, such as paclitaxel (PTX, are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy.

  6. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  7. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    Science.gov (United States)

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  8. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells.

    Science.gov (United States)

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

  9. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery.

    Science.gov (United States)

    Sun, Qihang; Ma, Xinpeng; Zhang, Bo; Zhou, Zhuxian; Jin, Erlei; Shen, Youqing; Van Kirk, Edward A; Murdoch, William J; Radosz, Maciej; Sun, Weilin

    2016-06-24

    An inherent dilemma in the use of nanomedicines for cancer drug delivery is their limited penetration into tumors due to their large size. We have demonstrated that dendrimer/lipid nanoassemblies can solve this problem by means of tumor-triggered disassembly and the release of small (several nanometers) dendrimers to facilitate tumor penetration. Herein, we report a general strategy for the fabrication of nanoassemblies from hydrophobic and hydrophilic dendrimers with phospholipids. Hydrophobic dendrimers could assemble with lipids via hydrophobic interactions, whereas hydrophilic dendrimers could only assemble with lipids in the presence of anionic surfactants via both electrostatic and hydrophobic interactions. The nanoassemblies of hydrophobic dendrimers/lipids were found to be capable of stripping off their lipid layers via fusion with the cell membrane and then intracellular or extracellular release of dendrimers, whereas the nanoassemblies of hydrophilic dendrimers/lipids were internalized via endocytosis and then released their dendrimers inside the cells. Therefore, these dendrimer/lipid nanoassemblies could be used for the delivery of different cancer drugs.

  10. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  11. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo; Zheng, Lixia

    2016-01-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH 5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. - Highlights: • Chitosan and hyaluronan modified single-walled carbon nanotubes (SWNTs) were prepared for delivery of Paclitaxel (PTX). • Morphology, drug loading efficiency and drug release amount of the nanotubes were studied. • Cell viability, LDH, intracellular ROS levels and western blotting were evaluated. • The drug delivery system could effectively inhibit A549 cells proliferation.

  12. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo, E-mail: tanhuo.2008@163.com; Zheng, Lixia, E-mail: 66593953@qq.com

    2016-11-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH 5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. - Highlights: • Chitosan and hyaluronan modified single-walled carbon nanotubes (SWNTs) were prepared for delivery of Paclitaxel (PTX). • Morphology, drug loading efficiency and drug release amount of the nanotubes were studied. • Cell viability, LDH, intracellular ROS levels and western blotting were evaluated. • The drug delivery system could effectively inhibit A549 cells proliferation.

  13. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders.

    Science.gov (United States)

    Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2017-06-01

    The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.

  14. Low Molecular Weight Glucosamine/L-lactide Copolymers as Potential Carriers for the Development of a Sustained Rifampicin Release System: Mycobacterium Smegmatis as a Tuberculosis Model

    Science.gov (United States)

    Ragusa, Jorge Alejandro

    Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged release (>14 days) of RIF from these particles is demonstrated. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism, and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) (reference material) particles did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated an increment in cell death as particle dose increased, but was not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. GluN-LLA particles led to higher uptakes than the PLA particles. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and the particles showed a favorable long term drug release effect in killing intracellular bacteria compared to free RIF. The studies presented and discussed in this dissertation

  15. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.

    Science.gov (United States)

    Xu, Min; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-01-15

    This study explored the application of 400-DS dissolution apparatus 7 for individual pellet dissolution methodology by a design of experiment approach and compared its capability with that of the USP dissolution apparatus 1 and 2 for differentiating the coat quality of sustained release pellets. Drug loaded pellets were prepared by extrusion-spheronization from powder blends comprising 50%, w/w metformin, 25%, w/w microcrystalline cellulose and 25%, w/w lactose, and then coated with ethyl cellulose to produce sustained release pellets with 8% and 10%, w/w coat weight gains. Various pellet properties were investigated, including cumulative drug release behaviours of ensemble and individual pellets. When USP dissolution apparatus 1 and 2 were used for drug release study of the sustained release pellets prepared, floating and clumping of pellets were observed and confounded the release profiles of the ensemble pellets. Hence, the release profiles obtained did not characterize the actual drug release from individual pellet and the applicability of USP dissolution apparatus 1 and 2 to evaluate the coat quality of sustained release pellets was limited. The cumulative release profile of individual pellet using the 400-DS dissolution apparatus 7 was found to be more precise at distinguishing differences in the applied coat quality. The dip speed and dip interval of the reciprocating holder were critical operational parameters of 400-DS dissolution apparatus 7 that affected the drug release rate of a sustained release pellet during the individual dissolution study. The individual dissolution methodology using the 400-DS dissolution apparatus 7 is a promising technique to evaluate the individual pellet coat quality without the influence of confounding factors such as pellet floating and clumping observed during drug release test with dissolution apparatus 1 and 2, as well as to facilitate the elucidation of the actual drug release mechanism conferred by the applied sustained

  16. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  17. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  18. On-The-Move Nutrient Delivery System - Description and Initial Evaluation

    National Research Council Canada - National Science Library

    Mountain, Scott

    2004-01-01

    .... A novel nutrient delivery system has been developed to provide Warfighters on-demand access to flavored electrolyte- and carbohydrate-enhanced drinks, to provide hydration, and energy to sustain work...

  19. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media

    Directory of Open Access Journals (Sweden)

    Kotla NG

    2016-03-01

    Full Text Available Niranjan G Kotla,1,2 Sima Singh,1,3 Balaji Maddiboyina,4 Omprakash Sunnapu,2 Thomas J Webster5,6 1School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India; 2Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India; 3Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; 4Department of Pharmaceutics, Vishwabharathi College of Pharmaceutical Sciences, Guntur, Andhra Pradesh, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media. In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus were cultured in 12% w/v skimmed milk powder and 5% w/v grade “A” honey. Approximately 1010–1011 colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were

  20. Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Keller, Stephan Sylvest

    2013-01-01

    PURPOSE: To fabricate microcontainers in biodegradable polylactic acid (PLLA) polymer films using hot embossing, and investigate the application of fabricated microcontainers as an oral drug delivery system for a poorly soluble drug. METHODS: For fabrication of the PLLA microcontainers, a film...... (produced by spray drying) using a simplified version of a screen printing technique. An enteric-resistant lid of Eudragit L-100 was subsequently spray coated onto the cavity of the microcontainers. Release of amorphous furosemide salt from the coated microcontainers was investigated using a μ-Diss profiler...... release from microcontainers in gastric medium, and facilitated an immediate release in the intestinal medium. The fabricated microcontainers therefore show considerable future potential as oral drug delivery systems....

  1. Rationale and Safety Assessment of a Novel Intravaginal Drug-Delivery System with Sustained DL-Lactic Acid Release, Intended for Long-Term Protection of the Vaginal Microbiome.

    Science.gov (United States)

    Verstraelen, Hans; Vervaet, Chris; Remon, Jean-Paul

    2016-01-01

    Bacterial vaginosis is a prevalent state of dysbiosis of the vaginal microbiota with wide-ranging impact on human reproductive health. Based on recent insights in community ecology of the vaginal microbiome, we hypothesize that sustained vaginal DL-lactic acid enrichment will enhance the recruitment of lactobacilli, while counteracting bacterial vaginosis-associated bacteria. We therefore aimed to develop an intravaginal device that would be easy to insert and remove, while providing sustained DL-lactic acid release into the vaginal lumen. The final prototype selected is a vaginal ring matrix system consisting of a mixture of ethylene vinyl acetate and methacrylic acid-methyl methacrylate copolymer loaded with 150 mg DL-lactic acid with an L/D-lactic acid ratio of 1:1. Preclinical safety assessment was performed by use of the Slug Mucosal Irritation test, a non-vertebrate assay to evaluate vaginal mucosal irritation, which revealed no irritation. Clinical safety was evaluated in a phase I trial with six healthy nulliparous premenopausal volunteering women, with the investigational drug left in place for 7 days. Colposcopic monitoring according to the WHO/CONRAD guidelines for the evaluation of vaginal products, revealed no visible cervicovaginal mucosal changes. No adverse events related to the investigational product occurred. Total release from the intravaginal ring over 7 days was estimated through high performance liquid chromatography at 37.1 (standard deviation 0.9) mg DL-lactic acid. Semisolid lactic acid formulations have been studied to a limited extent in the past and typically consist of a large volume of excipients and very high doses of lactic acid, which is of major concern to mucosal safety. We have documented the feasability of enriching the vaginal environment with pure DL-lactic acid with a prototype intravaginal ring. Though the efficacy of this platform remains to be established possibly requiring further development, this approach may offer a

  2. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  3. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  4. Application of three-dimensional printing for colon targeted drug delivery systems.

    Science.gov (United States)

    Charbe, Nitin B; McCarron, Paul A; Lane, Majella E; Tambuwala, Murtaza M

    2017-01-01

    Orally administered solid dosage forms currently dominate over all other dosage forms and routes of administrations. However, human gastrointestinal tract (GIT) poses a number of obstacles to delivery of the drugs to the site of interest and absorption in the GIT. Pharmaceutical scientists worldwide have been interested in colon drug delivery for several decades, not only for the delivery of the drugs for the treatment of colonic diseases such as ulcerative colitis and colon cancer but also for delivery of therapeutic proteins and peptides for systemic absorption. Despite extensive research in the area of colon targeted drug delivery, we have not been able to come up with an effective way of delivering drugs to the colon. The current tablets designed for colon drug release depend on either pH-dependent or time-delayed release formulations. During ulcerative colitis the gastric transit time and colon pH-levels is constantly changing depending on whether the patient is having a relapse or under remission. Hence, the current drug delivery system to the colon is based on one-size-fits-all. Fails to effectively deliver the drugs locally to the colon for colonic diseases and delivery of therapeutic proteins and peptides for systemic absorption from the colon. Hence, to overcome the current issues associated with colon drug delivery, we need to provide the patients with personalized tablets which are specifically designed to match the individual's gastric transit time depending on the disease state. Three-dimensional (3D) printing (3DP) technology is getting cheaper by the day and bespoke manufacturing of 3D-printed tablets could provide the solutions in the form of personalized colon drug delivery system. This review provides a bird's eye view of applications and current advances in pharmaceutical 3DP with emphasis on the development of colon targeted drug delivery systems.

  5. [Research of preparation craft of Danshen phenolic acid fast release unit in multi-drug delivery system of Tongmai micro-pellets].

    Science.gov (United States)

    Chen, Bin; Xiao, Wei; Jia, Xiao-Bin; Huang, Yang

    2012-07-01

    To prepare Danshen phenolic acid fast release micro-pellets and study its preparation craft. The factors which could impact yield, extrude shaping, dissolution of Danshen phenolic acid micro-pellets such as wetting agent, drug loading dose, adjuvant, lactose dose, disintegrant, CMS-Na dose and wetting agent dose was investigated. The optimum preparation craft of Danshen phenolic acid fast release micro-pellets was screened out by orhogonal design. Formula of Danshen phenolic acid fast release micro-pellets was calculated as volume dose 50 g. The formula was as follows: principal agent 22.5 g, lactose 5 g, CMS-Na 2 g, MCC 20.5 g, 27 mL 30% ethanol as wetting agent. Extrusion-spheronization was applied. The optimum conditions were screened out as follows: extrusion frequency (25 Hz), spheronization machine frequency (50 Hz), spheronization time (4 min). The process was scientific and rational. The preparation is stable settles basis for multi-drug delivery system of Tongmai micro-pellets.

  6. Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing.

    Science.gov (United States)

    Tellechea, Ana; Silva, Eduardo A; Min, Jianghong; Leal, Ermelindo C; Auster, Michael E; Pradhan-Nabzdyk, Leena; Shih, William; Mooney, David J; Veves, Aristidis

    2015-06-01

    Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (DNA)-based gels that allow incorporation of effector cells, such as outgrowth endothelial cells (OEC), and provide sustained release of bioactive factors, such as neuropeptides and growth factors, which have been previously validated in experimental models of DM wound healing or hind limb ischemia. We tested these biomaterials in mice and demonstrate that they are biocompatible and can be injected into the wound margins without major adverse effects. In addition, we show that the combination of OEC and the neuropeptide Substance P has a better healing outcome than the delivery of OEC alone, while subtherapeutic doses of vascular endothelial growth factor (VEGF) are required for the transplanted cells to exert their beneficial effects in wound healing. In summary, alginate and DNA scaffolds could serve as potential delivery systems for the next-generation DFU therapies. © The Author(s) 2015.

  7. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  8. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer.

    Science.gov (United States)

    Guo, Chunjing; Yin, Jungang; Chen, Daquan

    2018-02-01

    In this work, in order to enhance the stability, bioavailability and antioxidant activity of insoluble antioxidants used into juice, yoghourt and nutritional supplements, the oligo-hyalurosomes nano-delivery system (CRHs) based on oligo-hyaluronic acid -curcumin (oHC) polymer loaded curcumin(Cur) and resveratrol (Res) was fabricated with new nanotechnolgy. The rosy biodegradable amphiphilic oHC polymer was successfully synthesized and used to fabricate the hyalurosomes containing both Cur and Res, called CRHs. The CRHs can spontaneously self-assemble into nano-sized spherical shape of average particle size 134.5±5.1nm and Zeta potential -29.4±1.2 at pH 7.4 PBS conditions. In vitro gastrointestinal release test showed a perfect stability and outstanding sustained release character. Moreover, compared to the single formulations and liposomes, CRHs showed a dose-dependent manner with a higher radical scavenging activity. Therefore, the novel CRHs nano-food manifested the hopeful properties for the new effective gastrointestinal formulation and promising new nano-food delivery system in the use of juice, yoghourt and nutritional supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds.

    Directory of Open Access Journals (Sweden)

    Caterina Cinti

    Full Text Available Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy.

  10. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds

    Science.gov (United States)

    Taranta, Monia; Naldi, Ilaria

    2011-01-01

    Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641

  11. Food emulsions as delivery systems for flavor compounds: A review.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Biliaderis, Costas G; Miao, Song

    2017-10-13

    Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.

  12. Structural and biological properties of thermosensitive chitosan-graphene hybrid hydrogels for sustained drug delivery applications.

    Science.gov (United States)

    Saeednia, Leyla; Yao, Li; Berndt, Marcus; Cluff, Kim; Asmatulu, Ramazan

    2017-09-01

    Chitosan has the ability to make injectable thermosensitive hydrogels which has been highly investigated for drug delivery applications. The addition of nanoparticles is one way to increase the mechanical strength of thermosensitive chitosan hydrogel and subsequently and control the burst release of drug. Graphene nanoparticles have shown unique mechanical, optical and electrical properties which can be exploited for biomedical applications, especially in drug delivery. This study, have focused on the mechanical properties of a thermosensitive and injectable hybrid chitosan hydrogel incorporated with graphene nanoparticles. Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) have been used for morphological and chemical characterization of graphene infused chitosan hydrogels. The cell viability and cytotoxicity of graphene-contained hydrogels were analyzed using the alamarBlue ® technique. In-vitro methotrexate (MTX) release was investigated from MTX-loaded hybrid hydrogels as well. As a last step, to evaluate their efficiency as a cancer treatment delivery system, an in vitro anti-tumor test was also carried out using MCF-7 breast cancer cell lines. Results confirmed that a thermosensitive chitosan-graphene hybrid hydrogel can be used as a potential breast cancer therapy system for controlled delivery of methotrexate. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2381-2390, 2017. © 2017 Wiley Periodicals, Inc.

  13. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

    Science.gov (United States)

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

  14. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  15. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  16. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  17. Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon.

    Science.gov (United States)

    Hou, Huiyuan; Nieto, Alejandra; Ma, Feiyan; Freeman, William R; Sailor, Michael J; Cheng, Lingyun

    2014-03-28

    Daunorubicin (DNR) is an effective inhibitor of an array of proteins involved in neovascularization, including VEGF and PDGF. These growth factors are directly related to retina scar formation in many devastating retinal diseases. Due to the short vitreous half-life and narrow therapeutic window, ocular application of DNR is limited. It has been shown that a porous silicon (pSi) based delivery system can extend DNR vitreous residence from a few days to 3months. In this study we investigated the feasibility of altering the pore size of the silicon particles to regulate the payload release. Modulation of the etching parameters allowed control of the nano-pore size from 15nm to 95nm. In vitro studies showed that degradation of pSiO2 increased with increasing pore size and the degradation of pSiO2 was approximately constant for a given particle type. The degradation of pSiO2 with 43nm pores was significantly greater than the other two particles with smaller pores, judged by observed and normalized mean Si concentration of the dissolution samples (44.2±8.9 vs 25.7±5.6 or 21.2±4.2μg/mL, pporous silicon dioxide with covalent loading of daunorubicin) with large pores (43nm) yielded a significantly higher DNR level than particles with 15 or 26nm pores (13.5±6.9ng/mL vs. 2.3±1.6ng/mL and 1.1±0.9ng/mL, p<0.0001). After two months of in vitro dynamic release, 54% of the pSiO2-CO2H:DNR particles still remained in the dissolution chamber by weight. In vivo drug release study demonstrated that free DNR in the vitreous at post-injection day 14 was 66.52ng/mL for 95nm pore size pSiO2-CO2H:DNR, 10.76ng/mL for 43nm pSiO2-CO2H:DNR, and only 1.05ng/mL for 15nm pSiO2-CO2H:DNR. Pore expansion from 15nm to 95nm led to a 63 fold increase of DNR release (p<0.0001) and a direct correlation between the pore size and the drug levels in the living eye vitreous was confirmed. The present study demonstrates the feasibility of regulating DNR release from pSiO2 covalently loaded with DNR by

  18. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    International Nuclear Information System (INIS)

    Brewer, E.; Coleman, J.; Lowman, A.

    2011-01-01

    Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few smart technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  19. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  20. Water-based preparation of spider silk films as drug delivery matrices.

    Science.gov (United States)

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2015-09-10

    The main focus of this work was to obtain a drug delivery matrix characterized by biocompatibility, water insolubility and good mechanical properties. Moreover the preparation process has to be compatible with protein encapsulation and the obtained matrix should be able to sustain release a model protein. Spider silk proteins represent exceptional natural polymers due to their mechanical properties in combination with biocompatibility. As both hydrophobic and slowly biodegrading biopolymers, recombinant spider silk proteins fulfill the required properties for a drug delivery system. In this work, we present the preparation of eADF4(C16) films as drug delivery matrices without the use of any organic solvent. Water-based spider silk films were characterized in terms of protein secondary structure, thermal stability, zeta-potential, solubility, mechanical properties, and water absorption and desorption. Additionally, this study includes an evaluation of their application as a drug delivery system for both small molecular weight drugs and high molecular weight molecules such as proteins. Our investigation focused on possible improvements in the film's mechanical properties including plasticizers in the film matrix. Furthermore, different film designs were prepared, such as: monolayer, coated monolayer, multilayer (sandwich), and coated multilayer. The release of the model protein BSA from these new systems was studied. Results indicated that spider silk films are a promising protein drug delivery matrix, capable of releasing the model protein over 90 days with a release profile close to zero order kinetic. Such films could be used for several pharmaceutical and medical purposes, especially when mechanical strength of a drug eluting matrix is of high importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  2. Preparation, Characterization, and In Vivo Pharmacoscintigraphy Evaluation of an Intestinal Release Delivery System of Prussian Blue for Decorporation of Cesium and Thallium

    Directory of Open Access Journals (Sweden)

    Nidhi Sandal

    2017-01-01

    Full Text Available Background. Prussian blue (PB, ferric hexacyanoferrate is approved by US-FDA for internal decorporation of Cesium-137 (137Cs and Thallium-201 (201Tl. Aim. Since PB is a costly drug, pH-dependent oral delivery system of PB was developed using calcium alginate matrix system. Methods. Alginate (Alg beads containing PB were optimized by gelation of sodium alginate with calcium ions and effect of varying polymer concentration on encapsulation efficiency and release profile was investigated. Scanning electron microscopy (SEM was carried out to study surface morphology. Adsorption efficacy of Alg-PB beads for 201Tl was evaluated and compared with native PB. In vivo pH-dependent release of the formulation was studied in humans using gamma scintigraphy. Results. Encapsulation efficiencies of Alg-PB beads with 0.5, 1.0, 1.5, and 2.0% polymer solution were 99.9, 91, 92, and 93%, respectively. SEM and particle size analysis revealed differences between formulations in their appearance and size distribution. No drug release was seen in acidic media (pH of 1-2 while complete release was observed at pH of 6.8. Dissolution data was fitted to various mathematical models and beads were found to follow Hixson-Crowell mechanism of release. The pH-dependent release of beads was confirmed in vivo by pharmacoscintigraphy in humans.

  3. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  4. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  5. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Institute of Scientific and Technical Information of China (English)

    Mathew JOY; Srividhya J.IYENGAR; Jui CHAKRABORTY; Swapankumar GHOSH

    2017-01-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-AI layered double hydroxide (LDH) nanostructure by varying the synthetic conditions.The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies,size and stability of their aqueous solutions.We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (DicNa)) loading and release processes.Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week,suggesting the applicability of LDH nanohybrids in sustained drug delivery systems.The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process.LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension,as studied by photon correlation spectroscopy.

  6. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  7. Formulation and evaluation of gastroretentive microballoons containing baclofen for a floating oral controlled drug delivery system.

    Science.gov (United States)

    Dube, T S; Ranpise, N S; Ranade, A N

    2014-01-01

    The objective of the present study was to fabricate and evaluate a multiparticulate oral gastroretentive dosage form of baclofen characterized by a central large cavity (hollow core) promoting unmitigated floatation with practical applications to alleviate the signs and symptoms of spasticity and muscular rigidity. Solvent diffusion and evaporation procedure were applied to prepare floating microspheres with a central large cavity using various combinations of ethylcellulose (release retardant) and HPMC K4M (release modifier) dissolved in a mixture of dichloromethane and methanol (2:1). The obtained microspheres (700-1000 µm) exhibit excellent floating ability (86 ± 2.00%) and release characteristics with entrapment efficiency of 95.2 ± 0.32%. Microspheres fabricated with ethylcellulose to HPMC K4M in the ratio 8.5:1.5 released 98.67% of the entrapped drug in 12 h. Muscle relaxation caused by baclofen microspheres impairs the rotarod performance for more than 12 h. Abdominal X-ray images showed that the gastroretention period of the floating barium sulfate- labeled microspheres was no less than 10 h. The buoyant baclofen microspheres provide a promising gastroretentive drug delivery system to deliver baclofen in spastic patients with a sustained release rate.

  8. Ciprofloxacin release using natural rubber latex membranes as carrier.

    Science.gov (United States)

    Dias Murbach, Heitor; Jaques Ogawa, Guilherme; Azevedo Borges, Felipe; Romeiro Miranda, Matheus Carlos; Lopes, Rute; Roberto de Barros, Natan; Guedes Mazalli, Alexandre Vinicius; Gonçalves da Silva, Rosângela; Ferreira Cinman, José Luiz; de Camargo Drago, Bruno; Donizetti Herculano, Rondinelli

    2014-01-01

    Natural rubber latex (NRL) from Hevea brasiliensis is easily manipulated, low cost, is of can stimulate natural angiogenesis and cellular adhesion, is a biocompatible, material and presents high mechanical resistance. Ciprofloxacin (CIP) is a synthetic antibiotic (fluoroquinolone) used in the treatment of infection at external fixation screws sites and remote infections, and this use is increasingly frequent in medical practice. The aim of this study was to develop a novel sustained delivery system for CIP based on NRL membranes and to study its delivery system behavior. CIP was found to be adsorbed on the NRL membrane, according to results of energy dispersive X-ray spectroscopy. Results show that the membrane can release CIP for up to 59.08% in 312 hours and the mechanism is due to super case II (non-Fickian). The kinetics of the drug release could be fitted with double exponential function X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy shows some interaction by hydrogen bound, which influences its mechanical behavior.

  9. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    International Nuclear Information System (INIS)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2017-01-01

    proliferation studies tested against two different cell cultures of BRL-3A rat liver and H9c2 cardiomyoblasts indicated the non-toxic nature and safer applicability of the EC-MgHPO 4 (25–500 μg/mL, 24 h). Overall, the results of the study confirm for the safer applicability of the composite towards biosensor, drug delivery, scaffolding, and bioanalytical (quality control) applications. - Highlights: • Porous nature of ethyl cellulose and the crystal structure of MgHPO 4 after the composite formation were investigated. • Conductivity studies proved that the composite is electrically conductive and the conductivity is strongly influenced by the electrolyte type as see the conductivity order to be K + > Na + . • Composite can take up to 80% of Proguanil used for loading and can release up to 87% from it under neutral conditions in just over a 90 min period. • Due to the absence of toxicity on in vitro cell culture systems, the composite can be applied for sustainable drug delivery and biosensor related applications.

  10. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Faruq, E-mail: fmohammad@ksu.edu.sa [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Arfin, Tanvir, E-mail: t_arfin@neeri.res.in [Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020 (India); Al-Lohedan, Hamad A. [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2017-02-01

    cell viability and proliferation studies tested against two different cell cultures of BRL-3A rat liver and H9c2 cardiomyoblasts indicated the non-toxic nature and safer applicability of the EC-MgHPO{sub 4} (25–500 μg/mL, 24 h). Overall, the results of the study confirm for the safer applicability of the composite towards biosensor, drug delivery, scaffolding, and bioanalytical (quality control) applications. - Highlights: • Porous nature of ethyl cellulose and the crystal structure of MgHPO{sub 4} after the composite formation were investigated. • Conductivity studies proved that the composite is electrically conductive and the conductivity is strongly influenced by the electrolyte type as see the conductivity order to be K{sup +} > Na{sup +}. • Composite can take up to 80% of Proguanil used for loading and can release up to 87% from it under neutral conditions in just over a 90 min period. • Due to the absence of toxicity on in vitro cell culture systems, the composite can be applied for sustainable drug delivery and biosensor related applications.

  11. Enhanced colonic delivery of ciclosporin A self-emulsifying drug delivery system encapsulated in coated minispheres.

    Science.gov (United States)

    Keohane, Kieran; Rosa, Mónica; Coulter, Ivan S; Griffin, Brendan T

    2016-01-01

    Investigate the potential of coated minispheres (SmPill®) to enhance localized Ciclosporin A (CsA) delivery to the colon. CsA self-emulsifying drug delivery systems (SEDDS) were encapsulated into SmPill® minispheres. Varying degrees of coating thickness (low, medium and high) were applied using ethylcellulose and pectin (E:P) polymers. In vitro CsA release was evaluated in simulated gastric and intestinal media. Bioavailability of CsA in vivo following oral administration to pigs of SmPill® minispheres was compared to Neoral® po and Sandimmun® iv in a pig model. CsA concentrations in blood and intestinal tissue were determined by HPLC-UV. In vitro CsA release from coated minispheres decreased with increasing coating thickness. A linear relationship was observed between in vitro CsA release and in vivo bioavailability (r(2) = 0.98). CsA concentrations in the proximal, transverse and distal colon were significantly higher following administration of SmPill®, compared to Neoral® po and Sandimmun® iv (p < 0.05). Analysis of transverse colon tissue subsections also revealed significantly higher CsA concentrations in the mucosa and submucosa using SmPill® minispheres (p < 0.05). Modulating E:P coating thickness controls release of CsA from SmPill® minispheres. Coated minispheres limited CsA release in the small intestine and enhanced delivery and uptake in the colon. These findings demonstrate clinical advantages of an oral coated minisphere-enabled CsA formulation in the treatment of inflammatory conditions of the large intestine.

  12. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  13. Double emulsion electrospun nanofibers as a growth factor delivery vehicle for salivary gland regeneration

    Science.gov (United States)

    Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James

    2017-08-01

    Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.

  14. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release.

    Directory of Open Access Journals (Sweden)

    Xiao Li

    Full Text Available To improve the efficacy of anti-inflammatory factors in patients who undergo cataract surgery, poly(2-hydroxyethyl methacrylate-co-methyl methacrylate (p(HEMA-co-MMA hydrogels containing β-cyclodextrin (β-CD (pHEMA/MMA/β-CD were designed and prepared as intraocular lens (IOLs biomaterials that could be loaded with and achieve the sustained release of dexamethasone. A series of pHEMA/MMA/β-CD copolymers containing different ratios of β-CD (range, 2.77 to 10.24 wt.% were obtained using thermal polymerization. The polymers had high transmittance at visible wavelengths and good biocompatibility with mouse connective tissue fibroblasts. Drug loading and release studies demonstrated that introducing β-CD into hydrogels increased loading efficiency and achieved the sustained release of the drug. Administering β-CD via hydrogels increased the equilibrium swelling ratio, elastic modulus and tensile strength. In addition, β-CD increased the hydrophilicity of the hydrogels, resulting in a lower water contact angle and higher cellular adhesion to the hydrogels. In summary, pHEMA/MMA/β-CD hydrogels show great potential as IOL biomaterials that are capable of maintaining the sustained release of anti-inflammatory drugs after cataract surgery.

  16. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  17. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  18. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  19. Sustained Administration of Hormones Exploiting Nanoconfined Diffusion through Nanochannel Membranes

    Directory of Open Access Journals (Sweden)

    Thomas Geninatti

    2015-08-01

    Full Text Available Implantable devices may provide a superior means for hormone delivery through maintaining serum levels within target therapeutic windows. Zero-order administration has been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum concentration and bioavailability of released hormones. By exploiting surface-to-molecule interaction within nanochannel membranes, it is possible to achieve a long-term, constant diffusive release of agents from implantable reservoirs. In this study, we sought to demonstrate the controlled release of model hormones from a novel nanochannel system. We investigated the delivery of hormones through our nanochannel membrane over a period of 40 days. Levothyroxine, osteocalcin and testosterone were selected as representative hormones based on their different molecular properties and structures. The release mechanisms and transport behaviors of these hormones within 3, 5 and 40 nm channels were characterized. Results further supported the suitability of the nanochannels for sustained administration from implantable platforms.

  20. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam); Tran, Van-Thanh [Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City (Viet Nam); Duan, Wei [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Phuong Ha-Lien, E-mail: phuong.tran1@deakin.edu.au [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Thao Truong-Dinh, E-mail: ttdthao@hcmiu.edu.vn [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-10-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  1. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    International Nuclear Information System (INIS)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi; Tran, Van-Thanh; Duan, Wei; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-01-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  2. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

    International Nuclear Information System (INIS)

    Tan Zhonghua

    2003-01-01

    Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

  3. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    Science.gov (United States)

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  4. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Erik Brewer

    2011-01-01

    Full Text Available Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few “smart” technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  5. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  6. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro.

    Science.gov (United States)

    Xing, James Z; Lu, Lei; Unsworth, Larry D; Major, Paul W; Doschak, Michael R; Kaipatur, Neelambar R

    2017-02-01

    To develop a nanofiber hydrogel (NF-hydrogel) for sustained and controlled release of the recombinant receptor activator of NF-kB ligand; (RANKL) and to characterize the release kinetics and bioactivity of the released RANKL. Various concentrations of fluorescently-labelled RANKL protein were added to NF-hydrogels, composed of Acetyl-(Arg-Ala-Asp-Ala) 4 -CONH 2 [(RADA) 4 ] of different concentrations, to investigate the resulting in vitro release rates. The nano-structures of NF-hydrogel, with and without RANKL, were determined using atomic force microscopy (AFM). Released RANKL was further analyzed for changes in secondary and tertiary structure using CD spectroscopy and fluorescent emission spectroscopy, respectively. Bioactivity of released RANKL protein was determined using NFATc1 gene expression and tartrate resistant acid phosphatase (TRAP) activity of osteoclast cells as biomarkers. NF-hydrogel concentration dependent sustained release of RANKL protein was measured at concentrations between 0.5 and 2%(w/v). NF-hydrogel at 2%(w/v) concentration exhibited a sustained and slow-release of RANKL protein up to 48h. Secondary and tertiary structure analyses confirmed no changes to the RANKL protein released from NF-hydrogel in comparison to native RANKL. The results of NFATc1 gene mRNA expression and TRAP activities of osteoclast, showed that the release process did not affect the bioactivity of released RANKL. This novel study is the first of its kind to attempt in vitro characterization of NF-hydrogel based delivery of RANKL protein to induce osteoclastogenesis. We have shown the self-assembling NF-hydrogel peptide system is amenable to the sustained and controlled release of RANKL locally; that could in turn increase local concentration of RANKL to induce osteoclastogenesis, for application to the controlled mobilization of tooth movement in orthodontic procedures. Orthodontic tooth movement (OTM) occurs through controlled application of light forces to teeth

  7. In vitro evaluation of transdermal nicotine delivery systems commercially available in Brazil

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    2013-09-01

    Full Text Available The aim of this study was to develop and validate a method for evaluating the release and skin permeation from transdermal nicotine patches using the vertical diffusion cell (VDC. The VDC is an experimental apparatus employed in research, development, and the pharmaceutical field because it can simulate conditions closest to those established in clinical trials. Two transdermal nicotine delivery systems marketed in Brazil to release 14 mg over 24 hours were evaluated. Release studies were carried out using a regenerated cellulose dialysis membrane and permeation studies were carried out using excised porcine ear skin. The results indicated that nicotine release from both evaluated patches follows Higuchi's release kinetics, while skin permeation studies indicated zero-order release kinetics. Nicotine release rates were different between both evaluated patches, but drug permeation rates were not significantly different. According to validation studies, the method was appropriate for evaluating in vitro performance of nicotine patches. The proposed method can be applied to in vitro comparative studies between different commercial nicotine patches and may be used as an auxiliary tool in the design of new transdermal nicotine delivery systems.

  8. Design and development of sustained-release glyburide-loaded

    Indian Academy of Sciences (India)

    The aim of this study was to develop sustained-release glyburide-loaded silica nanoparticles. Silica nanoparticles were synthesized by the sol–gel method using tetra-ethyl ortho-silane as a precursor. Glyburide was successfully entrapped in synthesized silica nanoparticles. To identify the effect of independent variables ...

  9. Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses.

    Science.gov (United States)

    Morris, Aaron H; Mahal, Rajwant S; Udell, Jillian; Wu, Michelle; Kyriakides, Themis R

    2017-10-01

    Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Twana Mohammed M. Ways

    2018-03-01

    Full Text Available Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major drawbacks of its use. Chemical modification of chitosan has been exploited to tackle these two issues. In this review, we highlight the up-to-date studies involving the synthetic approaches and description of mucoadhesive properties of chitosan and chitosan derivatives. These derivatives include trimethyl chitosan, carboxymethyl chitosan, thiolated chitosan, chitosan-enzyme inhibitors, chitosan-ethylenediaminetetraacetic acid (chitosan-EDTA, half-acetylated chitosan, acrylated chitosan, glycol chitosan, chitosan-catechol, methyl pyrrolidinone-chitosan, cyclodextrin-chitosan and oleoyl-quaternised chitosan. We have particularly focused on the effect of chemical derivatization on the mucoadhesive properties of chitosan. Additionally, other important properties including water-solubility, stability, controlled release, permeation enhancing effect, and in vivo performance are also described.

  11. Design and in vitro evaluation of multiparticulate floating drug delivery system of zolpidem tartarate.

    Science.gov (United States)

    Amrutkar, P P; Chaudhari, P D; Patil, S B

    2012-01-01

    Zolpidem tartarate is a non-benzodiazepine, sedative-hypnotic, which finds its major use in various types of insomnia. The present work relates to development of multiparticulate floating drug delivery system based on gas generation technique to prolong the gastric residence time and to increase the overall bioavailability. Modified release dosage form of zolpidem tartarate adapted to release over a predetermined time period, according to biphasic profile of dissolution, where the first phase is immediate release phase for inducing the sleep and the second phase is modified release phase for maintaining the sleep up to 10 h. The system consists of zolpidem tartarate layered pellets coated with effervescent layer and polymeric membrane. The floating ability and in vitro drug release of the system were dependent on amount of the effervescent agent (sodium bicarbonate) layered onto the drug layered pellets, and coating level of the polymeric membrane (Eudragit(®) NE 30D). The system could float completely within 5 min and maintain the floating over a period of 10 h. The multiparticulate floating delivery system of zolpidem tartarate with rapid floating and modified drug release was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Recent Advances in Non-viral Vectors for Gene Delivery

    Science.gov (United States)

    Guo, Xia; Huang, Leaf

    2011-01-01

    membrane/core nanoparticles for nucleic acid delivery and ultrasound-responsive nucleic acid vectors. The systemic delivery studies are highlighted. Finally, we bring forward the prospect for nucleic acid delivery. We think a better understandings of the fate of the nanoparticles inside the cell and of the interactions between the parts of hybrid particles will lead to a delivery system suitable for clinical use. We also underscore the value of sustained release of nucleic acid and presume making vectors targeted to cells with sustained release in vivo should be an interesting research challenge. PMID:21870813

  13. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    Science.gov (United States)

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  15. Sustained release of verapamil hydrochloride from sodium alginate microcapsules.

    Science.gov (United States)

    Farhana, S Ayesha; Shantakumar, S M; Shyale, Somashekar; Shalam, Md; Narasu, Laxmi

    2010-04-01

    The objective of the present study was to develop sustained release microcapsules of verapamil hydrochloride (VH) using biodegradable polymers. For this purpose microcapsules embedded verapamil hydrochloride were prepared using sodium alginate alone and also by incorporating some co polymers like methyl cellulose (MC), sodium carboxy methyl cellulose (SCMC) , poly vinyl pyrollidone (PVP) and xanthan gum by employing complex emulsion method of microencapsulation. Microcapsules were prepared in various core: coat ratios to know the effect of polymer and co polymers on drug release. Overall ten formulations were prepared and evaluated for flow behaviour, sieve analysis, drug entrapment efficiency, in vitro dissolution studies, stability studies, including scanning electron microscopy and DSC. The resulting microcapsules were discrete, large, spherical and also free flowing. The drug content in all the batches of microcapsules was found to be uniform. The release was depended on core: coat ratio and nature of the polymers. FTIR analysis revealed chemical integrity between Verapamil hydrochloride (VH), sodium alginate and between the copolymers. Among the four copolymers used methyl cellulose retarded the drug release more than the other three, hence the same formulation was subjected for in vivo studies. The drug release from the microcapsules was found to be following non fickian diffusion. Mechanism of drug release was diffusion controlled first order kinetics. Drug diffusion co efficient and correlation co efficient were also assessed by using various mathematical models. In vivo result analysis of pharmacokinetic parameters revealed that t max of reference and test formulations were almost same. From the study it was concluded that, sustained release Verapamil hydro chloride microcapsules could be achieved with success using sodium alginate alone and also in combination with other biodegradable polymers.

  16. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.

    Science.gov (United States)

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2009-02-01

    Growing attentions have been paid to the pulmonary route for systemic delivery of peptide and protein drugs, such as insulin. Advantages of this non-injective route include rapid drug deposition in the target organ, fewer systemic side effects and avoiding first pass metabolism. However, sustained release formulations for pulmonary delivery have not been fully exploited till now. In our study, a novel dry powder inhalation (DPI) system of insulin loaded solid lipid nanoparticles (Ins-SLNs) was investigated for prolonged drug release, improved stability and effective inhalation. Firstly, the drug was incorporated into the lipid carriers for a maximum entrapment efficiency as high as 69.47 +/- 3.27% (n = 3). Secondly, DPI formulation was prepared by spray freeze drying of Ins-SLNs suspension, with optimized lyoprotectant and technique parameters in this procedure. The properties of DPI particles were characterized for their pulmonary delivery potency. Thirdly, the in vivo study of intratracheal instillation of Ins-SLNs to diabetic rats showed prolonged hypoglycemic effect and a relative pharmacological bioavailability of 44.40% could be achieved in the group of 8 IU/kg dosage. These results indicated that SLNs have shown increasing potential as an efficient and non-toxic lipophilic colloidal drug carrier for enhanced pulmonary delivery of insulin.

  17. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  18. Development of Sustained-Release Microbeads of Nifedipine and In ...

    African Journals Online (AJOL)

    Methods: Nifedipine microbeads were prepared using sodium alginate and pectin in different ratios by ionic-gelation method. ... Oral sustained release dosage forms provide ... Stability in .... 37oC) in a USP XXII apparatus (Pharma Test,.

  19. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline.

    Science.gov (United States)

    Taherzade, Seyed Dariush; Soleimannejad, Janet; Tarlani, Aliakbar

    2017-08-06

    Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.

  20. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  1. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling.

    Science.gov (United States)

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin

    2017-07-01

    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  2. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics

    Directory of Open Access Journals (Sweden)

    David Vehlow

    2016-03-01

    Full Text Available An improved interfacial drug delivery system (DDS based on polyelectrolyte complex (PEC coatings with controlled drug loading and improved release performance was elaborated. The cationic homopolypeptide poly(l-lysine (PLL was complexed with a mixture of two cellulose sulfates (CS of low and high degree of substitution, so that the CS and PLL solution have around equal molar charged units. As drugs the antibiotic rifampicin (RIF and the bisphosphonate risedronate (RIS were integrated. As an important advantage over previous PEC systems this one can be centrifuged, the supernatant discarded, the dense pellet phase (coacervate separated, and again redispersed in fresh water phase. This behavior has three benefits: (i Access to the loading capacity of the drug, since the concentration of the free drug can be measured by spectroscopy; (ii lower initial burst and higher residual amount of drug due to removal of unbound drug and (iii complete adhesive stability due to the removal of polyelectrolytes (PEL excess component. It was found that the pH value and ionic strength strongly affected drug content and release of RIS and RIF. At the clinically relevant implant material (Ti40Nb similar PEC adhesive and drug release properties compared to the model substrate were found. Unloaded PEC coatings at Ti40Nb showed a similar number and morphology of above cultivated human mesenchymal stem cells (hMSC compared to uncoated Ti40Nb and resulted in considerable production of bone mineral. RIS loaded PEC coatings showed similar effects after 24 h but resulted in reduced number and unhealthy appearance of hMSC after 48 h due to cell toxicity of RIS.

  3. Application of nanohydrogels in drug delivery systems: recent patents review.

    Science.gov (United States)

    Dalwadi, Chintan; Patel, Gayatri

    2015-01-01

    Nanohydrogel combines the advantages of hydrogel and nano particulate systems. Similar to the hydrogel and macrogel, nanohydrogel can protect the drug and control drug release by stimuli responsive conformation or biodegradable bond into the polymer networks. Nanohydrogel has drawn huge interest due to their potential applications, such as carrier in target-specific controlled drug delivery, absorbents, chemical/biological sensors, and bio-mimetic materials. Similar to the nanoparticles, stimuli responsive nanohydrogel can easily be delivered in the liquid form for parenteral drug delivery application. This review highlights the methods to prepare nanohydrogel based on natural and synthetic polymers for diverse applications in drug delivery. It also encompasses the drug loading and drug release mechanism of the nanohydrogel formulation and patents related to the composition and chemical methods for preparation of nanohydrogel formulation with current status in clinical trials.

  4. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    Science.gov (United States)

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  5. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Qiu J

    2015-10-01

    Full Text Available Jichuan Qiu,1 Ruibin Zhang,2 Jianhua Li,1 Yuanhua Sang,1 Wei Tang,3 Pilar Rivera Gil,4 Hong Liu1,51Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, 2Blood Purification Center, Jinan Central Hospital, 3Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, People’s Republic of China; 4Institute of Chemistry, Rovira i Virgili University, Tarragona, Spain; 5Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People’s Republic of ChinaAbstract: Graphene quantum dots (GQDs were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox. The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs. The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells.Keywords: graphene quantum dots, drug delivery, pH-sensitive, controlled release, traceable

  6. [Establishment of modern multi-component sustained-release preparations of oral traditional Chinese medicines].

    Science.gov (United States)

    Xia, Hai-Jian; Zhang, Zhen-Hai; Liu, Dan; Yu, Dan-Hong; Jia, Xiao-Bin

    2013-10-01

    Traditional Chinese medicines have a long history, with a large quantity of efficient traditional Chinese medicines and prescriptions. However, the vast majority of pharmaceutical dose forms remain common preparations, with very few efficient, long-lasting and low-dose preparations. The sustain-release preparation allows sustained drug release in a longer period of time, maintains blood drug concentration, reduces the toxic effect and medication frequency, and improves medication compliance. Unlike monomer drugs, the material base of traditional Chinese medicine and compounds is multi-component, instead of single or several active monomers. Therefore, under the guidance of the Chinese medicine theories, modern multi-component sustained-release preparations were developed for oral traditional Chinese medicines, with the aim of finally improving the clinical efficacy of traditional Chinese medicines.

  7. A sustained release system using porous cellulose spheres modified by grafting as matrices

    International Nuclear Information System (INIS)

    Hosoi, Fumio; Makuuchi, Keizo; Saito, Kenji; Koishi, Masumi.

    1987-01-01

    Polymer-coated spheres, obtained by the graft polymerization of methyl methacrylate (MMA) onto porous spheres based on cellulose by the pre-irradiation method, were used as matrices for the drug sustained release system for salicylic acid. The adsorption of salicylic acid was carried out by dipping the grafted spheres in a 50% aqueous ethanol solution containing salicylic acid. The amount of salicylic acid adsorbed (Q) increased proportionately with the percent graft of MMA (G) to the power of 2.9. Adsorption mechanism of salicylic acid could be expressed in term of Langmuir's adsorption isotherm. The ratio of constants for adsorption and desorption (k) and the saturated amount of salicylic acid adsorbed (Q 0 ) were expressed as k = k 1 G and Q 0 = k 2 G 2.4 , respectively. These results indicate that the number of adsorption sites increased proportionately with the nth power of G as a results of the interaction of grafted poly (methyl methacrylate)(PMMA) and cellulose. Similar results were obtained with grafting of MMA, MMA-styrene (St), and MMA-methacrylic acid (MAc) in the presence of salicylic acid. (author)

  8. NOVEL APROACHES ON BUCCAL MUCOADHESIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Dibyalochan Mohanty* , C. Gurulatha, Dr.Vasudha Bakshi, B. Mavya

    2018-01-01

    Among novel drug delivery system ,Buccal mucoadhesive systems have attracted great attention in recent years due to their ability to adhere and remain on the oral mucosa and to release their drug content gradually ,bioadhesion refers to any bond formed between two biological surface or a bond between a biological and a systemic surface. Buccal mucosa is preferred for both systemic and local drug action. The mucosa has a rich blood supply and it relatively permeable. Buccal mucoadhesive films ...

  9. Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium.

    Science.gov (United States)

    El-Sousi, Salah; Nácher, Amparo; Mura, Carla; Catalán-Latorre, Ana; Merino, Virginia; Merino-Sanjuán, Matilde; Díez-Sales, Octavio

    2013-02-01

    The aim of this study was to prepare diclofenac/hydroxypropylmethylcellulose (HPMC) and diclofenac-loaded nanoparticles/HPMC films as potential systems for ocular delivery. Two different concentration of the polymer were used: 1.5 and 2.0% w/v. Chitosan-hyaluronic acid nanoparticles were prepared by the ionotropic gelation technique. Nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, drug encapsulation efficiency and rheological studies. In-vitro drug studies and corneal penetration release studies were carried out. Drug release mechanism was finally evaluated by fitting the Ritger and Peppas equation to data. In addition corneal hydration level was calculated to determine whether films could damage the corneas. Diclofenac HPMC films presented a faster drug release and a higher drug penetration than nanoparticles; on the contrary nanoparticles containing films were able to give a more sustained release of the drug and thus a slower diclofenac permeation through the cornea than HPMC films. Nanoparticles loaded with diclofenac sodium in HPMC films may be a valuable alternative for the treatment of ocular inflammatory diseases, since these formulations offer the benefit of sustained releasing directly to the site of action. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  10. Microencapsulation: A promising technique for controlled drug delivery.

    Science.gov (United States)

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  11. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  12. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery.

    Science.gov (United States)

    Patel, Viral; Sharma, Om Prakash; Mehta, Tejal

    2018-04-01

    Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.

  14. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Metal organic frameworks as a drug delivery system for flurbiprofen.

    Science.gov (United States)

    Al Haydar, Muder; Abid, Hussein Rasool; Sunderland, Bruce; Wang, Shaobin

    2017-01-01

    Metal organic frameworks (MOFs) have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Flurbiprofen (FBP), a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101) were synthesized and employed for FBP delivery. A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40%) in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release profiles were investigated in a phosphate buffer solution at pH 7.4. The total release of the FBP after 2 days was obtained at 72.9, 75.2, 78.3, and 90.3% for Ca-MOF, Fe-MIL-100, Fe-MIL-53, and Fe-MIL-101, respectively. The MOFs are shown to be a promising drug delivery option for FBP with a significant loading percent and relatively prolonged drug release.

  16. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Mauri, Emanuele; Chincarini, Giulia M.F.; Rigamonti, Riccardo; Magagnin, Luca; Sacchetti, Alessandro, E-mail: alessandro.sacchetti@polimi.it; Rossi, Filippo, E-mail: filippo.rossi@polimi.it

    2017-03-01

    The synthesis of nanogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy in controlled drug delivery. However, with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small hydrophilic molecules through polymeric network pores. For these reasons research community is pointing toward the use of click strategies to reduce release rates of the linked drugs to the polymer chains. Here we propose an alternative method that considers the electrostatic interactions between polymeric chains and drugs to tune the release kinetics from nanogel network. The main advantage of these systems lies in the fact that the carried drugs are not modified and no chemical reactions take place during their loading and release. In this work we synthesized PEG-PEI based nanogels with different protonation degrees and the release kinetics with charged and uncharged drug mimetics (sodium fluorescein, SF, and rhodamine B, RhB) were studied. Moreover, also the effect of counterion used to induce protonation was taken into account in order to build a tunable drug delivery system able to provide multiple release rates with the same device. - Highlights: • The design of nanogels as drug delivery systems based on electrostatic interaction among drug and polymers is proposed. • Nanogels can be synthetized tuning their positive charge density, according to the protonation of PEI at different pH. • No biorthogonal chemistry strategies are applied to the polymers or drugs. • Drug release is efficiently modulated by charge density of PEI chains. • The effect of counterion on nanogel synthesis is investigated and allows controlling the drug release.

  18. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  19. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  20. Sustained-release liquisolid compact tablets containing artemether-lumefantrine as alternate-day regimen for malaria treatment to improve patient compliance

    Directory of Open Access Journals (Sweden)

    Nnamani PO

    2016-11-01

    Full Text Available Petra Obioma Nnamani,1,2 Agatha Adaora Ugwu,1 Emmanuel Chinedu Ibezim,1 Franklin Chimaobi Kenechukwu,1 Paul Achile Akpa,1 John-Dike Nwabueze Ogbonna,1 Nicholas Chinedu Obitte,3 Amelia Ngozi Odo,4 Maike Windbergs,2 Claus-Michael Lehr,2,5,6 Anthony Amaechi Attama1 1Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria; 2Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany; 3Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, 4Department of Human Kinetics and Health Education, University of Nigeria, Nsukka, Nigeria; 5PharmBioTec GmbH, 6Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany Abstract: The present study aimed to develop low-dose liquisolid tablets of two antimalarial drugs artemether–lumefantrine (AL from a nanostructured lipid carrier (NLC of lumefantrine (LUM and estimate the potential of AL as an oral delivery system in malariogenic Wistar mice. LUM-NLCs were prepared by hot homogenization using Precirol® ATO 5/Transcutol® HP and tallow fat/Transcutol® HP optimized systems containing 3:1 ratios of the lipids, respectively, as the matrices. LUM-NLC characteristics, including morphology, particle size, zeta potential, encapsulation efficiency, yield, pH-dependent stability, and interaction studies, were investigated. Optimized LUM-NLCs were mixed with artemether powder and other dry ingredients and the resultant powder evaluated for micromeritics. Subsequent AL liquisolid tablets were tested for in vitro drug release and in vivo antiplasmodial activity in mice infected with Plasmodium berghei berghei (NK 65. Results showed that optimized LUM-NLC were stable, spherical, polydispersed but nanometric. Percentage

  1. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  2. Development of theophylline sustained release dosage form based on Kollidon SR.

    Science.gov (United States)

    Reza, Md Selim; Quadir, Mohiuddin Abdul; Haider, Syed Shabbir

    2002-01-01

    Sustained release theophylline matrix tablets constituting Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer) were developed in this study in an attempt to design a dosage form that manifests desirable release profile and thorough adherence to official monographs. Four matrix tablet formulations were prepared by dry blending and direct compression of Kollidon SR and HPMC-15cps (hydroxypropylmethylcellulose) in varying proportion with fixed percentage of theophylline. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release with an initial burst effect. Incorporation of HPMC-15cps in the matrix tablet prolonged the release of drug with subsequent minimization of burst effect as confirmed by mean dissolution time, T50 and Higuchi release rate data. Among the batches containing HPMC-15 cps, a direct relationship was obtained between release rate and the percentage of HPMC used. A suitable controlled release profile was obtained with the matrix tablets containing 20% Kollidon SR and 30% HPMC-15cps. The formulation showed close resemblance to commercial products and compliance with USP specification. The results were explored and explained by the difference of physico-chemical property and hydration characteristics of the polymers. In addition to this result, the exponential model was applied to characterize the drug release behaviour from polymeric systems. It was found that, Fickian release is predominant in tablets containing Kollidon SR alone and non-Fickian mechanism plays an important role in the release of drug from HPMC containing tablets with a trend towards zero-order or case II release. In vitro release profile of two commercial brands were also undertaken for comparison and modulation of the experimental batches.

  3. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  4. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems

    DEFF Research Database (Denmark)

    Svagan, Anna J; Benjamins, Jan-Willem; Al-Ansari, Zeinab

    2016-01-01

    acceptable surfactant (lauric acid sodium salt). The drug was suspended in the wet-stable foams followed by a drying step to obtain dry foams. Flexible cellular solid materials of different thicknesses, shapes and drug loadings (up to 50wt%) could successfully be prepared. The drug was released from...... the solid foams in a diffusion-controlled, sustained manner due to the presence of intact air bubbles which imparted a tortuous diffusion path. The diffusion coefficient was assessed using Franz cells and shown to be more than one order of magnitude lower for the cellular solids compared to the bubble...

  5. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer

    International Nuclear Information System (INIS)

    Cho, Youngnam; Shi, Riyi; Ben Borgens, Richard; Ivanisevic, Albena

    2009-01-01

    In this study, a mesoporous silica nanoparticle (MSN)-based nerve growth factor (NGF) delivery system has been successfully embedded within an electroactive polypyrrol (Ppy). The spherical particles with ∼100 nm diameter possess a large surface-to-volume ratio for the entrapment of NGF into the pores of MSNs while retaining their bioactivity. Direct incorporation of MSN-NGF within Ppy was achieved during electrochemical polymerization. The loading amount and release profile of NGF from the composite was investigated by sandwich ELISA. The NGF incorporation can be controllable by varying particle concentration or by extending electrodeposition time. The morphology and chemical composition of the Ppy/MSN-NGF composite was evaluated by atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). Optical and electron microscopy revealed a characteristic attachment of PC 12 cells and the outgrowth of their neurites when grown on the Ppy/MSN-NGF composite as a result of a sustained and controlled release of NGF. In order to observe the effectiveness of electrical stimulation, neurite extension of cells cultured on unstimulated and stimulated Ppy/MSN-NGF was compared. The NGF release in the presence of electrical stimulation promoted significantly greater neurite extension.

  6. Natural rubber latex used as drug delivery system in guided bone regeneration (GBR

    Directory of Open Access Journals (Sweden)

    Rondinelli Donizetti Herculano

    2009-06-01

    Full Text Available In this work, we propose natural rubber latex (NRL membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C, which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.

  7. Drugs and Polymers for Delivery Systems in OA Joints: Clinical Needs and Opportunities

    Directory of Open Access Journals (Sweden)

    Maarten Janssen

    2014-03-01

    Full Text Available Osteoarthritis (OA is a big burden of disease worldwide and one of the most common causes of disability in the adult population. Currently applied therapies consist of physical therapy, oral medication, intra-articular injections, and surgical interventions, with the main goal being to reduce pain and improve function and quality of life. Intra-articular (IA administration of drugs has potential benefits in OA treatment because it minimizes systemic bioavailability and side effects associated with oral administration of drugs without compromising the therapeutic effect in the joint. However, IA drug residence time is short and there is a clinical need for a vehicle that is able to provide a sustained release long enough for IA therapy to fulfill its promise. This review summarizes the use of different polymeric systems and the incorporated drugs for IA drug delivery in the osteoarthritic joint with a primary focus on clinical needs and opportunities.

  8. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    Science.gov (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  9. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides.

    Science.gov (United States)

    Lim, Kaiyang; Saravanan, Rathi; Chong, Kelvin K L; Goh, Sharon H M; Chua, Ray R Y; Tambyah, Paul A; Chang, Matthew W; Kline, Kimberly A; Leong, Susanna S J

    2018-04-17

    Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability. © 2018 Wiley Periodicals, Inc.

  10. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone.

    Science.gov (United States)

    Iurian, Sonia; Turdean, Luana; Tomuta, Ioan

    2017-01-01

    This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon ® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio ( X 1 ), the type of hydrophilic polymer ( X 2 ), and the percentage of hydrophilic polymer ( X 3 ) on the percentages of dissolved Pal over 24 h ( Y 1 - Y 9 ). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring.

  11. Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia.

    Science.gov (United States)

    Shamma, Rehab Nabil; Aburahma, Mona Hassan

    2014-01-01

    Spironolactone (SL) is a US Food and Drug Administration-approved drug for the treatment of hypertension and various edematous conditions. SL has gained a lot of attention for treating androgenic alopecia due to its potent antiandrogenic properties. Recently, there has been growing interest for follicular targeting of drug molecules for treatment of hair and scalp disorders using nanocolloidal lipid-based delivery systems to minimize unnecessary systemic side effects associated with oral drug administration. Accordingly, the objective of this study is to improve SL efficiency and safety in treating alopecia through the preparation of colloidal nanostructured lipid carriers (NLCs) for follicular drug delivery. SL-loaded NLCs were prepared by an emulsion solvent diffusion and evaporation method using 23 full factorial design. All of the prepared formulations were spherical in shape with nanometric size range (215.6-834.3 nm) and entrapment efficiency >74%. Differential scanning calorimetry thermograms and X-ray diffractograms revealed that SL exists in amorphous form within the NLC matrices. The drug release behavior from the NLCs displayed an initial burst release phase followed by sustained release of SL. Confocal laser scanning microscopy confirmed the potential of delivering the fluorolabeled NLCs within the follicles, suggesting the possibility of using SL-loaded NLCs for localized delivery of SL into the scalp hair follicles.

  12. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos Modified release of drug delivery systems: hydrophilic polymers

    Directory of Open Access Journals (Sweden)

    Carla Martins Lopes

    2005-06-01

    Full Text Available Os sistemas de liberação de fármacos são parte integrante da investigação farmacêutica. A maioria dos sistemas de liberação oral de fármacos é baseada em matrizes poliméricas. Nas duas décadas passadas, as matrizes hidrofílicas tornaram-se muito populares na formulação de formas farmacêuticas de liberação modificada. A escolha do polímero hidrofílico na formulação da matriz pode fornecer uma combinação apropriada dos mecanismos de intumescimento, de dissolução ou de erosão e determinam a cinética de liberação in vitro. As matrizes de intumescimento são sistemas monolíticos preparados pela compressão de mistura de um polímero hidrofílico e de um fármaco. Elas representam sistemas da liberação em que os vários mecanismos podem ser adaptados ao programa de liberação. O sucesso desses sistemas está relacionado com a tecnologia de fabricação e com as características físicas e físico-químicas do polímero, responsáveis pelo mecanismo de liberação.Drug delivery systems (DDS became an integral part of pharmaceutical research. The majority of oral DDS are matrix-based systems. Hydrophilic matrices for the past two decades have been popular in the formulation of controlled release solid dosage forms. Swellable matrices are monolithic systems prepared by compression of a powdered mixture of a hydrophilic polymer and a drug. They represent a delivery system in which various mechanisms can be adapted to the delivery program. Their success is linked to the established tabletting technology of manufacture. The choice of the hydrophilic polymer in the matrix formulation can provide an appropriate combination of swelling, dissolution or erosion mechanisms to evaluate in vitro release kinetics.

  13. Nanovesicles released by Dictyostelium cells: a potential carrier for drug delivery.

    Science.gov (United States)

    Lavialle, Françoise; Deshayes, Sophie; Gonnet, Florence; Larquet, Eric; Kruglik, Sergei G; Boisset, Nicolas; Daniel, Régis; Alfsen, Annette; Tatischeff, Irène

    2009-10-01

    Nanovesicles released by Dictyostelium discoideum cells grown in the presence of the DNA-specific dye Hoechst 33342 have been previously shown to mediate the transfer of the dye into the nuclei of Hoechst-resistant cells. The present investigation extends this work by conducting experiments in the presence of hypericin, a fluorescent therapeutic photosensitizer assayed for antitumoral photodynamic therapy. Nanovesicles released by Dictyostelium cells exhibit an averaged diameter between 50 and 150 nm, as measured by transmission cryoelectron microscopy. A proteomic analysis reveals a predominance of actin and actin-related proteins. The detection of a lysosomal membrane protein (LIMP II) indicates that these vesicles are likely generated in the late endosomal compartment. The use of the hypericin-containing nanovesicles as nanodevices for in vitro drug delivery was investigated by fluorescence microscopy. The observed signal was almost exclusively located in the perinuclear area of two human cell lines, skin fibroblasts (HS68) and cervix carcinoma (HeLa) cells. Studies by confocal microscopy with specific markers of cell organelles, provided evidence that hypericin was accumulated in the Golgi apparatus. All these data shed a new light on in vitro drug delivery by using cell-released vesicles as carriers.

  14. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    International Nuclear Information System (INIS)

    Chandra, Sudeshna; Noronha, Glen; Dietrich, Sascha; Lang, Heinrich; Bahadur, Dhirendra

    2015-01-01

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH 2 CH 2 C(O)O(CH 2 CH 2 O) 9 CH 3 and CH 2 CH 2 C(O)O(CH 2 CH 2 O) 2 C 2 H 5 , respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe 3 O 4 ) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells

  15. A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan–alginate microgels

    Directory of Open Access Journals (Sweden)

    Zhou GC

    2013-02-01

    Full Text Available Guichen Zhou,1,2,* Ying Lu,1,* He Zhang,1,* Yan Chen,1 Yuan Yu,1 Jing Gao,1 Duxin Sun,3 Guoqing Zhang,2 Hao Zou,1 Yanqiang Zhong1 1Department of Pharmaceutical Science, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Pharmacy, East Hospital of Hepatobiliary Surgery, Shanghai, People's Republic of China; 3Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA*These authors contributed equally to this workPurpose: The aim of this report was to introduce a novel “core-membrane” microgel drug-delivery device for spontaneously pulsed release without any external trigger.Methods: The microgel core was prepared with alginate and chitosan. The semipermeable membrane outside the microgel was made of polyelectrolytes including polycation poly(allylamine hydrochloride and sodium polystyrene sulfonate. The drug release of this novel system was governed by the swelling pressure of the core and the rupture of the outer membrane.Results: The size of the core-membrane microgel drug-delivery device was 452.90 ± 2.71 µm. The surface charge depended on the layer-by-layer coating of polyelectrolytes, with zeta potential of 38.6 ± 1.4 mV. The confocal microscope exhibited the layer-by-layer outer membrane and inner core. The in vitro release profile showed that the content release remained low during the first 2.67 hours. After this lag time, the cumulative release increased to 80% in the next 0.95 hours, which suggested a pulsed drug release. The in vivo drug release in mice showed that the outer membrane was ruptured at approximately 3 to 4 hours, as drug was explosively released.Conclusion: These data suggest that the encapsulated substance in the core-membrane microgel delivery device can achieve a massive drug release after outer membrane rupture. This device was an effective system for pulsed drug delivery.Keywords: polyelectrolyte, chitosan–alginate, microgels, layer-by-layer, pulsed

  16. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.

    Science.gov (United States)

    Marquele-Oliveira, Franciane; Torres, Elina Cassia; Barud, Hernane da Silva; Zoccal, Karina Furlani; Faccioli, Lúcia Helena; Hori, Juliana I; Berretta, Andresa Aparecida

    2016-05-10

    The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi

  17. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems

    Science.gov (United States)

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules. PMID:23268651

  18. Drug release kinetic analysis and prediction of release data via polymer molecular weight in sustained release diltiazem matrices.

    Science.gov (United States)

    Adibkia, K; Ghanbarzadeh, S; Mohammadi, G; Khiavi, H Z; Sabzevari, A; Barzegar-Jalali, M

    2014-03-01

    This study was conducted to investigate the effects of HPMC (K4M and K100M) as well as tragacanth on the drug release rate of diltiazem (DLTZ) from matrix tablets prepared by direct compression method.Mechanism of drug transport through the matrices was studied by fitting the release data to the 10 kinetic models. 3 model independent parameters; i. e., mean dissolution time (MDT), mean release rate (MRR) and release rate efficacy (RE) as well as 5 time point approaches were established to compare the dissolution profiles. To find correlation between fraction of drug released and polymer's molecular weight, dissolution data were fitted into two proposed equations.All polymers could sustain drug release up to 10 h. The release data were fitted best to Peppas and Higuchi square root kinetic models considering squared correlation coefficient and mean percent error (MPE). RE and MRR were decreased when polymer to drug ratio was increased. Conversely, t60% was increased with raising polymer /drug ratio. The fractions of drug released from the formulations prepared with tragacanth were more than those formulated using the same amount of HPMC K4M and HPMC K100M.Preparation of DLTZ matrices applying HPMCK4M, HPMC K100M and tragacanth could effectively extend the drug release. © Georg Thieme Verlag KG Stuttgart · New York.

  19. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    Directory of Open Access Journals (Sweden)

    Qin LL

    2013-05-01

    Full Text Available Lili Qin,1 Mei Wang,2 Rongrong Zhu,3 Songhui You,1 Ping Zhou,1 Shilong Wang31Department of Physical Education, Tongji University, Shanghai, People's Republic of China; 2Department of Chemistry, Tongji University, Shanghai, People's Republic of China; 3School of Life Science and Technology, Tongji University, Shanghai, People's Republic of ChinaAbstract: Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16 were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications.Keywords: layered double hydroxides, etoposide, drug delivery, antitumor effect, sustained release

  20. Inulin based glutathione-responsive delivery system for colon cancer treatment.

    Science.gov (United States)

    Wang, Dongdong; Sun, Feifei; Lu, Chunbo; Chen, Peng; Wang, Zhaojie; Qiu, Yuanhao; Mu, Haibo; Miao, Zehong; Duan, Jinyou

    2018-05-01

    Colorectal cancer is one of the most common types of tumor in the world. Here we developed a lipoic acid esterified polysaccharide (inulin) delivery system for tanshinone IIA to treat colorectal cancer in vitro. The release of tanshinone IIA in the system was highly responsive to glutathione, which is commonly abundant in cancer cells. In addition, this drug delivery system was proliferative to Bifidobacterium longum, the common inhabitant of human intestine. Thus, this strategy might be useful to improve colon cancer therapy efficacy of anticancer drugs and meanwhile promote the growth of beneficial commensal flora in the gut. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Long-term morphine delivery via slow release morphine pellets or osmotic pumps: Plasma concentration, analgesia, and naloxone-precipitated withdrawal.

    Science.gov (United States)

    McLane, Virginia D; Bergquist, Ivy; Cormier, James; Barlow, Deborah J; Houseknecht, Karen L; Bilsky, Edward J; Cao, Ling

    2017-09-15

    Slow-release morphine sulfate pellets and osmotic pumps are common routes of chronic morphine delivery in mouse models, but direct comparisons of these drug delivery systems are lacking. In this study, we assessed the efficacy of slow-release pellets versus osmotic pumps in delivering morphine to adult mice. Male C57BL/6NCr mice (8weeksold) were implanted subcutaneously with slow-release pellets (25mg morphine sulfate) or osmotic pumps (64mg/mL, 1.0μL/h). Plasma morphine concentrations were quantified via LC-MS/MS, analgesic efficacy was determined by tail flick assay, and dependence was assessed with naloxone-precipitated withdrawal behaviors (jumping) and physiological effects (excretion, weight loss). Morphine pellets delivered significantly higher plasma drug concentrations compared to osmotic pumps, which were limited by the solubility of the morphine sulfate and pump volume/flow rate. Within 96h post-implantation, plasma morphine concentrations were indistinguishable in pellet vs. pump-treated samples. While osmotic pump did not have an antinociceptive effect in the tail flick assay, pumps and pellets induced comparable dependence symptoms (naloxone-precipitated jumping behavior) from 24-72h post-implantation. In this study, we compared slow-release morphine pellets to osmotic minipumps for morphine delivery in mice. We found that osmotic pumps and subcutaneous morphine sulfate pellets yielded significantly different pharmacokinetics over a 7-day period, and as a result significantly different antinociceptive efficacy. Nonetheless, both delivery methods induced dependence as measured by naloxone-precipitated withdrawal. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery

    Directory of Open Access Journals (Sweden)

    Lee CH

    2014-01-01

    Full Text Available Cheng-Hung Lee,1,2 Yu-Huang Lin,3 Shang-Hung Chang,1 Chun-Der Tai,3 Shih-Jung Liu,2 Yen Chu,4 Chao-Jan Wang,5 Ming-Yi Hsu,5 Hung Chang,6 Gwo-Jyh Chang,7 Kuo-Chun Hung,1 Ming-Jer Hsieh,1 Fen-Chiung Lin,1 I-Chang Hsieh,1 Ming-Shien Wen,1 Yenlin Huang81Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, 2Department of Mechanical Engineering, 3Graduate Institute of Medical Mechatronics, Chang Gung University, 4Laboratory of Cardiovascular Physiology, Division of Thoracic and Cardiovascular Surgery, 5Department of Medical Imaging and Intervention, 6Hematology-Oncology Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, 7Graduate Institute of Clinical Medicinal Sciences, Chang Gung University College of Medicine, Linkou, 8Department of Anatomical Pathology, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, TaiwanAbstract: Incomplete endothelialization, blood cell adhesion to vascular stents, and inflammation of arteries can result in acute stent thromboses. The systemic administration of acetylsalicylic acid decreases endothelial dysfunction, potentially reducing thrombus, enhancing vasodilatation, and inhibiting the progression of atherosclerosis; but, this is weakened by upper gastrointestinal bleeding. This study proposes a hybrid stent with biodegradable nanofibers, for the local, sustained delivery of acetylsalicylic acid to injured artery walls. Biodegradable nanofibers are prepared by first dissolving poly(D,L-lactide-co-glycolide and acetylsalicylic acid in 1,1,1,3,3,3-hexafluoro-2-propanol. The solution is then electrospun into nanofibrous tubes, which are then mounted onto commercially available bare-metal stents. In vitro release rates of pharmaceuticals from nanofibers are characterized using an elution method, and a high-performance liquid chromatography assay. The experimental results suggest that biodegradable nanofibers

  3. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    Directory of Open Access Journals (Sweden)

    Dorniani D

    2013-09-01

    Full Text Available Dena Dorniani,1 Mohd Zobir bin Hussein,1 Aminu Umar Kura,2 Sharida Fakurazi,2 Abdul Halim Shaari,3 Zalinah Ahmad4 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 2Vaccines and Immunotherapeutics Laboratory, 3Physics Department, Faculty of Science, 4Chemical Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia Background: Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D, ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively

  4. Problems of logistic systems sustainable development in delivery chains

    Directory of Open Access Journals (Sweden)

    2011-12-01

    Full Text Available Background: Realization of supply chains management paradigm, covering significantly more volumes of logistic space, logically leads to complication of logistic systems, which, in its turn, arises significant number of problems of both theoretical and practical character. In our opinion, not all the aspects of logistic systems design and their sustainable functioning have received by the present time corresponding coverage in scientific literature. More detailed consideration requires specific problems of logistic systems interaction with their environment. We can talk about formation of new scientific direction (which we suggest to name logistic environics, being applied addition to classical approach to design of logistic systems. Methods: the formalized description of interaction process for logistic systems with the environment was presented and discussed  from ecological, social, economical, organizational and technological, technical, natural scientific positions. Results and conclusions: There is an interaction between logistics systems and the environment, but formalized description of logistic systems interaction process with the environment requires performance of complex interdisciplinary research from many different positions.

  5. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Xiaona Wang

    2015-10-01

    Full Text Available In the present study, we prepared nattokinase-loaded self-double-emulsifying drug delivery system (SDEDDS and investigated its preliminary pharmacodynamics. The type and concentration of oil phase, inner aqueous phase and emulsifier were screened to prepare optimum nattokinase-loaded SDEDDS. Next, the optimum formulations were characterized based on microstructure, volume-weighted mean droplet size, self-emulsifying rate, yield, storage stability, in vitro release and in vivo pharmacodynamics studies. The water/oil/water multiple emulsions exhibited typical multiple structure, with relatively small volume-weighted mean droplet size 6.0 ± 0.7 μm and high self-emulsifying ability (self-emulsifying time <2 min. Encapsulation of nattokinase was up to 86.8 ± 8.2%. The cumulative release of nattokinase within 8 h was about 30%, exhibiting a sustained release effect. The pharmacodynamics study indicated that nattokinase-loaded SDEDDS could significantly prolong the whole blood clotting time in mouse and effectively improve the carrageenan-induced tail thrombosis compared with nattokinase solution. Moreover, we showed that SDEDDS could successfully self-emulsify into water/oil/water multiple emulsions upon dilution in dispersion medium with gentle stirring and effectively protect nattokinase activity in gastric environment. Our findings suggested that SDEDDS could be a promising strategy for peptide and protein drugs by oral administration.

  6. Characterisation of zinc delivery from a nipple shield delivery system using a breastfeeding simulation apparatus.

    Directory of Open Access Journals (Sweden)

    Rebekah L Scheuerle

    Full Text Available Zinc delivery from a nipple shield delivery system (NSDS, a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32-51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch's correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia.

  7. Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Zamani, Maedeh [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Felice, Betiana [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Independencia 1800, Tucumán (Argentina); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2015-11-01

    Advanced engineering of materials for the development of drug delivery devices provides scope for novel and versatile strategies for treatment of various diseases. ‘Electrospraying’ was used to prepare PLGA microparticles and further encapsulate the drug, metronidazole (Met) within the particles to function as a drug delivery system. Two different solvents were utilized for the preparation of drug loaded PLGA particles, whereby the polymeric solution in dichloromethane (DCM) produced particles of bigger sizes than using trifluoroethanol (TFE). Scanning electron microscopy showed the spherical morphology of the particles, with sizes of 3946 ± 407 nm and 1774 ± 167 nm, respectively for PLGA-Met(DCM) and PLGA-Met(TFE). The FTIR spectroscopy proved the incorporation of metronidazole in the polymer, but without any specific drug–polymer interaction. The release of the drug from the particles was studied in phosphate buffered saline, where a sustained drug release was obtained for at least 41 days. Cytotoxicity evaluation of the drug extract using mesenchymal stem cells (MSCs) showed not hindering the proliferation of MSCs, and the cell phenotype was retained after incubation in the drug containing media. Electrospraying is suggested as a cost-effective and single step process for the preparation of polymeric microparticles for prolonged and controlled release of drug. - Highlights: • Electrospraying as a novel method for the fabrication of drug delivery device • Metronidazole encapsulated PLGA particles were fabricated by electrospraying. • Solvent DCM produced particles of double the size than using TFE. • Sustained release of metronidazole studied for a period of 41 days • Drug release pattern from particles followed Fickian diffusion. • PLGA-metronidazole particles can function as a substrate for periodontal regeneration.

  8. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  9. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Directory of Open Access Journals (Sweden)

    Caixàs A

    2014-09-01

    Full Text Available Assumpta Caixàs, Lara Albert, Ismael Capel, Mercedes Rigla Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain Abstract: Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer, reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave®. We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed. Keywords: Contrave, weight loss, overweight, cardiovascular disease, diabetes, cancer

  10. The physical and chemical stability of suspensions of sustained-release diclofenac microspheres.

    Science.gov (United States)

    Lewis, L; Boni, R L; Adeyeye, C M

    1998-01-01

    The major challenge in liquid sustained-release oral suspensions is to minimize drug diffusion into the suspending medium and to retain the original properties of the microparticles during storage. Diclofenac wax microspheres prepared by the hydrophobic congealable disperse phase method were formulated as a sustained release suspension and stored at three different temperatures (25, 37 and 45 degrees C) for 3 months, to evaluate the physical and chemical stability of the suspended microspheres. Suspensions of microspheres stored at ambient temperatures were both physically and chemically stable, but at higher temperatures, up to 45 degrees C, there was a decrease in drug release due to scaling and melting on the microsphere surface as observed by scanning electron microscopy. However, on prolonged storage, up to 90 days, especially at 45 degrees C, temperature became a dominant factor causing an increase in drug release. The suspension of diclofenac microspheres was chemically stable for 3 months, while the plain drug suspension exhibited slight degradation.

  11. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement.

    Science.gov (United States)

    Li, ChunYan; Huang, ZhiGang; Liu, ZheShuo; Ci, LiQian; Liu, ZhePeng; Liu, Yu; Yan, XueYing; Lu, WeiYue

    Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs) demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN) in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S) were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050), good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA) assay of IFN demonstrated that PBNP-S could stay in the vagina and maintain intravaginal IFN level for much longer time than IFN solution (24 hours vs several hours) without obvious histological irritation to vaginal mucosa after vaginal administration to mice. In summary, good stability, easy loading and controllable release of protein therapeutics, in vitro and in vivo mucoadhesive properties and local safety of PBNP-S suggested it as a promising nanoscale mucoadhesive drug delivery

  12. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage

    Directory of Open Access Journals (Sweden)

    M. Kaleemullah

    2017-07-01

    Full Text Available Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor (f2 value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05 between the F3 and reference drug in terms of MDT and

  13. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    Science.gov (United States)

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p

  14. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  15. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering.

    Science.gov (United States)

    Yao, Qingqing; Liu, Yangxi; Selvaratnam, Balaranjan; Koodali, Ranjit T; Sun, Hongli

    2018-04-09

    Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.

    Science.gov (United States)

    Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong

    2017-02-10

    The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability.

    Science.gov (United States)

    McClements, David Julian

    2015-07-01

    There has been a surge of interest in the development of nanoscale systems for the encapsulation, protection, and delivery of lipophilic nutrients, vitamins, and nutraceuticals. This review article highlights the challenges associated with incorporating these lipophilic bioactive components into foods, and then discusses potential nanoscale delivery systems that can be used to overcome these challenges. In particular, the desirable characteristics required for any nanoscale delivery system are presented, as well as methods of fabricating them and of characterizing them. An overview of different delivery systems is given, such as microemulsions, nanoemulsions, emulsions, microgels, and biopolymer nanoparticles, and their potential applications are discussed. Nanoscale delivery systems have considerable potential within the food industry, but they must be carefully formulated to ensure that they are safe, economically viable, and effective. Nanoscale delivery systems have numerous potential applications in the food industry for encapsulating, protecting, and releasing bioactive agents, such as nutraceuticals and vitamins. This review article highlights methods for designing, fabricating, characterizing, and utilizing edible nanoparticles from a variety of different food-grade ingredients. © 2015 Institute of Food Technologists®

  18. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels.

    Science.gov (United States)

    Mauri, Emanuele; Chincarini, Giulia M F; Rigamonti, Riccardo; Magagnin, Luca; Sacchetti, Alessandro; Rossi, Filippo

    2017-03-01

    The synthesis of nanogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy in controlled drug delivery. However, with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small hydrophilic molecules through polymeric network pores. For these reasons research community is pointing toward the use of click strategies to reduce release rates of the linked drugs to the polymer chains. Here we propose an alternative method that considers the electrostatic interactions between polymeric chains and drugs to tune the release kinetics from nanogel network. The main advantage of these systems lies in the fact that the carried drugs are not modified and no chemical reactions take place during their loading and release. In this work we synthesized PEG-PEI based nanogels with different protonation degrees and the release kinetics with charged and uncharged drug mimetics (sodium fluorescein, SF, and rhodamine B, RhB) were studied. Moreover, also the effect of counterion used to induce protonation was taken into account in order to build a tunable drug delivery system able to provide multiple release rates with the same device. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Science.gov (United States)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  1. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2012-11-15

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  2. Modified biomolecule as potential vehicle for buccal delivery of doxepin.

    Science.gov (United States)

    Laffleur, Flavia; Zilio, Martina; Shuwisitkul, Duangratana

    2016-10-01

    Doxepin is a traditional tricyclic antidepressant with analgesic and anesthetic properties when applied topically to the mucosa. Doxepin is one approach in treating insomnia and depression in Parkinson's disease. Patients with Parkinson's disease suffer difficulties in swallowing. Therefore, it was the aim of this study to develop a buccal-adhesive delivery system. Pectin was modified with cysteine. Stability assays in form of disintegration assay according to the Ph.Eur were performed. Furthermore, bioadhesiveness on buccal mucosa was investigated incorporating the drug doxepin. The adhesiveness was improved 1.4-fold and revealed a sustained release over 3 h. Taking these findings into account, the modifications render this designed excipient fruitful for buccal delivery.

  3. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    Directory of Open Access Journals (Sweden)

    Chen M

    2012-08-01

    Full Text Available Muwan Chen,1,2 Dang QS Le,1,2 San Hein,2 Pengcheng Li,1 Jens V Nygaard,2 Moustapha Kassem,3 Jørgen Kjems,2 Flemming Besenbacher,2 Cody Bünger11Orthopaedic Research Lab, Aarhus University Hospital, Aarhus C, Denmark; 2Interdisciplinary Nanoscience Center (iNANO, Aarhus University, Aarhus C, Denmark; 3Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, DenmarkAbstract: Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other

  4. Chewing gum and lozenges as delivery systems for noscapine

    DEFF Research Database (Denmark)

    Norgaard Jensen, L.; Christrup, Lona Louring; Menger, N.

    1991-01-01

    Chewing gum and lozenges were evaluated as delivery systems for noscapine with the aim of developing improved antitussive preparations. The formulations studied were prepared with both the water-soluble hydrochloride salt of noscapine and with the poorly soluble embonate salt and noscapine free...... base. The release characteristics of the preparations were evaluated both in vitro and in vivo, and their taste properties examined. Only the formulations containing noscapine base were without any appreciable taste. Chewing gum containing this compound showed, however, a low level of drug release both...

  5. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement

    Directory of Open Access Journals (Sweden)

    Li CY

    2016-11-01

    Full Text Available ChunYan Li,1 ZhiGang Huang,2 ZheShuo Liu,1 LiQian Ci,3 ZhePeng Liu,3 Yu Liu,2 XueYing Yan,1 WeiYue Lu2 1School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 2Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 3School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China Abstract: Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050, good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA assay of

  6. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol-b-PEG-b-(PAE-g-cholesterol for anticancer drug delivery and controlled release

    Directory of Open Access Journals (Sweden)

    Huang X

    2017-03-01

    doxorubicin-loaded system showed high toxicity for HepG2 cells as free drugs. All the results proved that the pH-sensitive triblock polymer brush and its self-assembled micelle might be a potential delivery carrier for anticancer drugs with sustained release. Keywords: pH-sensitive, micelle, anticancer, drug delivery, controlled release

  7. Etched ion track polymer membranes for sustained drug delivery

    International Nuclear Information System (INIS)

    Rao, Vijayalakshmi; Amar, J.V.; Avasthi, D.K.; Narayana Charyulu, R.

    2003-01-01

    The method of track etching has been successfully used for the production of polymer membranes with capillary pores. In the present paper, micropore membranes have been prepared by swift heavy ion irradiation of polycarbonate (PC). PC films were irradiated with ions of gold, silicon and oxygen of varying energies and fluence. The ion tracks thus obtained were etched chemically for various time intervals to get pores and these etched films were used as membranes for the drug release. Ciprofloxacine hydrochloride was used as model drug for the release studies. The drug content was estimated spectrophotometrically. Pore size and thus the drug release is dependent on the etching conditions, ions used, their energy and fluence. Sustained drug release has been observed in these membranes. The films can be selected for practical utilization by optimizing the irradiation and etching conditions. These films can be used as transdermal patches after medical treatment

  8. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  9. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    Conclusion: A fair correlation between in vitro dissolution and in vivo data was found. The results obtained indicate successful development of a sustained release formulation of diltiazem. Keywords: Diltiazem, Matrix tablet, Hydroxypropyl methylcellulose Eudragit, In vitro/in vivo correlation, Optimization ...

  10. Recent Advances in Ocular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shinobu Fujii

    2011-01-01

    Full Text Available Transport of drugs applied by traditional dosage forms is restricted to the eye, and therapeutic drug concentrations in the target tissues are not maintained for a long duration since the eyes are protected by a unique anatomy and physiology. For the treatment of the anterior segment of the eye, various droppable products to prolong the retention time on the ocular surface have been introduced in the market. On the other hand, direct intravitreal implants, using biodegradable or non-biodegradable polymer technology, have been widely investigated for the treatment of chronic vitreoretinal diseases. There is urgent need to develop ocular drug delivery systems which provide controlled release for the treatment of chronic diseases, and increase patient’s and doctor’s convenience to reduce the dosing frequency and invasive treatment. In this article, progress of ocular drug delivery systems under clinical trials and in late experimental stage is reviewed.

  11. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    Science.gov (United States)

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release.

  12. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  13. Effect of sustained-release isosorbide dinitrate on post-prandial gastric emptying and gastroduodenal motility in healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Rasmussen, S L; Linnet, J

    2004-01-01

    and gastroduodenal motility after a meal. Eleven healthy volunteers participated in a double-blind, placebo-controlled, cross-over study. Each subject ingested 40 mg isosorbide dinitrate orally as a sustained-release formulation or oral placebo, in random order. Gastric emptying and gastroduodenal motility were...... consecutive 15-min periods. A 40 mg single dose of sustained-released isosorbide dinitrate does not seem to alter gastric emptying or gastroduodenal motility after a meal.......Nitric oxide (NO) is an inhibitory neurotransmitter released by non-adrenergic and non-cholinergic neurons that innervate the smooth muscles of the gastrointestinal tract. We examined whether NO, derived from a sustained-release preparation of isosorbide dinitrate, influenced gastric emptying...

  14. In vitro efficacy and release study with anti-inflammatory drugs incorporated in adhesive transdermal drug delivery systems.

    Science.gov (United States)

    Meyer, Stefanie; Peters, Nils; Mann, Tobias; Wolber, Rainer; Pörtner, Ralf; Nierle, Jens

    2014-04-01

    The topical application of two different anti-inflammatory extracts incorporated in adhesive transdermal drug delivery systems (TDDSs) was investigated. Therefore, anti-inflammatory properties and percutaneous absorption behavior of adhesive TDDSs were characterized in vitro conducting experiments with a dermatologically relevant human skin model. Anti-inflammatory efficacy against UV irradiation of both TDDSs was determined in vitro with EpiDerm™. The reduction of the release of proinflammatory cytokines by topically applied TDDSs was compared with the reduction during the presence of the specific cyclooxygenase inhibitor diclofenac in the culture medium. A similar anti-inflammatory efficacy of the topically applied TDDSs in comparison with the use of diclofenac in the culture medium should be achieved. Furthermore, percutaneous absorption in efficacy tests was compared with percutaneous absorption in diffusion studies with porcine cadaver skin. Both the topically applied TDDSs showed a significant anti-inflammatory activity. Permeation coefficients through the stratum corneum and the epidermis gained from the release studies on porcine cadaver skin (Magnolia: 2.23·10(-5) cm/h, licorice: 4.68·10(-6) cm/h) were approximately five times lower than the permeation coefficients obtained with the EpiDerm™ skin model (Magnolia: 9.48·10(-5) cm/h, licorice: 24.0·10(-6) cm/h). Therefore, an adjustment of drug doses during experiments with the EpiDerm™ skin model because of weaker skin barrier properties should be considered.

  15. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    Science.gov (United States)

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Science.gov (United States)

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    International Nuclear Information System (INIS)

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-01-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and 1 H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  18. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jalvandi, Javid, E-mail: Javid.jlv@gmail.com [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); White, Max, E-mail: tamrak@bigpond.com [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Gao, Yuan, E-mail: Yuan.Gao@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Truong, Yen Bach, E-mail: Yen.truong@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Padhye, Rajiv, E-mail: rajiv.padhye@rmit.edu.au [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Kyratzis, Ilias Louis, E-mail: Louis.kyratzis@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and {sup 1}H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  19. Receptors for luteinizing hormone-releasing hormone (LHRH) in Dunning R3327 prostate cancers and rat anterior pituitaries after treatment with a sustained delivery system of LHRH antagonist SB-75.

    Science.gov (United States)

    Srkalovic, G; Bokser, L; Radulovic, S; Korkut, E; Schally, A V

    1990-12-01

    Membrane receptors for LHRH were evaluated in Dunning R3327 prostate cancers and rat anterior pituitaries. The receptors were characterized both in untreated animals and after in vivo treatment with microcapsules of the agonist D-Trp6-LHRH and a sustained delivery system releasing different doses (23.8, 47.6, 71.4 micrograms/day) of LHRH antagonist [Ac-D-Nal(2)1-D-Phe(4Cl)2-D-Pal(3)3,D-Cit6, D-Ala10]-LHRH (SB-75). The therapy, which lasted 8 weeks, strongly inhibited tumor growth. A group of normal Sprague-Dawley male rats was also treated for 6 weeks with microcapsules of SB-75 releasing 25 micrograms/day. In the Dunning tumors from the control group, ligand [125I, D-Trp6]-LHRH was bound to two classes of binding sites [dissociation constant, class a (Kda) = 1.01 +/- 0.30 x 10(-9) M; Kdb = 1.71 +/- 0.41 x 10(-6) M; maximal binding capacity of receptors, class a (Bmaxa) = 48.66 +/- 22.13 fmol/mg of protein; Bmaxb = 92.10 +/- 29.40 pmol/mg of protein] in both kinetic and equilibrium studies. Treatment with D-Trp6-LHRH produced down-regulation of membrane receptors for LHRH in Dunning tumors. Microcapsules of SB-75 resulted in dose-dependent up-regulation of binding sites for LHRH in Dunning tumors. Analysis of the binding data showed that interaction of labeled D-Trp6-LHRH with binding sites in anterior pituitaries was consistent with the presence of a single class of noncooperative receptors (Kd = 43.75 x 10(-9) M; Bmax = 5.25 pmol/mg membrane proteins). Prolonged treatment with microcapsules of D-Trp6-LHRH reduced both Bmax and Kd. Lower doses of SB-75 (23.8 and 47.6 micrograms/day) produced up-regulation, whereas the highest dose (71.4 micrograms/day) resulted in down-regulation of binding sites for LHRH in rat pituitaries. In normal Sprague-Dawley rats, treatment with microcapsules of SB-75 (25 micrograms/day) for 6 weeks produced a slight increase in the number of available binding sites (Bmax = 2.35 +/- 0.82 pmol/mg membrane protein) and a moderate decrease in

  20. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mitra Alami-Milani

    2017-04-01

    Full Text Available Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems.

  1. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    Science.gov (United States)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  2. pH- and ion-sensitive polymers for drug delivery

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  3. pH- and ion-sensitive polymers for drug delivery.

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-11-01

    Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.

  4. Formulation and Evaluation of Two-Pulse Drug Delivery System of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome the snag of biological ... Conclusion: The developed formulation demonstrates the feasibility of a two-phase release of amoxicillin separated by a ... comprised of a calorimeter (DSC 60), flow controller (FCL 60), thermal ...

  5. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  6. Mini-tablets versus pellets as promising multiparticulate modified release delivery systems for highly soluble drugs.

    Science.gov (United States)

    Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y

    2015-07-05

    Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.

  7. Texosome-based drug delivery system for cancer therapy: from past to present

    International Nuclear Information System (INIS)

    Mahmoodzadeh Hosseini, Hamideh; Halabian, Raheleh; Amin, Mohsen; Imani Fooladi, Abbas Ali

    2015-01-01

    Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomes, which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes’ ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history of texosome-based delivery systems and discuss the advantages and disadvantages of each system

  8. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer's disease.

    Science.gov (United States)

    Faustino, Célia; Rijo, Patrícia; Reis, Catarina Pinto

    2017-06-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with amyloid-β peptide misfolding and aggregation. Neurotrophic factors, such as nerve growth factor (NGF), can prevent neuronal damage and rescue the cholinergic neurons that undergo cell death in AD, reverse deposition of extracellular amyloid plaques and improve cognitive deficits. However, NGF administration is hampered by the poor pharmacokinetic profile of the therapeutic protein and its inability to cross the blood-brain barrier, which requires specialised drug delivery systems (DDS) for efficient NGF delivery to the brain. This review covers the main therapeutic approaches that have been developed for NGF delivery targeting the brain, from polymeric implants to gene and cell-based therapies, focusing on the role of nanoparticulate systems for the sustained release of NGF in the brain as a neuroprotective and disease-modifying approach toward AD. Lipid- and polymer-based delivery systems, magnetic nanoparticles and quantum dots are specifically addressed as promising nanotechnological strategies to overcome the current limitations of NGF-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hypersonic Poration of Membranes : From Triggered Release and Encapsulation to Drug Delivery

    NARCIS (Netherlands)

    Lu, Yao

    2018-01-01

    In this thesis, hypersonic poration is introduced as a new physical method to precisely control membrane permeability for the applications of controlled release and encapsulation, and enhanced drug delivery. Bulk acoustic wave (BAW) resonators of gigahertz (GHz) frequency have been fabricated using

  10. A REVIEW ON CONTROLLED DRUG RELEASE FORMULATION: SPANSULES

    OpenAIRE

    Rinky Maurya; Dr. Pramod Kumar Sharma; Rishabha Malviya

    2014-01-01

    Spansules are a dosage form which was considered as one of the Advanced Drug Delivery System. Multidrug preparations can be delivered easily by spansules or granules in capsule technology. This type of delivery system designed to release a drug or a medicament at two or more different rates or in different span of time. A quick/slow release system provides an initial release of drug followed by a constant rate of drug release over a extended period or a defined period of time and in slow/quic...

  11. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    Science.gov (United States)

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sudeshna; Noronha, Glen [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Dietrich, Sascha; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Straße der Nationen 62, d-09111 Chemnitz (Germany); Bahadur, Dhirendra, E-mail: dhirenb@iitb.ac.in [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)

    2015-04-15

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 9}CH{sub 3} and CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 2}C{sub 2}H{sub 5}, respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe{sub 3}O{sub 4}) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells.

  13. Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    KAUST Repository

    Cui, Lina

    2012-09-26

    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.

  14. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies

    Science.gov (United States)

    Hu, Yuwei; Chen, Jian; Li, Xiufang; Sun, Yanhua; Huang, Shen; Li, Yuqing; Liu, Hui; Xu, Jiangfeng; Zhong, Shian

    2017-09-01

    The current state of cancer therapy encourages researchers to develop novel efficient nanocarriers. Halloysite nanotubes (HNTs) are good nanocarrier candidates due to their unique nanoscale (40-80 nm in diamter and 200-500 nm in length) and hollow lumen, as well as good biocompatibility and low cost. In our study, we prepared a type of folate-mediated targeting and redox-triggered anticancer drug delivery system, so that Doxorubicin (DOX) can be specifically transported to tumor sites due to the over-expressed folate-receptors on the surface of cancer cells. Furthermore, it can then be released by the reductive agent glutathione (GSH) in cancer cells where the content of GSH is nearly 103-fold higher than in the extracellular matrix. A series of methods have demonstrated that per-thiol-β-cyclodextrin (β-CD-(SH)7) was successfully combined with HNTs via a redox-responsive disulfide bond, and folic acid-polyethylene glycol-adamantane (FA-PEG-Ad) was immobilized on the HNTs through the strong complexation between β-CD/Ad. In vitro studies indicated that the release rate of DOX raised sharply in dithiothreitol (DTT) reducing environment and the amount of released DOX reached 70% in 10 mM DTT within the first 10 h, while only 40% of DOX was released in phosphate buffer solution (PBS) even after 79 h. Furthermore, the targeted HNTs could be specifically endocytosed by over-expressed folate-receptor cancer cells and significantly accelerate the apoptosis of cancer cells compared to non-targeted HNTs. In vivo studies further verified that the targeted HNTs had the best therapeutic efficacy and no obvious side effects for tumor-bearing nude mice, while free DOX showed damaging effects on normal tissues. In summary, this novel nanocarrier system shows excellent potential for targeted delivery and controlled release of anticancer drugs and provides a potential platform for tumor therapy.

  15. Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review.

    Science.gov (United States)

    Pandit, Vinay; Kumar, Ajay; Ashawat, Mahendra S; Verma, Chander P; Kumar, Pravin

    2017-01-01

    Pulsatile drug delivery system (PDDS) shows potential significance in the field of drug delivery to release the maximum amount of drug at a definite site and at specific time. PDDS are mainly time controlled delivery devices having a definite pause period for drug release, which is not affected by acidity, alkalinity, motility and enzymes present in the gastrointestinal tract. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. The review article, discuss the general concepts, marketed formulations and patents or any other recent advancement in pulsatile release technology. It also highlights on diseases requiring therapy by pulsatile release, various researches on herbal pulsatile formulations and quality control aspects of PDDS. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Sensor-integrated polymer actuators for closed-loop drug delivery system

    Science.gov (United States)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  17. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  18. Evaluation of gum mastic (Pistacia lentiscus as a microencapsulating and matrix forming material for sustained drug release

    Directory of Open Access Journals (Sweden)

    Dinesh M. Morkhade

    2017-09-01

    Full Text Available In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS and diltiazem hydrochloride (DLTZ were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 µm and 50–87%, respectively. Increase in mastic: drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation, and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.

  19. A dual strategy to improve psychotic patients’ compliance using sustained release quetiapine oral disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Refaat Ahmed

    2016-12-01

    Full Text Available Quetiapine (QT is a short acting atypical antipsychotic drug effective in schizophrenia and bipolar disorder. This study aims at designing a novel dosage form of sustained release taste-masked QT orally disintegrating tablets (ODTs based on solid lipid micro-pellets (SLMPs. QT SLMPs were prepared using the hot melt extrusion technique and utilizing three lipid carriers: Compritol, Precirol and white beeswax either alone or in mixtures. They showed sustained QT release and a taste masking effect. The selected QT SLMP was further blended with an aqueous solution containing polyvinylpyrollidone (2.5 %, croscarmellose sodium (2 % and mannitol (50 %; it was then lyophilized into ODT in a mass ratio of 1:2, respectively. ODTs containing QT SLMPs showed: average wetting time (40.92 s, average oral disintegration time (21.49 s, average hardness (16.85 N and also imparted suitable viscosity to suspend pellets during the lyophilization process. In conclusion, lyophilization is a promising technique for the formulation of multiparticulate systems into ODTs.

  20. Slow release of tetracycline from a mucoadhesive complex with sucralfate for eradication of Helicobacter pylori.

    Science.gov (United States)

    Higo, Shoichi; Takeuchi, Hirofumi; Yamamoto, Hiromitsu; Hino, Tomoaki; Kawashima, Yoshiaki

    2008-10-01

    Treatment composed of a gastric mucoadhesive antibiotic with slow release drug delivery is expected to be effective for the eradication of Helicobacter pylori (H. pylori). In this study, we evaluated the slow release property of the tetracycline-sucralfate acidic complex. Tetracycline was the antibiotic selected because of its complexation capacity with sucralfate. Sustained release was tested using two different dissolution test methods: paddle and flow-through cell. The adhesive paste formed from the acidic complex displayed a longer sustained release profile of tetracycline using flow-through cell method. The milder conditions of the flow-through cell method better mimicked the fasted state of the stomach, suggesting that the oral administration with fasting is appropriate for the acidic complex. Furthermore, the paste formation protected the tetracycline from decomposition under an acidic condition, which apparently contributes to long-term release. Change in the zeta potential of the acidic complex particles was helpful in clarifying the release mechanisms of the tetracycline. The data indicated that the immediate release of tetracycline in the early stage of the test was indispensable to the subsequent paste formation that enables slow release. If administrated orally with fasting, the acidic complex rapidly adheres to the gastric mucosa and sustains long-term release of the tetracycline to the gastric lumen or mucus layer. This antibiotic delivery mechanism, which requires only a minimum dosage, may be effective for efficient eradication of H. pylori.

  1. Low molecular mass chitosan as carrier for hydrodynamically balanced system for sustained delivery of ciprofloxacin hydrochloride

    OpenAIRE

    VERMA, ANURAG; BANSAL, ASHOK K.; GHOSH, AMITAVA; PANDIT, JAYANTA K.

    2012-01-01

    Chitosan has become a focus of major interest in recent years due to its excellent biocompatibility, biodegradability and non-toxicity. Although this material has already been extensively investigated in the design of different types of drug delivery systems, it is still little explored for stomach specific drug delivery systems. The objective of the present investigation was to explore the potential of low molecular mass chitosan (LMCH) as carrier for a hydrodynamically balanced system (HBS)...

  2. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    Science.gov (United States)

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FORMULATION AND EVALUATION OF FLOATING DRUG DELIVERY SYSTEM OF AMOXYCILLIN TRIHYDRATE

    OpenAIRE

    Marella Radhakrishna; K.G.Parthiban; Nelluri Ramarao; Nagapuri Santhoshi Deepika; Perumulla Abhishek

    2012-01-01

    The present study was designed to formulate and evaluate balanced Floating Drug Delivery Systems as controlled release modules, which prolongs the release rate of the drugs. Amoxycillin is an anti- bacterial acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell walls of both Gram-positive and Gram-negative bacteria. Helicobacter pylori exists in the gastric mucous layer or ...

  4. Sustainable diets within sustainable food systems.

    Science.gov (United States)

    Meybeck, Alexandre; Gitz, Vincent

    2017-02-01

    Sustainable diets and sustainable food systems are increasingly explored by diverse scientific disciplines. They are also recognised by the international community and called upon to orient action towards the eradication of hunger and malnutrition and the fulfilment of sustainable development goals. The aim of the present paper is to briefly consider some of the links between these two notions in order to facilitate the operationalisation of the concept of sustainable diet. The concept of sustainable diet was defined in 2010 combining two totally different perspectives: a nutrition perspective, focused on individuals, and a global sustainability perspective, in all its dimensions: environmental, economic and social. The nutrition perspective can be easily related to health outcomes. The global sustainability perspective is more difficult to analyse directly. We propose that it be measured as the contribution of a diet to the sustainability of food systems. Such an approach, covering the three dimensions of sustainability, enables identification of interactions and interrelations between food systems and diets. It provides opportunities to find levers of change towards sustainability. Diets are both the results and the drivers of food systems. The drivers of change for those variously involved, consumers and private individuals, are different, and can be triggered by different dimensions (heath, environment, social and cultural). Combining different dimensions and reasons for change can help facilitate the transition to sustainable diets, recognising the food system's specificities. The adoption of sustainable diets can be facilitated and enabled by food systems, and by appropriate policies and incentives.

  5. Evaluating the patient experience after implantation of a 0.4 mg sustained release dexamethasone intracanalicular insert (Dextenza™): results of a qualitative survey.

    Science.gov (United States)

    Gira, Joseph P; Sampson, Reginald; Silverstein, Steven M; Walters, Thomas R; Metzinger, Jamie Lynne; Talamo, Jonathan H

    2017-01-01

    The purpose of this study is to evaluate the patient experience of sustained release dexamethasone intracanalicular insert (Dextenza™) following cataract surgery as part of a Phase III clinical trial program. This cross-sectional, qualitative evaluation involved individual interviews lasting approximately 45 minutes. Patients from four US investigational study sites who had previously received an insert were enrolled. There were no predesignated end points; this was a qualitative survey seeking a deeper understanding of patient experience. Twenty-five patients were interviewed. Most patients (92%) reported the highest level of satisfaction grade with regard to overall product satisfaction. All patients described the insert as comfortable. Most patients (96%) described their overall experience with the insert as very convenient or extremely convenient. Twenty-two of 23 (96%) participants rated their experience with the insert as "very" or "extremely convenient", compared to previous topical therapy, and 88% of patients stated that if they were to undergo cataract surgery again, they would request the insert. When asked if they would recommend the insert to family members or friends, 92% stated they would. The survey found that 84% of participants would be willing to pay more for the insert than for eye drop therapy. The dexamethasone insert was found by patients to be highly favorable with regard to overall satisfaction, convenience, and comfort. The insert was well received and largely preferred over topical therapy alternatives following surgery. More extensive evaluation of the patient experience is warranted, and future studies should help inform design of the next generation of sustained release drug delivery systems.

  6. Preparation and evaluation of tolmetin sodium conventional and sustained-release suppositories

    OpenAIRE

    B., Baloǧlu; O., Kirkaǧaçhoǧlu

    2002-01-01

    Conventional suppositories of tolmetin sodium were prepared by using two different types of Witepsol as an oily base and two different ratios of polyethylene glycol 400: polyethylene glycol 4000 as an water-soluble base. In addition, sustained- release suppositories were prepared by adding Eudragit L-100 ta the suppositories. The effects of the suppository base and the ratios of the polyethylene glycol 400: polyethylene glycols 4000 on the in vitro release characteristics were investigated. T...

  7. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qin Guoting; Li Zheng; Xia Rongmin; Li Feng; O' Neill, Brian E; Li, King C [Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Goodwin, Jessica T; Khant, Htet A; Chiu, Wah, E-mail: zli@tmhs.org, E-mail: kli@tmhs.org [National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030 (United States)

    2011-04-15

    A critical issue for current liposomal carriers in clinical applications is their leakage of the encapsulated drugs that are cytotoxic to non-target tissues. We have developed partially polymerized liposomes composed of polydiacetylene lipids and saturated lipids. Cross-linking of the diacetylene lipids prevents the drug leakage even at 40 deg. C for days. These inactivated drug carriers are non-cytotoxic. Significantly, more than 70% of the encapsulated drug can be instantaneously released by a laser that matches the plasmon resonance of the tethered gold nanoparticles on the liposomes, and the therapeutic effect was observed in cancer cells. The remote activation feature of this novel drug delivery system allows for precise temporal and spatial control of drug release.

  8. Implementation of wireless power transfer and communications for an implantable ocular drug delivery system.

    Science.gov (United States)

    Tang, T B; Smith, S; Flynn, B W; Stevenson, J T M; Gundlach, A M; Reekie, H M; Murray, A F; Renshaw, D; Dhillon, B; Ohtori, A; Inoue, Y; Terry, J G; Walton, A J

    2008-09-01

    A wireless power transfer and communication system based on near-field inductive coupling has been designed and implemented. The feasibility of using such a system to remotely control drug release from an implantable drug delivery system is addressed. The architecture of the wireless system is described and the signal attenuation over distance in both water and phosphate buffered saline is studied. Additionally, the health risk due to exposure to radio frequency (RF) radiation is examined using a biological model. The experimental results demonstrate that the system can trigger the release of drug within 5 s, and that such short exposure to RF radiation does not produce any significant (system could replace a chemical battery in an implantable system, eliminating the risks associated with battery failure and leakage and also allowing more compact designs for applications such as drug delivery.

  9. An Overview On Various Approaches And Recent Patents On Gastroretentive Drug Delivery Systems.

    Science.gov (United States)

    Kumar, Manoj; Kaushik, Deepak

    2018-03-08

    Drugs having absorption window in the stomach or upper small intestine has restricted bioavailability with conventional dosage forms. The gastric residence time of these dosage forms is usually short and they do not show drug release for prolonged period of time. To avoid these problems and to enhance the bioavailability and gastric retention time of these drugs, controlled drug delivery systems with prolonged gastric retention time are currently being developed. This review highlights the various pharmaceutical approaches for gastroretention such as floating drug delivery systems, mucoadhesive systems, high density systems, expandable and swelling systems, superporous hydrogels systems, magnetic systems, ion exchange resin system and recent patents filed or granted for these approaches. Recently some patents are also reported where a combination of various approaches are being employed to achieve very effective gastroretention. The various patent search sites were used to collect and analyze the information on gastroretentive drug delivery systems. The present study provides valuable information, advantages, limitations and future outlook of various gastroretentive drug delivery systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Disease-responsive drug delivery: the next generation of smart delivery devices.

    Science.gov (United States)

    Wanakule, Prinda; Roy, Krishnendu

    2012-01-01

    With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.

  11. Reduction-sensitive lipopolyamines as a novel nonviral gene delivery system for modulated release of DNA with improved transgene expression.

    Science.gov (United States)

    Byk, G; Wetzer, B; Frederic, M; Dubertret, C; Pitard, B; Jaslin, G; Scherman, D

    2000-11-16

    We have designed and synthesized original cationic lipids for modulated release of DNA from cationic lipid/DNA complexes. Our rationale was that modulated degradation of the lipids during or after penetration into the cell could improve the trafficking of DNA to the nucleus resulting in increased transgene expression. The new reduction-sensitive lipopolyamines (RSL) harbor a disulfide bridge within different positions in the backbone of the lipids as biosensitive function. A useful synthetic method was developed to obtain, with very good yields and reproducibility, unsymmetrical disulfide-bridged molecules, starting from symmetrical disulfides and thiols. The new lipopolyamines are good candidates as carriers of therapeutic genes for in vivo gene delivery. To optimize the transfection efficiency in these novel series, we have carried out structure-activity relationship studies by placing the disulfide bridge at different positions in the backbone of the cationic lipid and by systematic variation of lipid chain length. Results indicate that the transfection level can be modulated as a function of the location of the disulfide bridge in the molecule. We suggest that an early release of DNA during or after penetration into the cell, probably promoted by reduction of a disulfide bridge placed between the polyamine and the lipid, implies a total loss of transfection efficiency. On the other hand, proper modulation of DNA release by inserting the disulfide bridge between one lipid chain and the rest of the molecule brings about increased transfection efficiency as compared to previously described nondegradable lipopolyamine analogues. Finally, preliminary physicochemical characterization of the complexes demonstrates that DNA release from complexes can be modulated as a function of the surrounding reducing conditions of the complexes and of the localization of the disulfide bridge within the lipopolyamine. Our results suggest that RSL is a promising new approach for gene

  12. Metal organic frameworks as a drug delivery system for flurbiprofen

    Directory of Open Access Journals (Sweden)

    AL Haydar M

    2017-09-01

    Full Text Available Muder AL Haydar,1,2 Hussein Rasool Abid,3,4 Bruce Sunderland,2 Shaobin Wang5,6 1Pharmaceutics Department, College of the Pharmacy, University of Kerbala, Kerbala, Iraq; 2Pharmaceutics Department, School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 3Department of Chemical Engineering, Curtin University, Perth, WA, Australia; 4College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq; 5School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 6Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia Background: Metal organic frameworks (MOFs have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Purpose: Flurbiprofen (FBP, a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101 were synthesized and employed for FBP delivery. Patients and methods: A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40% in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. Results: The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release

  13. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  14. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    Science.gov (United States)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  15. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    Science.gov (United States)

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  17. Integrated delivery systems: the cure for fragmentation.

    Science.gov (United States)

    Enthoven, Alain C

    2009-12-01

    Our healthcare system is fragmented, with a misalignment of incentives, or lack of coordination, that spawns inefficient allocation of resources. Fragmentation adversely impacts quality, cost, and outcomes. Eliminating waste from unnecessary, unsafe care is crucial for improving quality and reducing costs--and making the system financially sustainable. Many believe this can be achieved through greater integration of healthcare delivery, more specifically via integrated delivery systems (IDSs). An IDS is an organized, coordinated, and collaborative network that links various healthcare providers to provide a coordinated, vertical continuum of services to a particular patient population or community. It is also accountable, both clinically and fiscally, for the clinical outcomes and health status of the population or community served, and has systems in place to manage and improve them. The marketplace already contains numerous styles and degrees of integration, ranging from Kaiser Permanente-style full integration, to more loosely organized individual practice associations, to public-private partnerships. Evidence suggests that IDSs can improve healthcare quality, improve outcomes, and reduce costs--especially for patients with complex needs--if properly implemented and coordinated. No single approach or public policy will fix the fragmented healthcare system, but IDSs represent an important step in the right direction.

  18. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors.

    Science.gov (United States)

    Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter

    2012-05-14

    Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand

  19. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  20. Development of sustained release capsules containing "coated matrix granules of metoprolol tartrate".

    Science.gov (United States)

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-09-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.