WorldWideScience

Sample records for sustained release protein-loaded

  1. Design and development of sustained-release glyburide-loaded

    Indian Academy of Sciences (India)

    The aim of this study was to develop sustained-release glyburide-loaded silica nanoparticles. Silica nanoparticles were synthesized by the sol–gel method using tetra-ethyl ortho-silane as a precursor. Glyburide was successfully entrapped in synthesized silica nanoparticles. To identify the effect of independent variables ...

  2. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    Science.gov (United States)

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  3. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds

    International Nuclear Information System (INIS)

    Zhai Peng; Chen, X B; Schreyer, David J

    2013-01-01

    Tissue engineering scaffolds are designed not only to provide structural support for the repair of damaged tissue, but can also serve the function of bioactive protein delivery. Here we present a study on the preparation and characterization of protein-loaded microspheres, either alone or incorporated into mock tissue scaffolds, for sustained protein delivery. Alginate microspheres were prepared by a novel, small-scale water-in-oil emulsion technique and loaded with fluorescently labeled immunoglobulin G (IgG). Microsphere size appears to be influenced by the magnitude and distribution of force generated by mechanical stirring during emulsion. Protein release studies show that sustained IgG release from microspheres could be achieved and that application of a secondary coating of chitosan could further slow the rate of protein release. Preservation of bioactivity of released IgG protein was confirmed using an immunohistochemical assay. When IgG-loaded microspheres were incorporated into mock scaffolds, initial protein release was diminished and the overall time course of release was extended. The present study demonstrates that protein-loaded microspheres can be prepared with a controlled release profile and preserved biological activity, and can be incorporated into scaffolds to achieve sustained and prolonged protein delivery in a tissue engineering application. (paper)

  4. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  5. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds.

    Science.gov (United States)

    Lvov, Yuri; Wang, Wencai; Zhang, Liqun; Fakhrullin, Rawil

    2016-02-10

    Halloysite is an alumosilicate tubular clay with a diameter of 50 nm, an inner lumen of 15 nm and a length of 600-900 nm. It is a natural biocompatible nanomaterial available in thousands of tons at low price, which makes it a good candidate for nanoarchitectural composites. The inner lumen of halloysite may be adjusted by etching to 20-30% of the tube volume and loading with functional agents (antioxidants, anticorrosion agents, flame-retardant agents, drugs, or proteins) allowing for formulations with sustained release tuned by the tube end-stoppers for hours and days. Clogging the tube ends in polymeric composites allows further extension of the release time. Thus, antioxidant-loaded halloysite doped into rubber enhances anti-aging properties for at least 12 months. The addition of 3-5 wt% of halloysite increases the strength of polymeric materials, and the possibility of the tube's orientation promises a gradient of properties. Halloysite nanotubes are a promising mesoporous media for catalytic nanoparticles that may be seeded on the tube surface or synthesized exclusively in the lumens, providing enhanced catalytic properties, especially at high temperatures. In vitro and in vivo studies on biological cells and worms indicate the safety of halloysite, and tests for efficient adsorption of mycotoxins in animals' stomachs are also carried out. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor

    2015-10-01

    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  7. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  8. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  9. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  10. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation.

    Directory of Open Access Journals (Sweden)

    Juçara Ribeiro Franca

    Full Text Available The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM. Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a

  11. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    Science.gov (United States)

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  12. Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.

    Science.gov (United States)

    Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M

    2012-01-01

    Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.

  13. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  14. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chime, Salome Amarachi; Attama, Anthony Amaechi; Builders, Philip F; Onunkwo, Godswill C

    2013-01-01

    To formulate sustained-release diclofenac potassium-loaded solid lipid microparticles (SLMs) based on solidified reverse micellar solution (SRMS) and to evaluate the in vitro and in vivo properties. SRMS consisting of mixtures of Phospholipon® 90H and Softisan® 154 were used to formulate diclofenac potassium-loaded SLMs. Characterization based on the particle size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release was carried out in simulated intestinal fluid (pH 7.5). Anti-inflammatory and ulcerogenic properties were studied using rats. Maximum EE% of 95%, 94% and 93% were obtained for SLMs formulated with SRMS 1:1, 2:1 and 1:2, respectively. In vitro release showed about 85-90% drug release at 13 h. Diclofenac potassium-loaded SLMs showed good anti-inflammatory and gastro-protective properties. Diclofenac potassium-loaded SLMs based on SRMS could be used orally or parenterally under controlled conditions, for once daily administration.

  15. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  16. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  17. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release.

    Directory of Open Access Journals (Sweden)

    Xiao Li

    Full Text Available To improve the efficacy of anti-inflammatory factors in patients who undergo cataract surgery, poly(2-hydroxyethyl methacrylate-co-methyl methacrylate (p(HEMA-co-MMA hydrogels containing β-cyclodextrin (β-CD (pHEMA/MMA/β-CD were designed and prepared as intraocular lens (IOLs biomaterials that could be loaded with and achieve the sustained release of dexamethasone. A series of pHEMA/MMA/β-CD copolymers containing different ratios of β-CD (range, 2.77 to 10.24 wt.% were obtained using thermal polymerization. The polymers had high transmittance at visible wavelengths and good biocompatibility with mouse connective tissue fibroblasts. Drug loading and release studies demonstrated that introducing β-CD into hydrogels increased loading efficiency and achieved the sustained release of the drug. Administering β-CD via hydrogels increased the equilibrium swelling ratio, elastic modulus and tensile strength. In addition, β-CD increased the hydrophilicity of the hydrogels, resulting in a lower water contact angle and higher cellular adhesion to the hydrogels. In summary, pHEMA/MMA/β-CD hydrogels show great potential as IOL biomaterials that are capable of maintaining the sustained release of anti-inflammatory drugs after cataract surgery.

  18. Preparation of a novel breviscapine-loaded halloysite nanotubes complex for controlled release of breviscapine

    Science.gov (United States)

    Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong

    2017-11-01

    For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.

  19. Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Wenjia Guo

    2015-10-01

    Full Text Available The purpose of this study was to develop a PLGA microspheres-based donepezil (DP formulation which was expected to sustain release of DP for one week with high encapsulation efficiency (EE. DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method. The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size, morphology, drug loading and EE, physical state of DP in the matrix and in vitro and in vivo release behavior. DP microspheres were prepared successfully with average diameter of 30 µm, drug loading of 15.92 ± 0.31% and EE up to 78.79 ± 2.56%. Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface. Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres. The Tg of PLGA was increased with the addition of DP. The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model, which suggested the diffusion governing release mechanism. After single-dose administration of DP microspheres via subcutaneous injection in rats, the plasma concentration of DP reached peak concentration at 0.50 d, and then declined gradually, but was still detectable at 15 d. A good correlation between in vitro and in vivo data was obtained. The results suggest the potential use of DP microspheres for treatment of Alzheimer's disease over long periods.

  20. Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Li, Qianqi; Han, Lin; Zhong, Yinghui

    2015-01-01

    Cortical neural prostheses (CNPs) hold great promise for paralyzed patients by recording neural signals from the brain and translating them into movement commands. However, these electrodes normally fail to record neural signals weeks to months after implantation due to inflammation and neuronal loss around the implanted neural electrodes. Sustained local delivery of neurotrophins from biocompatible coatings on CNPs can potentially promote neuron survival and attract the nearby neurons to migrate toward the electrodes to increase neuron density at the electrode/brain interface, which is important for maintaining the recording quality and long-term performance of the implanted CNPs. However, sustained release of neurotrophins from biocompatible ultrathin coatings is very difficult to achieve. In this study, we investigated the potential of several biocompatible natural polyanions including heparin, dextran sulfate, and gelatin to form layer-by-layer (LbL) assembly with positively charged neurotrophin nerve growth factor (NGF) and its model protein lysozyme, and whether sustained release of NGF and lysozyme can be achieved from the nanoscale thin LbL coatings. We found that gelatin, which is less negatively charged than heparin and dextran sulfate, showed the highest efficacy in loading proteins into the LbL films because other interactions in addition to electrostatic interactions were involved in LbL assembly. Sustained release of NGF and lysozymes for approximately 2 weeks was achieved from the gelatin-based LbL coatings. Released NGF maintained the bioactivity to stimulate neurite outgrowth from PC12 cells. Gelatin is generally recognized as safe by the FDA. Thus, the biocompatible LbL coating developed in this study is highly promising to be used for implanted CNPs to improve their long-term performance in human patients. (paper)

  1. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  2. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Science.gov (United States)

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  4. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  5. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tao [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tan, Lei [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Cheng, Ning; Yan, Qi; Zhang, Yu-Feng [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Liu, Chuan-Jun, E-mail: cjliu@whu.edu.cn [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Shi, Bin, E-mail: shibin_dentist@126.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2016-05-01

    This work presented a sustained release system of simvastatin (SIM) based on the mesoporous hydroxyapatite (MHA) capped with poly(N-isopropylacrylamide) (PNIPAAM). The MHA was prepared by using cetyltrimethylammonium bromide (CTAB) as a template and the modified PNIPAAM layer on the surface of MHA was fabricated through surface-initiated atom transfer radical polymerization (SI-ATRP). The SIM loaded MHA-PNIPAAM showed a sustained release of SIM at 37 °C over 16 days. The bone marrow mesenchymal stem cell (BMSC) proliferation was assessed by cell counting kit-8 (CCK-8) assay, and the osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity and Alizarin Red staining. The release profile showed that the release of SIM from MHA-SIM-PNIPAAM lasted 16 days and the cumulative amount of released SIM was almost seven-fold than MHA-SIM. Besides, SIM loaded MHA-PNIPAAM exhibited better performance on cell proliferation, ALP activity, and calcium deposition than pure MHA due to the sustained release of SIM. The quantity of ALP in MHA-SIM-PNIPAAM group was more than two fold than pure MHA group at 7 days. Compared to pure MHA, better BMSC attachment on PNIPAAM modified MHA was observed using fluorescent microscopy, indicating the better biocompatibility of MHA-PNIPAAM. - Highlights: • PNIPAAM modified mesoporous hydroxyapatite (MHA) was fabricated by SI-ATRP. • SIM loaded MHA-PNIPAAM continually released SIM in effect concentration for 16 days. • MHA-SIM-PNIPAAM behaved well on cell proliferation, ALP activity and calcium deposition.

  6. Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism

    Directory of Open Access Journals (Sweden)

    Abeer M. El-Kady

    2015-01-01

    Full Text Available Bioactive glass nanoparticles were synthesized and tested for the first time as a new delivery system for sustained 5-fluorouracil (5-FU release. They were characterized by TEM, DTA, TGA, and FT-IR. The porosity % and specific surface area of glass nanoparticles were 85.59% and 378.36 m2/g, respectively. The in vitro bioactivity evaluation confirmed that bioactive glass disks prepared from these nanoparticles could induce hydroxyapatite layer over their surfaces in simulated body fluid. The in vitro drug release experiment indicated that glass nanoparticles could serve as long-term local delivery vehicles for sustained 5-FU release. The release profile of 5-FU showed an initial fast release stage followed by a second stage of slower release. The initial burst release of 5-FU in the first day was about 23% (28.92 mg·L−1 of the total amount of loaded 5-FU, while the final cumulative percentage of the 5-FU released after 32 days was about 45.6% (57.31 mg·L−1 of the total amount of loaded 5-FU. The application of different mathematical models indicated that 5-FU was released by diffusion controlled mechanism and suggested that its release rate was dependent on glass particles dissolution, changes of surface area as well as diameter of glass particles, and concentration of loaded drug.

  7. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Controlled-release and preserved bioactivity of proteins from (self-assembled core-shell double-walled microspheres

    Directory of Open Access Journals (Sweden)

    Yuan W

    2012-01-01

    Full Text Available Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core and a second shell (a polymer-formed shell for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W, employs different concentric poly(D,L-lactide-co-glycolide, poly(D,L-lactide, and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.Keywords: protein delivery, protein stability, core-shell microspheres, dextran nanoparticles

  9. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2015-07-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  10. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2013-12-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  11. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye

    Directory of Open Access Journals (Sweden)

    Natarajan JV

    2012-01-01

    Full Text Available Jayaganesh V Natarajan1*, Marcus Ang2*, Anastasia Darwitan1, Sujay Chattopadhyay3, Tina T Wong2, Subbu S Venkatraman1 1Materials Science and Engineering, Nanyang Technological University, Singapore; 2Singapore Eye Research Institute, Singapore; 3Polymer Division, Indian Institute of Technology Roorkee, India*These authors contributed equally to this workPurpose: To report the development and therapeutic evaluation of a liposomal nanocarrier for sustained release of latanoprost, in the rabbit eye.Methods: We fabricated latanoprost-loaded egg-phosphatidylcholine (EggPC liposomes using the film hydration technique. The delivery vehicles were nano-sized (Z avg = 109 ± 18 nm, had a narrow poly dispersity index (PDI = 0.19 ± 0.04, and a very high loading efficiency (94% ± 5%. Based on in vitro data, we evaluated this formulation for lowering intraocular pressure (IOP in rabbit eyes. Following a single subconjunctival injection of the latanoprost loaded formulation, the eyes were clinically monitored and the IOP recorded.Results: Latanoprost-loaded EggPC liposomes demonstrated a high drug/lipid mole ratio of 0.181, remained stable for at least 6 months on storage (4°C, and at least 1 month at 25°C. A slow and sustained release of 60% of latanoprost was achieved by 14 days in the in vitro release study. The same formulation demonstrated a greater sustained IOP lowering effect compared with daily administration of topical latanoprost beyond 90 days (4.8 ± 1.5 vs 2.5 ± 0.9 mmHg; P < 0.001. No signs of inflammation were evident in the eyes from slit-lamp examination analysis.Conclusion: The loading required for a long-term sustained delivery of latanoprost for up to 90 days in the rabbit eyes was achieved with EggPC liposomes. A single injection of latanoprost-loaded EggPC liposomes can lower the IOP for up to 90 days, with a greater IOP lowering effect than daily topical administration of latanoprost.Keywords: nanomedicine, nanoliposomes, Egg

  12. Preparation and Application of Sustained-Release Potassium Ferrate(VI

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available In this study, a composite system for the sustained release of potassium ferrate(VI (sustained-release K2FeO4 was prepared and applied for water treatment. The objective of this research was to maximize the effectiveness of K2FeO4 for water treatment by enhancing its stability using diatomite. The sustained-release K2FeO4 was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that no new crystal phase was formed during the preparation and some K2FeO4 crystals entered the pores of the diatomite. From K2FeO4 release experiments, we found that the decomposition rate of K2FeO4 was obviously decreased, which greatly improved the contact rate between released K2FeO4 and pollutants. Via degradation of methyl orange, which was used as a model pollutant, the influential factor of K2FeO4 content within the complete sustained-release K2FeO4 system was studied. The optimal K2FeO4 content within the sustained-release K2FeO4 system was approximately 70%. In natural water samples, sustained-release K2FeO4 at a dosage of 0.06 g/L and with a reaction time of 20 minutes removed 36.84% of soluble microbial products and 17.03% of simple aromatic proteins, and these removal rates were better than those observed after traditional chlorine disinfection.

  13. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  14. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    International Nuclear Information System (INIS)

    Wanyika, Harrison

    2013-01-01

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol–gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil

  15. Sustained Release of Protein Therapeutics from Subcutaneous Thermosensitive Biocompatible and Biodegradable Pentablock Copolymers (PTSgels

    Directory of Open Access Journals (Sweden)

    Elizabeth Schaefer

    2016-01-01

    Full Text Available Objective. To evaluate thermosensitive, biodegradable pentablock copolymers (PTSgel for sustained release and integrity of a therapeutic protein when injected subcutaneously. Materials and Methods. Five PTSgels with PEG-PCL-PLA-PCL-PEG block arrangements were synthesized. In vitro release of IgG from PTSgels and concentrations was evaluated at 37°C. Released IgG integrity was characterized by SDS-PAGE. In vitro disintegration for 10GH PTSgel in PBS was monitored at 37°C over 72 days using gravimetric loss and GPC analysis. Near-infrared IgG in PTSgel was injected subcutaneously and examined by in vivo imaging and histopathology for up to 42 days. Results. IgG release was modulated from approximately 7 days to more than 63 days in both in vitro and in vivo testing by varying polymer composition, concentration of PTSgel aqueous solution, and concentration of IgG. Released IgG in vitro maintained structural integrity by SDS-PAGE. Subcutaneous PTSgels were highly biocompatible and in vitro IgG release occurred in parallel with the disappearance of subcutaneous gel in vivo. Conclusions. Modulation of release of biologics to fit the therapeutic need can be achieved by varying the biocompatible and biodegradable PTSgel composition. Release of IgG parallels disappearance of the polymeric gel; hence, little or no PTSgel remains after drug release is complete.

  16. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation

    Science.gov (United States)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou; Xu, Yingqian

    2014-02-01

    Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core-shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core-shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.

  17. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    Science.gov (United States)

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  18. Preparation of venlafaxine hydrochloride sustained-release tablets

    Directory of Open Access Journals (Sweden)

    GUO Lingling

    2013-08-01

    Full Text Available To prepare venlafxine hydrochloride sustained-release tablets.Hydroxypropylmethyl cellulose(HPMC and methyl cellulose(MC were used as main materials to prepare sustained-release tablets of velafaxine hydrochloride and the influence of important factors on in vitro release curves of venlafaxine hydrochloride sustained-release tablets was investigated.Results:The optimal prescription included 100 mg HPMC,25 mg MC,and 2.5% glidant in one tablet prepared with 30kN.The tablets were prepared with the method of wet granulation by NO.16 mesh sieve.The tablets exhibited good sustained-release property in phosphate buffered solution (pH=6.8.The as-prepared venlafxine hydrochloride sustained-release tablets have good sustained-release property.

  19. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Chakkarapani, Prabu [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Subbiah, Latha, E-mail: lathasuba2010@gmail.com [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Palanisamy, Selvamani; Bibiana, Arputha [Department of Pharmaceutical Technology & Centre for Excellence in Nanobio Translational Research, Anna University, Bharathidasan Institute of Technology Campus, Tiruchirappalli 620024, Tamil Nadu (India); Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO{sub 3}-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO{sub 3}-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 µm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy. - Highlights: • Development of methotrexate magnetic microcapsules (MMC) by layer-by-layer method. • Characterization of physicochemical, pharmaceutical and magnetic properties of MMC. • Multiple layers of alternative polyelectrolytes prolongs methotrexate release time. • MMC is capable for targeted and sustained release rheumatoid arthritis therapy.

  20. The effect of loading solution and dissolution media on release of Diclofenac from ion exchange resins

    Directory of Open Access Journals (Sweden)

    "Atyabi F

    2002-07-01

    Full Text Available Drugs can be loaded on ion exchange resins in order to control their release. Loading of diclofenac sodium on the resin beads not only sustain its release but also reduce its gastrointestinal mucosal injury. In this study the effect of loading solution and concentration of diclofenac in loading solution on total amount of drug loaded on the resin beads (Amberlite IRA-900 and the release characteristic of drug in different media were examined. Results showed that diclofenac resin complex did not release their drug content in simulated gastric fluid but released it in simulated intestinal fluid independent of exposure time in acidic conditions. The effect of a number of parameters such as ionic strength and pH on the release characteristic of drug - resin complexes were also examined. Results showed that although ionic strength is an important factor, drug release is more affected by the pH of the media. NO ABSTRACT

  1. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    Science.gov (United States)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  2. Evaluation of gum mastic (Pistacia lentiscus as a microencapsulating and matrix forming material for sustained drug release

    Directory of Open Access Journals (Sweden)

    Dinesh M. Morkhade

    2017-09-01

    Full Text Available In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS and diltiazem hydrochloride (DLTZ were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 µm and 50–87%, respectively. Increase in mastic: drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation, and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.

  3. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Wang Xiaoyun; Xu Hui; Zhao Yanqiu; Wang Shaoning; Abe, Hiroya; Naito, Makio; Liu Yanli; Wang Guoqing

    2012-01-01

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  4. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    International Nuclear Information System (INIS)

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  5. Effect of ripple loads on sustained-load cracking in titanium alloys

    International Nuclear Information System (INIS)

    Pao, P.S.; Meyn, D.A.; Bayles, R.A.; Feng, C.R.; Yoder, G.R.

    1995-01-01

    In the present paper, the authors have extended their study on the effect of the ripple loads on the sustained-load cracking (SLC) behavior of two titanium alloys, Ti-6Al-4V (an α-β alloy) and Ti-15V-3Cr-3Al-3Sn (a β-α alloy), in an ambient air environment. The methodology which has been used successfully to treat ripple effects on stress-corrosion cracking (SCC) is employed again to address the influence of ripple loads on sustained-load cracking. Ripple loads can significantly reduce the apparent sustained load cracking resistance of titanium alloys in a relatively benign environment such as ambient air. For a ripple-load amplitude equal to 5% of the sustained load, the ripple-load cracking thresholds (K IRLC ) of beta-annealed Ti-6Al-4V and Ti-15V-3Cr-3al-3Sn are less than half of the respective sustained-load cracking thresholds (K ISLC ). The extent of ripple-load degradation for these alloys in ambient air -- relative to K ISLC , were found comparable to those observed in a much more aggressive 3.5% NaCl aqueous solution

  6. Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide

    DEFF Research Database (Denmark)

    Svagan, Anna Justina; Müllertz, Anette; Löbmann, Korbinian

    2017-01-01

    OBJECTIVES: This study aimed to prepare a furosemide-loaded sustained release cellulose nanofibre (CNF)-based nanofoams with buoyancy. METHODS: Dry foams consisting of CNF and the model drug furosemide at concentrations of 21% and 50% (w/w) have been prepared by simply foaming a CNF-drug suspension...... followed by drying. The resulting foams were characterized towards their morphology, solid state properties and dissolution kinetics. KEY FINDINGS: Solid state analysis of the resulting drug-loaded foams revealed that the drug was present as an amorphous sodium furosemide salt and in form of furosemide...... form I crystals embedded in the CNF foam cell walls. The foams could easily be shaped and were flexible, and during the drug release study, the foam pieces remained intact and were floating on the surface due to their positive buoyancy. Both foams showed a sustained furosemide release compared...

  7. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems

    DEFF Research Database (Denmark)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil...... the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations...... with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate...

  8. Sustained release of antibiotics from injectable and thermally responsive polypeptide depots.

    Science.gov (United States)

    Adams, Samuel B; Shamji, Mohammed F; Nettles, Dana L; Hwang, Priscilla; Setton, Lori A

    2009-07-01

    Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications. (c) 2008 Wiley Periodicals, Inc.

  9. Preparation of berbamine loaded chitosan-agarose microspheres and in vitro release study

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2012-01-01

    Full Text Available Berbamine loaded chitosan-agarose microspheres were prepared using a water-in-oil emulsion technique. Optimum preparing parameters were determined by orthogonal experiments as follows: ratio of berbamine to chitosan (w/w is 1:10; percentage of emulsifier (span 80, v/v is 6%; volume of glutaraldehyde is 2 mL; and reaction temperature is 70 ºC. Under these optimal conditions, the encapsulation efficiency and loading capacity of microspheres are 84.57% and 8.44%, respectively. The swelling tests showed that the microspheres possessed higher swelling ratio at pH 7.4 than at pH 1.2. FTIR indicated that berbamine had been successfully loaded in the chitosan-agarose microspheres by physical entrapment. In vitro release studies showed that berbamine was released from microspheres in a significantly sustained fashion.

  10. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  11. Coaxial Electrospray of Curcumin-Loaded Microparticles for Sustained Drug Release.

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    Full Text Available Curcumin exhibits superior anti-inflammatory, antiseptic and analgesic activities without significant side effects. However, clinical dissemination of this natural medicine is limited by its low solubility and poor bio-availability. To overcome this limitation, we propose to encapsulate curcumin in poly(lactic-co-glycolic acid (PLGA microparticles (MPs by an improved coaxial electrospray (CES process. This process is able to generate a stable cone-jet mode in a wide range of operation parameters in order to produce curcumin-loaded PLGA MPs with a clear core-shell structure and a designated size of several micrometers. In order to optimize the process outcome, the effects of primary operation parameters such as the applied electric voltages and the liquid flow rates are studied systemically. In vitro drug release experiments are also carried out for the CES-produced MPs in comparison with those by a single axial electrospray process. Our experimental results show that the CES process can be effectively controlled to encapsulate drugs of low aqueous solubility for high encapsulation efficiency and optimal drug release profiles.

  12. Electrospinning of doxorubicin loaded silica/poly(ɛ-caprolactone) hybrid fiber mats for sustained drug release

    Science.gov (United States)

    El Gohary, Mohammed I.; El Hady, Bothaina M. Abd; Saeed, Aziza A. Al; Tolba, Emad; El Rashedi, Ahlam M. I.; Saleh, Safaa

    2018-06-01

    Loading of anticancer drugs into electrospun fiber matrices is a portentous approach for clinical treatment of diseased tissues or organs. In this study, doxorubicin hydrochloride (DOX) is added to silica nanoparticles () during the formation of via the sol-gel approach. The obtained nanoparticles are then added to poly(-caprolactone) (PCL) and poly(ethylene oxide) (PEO) blend before electrospinning process via different methods. The effects of DOX addition as a free form or as nanoparticles on physical and chemical properties of obtained PCL-PEO fibers, as well as release profiles are evaluated to give a continual DOX release for several days. The morphology observed with scanning electron microscope (FESEM) revealed significant changes in the average diameter of obtained fibers ranging from 2164 nm to 659 nm and distribution of drug-loaded nanoparticles in the final mats according to the mode of additions. With the same manner, the releasing performances of obtained mats are quite different. Therefore, fabrication of drug loaded mats would offer a powerful approach to minimize serious side effects for clinical patients and allows us to control the drug concentration in the bloodstream.

  13. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    Science.gov (United States)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  14. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.

    Science.gov (United States)

    Xu, Min; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-01-15

    This study explored the application of 400-DS dissolution apparatus 7 for individual pellet dissolution methodology by a design of experiment approach and compared its capability with that of the USP dissolution apparatus 1 and 2 for differentiating the coat quality of sustained release pellets. Drug loaded pellets were prepared by extrusion-spheronization from powder blends comprising 50%, w/w metformin, 25%, w/w microcrystalline cellulose and 25%, w/w lactose, and then coated with ethyl cellulose to produce sustained release pellets with 8% and 10%, w/w coat weight gains. Various pellet properties were investigated, including cumulative drug release behaviours of ensemble and individual pellets. When USP dissolution apparatus 1 and 2 were used for drug release study of the sustained release pellets prepared, floating and clumping of pellets were observed and confounded the release profiles of the ensemble pellets. Hence, the release profiles obtained did not characterize the actual drug release from individual pellet and the applicability of USP dissolution apparatus 1 and 2 to evaluate the coat quality of sustained release pellets was limited. The cumulative release profile of individual pellet using the 400-DS dissolution apparatus 7 was found to be more precise at distinguishing differences in the applied coat quality. The dip speed and dip interval of the reciprocating holder were critical operational parameters of 400-DS dissolution apparatus 7 that affected the drug release rate of a sustained release pellet during the individual dissolution study. The individual dissolution methodology using the 400-DS dissolution apparatus 7 is a promising technique to evaluate the individual pellet coat quality without the influence of confounding factors such as pellet floating and clumping observed during drug release test with dissolution apparatus 1 and 2, as well as to facilitate the elucidation of the actual drug release mechanism conferred by the applied sustained

  15. [Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats].

    Science.gov (United States)

    Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming

    2016-03-01

    To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.

  16. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  17. Photoimages and the release characteristics of lipophilic matrix tablets containing highly water-soluble potassium citrate with high drug loadings.

    Science.gov (United States)

    Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin

    2007-07-18

    Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.

  18. Co-extrusion as a processing technique to manufacture a dual sustained release fixed-dose combination product.

    Science.gov (United States)

    Vynckier, An-Katrien; Voorspoels, Jody; Remon, Jean Paul; Vervaet, Chris

    2016-05-01

    This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  19. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    Science.gov (United States)

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. [Sustained release of recombinant human bone morphogenetic protein-2 combined with stromal vascular fraction cells in promoting posterolateral spinal fusion in rat model].

    Science.gov (United States)

    Yuan, Wei; Zheng, Jun; Qian, Jinyu; Zhou, Xiaoxiao; Wang, Minghui; Wang, Xiuhui

    2017-07-01

    To observe the effect of stromal vascular fraction cells (SVFs) from rat fat tissue combined with sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) in promoting the lumbar fusion in rat model. SVFs were harvested from subcutaneous fat of bilateral inguinal region of 4-month-old rat through the collagenase I digestion. The sustained release carrier was prepared via covalent bond of the rhBMP-2 and β-tricalcium phosphate (β-TCP) by the biominetic apatite coating process. The sustained release effect was measured by BCA method. Thirty-two rats were selected to establish the posterolateral lumbar fusion model and were divided into 4 groups, 8 rats each group. The decalcified bone matrix (DBX) scaffold+PBS, DBX scaffold+rhBMP-2/β-TCP sustained release carrier, DBX scaffold+SVFs, and DBX scaffold+rhBMP-2/β-TCP sustained release carrier+SVFs were implanted in groups A, B, C, and D respectively. X-ray films, manual spine palpation, and high-resolution micro-CT were used to evaluate spinal fusion at 8 weeks after operation; bone mineral density (BMD) and bone volume fraction were analyzed; the new bone formation was evaluated by HE staining and Masson's trichrome staining, osteocalcin (OCN) was detected by immunohistochemical staining. The cumulative release amount of rhBMP-2 was about 40% at 2 weeks, indicating sustained release effect of rhBMP-2; while the control group was almost released within 2 weeks. At 8 weeks, the combination of manual spine palpation, X-ray, and micro-CT evaluation showed that group D had the strongest bone formation (100%, 8/8), followed by group B (75%, 6/8), group C (37.5%, 3/8), and group A (12.5%, 1/8). Micro-CT analysis showed BMD and bone volume fraction were significantly higher in group D than groups A, B, and C ( P cells with bone matrix deposition, and an active osteogenic process similar to the mineralization of long bones in group D. The bone formation of group B was weaker than that of group D, and

  1. A multifunctional multimaterial system for on-demand protein release.

    Science.gov (United States)

    Tuncaboylu, Deniz Ceylan; Friess, Fabian; Wischke, Christian; Lendlein, Andreas

    2018-06-15

    In order to provide best control of the regeneration process for each individual patient, the release of protein drugs administered during surgery may need to be timely adapted and/or delayed according to the progress of healing/regeneration. This study aims to establish a multifunctional implant system for a local on-demand release, which is applicable for various types of proteins. It was hypothesized that a tubular multimaterial container kit, which hosts the protein of interest as a solution or gel formulation, would enable on-demand release if equipped with the capacity of diameter reduction upon external stimulation. Using devices from poly(ɛ-caprolactone) networks, it could be demonstrated that a shape-memory effect activated by heat or NIR light enabled on-demand tube shrinkage. The decrease of diameter of these shape-memory tubes (SMT) allowed expelling the payload as demonstrated for several proteins including SDF-1α, a therapeutically relevant chemotactic protein, to achieve e.g. continuous release with a triggered add-on dosing (open tube) or an on-demand onset of bolus or sustained release (sealed tube). Considering the clinical relevance of protein factors in (stem) cell attraction to lesions and the progress in monitoring biomarkers in body fluids, such on-demand release systems may be further explored e.g. in heart, nerve, or bone regeneration in the future. Copyright © 2018. Published by Elsevier B.V.

  2. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  4. Formulation and evaluation of a bilayer tablet comprising of diclofenac potassium as orodispersible layer and diclofenac sodium as sustained release core

    OpenAIRE

    Abbas, Jabbar; Bashir, Sajid; Samie, Muhammad; Laghari, Sadaf

    2017-01-01

    Diclofenac a phenylacetic acid derivative has long been used as an anti-inflammatory and analgesic drug to treat certain conditions however its sustained release formulation with immediate release loading dose is desirable. The rationale of the current work was to develop and evaluate bilayer tablets with diclofenac potassium as orodispersible layer and diclofenac sodium as sustained release core. The diclofenac sodium core was prepared by wet granulation method while the...

  5. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering.

    Science.gov (United States)

    Sefcik, Lauren S; Petrie Aronin, Caren E; Wieghaus, Kristen A; Botchwey, Edward A

    2008-07-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that impacts migration, proliferation, and survival in diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. In this study, we investigated the effects of sustained release of S1P on microvascular remodeling and associated bone defect healing in vivo. The murine dorsal skinfold window chamber model was used to evaluate the structural remodeling response of the microvasculature. Our results demonstrated that 1:400 (w/w) loading and subsequent sustained release of S1P from poly(lactic-co-glycolic acid) (PLAGA) significantly enhanced lumenal diameter expansion of arterioles and venules after 3 and 7 days. Incorporation of 5-bromo-2-deoxyuridine (BrdU) at day 7 revealed significant increases in mural cell proliferation in response to S1P delivery. Additionally, three-dimensional (3D) scaffolds loaded with S1P (1:400) were implanted into critical-size rat calvarial defects, and healing of bony defects was assessed by radiograph X-ray, microcomputed tomography (muCT), and histology. Sustained release of S1P significantly increased the formation of new bone after 2 and 6 weeks of healing and histological results suggest increased numbers of blood vessels in the defect site. Taken together, these experiments support the use of S1P delivery for promoting microvessel diameter expansion and improving the healing outcomes of tissue-engineered therapies.

  6. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    Science.gov (United States)

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The antimicrobial efficacy of sustained release silver–carbene complex-loaded l-tyrosine polyphosphate nanoparticles: Characterization, in vitro and in vivo studies

    Science.gov (United States)

    Hindi, Khadijah M.; Ditto, Andrew J.; Panzner, Matthew J.; Medvetz, Douglas A.; Han, Daniel S.; Hovis, Christine E.; Hilliard, Julia K.; Taylor, Jane B.; Yun, Yang H.; Cannon, Carolyn L.; Youngs, Wiley J.

    2009-01-01

    The pressing need to treat multi-drug resistant bacteria in the chronically infected lungs of cystic fibrosis (CF) patients has given rise to novel nebulized antimicrobials. We have synthesized a silver–carbene complex (SCC10) active against a variety of bacterial strains associated with CF and chronic lung infections. Our studies have demonstrated that SCC10-loaded into l-tyrosine polyphosphate nanoparticles (LTP NPs) exhibits excellent antimicrobial activity in vitro and in vivo against the CF relevant bacteria Pseudomonas aeruginosa. Encapsulation of SCC10 in LTP NPs provides sustained release of the antimicrobial over the course of several days translating into efficacious results in vivo with only two administered doses over a 72 h period. PMID:19395021

  8. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Shraddha Patel

    2015-12-01

    Full Text Available The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate were then mixed with poly-e-caprolactone (PLC using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties.

  9. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    Science.gov (United States)

    Patel, Shraddha; Jammalamadaka, Uday; Sun, Lin; Tappa, Karthik; Mills, David K.

    2015-01-01

    The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs) as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL) scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate) were then mixed with poly-e-caprolactone (PLC) using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties. PMID:28952563

  10. Diclofenac sodium sustained release hot melt extruded lipid matrices.

    Science.gov (United States)

    Vithani, K; Cuppok, Y; Mostafa, S; Slipper, I J; Snowden, M J; Douroumis, D

    2014-08-01

    Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas-Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices.

  11. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles.

    Science.gov (United States)

    Huang, Di; Wang, Lili; Dong, Yixuan; Pan, Xin; Li, Ge; Wu, Chuanbin

    2014-09-01

    This study was designed to investigate the feasibility of silk fibroin nanoparticles (SFNs) for sustained drug delivery in transscleral ultrasound. Fluorescein isothiocynate labeled bovine serum albumin (FITC-BSA, MW 66.45 kDa) was chosen as a model macromolecular protein drug and SFNs were used as nano-carrier systems suitable for ocular drug delivery. Drug loaded nanoparticles (FITC-BSA-SFNs) were first prepared and characterized. In vitro transscleral study under ultrasound exposure (1MHz, 0.5 W/cm(2), 5 min continuous wave) using isolated sclera of rabbit was performed. The posterior eye segment of rabbit was examined for adverse effect by slit-lamp and histology. It was found that FITC-BSA-SFNs possessed sustained release, bioadhesive, and co-permeation characteristics. The ultrasound application significantly improved the penetration efficiency of FITC-BSA-SFNs as compared with passive delivery, meanwhile caused no damages to the ocular tissue and particles themselves. The distribution profile of SFNs revealed rapid and lasting adhesion on the outer scleral tissues, followed by migration into the interior up to one week after treatment. This research suggested a novel non-invasive transscleral administration of macromolecular protein drugs using SFN carriers combining with ultrasound technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin.

    Science.gov (United States)

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-03-01

    The objectives of this study were to assess the feasibility of hot melt extrusion (HME) for the preparation of PLGA-based ovalbumin-loaded implants as well as to characterize and improve protein release from the implants. Ovalbumin (OVA) was stable during extrusion, which was attributed to a protective effect of the biodegradable matrix. OVA release was characterized by a low burst, a slow release up to day 21, which plateaued thereafter resulting in incomplete release for all evaluated protein loadings. Release incompleteness was accompanied by the formation of an insoluble residual mass. Further characterization of this mass indicated that it consisted of non-covalent protein aggregates and polymer, where ovalbumin was ionically bound as the pH inside the degrading matrix decreased below the pI of the protein. Although higher protein release was obtained with the inclusion of weak bases because of their neutralizing effect, OVA aggregation and release incompleteness were not fully avoided. With the use of shellac, a well-known enteric and biocompatible polymer, as protective excipient, a distinct late release phase occurred and release completeness was increased to more than 75% cumulative release. Shellac apparently protected the protein against the acidic microclimate due to its low solubility at low pH. Protected OVA was thus released once the pH increased due to a declining PLGA-oligomer formation. The result was a triphasic release profile consisting of an initial burst, a slow diffusion phase over about 7 weeks, and an erosion-controlled dissolution phase over the next 3 weeks. An acid-labile protein like OVA was thus feasibly protected from interactions with PLGA and its degradation products, resulting in a controlled delivery of more than 85% of the original payload. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Vincristine sulfate loaded dextran microspheres amalgamated with thermosensitive gel offered sustained release and enhanced cytotoxicity in THP-1, human leukemia cells: In vitro and in vivo study.

    Science.gov (United States)

    Thakur, Vivek; Kush, Preeti; Pandey, Ravi Shankar; Jain, Upendra Kumar; Chandra, Ramesh; Madan, Jitender

    2016-04-01

    Vincristine sulfate (VCS) is a drug of choice for the treatment of childhood and adult acute lymphocytic leukemia, Hodgkin's, non-Hodgkin's lymphoma as well as solid tumors including sarcomas. However, poor biopharmaceutical and pharmacokinetic traits of VCS like short serum half-life (12 min), high dosing frequency (1.4 mg/m(2) per week for 4 weeks) and extensive protein binding (75%) limit the clinical potential of VCS in cancer therapy. In present investigation, injectable vincristine sulfate loaded dextran microspheres (VCS-Dextran-MSs) were prepared and amalgamated with chitosan-β-glycerophosphate gel (VCS-Dextran-MSs-Gel) to surmount the biopharmaceutical and pharmacokinetic limitations of VCS that consequently induced synergistic sustained release pattern of the drug. Particle size and zeta-potential of VCS-Dextran-MSs were measured to be 6.8 ± 2.4 μm and -18.3 ± 0.11 mV along with the encapsulation efficiency of about 60.4 ± 4.5%. Furthermore, VCS-Dextran-MSs and VCS-Dextran-MSs-Gel exhibited slow release pattern and 94.7% and 95.8% of the drug was released in 72 h and 720 h, respectively. Results from cell viability assay and pharmacokinetic as well as histopathological analysis in mice indicated that VCS-Dextran-MSs-Gel offers superior therapeutic potential and higher AUClast than VCS-Dextran-MSs and drug solution. In conclusion, VCS-Dextran-MSs-Gel warrants further preclinical tumor growth study to scale up the technology. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  15. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    Science.gov (United States)

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  17. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baomei; Yang, Xiaoye; Wang, Yang; Zhai, Guangxi, E-mail: professorgxzhai@126.com

    2017-06-01

    A novel nanocarrier of heparin (Hep) modified graphene oxide (GO) was fabricated via a linker (adipic dihydrazide) and used as a pH-sensitive drug delivery system for controlling the release of anticancer drug doxorubicin (DOX) for anti-tumor therapy. The finally obtained nanocarrier was GO-ADH-Hep with better stability, blood compatibility and biocompatibility confirmed by the hemolytic test and in vitro cytotoxicity study. Its safety issue was greatly improved via Hep modification. The amount of DOX loaded onto GO-ADH-Hep was significantly high and dependent on pH value. The release rate of DOX from GO- ADH-Hep/DOX was pH-sensitive and much-slower than that of free DOX solution suggesting the sustained drug-release capacity of this prepared nanocomplexes. In addition, the results of cytotoxicity study illustrated that this fabricated nanocomplexes displayed effective cytotoxicity to MCF-7 and HepG2 cells. What's more, the results of the in vivo pharmacokinetic study was also indicated that the GO-ADH-Hep/DOX nanocomplexes could significantly prolong the retention time of DOX in vivo and this was consistent with the in vitro drug release performance. And finally, according to the biodistribution study, DOX delivered by GO-ADH-Hep could reduce cardiotoxicity deriving from DOX solution and also decrease the pulmonary toxicity deriving from unmodified GO. Based on the in vitro and in vivo investigations, the fabricated GO-ADH-Hep could be a promising candidate as an ideal nano-carrier for drug delivery and anti-cancer therapy. - Highlights: • Firstly, a novel nanocarrier-GO-ADH-Hep was fabricated with improved stability, little cytotoxicity and little hemolysis ratio. • Secondly, GO-ADH-Hep was used to load the anticancer drug (DOX) with high drug loading and pH-sensitive sustained drug release. • Thirdly, the anti-cancer efficacy of GO-ADH-Hep/DOX was dose- and time-dependent in vitro. • Finally, according to the in vivo studies, this synthesized nano

  18. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  19. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    Science.gov (United States)

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Formulation of Sustained-Release Diltiazem Matrix Tablets Using Hydrophilic Gum Blends. A Moin, H.G Shivakumar. Abstract. Purpose: To develop sustained release matrix tablets of diltiazem hydrochloride (DTZ) using karaya gum (K) alone or in combination with locust bean gum (LB) and hydroxypropyl methylcellulose ...

  1. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.

    Science.gov (United States)

    Eğri, Sinan; Eczacıoğlu, Numan

    2017-03-01

    Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.

  2. Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study

    DEFF Research Database (Denmark)

    Guo, Wenjia; Quan, Peng; Fang, Liang

    2015-01-01

    -solvent evaporation method. The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size, morphology, drug loading and EE, physical state of DP in the matrix and in vitro and in vivo release behavior. DP microspheres were prepared...... release mechanism. After single-dose administration of DP microspheres via subcutaneous injection in rats, the plasma concentration of DP reached peak concentration at 0.50 d, and then declined gradually, but was still detectable at 15 d. A good correlation between in vitro and in vivo data was obtained...

  3. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy

    Directory of Open Access Journals (Sweden)

    van der Mei Henny C

    2010-11-01

    Full Text Available Abstract Background Around about 1970, a gentamicin-loaded poly (methylmethacrylate (PMMA bone cement brand (Refobacin Palacos R was introduced to control infection in joint arthroplasties. In 2005, this brand was replaced by two gentamicin-loaded follow-up brands, Refobacin Bone Cement R and Palacos R + G. In addition, another gentamicin-loaded cement brand, SmartSet GHV, was introduced in Europe in 2003. In the present study, we investigated differences in gentamicin release and the antibacterial efficacy of the eluent between these four cement brands. Methods 200 μm-wide gaps were made in samples of each cement and filled with buffer in order to measure the gentamicin release. Release kinetics were related to bone cement powder particle characteristics and wettabilities of the cement surfaces. Gaps were also inoculated with bacteria isolated from infected prostheses for 24 h and their survival determined. Gentamicin release and bacterial survival were statistically analysed using the Student's t-test. Results All three Palacos variants showed equal burst releases but each of the successor Palacos cements showed significantly higher sustained releases. SmartSet GHV showed a significantly higher burst release, while its sustained release was comparable with original Palacos. A gentamicin-sensitive bacterium did not survive in the high gentamicin concentrations in the interfacial gaps, while a gentamicin-resistant strain did, regardless of the type of cement used. Survival was independent of the level of burst release by the bone cement. Conclusions Although marketed as the original gentamicin-loaded Palacos cement, orthopaedic surgeons should be aware that the successor cements do not appear to have the same release characteristics as the original one. Overall, high gentamicin concentrations were reached inside our prosthesis-related interfacial gap model. These concentrations may be expected to effectively decontaminate the prosthesis

  5. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  6. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy

    DEFF Research Database (Denmark)

    Christophersen, Philip C.; Birch, Ditlev; Saarinen, Jukka

    2015-01-01

    The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using...... in the solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non......-destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor...

  7. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  8. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    International Nuclear Information System (INIS)

    Li Fengxia; Li Xiaoli; Li Bin

    2011-01-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3 O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  9. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    International Nuclear Information System (INIS)

    Lacatusu, I; Badea, N; Stan, R; Meghea, A

    2012-01-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum. (paper)

  10. Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; de Wit, Heidi; Walter, Alexander M

    2013-01-01

    Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal...... resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent...... sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause...

  11. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  12. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    Science.gov (United States)

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  13. Preparation and stability investigation of tamsulosin hydrochloride sustained release pellets containing acrylic resin polymers with two different techniques

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2017-03-01

    Full Text Available The objective of this study was to prepare tamsulosin hydrochloride-sustained release (TSH-SR pellets which showed good release stability with frame-controlled method. TSH was added to Eudragit®NE30D and Eudragit®L30D-55 polymers to form drug-loaded inner core. Afterwards, enteric Eudragit®L30D-55 polymer was modified on the surface of it to the final product. Dissolution studies showed that TSH-SR pellets were more stable during the coating process, different curing temperatures and storage conditions compared with TSH pellets produced by film-controlled technique. Appearances and glass transition temperatures (Tgs of free films and surface morphologies observed by scanning electron microscopy (SEM of blank sustained release pellets prepared by different ratios of Eudragit®NE30D and Eudragit®L30D-55 further indicated that temperature and relative humidity (RH were the key factors when Eudragit®NE30D blended with Eudragit®L30D-55 were applied to sustained/controlled release preparations. In addition, SEM identified the surface morphologies of TSH-SR pellets before and after dissolution, which showed intact surface structure and great correlation with release curve respectively.

  14. An Injectable System for Local and Sustained Release of Antimicrobial Agents in the Periodontal Pocket.

    Science.gov (United States)

    Morelli, Laura; Cappelluti, Martino Alfredo; Ricotti, Leonardo; Lenardi, Cristina; Gerges, Irini

    2017-08-01

    Periodontitis treatments usually require local administration of antimicrobial drugs with the aim to reduce the bacterial load inside the periodontal pocket. Effective pharmaceutical treatments may require sustained local drug release for several days in the site of interest. Currently available solutions are still not able to fulfill the clinical need for high-quality treatments, mainly in terms of release profiles and patients' comfort. This work aims to fill this gap through the development of an in situ gelling system, capable to achieve controlled and sustained release of antimicrobial agents for medium-to-long-term treatments. The system is composed of micrometer-sized β-cyclodextrin-based hydrogel (bCD-Jef-MPs), featured by a strong hydrophilic character, suspended in a synthetic block-co-polymer solution (Poloxamer 407), which is capable to undergo rapid thermally induced sol-gel phase transition at body temperature. The chemical structure of bCD-Jef-MPs was confirmed by cross-correlating data from Fourier transform infrared (FTIR) spectroscopy, swelling test, and degradation kinetics. The thermally induced sol-gel phase transition is demonstrated by rheometric tests. The effectiveness of the described system to achieve sustained release of antimicrobial agents is demonstrated in vitro, using chlorhexidine digluconate as a drug model. The results achieved in this work disclose the potential of the mentioned system in effectively treating periodontitis lesions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Loading and release of doxorubicin with magnetic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xia; Wang, Xiang; Lee, Sang Bok [Dept. of Chemistry and Biochemistry, University of Maryland, College Park (United States); English, Douglas [Dept. of Chemistry, Wichita State University, Wichita (United States)

    2015-03-15

    In this work, we study magnetic nanotubes (MNTs) as drug carriers to control the loading and release of doxorubicin (Dox). The inner surfaces of MNTs where Dox molecules are stored are modified with C18-silane and pyridine–silane. By tuning the interaction between the drug molecules and inner surfaces of MNTs via pH, Dox can be effectively encapsulated at pH 7.2 and released at pH 4.5. The successful loading of Dox is confirmed with confocal microscopy studies. The release profiles of Dox from modified MNTs are detected by spectrofluorophotometry, with bare MNTs as control. With proper modifications, MNTs can be used for pH-dependent, controlled release of drug molecules.

  16. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo.

    Science.gov (United States)

    Peng, Li-Hua; Wei, Wei; Shan, Ying-Hui; Chong, Yee-Song; Yu, Lian; Gao, Jian-Qing

    2017-01-01

    This study aims to investigate the solid lipid nanoparticle (SLN) as a novel vehicle for the sustained release and transdermal delivery of piroxicam, as well as to determine the anti-inflammation effect of piroxicam-loaded SLN. SLN formulation was optimized and the particle size, polydispersity index, zeta potential (ZP), encapsulation efficiency, drug release, and morphological properties were characterized. The transdermal efficiency and mechanism of the piroxicam-loaded SLNs were investigated in vitro. With the inflammation induced edema model in rat, the anti-inflammatory efficiency of piroxicam-enriched SLNs (Pir-SLNs) was evaluated. The SLN formulation was optimized as: lecithin 100 mg, glycerin monostearate 200 mg, and Tween (1%, w/w). The particle size is around 102 ± 5.2 nm with a PDI of 0.262. The ZP is 30.21 ± 2.05 mV. The prepared SLNs showed high entrapment efficiency of 87.5% for piroxicam. There is no interaction between piroxicam and the vehicle components. The presence of polymorphic form of lipid with higher drug content in the optimized Pir-SLNs enables the Pir-SLNs to release the drug with a sustained manner. Pir-SLNs with oleic acid as enhancer can radically diffuse into both the stratum corneum and dermal layer, as well as penetrate through the hair follicles and sebaceous glands with significantly higher density than the other control groups. Pir-SLNs promptly inhibited the inflammation since the 3rd hour after the treatment by decreasing the PGE 2 level. SLN was demonstrated to be a promising carrier for encapsulation and sustained release of piroxicam. Pir-SLN is a novel topical preparation with great potential for anti-inflammation application.

  17. In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Directory of Open Access Journals (Sweden)

    Postovit Lynne-Marie

    2009-01-01

    Full Text Available Abstract Basic fibroblast growth factor (bFGF, a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.

  18. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2010-08-01

    A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.

  19. [Sustained-release progesterone vaginal suppositories 3-development and clinical feasibility testing].

    Science.gov (United States)

    Nakayama, Ayako; Yamaguchi, Naho; Ohno, Yukiko; Miyata, Chihiro; Kondo, Haruomi; Sunada, Hisakazu; Okamoto, Hirokazu

    2013-01-01

      Although progesterone vaginal suppositories (hospital-formulated) are used for the treatment of infertility, their half-life is so short that multiple doses are required. In this study, we aimed to develop sustained-release vaginal suppositories suitable for clinical use which maintain an effective blood concentration by once-a-day treatment, and prepared 7 types of suppository containing the sustained-release progesterone tablets to characterize their sustained-release performance. We selected one candidate suppository among them, taking recovery rate, reproducibility, and hardness, as well as the sustained-release performance into consideration. The shell of the selected suppository is composed of VOSCO S-55 and progesterone for rapid release. The molded progesterone tablets for sustained release were embedded inside. The distribution of the weight and content of the suppository was limited, and the release rate of progesterone was significantly slower than that of a conventional progesterone suppository prepared in our hospital. The single-dose administration of the selected suppository to five healthy volunteers led to significant extension of the blood concentration. We also confirmed the rise of the basic value by multiple administration. The simulation comparison suggested that the blood progesterone concentration is controlled by once-a-day administration of the selected suppository better than twice-a-day administration of the conventional suppository. In conclusion, the sustained-release vaginal suppository prepared in this study was considered to be useful for clinical treatment.

  20. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Salam Massadeh

    2016-06-01

    Full Text Available Background: PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic. In this study, methotrexate (MTX-loaded nanoparticles were prepared by the double emulsion method. Method: Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%. Results: Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion: The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  1. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    Science.gov (United States)

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  2. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    Science.gov (United States)

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya

    2017-01-01

    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  3. Iontophoresis on minoxidil sulphate-loaded chitosan nanoparticles accelerates drug release, decreasing their targeting effect to hair follicles

    Directory of Open Access Journals (Sweden)

    Breno N. Matos

    Full Text Available The experiments described in this paper tested the hypothesis whether iontophoresis applied on a chitosan nanoparticle formulation could combine the enhanced drug accumulation into the follicular casts obtained using iontophoresis and the sustained drug release, reducing dermal exposure, provided by nanoparticles. Results showed that even though iontophoresis presented comparable minoxidil targeting potential to hair follicles than passive delivery of chitosan-nanoparticles (4.1 ± 0.9 and 5.3 ± 1.0 µg cm-2, respectively, it was less effective on preventing dermal exposure, since chitosan-nanoparticles presented a drug permeation in the receptor solution of 15.3 ± 4.3 µg cm-2 after 6 h of iontophoresis, while drug amounts from passive nanoparticle delivery were not detected. Drug release experiments showed particles were not able to sustain the drug release under the influence of a potential gradient. In conclusion, the application of MXS-loaded chitosan nanoparticles remains the best way to target MXS to the hair follicles while preventing dermal exposure.

  4. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  5. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; El-Rafie, M H; El-sheikh, M A; El-Feky, Gina S; Hebeish, A

    2015-11-01

    The current research work focuses on the medical application of the cost-effective cross-linked starch nanoparticles, for the transdermal delivery using Diclofenac sodium (DS) as a model drug. The prepared DS-cross-linked starch nanoparticles were synthesized using nanoprecipitation technique at different concentrations of sodium tripolyphosphate (STPP) in the presence of Tween 80 as a surfactant. The resultant cross-linked starch nanoparticles loaded with DS were characterized using world-class facilities such as TEM, DLS, FT-IR, XRD, and DSc. The efficiency of DS loading was also evaluated via entrapment efficiency as well as in vitro release and histopathological study on rat skin. The optimum nanoparticles formulation selected by the JMP(®) software was the formula that composed of 5% maize starch, 57.7mg DS and 0.5% STPP and 0.4% Tween 80, with particle diameter of about 21.04nm, polydispersity index of 0.2 and zeta potential of -35.3mV. It is also worth noting that this selected formula shows an average entrapment efficiency of 95.01 and sustained DS release up to 6h. The histophathological studies using the best formula on rat skin advocate the use of designed transdermal DS loaded cross-linked starch nanoparticles as it is safe and non-irritant to rat skin. The overall results indicate that, the starch nanoparticles could be considered as a good carrier for DS drug regarding the enhancement in its controlled release and successful permeation, thus, offering a promising nanoparticulate system for the transdermal delivery non-steroidal anti-inflammatory drug (NSAID). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.

    Science.gov (United States)

    Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.

  7. Sustained release of radioprotective agents

    International Nuclear Information System (INIS)

    Shani, J.

    1980-11-01

    New pharmaceutical formulations for the sustained release into the G.I. tract of radioprotective agents have been developed by the authors. The experimental method initially consisted in the production of methylcellulose microcapsules. This method failed apparently because of the premature ''explosion'' of the microcapsules and the consequent premature release of massive amounts of the drug. A new method has been developed which consists in drying and pulverising cysteamine and cysteine preparations, mixing them in various proportions with stearic acid and ethylcellulose as carriers. The mixture is then compressed into cylindrical tablets at several pressure values and the leaching rate of the radioprotective agents is then measured by spectrophotometry. The relation between the concentration of the active drug and its rate of release, and the effect on the release rate of the pressure applied to the tablet during its formation were also investigated. Results indicating that the release rate was linearly related to the square root of ''t'' seem to be in agreement with what is predictable, according to Higuchi's equation, save for the very initial and terminal phases. A clear correlation was also established between the stearic acid/ethylcellulose ratios and the release of 20% cysteine, namely a marked decrease in the rate of cysteine release was observed with increasing concentrations of stearic acid. Finally, it was observed that a higher formation pressure results in quicker release of the drug

  8. Development of sustained and dual drug release co-extrusion formulations for individual dosing.

    Science.gov (United States)

    Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg

    2015-01-01

    In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles.

    Science.gov (United States)

    Thauvin, Cédric; Schwarz, Bettina; Delie, Florence; Allémann, Eric

    2017-11-15

    Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans ® ) or polysorbates (Tweens ® ), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    Science.gov (United States)

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  11. Fabrication and characterization of DNA-loaded zein nanospheres.

    Science.gov (United States)

    Regier, Mary C; Taylor, Jessica D; Borcyk, Tyler; Yang, Yiqi; Pannier, Angela K

    2012-12-02

    Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated into PLGA nano- and microspheres. The hydrophobic nature of zein resulted in

  12. Loading of halloysite nanotubes with BSA, α-Lac and β-Lg: a Fourier transform infrared spectroscopic and thermogravimetric study

    Science.gov (United States)

    Duce, Celia; Della Porta, Valentina; Bramanti, Emilia; Campanella, Beatrice; Spepi, Alessio; Tiné, Maria Rosaria

    2017-02-01

    Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and medical applications. An important feature of halloysite is that it has a different surface chemistry on the inner and outer sides of the tubes. This property means that negatively-charged molecules can be selectively loaded inside the halloysite nanoscale its lumen. Loaded HNTs can be used for the controlled or sustained release of proteins, drugs, bioactive molecules and other agents. We studied the interaction between HNTs and bovine serum albumin, α lactalbumin and β -lactoglobulin loaded into HTNs using Fourier transform infrared spectroscopy and thermogravimetry. These techniques enabled us to study the protein conformation and thermal stability, respectively, and to estimate the amount of protein loaded into the HNTs. TEM images confirmed the loading of proteins into HTNs.

  13. Loading of halloysite nanotubes with BSA, α-Lac and β-Lg: a Fourier transform infrared spectroscopic and thermogravimetric study.

    Science.gov (United States)

    Duce, Celia; Della Porta, Valentina; Bramanti, Emilia; Campanella, Beatrice; Spepi, Alessio; Tiné, Maria Rosaria

    2017-02-03

    Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and medical applications. An important feature of halloysite is that it has a different surface chemistry on the inner and outer sides of the tubes. This property means that negatively-charged molecules can be selectively loaded inside the halloysite nanoscale its lumen. Loaded HNTs can be used for the controlled or sustained release of proteins, drugs, bioactive molecules and other agents. We studied the interaction between HNTs and bovine serum albumin, α lactalbumin and β -lactoglobulin loaded into HTNs using Fourier transform infrared spectroscopy and thermogravimetry. These techniques enabled us to study the protein conformation and thermal stability, respectively, and to estimate the amount of protein loaded into the HNTs. TEM images confirmed the loading of proteins into HTNs.

  14. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  15. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury

    Directory of Open Access Journals (Sweden)

    Xu HL

    2018-02-01

    Full Text Available  He-Lin Xu,1,* Fu-Rong Tian,1,* Jian Xiao,1,* Pian-Pian Chen,1 Jie Xu,1 Zi-Liang Fan,1 Jing-Jing Yang,1 Cui-Tao Lu,1 Ying-Zheng Zhao1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 2Hainan Medical College, Haikou, China *These authors contributed equally to this work Introduction: The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI. Methods: In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP, as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. Results: Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis.Conclusion: The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.Keywords: spinal cord injury, decellularized extracellular matrix, thermosensitive hydrogel, adsorption, basic fibroblast growth factor

  16. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  17. Development and Characterization of Chitosan Cross-Linked With Tripolyphosphate as a Sustained Release Agent in Tablets, Part I: Design of Experiments and Optimization.

    Science.gov (United States)

    Pinto, Colin A; Saripella, Kalyan K; Loka, Nikhil C; Neau, Steven H

    2018-04-01

    Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed. Design of experiments allowed identification of factors and 2-factor interactions that have significant effects on average particle size and size distribution, yield, zeta potential, and true density of the particles, as well as drug release from the directly compressed tablets. Statistical model equations directed production of a control batch that minimized span, maximized yield, and targeted a t 50 of 90 min (sample A); sample B that differed by targeting a t 50 of 240-300 min to provide sustained release; and sample C that differed from sample B by maximizing span. Sample B maximized yield and provided its targeted t 50 and the smallest average particle size, with the higher zeta potential and the lower span of samples B and C. Extragranular addition of a drug to Ch:TPP particles achieved 100% drug loading, eliminated a burst drug release, and can accomplish complete drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  19. Tamoxifen-loaded nanoparticles based on a novel mixture of biodegradable polyesters: characterization and in vitro evaluation as sustained release systems.

    Science.gov (United States)

    Pérez, Elena; Benito, Marta; Teijón, César; Olmo, Rosa; Teijón, José M; Blanco, M Dolores

    2012-01-01

    Nanoparticles (NP) from mixtures of two poly(D,L-lactide-co-caprolactone) (PLC) copolymers, PLC 40/60 and PLC 86/14, with poly(D,L-lactide) (PDLLA) and PCL were prepared: PLC 40/60-PCL (25:75), PLC 86/14-PCL (75:25) and PLC 86/14-PLA (75:25). Tamoxifen was loaded with encapsulation efficiency between 65% and 75% (29.9-36.3 µg TMX/ mg NP). All selected systems showed spherical shape and nano-scale size. TMX-loaded NPs were in the range of 293-352 nm. TMX release from NP took place with different profiles depending on polymeric composition of the particles. After 60 days, 59.81% and 82.65% of the loaded drug was released. The cytotoxicity of unloaded NP in MCF7 and HeLa cells was very low. Cell uptake of NP took place in both cell types by unspecific internalization in a time dependent process. The administration of 6 and 10 µm TMX by TMX-loaded NP was effective on both cellular types, mainly in MCF7 cells.

  20. The influence of cyclic loading on gentamicin release from acrylic bone cements

    NARCIS (Netherlands)

    Hendriks, JGE; Neut, D; Hazenberg, JG; Verkerke, GJ; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    Antibiotic-loaded acrylic bone cement is widely used in total joint replacement to reduce infections. Walking results in cyclic loading, which has been suggested to stimulate antibiotic release. The goal of this study is to compare antibiotic release from cyclically loaded bone cement with the

  1. Sustained Release of a Watermgoluble tiring from Directly ...

    African Journals Online (AJOL)

    Sustained Release of a Watermgoluble tiring from Directly Compressed Okra Gum Matrix. Tablets. Val). Mill, MA. Gilllllbll'ifl'l' AND KT. ... in near noromorder release of aspirin from the matrix tablets. The results indicate that okra gum is .... porous structure including alteration of the shape and size distribution of the pores.

  2. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release.

    Science.gov (United States)

    Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen

    2017-10-01

    In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release

    International Nuclear Information System (INIS)

    Yuan Peng; Southon, Peter D; Kepert, Cameron J; Liu Zongwen

    2012-01-01

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release. (paper)

  4. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release.

    Science.gov (United States)

    Yuan, Peng; Southon, Peter D; Liu, Zongwen; Kepert, Cameron J

    2012-09-21

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release.

  5. A biodegradable, sustained-released, prednisolone acetate microfilm drug delivery system effectively prolongs corneal allograft survival in the rat keratoplasty model.

    Directory of Open Access Journals (Sweden)

    Yu-Chi Liu

    Full Text Available Frequent and long-term use of topical corticosteroids after corneal transplantation is necessary to prevent graft rejection. However, it relies heavily on patient compliance, and sustained therapeutic drug levels are often not achieved with administration of topical eye drops. A biodegradable drug delivery system with a controlled and sustained drug release may circumvent these limitations. In this study, we investigated the efficacy of a prednisolone acetate (PA-loaded poly (d,l-lactide-co-ε-caprolactone (PLC microfilm drug delivery system on promoting the survival of allogeneic grafts after penetrating keratoplasty (PK using a rat model. The drug release profiles of the microfilms were characterized (group 1. Subsequently, forty-eight PK were performed in four experimental groups: syngeneic control grafts (group 2, allogeneic control grafts (group 3, allogeneic grafts with subconjunctivally-implanted PA microfilm (group 4, and allogeneic grafts with PA eye drops (group 5; n = 12 in each. PA-loaded microfilm achieved a sustained and steady release at a rate of 0.006-0.009 mg/day, with a consistent aqueous drug concentration of 207-209 ng/ml. The mean survival days was >28 days in group 2, 9.9±0.8 days in group 3, 26.8±2.7 days in group 4, and 26.4±3.4 days in group 5 (P = 0.023 and P = 0.027 compared with group 3. Statistically significant decrease in CD4+, CD163+, CD 25+, and CD54+ cell infiltration was observed in group 4 and group 5 compared with group 3 (P<0.001. There was no significant difference in the mean survival and immunohistochemical analysis between group 4 and group 5. These results showed that sustained PA-loaded microfilm effectively prolongs corneal allograft survival. It is as effective as conventional PA eye drops, providing a promising clinically applicable alternative for patients undergoing corneal transplantation.

  6. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  7. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline.

    Science.gov (United States)

    Taherzade, Seyed Dariush; Soleimannejad, Janet; Tarlani, Aliakbar

    2017-08-06

    Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.

  8. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Cappelletti, Piergiulio; Langella, Alessio; Mercurio, Mariano; Serri, Carla; Biondi, Marco; Mayol, Laura

    2015-06-01

    In view of zeolite potentiality as a carrier for sustained drug release, a clinoptilolite-rich rock from California (CLI_CA) was superficially modified with cetylpyridinium chloride and loaded with diclofenac sodium (DS). The obtained surface modified natural zeolites (SMNZ) were characterized by confocal scanning laser microscopy (CLSM), powder X-ray diffraction (XRPD) and laser light scattering (LS). Their flowability properties, drug adsorption and in vitro release kinetics in simulated intestinal fluid (SIF) were also investigated. CLI_CA is a Na- and K-rich clinoptilolite with a cationic exchange ability that fits well with its zeolite content (clinoptilolite=80 wt%); the external cationic exchange capacity is independent of the cationic surfactant used. LS and CLSM analyses have shown a wide distribution of volume diameters of SMNZ particles that, along with their irregular shape, make them cohesive with scarce flow properties. CLSM observation has revealed the localization of different molecules in/on SMNZ by virtue of their chemical nature. In particular, cationic and polar probes prevalently localize in SMNZ bulk, whereas anionic probes preferentially arrange themselves on SMNZ surface and the loading of a nonpolar molecule in/on SMNZ is discouraged. The adsorption rate of DS onto SMNZ was shown by different kinetic models highlighting the fact that DS adsorption is a pseudo-second order reaction and that the diffusion through the boundary layer is the rate-controlling step of the process. DS release in an ionic medium, such as SIF, can be sustained for about 5h through a mechanism prevalently governed by anionic exchange with a rapid final phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan-alginate nerve-guidance scaffolds.

    Science.gov (United States)

    Francis, Nicola L; Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K; Wheatley, Margaret A

    2017-01-01

    Freeze casting, or controlled unidirectional solidification, can be used to fabricate chitosan-alginate (C-A) scaffolds with highly aligned porosity that are suitable for use as nerve-guidance channels. To augment the guidance of growth across a spinal cord injury lesion, these scaffolds are now evaluated in vitro to assess their ability to release neurotrophin-3 (NT-3) and chondroitinase ABC (chABC) in a controlled manner. Protein-loaded microcapsules were incorporated into C-A scaffolds prior to freeze casting without affecting the original scaffold architecture. In vitro protein release was not significantly different when comparing protein loaded directly into the scaffolds with release from scaffolds containing incorporated microcapsules. NT-3 was released from the C-A scaffolds for 8 weeks in vitro, while chABC was released for up to 7 weeks. Low total percentages of protein released from the scaffolds over this time period were attributed to limitation of diffusion by the interpenetrating polymer network matrix of the scaffold walls. NT-3 and chABC released from the scaffolds retained bioactivity, as determined by a neurite outgrowth assay, and the promotion of neurite growth across an inhibitory barrier of chondroitin sulphate proteoglycans. This demonstrates the potential of these multifunctional scaffolds for enhancing axonal regeneration through growth-inhibiting glial scars via the sustained release of chABC and NT-3. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Letter to the editor: naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Directory of Open Access Journals (Sweden)

    Buehler AM

    2015-01-01

    Full Text Available Anna M Buehler Hospital Alemao Oswaldo Cruz, Institute of Health Education and Sciences, Sao Paulo, BrazilI read with great interest the systematic review by Caixàs et al1 on the effect of naltrexone sustained-release/bupropion sustained-release (NB for the management of obesity. By comprehensively appraising five recent clinical trials, the authors concluded that the naltrexone/bupropion combination might represent an important new therapeutic option for the management of obesity, with a weight reduction effect that is similar to other drugs approved for the treatment of obesity.View original paper by Caixàs and colleagues.

  11. Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics

    Science.gov (United States)

    Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing

    2013-01-01

    Background Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. Methods The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. Results The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. Conclusion PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity

  12. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition.

    Science.gov (United States)

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Hu, Shuzhen; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The unsaturated fatty acid (linoleic acid) sustained-release microspheres were prepared with linoleic acid (LA) using alginate-chitosan microcapsule technology. These LA sustained-release microspheres had a high encapsulation efficiency (up to 62%) tested by high performance liquid chromatography with a photo diode array. The dry microspheres were characterized by a scanning electron microscope, X-ray diffraction measurement, dynamic thermogravimetric analysis and Fourier transform infrared spectral analysis. The results of characterization showed that the microspheres had good thermal stability (decomposition temperature of 236°C), stable and temperature independent release properties (release time of more than 40 d). Compared to direct dosing of LA, LA sustained-released microspheres could inhibit Microcystis aeruginosa growth to the non-growth state. The results of this study suggested that the LA sustained-release microspheres may be a potential candidate for algal inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Studies on preparation and dissolution test in vitro of sustained-release dropping pills of curcumin].

    Science.gov (United States)

    Fang, Yu; Xiang, Bai; Pan, Zhen-Hua; Cao, De-Ying

    2010-01-01

    To study the prescription and technique of sustained-release dropping pills of curcumin and inspect their release property in vitro. The orthogonal test was used to screen the prescription and technique which were definited with the colligation evaluation of release and formation of dropping pills. The optimization of prescription and technique were as follows: stearic acid 70 mg, glycery monostearate 25 mg, solutol 6 mg, viscosity of cooling liquid was 100 mm2/s; the temperature of material liquid was 80 degrees C; the cooling temperature was 30 - 0 degrees C; the dropping speed was (21 +/- 2) dripping/min. The release behavior of sustained-release dropping pills of curcumin coincidented with Higuchi equation well and the character of sustained-release was transparent. The sustained-release dropping pills of curcumin have good property of sustained-release in vitro and their release behavior in vivo need to be inspected.

  14. Formulation and Characterization of Sustained Release Floating ...

    African Journals Online (AJOL)

    Purpose: To formulate sustained release gastroretentive microballoons of metformin hydrochloride with the objective of improving its bioavailability. Methods: Microballoons of metformin hydrochloride were formulated by solvent evaporation and diffusion method using varying mixtures of hydroxypropyl methylcellulose ...

  15. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    Science.gov (United States)

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    Science.gov (United States)

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  17. Preparation of 5-fluorouracil loaded chitosan microparticle and its drug release properties

    Directory of Open Access Journals (Sweden)

    Li Mingming

    2017-01-01

    Full Text Available Chitosan is one kind of good biocompatible polymer and is suitble for drug carriers. Preparation of 5-fluorouracil (5-Fu loaded chitosan (CS particles and in vitro release experiment were performed using ionic crosslinking method with sodium tripolyphosphate (TPP as crosslinker. The optimal preparing parameters were verified by 5-Fu release experiments. The drug loading, and release behavior of drug loaded microparticles in vitro were investigated. The optimal preparation conditions were: the temperature 25°C, the ratio of CS to TPP 5:1, the CS concentration 1.5g/L, stirring speed 650rpm. Under these conditions, the drug loading of particles was up to 45%.

  18. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing...

  19. Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses

    NARCIS (Netherlands)

    Petit, Audrey|info:eu-repo/dai/nl/371748461; Redout, Everaldo M; van de Lest, Chris H|info:eu-repo/dai/nl/146063570; de Grauw, Janny C|info:eu-repo/dai/nl/304822469; Müller, Benno; Meyboom, Ronald; van Midwoud, Paul; Vermonden, Tina|info:eu-repo/dai/nl/275124517; Hennink, Wim E|info:eu-repo/dai/nl/070880409; van Weeren, René|info:eu-repo/dai/nl/074628550

    In this study, the intra-articular tolerability and suitability for local and sustained release of an in situ forming gel composed of an acetyl-capped poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) copolymer loaded with celecoxib was

  20. Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs.

    Science.gov (United States)

    Pan, Liping; Qian, Yafang; Cheng, Minlu; Gu, Pan; He, Yanna; Xu, Xiaowen; Ding, Li

    2015-01-01

    This paper describes the development and validation of a liquid chromatography-mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test), as an instant-release tablet (IR-reference) and as the market leader sustained-release capsule (Rythmol, SR-reference) in male beagle dogs (n=8). In Study A comparing SR-test with IR-reference in a crossover design T max and t 1/2 of propafenone for SR-test were significantly higher than those for IR-reference while C max and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed C max and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively) were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively) although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.

  1. Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs

    Directory of Open Access Journals (Sweden)

    Liping Pan

    2015-01-01

    Full Text Available This paper describes the development and validation of a liquid chromatography–mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test, as an instant-release tablet (IR-reference and as the market leader sustained-release capsule (Rythmol, SR-reference in male beagle dogs (n=8. In Study A comparing SR-test with IR-reference in a crossover design Tmax and t1/2 of propafenone for SR-test were significantly higher than those for IR-reference while Cmax and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed Cmax and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.

  2. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    Science.gov (United States)

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.

  3. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury.

    Science.gov (United States)

    Hanna, Amgad; Thompson, Daniel L; Hellenbrand, Daniel J; Lee, Jae-Sung; Madura, Casey J; Wesley, Meredith G; Dillon, Natalie J; Sharma, Tapan; Enright, Connor J; Murphy, William L

    2016-07-01

    Because of the dynamics of spinal cord injury (SCI), the optimal treatment will almost certainly be a combination approach to control the environment and promote axonal growth. This study uses peripheral nerve grafts (PNGs) as scaffolds for axonal growth while delivering neurotrophin-3 (NT-3) via calcium phosphate (CaP) coatings on surgical sutures. CaP coating was grown on sutures, and NT-3 binding and release were characterized in vitro. Then, the NT-3-loaded sutures were tested in a complete SCI model. Rats were analyzed for functional improvement and axonal growth into the grafts. The CaP-coated sutures exhibited a burst release of NT-3, followed by a sustained release for at least 20 days. Functionally, the rats with PNGs + NT-3-loaded sutures and the rats treated with PNGs scored significantly higher than controls on day 56 postoperatively. However, functional scores in rats treated with PNGs + NT-3-loaded suture were not significantly different from those of rats treated with PNGs alone. Cholera toxin subunit B (CTB) labeling rostral to the graft was not observed in any controls, but CTB labeling rostral to the graft was observed in almost all rats that had had a PNG. Neurofilament labeling on transverse sections of the graft revealed that the rats treated with the NT-3-loaded sutures had significantly more axons per graft than rats treated with an NT-3 injection and rats without NT-3. These data demonstrate that PNGs serve as scaffolds for axonal growth after SCI and that CaP-coated sutures can efficiently release NT-3 to increase axonal regeneration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Peak loads and network investments in sustainable energy transitions

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Erik, E-mail: e.g.j.blokhuis@tue.nl [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Brouwers, Bart [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Putten, Eric van der [Endinet, Gas and Electricity Network Operations, P.O. Box 2005, 5600CA Eindhoven (Netherlands); Schaefer, Wim [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands)

    2011-10-15

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: > Sustainable energy transitions can result in major electricity peak load increases. > Introduction of heat pumps and electrical vehicles requires network expansion. > Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. > The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. > Future policy choices should be made from the viewpoint of the integral energy system.

  5. Peak loads and network investments in sustainable energy transitions

    International Nuclear Information System (INIS)

    Blokhuis, Erik; Brouwers, Bart; Putten, Eric van der; Schaefer, Wim

    2011-01-01

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: → Sustainable energy transitions can result in major electricity peak load increases. → Introduction of heat pumps and electrical vehicles requires network expansion. → Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. → The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. → Future policy choices should be made from the viewpoint of the integral energy system.

  6. Fabrication and characterization of DNA-loaded zein nanospheres

    Directory of Open Access Journals (Sweden)

    Regier Mary C

    2012-12-01

    Full Text Available Abstract Background Particulates incorporating DNA are promising vehicles for gene delivery, with the ability to protect DNA and provide for controlled, localized, and sustained release and transfection. Zein, a hydrophobic protein from corn, is biocompatible and has properties that make it a promising candidate material for particulate delivery, including its ability to form nanospheres through coacervation and its insolubility under physiological conditions, making it capable of sustained release of encapsulated compounds. Due to the promise of this natural biomaterial for drug delivery, the objective of this study was to formulate zein nanospheres encapsulating DNA as the therapeutic compound, and to characterize size, charge, sustained release, cell cytotoxicity and cellular internalization of these particles. Results Zein nanospheres encapsulating DNA were fabricated using a coacervation technique, without the use of harsh solvents or temperatures, resulting in the preservation of DNA integrity and particles with diameters that ranged from 157.8 ± 3.9 nm to 396.8 ± 16.1 nm, depending on zein to DNA ratio. DNA encapsulation efficiencies were maximized to 65.3 ± 1.9% with a maximum loading of 6.1 ± 0.2 mg DNA/g zein. The spheres protected encapsulated DNA from DNase I degradation and exhibited sustained plasmid release for at least 7 days, with minimal burst during the initial phase of release. Zein/DNA nanospheres demonstrated robust biocompatibility, cellular association, and internalization. Conclusions This study represents the first report on the formation of zein particles encapsulating plasmid DNA, using simple fabrication techniques resulting in preservation of plasmid integrity and tunable sizes. DNA encapsulation efficiencies were maximized to acceptable levels at higher zein to DNA ratios, while loading was comparable to that of other hydrophilic compounds encapsulated in zein and that of DNA incorporated

  7. Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release

    International Nuclear Information System (INIS)

    Lam, Yi Lyn; Muniyandy, Saravanan; Kamaruddin, Hashim; Mansor, Ahmad; Janarthanan, Pushpamalar

    2015-01-01

    Carboxymethyl sago pulp (CMSP) with 0.4 DS, viscosity 184 dl/g and molecular weight 76,000 g/mol was synthesized from sago waste. 10 and 20% w/v solutions of CMSP were irradiated at 10–30 kGy to form hydrogels and were characterized by % gel fraction (GF). Irradiation of 20% CMSP using 25 kGy has produced stable hydrogels with the highest % GF and hence loaded with ciprofloxacin HCl. Drug-loaded hydrogels were produced by irradiating the mixture of drug and 20% CMSP solution at 25 kGy. After irradiation, the hydrogels were cut into circular discs with a diameter of 6±1 mm and evaluated for physicochemical properties as well as drug release kinetics. The ciprofloxacin loading in the disc was 14.7%±1 w/w with an entrapment efficiency of 73.5% w/w. The low standard deviation of drug-loaded discs indicated uniform thickness (1.5±0.3 mm). The unloaded discs were thinner (1±0.4 mm) and more brittle than the drug-loaded discs. FESEM, FT-IR, XRD, DSC and TGA analysis revealed the absence of polymer–drug interaction and transformation of crystalline to amorphous form of ciprofloxacin in the discs. The disc sustained the drug release in phosphate buffer pH 7.4 over 36 h in a first-order manner. The mechanism of the drug release was found to be swelling controlled diffusion and matrix erosion. The anti-bacterial effect of ciprofloxacin was retained after irradiation and CMSP disc could be a promising device for ocular drug delivery. - Highlights: • Carboxymethyl sago pulp (CMSP) with ciprofloxacin is irradiated to form hydrogels. • 20% CMSP at 25 kGy has produced stable hydrogels with the highest gel fraction. • Crystalline ciprofloxacin converted as amorphous during hydrogel formation. • Hydrogel in disc form sustained the drug release drug up to 36 h. • Irradiation cross-linked polymeric chain of CMSP resulted in controlled swelling

  8. Sustained release of vancomycin from novel biodegradable nanofiber-loaded vascular prosthetic grafts: in vitro and in vivo study

    OpenAIRE

    Liu, Kuo-Sheng; Lee, Cheng-Hung; Wang, Yi-Chuan; Liu, Shih-Jung

    2015-01-01

    Kuo-Sheng Liu,1 Cheng-Hung Lee,2 Yi-Chuan Wang,3 Shih-Jung Liu3 1Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan; 2Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; 3Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan Abstract: This study describes novel biodegradable, drug-eluting nanofiber-loaded vascular prosthetic grafts that provide local and sustained...

  9. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    International Nuclear Information System (INIS)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2017-01-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO 4 ) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV–Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52 nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl > NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO 4 material also observed to be decreased in the order K + > Na + and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO 4 matrix, as the material can release up to 87% of its total loaded drug over a 90 min period. Finally, the cell viability and

  10. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Faruq, E-mail: fmohammad@ksu.edu.sa [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Arfin, Tanvir, E-mail: t_arfin@neeri.res.in [Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020 (India); Al-Lohedan, Hamad A. [Surfactant Research chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2017-02-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO{sub 4}) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV–Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52 nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl > NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO{sub 4} material also observed to be decreased in the order K{sup +} > Na{sup +} and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO{sub 4} matrix, as the material can release up to 87% of its total loaded drug over a 90 min period. Finally, the

  11. Storage and sustained release of volatile substances from a hollow silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiexin [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Ding Haomin [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Tao Xia [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Chen Jianfeng [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China)

    2007-06-20

    Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO{sub 3} template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 ml{sub perfume}/mg{sub carrier}) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.

  12. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  13. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Pierre, E-mail: pierre.rossi@lcpc.fr; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-09-15

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack.

  14. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    International Nuclear Information System (INIS)

    Rossi, Pierre; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-01-01

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack

  15. The release characteristics of a model protein from self-assembled succinimide-terminated poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Angel E; He Xuezhong; Xu Weijie; Jabbari, Esmaiel [Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, SC 29208, Columbia (United States)], E-mail: jabbari@engr.sc.edu

    2008-08-13

    Lactide-co-glycolide-based functionalized nanoparticles (NPs), because of their high surface areas for conjugation and biodegradability, are attractive as carriers for stabilization and sustained delivery of therapeutic agents and protein drugs. The objective of this work was to compare the release characteristics of model molecules encapsulated in NPs produced from poly(lactide-co-glycolide fumarate) (PLGF) macromer with those of model molecules conjugated to NPs produced from succinimide (NHS)-terminated PLGF-NHS macromer. Poly(lactide fumarate) (PLAF), PLGF and poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromers were synthesized by condensation polymerization. The hydroxyl end-groups of PLAF and PLGF macromers were reacted with N,N{sup '}-disuccinimidyl carbonate (DSC) to produce succinimide-terminated PLAF-NHS and PLGF-NHS macromers. The macromers were self-assembled by dialysis to form NPs. The amphiphilic PLEOF macromer was used as the surfactant to stabilize the NPs in the process of self-assembly. 1-(2-pyridylazo)-2-naphthol (PAN) was used as a model small molecule for encapsulation in PLAF or PLGF NPs and bovine serum albumin (BSA) was used as a model protein for conjugation to PLAF-NHS and PLGF-NHS NPs. The profile of release of the encapsulated PAN from PLAF and PLGF NPs was non-linear and consisted of a burst release followed by a period of sustained release. The release profile for BSA, conjugated to PLAF-NHS and PLGF-NHS NPs, was linear up to complete degradation of the NPs. PLGF and PLAF NPs degraded in 15 and 28 days, respectively, while PLGF-NHS and PLAF-NHS NPs degraded in 25 and 38 days, which demonstrated that the release was dominated by erosion of the matrix. PLAF-NHS and PLGF-NHS NPs are potentially useful as carriers for sustained in situ release of protein drugs.

  16. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    Directory of Open Access Journals (Sweden)

    Wei Li Lee

    Full Text Available Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone (PCL coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose. The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  17. Surgical suture braided with a diclofenac-loaded strand of poly(lactic-co-glycolic acid) for local, sustained pain mitigation.

    Science.gov (United States)

    Huh, Beom Kang; Kim, Byung Hwi; Kim, Se-Na; Park, Chun Gwon; Lee, Seung Ho; Kim, Ka Ryeong; Heo, Chan Yeong; Choy, Young Bin

    2017-10-01

    In this work, we propose a surgical suture that can sustainably release diclofenac (DF) for the local pain relief of surgical wounds. We separately fabricated a DF-loaded strand composed of a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), which was then braided with a surgical suture already in clinical use, i.e., VICRYL™. In this way, the drug-delivery suture presented herein could release DF in a sustained manner for 10days while maintaining the mechanical strength needed for wound closure. According to the in vivo results of an induced-pain animal model, the drug-delivery suture mitigated pain throughout the period of persistent pain. The histological analysis of tissue around the sutures showed that the drug-delivery suture exhibited biocompatibility comparable to that of the VICRYL™ suture in clinical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Recovery of oxidative stress-induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel.

    Science.gov (United States)

    Cheng, Yung-Hsin; Lin, Feng-Huei; Wang, Chien-Ying; Hsiao, Chen-Yuan; Chen, Hung-Ching; Kuo, Hsin-Yu; Tsai, Ting-Fen; Chiou, Shih-Hwa

    2016-10-01

    Aging-related oxidative stress is considered a major risk factor of cardiovascular diseases (CVD) and could be associated with mitochondrial dysfunction and reactive oxygen species (ROS) overproduction. Cisd2 is an outer mitochondrial membrane protein and plays an important role in controlling the lifespan of mammals. Ferulic acid (FA), a natural antioxidant, is able to improve cardiovascular functions and inhibit the pathogenetic CVD process. However, directly administering therapeutics with antioxidant molecules is challenging because of stability and bioavailability issues. In the present study, thermosensitive chitosan-gelatin-based hydrogel containing FA was used to treat Cisd2-deficient (Cisd2(-/-)) cardiomyocytes (CM) derived from induced pluripotent stem cells of Cisd2(-/-) murine under oxidative stress. The results revealed that the developed hydrogel could provide a sustained release of FA and increase the cell viability. Post-treatment of FA-loaded hydrogel effectively decreased the oxidative stress-induced damage in Cisd2(-/-) CM via increasing catalase activity and decreasing endogenous reactive oxygen species (ROS) production. The in vivo biocompatibility of FA-loaded hydrogel was confirmed in subcutaneously injected rabbits and intramyocardially injected Cisd2(-/-) mice. These results suggest that the thermosensitive FA-loaded hydrogel could rescue Cisd2(-/-) CM from oxidative stress-induced damage and may have potential applications in the future treatment of CVD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride.

    Science.gov (United States)

    Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A

    2016-01-01

    The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F 10 composed of 28.5% Eudragit RSPM, 3% NaHCO 3 , and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F 10 where the drug release percentage was 96.51%±1.75% after 24 hours ( P =0.031). The pharmacokinetic results indicated that the area under the curve (AUC 0-∞ ) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton ® ) and the relative bioavailability of the sustained-release formulation F 10 increased to 187.80% ( P =0.022). The prepared floating tablets of ITO HCl (F 10 ) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.

  20. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers

    Directory of Open Access Journals (Sweden)

    Xinkuan Liu

    2018-03-01

    Full Text Available Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2, in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1 that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  1. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers.

    Science.gov (United States)

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin; Yu, Deng-Guang

    2018-03-22

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  2. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  3. Development of Sustained Release "NanoFDC (Fixed Dose Combination" for Hypertension - An Experimental Study.

    Directory of Open Access Journals (Sweden)

    Anjuman Arora

    Full Text Available The present study was planned to formulate, characterize and evaluate the pharmacokinetics of a novel "NanoFDC" comprising three commonly prescribed anti-hypertensive drugs, hydrochlorothiazide (a diuretic, candesartan (ARB and amlodipine (a calcium channel blocker.The candidate drugs were loaded in Poly (DL-lactide-co-gycolide (PLGA by emulsion- diffusion-evaporation method. The formulations were evaluated for their size, morphology, drug loading and in vitro release individually. Single dose pharmacokinetic profiles of the nanoformulations alone and in combination, as a NanoFDC, were evaluated in Wistar rats.The candidate drugs encapsulated inside PLGA showed entrapment efficiencies ranging from 30%, 33.5% and 32% for hydrochlorothiazide, candesartan and amlodipine respectively. The nanoparticles ranged in size from 110 to 180 nm. In vitro release profile of the nanoformulation showed 100% release by day 6 in the physiological pH 7.4 set up with PBS (phosphate buffer saline and by day 4-5 in the intestinal pH 1.2 and 8.0 set up SGF (simulated gastric fluid and SIF (simulated intestinal fluid respectively. In pharmacokinetic analysis a sustained-release for 6 days and significant increase in the mean residence time (MRT, as compared to the respective free drugs was noted [MRT of amlodipine, hydrochlorothiazide and candesartan changed from 8.9 to 80.59 hours, 11 to 69.20 hours and 9 to 101.49 hours respectively].We have shown for the first time that encapsulating amlodipine, hydrochlorothiazide and candesartan into a single nanoformulation, to get the "NanoFDC (Fixed Dose Combination" is a feasible strategy which aims to decrease pill burden.

  4. MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cifter, G; Ngwa, W [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Univ Massachusetts Lowell, Lowell, MA (United States); Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Korideck, H; Cormack, R; Makrigiorgos, G [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Kumar, R [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Northeastern University, Boston, MA (United States); Sridhar, S [Northeastern University, Boston, MA (United States)

    2015-06-15

    Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescent GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT.

  5. MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles

    International Nuclear Information System (INIS)

    Cifter, G; Ngwa, W; Sajo, E; Korideck, H; Cormack, R; Makrigiorgos, G; Kumar, R; Sridhar, S

    2015-01-01

    Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescent GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT

  6. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  7. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    Science.gov (United States)

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  8. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    Science.gov (United States)

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  9. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.

    Science.gov (United States)

    Thrash, Marvin E; Pinto, Neville G

    2006-09-08

    The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.

  10. Formulation of Dipyridamole Sustained Release Tablet Using Floating System

    Directory of Open Access Journals (Sweden)

    Lenny Mauilida Valentina

    2011-06-01

    Full Text Available Dipyridamole is a drug for prevention of postoperative thromboembolic complication of heart valve replacement and long term therapy of angina pectoris will be well absorbed in stomach. To maintain therapeutic plasma concentration in long time and to increase bioavalaibility is needed a sustained release dosage form having the long residence time in the stomach. The objective of this research was to make floating sustained release tablet of dipyridamole conforming to the requirement that was set up by dipyridamol therapeutic concentration. Tablets were made by wet granulation method using aquadest as a liquid binder, HPMC K4M, Ac-di-sol, Avicel PH 102, talk, and Mg stearat. Dissolution assay was carried out using type 2 release tester at rotation speed of 50 rpm in medium 900 mL HCl 0.1 N at 37 ± 0.5 °C for 8 hours. The formulation containing of 50 mg dipirydamole, HPMC K4M (30%, Ac-di-sol (20%, Avicel PH 102 (37%, talk (2%, and Mg stearat (1% released 59.61 ± 6.73% and 89.34 ± 5.87% of dipyridamole respectively after 4 and 8 hours that conformed to the requirement.

  11. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles.

    Science.gov (United States)

    Park, Min-Ho; Kim, Ju-Heon; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Cho, Cheong-Weon

    2015-08-18

    It is known that allergic people was potentially vulnerable to bee venom (BV), which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT) and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide) (PLGA) has been broadly studied as a carrier for drug delivery systems (DDS) of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs). The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future.

  12. Sustained release of stem cell factor in a double network hydrogel for ex vivo culture of cord blood-derived CD34+ cells.

    Science.gov (United States)

    Zhang, Yuanhao; Pan, Xiuwei; Shi, Zhen; Cai, Haibo; Gao, Yun; Zhang, Weian

    2018-04-01

    Stem cell factor (SCF) is considered as a commonly indispensable cytokine for proliferation of haematopoietic stem cells (HSCs), which is used in large dosages during ex vivo culture. The work presented here aimed to reduce the consumption of SCF by sustained release but still support cells proliferation and maintain the multipotency of HSCs. Stem cell factor was physically encapsulated within a hyaluronic acid/gelatin double network (HGDN) hydrogel to achieve a slow release rate. CD34 + cells were cultured within the SCF-loaded HGDN hydrogel for 14 days. The cell number, phenotype and functional capacity were investigated after culture. The HGDN hydrogels had desirable properties and encapsulated SCF kept being released for more than 6 days. SCF remained the native bioactivity, and the proliferation of HSCs within the SCF-loaded HGDN hydrogel was not affected, although the consumption of SCF was only a quarter in comparison with the conventional culture. Moreover, CD34 + cells harvested from the SCF-loaded HGDN hydrogels generated more multipotent colony-forming units (CFU-GEMM). The data suggested that the SCF-loaded HGDN hydrogel could support ex vivo culture of HSCs, thus providing a cost-effective culture protocol for HSCs. © 2017 John Wiley & Sons Ltd.

  13. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Preparation and evaluation of tamsulosin hydrochloride sustained-release pellets modified by two-layered membrane techniques

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2015-02-01

    Full Text Available The aim of the present study was to develop tamsulosin hydrochloride sustained-release pellets using two-layered membrane techniques. Centrifugal granulator and fluidized-bed coater were employed to prepare drug-loaded pellets and to employ two-layered membrane coating respectively. The prepared pellets were evaluated for physicochemical characterization, subjected to differential scanning calorimetry (DSC and in vitro release of different pH. Different release models and scanning electron microscopy (SEM were utilized to analyze the release mechanism of Harnual® and home-made pellets. By comparing the dissolution profiles, the ratio and coating weight gain of Eudragit® NE30D and Eudragit® L30D55 which constitute the inside membrane were identified as 18:1 and 10%–11%. The coating amount of outside membrane containing Eudragit® L30D55 was determined to be 0.8%. The similarity factors (f2 of home-made capsule and commercially available product (Harnual® were above 50 in different dissolution media. DSC studies confirmed that drug and excipients had good compatibility and SEM photographs showed the similarities and differences of coating surface between Harnual® and self-made pellets before and after dissolution. According to Ritger-Peppas model, the two dosage form had different release mechanism.

  15. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  16. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release.

    Science.gov (United States)

    Della Porta, G; Adami, R; Del Gaudio, P; Prota, L; Aquino, R; Reverchon, E

    2010-11-01

    In this work, the supercritical assisted atomization (SAA) is proposed, for the first time, not only as a micronization technology but also as a thermal coagulation process for the production of bovine serum albumin (BSA) microspheres charged with Gentamicin sulfate (GS). Particularly, different water solutions of BSA/GS were processed by SAA to produce protein microspheres with different size and antibiotic content. SAA precipitation temperature was selected in the range 100-130 °C to generate protein coagulation and to recover micronized BSA in form of hydrophobic aggregates; GS loading was varied between 10% and 50% (w/w) with an encapsulation efficiency which often reached 100%. In all cases, spherical and noncoalescing particles were successfully produced with a mean particle size of 2 µm and with a standard deviation of about ±1 µm. The microspheres also showed a good stability and constant water content after 60 days of storage. The release profiles of the entrapped drug were monitored using Franz cells to evaluate the possible application of the produced microspheres in wound dressing formulations. Particularly, the microspheres with a BSA/GS ratio of 4:1 after the first burst effect (of 40% of GS loaded) were able to release the GS continuously over 10 days. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Improvement of Tenofovir vaginal release from hydrophilic matrices through drug granulation with hydrophobic polymers.

    Science.gov (United States)

    Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores

    2018-05-30

    Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. An in vitro study of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-01-01

    The adult mammalian central nervous system has limited ability to regenerate after injury. This is due, in part, to the presence of myelin-associated axon growth inhibitory proteins such as Nogo-A that bind and activate the Nogo receptor, leading to profound inhibition of actin-based motility within the growing axon tip. This paper presents an in vitro study of the use of a Nogo receptor-blocking peptide to antagonize the inhibitory effect of Nogo-A on axon growth. Alginate nanospheres were fabricated using an emulsion technique and loaded with Nogo receptor-blocking peptide, or with other model proteins. Protein release profiles were studied, and retention of the bioactivity of released proteins was verified. Primary dorsal root ganglion neurons were cultured and their ability to grow neurites was challenged with Nogo-A chimeric protein in the absence or presence of Nogo receptor antagonist peptide-loaded alginate nanospheres. Our results demonstrate that peptide released from alginate nanospheres could overcome the growth inhibitory effect of Nogo-A, suggesting that a similar peptide delivery strategy using alginate nanospheres might be used to improve axon regeneration within the injured central nervous system. (paper)

  19. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam); Tran, Van-Thanh [Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City (Viet Nam); Duan, Wei [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Phuong Ha-Lien, E-mail: phuong.tran1@deakin.edu.au [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Thao Truong-Dinh, E-mail: ttdthao@hcmiu.edu.vn [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-10-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  20. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    International Nuclear Information System (INIS)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi; Tran, Van-Thanh; Duan, Wei; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-01-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  1. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    Science.gov (United States)

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  2. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet; Sharma, Sumit; Sinha, VR, E-mail: sinha_vr@rediffmail.com

    2017-03-01

    Poly(lactic-co-glycolic acid) (PLGA) (75:25) and polycaprolactone (PCL) microspheres were fabricated for prolonged release of aceclofenac by parenteral administration. Microspheres encapsulating aceclofenac were designed to release the drug at controlled rate for around one month. Biodegradable microspheres were prepared by solvent emulsification evaporation method in different polymer:drug ratios (1:1, 2:1 and 3:1). After drug loading, PLGA and PCL microspheres showed a controlled size distribution with an average size of 11.75 μm and 3.81 μm respectively and entrapment efficiency in the range of 90 ± 0.72% to 91.06 ± 4.01% with PLGA and 83.01 ± 2.13% to 90.4 ± 2.11% with PCL. Scanning electron microscopy has confirmed good spherical structures of microspheres. The percent yield of biodegradable polymeric microspheres ranged between 30.95 ± 10.14% to 92.84 ± 3.15% and 47.33 ± 4.72% to 80 ± 3.60% for PLGA and PCL microspheres respectively. PLGA microspheres followed Higuchi release pattern while Korsmeyer-Peppas explained the release pattern of PCL microspheres. Stability studies of microspheres were also carried out by storing the preparations at 2-8 °C for 30, 60 and 90 days and evaluating them for entrapment efficiency, residual drug content and polymer drug compatability. In-vivo studies showed significant anti-inflammatory activity of microspheres upto 48 hours using the carrageenan induced rat paw oedema model. - Highlights: • PLGA and PCL polymeric microspheres for parenteral prolonged drug delivery system were formulated. • Polymeric microspheres were characterized physically and drug excipient incompatability. • Three months accelerated stability studies were carried for drug loaded polymeric microspheres. • Pharmacodynamic studies prove the rationality of sustained therapeutic effect of designed drug delivery system.

  3. pH-controlled drug loading and release from biodegradable microcapsules.

    Science.gov (United States)

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  4. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  5. Development of lovastatin-loaded poly(lactic acid microspheres for sustained oral delivery: in vitro and ex vivo evaluation

    Directory of Open Access Journals (Sweden)

    Guan QG

    2015-02-01

    Full Text Available Qigang Guan,1 Wei Chen,2 Xianming Hu2 1Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China; 2Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People’s Republic of China Background: A novel lovastatin (LVT-loaded poly(lactic acid microsphere suitable for oral administration was developed in this study, and in vitro and in vivo characteristics were evaluated. Methods: The designed microspheres were obtained by an improved emulsion-solvent evaporation method. The morphological examination, particle size, encapsulation ratio, drug loading, and in vitro release were characterized. Pharmacokinetics studies were used to show that microspheres possess more advantages than the conventional formulations. Results: By using the emulsion-solvent evaporation method, it was simple to prepare microspheres and easy to scale up production. The morphology of formed microspheres showed a spherical shape with a smooth surface, without any particle aggregation. Mean size of the microspheres was 2.65±0.69 µm; the encapsulation efficiency was 92.5%±3.6%, and drug loading was 16.7%±2.1%. In vitro release indicated that the LVT microspheres had a well-sustained release efficacy, and ex vivo studies showed that after LVT was loaded to microspheres, the area under the plasma concentration-time curve from zero to the last measurable plasma concentration point and the extrapolation to time infinity increased significantly, which represented 2.63-fold and 2.49-fold increases, respectively, compared to suspensions. The rate of ex vivo clearance was significantly reduced. Conclusion: This research proved that poly(lactic acid microspheres can significantly prolong the drug circulation time in vivo and can also significantly increase the relative bioavailability of the drug. Keywords: lovastatin, microspheres, PLA, in vitro release, pharmacokinetics 

  6. Sustained release of verapamil hydrochloride from sodium alginate microcapsules.

    Science.gov (United States)

    Farhana, S Ayesha; Shantakumar, S M; Shyale, Somashekar; Shalam, Md; Narasu, Laxmi

    2010-04-01

    The objective of the present study was to develop sustained release microcapsules of verapamil hydrochloride (VH) using biodegradable polymers. For this purpose microcapsules embedded verapamil hydrochloride were prepared using sodium alginate alone and also by incorporating some co polymers like methyl cellulose (MC), sodium carboxy methyl cellulose (SCMC) , poly vinyl pyrollidone (PVP) and xanthan gum by employing complex emulsion method of microencapsulation. Microcapsules were prepared in various core: coat ratios to know the effect of polymer and co polymers on drug release. Overall ten formulations were prepared and evaluated for flow behaviour, sieve analysis, drug entrapment efficiency, in vitro dissolution studies, stability studies, including scanning electron microscopy and DSC. The resulting microcapsules were discrete, large, spherical and also free flowing. The drug content in all the batches of microcapsules was found to be uniform. The release was depended on core: coat ratio and nature of the polymers. FTIR analysis revealed chemical integrity between Verapamil hydrochloride (VH), sodium alginate and between the copolymers. Among the four copolymers used methyl cellulose retarded the drug release more than the other three, hence the same formulation was subjected for in vivo studies. The drug release from the microcapsules was found to be following non fickian diffusion. Mechanism of drug release was diffusion controlled first order kinetics. Drug diffusion co efficient and correlation co efficient were also assessed by using various mathematical models. In vivo result analysis of pharmacokinetic parameters revealed that t max of reference and test formulations were almost same. From the study it was concluded that, sustained release Verapamil hydro chloride microcapsules could be achieved with success using sodium alginate alone and also in combination with other biodegradable polymers.

  7. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    Science.gov (United States)

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  8. Development of Sustained-Release Microbeads of Nifedipine and In ...

    African Journals Online (AJOL)

    Methods: Nifedipine microbeads were prepared using sodium alginate and pectin in different ratios by ionic-gelation method. ... Oral sustained release dosage forms provide ... Stability in .... 37oC) in a USP XXII apparatus (Pharma Test,.

  9. Biodegradable protein-based rockets for drug transportation and light-triggered release.

    Science.gov (United States)

    Wu, Zhiguang; Lin, Xiankun; Zou, Xian; Sun, Jianmin; He, Qiang

    2015-01-14

    We describe a biodegradable, self-propelled bovine serum albumin/poly-l-lysine (PLL/BSA) multilayer rocket as a smart vehicle for efficient anticancer drug encapsulation/delivery to cancer cells and near-infrared light controlled release. The rockets were constructed by a template-assisted layer-by-layer assembly of the PLL/BSA layers, followed by incorporation of a heat-sensitive gelatin hydrogel containing gold nanoparticles, doxorubicin, and catalase. These rockets can rapidly deliver the doxorubicin to the targeted cancer cell with a speed of up to 68 μm/s, through a combination of biocatalytic bubble propulsion and magnetic guidance. The photothermal effect of the gold nanoparticles under NIR irradiation enable the phase transition of the gelatin hydrogel for rapid release of the loaded doxorubicin and efficient killing of the surrounding cancer cells. Such biodegradable and multifunctional protein-based microrockets provide a convenient and efficient platform for the rapid delivery and controlled release of therapeutic drugs.

  10. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  11. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    International Nuclear Information System (INIS)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  12. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.

    Science.gov (United States)

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2012-05-30

    Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential ( 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  14. Peptide and protein loading into porous silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F. [Ian Wark Research Institute, University of South Australia, Mawson Lakes (Australia); Barnett, C. [Medica Ltd, Malvern, Worcestershire, UK WR14 3SZ (United Kingdom)

    2008-02-15

    The influence of peptide/protein size and hydrophobicity on the physical and chemical aspects of loading within porous silicon (pSi) wafer samples has been determined using Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Both Gramicidin A (a small hydrophobic peptide) and Papain (a larger hydrophilic protein) were observed (ToF-SIMS) to penetrate across the entire pSi layer, even at low loading levels. AFM surface imaging of pSi wafers during peptide/protein loading showed that surface roughness increased with Papain loading, but decreased with Gramicidin A loading. For Papain, the loading methodology was also found to influence loading efficiency. These differences indicate more pronounced surface adsorption of Papain. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. [Establishment of modern multi-component sustained-release preparations of oral traditional Chinese medicines].

    Science.gov (United States)

    Xia, Hai-Jian; Zhang, Zhen-Hai; Liu, Dan; Yu, Dan-Hong; Jia, Xiao-Bin

    2013-10-01

    Traditional Chinese medicines have a long history, with a large quantity of efficient traditional Chinese medicines and prescriptions. However, the vast majority of pharmaceutical dose forms remain common preparations, with very few efficient, long-lasting and low-dose preparations. The sustain-release preparation allows sustained drug release in a longer period of time, maintains blood drug concentration, reduces the toxic effect and medication frequency, and improves medication compliance. Unlike monomer drugs, the material base of traditional Chinese medicine and compounds is multi-component, instead of single or several active monomers. Therefore, under the guidance of the Chinese medicine theories, modern multi-component sustained-release preparations were developed for oral traditional Chinese medicines, with the aim of finally improving the clinical efficacy of traditional Chinese medicines.

  16. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    Science.gov (United States)

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  17. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  18. Preparation and in vitro-in vivo evaluation of none gastric resident dipyridamole (DIP) sustained-release pellets with enhanced bioavailability.

    Science.gov (United States)

    Xu, Lishuang; Luo, Yanfei; Feng, Jia; Xu, Ming; Tao, Xiaoguang; He, Haibing; Tang, Xing

    2012-01-17

    The objective of this study was to develop none gastric resident sustained-release pellets loaded with dipyridamole with a high bioavailability. Two different kinds of core pellets, one containing citric acid as a pH-modifier (CAP) and, the other without pH-modifier (NCAP) were prepared by extrusion-spheronization and then coated with mixtures of enteric soluble and insoluble polymers (referred to as CAP(1) and NCAP(1)) or insoluble polymer alone (referred to as CAP(2) and NCAP(2)). The relative bioavailability of the sustained-release pellets was studied in fasted beagle dogs after oral administration using a commercially available immediate release tablet (IRT) as a reference. The in vitro release, in vivo absorption and in vitro-in vivo correlation were also evaluated. Results revealed that the plasma drug concentrations after administration of CAP(2), NCAP(1) and NCAP(2) were undetectable, indicating that the drug release was almost zero from the preparations throughout the gastro-intestinal tract. The C(max), T(max) and AUC((0→24)) of CAP(1) were 0.78 ± 0.23 (μg/ml), 3.80 ± 0.30 (h), and 6.74 ± 0.47 (μg/mlh), respectively. While the corresponding values were 2.23 ± 0.32 (μg/ml), 3.00 ± 0.44 (h) and 9.42 ± 0.69 (μg/mlh) for IRT. The relative bioavailability of CAP(1) was 71.55% compared with IRT. By combined incorporation of a pH-modifier into the core of pellets to modify the inner micro-environment and employing mixtures of enteric soluble and insoluble polymers as a retarding layer, drugs with high solubility in stomach and limited solubility in small intestine, such as DIP, could be successfully formulated as sustained release preparations with no pH-dependence in drug release and enhanced bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  20. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles

    Directory of Open Access Journals (Sweden)

    Min-Ho Park

    2015-08-01

    Full Text Available It is known that allergic people was potentially vulnerable to bee venom (BV, which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide (PLGA has been broadly studied as a carrier for drug delivery systems (DDS of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs. The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future.

  1. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Xin; Li, Chang; Fan, Na; Li, Jing; He, Zhonggui; Sun, Jin

    2017-09-01

    The purpose of this study was to develop amino modified multimodal nanoporous silica nanoparticles (M-NSNs-NH 2 ) loaded with doxorubicin hydrochloride (DOX), intended to enhance the drug loading capacity and to achieve controlled release effect. M-NSNs were functionalized with aminopropyl groups through post-synthesis. The contribution of large pore sizes and surface chemical groups on DOX loading and release were systemically studied using transmission electron microscope (TEM), nitrogen adsorption/desorption measurement, Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, X-ray photoelectron spectroscopy (XPS) and ultraviolet spectrophotometer (UV). The results demonstrated that the NSNs were functionalized with aminopropyl successfully and the DOX molecules were adsorbed inside the nanopores by the hydrogen bonding. The release performance indicated that DOX loaded M-NSNs significantly controlled DOX release, furthermore DOX loaded M-NSNs-NH 2 performed slower controlled release, which was mainly attributed to its stronger hydrogen bonding forces. As expected, we developed a novel carrier with high drug loading capacity and controlled release for DOX. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release

    Directory of Open Access Journals (Sweden)

    Ju-Heon Kim

    2017-12-01

    Full Text Available Houttuynia cordata (H. cordata has been used for diuresis and detoxification in folk medicine as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded solid lipid nanoparticles (H-SLNs were prepared with various concentration of poloxamer 188 or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics of H-SLNs were evaluated by dynamic laser scattering (DLS, differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM. Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation efficiencies of H-SLNs (as quercitrin were 92.9–95.9%. The SEM images of H-SLNs showed that H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for administering H. cordata extracts.

  3. Development and Evaluation of High Bioavailable Sustained-Release Nimodipine Tablets Prepared with Monolithic Osmotic Pump Technology.

    Science.gov (United States)

    Kong, Hua; Yu, Fanglin; Liu, Yan; Yang, Yang; Li, Mingyuan; Cheng, Xiaohui; Hu, Xiaoqin; Tang, Xuemei; Li, Zhiping; Mei, Xingguo

    2018-01-01

    Frequent administration caused by short half-life and low bioavailability due to poor solubility and low dissolution rate limit the further application of poorly water-soluble nimodipine, although several new indications have been developed. To overcome these shortcomings, sophisticated technologies had to be used since the dose of nimodipine was not too low and the addition of solubilizers could not resolve the problem of poor release. The purpose of this study was to obtain sustained and complete release of nimodipine with a simple and easily industrialized technology. The expandable monolithic osmotic pump tablets containing nimodipine combined with poloxamer 188 and carboxymethylcellulose sodium were prepared. The factors affecting drug release including the amount of solubilizing agent, expanding agent, retarding agent in core tablet and porogenic agent in semipermeable film were optimized. The release behavior was investigated both in vitro and in beagle dogs. It was proved that the anticipant release of nimodipine could be realized in vitro. The sustained and complete release of nimodipine was also realized in beagles because the mean residence time of nimodipine from the osmotic pump system was longer and Cmax was lower than those from the sustained-release tablets in market while there was no difference in AUC(0-t) of the monolithic osmotic pump tablets and the sustained release tablets in market. It was reasonable to believe that the sustained and complete release of poorly watersoluble nimodipine could be realized by using simple expandable monolithic osmotic pump technology combined with surfactant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release

    Energy Technology Data Exchange (ETDEWEB)

    He, Min; Xue, Jiajia [Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Geng, Huan; Gu, Hao [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Dafu [Laboratory of Bone Tissue Engineering of Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035 (China); Shi, Rui, E-mail: sharell@126.com [Laboratory of Bone Tissue Engineering of Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035 (China); Zhang, Liqun, E-mail: zhanglq@mail.buct.edu.cn [Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-04-30

    Graphical abstract: The metronidazole released from PCL/gelatin core/sheath nanofiber membranes can effectively inhibit the colonization of anerobic bacteria. - Highlights: • Core/sheath PCL/gelatin nanofiber membrane loaded with metronidazole in a wide range of drug loading (5–35 wt.%) were successfully fabricated in good quality. • The encapsulation of gelatin can effectively alleviate the initial burst release of drugs. • The membrane can inhibit the growth of bacteria as the drug content reaches 10% (w/w), and the bacterial inhibition ability can effectively last at least 4 weeks. • The encapsulation of gelatin can overcome the disadvantage of PCL's hydrophobicity, which can effectively promote the adhesion and proliferation of cells. - Abstract: Here, with the aim of inhibiting inflammation during guided tissue regeneration membrane (GTRM) implant surgery, coaxial electrospinning was used to fabricate drug-loaded core/sheath nanofiber GTRMs capable of controlled drug release. Various amounts of the anti-inflammatory agent metronidazole (MNA) were encapsulated into the core/sheath nanofibers (where PCL was the core, gelatin the sheath, and the gelatin shell was crosslinked with genipin) in order to establish the minimal drug content necessary to achieve the appropriate anti-inflammatory effect. By using TEM and SEM, the core/sheath structure was confirmed. In vitro drug disolution results showed that the core/sheath nanofibers exhibited sustained release profiles that were superior to those nanofibers produced by blending electrospinning. Additionally, the membrane significantly inhibited the colonization of anaerobic bacteria. Furthermore, with gelatin as a shell, the core/shell nanofiber membranes showed improved hydrophilicity, which resulted in better cell adhesion and proliferation without cytotoxicity. Therefore, in this study, a simple and effective coaxial electrospinning approach was demonstrated for the fabrication of anti

  5. Drug release kinetic analysis and prediction of release data via polymer molecular weight in sustained release diltiazem matrices.

    Science.gov (United States)

    Adibkia, K; Ghanbarzadeh, S; Mohammadi, G; Khiavi, H Z; Sabzevari, A; Barzegar-Jalali, M

    2014-03-01

    This study was conducted to investigate the effects of HPMC (K4M and K100M) as well as tragacanth on the drug release rate of diltiazem (DLTZ) from matrix tablets prepared by direct compression method.Mechanism of drug transport through the matrices was studied by fitting the release data to the 10 kinetic models. 3 model independent parameters; i. e., mean dissolution time (MDT), mean release rate (MRR) and release rate efficacy (RE) as well as 5 time point approaches were established to compare the dissolution profiles. To find correlation between fraction of drug released and polymer's molecular weight, dissolution data were fitted into two proposed equations.All polymers could sustain drug release up to 10 h. The release data were fitted best to Peppas and Higuchi square root kinetic models considering squared correlation coefficient and mean percent error (MPE). RE and MRR were decreased when polymer to drug ratio was increased. Conversely, t60% was increased with raising polymer /drug ratio. The fractions of drug released from the formulations prepared with tragacanth were more than those formulated using the same amount of HPMC K4M and HPMC K100M.Preparation of DLTZ matrices applying HPMCK4M, HPMC K100M and tragacanth could effectively extend the drug release. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride

    Directory of Open Access Journals (Sweden)

    Ahmed SM

    2016-12-01

    Full Text Available Sayed M Ahmed,1 Adel Ahmed Ali,2 Ahmed MA Ali,2,3 Omiya A Hassan2,4 1Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 2Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; 3Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia; 4Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, El-Minia Gadida, Egypt Purpose: The aim of the present study was to improve the bioavailability of itopride (ITO and sustain its action by formulating as a floating dosage form. Materials and methods: Sustained-release floating tablets of ITO hydrochloride (HCl were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol. Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. Results: In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031.The pharmacokinetic results indicated that the area under the curve (AUC0–∞ of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton® and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022. Conclusion: The prepared floating tablets of ITO HCl (F10 could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability. Keywords: itopride HCl, oral drug delivery, stability study, bioavailability

  7. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion.

    Science.gov (United States)

    Liu, Yanhua; Chen, Lihong; Zhou, Chengming; Yang, Jianhong; Hou, Yanhui; Wang, Wenping

    2016-01-01

    Oxymatrine (OM) can be metabolized to matrine in gastrointestinal ileocecal valve after oral administration, which affects pharmacological activity and reduce bioavailability of OM. A type of multiple-unit alginate-chitosan (Alg-Cs) floating beads was prepared by the ionotropic gelation method for gastroretention delivery of OM. A solid dispersion technique was applied and incorporated into beads to enhance the OM encapsulation efficiency (EE) and sustain the drug release. The surface morphology and internal hollow structure of beads were evaluated using optical microscopy and scanning electron microscopy (SEM). The developed Alg-Cs beads were spherical in shape with hollow internal structure and had particle size of 3.49 ± 0.09 mm and 1.33 ± 0.09 mm for wet and dried beads. Over 84% of the optimized OM solid dispersion-loaded Alg-Cs beads were able to continuously float over the simulated gastric fluid for 12 h in vitro. The OM solid dispersion-loaded Alg-Cs beads showed drug EE of 67.07%, which was much higher than that of beads loading with pure OM. Compared with the immediate release of OM capsules and pure OM-loaded beads, the release of OM from solid dispersion-loaded Alg-Cs beads was in a sustained-release manner for 12 h. Prolonged gastric retention time of over 8.5 h was achieved for OM solid dispersion-loaded Alg-Cs floating beads in healthy rabbit in in vivo floating ability evaluated by X-ray imaging. The developed Alg-Cs beads loading with OM solid dispersion displayed excellent performance features characterized by excellent gastric floating ability, high drug EE and sustained-release pattern. The study illustrated the potential use of Alg-Cs floating beads combined with the solid dispersion technique for prolonging gastric retention and sustaining release of OM, which could provide a promising drug delivery system for gastric-specific delivery of OM for bioavailability enhancement.

  8. Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse.

    Science.gov (United States)

    Bir, Shyamal Chandra; Esaki, Jiro; Marui, Akira; Yamahara, Kenichi; Tsubota, Hideki; Ikeda, Tadashi; Sakata, Ryuzo

    2009-10-01

    While single growth factor has limitation to induce optimal neovascularization, platelet-rich plasma (PRP) is an autologous reserver of various growth factors. However, little is known about the mechanism of PRP-related neovascularization.The objective of this investigation was to characterize the angiogenic and growth factor content of PRP and to determine, in vitro, its effect on endothelial cell proliferation. Additionally, this experiment sought to determine the effectiveness of different compositions of PRP (solution versus sustained release) on perfusion and neovascularization in a murine model of hind limb ischemia. Different growth factors were measured by enzyme-linked immunosorbent assay (ELISA). In vivo study, we used gelatin hydrogel as a sustained release carrier for growth factors in PRP. We induced hind limb ischemia by excising right femoral artery in wild type C57BL6 mice. After surgery, mice were randomly assigned to four experimental groups; control (C), 100 muL of sustained release form of platelet-poor plasma (PPP), 100 muL of solution form of PRP (PRP-sol), 100 muL of sustained release form of PRP (PRP-sr); each formulation was administered via an intramuscular injection to the ischemic hind limb. Endpoint evaluations were blood perfusion by laser Doppler perfusion image, vascular density by anti Von Willebrand factor (vWF), and mature vessel density by anti smooth muscle actin (SMA) antibody. Green fluorescent protein (GFP+) transgenic mice were generated by transplantation of bone marrow derived mononuclear cells to wild type C57BL6 mice, and finally CD34+ cell in the ischemic site of transgenic mice was detected by staining with anti-CD34 antibody. In vitro study showed that PRP containing different growth factors induces endothelial cell proliferation and capillary tube formation. In vivo study demonstrated that sustained release of PRP increased perfusion of ischemic tissue as measured by laser Doppler perfusion imaging (LDPI) (57 +/- 12

  9. Real-time Monitoring of Sustained Drug Release using the Optical Properties of Porous Silicon Photonic Crystal Particles

    Science.gov (United States)

    Wu, E.C.; Andrew, J.S.; Cheng, L; Freeman, W.R.; Pearson, L; Sailor, M.J.

    2011-01-01

    A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 micrometers thick and 35 micrometers across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change. PMID:21122914

  10. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules.

    Directory of Open Access Journals (Sweden)

    Wenhui Yang

    Full Text Available Crystal proteins synthesized by Bacillus thuringiensis (Bt have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid (PAH and poly (styrene sulfonate (PSS were fabricated through layer-by-layer self-assembly based on a CaCO(3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM, using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac. The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects' midgut, which has shown potential as biopesticide in the field.

  11. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles

    Directory of Open Access Journals (Sweden)

    Nagalakshmi Kamaraj

    2017-07-01

    Full Text Available Biodegradable polymer based novel drug delivery systems brought a considerable attention in enhancing the therapeutic efficacy and bioavailability of various drugs. 14-deoxy 11, 12-didehydro andrographolide (poorly water soluble compound loaded polycaprolactone (nano-DDA was synthesized using the solvent evaporation technique. Nano-DDA was characterized by scanning electron microscopy (SEM and dynamic light scattering (DLS studies. Fourier Transform InfraRed Spectroscopy (FTIR was used to investigate the structural interaction between the drug and the polymer. Functional characterization of the formulation was determined using drug content, cellular uptake and in vitro drug release. 2-deoxy-D-[1-3H] glucose uptake assay was carried out to assess the antidiabetic potential of nano-DDA in L6 myotubes. The nano-DDA displayed spherical shape with a smooth surface (252.898 nm diameter, zeta potential, encapsulation and loading efficiencies of −38.9 mV, 91.98 ± 0.13% and 15.09 ± 0.18% respectively. No structural alteration between the drug and the polymer was evidenced (FTIR analysis. Confocal microscopy studies with rhodamine 123 loaded polycaprolactone nanoparticles (Rh123-PCL NPs revealed the internalization of Rh123-PCL NPs in a time dependent manner in L6 myoblasts. A dose dependent increase in glucose uptake was observed for nano-DDA with a maximal uptake of 108.54 ± 1.42% at 100 nM on L6 myotubes, thereby proving its anti-diabetic efficacy. A biphasic pattern of in vitro drug release demonstrated an initial burst release at 24 h followed by a sustained release for up to 11 days. To conclude, our results revealed that nano-DDA formulation can be a potent candidate for antidiabetic drug delivery.

  12. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Directory of Open Access Journals (Sweden)

    Caixàs A

    2014-09-01

    Full Text Available Assumpta Caixàs, Lara Albert, Ismael Capel, Mercedes Rigla Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain Abstract: Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer, reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave®. We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed. Keywords: Contrave, weight loss, overweight, cardiovascular disease, diabetes, cancer

  13. The physical and chemical stability of suspensions of sustained-release diclofenac microspheres.

    Science.gov (United States)

    Lewis, L; Boni, R L; Adeyeye, C M

    1998-01-01

    The major challenge in liquid sustained-release oral suspensions is to minimize drug diffusion into the suspending medium and to retain the original properties of the microparticles during storage. Diclofenac wax microspheres prepared by the hydrophobic congealable disperse phase method were formulated as a sustained release suspension and stored at three different temperatures (25, 37 and 45 degrees C) for 3 months, to evaluate the physical and chemical stability of the suspended microspheres. Suspensions of microspheres stored at ambient temperatures were both physically and chemically stable, but at higher temperatures, up to 45 degrees C, there was a decrease in drug release due to scaling and melting on the microsphere surface as observed by scanning electron microscopy. However, on prolonged storage, up to 90 days, especially at 45 degrees C, temperature became a dominant factor causing an increase in drug release. The suspension of diclofenac microspheres was chemically stable for 3 months, while the plain drug suspension exhibited slight degradation.

  14. Sigh rate and respiratory variability during mental load and sustained attention.

    Science.gov (United States)

    Vlemincx, Elke; Taelman, Joachim; De Peuter, Steven; Van Diest, Ilse; Van den Bergh, Omer

    2011-01-01

    Spontaneous breathing consists of substantial correlated variability: Parameters characterizing a breath are correlated with parameters characterizing previous and future breaths. On the basis of dynamic system theory, negative emotion states are predicted to reduce correlated variability whereas sustained attention is expected to reduce total respiratory variability. Both are predicted to evoke sighing. To test this, respiratory variability and sighing were assessed during a baseline, stressful mental arithmetic task, nonstressful sustained attention task, and recovery in between tasks. For respiration rate (excluding sighs), reduced total variability was found during the attention task, whereas correlated variation was reduced during mental load. Sigh rate increased during mental load and during recovery from the attention task. It is concluded that mental load and task-related attention show specific patterns in respiratory variability and sigh rate. Copyright © 2010 Society for Psychophysiological Research.

  15. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro.

    Science.gov (United States)

    Xing, James Z; Lu, Lei; Unsworth, Larry D; Major, Paul W; Doschak, Michael R; Kaipatur, Neelambar R

    2017-02-01

    To develop a nanofiber hydrogel (NF-hydrogel) for sustained and controlled release of the recombinant receptor activator of NF-kB ligand; (RANKL) and to characterize the release kinetics and bioactivity of the released RANKL. Various concentrations of fluorescently-labelled RANKL protein were added to NF-hydrogels, composed of Acetyl-(Arg-Ala-Asp-Ala) 4 -CONH 2 [(RADA) 4 ] of different concentrations, to investigate the resulting in vitro release rates. The nano-structures of NF-hydrogel, with and without RANKL, were determined using atomic force microscopy (AFM). Released RANKL was further analyzed for changes in secondary and tertiary structure using CD spectroscopy and fluorescent emission spectroscopy, respectively. Bioactivity of released RANKL protein was determined using NFATc1 gene expression and tartrate resistant acid phosphatase (TRAP) activity of osteoclast cells as biomarkers. NF-hydrogel concentration dependent sustained release of RANKL protein was measured at concentrations between 0.5 and 2%(w/v). NF-hydrogel at 2%(w/v) concentration exhibited a sustained and slow-release of RANKL protein up to 48h. Secondary and tertiary structure analyses confirmed no changes to the RANKL protein released from NF-hydrogel in comparison to native RANKL. The results of NFATc1 gene mRNA expression and TRAP activities of osteoclast, showed that the release process did not affect the bioactivity of released RANKL. This novel study is the first of its kind to attempt in vitro characterization of NF-hydrogel based delivery of RANKL protein to induce osteoclastogenesis. We have shown the self-assembling NF-hydrogel peptide system is amenable to the sustained and controlled release of RANKL locally; that could in turn increase local concentration of RANKL to induce osteoclastogenesis, for application to the controlled mobilization of tooth movement in orthodontic procedures. Orthodontic tooth movement (OTM) occurs through controlled application of light forces to teeth

  16. Injectable nanocomposite cryogels for versatile protein drug delivery.

    Science.gov (United States)

    Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J

    2018-01-01

    Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of

  17. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading.

    Science.gov (United States)

    Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat

    2017-05-01

    Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Biosynthesis and release of proteins by isolated pulmonary Clara cells

    International Nuclear Information System (INIS)

    Patton, S.E.; Gilmore, L.B.; Jetten, A.M.; Nettesheim, P.; Hook, G.E.

    1986-01-01

    The major proteins synthesized and released by Clara cells were identified and compared with those synthesized and released by mixed lung cells. Highly purified Clara cells (85.9 +/- 2.4%) and mixed lung cells (Clara cells 4%, Type II cells 33%, granulocytes 18%, macrophages 2.7%, ciliated cells 1.2%) were isolated from rabbit lungs, incubated with Ham's F12 medium in collagen/fibronectin-coated plastic culture dishes in the presence of 35 S-methionine for periods of 4 and 18 hrs. Radiolabelled proteins were isolated from the cells and from the culture medium, electrophoresed on polyacrylamide gels in the presence of SDS under reducing conditions, and then autoradiographed. After 4 and 18 hr of incubation of the Clara cells the major radiolabelled cell-associated proteins were those with molecular weights of 6, 48, and 180 Kd. The major radiolabelled proteins released by Clara cells into the medium after 4 hrs of incubation had molecular weights of 6, 48, and 180 Kd, accounting for 42, 16, and 10%, respectively, of the total extracellular protein-associated radioactivity. After 18 hr of incubation the 6 and 48 Kd proteins represented 30 and 18% of the total released radioactivity, and the relative amount of the 180 Kd protein had decreased to 3%. With the mixed lung cells, the major proteins released into the medium had molecular weights of 6 and 48 Kd. Under nonreducing conditions the 6 Kd protein released by Clara cells had an apparent molecular weight of 12 Kd. Labelling isolated Clara cells with a mixture of 14 C-amino acids also identified this low molecular weight protein as the major secretory product of the Clara cell. The 6 Kd protein did not label when the cells were incubated with 14 C-glucosamine indicating that it was not a glycoprotein. Data demonstrate the release of several proteins from isolated Clara cells but the major protein had a M.W. of 6 Kd

  19. Synthesis of thiolated arabinoxylan and its application as sustained release mucoadhesive film former.

    Science.gov (United States)

    Zaman, Muhammad; Hanif, Muhammad; Sultana, Kishwar; Atta-Ur-Rehman

    2018-02-08

    The present work aimed to synthesize thiolated arabinoxylan (TAX), and to evaluate its mucoadhesive potential. Synthesis of TAX was accomplished by esterification of arabinoxylan (AX) with thioglycolic acid (TGA). The appearance of a characteristic peak at 2516 cm -1 in the FTIR spectrum of TAX, and presence of 6.01 ± 1.03 m moles of thiol per gram of the polymer confirmed successful thiolation of AX. The incorporation of the thiol group considerably promoted mucoadhesive strength of the polymer-viz. 3.99-fold. Moreover, in vivo safety analysis in albino rats revealed TAX to be safe in the concentration range of 750-1000 mg kg -1 body weight. Synthesized TAX was utilized to prepare Tizanidine HCl (TZN HCl) loaded sustained release (SR) mucoadhesive buccal films using a solvent casting technique. Results proved that the prepared films were of uniform thickness, good mechanical strength (with folding endurance >300), acceptable moisture contents (5%-7%) and surface pH (6.23 ± 0.81 to 6.43 ± 0.49) compatible to that of the buccal cavity. Presence of greater that 90% of drug contents indicated the excellent drug loading ability of the prepared films. Results of in vitro dissolution studies and ex vivo permeation studies conducted respectively by USP dissolution apparatus II and Franz diffusion cell indicated that sustained effect of TAX was achieved for 8 h. These results have conclusively proven that TAX has the potential to improve the bioavailability of TZN HCl due to enhanced mucoadhesion in buccal cavity, hence signifying its suitability as a mucoadhesive buccal film former.

  20. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  1. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.

    Science.gov (United States)

    Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.

  2. 3D extrusion printing of high drug loading immediate release paracetamol tablets.

    Science.gov (United States)

    Khaled, Shaban A; Alexander, Morgan R; Wildman, Ricky D; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Roberts, Clive J

    2018-03-01

    The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    Conclusion: A fair correlation between in vitro dissolution and in vivo data was found. The results obtained indicate successful development of a sustained release formulation of diltiazem. Keywords: Diltiazem, Matrix tablet, Hydroxypropyl methylcellulose Eudragit, In vitro/in vivo correlation, Optimization ...

  4. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    Science.gov (United States)

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release.

  5. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  6. Effect of sustained-release isosorbide dinitrate on post-prandial gastric emptying and gastroduodenal motility in healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Rasmussen, S L; Linnet, J

    2004-01-01

    and gastroduodenal motility after a meal. Eleven healthy volunteers participated in a double-blind, placebo-controlled, cross-over study. Each subject ingested 40 mg isosorbide dinitrate orally as a sustained-release formulation or oral placebo, in random order. Gastric emptying and gastroduodenal motility were...... consecutive 15-min periods. A 40 mg single dose of sustained-released isosorbide dinitrate does not seem to alter gastric emptying or gastroduodenal motility after a meal.......Nitric oxide (NO) is an inhibitory neurotransmitter released by non-adrenergic and non-cholinergic neurons that innervate the smooth muscles of the gastrointestinal tract. We examined whether NO, derived from a sustained-release preparation of isosorbide dinitrate, influenced gastric emptying...

  7. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    Science.gov (United States)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  8. Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L

    2016-11-01

    Despite the biocompatibility and osteoinductive properties of calcium phosphate (CaP) cements their low biodegradability hampers full bone regeneration. Herein the incorporation of CaP cement with hyaluronic acid (HAc) microparticles loaded with platelet lysate (PL) to improve the degradability and biological performance of the cements is proposed. Cement formulations incorporating increasing weight ratios of either empty HAc microparticles or microparticles loaded with PL (10 and 20 wt%) are developed as well as cements directly incorporating PL. The direct incorporation of PL improves the mechanical properties of the plain cement, reaching values similar to native bone. Morphological analysis shows homogeneous particle distribution and high interconnectivity between the HAc microparticles. The cements incorporating PL (with or without the HAc microparticles) present a sustained release of PL proteins for up to 8 d. The sustained release of PL modulates the expression of osteogenic markers in seeded human adipose tissue derived stem cells, thus suggesting the stimulatory role of this hybrid system toward osteogenic commitment and bone regeneration applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Physical-chemical aspects of a coaxial sustained release device based on Poly-Eva

    NARCIS (Netherlands)

    Laarhoven, Johannes Antonius Hendrikus van

    2005-01-01

    Sustained release of dugs offers several advantages like increased efficacy, safety, compliance and convenience. As a consequence sustained drug delivery is often preferred above daily administration of drugs. Furthermore, drug delivery systems can be designed to deliver one or more drugs at a

  10. Protein Nanocage-Based Photo-Controlled Nitric Oxide Releasing Platform.

    Science.gov (United States)

    Li, Xiao; Zhang, Yajie; Sun, Jian; Chen, Weijian; Wang, Xuewei; Shao, Fenli; Zhu, Yuyu; Feng, Fude; Sun, Yang

    2017-06-14

    A photoactive NO releasing system was constructed by incorporation of NO-bound Fe-S clusters into horse spleen apoferritin cavities with high loading efficacy. The composites retained intact core-shell structure and indicated advantages such as enhanced stability, reduced cytotoxicity, efficient cellular uptake, and photocontrolled NO releasing property.

  11. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation.

    Science.gov (United States)

    Devrim, Burcu; Kara, Aslı; Vural, İmran; Bozkır, Asuman

    2016-11-01

    Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles. The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme. Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-ɛ-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity. The DLS measurement results showed that the particle size of LPNPs ranged from 58.04 ± 1.95 nm to 2009.00 ± 0.52 nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1 h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120 h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells. We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.

  12. Sustainable protein technology : an evaluation on the STW Protein programme and an outlook for the future

    NARCIS (Netherlands)

    Voudouris, Panagiotis; Tamayo Tenorio, Angelica; Lesschen, Jan Peter; Kyriakopoulou, Konstantina; Sanders, Johan P.M.; Goot, van der Atze Jan; Bruins, Marieke E.

    2017-01-01

    In 2013 a new STW research programme was started on sustainable protein recovery. This STW Protein Programme consisted of five sustainable protein technology projects, which aimed at developing innovative methods to extract proteins from plant leaves, microalgae and insects to meet the increasing

  13. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Wang, Zhicheng; Nong, Jia; Nix, Camilla A; Zhong, Yinghui; Ji, Hai-Feng

    2015-01-01

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  14. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    Directory of Open Access Journals (Sweden)

    Qin LL

    2013-05-01

    Full Text Available Lili Qin,1 Mei Wang,2 Rongrong Zhu,3 Songhui You,1 Ping Zhou,1 Shilong Wang31Department of Physical Education, Tongji University, Shanghai, People's Republic of China; 2Department of Chemistry, Tongji University, Shanghai, People's Republic of China; 3School of Life Science and Technology, Tongji University, Shanghai, People's Republic of ChinaAbstract: Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16 were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications.Keywords: layered double hydroxides, etoposide, drug delivery, antitumor effect, sustained release

  15. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    Science.gov (United States)

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reduced phrenic motoneuron recruitment during sustained inspiratory threshold loading compared to single-breath loading: a twitch interpolation study

    Directory of Open Access Journals (Sweden)

    Mathieu Raux

    2016-11-01

    Full Text Available In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganisation and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganisation between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment, we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganisation should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21 – 40 years were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts (vol, upon unprepared inspiratory efforts against a single-breath inspiratory threshold load (single-breath, and upon sustained inspiratory efforts against the same type of load (continuous. The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was –1.1 ± 0.2 during vol, –1.5 ± 0.7 during single-breath, and -0.6 ± 0.4 during continuous (all slopes expressed in percent of baseline.percent of baseline-1 all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17 % during vol, 22 ± 16 % during single-breath (p=0.13, and 19 ± 9 % during continuous (p = 0.0015 vs. vol. This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not unequivocal. If twitch interpolation is interpreted as

  17. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    Science.gov (United States)

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  18. Extracellular Matrix (ECM Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Soon Sim Yang

    Full Text Available Recombinant human transforming growth factor beta-3 (rhTGF-β3 is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs using western blot and circular dichroism (CD analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+ rhTGF-β3 EMLDS in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.

  19. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  20. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation.

    Science.gov (United States)

    Jiang, Yunxia; Wang, Fang; Xu, Hui; Liu, Hui; Meng, Qingguo; Liu, Wanhui

    2014-11-20

    The purpose of this study was to develop a sustained-release drug delivery system based on the injectable PLGA microspheres loaded with andrographolide. The andrographolide loaded PLGA microspheres were prepared by emulsion solvent evaporation method with optimization of formulation using response surface methodology (RSM). Physicochemical characterization, in vitro release behavior and in vivo pharmacokinetics of the optimized formulation were then evaluated. The percent absorbed in vivo was determined by deconvolution using the Loo-Riegelman method, and then the in vitro-in vivo correlation (IVIVC) was established. Results showed that the microspheres were spherical with a smooth surface. Average particle size, entrapment efficiency and drug loading were found to be 53.18±2.11 μm, 75.79±3.02% and 47.06±2.18%, respectively. In vitro release study showed a low initial burst release followed by a prolonged release up to 9 days and the release kinetics followed the Korsmeyer-Peppas model. After a single intramuscular injection, the microspheres maintained relatively high plasma concentration of andrographolide over one week. A good linear relationship was observed between the in vitro and in vivo release behavior (R(2)=0.9951). These results suggest the PLGA microspheres could be developed as a potential delivery system for andrographolide with high drug loading capacity and sustained drug release. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kim, Jinku; Hollinger, Jeffrey O

    2012-01-01

    The purposes of this study were to determine the pharmacokinetics of recombinant human bone morphogenetic protein-2 (rhBMP-2) from a polyurethane (PUR)-based porous scaffold and to determine the biological responses of human mesenchymal stem cells (hMSCs) to the rhBMP-2 released from those scaffolds. The rhBMP-2 was incorporated into the PUR three-dimensional (3D) porous scaffolds and release profiles were determined using enzyme-linked immunosorbent assay. The bioactivity of the rhBMP-2 containing releasates was determined using hMSCs and compared with exogenous rhBMP-2. Release of rhBMP-2 from PUR-based systems was bi-phasic and characterized by an initial burst followed by a sustained release for up to 21 days. Expression of alkaline phosphatase activity by hMSCs treated with the rhBMP-2 releasates was significantly greater than the cells alone (control) throughout the time periods. Furthermore, after 14 days of culture, the hMSCs cultured with rhBMP-2 releasate had a greater amount of mineralization compared to exogenous rhBMP-2. Overall, the rhBMP-2 release from the PUR-based scaffolds was sustained for 21 days and the releasates appeared to be bioactive and promoted earlier osteogenic differentiation and mineralization of hMSCs than the exogenous rhBMP-2. (paper)

  2. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    Science.gov (United States)

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    Science.gov (United States)

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  4. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles.

    Science.gov (United States)

    Peng, Qiang; Zhang, Zhi-Rong; Gong, Tao; Chen, Guo-Qiang; Sun, Xun

    2012-02-01

    The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Hydrolysis and Sulfation Pattern Effects on Release of Bioactive Bone Morphogenetic Protein-2 from Heparin-Based Microparticles.

    Science.gov (United States)

    Tellier, Liane E; Miller, Tobias; McDevitt, Todd C; Temenoff, Johnna S

    2015-10-28

    Glycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ~4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content. After incubating 100 ng BMP-2 with 0.1 mg MPs, most MP formulations loaded BMP-2 with ~50% efficiency and significantly more BMP-2 release (60% of loaded BMP-2) was observed from more sulfated heparin MPs (MPs with ~100% and 80% of native sulfation). Similarly, BMP-2 bioactivity in more sulfated heparin MP groups was at least four-fold higher than soluble BMP-2 and less sulfated heparin MP groups, as determined by an established C2C12 cell alkaline phosphatase (ALP) assay. Ultimately, the two most sulfated 10 wt% heparin MP formulations were able to efficiently load and release BMP-2 while enhancing BMP-2 bioactivity, making them promising candidates for future growth factor delivery applications.

  6. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    Science.gov (United States)

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  7. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Ramasamy, S; Ramakrishnan, V; Kumar, J

    2011-12-01

    Hydroxyapatite is a bioceramic which has a wide range of medical application for bone diseases. To enhance its usage, we have prepared ciprofloxacin loaded nano hydroxyapatite (HA) composite with a natural polymer, alginate, using wet chemical method at low temperature. The prepared composites were analyzed by various physicochemical methods. The results show that the nano HA crystallites are well intact with the alginate macromolecules. For the composite system FT-IR and micro Raman results are reported in this paper. Studies on the drug loading and drug release have been done. The drug is pre-adsorbed onto the ceramic particle before the formation of composite. The thermal behavior of composite has been studied using thermo gravimetric analysis (TGA). This work, reports that the nanocomposite prepared under optimum condition could prolong the release of ciprofloxacin compared with the ciprofloxacin loaded hydroxyapatite.

  8. Preparation and evaluation of tolmetin sodium conventional and sustained-release suppositories

    OpenAIRE

    B., Baloǧlu; O., Kirkaǧaçhoǧlu

    2002-01-01

    Conventional suppositories of tolmetin sodium were prepared by using two different types of Witepsol as an oily base and two different ratios of polyethylene glycol 400: polyethylene glycol 4000 as an water-soluble base. In addition, sustained- release suppositories were prepared by adding Eudragit L-100 ta the suppositories. The effects of the suppository base and the ratios of the polyethylene glycol 400: polyethylene glycols 4000 on the in vitro release characteristics were investigated. T...

  9. Eudragit RS PO nanoparticles for sustained release of pyridostigmine bromide

    International Nuclear Information System (INIS)

    Hoobakht, Fatemeh; Ganji, Fariba; Vasheghani-Farahani, Ebrahim; Mousavi, Seyyed Mohammad

    2013-01-01

    Pyridostigmine bromide (PB) is an inhibitor of cholinesterase, which is used in the treatment of myasthenia gravis and administered for protection against exposure to toxic nerve agents. Tests were done to investigate prolonging the half-life of PB and improving its release behavior. PB was loaded in nanoparticles (NPs) of Eudragit RS PO (Eu-RS) prepared using the technique of quasi emulsion solvent diffusion. Variables of output power of the sonicator, bath temperature and mixing time, were chosen as the optimization factors to obtain the minimum sized NPs. In addition, emulsions were tested at different ratios of drug-to-polymer by dynamic light scattering to determine size and zeta potential of NPs. UV-spectroscopy was used to determine PB content of the NPs. Drug-loaded NPs were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectra. Results determined that mixing time had a significant impact on the size of Eu-RS NPs, but power output of sonicator and bath temperature had no significant effect. The particle size obtained at the optimum condition (power output of 70 W, bath temperature of 33 °C, and mixing time of 7 min) was less than 200 nm (optimum sizes were 138.9 and 179.5 nm for Eu-RS and PB-loaded Eu-RS NPs, respectively). The optimum PB-loaded Eu-RS NPs at the PB to Eu-RS weight ratio of 1–4 and 20 % of loaded PB released from the nanocarriers within 100 h

  10. Eudragit RS PO nanoparticles for sustained release of pyridostigmine bromide

    Energy Technology Data Exchange (ETDEWEB)

    Hoobakht, Fatemeh; Ganji, Fariba, E-mail: fganji@modares.ac.ir; Vasheghani-Farahani, Ebrahim [Tarbiat Modares University, Biomedical Engineering Group, Chemical Engineering Department (Iran, Islamic Republic of); Mousavi, Seyyed Mohammad [Tarbiat Modares University, Biotechnology Group, Chemical Engineering Department (Iran, Islamic Republic of)

    2013-09-15

    Pyridostigmine bromide (PB) is an inhibitor of cholinesterase, which is used in the treatment of myasthenia gravis and administered for protection against exposure to toxic nerve agents. Tests were done to investigate prolonging the half-life of PB and improving its release behavior. PB was loaded in nanoparticles (NPs) of Eudragit RS PO (Eu-RS) prepared using the technique of quasi emulsion solvent diffusion. Variables of output power of the sonicator, bath temperature and mixing time, were chosen as the optimization factors to obtain the minimum sized NPs. In addition, emulsions were tested at different ratios of drug-to-polymer by dynamic light scattering to determine size and zeta potential of NPs. UV-spectroscopy was used to determine PB content of the NPs. Drug-loaded NPs were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectra. Results determined that mixing time had a significant impact on the size of Eu-RS NPs, but power output of sonicator and bath temperature had no significant effect. The particle size obtained at the optimum condition (power output of 70 W, bath temperature of 33 Degree-Sign C, and mixing time of 7 min) was less than 200 nm (optimum sizes were 138.9 and 179.5 nm for Eu-RS and PB-loaded Eu-RS NPs, respectively). The optimum PB-loaded Eu-RS NPs at the PB to Eu-RS weight ratio of 1-4 and 20 % of loaded PB released from the nanocarriers within 100 h.

  11. Advances in Hybrid Polymer-Based Materials for Sustained Drug Release

    Directory of Open Access Journals (Sweden)

    Lígia N. M. Ribeiro

    2017-01-01

    Full Text Available The use of biomaterials composed of organic pristine components has been successfully described in several purposes, such as tissue engineering and drug delivery. Drug delivery systems (DDS have shown several advantages over traditional drug therapy, such as greater therapeutic efficacy, prolonged delivery profile, and reduced drug toxicity, as evidenced by in vitro and in vivo studies as well as clinical trials. Despite that, there is no perfect delivery carrier, and issues such as undesirable viscosity and physicochemical stability or inability to efficiently encapsulate hydrophilic/hydrophobic molecules still persist, limiting DDS applications. To overcome that, biohybrid systems, originating from the synergistic assembly of polymers and other organic materials such as proteins and lipids, have recently been described, yielding molecularly planned biohybrid systems that are able to optimize structures to easily interact with the targets. This work revised the biohybrid DDS clarifying their advantages, limitations, and future perspectives in an attempt to contribute to further research of innovative and safe biohybrid polymer-based system as biomaterials for the sustained release of active molecules.

  12. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  13. The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load.

    Science.gov (United States)

    Peysakhovich, Vsevolod; Vachon, François; Dehais, Frédéric

    2017-02-01

    Pupillary reactions independent of light conditions have been linked to cognition for a long time. However, the light conditions can impact the cognitive pupillary reaction. Previous studies underlined the impact of luminance on pupillary reaction, but it is still unclear how luminance modulates the sustained and transient components of pupillary reaction - tonic pupil diameter and phasic pupil response. In the present study, we investigated the impact of the luminance on these two components under sustained cognitive load. Fourteen participants performed a novel working memory task combining mathematical computations with a classic n-back task. We studied both tonic pupil diameter and phasic pupil response under low (1-back) and high (2-back) working memory load and two luminance levels (gray and white). We found that the impact of working memory load on the tonic pupil diameter was modulated by the level of luminance, the increase in tonic pupil diameter with the load being larger under lower luminance. In contrast, the smaller phasic pupil response found under high load remained unaffected by luminance. These results showed that luminance impacts the cognitive pupillary reaction - tonic pupil diameter (phasic pupil response) being modulated under sustained (respectively, transient) cognitive load. These findings also support the relationship between the locus-coeruleus system, presumably functioning in two firing modes - tonic and phasic - and the pupil diameter. We suggest that the tonic pupil diameter tracks the tonic activity of the locus-coeruleus while phasic pupil response reflects its phasic activity. Besides, the designed novel cognitive paradigm allows the simultaneous manipulation of sustained and transient components of the cognitive load and is useful for dissociating the effects on the tonic pupil diameter and phasic pupil response. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  15. α-Cyclodextrins Polyrotaxane Loading Silver Sulfadiazine

    Directory of Open Access Journals (Sweden)

    Sa Liu

    2018-02-01

    Full Text Available As a drug carrier, polyrotaxane (PR has been used for targeted delivery and sustained release of drugs, whereas silver sulfadiazine (SD-Ag is an emerging antibiotic agent. PR was synthesized by the use of α-cyclodextrin (CD and poly(ethylene glycol (PEG, and a specific antibacterial material (PR-(SD-Ag was then prepared by loading SD-Ag onto PR with different mass ratios. The loading capacity and the encapsulation efficiency were 90% at a mass ratio of 1:1 of PR and SD-Ag. SD-Ag was released stably and slowly within 6 d in vitro, and its cumulative release reached more than 85%. The mechanism of PR loading SD-Ag might be that SD-Ag attached to the edge of α-CD through hydrogen bonding. PR-(SD-Ag showed a higher light stability than SD-Ag and held excellent antibacterial properties against Escherichia coli (E. coli and Staphylococcus aureus (S. aureus.

  16. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hangyi; Wang, Qingqing; Li, Guohui [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Qiu, Yuyu [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Laboratory of Natural Medicine, Wuxi Medical School, Jiangnan University (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China)

    2017-05-01

    A simple and cost-effective way to prepare water-stable zein-based nanofibers for potential drug delivery was presented in this article. Corn protein zein was co-electrospun with hydrophobic ethyl cellulose. Indomethacin, as a model drug, was incorporated in situ into the composite nanofibers. Scanning electron microscopy and element mapping revealed the morphologies of drug-loaded nanofibers and drug distribution, respectively. Fourier transform infrared spectra confirmed the physical blending among the components. Differential scanning calorimetry and X-ray diffraction demonstrated the physical state of drug and polymers in the nanofiber matrix. The composite nanofibers showed a sustained diffusion-controlled release according to the results of in vitro dissolution tests. - Highlights: • A simple, non-toxic and cost-effective way to improve water stability of zein nanofibers was proposed. • Electrospun zein/ethyl cellulose nanofibers with improved water stability and mechanical strength were prepared. • Indomethacin was homogeneously distributed in the zein/ethyl cellulose nanofibers with no aggregation or cluster. • The zein/ethyl cellulose nanofibers presented a sustained drug release profile, following Fickican diffusion mechanism.

  17. Load-release of small and macromolecules from elastomers with reversible gyroid mesoporosity

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Ndoni, Sokol

    2012-01-01

    . However, in the gel state in the presence of a good solvent the swollen matrix did show a nanoporous structure originated from the gyroid block copolymer precursor. Nanopores can be opened or closed depending on the presence or absence of a solvent. Macromolecules like PEG of different molecular weights......A collapsed elastomeric matrix of lightly cross-linked 1,2-polybutadiene (1,2-PB) was prepared from a self-assembled 1,2-polybutadiene-b- polydimethylsiloxane (1,2-PB-b-PDMS) of gyroid morphology after the removal of the PDMS block. No mesoporosity could be observed in the material in the dry state...... or small molecules like the surfactant SDS were loaded into the opened nanoporous matrix in the presence of a solvent and remained trapped. The loaded molecules could be released again in the presence of a solvent. The load and release of the molecules in deuterated form were monitored by in situ time...

  18. Development of sustained release capsules containing "coated matrix granules of metoprolol tartrate".

    Science.gov (United States)

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-09-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.

  19. Experience with sustained-release melatonin for the treatment of sleep disorders in depression

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirovna Prokhorova

    2015-01-01

    Full Text Available The data available in the literature on the role of melatonin in the regulation of circadian rhythms and sleep disorders in the population and in patients with mental diseases are analyzed. The cause of insomnia may be circadian rhythm disorders due to the age-related decline in the elaboration of the endogenous hormones that are responsible for the quality and duration of sleep, one of which is melatonin.Sustained-release melatonin is a synthetic analogue of the endogenous human pineal hormone melatonin. According to clinical findings, the main proven clinical effects of sustained-release melatonin 2 mg are a reduction in the latency of sleep, improvement of its quality, and lack of daytime sleepiness. The drug causes no dependence on its long use and rebound symptoms (increased insomnia symptoms, positively affects cognitive functions, and lowers nocturnal blood pressure in hypertensive patients.The paper describes a clinical case of a female patient with recurrent depressive disorder, in whom sustained-release melatonin 2 mg has demonstrated high efficacy and good tolerability in the combination therapy of sleep disorders in the pattern of depression.

  20. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Xiaona Wang

    2015-10-01

    Full Text Available In the present study, we prepared nattokinase-loaded self-double-emulsifying drug delivery system (SDEDDS and investigated its preliminary pharmacodynamics. The type and concentration of oil phase, inner aqueous phase and emulsifier were screened to prepare optimum nattokinase-loaded SDEDDS. Next, the optimum formulations were characterized based on microstructure, volume-weighted mean droplet size, self-emulsifying rate, yield, storage stability, in vitro release and in vivo pharmacodynamics studies. The water/oil/water multiple emulsions exhibited typical multiple structure, with relatively small volume-weighted mean droplet size 6.0 ± 0.7 μm and high self-emulsifying ability (self-emulsifying time <2 min. Encapsulation of nattokinase was up to 86.8 ± 8.2%. The cumulative release of nattokinase within 8 h was about 30%, exhibiting a sustained release effect. The pharmacodynamics study indicated that nattokinase-loaded SDEDDS could significantly prolong the whole blood clotting time in mouse and effectively improve the carrageenan-induced tail thrombosis compared with nattokinase solution. Moreover, we showed that SDEDDS could successfully self-emulsify into water/oil/water multiple emulsions upon dilution in dispersion medium with gentle stirring and effectively protect nattokinase activity in gastric environment. Our findings suggested that SDEDDS could be a promising strategy for peptide and protein drugs by oral administration.

  1. A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes.

    Science.gov (United States)

    Ji, Lijun; Qiao, Wei; Zhang, Yuheng; Wu, Huayu; Miao, Shiyong; Cheng, Zhilin; Gong, Qianming; Liang, Ji; Zhu, Aiping

    2017-09-01

    Mechanical properties and anti-infection are two of the most concerned issues for artificial bone grafting materials. Bone regeneration porous scaffolds with sustained drug release were developed by freeze-drying the mixture of nanosized drug-loaded halloysite nanotubes (HNTs) and gelatin. The scaffolds showed porous structure and excellent biocompatibility. The mechanical properties of the obtained composite scaffolds were enhanced significantly by HNTs to >300%, comparing to those of gelatin scaffold, and match to those of natural cancellous bones. The ibuprofen-loaded HNTs incorporated in the scaffolds allowed extended drug release over 100h, comparing to 8h when directly mixed the drug into the gelatin scaffold. The biological properties of the composite scaffolds were investigated by culturing MG63 cells on them. The HNTs/gelatin scaffolds with excellent mechanical properties and sustained drug release could be a promising artificial bone grating material. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Formulation and In Vitro, In Vivo Evaluation of Effervescent Floating Sustained-Release Imatinib Mesylate Tablet

    Science.gov (United States)

    Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim

    2015-01-01

    Introduction Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets. Methodology Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted. Results and Discussion Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent

  3. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet.

    Directory of Open Access Journals (Sweden)

    Ali Kadivar

    Full Text Available Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT. Conventional imatinib mesylate (Gleevec tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M, with Sodium alginate (SA and Carbomer 934P (CP as release-retarding polymers, sodium bicarbonate (NaHCO3 as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec in 0.1 N HCl (pH 1.2 at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted.Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec. Thus, formulated SR tablets preserved persistent concentration of plasma up to 24 hours

  4. Use of Zeolite ZSM-5 for Loading and Release of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Ruba A. Al-Thawabeia

    2015-01-01

    Full Text Available Samples of zeolite ZSM-5 have been synthesized in both the sodium form (ZSM-5 and the acid activated form (H-ZSM-5. In addition, each of these two forms was prepared in the two molar SiO2/Al2O3 ratios of 169 and 15. All samples of these ZSM-5 derivatives were characterized by X-ray diffraction (XRD, nitrogen adsorption-desorption isotherms, thermal gravimetric analysis (TGA, X-ray fluorescence (XRF, and scanning electron microscopy (SEM. The samples were successfully loaded with the anticancer drug 5-fluorouracil (5-FU with loading capacities varying from 22% (for the sodium form having the lower molar SiO2/Al2O3 ratio of 15, ZSM-5-(15 to 43% (for the corresponding acid form, H-ZSM-5-(15. Percent release of the drug-loaded ZSM-5 samples into simulated body fluid (SBF was measured at pH 7.4 and 37°C. The results showed a slight variation in the % release within the range 84–93%, while the first-order rate constant (k varied from 2.2 h−1 for ZSM-5-(15 to 3.9 h−1 for H-ZSM-5-(15. It was interesting to note that at the higher molar SiO2/Al2O3 ratios of 169, both the sodium form, ZSM-5-(169, and the acid form, H-ZSM-5-(169, exhibit an intermediate efficiency in either % loading (38% or first-order kinetic release constant (k = 2.9 h−1.

  5. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    International Nuclear Information System (INIS)

    Tan, Donna; Zhao Bin; Moochhala, Shabbir; Yang Yiyan

    2006-01-01

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved

  6. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, 04-01, The Nanos, Singapore 138669 (Singapore)

    2006-07-25

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved.

  7. Preparation and properties of a drug sustained-release hydrogel film

    International Nuclear Information System (INIS)

    Yue Ling; Yang Zhanshan; Yang Shuqin; Li Qinghua

    2009-01-01

    A hydrogel film of drug sustained-release was prepared to accelerate wound healing. The hydrogel films containing drug or not were prepared by the freezing and thawing process. Their properties such as the physicochemical property and the drug release behavior in vitro were studied. Effect of the freezing and thawing process on antimicrobial efficacy of the gentamicin was evaluated by diffusion method. The results indicate that swelling ratio of the hydrogel films freezed for 4h is 841.21% and their gel fraction, tensile strength and elongation at break is 96.10%, 0.222 MPa and 673.50% respectively. The antimicrobial efficacy of the gentamicin has no change. The hydrogel film contained gentamicin releases the antibiotic to peak during 6 h with the cumulative drug release rate of 59.57%. The drug releases continually up to the 5th day. The drug delivery conforms to Higuchi kinetic equation, and mechanism of the drug release is matrix diffusion. The results show that the hydrogel film prepared by the freezing and thawing process display satisfactory physicochemical properties and can be used as a drug delivery system. (authors)

  8. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs

    Science.gov (United States)

    Li, Jun; Han, Ling; Li, Jianing; Kitova, Elena N.; Xiong, Zi Jian; Privé, Gilbert G.; Klassen, John S.

    2018-04-01

    Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. [Figure not available: see fulltext.

  9. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  10. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  11. Dry fractionation for sustainable production of functional legume protein concentrates

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Pelgrom, P.J.M.; Goot, van der A.J.; Boom, R.M.

    2015-01-01

    Plant proteins gain increasing interest as part of a sustainable diet. Because plant materials not only contain protein, they are generally isolated via an energy intensive wet fractionation. This review discusses dry fractionation as an alternative and more sustainable route for producing

  12. A Biomimetic Approach to Active Self-Microencapsulation of Proteins in PLGA

    Science.gov (United States)

    Shah, Ronak B.; Schwendeman, Steven P.

    2014-01-01

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH 7. The BP-PLGA microspheres (20–63 µm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42 h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ >0.125 w/w, whereas HDS and CS bound > 80% LYZ at BP:LYZ of 0.25–1 and 2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2–7 % w/w), VEGF (~ 4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were found to depend upon volume of release (with non-sink conditions observed 90 % of protein being enzymatically

  13. Coaxial Electrospinning with Mixed Solvents: From Flat to Round Eudragit L100 Nanofibers for Better Colon-Targeted Sustained Drug Release Profiles

    Directory of Open Access Journals (Sweden)

    Deng-Guang Yu

    2014-01-01

    Full Text Available A modified coaxial electrospinning process was developed for creating drug-loaded composite nanofibers. Using a mixed solvent of ethanol and N,N-dimethylacetamide as a sheath fluid, the electrospinning of a codissolving solution of diclofenac sodium (DS and Eudragit L100 (EL100 could run smoothly and continuously without any clogging. A series of analyses were undertaken to characterize the resultant nanofibers from both the modified coaxial process and a one-fluid electrospinning in terms of their morphology, physical form of the components, and their functional performance. Compared with those from the one-fluid electrospinning, the DS-loaded EL100 fibers from the modified coaxial process were rounder and smoother and possessed higher quality in terms of diameter and distribution with the DS existing in the EL100 matrix in an amorphous state; they also provided a better colon-targeted sustained drug release profile with a longer release time period. The modified coaxial process not only can smooth the electrospinning process to prevent clogging of spinneret, but also is a useful tool to tailor the shape of electrospun nanofibers and thus endow them improved functions.

  14. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity.

    Science.gov (United States)

    Jain, Ashay; Sharma, Gajanand; Ghoshal, Gargi; Kesharwani, Prashant; Singh, Bhupinder; Shivhare, U S; Katare, O P

    2018-04-28

    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16 th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention. Copyright © 2018. Published by Elsevier B.V.

  15. Taste masking of ofloxacin and formation of interpenetrating polymer network beads for sustained release

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2017-08-01

    Full Text Available The objective of this study was to carry out taste masking of ofloxacin (Ofl by ion exchange resins (IERs followed by sustained release of Ofl by forming interpenetrating polymer network (IPN beads. Drug-resin complexes (DRCs with three different ratios of Ofl to IERs (1:1, 1:2, 1:4 were prepared by batch method and investigated for in vivo and in vitro taste masking. DRC of methacrylic acid-divinyl benzene (MD resin and Ofl prepared at a ratio of 1:4 was used to form IPN beads. IPN beads of MD 1:4 were prepared by following the ionic cross-linking method using sodium carboxymethyl xanthan gum (SCMXG and SCMXG-sodium carboxymethyl cellulose (SCMXG-SCMC. IPN beads were characterized with FT-IR and further studied on sustained release of Ofl at different pH. In vivo taste masking carried out by human volunteers showed that MD 1:4 significantly reduced the bitterness of Ofl. Characterization studies such as FT-IR, DSC, P-XRD and taste masking showed that complex formation took place between drug and resin. In vitro study at gastric pH showed complete release of drug from MD 1:4 within 30 min whereas IPN beads took 5 h at gastric pH and 10 h at salivary pH for the complete release of drug. As the crosslinking increased the release kinetics changed into non-Fickian diffusion to zero-order release mechanism. MD 1:4 showed better performance for the taste masking of Ofl and IPNs beads prepared from it were found useful for the sustained release of Ofl at both the pH, indicating a versatile drug delivery system.

  16. The Spatial Release of Cognitive Load in Cocktail Party Is Determined by the Relative Levels of the Talkers.

    Science.gov (United States)

    Andéol, Guillaume; Suied, Clara; Scannella, Sébastien; Dehais, Frédéric

    2017-06-01

    In a multi-talker situation, spatial separation between talkers reduces cognitive processing load: this is the "spatial release of cognitive load". The present study investigated the role played by the relative levels of the talkers on this spatial release of cognitive load. During the experiment, participants had to report the speech emitted by a target talker in the presence of a concurrent masker talker. The spatial separation (0° and 120° angular distance in azimuth) and the relative levels of the talkers (adverse, intermediate, and favorable target-to-masker ratio) were manipulated. The cognitive load was assessed with a prefrontal functional near-infrared spectroscopy. Data from 14 young normal-hearing listeners revealed that the target-to-masker ratio had a direct impact on the spatial release of cognitive load. Spatial separation significantly reduced the prefrontal activity only for the intermediate target-to-masker ratio and had no effect on prefrontal activity for the favorable and the adverse target-to-masker ratios. Therefore, the relative levels of the talkers might be a key point to determine the spatial release of cognitive load and more specifically the prefrontal activity induced by spatial cues in multi-talker situations.

  17. Preparation and in-vitro in-vivo evaluation of sustained release matrix diclofenac sodium tablets using PVP-K90 and natural gums.

    Science.gov (United States)

    Iqbal, Zafar; Khan, Raza; Nasir, Fazli; Khan, Jamshaid Ali; Rashid, Abdur; Khan, Abbas; Khan, Abad

    2011-10-01

    Conventional dosage form is nowadays mostly replaced by sustained release formulation in order to increase drug efficacy and patient compliance. The sustained release properties of the PVP K90 alone and in combination with guar gum, xanthan gum and gum tragacanth were evaluated using diclofenac sodium (100 mg/tablet) as a model drug. Tablets were processed using wet granulation method and evaluated for sustained drug release properties. The drug release from the formulations was studied in relationship with Commercially available Diclofenac Sodium SR, used as a reference tablets and results were expressed as similarity (f1) and differential factor (f2). The tablets prepared using PVP K90 160 mg/tablet sustained the release of diclofenac sodium for 12 hours. Formulations where the PVP K90 was partially replaced with different gums also sustained the release of drug for 12 hours. The release of the drug from these formulations mainly followed Higuchi model and super case-II and Non-Fickian diffusion. The in-vivo drug release was studied in healthy human volunteers using non-blinded cross over, two period design using Diclofenac Sodium SR Tablets as a reference drug. The relative bioavailability of the formulation containing PVP K90 and gum tragacanth was 0.91. The studies showed that the use of the PVP K90 in combination with gum tragacanth both in-vitro and in-vivo sustained the release of the drug.

  18. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  19. Sustainable Load-Balancing Scheme for Inter-Sensor Convergence Processing of Routing Cooperation Topology

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Kim

    2016-05-01

    Full Text Available Recent advancements in Information Technology (IT have sparked the creation of numerous and diverse types of devices and services. Manual data collection measurement methods have been automated through the use of various wireless or wired sensors. Single sensor devices are included in smart devices such as smartphones. Data transmission is critical for big data collected from sensor nodes, such as Mobile Sensor Nodes (MSNs, where sensors move dynamically according to sensor mobility, or Fixed Sensor Nodes (FSNs, where sensor locations are decided by the users. False data transfer processing of big data results in topology lifespan reduction and data transfer delays. Hence, a variety of simulators and diverse load-balancing algorithms have been developed as protocol verification tools for topology lifespan maximization and effective data transfer processing. However, those previously developed simulators have limited functions, such as an event function for a specific sensor or a battery consumption rate test for sensor deployment. Moreover, since the previous load-balancing algorithms consider only the general traffic distribution and the number of connected nodes without considering the current topology condition, the sustainable load-balancing technique that takes into account the battery consumption rate of the dispersed sensor nodes is required. Therefore, this paper proposes the Sustainable Load-balancing Scheme (SLS, which maximizes the overall topology lifespan through effective and sustainable load-balancing of data transfer among the sensors. SLS is capable of maintaining an effective topology as it considers both the battery consumption rate of the sensors and the data transfer delay.

  20. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  1. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  2. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  3. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  4. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    Science.gov (United States)

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Food interactions with sustained-release theophylline preparations. A review.

    Science.gov (United States)

    Jonkman, J H

    1989-03-01

    Currently, theophylline is being used predominantly as sustained-release capsules or tablets. In the mid-seventies the first preparations for use with a dosage interval of 12 hours (twice-daily preparations) were introduced. Since 1983, theophylline preparations that can be given with an interval of 24 hours (once-daily preparations) have become available. The release of theophylline from some of these products can be influenced (either increased or decreased) by concomitant intake of food. With some preparations the composition of the meal (especially the fat content) has an influence on the degree of effect. The consequence may be an effect on the rate of absorption or on the amount absorbed, or both simultaneously. This could result in an unexpected shift of the plasma theophylline concentration. Such a shift is therapeutically undesirable, because theophylline has a fairly narrow therapeutic range. A review is given of those food interactions with the sustained-release theophylline preparations, both twice-daily and once-daily products, that are currently on the world market. Special attention is paid to the specific (bio)pharmaceutical characteristics of the different products, and to the influence of the composition and timing of the meals. For each preparation the effect of food on the following pharmacokinetic parameters is discussed: area under the plasma concentration-time curve, peak plasma drug concentration and time to reach this peak. Where possible, the results for both adults and children are discussed. There are indications that children are more susceptible to food-effects than adults. The regulatory aspects are mentioned briefly. Clinically important effects of food have been observed with the following twice-daily products: 'Theo-Dur Sprinkle', 'Theolair SR' (= 'Nuelin SR') and 'Theograd'. Pronounced effects could have an even greater impact with once-daily preparations, as the total daily dose will be given at a single time. A particularly

  6. Release and Cytokine Production of BmpB from BmpB-Loaded pH-Sensitive and Mucoadhesive Thiolated Eudragit Microspheres.

    Science.gov (United States)

    Singh, Bijay; Jiang, Tao; Kim, You-Kyoung; Kang, Sang-Kee; Choi, Yun-Jaie; Cho, Chong-Su

    2015-01-01

    Swine dysentery is a contagious mucohaemorrhagic colitis of pigs that is caused by anaerobic intestinal spirochaete Brachyspira hyodysenteriae. Recently, an outer membrane lipoprotein of B. hyodysenteriae (BmpB) has been identified, and the mice or pigs immunized with a recombinant BmpB generated antibodies recognizing the native BmpB of B. hyodysenteriae. In this study, we cloned, expressed and purified BmpB protein from E. coli and used it as a vaccine candidate for oral delivery. The BmpB was encapsulated into the pH-sensitive and thiolated Eudragit microspheres (TEMS). The sizes of the microspheres ranged from 5-20 μ. About 22-34% of BmpB were released from the BmpB-loaded TEMS within 24 h at stomach pH 2.0 whereas the release of BmpB from the BmpB-loaded TEMS was 35% in the first one hour and reached 81% within 24 h at intestinal pH 7.2. These data revealed that the BmpB could be protected in the harsh gastric condition. Mucoadhesive experiment in vitro showed that TEMS have high binding affinity with the mucin glycoproteins of porcine intestine. Finally, in vitro production of cytokines from immune cells treated with the BmpB-loaded TEMS suggested that the TEMS would be a promising approach for oral delivery of BmpB as vaccine candidate.

  7. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Uges, DRA; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2000-01-01

    In this study, the release of gentamicin as a function of time was measured for six different gentamicin-loaded bone cements and related with the surface roughness, porosity and wettability of the cements. Initial release rates varied little between the six bone cements (CMW1, CMW3, CMW Endurance,

  8. Therapeutic effects of 5-fluorouracil sustained-release particles in 81 malignant pericardial effusion patients

    Directory of Open Access Journals (Sweden)

    Yong-Li Ji

    2015-02-01

    Full Text Available This study aimed to investigate the clinical application value of the 5-fluorouracil (5-FU sustained-release particles implanted along the cardiac tangent direction into malignant pericardial effusion (MPCE. A total of 81 MPCE patients underwent pericardiocentesis, and were implanted with 5-FU sustained-release particles into the pericardial cavity under ultrasound guidance. The puncturing path was along the cardiac tangent direction. Ultrasound examinations were performed every week, and the efficacy was evaluated 4 weeks after treatment. The 45 patients who were treated with pericardial catheter drainage and simultaneous intracavitary chemotherapy were used as the control group. The success rate of pericardiocentesis was 100%. Ultrasound reviews performed 4 weeks after treatment showed that 71 cases achieved complete remission and eight cases achieved partial remission, while treatment was completely ineffective in two cases. The total remission rate was 97.53%, which was significantly higher than that of the control group (77.78%, p < 0.01. The implantation of 5-FU sustained-release particles along the cardiac tangent direction was safe, and demonstrated good efficacy and fewer adverse reactions. Thus, this method could be ideal for the treatment of MPCE.

  9. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    Science.gov (United States)

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  10. Pilot Study of a Plug Load Management System: Preparing for Sustainability Base

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Ames Research Center’s Sustainability Base is a new 50,000 sq. ft. high-performance office building targeting a LEED Platinum rating. Plug loads are expected to...

  11. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  12. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    Science.gov (United States)

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  14. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization.

    Science.gov (United States)

    Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong

    2012-08-01

    Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.

  15. Preparation and Optimization of Immediate Release/Sustained Release Bilayered Tablets of Loxoprofen Using Box-Behnken Design.

    Science.gov (United States)

    Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-05-01

    The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.

  16. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    Science.gov (United States)

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inhibition of proteases activity in intestine needs a sustainable acidic environment rather than a transient.

    Science.gov (United States)

    Xing, Chang; Xing, Jin-Feng; Ge, Zhi-Qiang

    2017-10-01

    α-Chymotrypsin (α-CT) and trypsin are important components of the enzymatic barrier. They could degrade the therapeutic proteins and peptides, inhibit their activity consequently, and thereby reduce their oral bioavailability. Acidic agents, as one type of indirect protease inhibitors, have shown proof of concept in clinical trials. We report here the inactivated proteases due to acid influence can be reactivated immediately by environmental pH recovery regardless of how long the inactivation last. To keep the inactivation time of proteases for 4-5 h, we designed and prepared a sustained-release tablet containing citric acid (CA) which can effectively reduce the pH below 5.0 and maintain it for 5 h in the dissolution-reaction medium. The activity of α-CT and trypsin was quantified by analyzing the residual amount of their respective substrates BTEE and TAME. More than 80% of the substrates were survived in 5.0 h of incubation, whereas the common tablet inhibited the proteases activity for only two hours in the same experimental medium. It indicates that the sustained-release tablet loaded with CA can efficiently inhibit the α-CT and trypsin activity longer than the common tablet. The results will be beneficial for designing and formulating the peroral administration of peptide and protein drugs.

  18. Postoperative Analgesia Due to Sustained-Release Buprenorphine, Sustained-Release Meloxicam, and Carprofen Gel in a Model of Incisional Pain in Rats (Rattus norvegicus).

    Science.gov (United States)

    Seymour, Travis L; Adams, Sean C; Felt, Stephen A; Jampachaisri, Katechan; Yeomans, David C; Pacharinsak, Cholawat

    2016-01-01

    Postoperative analgesia in laboratory rats is complicated by the frequent handling associated with common analgesic dosing requirements. Here, we evaluated sustained-release buprenorphine (Bup-SR), sustained-release meloxicam (Melox-SR), and carprofen gel (CG) as refinements for postoperative analgesia. The aim of this study was to investigate whether postoperative administration of Bup-SR, Melox-SR, or CG effectively controls behavioral mechanical and thermal hypersensitivity in a rat model of incisional pain. Rats were randomly assigned to 1 of 5 treatment groups: saline, 1 mL/kg SC BID; buprenorphine HCl (Bup HCl), 0.05 mg/kg SC BID; Bup-SR, 1.2 mg/kg SC once; Melox-SR, 4 mg/kg SC once; and CG, 2 oz PO daily. Mechanical and thermal hypersensitivity were tested daily from day-1 through 4. Bup HCl and Bup-SR attenuated mechanical and thermal hypersensitivity on days 1 through 4. Melox-SR and CG attenuated mechanical hypersensitivity-but not thermal hypersensitivity-on days 1 through 4. Plasma concentrations, measured by using UPLC with mass spectrometry, were consistent between both buprenorphine formulations. Gross pathologic examination revealed no signs of toxicity in any group. These findings suggest that postoperative administration of Bup HCl and Bup-SR-but not Melox-SR or CG-effectively attenuates mechanical and thermal hypersensitivity in a rat model of incisional pain.

  19. Controlled Release from Zein Matrices

    NARCIS (Netherlands)

    Bouman, Jacob; Belton, Peter; Venema, Paul; Linden, Van Der Erik; Vries, De Renko; Qi, Sheng

    2016-01-01

    Purpose: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin,

  20. Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles

    International Nuclear Information System (INIS)

    Khoee, Sepideh; Hassanzadeh, Salman; Goliaie, Bahram

    2007-01-01

    BAB amphiphilic triblock copolymers consisting of poly(ethylene glycol) (B) (PEG) as the hydrophilic segment and different polyesters (A) as the hydrophobic block were prepared by a polycondensation reaction as efficient model core-shell nanoparticles to assay the effect of interactions between the hydrophobic drug and the polyesteric core in terms of drug loading content and release profile. PEG-poly(hexylene adipate)-PEG (PEG-PHA-PEG) and PEG-poly(butylene adipate)-PEG (PEG-PBA-PEG) to PEG-poly(ethylene adipate)-PEG (PEG-PEA-PEG) core-shell type nanoparticles entrapping quercetin (an anticarcinogenic, allergy inhibitor and antibacterial agent), were prepared by a nanoprecipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. It was found that the obtained nanoparticles showed a smooth surface and spherical shape with controllable sizes in the range of 64-74 nm, while drug loading varied from 7.24% to 19% depending on the copolymer composition and the preparation conditions. The in vitro release behaviour exhibited a sustained release and was affected by the polymer-drug interactions. UV studies revealed the presence of hydrogen bonding as the main existing interaction between quercetin and polyesters in the nanosphere cores

  1. Formulation and evaluation of rifampicin sustained release tablets using juice of Citrus limetta as bio-retardant.

    Science.gov (United States)

    Gaur, K Pawan; Soam, Kulwant; Gupta, S K; Dabral, Prashant

    2012-03-01

    The advantages of biopolymers over synthetic polymers are low cost, natural origin, free from side effects, biocompatible, bio-acceptable, environmental friendly processing, local availability, better patient tolerance as well as public acceptance. Sustained release tablets containing rifampicin was prepared by adding 100 mg polymer and 50 mg Drug and Granules. Same procedure was followed with 3% and 5% of polymer for preparation of sustained release tablets. Additional Tablets of 100 mg, 200 mg and 400 mg were prepared using 5% of the polymer. The results indicated that the selected biopolymer had a good release retardant property thus it can be concluded that the selected biopolymer can be utilized as low cost natural biocompatible and biodegradable agent.

  2. Formulation and evaluation of rifampicin sustained release tablets using juice of Citrus limetta as bio-retardant

    Directory of Open Access Journals (Sweden)

    K Pawan Gaur

    2012-01-01

    Full Text Available The advantages of biopolymers over synthetic polymers are low cost, natural origin, free from side effects, biocompatible, bio-acceptable, environmental friendly processing, local availability, better patient tolerance as well as public acceptance. Sustained release tablets containing rifampicin was prepared by adding 100 mg polymer and 50 mg Drug and Granules. Same procedure was followed with 3% and 5% of polymer for preparation of sustained release tablets. Additional Tablets of 100 mg, 200 mg and 400 mg were prepared using 5% of the polymer. The results indicated that the selected biopolymer had a good release retardant property thus it can be concluded that the selected biopolymer can be utilized as low cost natural biocompatible and biodegradable agent.

  3. Pharmacokinetics of Sustained-Release Analgesics in Mice

    Science.gov (United States)

    Kendall, Lon V; Hansen, Ryan J; Dorsey, Kathryn; Kang, Sooah; Lunghofer, Paul J; Gustafson, Daniel L

    2014-01-01

    Buprenorphine and carprofen, 2 of the most commonly used analgesics in mice, must be administered every 8 to 12 h to provide sustained analgesia. Sustained-release (SR) formulations of analgesics maintain plasma levels that should be sufficient to provide sustained analgesia yet require less frequent dosing and thus less handling of and stress to the animals. The pharmacokinetics of SR formulations of buprenorphine (Bup-SR), butorphanol (Butp-SR), fentanyl (Fent-SR), carprofen (Carp-SR), and meloxicam (Melox-SR) were evaluated in mice over 72 h and compared with those of traditional, nonSR formulations. Bup-SR provided plasma drug levels greater than the therapeutic level for the first 24 to 48 h after administration, but plasma levels of Bup-HCl fell below the therapeutic level by 4 h. Fent-SR maintained plasma levels greater than reported therapeutic levels for 12 h. Therapeutic levels of the remaining drugs are unknown, but Carp-SR provided plasma drug levels similar to those of Carp for the first 24 h after administration, whereas Melox-SR had greater plasma levels than did Melox for the first 8 h. Butp-SR provided detectable plasma drug levels for the first 24 h, with a dramatic decrease over the first 4 h. These results indicate that Bup-SR provides a stable plasma drug level adequate for analgesia for 24 to 48 h after administration, whereas Carp-SR, Melox-SR, Fent-SR, and Butp-SR would require additional doses to provide analgesic plasma levels beyond 24 h in mice. PMID:25255070

  4. Preparation and characterization of cross-linked excipient of coprocessed xanthan gum-acacia gum as matrix for sustained release tablets

    Science.gov (United States)

    Surini, Silvia; Wati, Dina Risma; Syahdi, Rezi Riadhi

    2018-02-01

    Sustained release tablet is solid dosage form which is designed to release drugs slowly in the body. This research was intended to prepare and characterize the cross-linked excipients of co-processed xanthan gum-acacia gum (CL-Co-XGGA) as matrices for sustained release tablets with gliclazide as a model drug. CL-Co-XGGA excipients were cross-linked materials of co-processed excipients of xanthan gum-acacia gum (Co-XGGA) using sodium trimetaphosphate. Co-processed excipients of xanthan gum-acacia gum were prepared in the ratio of each excipient 1:2, 1:1 and 2:1. Co-XGGA and CL-Co-XGGA excipients were characterized physically, chemically and functionally. Then, the sustained release (SR) tablets were formulated by wet granulation method using CL-Co-XGGA excipients as matrices. Also, the dissolution study of the gliclazide SR tablets was carried out in phosphate buffer medium pH 7,4 containing sodium lauryl sulphate 0.2% for 12 hours. The results showed that the degree of substitution (DS) of CL-Co-XGGA 1:2, 1:1, 2:1 excipients were respectively 0.067, 0.082 and 0.08. Besides that, the excipients gel strengths were 14.03, 17.27 and 20,70 gF, respectively. The cross-linked excipients had improved flow properties and swelling capability compared to the Co-XGGA excipients. The results of the gliclazide SR tablets evaluations showed that all tablets were passed all tablet requirements. Moreover, the gliclazide release from SR tablets F1 - F6 revealed the sustained release profile, which was following zero order kinetics (F1, F2, F3, F6) and Higuchi kinetics (F4 and F5). It could be concluded that the obtained CL-Co-XGGA excipients might be used as matrices for sustained release tablets and could retard drug release up to 8 until 32 hours.

  5. Development and evaluation of new multiple-unit levodopa sustained-release floating dosage forms.

    Science.gov (United States)

    Goole, J; Vanderbist, F; Amighi, K

    2007-04-04

    This work relates to the development and the in vitro evaluation of sustained-release minitablets (MT), prepared by melt granulation and subsequent compression, which are designed to float over an extended period of time. Levodopa was used as a model drug. The importance of the composition and manufacturing parameters of the MT on their floating and dissolution properties was then examined. The investigation showed that MT composition and MT diameter had the greatest influence on drug release, which was sustained for more than 8h. By using the same formulation, the best floating properties were obtained with 3mm MT prepared at low compression forces ranging between 50 and 100N. Their resultant-weight (RW) values were always higher than those obtained with a marketed HBS dosage form within 13h. When they were filled into gelatin capsules, no sticking was observed. By evaluating the dissolution profiles of levodopa at different pH values, it was found that dissolution profiles depend more on the prolonged-release ability of Methocel K15M than on the pH-dependent solubility of levodopa. Finally, the robustness of the floating MT was assessed by testing the drug release variability in function of the stirring conditions during dissolution tests.

  6. Biomechanical consequences of plantar fascial release or rupture during gait. Part II: alterations in forefoot loading.

    Science.gov (United States)

    Sharkey, N A; Donahue, S W; Ferris, L

    1999-02-01

    With a model using feet from cadavers, we tested the hypothesis that plantar fascial release or rupture alters the loading environment of the forefoot during the latter half of the stance phase of gait. The model simulated the position and loading environment of the foot at two instants: early in terminal stance immediately after heel-off and late in terminal stance just preceding contralateral heel strike. Eight feet were loaded at both positions by simulated plantar flexor contraction, and the distribution of plantar pressure was measured before and after progressive release of the plantar fascia. Strain in the diaphysis of the second metatarsal was also measured, from which the bending moments and axial force imposed on the metatarsal were calculated. Cutting the medial half of the central plantar fascial band significantly increased peak pressure under the metatarsal heads but had little effect on pressures in other regions of the forefoot or on second metatarsal strain and loading. Dividing the entire central band or completely releasing the plantar fascia from the calcaneus had a much greater effect and caused significant shifts in plantar pressure and force from the toes to beneath the metatarsal heads. These shifts were accompanied by significantly increased strain and bending in the second metatarsal. Complete fasciotomy increased the magnitude of strain in the dorsal aspect of the second metatarsal by more than 80%, suggesting that plantar fascial release or rupture accelerates the accumulation of fatigue damage in these bones. Altered forefoot loading may be a potential complication of plantar fasciotomy.

  7. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.

    Science.gov (United States)

    Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong

    2018-03-01

    It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies

    Science.gov (United States)

    Kalwar, Kaleemullah; Zhang, Xuan; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan

    2017-12-01

    Electrospun nanofibers with sustained drug release are a challenge but it can be improved by using hydrophobic polymer. Polycaprolactone (PCL) is a hydrophobic and biocompatible polymer. In this work, we have proposed a drug release mechanism by preparation of ciprofloxacin (Cip)/Laponite (LAP) complex and then incorporation in PCL nanofibers through electrospinning technique. In addition, drug incorporation was confirmed by FTIR and morphology of electrospun nanofibers was revealed by SEM. Drug loading was measured by using spectrophotometer. PCL/LAP/Cip NFs proved sustained drug release as compared to PCL NFs and PCL/Cip NFs. Furthermore, PCL/LAP/Cip NFs were used as antimicrobial agent and higher effect measured.

  9. Sustainable railway bridges with higher axle loads:monitoring examples from northern Sweden

    OpenAIRE

    Elfgren, Lennart; Enochsson, Ola; Täljsten, Björn; Paulsson, Björn

    2007-01-01

    Monitoring of several railway bridges has been carried out in northern Sweden in order to increase the allowable axle load. The work is part of a European Integrated Project "Sustainable Bridges - Assessment for Future Traffic Demands and Longer Lives". The paper describes the project and gives some examples of applications. Monitoring of several railway bridges has been carried out in northern Sweden in order to increase the allowable axle load. The work is part of a European Integrated P...

  10. Local sustained-release delivery systems of the antibiofilm agent thiazolidinedione-8 for prevention of catheter-associated urinary tract infections.

    Science.gov (United States)

    Shenderovich, Julia; Feldman, Mark; Kirmayer, David; Al-Quntar, Abed; Steinberg, Doron; Lavy, Eran; Friedman, Michael

    2015-05-15

    Thiazolidinedione-8 (TZD-8) is an anti-quorum-sensing molecule that has the potential to effectively prevent catheter-associated urinary tract infections, a major healthcare challenge. Sustained-release drug-delivery systems can enhance drugs' therapeutic potential, by maintaining their therapeutic level and reducing their side effects. Varnishes for sustained release of TZD-8 based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit(®) RL) were developed. The main factors affecting release rate were found to be film thickness and presence of a hydrophilic or swellable polymer in the matrix. The release mechanism of ethylcellulose-based systems matched the Higuchi model. Selected varnishes were retained on catheters for at least 8 days. Sustained-release delivery systems of TZD-8 were active against Candida albicans biofilms. The present study demonstrates promising results en route to developing applications for the prevention of catheter-associated infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    Science.gov (United States)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  12. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    Science.gov (United States)

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles.

    Science.gov (United States)

    Pradhan, Roshan; Poudel, Bijay Kumar; Choi, Ju Yeon; Choi, Im Soon; Shin, Beom Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-01-01

    In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0%, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60% cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.

  14. Development of theophylline sustained release dosage form based on Kollidon SR.

    Science.gov (United States)

    Reza, Md Selim; Quadir, Mohiuddin Abdul; Haider, Syed Shabbir

    2002-01-01

    Sustained release theophylline matrix tablets constituting Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer) were developed in this study in an attempt to design a dosage form that manifests desirable release profile and thorough adherence to official monographs. Four matrix tablet formulations were prepared by dry blending and direct compression of Kollidon SR and HPMC-15cps (hydroxypropylmethylcellulose) in varying proportion with fixed percentage of theophylline. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release with an initial burst effect. Incorporation of HPMC-15cps in the matrix tablet prolonged the release of drug with subsequent minimization of burst effect as confirmed by mean dissolution time, T50 and Higuchi release rate data. Among the batches containing HPMC-15 cps, a direct relationship was obtained between release rate and the percentage of HPMC used. A suitable controlled release profile was obtained with the matrix tablets containing 20% Kollidon SR and 30% HPMC-15cps. The formulation showed close resemblance to commercial products and compliance with USP specification. The results were explored and explained by the difference of physico-chemical property and hydration characteristics of the polymers. In addition to this result, the exponential model was applied to characterize the drug release behaviour from polymeric systems. It was found that, Fickian release is predominant in tablets containing Kollidon SR alone and non-Fickian mechanism plays an important role in the release of drug from HPMC containing tablets with a trend towards zero-order or case II release. In vitro release profile of two commercial brands were also undertaken for comparison and modulation of the experimental batches.

  15. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    Science.gov (United States)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  16. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    International Nuclear Information System (INIS)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M.; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-01-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10 −2 mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  17. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  18. Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats

    OpenAIRE

    Kharshoum, rasha

    2010-01-01

    Heba F SalemFaculty of Pharmacy, Beni-Suef University, Beni-Suef, EgyptAbstract: The production of an intramuscular (IM) injection of natural progesterone would provide a safer solution than using semi synthetic progesterone. However, disadvantages such as low solubility and a short half life prevent the use of natural progesterone. In this study, we formulated a sustained release form of natural progesterone to be given as IM injection. A progesterone nanosuspension (PNS) was first developed...

  19. Fabrication of antibody-loaded microgels using microfluidics and thiol-ene photoclick chemistry.

    Science.gov (United States)

    Gregoritza, Manuel; Abstiens, Kathrin; Graf, Moritz; Goepferich, Achim M

    2018-06-01

    Reducing burst effects, providing controlled release, and safeguarding biologics against degradation are a few of several highly attractive applications for microgels in the field of controlled release. However, the incorporation of proteins into microgels without impairing stability is highly challenging. In this proof of concept study, the combination of microfluidics and thiol-ene photoclick chemistry was evaluated for the fabrication of antibody-loaded microgels with narrow size distribution. Norbornene-modified eight-armed poly(ethylene glycol) with an average molecular mass of 10,000 Da, 20,000 Da, or 40,000 Da were prepared as macromonomers for microgel formation. For functionalization, either hydrolytically cleavable ester or stable amide bonds were used. A microfluidic system was employed to generate precursor solution droplets containing macromonomers, the cross-linker dithiothreitol and the initiator Eosin-Y. Irradiation with visible light was used to trigger thiol-ene reactions which covalently cross-linked the droplets. For all bond-types, molecular masses, and concentrations gelation was very rapid (<20 s) and a plateau for the complex shear modulus was reached after only 5 min. The generated microgels had a rod-like shape and did not show considerable cellular toxicity. Stress conditions during the fabrication process were simulated and it could be shown that fabrication did not impair the activity of the model proteins lysozyme and bevacizumab. It was confirmed that the average hydrogel network mesh size was similar or smaller than the hydrodynamic diameter of bevacizumab which is a crucial factor for restricting diffusion and delaying release. Finally, microgels were loaded with bevacizumab and a sustained release over a period of 30 ± 4 and 47 ± 7 days could be achieved in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. On the Load-Unload (L-U) and Force-Release (F-R) Algorithms for Simulating Brittle Fracture Processes via Lattice Models

    KAUST Repository

    Liu, Jinxing

    2011-11-11

    General summaries on the load-unload and force-release methods indicate that the two methods are efficient for different-charactered quasi-static failures; therefore, it is important to choose the right one for different applications. Then we take, as an example, the case where the release of the ruptured element\\'s internal force is infinitely slower than the relaxation of the lattice system and analyze why the force-release method works better than the load-unload method in this particular case. Different trial deformation fields are used by them to track the next equilibrium state. Force-release method ensures that the deformation throughout the whole failure process coincides exactly with the controlled-displacement boundary conditions and we utilize the \\'left modulus\\' concept to prove that this method satisfies the energetic evolution in the force-displacement diagram; both of which are not satisfied by the load-unload method. To illustrate that the force-release method is not just another form of the load-unload method, a tensile test on a specifically designed system is analyzed to further compare the above two methods, showing that their predicted sequences of elemental failures can be different. In closing, we simulate the uniaxial tensile test on a beam lattice system by the load-unload and force-release methods and exploit the details of the resulting fracture processes. © The Author(s), 2011.

  1. Formulation and evaluation of sustained release matrix tablet of rabeprazole using wet granulation technique

    Directory of Open Access Journals (Sweden)

    Ruqaiyah Khan

    2014-01-01

    Full Text Available Introduction: Rabeprazole, a member of substituted benzimidazoles, inhibits the final step in gastric acid secretions. This drug claims to cause fastest acid separation (due to higher pKa, and more rapidly converts to the active species to aid gastric mucin synthesis. The most significant pharmacological action of Rabeprazole is dose dependent suppression of gastric acid secretion; without anticholinergic or H2-blocking action. It completely abolishes the hydrochloric acid secretion as it is powerful inhibitor of gastric acid. Rabeprazole is acid labile and hence commonly formulated as an enteric coated tablet. The absorption of rabeprazole occurs rapidly as soon as tablet leaves the stomach. Aim: In the present study an attempt was made to formulate and evaluate Rabeprazole sustained release matrix tablet using wet granulation technique incorporating various polymers like HPMC-E15, Carbopol934, and sodium carboxymethyl cellulose (CMC. Materials and Methods: The Formulated tablets were evaluated for different physicochemical properties like rheological properties, weight variation, thickness, hardness, % friability, in vitro release studies and drug content. Results: Studies revealed that all the physicochemical parameters comply with the official standards. The in vitro release studies exhibits the release up to 90%, over a prolonged period of time which confirms the extended release profile of formulation, having better bioavailability as well as decreased dosing frequency with reduced doses. Conclusion: The sustained release matrix tablets of rabiprazole shown better bioavailability, efficacy and potency, when compared with official standards.

  2. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xufeng, E-mail: nxf@buaa.edu.cn [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); BUAA Research Institute, Guangzhou 510530 (China); Research Institute of Beihang University in Shenzhen, Shenzhen 518057 (China); Chen, Siqian; Tian, Feng; Wang, Lizhen [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Feng, Qingling [State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Fan, Yubo, E-mail: yubofan@buaa.edu.cn [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China)

    2017-01-01

    The aim of this study is to investigate the calcium and orthophosphate ions release during the transformation of amorphous calcium phosphate (ACP) to hydroxyapatite (HA) in aqueous solution. The ACP is prepared by a wet chemical method and further immersed in the distilled water for various time points till 14 d. The release of calcium and orthophosphate ions is measured with calcium and phosphate colorimetric assay kits, respectively. The transition of ACP towards HA is detected by x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR). The results indicate that the morphological conversion of ACP to HA occurs within the first 9 h, whereas the calcium and orthophosphate ions releases last for over 7 d. Such sustained calcium and orthophosphate ions release is very useful for ACP as a candidate material for hard tissue regeneration. - Highlights: • ACP is prepared using a wet chemical method. • The conversion of crystal morphology and structure occurs mainly within the initial 9 h. • The calcium and orthophosphate ions release sustains over 14 d.

  3. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release.

    Science.gov (United States)

    Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk

    2017-01-01

    High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of

  4. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release

    Directory of Open Access Journals (Sweden)

    Min Young Ahn

    2017-09-01

    Full Text Available Background High mobility group box 1 (HMGB1 is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. Methods The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS and/or a C. longa extract-loaded nanoemulsion (CLEN. The levels of released HMGB1, nitric oxide (NO production, inducible NO synthase (iNOS expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. Results We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. Discussion The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1

  5. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation

    NARCIS (Netherlands)

    Neut, D; van de Belt, H; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    In infected joint arthroplasty, high local levels of antibiotics are achieved through temporary implantation of non-biodegradable gentamicin-loaded polymethylmethacrylate beads. Despite their antibiotic release, these beads act as a biomaterial surface to which bacteria preferentially adhere, grow

  6. Pharmacokinetic profile of a sustained-delivery system for physostigmine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 04-01, Singapore 138669 (Singapore)

    2006-07-25

    Physostigmine (PHY) is involved in clinical treatments of glaucoma, Alzheimer's disease and has been suggested as an alternative prophylactic treatment against organophosphate poisoning. However, one of the therapeutic uses of physostigmine is limited by short elimination half-life. In this study, PHY-loaded microparticles, prepared by a spray-drying method with biodegradable poly(D,L-lactide-co-glycolide) (PLGA) with a size ranging from 1 to 5 {mu}M was developed on a sustained release preparation to prevent multiple dosing and yet maintaining constant plasma level. The release of PHY-loaded microparticles was characterized in vitro and in vivo after oral administration in Sprague-Dawley rats. After oral administration of physostigmine-loaded microparticles in rats, the time course of physostigmine in blood plasma was followed over 48 h and samples were analysed using a validated high-performance liquid chromatography (HPLC) assay. In the pharmacokinetics profile of physostigmine for the elimination half-life and area-under-curve, PHY release was sustained in vitro for over 1 week with a low initial burst release. The pharmacokinetics results show a 15-fold increase in the elimination half-life of physostigmine microparticle formulation, coupled with a larger area under the concentration-time curve (AUC), without affecting the peak concentration and the latency to peak concentration, when compared to the standard formulation.

  7. Sustained release of a novel anti-quorum-sensing agent against oral fungal biofilms.

    Science.gov (United States)

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael; Steinberg, Doron

    2015-04-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Clinical applications of the sustained-release dexamethasone implant for treatment of macular edema

    Directory of Open Access Journals (Sweden)

    Rocío Herrero-Vanrell, Jose Augusto Cardillo

    2011-02-01

    Full Text Available Rocío Herrero-Vanrell1, Jose Augusto Cardillo2, Baruch D Kuppermann31Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Complutense University, Madrid, Spain; 2Hospital de Olhos de Araraquara, Araraquara, São Paulo, Brazil; 3Gavin Herbert Eye Institute, University of California, Irvine, CA, USAAbstract: Macular edema is one of the leading causes of vision loss among patients with retinal vein occlusion, diabetic retinopathy, and posterior chamber inflammatory disease. However, the treatment of macular edema is considerably limited by the difficulty in delivering effective doses of therapeutic agents into the vitreous cavity. In recent years, the development of a sustained-release dexamethasone intravitreal implant (Ozurdex® has enabled more controlled drug release at a stable rate over a long period of time, with a potentially lower rate of adverse events. Clinical studies indicate that this dexamethasone implant is a promising new treatment option for patients with persistent macular edema resulting from retinal vein occlusion, diabetic retinopathy, and uveitis or Irvine-Gass syndrome.Keywords: diabetic retinopathy, macular edema, Ozurdex®, posterior-segment inflammatory disease, retinal vein occlusion, sustained-release dexamethasone implant

  9. Sequential Release of Proteins from Structured Multishell Microcapsules.

    Science.gov (United States)

    Shimanovich, Ulyana; Michaels, Thomas C T; De Genst, Erwin; Matak-Vinkovic, Dijana; Dobson, Christopher M; Knowles, Tuomas P J

    2017-10-09

    In nature, a wide range of functional materials is based on proteins. Increasing attention is also turning to the use of proteins as artificial biomaterials in the form of films, gels, particles, and fibrils that offer great potential for applications in areas ranging from molecular medicine to materials science. To date, however, most such applications have been limited to single component materials despite the fact that their natural analogues are composed of multiple types of proteins with a variety of functionalities that are coassembled in a highly organized manner on the micrometer scale, a process that is currently challenging to achieve in the laboratory. Here, we demonstrate the fabrication of multicomponent protein microcapsules where the different components are positioned in a controlled manner. We use molecular self-assembly to generate multicomponent structures on the nanometer scale and droplet microfluidics to bring together the different components on the micrometer scale. Using this approach, we synthesize a wide range of multiprotein microcapsules containing three well-characterized proteins: glucagon, insulin, and lysozyme. The localization of each protein component in multishell microcapsules has been detected by labeling protein molecules with different fluorophores, and the final three-dimensional microcapsule structure has been resolved by using confocal microscopy together with image analysis techniques. In addition, we show that these structures can be used to tailor the release of such functional proteins in a sequential manner. Moreover, our observations demonstrate that the protein release mechanism from multishell capsules is driven by the kinetic control of mass transport of the cargo and by the dissolution of the shells. The ability to generate artificial materials that incorporate a variety of different proteins with distinct functionalities increases the breadth of the potential applications of artificial protein-based materials

  10. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  11. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  12. Development of Sustained Release Capsules Containing “Coated Matrix Granules of Metoprolol Tartrate”

    OpenAIRE

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-01-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet gr...

  13. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage

    Directory of Open Access Journals (Sweden)

    M. Kaleemullah

    2017-07-01

    Full Text Available Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor (f2 value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05 between the F3 and reference drug in terms of MDT and

  14. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    Science.gov (United States)

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p

  15. Formulation and Evaluation of a Sustained-Release Tablets of Metformin Hydrochloride Using Hydrophilic Synthetic and Hydrophobic Natural Polymers

    OpenAIRE

    Wadher, K. J.; Kakde, R. B.; Umekar, M. J.

    2011-01-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study ...

  16. Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization

    NARCIS (Netherlands)

    Van Elk, Merel; Lorenzato, Cyril; Ozbakir, Burcin; Oerlemans, Chris; Storm, Gert; Nijsen, Frank; Deckers, Roel; Vermonden, Tina; Hennink, Wim E.

    2015-01-01

    The objective of this study was to prepare and characterize alginate microgels loaded with temperature sensitive liposomes, which release their payload after mild hyperthermia. It is further aimed that by using these microgels both the drug release and the microgel deposition can be visualized by

  17. Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Miola, Marta, E-mail: marta.miola@polito.it [Applied Science and Technology Department, Politecnico di Torino (Italy); Bistolfi, Alessandro [Department of Orthopaedics, Traumatology and HM, University of Turin (Italy); AO CTO, M Adelaide Hospital, Turin (Italy); Valsania, Maria Carmen; Bianco, Carlotta [Department of Orthopaedics, Traumatology and HM, University of Turin (Italy); Fucale, Giacomo [Chemical, Clinical and Microbiological Analyses Dept., CTO, Turin (Italy); Verné, Enrica [Applied Science and Technology Department, Politecnico di Torino (Italy)

    2013-07-01

    An in vitro study was carried out in order to investigate the antibiotic release mechanism and the antibacterial properties of commercially (Palacos® R + G and Palacos® LV + G) and manually (Palacos® R + GM and Palacos® LV + GM) blended gentamicin-loaded bone cements. Samples were characterized by means of scanning electron microscopy (SEM) and compression strength was evaluated. The antibiotic release was investigated by dipping sample in simulated body fluid (SBF) and periodically analyzing the solution by means of high pressure liquid chromatography (HPLC). Different antibacterial tests were performed to investigate the possible influence of blending technique on antibacterial properties. Only some differences were observed between gentamicin manually added and commercial ones, in the release curves, while the antibacterial effect and the mechanical properties seem to not feel the blending technique. Highlights: • The efficacy of commercially and manually mixed antibiotic-loaded cements is studied. • Exhaustive mechanical, drug release and antibacterial studies are carried out. • The blending technique does not affect the antibacterial and mechanical properties. • The blending process influences only the release curve, not the released drug amount.

  18. Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy

    International Nuclear Information System (INIS)

    Miola, Marta; Bistolfi, Alessandro; Valsania, Maria Carmen; Bianco, Carlotta; Fucale, Giacomo; Verné, Enrica

    2013-01-01

    An in vitro study was carried out in order to investigate the antibiotic release mechanism and the antibacterial properties of commercially (Palacos® R + G and Palacos® LV + G) and manually (Palacos® R + GM and Palacos® LV + GM) blended gentamicin-loaded bone cements. Samples were characterized by means of scanning electron microscopy (SEM) and compression strength was evaluated. The antibiotic release was investigated by dipping sample in simulated body fluid (SBF) and periodically analyzing the solution by means of high pressure liquid chromatography (HPLC). Different antibacterial tests were performed to investigate the possible influence of blending technique on antibacterial properties. Only some differences were observed between gentamicin manually added and commercial ones, in the release curves, while the antibacterial effect and the mechanical properties seem to not feel the blending technique. Highlights: • The efficacy of commercially and manually mixed antibiotic-loaded cements is studied. • Exhaustive mechanical, drug release and antibacterial studies are carried out. • The blending technique does not affect the antibacterial and mechanical properties. • The blending process influences only the release curve, not the released drug amount

  19. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  20. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  1. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  2. Effect of sustained-release isosorbide dinitrate on post-prandial gastric emptying and gastroduodenal motility in healthy humans

    DEFF Research Database (Denmark)

    Madsen, J L; Rasmussen, S L; Linnet, J

    2004-01-01

    Nitric oxide (NO) is an inhibitory neurotransmitter released by non-adrenergic and non-cholinergic neurons that innervate the smooth muscles of the gastrointestinal tract. We examined whether NO, derived from a sustained-release preparation of isosorbide dinitrate, influenced gastric emptying and...

  3. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    Science.gov (United States)

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2018-01-01

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  4. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2015-07-01

    Full Text Available The aim of the study was to taste mask ciprofloxacin (CP by using ion-exchange resins (IERs followed by sustain release of CP by forming interpenetrating polymer network (IPN. IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised. Drug-resin complexes (DRCs with three different ratios of drug to IERs (1:1, 1:2, 1:4 were prepared & evaluated for taste masking by following in vivo and in vitro methods. Human volunteers graded ADC 1:4, acrylic acid-divinyl benzene (ADC-3 resin as tasteless. Characterization studies such as FTIR, SEM, DSC, P-XRD differentiated ADC 1:4, from physical mixture (PM 1:4 and confirmed the formation of complex. In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid (SGF i.e. pH 1.2. IPN beads were prepared with ADC 1:4 by using sodium alginate (AL and sodium alginate-chitosan (AL-CS for sustain release of CP at SGF pH and followed by simulated intestinal fluid (SIF i.e. pH 7.4. FTIR spectra confirmed the formation of IPN beads. The release of CP was sustain at SGF pH (75%. The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.

  5. Heat shock protein 72: release and biological significance during exercise.

    Science.gov (United States)

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  6. Influence of Natural, Synthetic Polymers and Fillers on sustained release matrix tablets of Pregabalin

    OpenAIRE

    Vijaya Durga. K; Ashok Kumar. P; Suresh V Kulkarni

    2013-01-01

    The objective of the present study was to develop sustained release matrix tablets of Pregabalin for the treatment of neuropathic pain and epilepsy. The tablets were prepared by wet granulation and formulated using drug with Hydrophilic, hydrophobic, synthetic, natural polymers and 4 different fillers were used. The effect of Polymer concentration, combination and fillers on drug release rate was analyzed for the formulations F-1 to F-17. The tablets were subjected to physicochemical studies,...

  7. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Numpilai, Thanapha [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Muenmee, Suthaporn [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); Witoon, Thongthai, E-mail: fengttwi@ku.ac.th [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); NANOTEC-KU-Center of Excellence on Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand)

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N{sub 2}-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  8. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    International Nuclear Information System (INIS)

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-01-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N 2 -sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  9. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  10. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    Science.gov (United States)

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  12. Low Molecular Weight Glucosamine/L-lactide Copolymers as Potential Carriers for the Development of a Sustained Rifampicin Release System: Mycobacterium Smegmatis as a Tuberculosis Model

    Science.gov (United States)

    Ragusa, Jorge Alejandro

    Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged release (>14 days) of RIF from these particles is demonstrated. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism, and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) (reference material) particles did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated an increment in cell death as particle dose increased, but was not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. GluN-LLA particles led to higher uptakes than the PLA particles. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and the particles showed a favorable long term drug release effect in killing intracellular bacteria compared to free RIF. The studies presented and discussed in this dissertation

  13. Dexamethasone-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles for controlled release

    International Nuclear Information System (INIS)

    Riekes, Manoela Klueppel; Paula, Josiane Padilha de; Farago, Paulo Vitor; Zawadzki, Sonia Faria

    2009-01-01

    Dexamethasone (DEX) has been widely used for the treatment of ulcerative colitis. The aim of the present study was to obtain DEX-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) microparticles prepared by simple emulsion/solvent evaporation method. The drug loading and the encapsulation efficiency were determined by a previously validated UV method at 233 nm. Morphological, spectroscopical and dissolution analyses were also performed. The microparticles (formulation F no. 0, F no. 1 and F no. 2) were successfully obtained as off-white powders. A drug loading of 92.27 mg.g -1 and 218.54 mg.g -1 and an encapsulation efficiency of 93.96 % and 87.43 % were respectively observed for F no. 1 and F no. 2. Particles showed spherical and rough aspect by SEM. X-ray diffraction analysis demonstrated that the encapsulation reduced the drug crystallinity. FTIR spectra showed that no chemical bonding occurred between PHBV and DEX. Drug-loaded microparticles revealed controlled release profiles compared to pure DEX. (author)

  14. Fission gas release behavior of MOX fuels under simulated daily-load-follow operation condition. IFA-554/555 test evaluation with FASTGRASS code

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2008-03-01

    IFA-554/555 load-follow tests were performed in HALDEN reactor (HBWR) to study the MOX fuel behavior under the daily-load-follow operation condition in the framework of ATR-MOX fuel development in JAEA. IFA-554/555 rig had the instruments of rod inner pressure, fuel center temperature, fuel stack elongation, and cladding elongation. Although the daily-load-follow operation in nuclear power plant is one of the available options for economical improvement, the power change in a short period in this operation causes the change of thermal and mechanical irradiation conditions. In this report, FP gas release behavior of MOX fuel rod was evaluated under the daily-load-follow operation condition with the examination data from IFA-554/555 by using the computation code 'FASTGRASS'. From the computation results of FASTGRASS code which could compute the FP gas release behavior under the transient condition, it could be concluded that FP gas was released due to the relaxation of fuel pellet inner stress and pellet temperature increase, which were caused by the cyclic power change during the daily-load-follow operation. In addition, since the amount of released FP gas decreased during the steady operation after the daily-load-follow, it could be mentioned that the total of FP gas release at the end of life with the daily-load-follow is not so much different from that without the daily-load-follow. (author)

  15. Polymeric nanoparticles loaded with the 3,5,3'-triiodothyroacetic acid (Triac), a thyroid hormone: factorial design, characterization, and release kinetics.

    Science.gov (United States)

    Dos Santos, Karen C; da Silva, Maria Fatima Gf; Pereira-Filho, Edenir R; Fernandes, Joao B; Polikarpov, Igor; Forim, Moacir R

    2012-01-01

    This present investigation deals with the development and optimization of polymeric nanoparticle systems loaded with 3,5,3'-triiodothyroacetic acid (Triac). A 2(11-6) fractional factorial design and another 2(2) factorial design were used to study the contrasts on particle size distribution, morphology, surface charge, drug content, entrapment efficiency, and in vitro drug release profiles. The independent variables were the concentration of Triac, type and quantity of both polymer and oil, quantity of Span™ 60 and Tween® 80, volume of solvent and water, and velocity of both magnetic stirring and the transfer of the organic phase into the aqueous solution. The results of optimized formulations showed a narrow size distribution with a polydispersity index lower than 0.200. The particle sizes were on average 159.6 nm and 285.6 nm for nanospheres and nanocapsules, respectively. The zeta potential was higher than 20 mV (in module) and the entrapment efficiency was nearly 100%. A high-performance liquid chromatography method was developed, validated, and efficiently applied to Triac quantification in colloidal suspension. The main independent variables were the type and quantity of the polymer and oil. In vitro drug release profile depicted several features to sustain Triac release. Different formulations showed various release rates indicating an interaction between Triac and other formulation compounds such as polymer and/or oil quantity. Two different models were identified (biexponential and monoexponential) that allowed the control of both the release rate and Triac concentration. Thus, the prepared nanoparticles described here may be of clinical importance in delivering Triac for thyroid treatment.

  16. Inclusion of cefalexin in SBA-15 mesoporus material and release property

    International Nuclear Information System (INIS)

    Zhai, Qing-Zhou

    2012-01-01

    SBA-15 (Santa Barbara Amorphous-15) is a high ordered mesoporous material. It has the advantages of a non-toxic property, good hydrothermal stability and thermal stability, etc. Inside inner surface a lot of silanols exist. Pore diameter size is uniform and pore size distribution is narrow. This structural feature makes SBA-15 have a higher loading drug amount and be able to effectively extend the drug release cycle. In this paper, polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol was used as template and tetraethyl orthosilicate was used as silica source to prepare SBA-15 by hydrothermal synthesis method. Cefalexin was included in SBA-15 and the included cefalexin drug content was 158.72 mg/g. The composite materials were characterized by using chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared (IR) spectroscopy, and low temperature nitrogen adsorption–desorption. The results showed that cefalexin had been successfully included in host SBA-15 pore channels. Rational analyses of the release processes of cefalexin drug from the pores of SBA-15 to the simulated body fluid, simulated gastric juice and simulated intestinal fluid were made and sustained-release effects of the drug in complex system were studied. The results showed that in simulated body fluid within 1–5 h cefalexin was fast released and the cumulative release reached 50.00% at 5 h. In 15–20 h, the sustained release speed of cefalexin drug in the composite material decreased and the sustained-release cumulative amount reached 99.87% at 20 h. The release of cefalexin was basically complete. In simulated gastric fluid, composite material sustained-release ended at 4 h, the cumulative sustained release ratio reaching 26.10%. In simulated gastric fluid, the sustained-release was complete at 7 h, the cumulative sustained release ratio reaching 32.46%. The composite material of SBA-15 and cefalexin

  17. Thermal and Isothermal Methods in Development of Sustained Release Dosage Forms of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Dimple Chopra

    2008-01-01

    Full Text Available Differential scanning calorimetry (DSC is a rapid and convenient and conclusive method of screening drug-polymer blend during preformulation studies as it allows polymer incompatibility to be established instantaneously. Various batches of matrix tablets of ketorolac tromethamine (KTM with a series of compatible polymers were prepared. Batches of tablets which gave desired sustained release profile were subjected to stability testing according to ICH guidelines. The analysis for drug content was done using high performance liquid chromatography (HPLC method. The results revealed that there was no statistically significant change in drug content after storage of matrix tablets at elevated temperature of 40°C and 75% relative humidity. From our study we conclude that with careful selection of different polymers and their combinations, a stable sustained release oral dosage form of ketorolac tromethamine can be achieved.

  18. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  19. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide Hydrogels for Transdermal Delivery

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2017-07-01

    Full Text Available Novel poly (ethylene oxide (PEO hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID, diclofenac sodium (DIC and ibuprofen (IBU via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM, swelling studies, differential scanning calorimetry (DSC, fourier transform infrared spectroscopy (FT-IR, tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.

  20. Tritium surface loading due to contamination of rainwater from atmospheric release at NAPS

    International Nuclear Information System (INIS)

    Sharma, L.N.; Dube, B.; Varakhedkar, V.K.

    2001-01-01

    Annual tritium (HTO) surface loading has been measured and calculated for the year 1998-99 within 0.8 km distance from 145m high stack of Narora Atomic Power Station (NAPS) at eight locations in different directions. The technique for measured values consists of the summation of product of tritium concentration (Bq/l) in daily rainfall samples and daily rainfall (mm) whereas that for calculated values having the use of prevailing meteorological conditions and average tritium release rate during a year. The ratios of measured and calculated values of tritium surface loading during the years 1998-99 are found to be in the range of 0.18 to 6.97. Tritium surface loading studies at NAPS reveal that a fraction 1.7E-03 of total annual tritium released through stack gets deposited on the surface due to washout / rainout of plume within 0.8 km radial distance from stack. The range of deposition velocity, V w (m.s - 1 ) i.e the ratio of annual tritium surface loading W(Bq.m - 2 . s - 1 ) and annual mean tritium concentration in air, χo(Bq.m - 3) at three locations for the years 1998-99 is found to be 5.59E-04 to 5.99E-03 ms - 1 . The average value for wet deposition velocity V bar w for NAPS site is estimated as 2.92E-03 m.s - 1. (author)

  1. Electrospinning of calcium phosphate-poly(D,L-lactic acid nanofibers for sustained release of water-soluble drug and fast mineralization

    Directory of Open Access Journals (Sweden)

    Fu QW

    2016-10-01

    to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. Keywords: calcium phosphate, water-soluble drug, nanofibers, drug release, electrospinning

  2. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  3. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

    International Nuclear Information System (INIS)

    Tan Zhonghua

    2003-01-01

    Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

  4. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.

    Science.gov (United States)

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2013-04-22

    Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave-assisted hydrothermal method. The as-obtained products are characterized by powder X-ray diffraction (XRD), Fourier-transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer-Emmett-Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8-1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m(2) g(-1) and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared HAP porous hollow microspheres show a relatively high drug-loading capacity and protein-adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as-prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Release of proteins via ion exchange from albumin-heparin microspheres

    NARCIS (Netherlands)

    Kwon, Glen S.; Bae, You Han; Cremers, H.F.M.; Cremers, Harry; Feijen, Jan; Kim, Sung Wan

    1992-01-01

    Albumin-heparin and albumin microspheres were prepared as ion exchange gels for the controlled release of positively charged polypeptides and proteins. The adsorption isotherms of chicken egg and human lysozyme, as model proteins, on microspheres were obtained. An adsorption isotherm of chicken egg

  6. Evaluation of poly(2-ethyl-2-oxazoline) containing copolymer networks of varied composition as sustained metoprolol tartrate delivery systems.

    Science.gov (United States)

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-08-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. Swelling kinetics of SCNs in various media was followed, and the conditions for effective MT loading were specified. MT-loaded SCNs with drug content up to 80 wt.% were produced. The release kinetics of metoprolol tartrate from the systems was studied and it was shown that the conetworks of different structure and composition are able to sustain the metoprolol tartrate release without additional excipients.

  7. Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Curcumin was loaded onto starch nanoparticles by using in situ nanoprecipitation method and water-in-oil microemulsion system. Curcumin loaded starch nanoparticles exhibited enhanced solubility in aqueous solution as compared to free curcumin. Effects of formulation parameters such as types of reaction medium, types of surfactant, surfactant concentrations, oil/ethanol ratios, loading time, and initial curcumin concentration were found to affect the particle size and loading efficiency (LF of the curcumin loaded starch nanoparticles. Under optimum conditions, curcumin loaded starch nanoparticles with mean particles size of 87 nm and maximum loading efficiency of 78% were achieved. Curcumin was observed to release out from starch nanoparticles in a sustained way under physiological pH over a period of 10 days.

  8. Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells.

    Science.gov (United States)

    Menale, Ciro; Piccolo, Maria Teresa; Favicchia, Ilaria; Aruta, Maria Grazia; Baldi, Alfonso; Nicolucci, Carla; Barba, Vincenzo; Mita, Damiano Gustavo; Crispi, Stefania; Diano, Nadia

    2015-02-01

    Combined treatment based on cisplatin-loaded Poly(D,L-lactic-co-glicolic)acid (PLGA) nanoparticles (NP-C) plus the NSAID piroxicam was used as novel treatment for mesothelioma to reduce side effects related to cisplatin toxicity. PLGA nanoparticles were prepared by double emulsion solvent evaporation method. Particle size, drug release profile and in vitro cellular uptake were characterized by TEM, DLS, LC/MS and fluorescence microscopy. MSTO-211H cell line was used to analyse NP-C biological efficacy by FACS and protein analysis. Cisplatin was encapsulated in 197 nm PLGA nanoparticles with 8.2% drug loading efficiency and 47% encapsulation efficiency. Cisplatin delivery from nanoparticles reaches 80% of total encapsulated drug in 14 days following a triphasic trend. PLGA nanoparticles in MSTO-211H cells were localized in the perinuclear space NP-C in combination with piroxicam induced apoptosis using a final cisplatin concentration 1.75 fold less than free drug. Delivered cisplatin cooperated with piroxicam in modulating cell cycle regulators as caspase-3, p53 and p21. Cisplatin loaded PLGA nanoparticles plus piroxicam showed a good efficacy in exerting cytotoxic activity and inducing the same molecular apoptotic effects of the free drugs. Sustained cisplatin release allowed to use less amount of drug, decreasing toxic side effects. This novel approach could represent a new strategy for mesothelioma treatment.

  9. Randomized controlled trial of a protein substitute with prolonged release on the protein status of children with phenylketonuria.

    Science.gov (United States)

    Giovannini, Marcello; Riva, Enrica; Salvatici, Elisabetta; Cefalo, Graziella; Radaelli, Giovanni

    2014-01-01

    To examine whether a phenylalanine-free protein substitute with prolonged release may be beneficial to the protein status of children with phenylketonuria (PKU) compared to conventional substitutes. Sixty children with PKU, 7 to 16 years of age, were randomly allocated to receive either a prolonged-release (test) or the current conventional protein substitute for 30 days. Subjects were additionally sex and age matched with 60 subjects with mild hyperphenylalaninemia and 60 unaffected subjects. The protein status in children with PKU was assessed by albumin, transthyretin, and retinol-binding protein (RBP), and changes throughout the trial period were the primary outcome measures. Children with PKU did not differ in anthropometry from children with mild hyperphenylalaninemia or unaffected children but they ingested lower amounts of proteins (p phenylketonuria.

  10. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles.

    Science.gov (United States)

    Li, Kang-Kang; Yin, Shou-Wei; Yang, Xiao-Quan; Tang, Chuan-He; Wei, Zi-Hao

    2012-11-21

    The objective of this research was to fabricate novel antimicrobial films based on zein colloidal nanoparticles coated with sodium caseinate (SC), an emulsifier/stabilizer. Thymol-loaded zein-SC nanoparticles were prepared using an antisolvent technique, with the average particle size and zeta potential about 200 ± 20 nm and -40 mV, respectively. Zein-SC nanoparticle-based films exhibited higher mechanical resistance and water barrier capacity than the SC films and concomitant good extensibility as compared with zein films. Thymol loadings endowed zein-SC nanoparticle-based films with antimicrobial activity against Escherichia coli and Salmonella as well as DPPH radical scavenging activity. Water vapor permeability, microstructure, mechanical, and controlled release properties of the films were evaluated. The possible relationship between some selected physical properties and microstructure were also discussed. Atomic force microscopy (AFM) analysis indicated that thymol loadings resulted in the emergence phenomena of the nanoparticles to form large particles or packed structure, consisting of clusters of nanoparticles, within the film matrix, in a thymol loading dependent manner. The appearance of large particles or an agglomerate of particles may weaken the compactness of protein network of films and thus impair the water barrier capacity, mechanical resistance, and extensibility of the films. The release kinetics of thymol from nanoparticle-based films can be described as a two-step biphasic process, that is, an initial burst effect followed by subsequent slower release, and zein-SC nanoparticles within the films matrices gave them the ability to sustain the release of thymol. In addition, a schematic illustration of the formation pathway of zein-SC nanoparticle-based films with or without thymol was proposed to illuminate the possible relationship between some selected physical properties and the microstructure of the films.

  11. The impact of load shedding on gender relations in heterosexual households in Mkoba north, Gweru, Zimbabwe: Implications for sustainable development

    Directory of Open Access Journals (Sweden)

    Manuku Mukoni

    2012-09-01

    Full Text Available This study explored the impact of load shedding on gender relations in heterosexual households. 20 couples were selected through judgmental sampling that was followed by network referencing; bringing the sample to 40 participants. Study was descriptive in nature. Questionnaires and interviews were used to collect data. Study reveals that load shedding have ripple effects in the social fabric of sustainable development through its impacts on gender relations. Load shedding is proving to be reproducing and maintaining gender relations of inequality, thus holding back sustainable development. Women are deprived control of areas that traditional belongs to them like the decision and control of energy use in the household giving men more power over women. Load shedding is increasing men’s time in the public sphere while women are tied more to the private sphere. For sustainable development to be achieved, household relationships should uphold the principles of sustainable development and gender equality is one of them. Empowerment of women and men in household energy uses will aid in opening up their ‘functioning space’. An understanding and appreciation of gender equality in the household will help men and women to be influential in the larger society leading to sustainable development.

  12. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system.

    Science.gov (United States)

    Barahuie, Farahnaz; Dorniani, Dena; Saifullah, Bullo; Gothai, Sivapragasam; Hussein, Mohd Zobir; Pandurangan, Ashok Kumar; Arulselvan, Palanisamy; Norhaizan, Mohd Esa

    2017-01-01

    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.

  13. Application of 5-Fluorouracil-Polycaprolactone Sustained-Release Film in Ahmed Glaucoma Valve Implantation Inhibits Postoperative Bleb Scarring in Rabbit Eyes.

    Science.gov (United States)

    Bi, Xiu-Zeng; Pan, Wei-Hua; Yu, Xin-Ping; Song, Zong-Ming; Ren, Zeng-Jin; Sun, Min; Li, Cong-Hui; Nan, Kai-Hui

    2015-01-01

    This study was designed to investigate whether 5-fluorouracil (5-Fu)-polycaprolactone sustained-release film in Ahmed glaucoma valve implantation inhibits postoperative bleb scarring in rabbit eyes. Eighteen New Zealand white rabbits were randomly divided into three groups (A, B and C; n = 6 per group). Group A received combined 5-Fu-polycaprolactone sustained-release film application and Ahmed glaucoma valve implantation, group B received local infiltration of 5-Fu and Ahmed glaucoma valve implantation, and group C received Ahmed glaucoma valve implantation. Postoperative observations were made of the anterior segment, intraocular pressure, central anterior chamber depth, blebs, drainage tube, and accompanying ciliary body detachment. The pathology of the blebs and surrounding tissues were observed at month 3 postoperatively. We revealed that the 5-Fu-polycaprolactone sustained-release film maintained a release concentration range of 13.7 ± 0.12 to 37.41 ± 0.47 μg/ml over three months in vitro. Postoperatively, diffuse blebs with ridges were found in all eyes in group A, two blebs were observed in group B, and no bleb formation was present in group C. The postoperative central anterior chamber depth in group A was significantly less than that of the other two groups. The postoperative intraocular pressure of group A stabilized at 6.33-8.67 mmHg, whereas that of group C gradually remained at 7.55-10.02 mmHg. The histopathology showed that the fibrous tissue thickness of the blebs in group A was significantly thinner than that of the other groups. We conclude that the 5-Fu-polycaprolactone sustained-release film had a sustained drug release effect, which promoted the inhibition of bleb scarring after Ahmed glaucoma valve implantation.

  14. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  15. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Institute of Scientific and Technical Information of China (English)

    Mathew JOY; Srividhya J.IYENGAR; Jui CHAKRABORTY; Swapankumar GHOSH

    2017-01-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-AI layered double hydroxide (LDH) nanostructure by varying the synthetic conditions.The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies,size and stability of their aqueous solutions.We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (DicNa)) loading and release processes.Hexagonal plate-like crystals show sustained release with ~90% of the drug from the matrix in a week,suggesting the applicability of LDH nanohybrids in sustained drug delivery systems.The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process.LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension,as studied by photon correlation spectroscopy.

  16. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  17. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  18. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  19. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  20. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels

    International Nuclear Information System (INIS)

    Tang Shuo; Li Jingfeng; Teng Yu; Guo Xiaodong; Zhao Jingjing; Xu Shuyun; Quan Daping

    2012-01-01

    Bone morphogenetic protein 2 (BMP-2) is the most powerful osteogenic factor; its effectiveness in enhancing osteoblastic activation has been confirmed both in vitro and in vivo. We developed a novel peptide (designated P24) derived from the ‘knuckle’ epitope of BMP-2 and found it also had osteogenic bioactivity to some extent. The main objective of this study was to develop a controlled release system based on poly(trimethylene carbonate)–F127–poly(trimethylene carbonate) (PTMC 11 -F127-PTMC 11 ) hydrogels for the P24 peptide, to promote bone formation. By varying the copolymer concentrations, we demonstrated that P24/PTMC 11 -F127-PTMC 11 hydrogels were an efficient system for the sustained release of P24 over 21–35 days. The P24-loaded hydrogels elevated alkaline phosphatase activity and promoted the expression of osteocalcin mRNA in bone marrow stromal cells (BMSCs) in vitro. Radiographic and histological examination showed that P24-loaded hydrogels could induce more effective ectopic bone formation in vivo than P24-free hydrogels. These results indicate that the PTMC 11 -F127-PTMC 11 hydrogel is a suitable carrier for the controlled release of P24, and is a promising injectable biomaterial for the induction of bone regeneration. (paper)

  1. Sustained-release bupropion versus naltrexone in the treatment of pathological gambling: a preliminary blind-rater study.

    Science.gov (United States)

    Dannon, Pinhas N; Lowengrub, Katherine; Musin, Ernest; Gonopolski, Yehudit; Kotler, Moshe

    2005-12-01

    Pathological gambling (PG) is a relatively common and highly disabling impulse control disorder. A range of psychotherapeutic agents, including selective serotonin reuptake inhibitors, mood stabilizers, and opioid antagonists, has been shown to be effective in the treatment of PG. The use of selective serotonin reuptake inhibitors and opioid antagonists for PG is consistent with the observation that PG shares features of both the obsessive-compulsive spectrum disorders and addictive disorders. The aim of the study is to compare the effectiveness of sustained-release bupropion versus naltrexone in the treatment of PG. Thirty-six male pathological gamblers were enrolled in our study. A comprehensive psychiatric diagnostic evaluation was performed at baseline on all patients, and patients were screened for symptoms of gambling, depression, and anxiety using the South Oaks Gambling Screen, the Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the Clinical Global Impression-Severity Scale. In addition, the patients completed self-report questionnaires about their demographic status. Patients were randomized in 2 groups and received either naltrexone (n = 19) or sustained-release bupropion (n = 17) for 12 weeks in a parallel fashion. Treatment response was monitored using the Clinical Global Impression-Improvement Scale which was performed at weeks 2, 4, 8, and 12. Patients were also assessed for the presence of gambling behavior via an unstructured interview, which was also performed at weeks 2, 4, 6, 8, and 12. Raters were blind to the study treatment. The majority of patients responded well to the drug treatment. Twelve of 17 patients in the sustained-release bupropion group completed the 12-week study, and 13 of 19 naltrexone patients completed the study. Nine (75%) of the 12 completers were rated as full responders in the sustained-release bupropion group versus 10 (76%) of 12 in the naltrexone group. Three (25%) of 12 completers in the

  2. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles

    Science.gov (United States)

    Swain, Sanjaya Kumar; Sarkar, Debasish

    2013-12-01

    Three different spherical, rod and fibrous morphologies of hydroxyapatite (HA) nanoparticles have been prepared through control over the processing parameters like temperature, pH and Ca:P ratio. Protein adsorption/release with respect to HA nanoparticle morphologies are investigated using model protein bovine serum albumin (BSA). BSA adsorption on HA nanoparticles follows Langmuir adsorption isotherm. Thermal analysis and FT-IR spectrum confirms the BSA adhesion and retention of their secondary structure. High surface area with high Ca:P ratio nanorod adsorbs relatively more amount (28 mg BSA/gm of nanorod HA) of BSA within 48 h in comparison with counterpart fibroid and spherical morphologies. Slow and steady BSA release (75 wt% of adsorbed BSA in 96 h) from nanorod HA is found as futuristic drug delivery media.

  3. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil.

    Science.gov (United States)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-09-01

    In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1 H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    Science.gov (United States)

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    Directory of Open Access Journals (Sweden)

    Zeng SG

    2015-05-01

    Full Text Available Shuguang Zeng,1,* Manwen Ye,1,2,* Junqi Qiu,1 Wei Fang,1 Mingdeng Rong,1 Zehong Guo,1 Wenfen Gao11Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, 2Department of Stomatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: We report the effects of distinct concentrations of genipin and silk fibroin (SF:chitosan (CS ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA, and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 µm to 147 µm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the

  6. Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: morphology and drug release.

    Science.gov (United States)

    Aquino, Rita P; Auriemma, Giulia; d'Amore, Matteo; D'Ursi, Anna Maria; Mencherini, Teresa; Del Gaudio, Pasquale

    2012-07-01

    This paper presents a tandem technique, based on the combination of prilling and microwave (MW) assisted treatments, to produce biodegradable alginate carriers of piroxicam with different drug controlled release behaviours. Results showed that alginate/piroxicam beads demonstrated high encapsulation efficiency and very narrow dimensional distribution. Beads dried by MW retained shape and size distribution of the hydrated particles while drying rate was strongly increased compared to convective drying processes. Moreover, different MW irradiation regimes promoted interactions between the drug and alginate matrix, affected drug polymorphism as well as inner and surface matrix structure leading to different piroxicam release profiles. High level MW irradiation led to beads with highly porous and swellable matrix able to release piroxicam in few minutes in the intestine while convective drying produced gastro-resistant beads that exhibit sustained piroxicam release (total release in 5.5h) in intestinal environment. On these results the tandem technique prilling/MW irradiation appears to be promising to obtain alginate carrier with tailored NSAIDs release depending on drug characteristics and MW irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cerium-loaded algae exoskeletons for active corrosion protection of coated AA2024-T3

    International Nuclear Information System (INIS)

    Denissen, Paul J.; Garcia, Santiago J.

    2017-01-01

    Highlights: •Nanoporous diatom algae exoskeletons allow for local inhibitor loading. •Cerium loaded exoskeletons show diffusion controlled release from coatings. •In-situ opto-electrochemical analysis allows for accurate corrosion evaluation. •Raman spectroscopy allows for precise identification of Ce at IMs in a scribe. •High levels of protection were obtained with the Ce-diatom coatings. -- Abstract: The use of micron sized nanoporous diatom algae exoskeletons for inhibitor storage and sustained corrosion protection of coated aluminium structures upon damage is presented. In this concept the algae exoskeleton allows local inhibitor loading, limits the interaction between the cerium and the epoxy/amine coating and allows for diffusion-controlled release of the inhibitor when needed. The inhibitor release and corrosion protection by loaded exoskeletons was evaluated by UV/Vis spectrometry, a home-built optical-electrochemical setup, and Raman spectroscopy. Although this concept has been proven for a cerium-epoxy-aluminium alloy system the main underlying principle can be extrapolated to other inhibitor-coating-metal systems.

  8. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, Vladimir, E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)

    2016-06-15

    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  9. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yang; Wu, Chao, E-mail: wuchao27@126.com; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-02-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption.

  10. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    International Nuclear Information System (INIS)

    Qiu, Yang; Wu, Chao; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-01-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption

  11. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate.

    Science.gov (United States)

    Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen

    2015-06-03

    Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.

  12. Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats.

    Science.gov (United States)

    Salem, Heba F

    2010-11-10

    The production of an intramuscular (IM) injection of natural progesterone would provide a safer solution than using semi synthetic progesterone. However, disadvantages such as low solubility and a short half life prevent the use of natural progesterone. In this study, we formulated a sustained release form of natural progesterone to be given as IM injection. A progesterone nanosuspension (PNS) was first developed and then dispersed in a thermosensitive gel matrix. The selected nanoparticles showed an average particle size of 267 nm and a zeta potential approaching-41 mV. The in vitro release profile of PNS from the F127 plus methyl cellulose gel followed zero order kinetics and correlated linearly with the weight percentage of gel dissolved, demonstrating that the overall rate of release of PNS is controlled by dissolution of the pluronic F127/methyl cellulose (MC) gel (r² > 0.99). The pharmacokinetic parameters of the PNS (6 mg/mL) in pluronic F127/MC gel were evaluated in comparison with the control progesterone suspension. After the administration of PNS in F127/MC gel into the rats, a maximum serum concentration of 22.1 ± 1.9 ng/mL was reached at a T(max) of 4.05 ± 0.1 h. The terminal half life was 12.7 ± 0.8 h. The area under the curve AUC₀₋∞ of the injected formula was 452.75 ± 42.8 ng·h/mL and the total mean residence time was 18.57 ± 1.44 h. The PNS in gel was significantly different from the control in rate and extent at P < 0.001. The natural progesterone which was nanosized and formulated in a thermosensitive gel significantly sustained the action of natural progesterone so that it could be injected every 36 h instead of every day. Moreover, this formula is expected to provide a much safer choice than the use of semi-synthetic progesterone.

  13. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  14. Nefopam hydrochloride loaded microspheres for post-operative pain management: synthesis, physicochemical characterization and in-vivo evaluation.

    Science.gov (United States)

    Sharma, Neelam; Arora, Sandeep; Madan, Jitender

    2018-02-01

    Once-daily oral dosage of nefopam hydrochloride loaded sustained release microspheres (NPH-MS) was investigated as novel therapeutic strategy for post-operative pain management. Microspheres were synthesized using poly-3-hydroxybutyrate and poly-(ɛ-caprolactone) by double emulsion solvent evaporation technique. NPH-MS were characterized through FTIR, PXRD and SEM. In-vitro drug release study revealed sustained behavior till 24 h. Haemolysis was pain model, reversal of mechanical allodynia and thermal hyperalgesia by NPH-MS was statistically significant (p < .001) as compared with NPH till 24 h post-dose.

  15. Natural gums and modified natural gums as sustained-release carriers.

    Science.gov (United States)

    Bhardwaj, T R; Kanwar, M; Lal, R; Gupta, A

    2000-10-01

    Although natural gums and their derivatives are used widely in pharmaceutical dosage forms, their use as biodegradable polymeric materials to deliver bioactive agents has been hampered by the synthetic materials. These natural polysaccharides do hold advantages over the synthetic polymers, generally because they are nontoxic, less expensive, and freely available. Natural gums can also be modified to have tailor-made materials for drug delivery systems and thus can compete with the synthetic biodegradable excipients available in the market. In this review, recent developments in the area of natural gums and their derivatives as carriers in the sustained release of drugs are explored.

  16. Loading and release mechanisms of a biocide in polystyrene-block-poly(acrylic acid) block copolymer micelles.

    Science.gov (United States)

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2008-07-24

    The kinetics of loading of polystyrene197-block-poly(acrylic acid)47 (PS197-b-PAA47) micelles, suspended in water, with thiocyanomethylthiobenzothiazole biocide and its subsequent release were investigated. Loading of the micelles was found to be a two-step process. First, the surface of the PS core of the micelles is saturated with biocide, with a rate determined by the transfer of solid biocide to micelles during transient micelle-biocide contacts. Next, the biocide penetrates as a front into the micelles, lowering the Tg in the process (non-Fickian case II diffusion). The slow rate of release is governed by the height of the energy barrier that a biocide molecule must overcome to pass from PS into water, resulting in a uniform biocide concentration within the micelle, until Tg is increased to the point that diffusion inside the micelles becomes very slow. Maximum loading of biocide into micelles is approximately 30% (w/w) and is achieved in 1 h. From partition experiments, it can be concluded that the biocide has a similar preference for polystyrene as for ethylbenzene over water, implying that the maximum loading is governed by thermodynamics.

  17. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    Science.gov (United States)

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  19. Based Indomethacin Sustained-Release Tablets

    African Journals Online (AJOL)

    Owing to the short biological half-life of this drug, a sustained ... tendency. This work is aimed at formulating sustained ... Chemie GmbH, Germany), Phospholipon® 90H. (Phospholipid ... weighed out in an analytical balance and dispersed in ...

  20. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  1. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine-poly(ethylene glycol copolymers complexed to oligonucleotides

    Directory of Open Access Journals (Sweden)

    Wheatley Margaret A

    2009-04-01

    Full Text Available Abstract Antisense oligonucleotides (AOs have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine (PEI and non-ionic poly(ethylene glycol (PEG form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

  2. Rifapentine-linezolid-loaded PLGA microspheres for interventional therapy of cavitary pulmonary tuberculosis: preparation and in vitro characterization.

    Science.gov (United States)

    Huang, Jieyun; Chen, Zhi; Li, Ying; Li, Li; Zhang, Guangyu

    2017-01-01

    In this study, we aimed to design controlled-release microspheres for the treatment of cavitary pulmonary tuberculosis (TB) for solving the issues of poor drug delivery and short duration maintained at effective drug concentration during bronchoscopic interventional therapy. We fabricated rifapentine-linezolid-loaded poly(lactic acid-co-glycolic acid) microspheres (RLPMs) using the oil-in-water emulsion solvent evaporation method and assessed their in vitro release as well as the bronchial mucosal retention characteristics. The microspheres are spherical in shape with a circular concave on the surface. The particle size of RLPMs was 27.38±1.28 μm. The drug loading of rifapentine and linezolid was 18.51±0.26 and 8.42%±0.24%, respectively, while the encapsulation efficiencies were 55.53±0.78 and 16.87%±0.47%, respectively (n=3). During the burst release phase of the in vitro release test, 21.37%±0.68% rifapentine was released in 3 days and 43.56%±2.54% linezolid was released in 1 day. Then, both the drugs entered the sustained release phase. Finally, the cumulative percentage release of rifapentine and linezolid in 14 days was 27.61±1.52 and 51.01%±3.31%, respectively (n=3). Bronchoscopic observation revealed that the controlled-release microspheres could slowly release the drugs and retain them on the surface of bronchial mucosa of canines for 20 days. These results indicated that the fabricated microspheres exhibited a significant sustained release effect and could effectively retain the drugs on the surface of bronchial mucosa. Therefore, this study provides a theoretical and practical foundation for the development of fabricated microspheres loaded with multiple anti-TB drugs in the bronchoscopic interventional therapy of cavity pulmonary TB.

  3. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters.

    Science.gov (United States)

    Wang, Rong; Neoh, Koon Gee; Kang, En-Tang; Tambyah, Paul Anantharajah; Chiong, Edmund

    2015-04-01

    Urinary tract infections constitute a large proportion of nosocomial infections, and the urinary catheter is the most important predisposing factor. Encrustation induced by urease-producing uropathogens like Proteus mirabilis causes further complications. In the present work, a strategy for controllable and sustained release of silver over several weeks has been developed for combating bacterial infection and encrustation in urinary devices. Silver nanoparticles (AgNPs) were first immobilized on polydopamine (PDA) pre-treated silicone catheter surface and this was followed by another PDA coating. The number of AgNP-PDA bilayers could be manipulated to control the amount of silver loaded and its subsequent release. Poly(sulfobetaine methacrylate-co-acrylamide) was then grafted to provide an antifouling outer layer, and to ensure free diffusion of Ag from the surface. The micron-scale combination of an antifouling coating with AgNP-PDA bilayers reduced colonization of the urinary catheter by uropathogens by approximately two orders of magnitude. With one and two AgNP-PDA bilayers, the coated catheter could resist encrustation for 12 and 45 days, respectively, compared with approximately 6 days with the Dover™ silver-coated catheter. Such anti-infective and anti-encrustation catheters can potentially have a large impact on reducing patient morbidity and healthcare expenditure. © 2014 Wiley Periodicals, Inc.

  4. Oral sustained release tablets of zidovudine using binary blends of natural and synthetic polymers.

    Science.gov (United States)

    Emeje, Martins; Olaleye, Olajide; Isimi, Christiana; Fortunak, Joseph; Byrn, Stephen; Kunle, Olobayo; Ofoefule, Sabinus

    2010-01-01

    Oral sustained release matrix tablets of zidovudine (ZDV) were prepared using different types, proportions and blends of carbopol 71G (C71) and a plant gum obtained from Abelmoschus esculentus (AEG). The effect of various formulation factors like polymer proportion, polymer type and pH of the dissolution medium on the in vitro release of the drug was studied, using the half change technique, in 900 ml of dissolution medium, at 100 rpm. Release kinetics were analyzed using Zero-order, Higuchi's square-root and Ritger-Peppas' empirical equations. In vitro release performance as revealed by the time taken for 70% of the drug to be released (t70%), showed that the release rate decreased with increase in polymer proportion. Matrix tablets containing 10 and 20% AEG were found to exhibit immediate-release characteristics. Matrix tablets containing 30% AEG showed t70% value of 204 min and extended the release up to 5 h, while matrix tablets containing 30% carbopol showed t70% value of 234 min and extended the release up to 6 h. Three blends of AEG and C71 at the ratio of 1:2, 2:1 and 1:3 showed t70% values of 132, 312 and 102 min respectively and extended the release up to 8 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed Fickian and anomalous release. Drug release from matrix tablets of zidovudine containing blends of AEG and C71 demonstrates the advantage of blending a natural and synthetic polymer over single polymer use.

  5. Chemokine-Releasing Nanoparticles for Manipulation of the Lymph Node Microenvironment

    Directory of Open Access Journals (Sweden)

    Taissia G. Popova

    2015-03-01

    Full Text Available Chemokines (CKs secreted by the host cells into surrounding tissue establish concentration gradients directing the migration of leukocytes. We propose an in vivo CK gradient remodeling approach based on sustained release of CKs by the crosslinked poly(N-isopropylacrylamide hydrogel open meshwork nano-particles (NPs containing internal crosslinked dye affinity baits for a reversible CK binding and release. The sustained release is based on a new principle of affinity off-rate tuning. The NPs with Cibacron Blue F3G-A and Reactive Blue-4 baits demonstrated a low-micromolar affinity binding to IL-8, MIP-2, and MCP-1 with a half-life of several hours at 37 °C. The capacity of NPs loaded with IL-8 and MIP-1α to increase neutrophil recruitment to lymph nodes (LNs was tested in mice after footpad injection. Fluorescently-labeled NPs used as tracers indicated the delivery into the sub-capsular compartment of draining LNs. The animals administered the CK-loaded NPs demonstrated a widening of the sub-capsular space and a strong LN influx of leukocytes, while mice injected with control NPs without CKs or bolus doses of soluble CKs alone showed only a marginal neutrophil response. This technology provides a new means to therapeutically direct or restore immune cell traffic, and can also be employed for simultaneous therapy delivery.

  6. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β -TCP ceramics

    International Nuclear Information System (INIS)

    Labay, C; Buxadera-Palomero, J; Avilés, M; Canal, C; Ginebra, M P

    2016-01-01

    Beta-tricalcium phosphate ( β -TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β -TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β -TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies. (paper)

  7. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    Science.gov (United States)

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.

  9. Origin of cell surface proteins released from Micrococcus radiodurans by ionizing radiation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1975-01-01

    The exposure of Micrococcus radiodurans to sublethal doses of ionizing radiation causes the release of certain proteins into the surrounding medium. As estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these proteins range from approximately 20,000 to 125,000 daltons. At least some of the proteins, including an exonuclease, have a surface location and appear to originate from the lipid-rich midwall layer. The exonuclease has two functionally distinct locations, one with its active site available to external substrate and a second with the active site masked from the exterior. Ionizing radiation releases both the masked and unmasked activity into the surrounding medium

  10. Tailored sequential drug release from bilayered calcium sulfate composites

    International Nuclear Information System (INIS)

    Orellana, Bryan R.; Puleo, David A.

    2014-01-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  11. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  12. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  13. Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets.

    Science.gov (United States)

    Khamanga, Sandile M; Walker, Roderick B

    2006-01-01

    Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.

  14. Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying.

    Science.gov (United States)

    Kim, Sun J; Kim, Chan W

    2016-02-01

    The purpose of this study was to develop and characterize a sodium hyaluronate microparticle-based sustained release formulation of recombinant human growth hormone (SR-rhGH) prepared by spray-drying. Compared to freeze-drying, spray-dried SR-rhGH showed not only prolonged release profiles but also better particle property and injectability. The results of size-exclusion high-performance liquid chromatography showed that no aggregate was detected, and dimer was just about 2% and also did not increase with increase of inlet temperature up to 150 °C. Meanwhile, the results of reversed-phase high-performance liquid chromatography revealed that related proteins increased slightly from 4.6% at 100 °C to 6.3% at 150 °C. Thermal mapping test proved that product temperature did not become high to cause protein degradation during spray-drying because thermal energy was used for the evaporation of surface moisture of droplets. The structural characterization by peptide mapping, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and circular dichroism revealed that the primary, secondary, and tertiary structures of rhGH in SR-rhGH were highly comparable to those of reference somatropin materials. The biological characterization by rat weight gain and cell proliferation assays provided that bioactivity of SR-rhGH was equivalent to that of native hGH. These data establish that spray-dried SR-rhGH is highly stable by preserving intact rhGH and hyaluronate microparticle-based formulation by spray-drying can be an alternative delivery system for proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release.

    Science.gov (United States)

    Albright, Victoria; Zhuk, Iryna; Wang, Yuhao; Selin, Victor; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C; Sukhishvili, Svetlana A

    2017-10-01

    Self-defensive antibiotic-loaded coatings have shown promise in inhibiting growth of pathogenic bacteria adhering to biomaterial implants and devices, but direct proof that their antibacterial release is triggered by bacterially-induced acidification of the immediate environment under buffered conditions remained elusive. Here, we demonstrate that Staphylococcus aureus and Escherichia coli adhering to such coatings generate highly localized acidification, even in buffered conditions, to activate pH-triggered, self-defensive antibiotic release. To this end, we utilized chemically crosslinked layer-by-layer hydrogel coatings of poly(methacrylic acid) with a covalently attached pH-sensitive SNARF-1 fluorescent label for imaging, and unlabeled-antibiotic (gentamicin or polymyxin B) loaded coatings for antibacterial studies. Local acidification of the coatings induced by S. aureus and E. coli adhering to the coatings was demonstrated by confocal-laser-scanning-microscopy via wavelength-resolved imaging. pH-triggered antibiotic release under static, small volume conditions yielded high bacterial killing efficiencies for S. aureus and E. coli. Gentamicin-loaded films retained their antibacterial activity against S. aureus under fluid flow in buffered conditions. Antibacterial activity increased with the number of polymer layers in the films. Altogether, pH-triggered, self-defensive antibiotic-loaded coatings become activated by highly localized acidification in the immediate environment of an adhering bacterium, offering potential for clinical application with minimized side-effects. Polymeric coatings were created that are able to uptake and selectively release antibiotics upon stimulus by adhering bacteria in order to understand the fundamental mechanisms behind pH-triggered antibiotic release as a potential way to prevent biomaterial-associated infections. Through fluorescent imaging studies, this work importantly shows that adhering bacteria produce highly localized p

  16. A poly({epsilon}-caprolactone) device for sustained release of an anti-glaucoma drug

    Energy Technology Data Exchange (ETDEWEB)

    Natu, Madalina V; De Sousa, HermInio C; Gil, M H [Department of Chemical Engineering, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290, Coimbra (Portugal); Gaspar, Manuel N; Fontes Ribeiro, Carlos A [Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra (Portugal); Correia, IlIdio J; Silva, Daniela, E-mail: hgil@eq.uc.pt [Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2011-04-15

    Implantable dorzolamide-loaded discs were prepared by blending poly({epsilon}-caprolactone), PCL, with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), Lu. By blending, crystallinity, water uptake and mass loss were modified relative to the pure polymers. Burst was diminished by coating the discs with a PCL shell. All samples presented burst release except PCL-coated samples that showed controlled release during 18 days. For PCL-coated samples, barrier control of diffusion coupled with partition control from the core slowed down the release, while for 50/50 Lu/PCL-coated samples, the enhancement in the porosity of the core diminished partition control of drug release. Nonlinear regression analysis suggested that a degradation model fully describes the release curve considering a triphasic release mechanism: the instantaneous diffusion (burst), diffusion and polymer degradation stages. The MTT test indicated that the materials are not cytotoxic for corneal endothelial cells. A good in vitro-in vivo correlation was obtained, with similar amounts of drug released in vitro and in vivo. The discs decreased intraocular pressure (IOP) in normotensive rabbit eyes by 13.0% during 10 days for PCL-coated and by 13.0% during 4 days for 50/50 Lu/PCL-coated samples. The percentages of IOP decrease are similar to those obtained by dorzolamide eyedrop instillation (11.0%).

  17. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation

    Directory of Open Access Journals (Sweden)

    Tiago Henrique Honorato Gatti

    2018-06-01

    Full Text Available Abstract Mucoadhesive nanoparticles are particularly interesting for delivery through nasal or pulmonary routes, as an approach to overcome the mucociliary clearance. Moreover, these nanoparticles are attractive for peptide and protein delivery, particularly for insulin to treat diabetes, as an alternative to conventional parenteral administration. Thus, chitosan, a cationic mucoadhesive polysaccharide found in shells of crustaceans, and the negatively-charged dextran sulfate are able to form nanoparticles through ionic condensation, representing a potential insulin carrier. Herein, chitosan/dextran sulfate nanoparticles at various ratios were prepared for insulin loading. Formulations were characterized for particle size, zeta potential, encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry, and in vitro drug release. Moreover, the interaction with mucin and the cytotoxicity against a lung cell line were studied, which altogether have not been addressed before. Results evidenced that a proper selection of polyelectrolytes is necessary for smaller particle size formation and also the composition and zeta potential impact encapsulation efficiency, which is benefited by the positive charge of chitosan. Insulin remained stable after encapsulation as evidenced by calorimetric assays, and was released in a sustained manner in the first 10 h. Positively-charged nanoparticles based on chitosan/dextran-sulfate at the ratio of 6:4 successfully interacted with mucin, which is a prerequisite for delivery to mucus-containing tissues. Finally, insulin-loaded nanoparticles displayed no cytotoxicity effect against lung cells at tested concentrations, suggesting the potential for further in vivo studies.

  18. Influence of Surface Chemistry on the Release of an Antibacterial Drug from Nanostructured Porous Silicon.

    Science.gov (United States)

    Wang, Mengjia; Hartman, Philip S; Loni, Armando; Canham, Leigh T; Bodiford, Nelli; Coffer, Jeffery L

    2015-06-09

    Nanostructured mesoporous silicon possesses important properties advantageous to drug loading and delivery. For controlled release of the antibacterial drug triclosan, and its associated activity versus Staphylococcus aureus, previous studies investigated the influence of porosity of the silicon matrix. In this work, we focus on the complementary issue of the influence of surface chemistry on such properties, with particular regard to drug loading and release kinetics that can be ideally adjusted by surface modification. Comparison between drug release from as-anodized, hydride-terminated hydrophobic porous silicon and the oxidized hydrophilic counterpart is complicated due to the rapid bioresorption of the former; hence, a hydrophobic interface with long-term biostability is desired, such as can be provided by a relatively long chain octyl moiety. To minimize possible thermal degradation of the surfaces or drug activity during loading of molten drug species, a solution loading method has been investigated. Such studies demonstrate that the ability of porous silicon to act as an effective carrier for sustained delivery of antibacterial agents can be sensitively altered by surface functionalization.

  19. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  20. Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods.

    Science.gov (United States)

    Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin

    2017-01-01

    Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation.

  1. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation.

    Science.gov (United States)

    Peitsch, T; Klocke, A; Kahl-Nieke, B; Prymak, O; Epple, M

    2007-09-01

    The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.

  2. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  3. A dual strategy to improve psychotic patients’ compliance using sustained release quetiapine oral disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Refaat Ahmed

    2016-12-01

    Full Text Available Quetiapine (QT is a short acting atypical antipsychotic drug effective in schizophrenia and bipolar disorder. This study aims at designing a novel dosage form of sustained release taste-masked QT orally disintegrating tablets (ODTs based on solid lipid micro-pellets (SLMPs. QT SLMPs were prepared using the hot melt extrusion technique and utilizing three lipid carriers: Compritol, Precirol and white beeswax either alone or in mixtures. They showed sustained QT release and a taste masking effect. The selected QT SLMP was further blended with an aqueous solution containing polyvinylpyrollidone (2.5 %, croscarmellose sodium (2 % and mannitol (50 %; it was then lyophilized into ODT in a mass ratio of 1:2, respectively. ODTs containing QT SLMPs showed: average wetting time (40.92 s, average oral disintegration time (21.49 s, average hardness (16.85 N and also imparted suitable viscosity to suspend pellets during the lyophilization process. In conclusion, lyophilization is a promising technique for the formulation of multiparticulate systems into ODTs.

  4. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs.

    Science.gov (United States)

    Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2017-01-01

    Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (carnauba wax proved to be a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Heba F Salem

    2010-11-01

    Full Text Available Heba F SalemFaculty of Pharmacy, Beni-Suef University, Beni-Suef, EgyptAbstract: The production of an intramuscular (IM injection of natural progesterone would provide a safer solution than using semi synthetic progesterone. However, disadvantages such as low solubility and a short half life prevent the use of natural progesterone. In this study, we formulated a sustained release form of natural progesterone to be given as IM injection. A progesterone nanosuspension (PNS was first developed and then dispersed in a thermosensitive gel matrix. The selected nanoparticles showed an average particle size of 267 nm and a zeta potential approaching-41 mV. The in vitro release profile of PNS from the F127 plus methyl cellulose gel followed zero order kinetics and correlated linearly with the weight percentage of gel dissolved, demonstrating that the overall rate of release of PNS is controlled by dissolution of the pluronic F127/methyl cellulose (MC gel (r2 > 0.99. The pharmacokinetic parameters of the PNS (6 mg/mL in pluronic F127/MC gel were evaluated in comparison with the control progesterone suspension. After the administration of PNS in F127/MC gel into the rats, a maximum serum concentration of 22.1 ± 1.9 ng/mL was reached at a Tmax of 4.05 ± 0.1 h. The terminal half life was 12.7 ± 0.8 h. The area under the curve AUC0-∞ of the injected formula was 452.75 ± 42.8 ng•h/mL and the total mean residence time was 18.57 ± 1.44 h. The PNS in gel was significantly different from the control in rate and extent at P < 0.001. The natural progesterone which was nanosized and formulated in a thermosensitive gel significantly sustained the action of natural progesterone so that it could be injected every 36 h instead of every day. Moreover, this formula is expected to provide a much safer choice than the use of semi-synthetic progesterone.Keywords: progesterone, nanosuspension, thermosensitive gel, ovariectomized female rats

  6. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    Science.gov (United States)

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  7. Electrochemically controlled release of anticancer drug methotrexate using nanostructured polypyrrole modified with cetylpyridinium: Release kinetics investigation

    International Nuclear Information System (INIS)

    Alizadeh, Naader; Shamaeli, Ehsan

    2014-01-01

    A new simple strategy for direct electrochemical incorporation of chemotherapeutic methotrexate (MTX) into conductive polypyrrole (PPy) has been suggested for an electrochemically controlled loading and release system. Electropolymerization of MTX doped polypyrrole yielded poor quality with low efficiency of doping, but a well-doped, nanostructure and increased capacity of drug loading (24.5 mg g −1 ) has been obtained in the presence of cetylpyridinium (CP) as a modifier. When CP was preloaded onto PPy, the hydrophobic surface of the PPy serves as a backbone to which the hydrophobic chain of the CP can be attached. Electrostatic interaction between cationic CP with anionic MTX and aromatic interaction between pyridinium head of CP with pyrimidine and pyrazine rings of MTX increases drug doping. Then release kinetics were investigated at various applied potentials and temperatures. Kinetics analysis based on Avrami's equation showed that the drug release was controlled and accelerated by increasing temperature and negative potential and sustained by increasing positive potential. At open circuit condition, the release parameter (n) represented a diffusive mechanism and at applying electrochemical potentials, a first-order mode. Activation energy parameters (E a , ΔG ≠ , ΔH ≠ and ΔS ≠ ) and half-life time (t 1/2 ) of drug release are also analyzed as a function of applied potential. The nanostructured polymer films (PPy/CP/MTX) were characterized by several techniques: scanning electron microscopy, Furrier transforms Infrared, UV-vis spectroscopy. Overall, our results demonstrate that the PPy/CP/MTX films, combined with electrical stimulation, permit a programmable release of MTX by altering the interaction strength between the PPy/CP and MTX

  8. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.

    Science.gov (United States)

    Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun

    2018-03-07

    Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.

  9. Tannate complexes of antihistaminic drug: sustained release and taste masking approaches.

    Science.gov (United States)

    Rahman, Ziyaur; Zidan, Ahmed S; Berendt, Robert T; Khan, Mansoor A

    2012-01-17

    The aim of this investigation was to evaluate the complexation potential of brompheniramine maleate (BPM) and tannic acid (TA) for sustained release and taste masking effects. The complexes (1:1-1:7 TA to BPM ratio) were prepared by the solvent evaporation method using methanol, phosphate buffer pH 6.8 or 0.1N HCl as common solvents. The complexes were characterized microscopically by scanning electron microscopy (SEM), chemically by Fourier transform infrared (FTIR) and solid-state NMR (SSNMR), thermally by differential scanning calorimetry (DSC), for crystallinity by powder X-ray powder diffraction (PXRD), for organoleptic evaluation by electronic tongue (e-tongue), and for solubility in 0.1N HCl and phosphate buffer pH 6.8. The dissolution studies were carried out using the USP II method at 50 rpm in 500 ml of dissolution media (0.1N HCl or phosphate buffer pH 6.8). SEM images revealed that the morphology of complexes were completely different from the individual components, and all complexes had the same morphological characteristics, irrespective of the solvent used for their preparation, pH or ratio of BPM and TA. The FTIR spectra showed the presence of chemical interactions between the TA and BPM. DSC, PXRD and SSNMR indicated that the drug lost its crystalline nature by formation of the complex. Complexation has significantly reduced the solubility of BPM and sustained the drug release up to 24h in phosphate buffer pH 6.8 media. The bitter taste of the BPM was completely masked which was indicated by Euclidean distance values which was far from the drug but near to its placebo in the complexes in all ratios studied. The taste masked complexes can be potentially developed as suitable dosage forms for pediatric use. In summary, complexation of BPM and TA effectively sustained the dissolution and masked the bitter taste of drug for the development of suitable dosage forms for pediatric use. Published by Elsevier B.V.

  10. Meltable magnetic biocomposites for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Müller, R., E-mail: robert.mueller@ipht-jena.de [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Zhou, M. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany); Dellith, A. [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Liebert, T.; Heinze, T. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany)

    2017-06-01

    New biocompatible composites with adjustable melting point in the range of 30–140 °C, consisting of magnetite nanoparticles embedded into a matrix of meltable dextran fatty acid ester are presented which can be softened under an induced alternating magnetic field (AMF). The chosen thermoplastic magnetic composites have a melting range close to human body temperature and can be easily shaped into disk or coating film under melting. The composite disks were loaded with green fluorescent protein (GFP) as a model protein. Controlled release of the protein was realized with high frequent alternating magnetic field of 20 kA/m at 400 kHz. These results showed that under an AMF the release of GFP from magnetic composite was accelerated compared to the control sample without exposure to AMF. Furthermore a texturing of particles in the polymer matrix by a static magnetic field was investigated. - Highlights: • Thermoplastic biocomposite are prepared from dextran ester and magnetite particles. • The composite can be heated by an AC magnetic field above the melting temperature. • In molten state texturing of particles is possible and improves the heating ability. • The biopolymer could be used as a remote controlled matrix for protein release.

  11. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    Science.gov (United States)

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  12. Sustained Dorzolamide Release Prevents Axonal and Retinal Ganglion Cell Loss in a Rat Model of IOP-Glaucoma.

    Science.gov (United States)

    Pitha, Ian; Kimball, Elizabeth C; Oglesby, Ericka N; Pease, Mary Ellen; Fu, Jie; Schaub, Julie; Kim, Yoo-Chun; Hu, Qi; Hanes, Justin; Quigley, Harry A

    2018-04-01

    To determine if one injection of a sustained release formulation of dorzolamide in biodegradable microparticles (DPP) reduces retinal ganglion cell (RGC) loss in a rat model of glaucoma. We injected either DPP or control microparticles intravitreally in rats. Two days later, unilateral ocular hypertension was induced by translimbal, diode laser treatment by a surgeon masked to treatment group. IOP and clinical exams were performed until sacrifice 6 weeks after laser treatment. RGC loss was measured by masked observers in both optic nerve cross-sections and RGC layer counts from retinal whole mounts. Cumulative IOP exposure was significantly reduced by DPP injection (49 ± 48 mm Hg × days in treated versus 227 ± 191 mm Hg × days in control microparticle eyes; P = 0.012, t -test). While control-injected eyes increased in axial length by 2.4 ± 1.7%, DPP eyes did not significantly enlarge (0.3 ± 2.2%, difference from control, P = 0.03, t -test). RGC loss was significantly less in DPP eyes compared with control microparticle injection alone (RGC axon count reduction: 21% vs. 52%; RGC body reduction: 25% vs. 50% [beta tubulin labeling]; P = 0.02, t -test). A single injection of sustained release DPP protected against RGC loss and axial elongation in a rat model of IOP glaucoma. Sustained release IOP-lowering medications have the potential to stop glaucoma progression.

  13. Preparation of rifampicin/poly(d,l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2014-11-01

    Full Text Available In this work supercritical assisted atomization (SAA) process was used for the co-precipitation of poly(d,l-lactide) (PDLLA) and rifampicin (RIF) as nanoparticles for sustained release applications. The effect of the variation of PDLLA/RIF ratio...

  14. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats

    International Nuclear Information System (INIS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-01-01

    Cross-linking of electrospun (e-spun) fibre mats (beaded fibre morphology with the average diameter of the fibre segments between beads being ∼108 nm) of poly(vinyl alcohol) (PVA) containing sodium salicylate (SS), used as the model drug, was achieved by exposing the fibre mats to the vapour from 5.6 M aqueous solution of either glutaraldehyde or glyoxal for various exposure time intervals, followed by a heat treatment in a vacuum oven. With increasing the exposure time in the cross-linking chamber, the morphology of the e-spun fibre mats gradually changed from a porous to dense structure. Both the degree of swelling and the percentage of weight loss of the cross-linked fibre mats (i.e. ∼200-530% and ∼15-57%, respectively) were lower than those of the untreated ones (i.e. ∼610% and ∼67%, respectively). Cross-linking was also responsible for the monotonic increase in the storage moduli of the cross-linked SS-loaded e-spun PVA fibre mats with increasing exposure time in the cross-linking chamber. The release characteristic of the model drug from the SS-loaded e-spun PVA fibre mats both before and after cross-linking was assessed by the transdermal diffusion through a pig skin method. The cumulative release of the drug from these matrices could be divided into two stages: 0-4 and 4-72 h, in which the amount of SS released in the first stage increased very rapidly, while it was much slower in the second stage. Cross-linking slowed down the release of SS from the drug-loaded fibre mats appreciably and both the rate of release and the total amount of the drug released were decreasing functions of the exposure time interval in the cross-linking chamber. Lastly, the cross-linked SS-loaded e-spun PVA fibre mats were non-toxic to normal human dermal fibroblasts

  15. Comparison of Buildings\\' Thermal Loads against Building Orientations for Sustainable Housing in Pakistan

    Directory of Open Access Journals (Sweden)

    Arif Khan

    2012-07-01

    Full Text Available As the sustainable settlements have been included as a vital end product of all planning exercises, the architectural layouts should be well integrated with the sun path charts and the orientations of windows. Appropriate orientations can offer thermally indoor conditions besides physical and psychological comfort in any settlement at lesser energy demand. This investigation uses a vast number of computer simulations to visualize and make better decisions about heating and cooling requirements of a building and facades as a function of window orientation in composite climatic condition of Lahore. This study in particular evaluates the solar load in residential buildings responsive to the objective of sustainable new housing leading to thoughtful integration of architecture. The orientation of the buildings could then be essentially integrated to the current architectural and urban design practices in order to optimize the relationship between the given site ant the orientations for sustainable developments.

  16. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  17. Interaction of Fibrinogen and Muramidase-released Protein Promotes the Development of Streptococcus suis Meningitis

    Directory of Open Access Journals (Sweden)

    Junping eWang

    2015-09-01

    Full Text Available Muramidase-released protein (MRP is as an important virulence marker of Streptococcus suis (S. suis serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg; however, the function of this interaction in S.suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3. Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB. In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis.

  18. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Briggs, Tonye; Matos, Jeffrey; Collins, George; Arinzeh, Treena Livingston

    2015-10-01

    Electrospun polymer/ceramic composites have gained interest for use as scaffolds for bone tissue engineering applications. In this study, we investigated methods to incorporate Platelet Derived Growth Factor-BB (PDGF-BB) in electrospun polycaprolactone (PCL) or PCL prepared with polyethylene oxide (PEO), where both contained varying levels (up to 30 wt %) of ceramic composed of biphasic calcium phosphates, hydroxyapatite (HA)/β-tricalcium phosphate (TCP). Using a model protein, lysozyme, we compared two methods of protein incorporation, adsorption and emulsion electrospinning. Adsorption of lysozyme on scaffolds with ceramic resulted in minimal release of lysozyme over time. Using emulsion electrospinning, lysozyme released from scaffolds containing a high concentration of ceramic where the majority of the release occurred at later time points. We investigated the effect of reducing the electrostatic interaction between the protein and the ceramic on protein release with the addition of the cationic surfactant, cetyl trimethylammonium bromide (CTAB). In vitro release studies demonstrated that electrospun scaffolds prepared with CTAB released more lysozyme or PDGF-BB compared with scaffolds without the cationic surfactant. Human mesenchymal stem cells (MSCs) on composite scaffolds containing PDGF-BB incorporated through emulsion electrospinning expressed higher levels of osteogenic markers compared to scaffolds without PDGF-BB, indicating that the bioactivity of the growth factor was maintained. This study revealed methods for incorporating growth factors in polymer/ceramic scaffolds to promote osteoinduction and thereby facilitate bone regeneration. © 2015 Wiley Periodicals, Inc.

  19. Studies on the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rat

    Directory of Open Access Journals (Sweden)

    Zheng-mou DONG

    2011-01-01

    Full Text Available Objective To evaluate the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rats.Methods A total of 100female SD rats were randomly divided into negative control,low-,medium-,high-dose group and intervention group(20each.Rats in low-,medium-and high-dose group were fed daily with the sustained release drug at 1,4,and 8g/kg respectively;those in negative control group were fed daily with distilled water from the 14th day before mating to the 7th day of pregnancy continuously,and those in intervention group received cyclophosphamide(40mg/kgby intraperitoneal injection for 5successive days.During this period,the general status,mating,pregnancy,coefficient of ovary and uterus,the numbers of corpus luteum,nidation,live births,stillbirths,absorbed embryo,prenidatory and postnidatory mortality,serum testosterone(Tand estradiol(E2were determined respectively.Histopathologic examination of the ovary and uterus,immunohistochemical observation of ovaries for proliferating cell nuclear antigen(PCNAand Bcl-2associated X protein(Baxwere also performed respectively.Results The general status of those rats was good except one in the low-dose group and one in the intervention group died on the 14th day of administration,and one in negative control and one in high dose group died on the 5th day of pregnancy,respectively.The body weight of animals decreased significantly(P 0.05.The serum T level in medium-and high-dose group and the E2level in high-dose group declined compared to that in negative control group(P < 0.05.Conclusions Although the periodontal sustained release drug containing ornidazole and pefloxacin mesylate shows no toxicity to the early embryonic development of SD rats,the high dose drug has certain toxicity to ovary.Declined serum concentrations of T and E2,reduced expression of PCNA,and increased Bax may be the causes of the toxicity.

  20. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  1. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  2. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    Science.gov (United States)

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  3. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hassan AH

    2015-07-01

    Full Text Available Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA and polycaprolactone (PCL, to prepare sustained-release injectable nanoparticles (NPs of bone morphogenetic protein-2 (BMP-2 for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2 containing grafting material for the repair of alveolar bone clefts.Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for

  4. Novel catalase loaded nanocores for the treatment of inflammatory bowel diseases.

    Science.gov (United States)

    Parihar, Arun K S; Srivastava, Shikha; Patel, Satish; Singh, Manju R; Singh, Deependra

    2017-08-01

    Inflammatory bowel disease (IBD) is an inflammatory disorder of the digestive tract reported to be primarily caused by oxidative stress. In this study, alginate encapsulated nanoceramic carriers were designed to deliver acid labile antioxidant enzyme catalase orally. Complete system was characterized for size, loading efficiency, in vitro antioxidant assay and in vitro release. The prepared nanoceramic system was found to be spherical with diameter of 925 ± 6.81 nm. The in vitro release data followed the Higuchi model in acidic buffer whereas in alkaline pH sustained and almost first order release of enzyme was observed up to 6 h.

  5. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100

    Directory of Open Access Journals (Sweden)

    Maghraby Gamal Mohamed El

    2014-03-01

    Full Text Available Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels

  6. Sustained-release indomethacin in the management of the acute painful shoulder from bursitis and/or tendinitis.

    Science.gov (United States)

    Calabro, J J; Londino, A V; Eyvazzadeh, C

    1985-10-25

    Of all the forms of nonarticular rheumatism, by far the most common are bursitis and tendinitis. Yet, the bursae and neighboring tendon sheaths are the most neglected anatomic structures of the body. Moreover, like the joints, they are lined by synovial membrane, secrete synovial fluid, and are common sites of rheumatic problems. The vast majority of painful shoulder problems are caused by acute subacromial (subdeltoid) bursitis and bicipital tendinitis. In the management of these periarticular disorders, the ultimate goal is to preserve shoulder motion. Although this is accomplished by daily range-of-motion exercises, it is clearly facilitated by suppression of periarticular inflammation and discomfort through the use of nonsteroidal anti-inflammatory drugs. Of these, sustained-release indomethacin provides the anti-inflammatory efficacy of indomethacin and by virtue of its sustained-release formulation, may promote patient compliance since it need be given only once or twice daily.

  7. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation

    Directory of Open Access Journals (Sweden)

    Hao-Chieh Chang

    2017-12-01

    Full Text Available Background/Purpose: Sufficient bony support is essential to ensure the success of dental implant osseointegration. However, the reconstruction of vertical ridge deficiencies is still a major challenge for dental implants. This study introduced a novel treatment strategy by infusing poly(D,L-lactide-co-glycolide (PLGA microspheres encapsulating bone morphogenetic protein-2 (BMP-2 within a gelatin/hydroxyapatite/β-tricalcium phosphate (gelatin/HA/β-TCP cryogel composite to facilitate supra-alveolar ridge augmentation. Methods: The gelatin scaffold was crosslinked using cryogel technique, and HA/β-TCP particles were mechanically entrapped to form the gelatin/HA/β-TCP composite. Co-axial electrohydrodynamic atomization technology was used to fabricate PLGA microspheres encapsulating BMP-2. The composites of gelatin/HA/β-TCP alone, with infusion of BMP-2 solution (BMPi or microspheres (BMPm, were fixed on rat mandibles using a titanium mini-implant for 4 weeks, and the therapeutic efficiency was evaluated by micro-computed tomography, bone fluorochrome, and histology. Results: The gelatin/HA/β-TCP composite was homogenously porous, and BMP-2 was sustained release from the microspheres without initial burst release. Ridge augmentation was noted in all specimens treated with the gelatin/HA/β-TCP composite, and greater bone deposition ratio were noted in Groups BMPi and BMPm. Compared with Group BMPi, specimens in Group BMPm showed significantly greater early osteogenesis and evident osseointegration in the supra-alveolar level. Conclusion: BMP-2 loaded PLGA microspheres effectively promoted osteogenic potential of the gelatin/HA/β-TCP composite and facilitated supra-alveolar ridge augmentation in vivo. Keywords: bone morphogenetic protein-2, bone regeneration, dental implant, tissue engineering, tissue scaffolds

  9. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    Directory of Open Access Journals (Sweden)

    Maeve Henchion

    2017-07-01

    Full Text Available A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of

  10. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    Science.gov (United States)

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh

    2017-01-01

    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure

  11. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    Science.gov (United States)

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  12. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles.

    Science.gov (United States)

    Xie, Shuyu; Pan, Baoliang; Wang, Ming; Zhu, Luyan; Wang, Fenghua; Dong, Zhao; Wang, Xiaofang; Zhou, WenZhong

    2010-07-01

    The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug. PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy. Pharmacokinetics were studied after oral, subcutaneous and intramuscular administration in mice. The diameter, polydispersivity index, zeta potential, encapsulation efficiency and loading capacity of the nanoparticles were 344.0 +/- 15.1 nm, 0.31 +/- 0.08, -16.7 +/- 0.5 mV, 62.17 +/- 6.53% and 12.43 +/- 1.31%, respectively. In vitro release of PZQ-loaded HCO-SLN exhibited an initial burst release followed by a sustained release. SLN increased the bioavailability of PZQ by 14.9-, 16.1- and 2.6-fold, and extended the mean residence time of the drug from 7.6, 6.6 and 8.2 to 95.9, 151.6 and 48.2 h after oral, subcutaneous and intramuscular administration, respectively. The PZQ-loaded HCO-SLN could be a promising formulation to enhance the pharmacological activity of PZQ.

  13. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity.

    Science.gov (United States)

    Wu, Yuzhou; Ihme, Susann; Feuring-Buske, Michaela; Kuan, Seah Ling; Eisele, Klaus; Lamla, Markus; Wang, Yanran; Buske, Christian; Weil, Tanja

    2013-06-01

    The native transportation protein serum albumin represents an attractive nano-sized transporter for drug delivery applications due to its beneficial safety profile. Existing albumin-based drug delivery systems are often limited by their low drug loading capacity as well as noticeable drug leakage into the blood circulation. Therefore, a unique albumin-derived core-shell doxorubicin (DOX) delivery system based on the protein denaturing-backfolding strategy was developed. 28 DOX molecules were covalently conjugated to the albumin polypeptide backbone via an acid sensitive hydrazone linker. Polycationic and pegylated human serum albumin formed two non-toxic and enzymatically degradable protection shells around the encapsulated DOX molecules. This core-shell delivery system possesses notable advantages, including a high drug loading capacity critical for low administration doses, a two-step drug release mechanism based on pH and the presence of proteases, an attractive biocompatibility and narrow size distribution inherited from the albumin backbone, as well as fast cellular uptake and masking of epitopes due to a high degree of pegylation. The IC50 of these nanoscopic onion-type micelles was found in the low nanomolar range for Hela cells as well as leukemia cell lines. In vivo data indicate its attractive potential as anti-leukemia treatment suggesting its promising profile as nanomedicine drug delivery system. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies.

    Science.gov (United States)

    Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David

    2015-07-15

    This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  16. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    Science.gov (United States)

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Simultaneous measurement of passage through the restriction point and MCM loading in single cells

    Science.gov (United States)

    Håland, T. W.; Boye, E.; Stokke, T.; Grallert, B.; Syljuåsen, R. G.

    2015-01-01

    Passage through the Retinoblastoma protein (RB1)-dependent restriction point and the loading of minichromosome maintenance proteins (MCMs) are two crucial events in G1-phase that help maintain genome integrity. Deregulation of these processes can cause uncontrolled proliferation and cancer development. Both events have been extensively characterized individually, but their relative timing and inter-dependence remain less clear. Here, we describe a novel method to simultaneously measure MCM loading and passage through the restriction point. We exploit that the RB1 protein is anchored in G1-phase but is released when hyper-phosphorylated at the restriction point. After extracting cells with salt and detergent before fixation we can simultaneously measure, by flow cytometry, the loading of MCMs onto chromatin and RB1 binding to determine the order of the two events in individual cells. We have used this method to examine the relative timing of the two events in human cells. Whereas in BJ fibroblasts released from G0-phase MCM loading started mainly after the restriction point, in a significant fraction of exponentially growing BJ and U2OS osteosarcoma cells MCMs were loaded in G1-phase with RB1 anchored, demonstrating that MCM loading can also start before the restriction point. These results were supported by measurements in synchronized U2OS cells. PMID:26250117

  18. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method

    DEFF Research Database (Denmark)

    Cui, Fude; Yang, Mingshi; Jiang, Yanyan

    2003-01-01

    crystallization technique, i.e. quasi-emulsion solvent diffusion method. The factors of effect on micromeritic properties and release profiles of the resultant microspheres were investigated. And the bioavailability of nitrendipine microspheres was evaluated in six healthy dogs. The results showed...... that the particle size of microspheres was determined mainly by the agitation speed. The dissolution rate of nitrendipine from microspheres was enhanced significantly with increasing the amount of dispersing agents, and sustained by adding retarding agents. The release rate of microspheres could be controlled...

  19. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    Science.gov (United States)

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Chitosan films incorporated with nettle (Urtica Dioica L.) extract-loaded nanoliposomes: II. Antioxidant activity and release properties.

    Science.gov (United States)

    Almasi, Hadi; Zandi, Mohsen; Beigzadeh, Sara; Haghju, Sara; Mehrnow, Nazila

    2016-07-14

    Chitosan films were loaded with NE nettle (Urtica dioica L.) extract (NE) at concentrations of 0, 0.5, 1 and 1.5%w/w in the free or nanoliposomal form to obtain active and nanoactive films, respectively. The antioxidant potential of the films containing NE-loaded nanoliposomes was decreased in comparison of free NE incorporated films. Diffusion of NE to soybean oil was enough to delay the induction of the oxidation of soybean oil stored for 60 days in contact with chitosan based films. Release studies indicated that the release rate of NE in 95% ethanol simulant significantly decreased by the nanoencapsulation of NE. The diffusion coefficient (D) for chitosan films containing 1.5%w/w of free and encapsulated NE at 25 °C was 18.80 and 3.68 × 10 -7 cm 2  s -1 , respectively. Moreover, the formation of nanoliposomes diminished the increasing effect of temperature on the release rate as when storage temperature increased from 4 °C to 40 °C.

  1. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization.

    Science.gov (United States)

    Moreno, Miguel; Pow, Poh Yih; Tabitha, Tan Su Teng; Nirmal, Sonali; Larsson, Andreas; Radhakrishnan, Krishna; Nirmal, Jayabalan; Quah, Soo Tng; Geifman Shochat, Susana; Agrawal, Rupesh; Venkatraman, Subbu

    2017-08-01

    This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.

  2. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.

    Science.gov (United States)

    Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia

    2018-04-01

    The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.

  3. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release

    Science.gov (United States)

    Khalid, Asma; Mitropoulos, Alexander N.; Marelli, Benedetto; Tomljenovic-Hanic, Snjezana; Omenetto, Fiorenzo G.

    2015-01-01

    Nanoparticle (NP) based technologies have proved to be considerably beneficial for advances in biomedicine especially in the areas of disease detection, drug delivery and bioimaging. Over the last few decades, NPs have garnered interest for their exemplary impacts on the detection, treatment, and prevention of cancer. The full potential of these technologies are yet to be employed for clinical use. The ongoing research and development in this field demands single multifunctional composite materials that can be employed simultaneously for drug delivery and biomedical imaging. In this manuscript, a unique combination of silk fibroin (SF) and nanodiamonds (NDs) in the form of nanospheres are fabricated and investigated. The spheres were loaded with the anthracyline Doxorubicin (DoX) and the drug release kinetics for these ND-SF-DoX (NDSX) spheres were studied. NDs provided the fluorescence modality for imaging while the degradable SF spheres stabilized and released the drug in a controlled manner. The emission and structural properties of the spheres were characterized during drug release. The degradability of SF and the subsequent release of DoX from the spheres were monitored through fluorescence of NDs inside the spheres. This research demonstrates the enormous potential of the ND-SF nanocomposite platforms for diagnostic and therapeutic purposes, which are both important for pharmaceutical research and clinical settings. PMID:26819823

  4. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    Science.gov (United States)

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  5. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    Science.gov (United States)

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  6. In-vitro release of anti-proliferative paclitaxel from novel balloon-expandable polycaprolactone stents

    International Nuclear Information System (INIS)

    Liu, Shih-Jung; Hsiao, Chao-Ying; Chen, Jan-Kan; Liu, Kuo-Sheng; Lee, Cheng-Hung

    2011-01-01

    This report investigated the in-vitro release characteristics of paclitaxel from novel balloon-expandable polycaprolactone stents. Polycaprolactone stents were first manufactured by a lab-made micro-injection molding machine. Paclitaxel and polylactide-polyglycolide (PLGA) copolymer were dissolved in acetonitrile and were coated onto the surface of the stents by a spray coating device, which was designed and built especially for this study. An elution method was utilized to characterize the in-vitro release characteristics of paclitaxel. The high performance liquid chromatography (HPLC) analysis showed that biodegradable stents could provide sustained release of paclitaxel for more than 70 days. Various process parameters that controlled the release rate of paclitaxel were studied. The experimental results suggested that the total period of drug release could be prolonged by adopting 75:25 PLGA copolymers, employing multi-layer coatings, and increasing the drug loading. In addition, the effectiveness of eluted paclitaxel on cell behavior was examined. The results showed that the eluted drug could effectively inhibit the proliferation of smooth muscle cells. - Research Highlights: → We investigate the in-vitro release characteristics of paclitaxel from polycaprolactone stents. → Biodegradable stents provide sustained release of paclitaxel for more than 70 days. → The eluted drug effectively inhibits the proliferation of smooth muscle cells.

  7. Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process.

    Science.gov (United States)

    Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-07-25

    In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Assessing the loading and release of metronidazole from bacterial cellulose film as a pharmaceutical dressing

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Salehi

    2017-08-01

    Full Text Available Background: Bacterial cellulose membrane (BCM produced by Gluconacetobacter xylinus is an advantageous bacterial product and because of its unique properties could be used as an ideal dressing. The aim of this study was to consider the capability of this biomaterial in the release of Metronidazole. In the case of proving this capability, it provides the basis for the production of a dressing containing this type of antibiotic. Materials and Methods: In this study, BCM was initially synthesized by Gluconacetobacter xylinus. The BCM was loaded by Metronidazole. Then the release process was considered in distilled water and buffer phosphate Saline. The ultra violet spectrophotometry was applied for measuring the concentration of the released drug. Results: The chemical structure of bacterial cellulose was confirmed by Fourier Transform Infrared (FT-IR spectroscopy. The release of Metronidazole in distilled water and phosphate buffered Saline was reached to 84.27% and 84.71%, respectively. Due to higher release in phosphate buffered Saline media, it seems that the trend of release in vitro provides efficient results. Conclusion: Results of this study provides the basis for future research on supplying an ideal dressing from this microbial product.

  9. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    Science.gov (United States)

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    Science.gov (United States)

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  11. GDP Release Preferentially Occurs on the Phosphate Side in Heterotrimeric G-proteins

    Science.gov (United States)

    Louet, Maxime; Martinez, Jean; Floquet, Nicolas

    2012-01-01

    After extra-cellular stimulation of G-Protein Coupled Receptors (GPCRs), GDP/GTP exchange appears as the key, rate limiting step of the intracellular activation cycle of heterotrimeric G-proteins. Despite the availability of a large number of X-ray structures, the mechanism of GDP release out of heterotrimeric G-proteins still remains unknown at the molecular level. Starting from the available X-ray structure, extensive unconstrained/constrained molecular dynamics simulations were performed on the complete membrane-anchored Gi heterotrimer complexed to GDP, for a total simulation time overcoming 500 ns. By combining Targeted Molecular Dynamics (TMD) and free energy profiles reconstruction by umbrella sampling, our data suggest that the release of GDP was much more favored on its phosphate side. Interestingly, upon the forced extraction of GDP on this side, the whole protein encountered large, collective motions in perfect agreement with those we described previously including a domain to domain motion between the two ras-like and helical sub-domains of Gα. PMID:22829757

  12. The effect of food on gastrointestinal (GI) transit of sustained-release ibuprofen tablets as evaluated by gamma scintigraphy

    International Nuclear Information System (INIS)

    Borin, M.T.; Khare, S.; Beihn, R.M.; Jay, M.

    1990-01-01

    The GI transit of radiolabeled sustained-release ibuprofen 800-mg tablets in eight healthy, fed volunteers was monitored using external gamma scintigraphy. Ibuprofen serum concentrations were determined from blood samples drawn over 36 hr following dosing. Sustained-release ibuprofen tablets containing 0.18% of 170Er2O3 (greater than 96% 170Er) in the bulk formulation were manufactured under pilot-scale conditions and were radiolabeled utilizing a neutron activation procedure which converted stable 170Er to radioactive 171Er (t1/2 = 7.5 hr). At the time of dosing, each tablet contained 50 mu Ci of 171Er. Dosage form position were reported at various time intervals. In five subjects the sustained-release tablet remained in the stomach and eroded slowly over 7-12 hr, resulting in gradual increases in small bowel radioactivity. In the remaining three subjects, the intact tablet was ejected from the stomach and a gastric residence time of approximately 4 hr was measured. This is in marked contrast to a previous study conducted in fasted volunteers in which gastric retention time ranged from 10 to 60 min. Differences in GI transit between fed and fasted volunteers had little effect on ibuprofen bioavailability. AUC and Tmax were unaltered and Cmax was increased by 24%, which is in agreement with results from a previous, crossover-design food effect study

  13. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    Science.gov (United States)

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  14. Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: formulation and in vitro evaluation.

    Science.gov (United States)

    Kassem, Mohamed A A; ElMeshad, Aliaa N; Fares, Ahmed R

    2015-06-01

    This work aims to prepare sustained release buccal mucoadhesive lyophilized chitosan sponges of buspirone hydrochloride (BH) to improve its systemic bioavailability. Chitosan sponges were prepared using simple casting/freeze-drying technique according to 3(2) factorial design where chitosan grade was set at three levels (low, medium, and high molecular weight), and concentration of chitosan solution at three levels (0.5, 1, and 2%). Mucoadhesion force, ex vivo mucoadhesion time, percent BH released after 8 h (Q8h), and time for release of 50% BH (T50%) were chosen as dependent variables. Additional BH cup and core buccal chitosan sponge were prepared to achieve uni-directional BH release toward the buccal mucosa. Sponges were evaluated in terms of drug content, surface pH, scanning electron microscopy, swelling index, mucoadhesion strength, ex vivo mucoadhesion time, and in vitro drug release. Cup and core sponge (HCH 0.5E) were able to adhere to the buccal mucosa for 8 h. It showed Q8h of 68.89% and exhibited a uni-directional drug release profile following Higuchi diffusion model.

  15. Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

    Science.gov (United States)

    Dang, Nhung T T; Sivakumaran, Haran; Harrich, David; Shaw, Paul N; Davis-Poynter, Nicholas; Coombes, Allan G A

    2014-10-01

    Polycaprolactone (PCL) matrices were simultaneously loaded with the antiviral agents, tenofovir (TFV) and nevirapine (NVP), in combination to provide synergistic activity in the prevention of HIV transmission through the vaginal route. TFV and NVP were incorporated in PCL matrices at theoretical loadings of 10%TFV-10% NVP, 5%TFV-5%NVP and 5%TFV-10%NVP, measured with respect to the PCL content of the matrices. Actual TFV loadings ranged from 2.1% to 4.2% equating to loading efficiencies of about 41-42%. The actual loadings of NVP were around half those of TFV (1.2-1.9%), resulting in loading efficiencies ranging from 17.2% to 23.5%. Approximately 80% of the initial content of TFV was released from the PCL matrices into simulated vaginal fluid (SVF) over a period of 30 days, which was almost double the cumulative release of NVP (40-45%). The release kinetics of both antivirals over 30 days were found to be described most satisfactorily by the Higuchi model. In vitro assay of release media containing combinations of TFV and NVP released from PCL matrices confirmed a potential synergistic/additive effect of the released antivirals on HIV-1 infection of HeLa cells. These findings indicate that PCL matrices loaded with combinations of TFV and NVP provide an effective strategy for the sustained vaginal delivery of antivirals with synergistic/additive activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  17. Modification of concomitant drug release from oil vehicles using drug-prodrug combinations to achieve sustained balanced analgesia after joint installation

    DEFF Research Database (Denmark)

    Thing, Mette; Jensen, Sabrine Smedegaard; Larsen, Claus Selch

    2012-01-01

    Intra-articular injection of two drugs in a sustained drug delivery system combining the use of lipophilic solution with the prodrug approach may provide efficient and prolonged postoperative pain treatment after arthroscopic procedures. In the present study, the concomitant release of N...... using buffer. In both release models, the use of ropivacaine-prodrug combination provided concomitant release from the oil into synovial fluid with ropivacaine being released faster than naproxen. The use of lipophilic prodrugs that are converted fast to the parent drug in synovial fluid seems...

  18. Sustained attention failures are primarily due to sustained cognitive load not task monotony.

    Science.gov (United States)

    Head, James; Helton, William S

    2014-11-01

    We conducted two studies using a modified sustained attention to response task (SART) to investigate the developmental process of SART performance and the role of cognitive load on performance when the speed-accuracy trade-off is controlled experimentally. In study 1, 23 participants completed the modified SART (target stimuli location was not predictable) and a subjective thought content questionnaire 4 times over the span of 4 weeks. As predicted, the influence of speed-accuracy trade-off was significantly mitigated on the modified SART by having target stimuli occur in unpredictable locations. In study 2, 21 of the 23 participants completed an abridged version of the modified SART with a verbal free-recall memory task. Participants performed significantly worse when completing the verbal memory task and SART concurrently. Overall, the results support a resource theory perspective with concern to errors being a result of limited mental resources and not simply mindlessness per se. Copyright © 2014. Published by Elsevier B.V.

  19. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  20. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane

    International Nuclear Information System (INIS)

    Liu, Shen; Zhao, Jingwen; Ruan, Hongjiang; Wang, Wei; Wu, Tianyi; Cui, Wenguo; Fan, Cunyi

    2013-01-01

    The complications of tendon injury are frequently compromised by peritendinous adhesions and tendon sheath infection. Physical barriers for anti-adhesion may increase the incidence of postoperative infection. This study was designed to evaluate the potential of silver nanoparticles (AgNPs)-loaded poly(L-lactide) (PLLA) electrospun fibrous membranes to prevent adhesion formation and infection. Results of an in vitro drug release study showed that a burst release was followed by sustained release from electrospun fibrous membranes with a high initial silver content. Fewer fibroblasts adhered to and proliferated on the AgNP-loaded PLLA electrospun fibrous membranes compared with pure PLLA electrospun fibrous membrane. In the antibacterial test, the AgNP-loaded PLLA electrospun fibrous membranes can prevent the adhesion of Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa. Taken together, these results demonstrate that AgNP-loaded PLLA electrospun fibrous membranes have the convenient practical medical potential of reduction of infection and adhesion formation after tendon injury. - Highlights: ► Silver nanoparticles are directly electrospun into PLLA fibrous membrane. ► Long-lasting release of Ag + ions is achieved. ► Cytotoxicity of silver ions benefits the anti-proliferation of physical barriers. ► Broad anti-microbial effect of drug-loaded fibrous membrane is revealed. ► Antibacterial and anti-adhesion effects of the physical barriers are combined

  1. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  2. In situ depot comprising phase-change materials that can sustainably release a gasotransmitter H2S to treat diabetic wounds.

    Science.gov (United States)

    Lin, Wei-Chih; Huang, Chieh-Cheng; Lin, Shu-Jyuan; Li, Meng-Ju; Chang, Yen; Lin, Yu-Jung; Wan, Wei-Lin; Shih, Po-Chien; Sung, Hsing-Wen

    2017-11-01

    Patients with diabetes mellitus are prone to develop refractory wounds. They exhibit reduced synthesis and levels of circulating hydrogen sulfide (H 2 S), which is an ephemeral gaseous molecule. Physiologically, H 2 S is an endogenous gasotransmitter with multiple biological functions. An emulsion method is utilized to prepare a microparticle system that comprises phase-change materials with a nearly constant temperature of phase transitions to encapsulate sodium hydrosulfide (NaHS), a highly water-labile H 2 S donor. An emulsion technique that can minimize the loss of water-labile active compounds during emulsification must be developed. The as-prepared microparticles (NaHS@MPs) provide an in situ depot for the sustained release of exogenous H 2 S under physiological conditions. The sustained release of H 2 S promotes several cell behaviors, including epidermal/endothelial cell proliferation and migration, as well as angiogenesis, by extending the activation of cellular ERK1/2 and p38, accelerating the healing of full-thickness wounds in diabetic mice. These experimental results reveal the strong potential of NaHS@MPs for the sustained release of H 2 S for the treatment of diabetic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling.

    Science.gov (United States)

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin

    2017-07-01

    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  4. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy

    2015-06-01

    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  5. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  6. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    Science.gov (United States)

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Subtype-specific suppression of Shiga toxin 2 released from Escherichia coli upon exposure to protein synthesis inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Malene Gantzhorn; Hansen, Claus; Riise, Erik

    2008-01-01

    Shiga toxins (Stx) are important virulence factors in the pathogenesis of severe disease including hemolytic-uremic syndrome, caused by Stx-producing Escherichia coli (STEC). STEC strains increase the release of Stx in vitro following the addition of fluoroquinolones, whereas protein synthesis...... inhibitors previously have been reported to suppress the release of Stx. The amount of Stx released from wild-type STEC strains incubated with protein synthesis inhibitors was examined by a Vero cell cytotoxicity assay. The amounts released were compared to the Stx type (Stx1 or Stx2) and additionally...... to the individual subtypes and toxin variants of Stx2. In general, Stx2 release was suppressed significantly upon exposure to protein synthesis inhibitors at MICs, which was not observed in the case of Stx1. Also, the average amount of different Stx2 toxin variants released was suppressed to various levels ranging...

  8. Managing cancer pain and symptoms of outpatients by rotation to sustained-release hydromorphone: a prospective clinical trial

    NARCIS (Netherlands)

    Wirz, Stefan; Wartenberg, Hans Christian; Elsen, Christian; Wittmann, Maria; Diederichs, Marta; Nadstawek, Joachim

    2006-01-01

    PURPOSE: In this prospective clinical trial we examined the technique of opioid rotation to oral sustained-release hydromorphone for controlling pain and symptoms in outpatients with cancer pain. METHODS: Before and after rotation, 50 patients were assessed by Numerical Analog Scales [Numerical

  9. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.

    Science.gov (United States)

    Wang, Chaoyang; He, Chengyi; Tong, Zhen; Liu, Xinxing; Ren, Biye; Zeng, Fang

    2006-02-03

    Combination of adsorption by porous CaCO(3) microparticles and encapsulation by polyelectrolyte multilayers via the layer-by-layer (LbL) self-assembly was proposed for sustained drug release. Firstly, porous calcium carbonate microparticles with an average diameter of 5 microm were prepared for loading a model drug, ibuprofen (IBU). Adsorption of IBU into the pores was characterized by ultraviolet (UV), infrared (IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) experiment and X-ray diffraction (XRD). The adsorbed IBU amount Gamma was 45.1mg/g for one-time adsorption and increased with increasing adsorption times. Finally, multilayer films of protamine sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded CaCO(3) microparticles by the layer-by-layer self-assembly. Amorphous IBU loaded in the pores of the CaCO(3) microparticles had a rapider release in the gastric fluid and a slower release in the intestinal fluid, compared with the bare IBU crystals. Polyelectrolyte multilayers assembled on the drug-loaded particles by the LbL reduced the release rate in both fluids. In this work, polymer/inorganic hybrid core-shell microcapsules were fabricated for controlled release of poorly water-soluble drugs. The porous inorganic particles are useful to load drugs in amorphous state and the polyelectrolyte multilayer films coated on the particle assuage the initial burst release.

  10. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-11-01

    Full Text Available Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  11. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  12. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab

    Science.gov (United States)

    K.Yandrapu, Sarath; Upadhyay, Arun K.; Petrash, J. Mark; Kompella, Uday B.

    2014-01-01

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9 fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Flour 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases. PMID:24131101

  13. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

    Science.gov (United States)

    Yandrapu, Sarath K; Upadhyay, Arun K; Petrash, J Mark; Kompella, Uday B

    2013-12-02

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

  14. Sustained release of nucleic acids from polymeric nanoparticles using microemulsion precipitation in supercritical carbon dioxide.

    Science.gov (United States)

    Ge, Jun; Jacobson, Gunilla B; Lobovkina, Tatsiana; Holmberg, Krister; Zare, Richard N

    2010-12-21

    A general approach for producing biodegradable nanoparticles for sustained nucleic acid release is presented. The nanoparticles are produced by precipitating a water-in-oil microemulsion in supercritical CO(2). The microemulsion consists of a transfer RNA aqueous solution (water phase), dichloromethane containing poly(l-lactic acid)-poly(ethylene glycol) (oil phase), the surfactant n-octyl β-D-glucopyranoside, and the cosurfactant n-butanol.

  15. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Piergiorgio [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield (United Kingdom); Nandagiri, Vijay Kumar [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland); Daly, Jacqueline [Division of Biology, Department of Anatomy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland); Chiono, Valeria; Mattu, Clara; Tonda-Turo, Chiara; Ciardelli, Gianluca [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Ramtoola, Zebunnissa, E-mail: zramtoola@rcsi.ie [School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland)

    2016-02-01

    Localised controlled release of simvastatin from porous freeze-dried chitosan–gelatin (CH–G) scaffolds was investigated by incorporating simvastatin loaded poly-(DL-lactide-co-glycolide) acid (PLGA) microparticles (MSIMs) into the scaffolds. MSIMs at 10% w/w simvastatin loading were prepared using a single emulsion-solvent evaporation method. The MSIM optimal amount to be incorporated into the scaffolds was selected by analysing the effect of embedding increasing amounts of blank PLGA microparticles (BL-MPs) on the scaffold physical properties and on the in vitro cell viability using a clonal human osteoblastic cell line (hFOB). Increasing the BL-MP content from 0% to 33.3% w/w showed a significant decrease in swelling degree (from 1245 ± 56% to 570 ± 35%). Scaffold pore size and distribution changed significantly as a function of BL-MP loading. Compressive modulus of scaffolds increased with increasing BL-MP amount up to 16.6% w/w (23.0 ± 1.0 kPa). No significant difference in cell viability was observed with increasing BL-MP loading. Based on these results, a content of 16.6% w/w MSIM particles was incorporated successfully in CH–G scaffolds, showing a controlled localised release of simvastatin able to influence the hFOB cell proliferation and the osteoblastic differentiation after 11 days. - Highlights: • Simvastatin loaded PLGA microparticle engrafted porous CH–G scaffolds were produced. • The microparticle optimal amount to be incorporated into the scaffolds was studied. • Physical properties of scaffolds changed as a function of microparticle loading. • The level of simvastatin released enhanced cell proliferation and mineralisation.

  16. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application

    International Nuclear Information System (INIS)

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Daly, Jacqueline; Chiono, Valeria; Mattu, Clara; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2016-01-01

    Localised controlled release of simvastatin from porous freeze-dried chitosan–gelatin (CH–G) scaffolds was investigated by incorporating simvastatin loaded poly-(DL-lactide-co-glycolide) acid (PLGA) microparticles (MSIMs) into the scaffolds. MSIMs at 10% w/w simvastatin loading were prepared using a single emulsion-solvent evaporation method. The MSIM optimal amount to be incorporated into the scaffolds was selected by analysing the effect of embedding increasing amounts of blank PLGA microparticles (BL-MPs) on the scaffold physical properties and on the in vitro cell viability using a clonal human osteoblastic cell line (hFOB). Increasing the BL-MP content from 0% to 33.3% w/w showed a significant decrease in swelling degree (from 1245 ± 56% to 570 ± 35%). Scaffold pore size and distribution changed significantly as a function of BL-MP loading. Compressive modulus of scaffolds increased with increasing BL-MP amount up to 16.6% w/w (23.0 ± 1.0 kPa). No significant difference in cell viability was observed with increasing BL-MP loading. Based on these results, a content of 16.6% w/w MSIM particles was incorporated successfully in CH–G scaffolds, showing a controlled localised release of simvastatin able to influence the hFOB cell proliferation and the osteoblastic differentiation after 11 days. - Highlights: • Simvastatin loaded PLGA microparticle engrafted porous CH–G scaffolds were produced. • The microparticle optimal amount to be incorporated into the scaffolds was studied. • Physical properties of scaffolds changed as a function of microparticle loading. • The level of simvastatin released enhanced cell proliferation and mineralisation.

  17. Drug kinetics release from Eudragit – Tenofovir@SiOC tablets

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A., E-mail: aitanath@icv.csic.es [Ceramics and Glass Institute, CSIC, Madrid (Spain); Mazo, M.A. [Ceramics and Glass Institute, CSIC, Madrid (Spain); Veiga, M.D.; Ruiz-Caro, R.; Notario-Pérez, F. [Dpt. Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid (Spain); Rubio, J. [Ceramics and Glass Institute, CSIC, Madrid (Spain)

    2017-06-01

    A novel drug release system has been obtained in form of tablets from Eudragit® RS and tenofovir loaded on porous silicon oxycarbide glasses (SiOC). Active carbon (AC) and mesoporous silica (MCM-41) have also been used for comparative purposes. The porous silicon oxycarbide presents a bimodal mesopore size distribution that is maintained after functionalization with amino groups. We have studied the adsorption kinetics and adsorption equilibrium when the materials are loaded with tenofovir and, in all cases, pseudo-second order kinetics and Langmuir isotherm have been revealed as the most representative models describing the kinetic and thermodynamic parameters. Besides, the tenofovir adsorption on these materials turns out to be a favorable process. In vitro release of tenofovir has been studied in simulated vaginal medium by applying different release models. Continuous tenofovir release for > 20 days has been obtained for the SiOC material functionalized with amine groups. We concluded that the drug release occurs in two steps that involve a drug diffusion step through the material pores and diffusion through the swollen polymer. The interactions between the tenofovir drug and de amine groups of the functionalized silicon oxycarbide also play an important role in the release process. - Highlights: • Kinetic and thermodinamic parameters of the adsorption of tenofovir on porous substrates have been obtained. • Sustained release of TFV for > 20 days in SVF when it is supported on SiOC and manufactured as Eudragit®RS-containing tablets. • Release described by a two-step process involving diffusion through SiOC matrix and subsequent diffusion through the polymer.

  18. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  19. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    International Nuclear Information System (INIS)

    Tuan Anh, Nguyen; Tuyen Dao, T P; Nhan Le, N T; Mau Chien, Dang; To Hoai, Nguyen; T Chi, Nguyen; Tran, T Khai

    2012-01-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid. (paper)

  20. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.