WorldWideScience

Sample records for sustained release delivery

  1. Controlled Release System for Localized and Sustained Drug Delivery Applications

    Science.gov (United States)

    Rodriguez, Lidia Betsabe

    Current controlled release formulations has many drawbacks such as excess of initial burst release, low drug efficiency, non-degradability of the system and low reproducibility. The present project aims to offer an alternative by developing a technique to prepare uniform, biodegradable particles ( ˜19 mum ) that can sustainably release a drug for a specific period of time. Chitosan is a natural polysaccharide that has many characteristics to be used for biomedical applications. In the last two decades, there have been a considerable number of studies affirming that chitosan could be used for pharmaceutical applications. However, chitosan suffers from inherent weaknesses such as low mechanical stability and dissolution of the system in acidic media. In the present study, chitosan microparticles were prepared by emulsification process. The model drug chosen was acetylsalicylic acid as it is a small and challenging molecule. The maximum loading capacity obtained for the microparticles was approximately 96%. The parameters for the preparation of uniform particles with a narrow size distribution were identified in a triangular phase diagram. Moreover, chitosan particles were successfully coated with thin layers of poly lactic-coglycolic acid (PLGA) and poly lactic acid (PLA). The performance of different layerswas tested for in vitro drug release and degradation studies. Additionally, the degradability of the system was evaluated by measuring the weight loss of the system when exposed to enzyme and without enzyme. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to characterize the controlled release system. Additionally, the in vitro drug release was monitored by ultraviolet-visible spectrophotometry (UV-Vis) and liquid chromatography mass spectrometry (LC-MS). The results obtained from this project showed that it is

  2. Sustained-release drug delivery of antimicrobials in controlling of supragingival oral biofilms.

    Science.gov (United States)

    Steinberg, Doron; Friedman, Michael

    2017-04-01

    Dental caries, a bacterial biofilm-associated disease, is a prevalent oral health problem. It is a bacterial biofilm-associated disease. Conventional means of combating this disease involves oral hygiene, mostly tooth brushing. Supplementary means of prevention and treatment is often necessary. The use of sustained-release delivery systems, locally applied to the oral cavity appears to be one of the most acceptable avenues for the delivery of antimicrobial agents. Area covered: The development and current approaches of local sustained delivery technologies applied to the oral cavity for treatment and prevention of dental caries is discussed. The use of polymeric drug delivery systems, varnishes, liposomes and nanoparticles is presented. Expert opinion: The use of local sustained-release delivery systems applied to the oral cavity has numerous clinical, pharmacological and toxicological advantages over conventional means. Various sustained-release technologies have been suggested over the course of several years. The current research on oral diseases concentrates predominantly on improving the drug delivery. With progress in pharmaceutical technology, sophisticated controlled-release platforms are being developed. The sustained release concept is innovative and there are few products available for the benefit of all populations. Harmonizing academic research with the dental industry will surely expedite the development and commercialization of more products of such pharmacological nature.

  3. Application of mathematical modeling in sustained release delivery systems.

    Science.gov (United States)

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  4. Radiation crosslinked hydrogels as sustained release drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Pekala, W.; Rosiak, J.; Rucinska-Rybus, A.; Burczak, K.; Galant, S.; Czolczynska, T.

    1986-01-01

    Radiation methods have been used for: i/modification of vascular prostheses, ii/ obtaining burn dressing materials enabling controlled drug release, iii/ the preparation of polymer ocular insert discs. The surface of polyester vascular prostheses, has been modified by deposition of acrylamide and inducing its polymerization in the solid state by ..gamma..-radiation. As a result of this treatment, tightness of the prosthesis walls and its surface hydrophilicity have been improved. Toxicological examinations and blood hemolysis studies of modified prostheses showed its good biocompatibility. Various burn dressings have been prepared and the most promising of all investigated turned to be composition consisting of a cotton gauze base and an active polyacrylamide hydrogel layer with addition of glycerin and immobilized Provital/protein preparation/. Preliminary clinical evaluations of this particular dressing showed that the process of burn healing is indeed fast and fully satisfactory. Ocular insert discs made of polymer and containing pilocarpin hydrochloride which is released at controlled rate have been prepared. It has been found that high hydrophilicity and good swelling properties of the ocular insert discs made possible to incorporate pilocarpin hydrochloride into hydrogel matrix. This work has been carried out under IAEA research contract RB 3379/R-1 POL.

  5. Radiation crosslinked hydrogels as sustained release drug delivery systems

    Science.gov (United States)

    Pȩkala, W.; Rosiak, J.; Rucińska-Rybus, A.; Burczak, K.; Galant, S.; Czołlczyńska, T.

    Radiation methods have been used for: i/ modification of vascular prostheses, ii/ obtaining burn dressing materials enabling controlled drug release, iii/ the preparation of polymer ocular insert discs. The surface of polyester vascular prostheses, has been modified by deposition of acrylamide and inducing its polymerization in the solid state by j-radiation. As a result of this treatment, tightness of the prosthesis walls and its surface hydrophilicity have been improved. Toxicological examinations and blood hemolysis studies of modified prostheses showed its good biocompatibility. Various burn dressings have been prepared and the most promising of all investigated turned to be composition consisting of a cotton gauze base and an active polyacrylamide hydrogel layer with addition of glycerin and immobilized Provital /protein preparation/. Preliminary clinical evaluations of this particular dressing showed that the process of burn healing is indeed fast and fully satisfactory. Ocular insert discs made of polymer and containing pilocarpin hydrochloride which is released at controlled rate have been prepared. It has been found that high hydrophilicity and good swelling properties of the ocular insert discs made possible to incorporate pilocarpin hydrochloride into the hydrogel matrix. This work has been carried out under IAEA research contract RB 3379/R-1 POL.

  6. Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism

    Directory of Open Access Journals (Sweden)

    Abeer M. El-Kady

    2015-01-01

    Full Text Available Bioactive glass nanoparticles were synthesized and tested for the first time as a new delivery system for sustained 5-fluorouracil (5-FU release. They were characterized by TEM, DTA, TGA, and FT-IR. The porosity % and specific surface area of glass nanoparticles were 85.59% and 378.36 m2/g, respectively. The in vitro bioactivity evaluation confirmed that bioactive glass disks prepared from these nanoparticles could induce hydroxyapatite layer over their surfaces in simulated body fluid. The in vitro drug release experiment indicated that glass nanoparticles could serve as long-term local delivery vehicles for sustained 5-FU release. The release profile of 5-FU showed an initial fast release stage followed by a second stage of slower release. The initial burst release of 5-FU in the first day was about 23% (28.92 mg·L−1 of the total amount of loaded 5-FU, while the final cumulative percentage of the 5-FU released after 32 days was about 45.6% (57.31 mg·L−1 of the total amount of loaded 5-FU. The application of different mathematical models indicated that 5-FU was released by diffusion controlled mechanism and suggested that its release rate was dependent on glass particles dissolution, changes of surface area as well as diameter of glass particles, and concentration of loaded drug.

  7. Levels of sirolimus in saliva and blood following oral topical sustained-release varnish delivery system application.

    Science.gov (United States)

    Nudelman, Zakhar; Findler, Mordechai; Barasch, Dinorah; Nemirovski, Alina; Pikovsky, Anna; Kirmayer, David; Basheer, Maamoun; Gutkind, J Silvio; Friedman, Michael; Czerninski, Rakefet

    2015-05-01

    Sirolimus (rapamycin) is a mammalian target of rapamycin pathway blocker. The efficacy of sirolimus is currently studied for its antiproliferative properties in various malignancies and particularly in squamous cell carcinoma and other oral disorders. Topical application at the oral cavity can augment sirolimus availability at the site of action by increasing sirolimus levels in saliva and hence efficacy, along with improved safety (low levels in the blood to avoid side effects) and compliance. Our purpose was to evaluate the release profile and safety of a topical sirolimus sustained-release varnish drug delivery system. Sirolimus sustained-release varnish drug delivery system containing a total of 0.5 mg of the drug was applied to nine healthy male volunteers. Saliva and blood levels were determined utilizing mass spectrometry and chemiluminescent microparticle immunoassay, respectively. The prolonged release profile and safety were evaluated for the oral topical delivery system. After the application of the drug delivery system, a sustained-release profile was observed in the oral cavity. We have measured moderate sirolimus levels for up to 12 h. The safety was confirmed, and systemic sirolimus blood levels were negligible. After an application of sirolimus sustained-release varnish drug delivery system, prolonged drug levels can be achieved in the saliva. The oral topical sirolimus concentrations were potentially therapeutic along with minimal systemic exposure. These results broaden the potential clinical use of sustained-release oral topical rapalogs.

  8. Natural gums as sustained release carriers: development of gastroretentive drug delivery system of ziprasidone HCl

    Directory of Open Access Journals (Sweden)

    AJ Rajamma

    2012-10-01

    Full Text Available Abstract Background Objective of this study is to show the potential use of natural gums in the development of drug delivery systems. Therefore in this work gastro retentive tablet formulations of ziprasidone HCl were developed using simplex lattice design considering concentration of okra gum, locust bean gum and HPMC K4M as independent variables. A response surface plot and multiple regression equations were used to evaluate the effect of independent variables on hardness, flag time, floating time and drug release for 1 h, 2 h, and 8 h and for 24 h. A checkpoint batch was also prepared by considering the constraints and desirability of optimized formulation to improve its in vitro performance. Significance of result was analyzed using ANOVA and p was considered statistically significant. Results Formulation chiefly contains locust bean gum found to be favorable for hardness and floatability but combined effect of three variables was responsible for the sustained release of drug. The in vitro drug release data of check point batch (F8 was found to be sustained well compared to the most satisfactory formulation (F7 of 7 runs. The ‘n’ value was found to be between 0.5 and 1 suggesting that release of drug follows anomalous (non-fickian diffusion mechanism indicating both diffusion and erosion mechanism from these natural gums. Predicted results were almost similar to the observed experimental values indicating the accuracy of the design. In vivo floatability test indicated non adherence to the gastric mucosa and tablets remain buoyant for more than 24 h. Conclusions Study showed these eco-friendly natural gums can be considered as promising SR polymers.

  9. Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release

    Science.gov (United States)

    Liu, Ying

    This dissertation provides a fundamental understanding of the process for generating nanoparticles with controlled size distribution and of predicting nanoparticle stability for drug delivery and sustained release. We developed and characterized a novel technology to generate organic and inorganic nanoparticles protected by biocompatible and biodegradable polymers with precisely controlled size and size distribution. Computational fluid mechanics (CFD) together with experimental results provided details of the micromixing in the mixer. The particle size dependence on Reynolds number and supersaturation was illustrated. The study of the fundamental mass transfer phenomena leading to Ostwald ripening enables quantitative prediction of the time evolution of nanoparticles with monodistribution and relatively broader multi-distribution using beta-carotene and polystyrene-b-poly(ethylene oxide) (PS-b-PEO) as a model system. Negatively charged latex particles were used to exam the attachment of the diblock copolymer, PS-b-PEO, on the surface. The stability provided by the Columbic repulsion was replaced by steric stabilization. The attachment of the block copolymers on the surface of the colloids depends on the flow field, i.e. Reynolds number, of the mixing process. The slow degradation of poly(epsilon-caprolactone) (PCL) and poly(gamma-methyl-epsilon-caprolactone) (PMCL) was demonstrated. The slow degradation ensures long-term stability and long-term blood circulation of the polymeric nanoparticles. As a practical application, we formulate the anti-tuberculosis drug, rifampicin, into nanoparticles by conjugation to other hydrophobic molecules (such as vitamin E, PCL and 2-ethylhexyl vinyl ether) by pH sensitive cleavable chemical bonds to increase the drug loading, return stability of the nanoparticle suspension, and control drug release. The in vitro release profiles were provided by using HPLC and E.coli growth inhibition on LB agar plates. The prodrug nanoparticle

  10. Formulation and evaluation of sustained release enteric-coated pellets of budesonide for intestinal delivery

    National Research Council Canada - National Science Library

    Raval, Mihir K; Ramani, Riddhi V; Sheth, Navin R

    2013-01-01

    ...) full factorial design by giving an enteric coating with Eudragit S100. Budesonide-sustained release pellets were prepared by extruder and spheronization technique using a combination of water-soluble and permeable polymers by applying 3(2...

  11. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system.

    Science.gov (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed

    2017-03-01

    Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.

  12. Formulation and evaluation of sustained release enteric-coated pellets of budesonide for intestinal delivery.

    Science.gov (United States)

    Raval, Mihir K; Ramani, Riddhi V; Sheth, Navin R

    2013-10-01

    The aim of present work was to develop intestinal-targeted pellets of Budesonide, a potent glucocorticoid, used for the treatment of ulcerative colitis and Crohn's disease by extrusion and spheronization method. Current available oral formulations of Budesonide have low efficacy because of the premature drug release in the upper part of the gastrointestinal tract. In this study, a pH-controlled intestinal-targeted pellet of budesonide was established using 3(2) full factorial design by giving an enteric coating with Eudragit S100. Budesonide-sustained release pellets were prepared by extruder and spheronization technique using a combination of water-soluble and permeable polymers by applying 3(2) full factorial design. The pellets were coated by spray coating technique using Eudragit S100 as an enteric polymer. The pellets were characterized for its flowability, sphericity, friability, and in vitro drug release. Release behaviour was studied in different pH media. The release profile was studied for the mechanism of drug release. The optimized formulation showed negligible drug release in the stomach followed by release for 12 h in the intestinal pH. Differential scanning calorimetry and Fourier Transform Infrared Spectroscopy studies indicated no interaction between drug and polymer. Scanning Electron Microscopy image of coated pellets suggested a uniform and smooth coat over the surface of pellets. Accelerated stability studies showed a stable nature of drug in the formulation. All evaluation parameter showed that pellets were good in spherocity and flowability. Sustained release pellets of Budesonide could be prepared by extrusion and spheronization which released the drug in intestinal pH for an intestine to treat inflammatory bowel disease. A ratio of polymer combination could be decided using a full factorial design.

  13. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development and in vitro characterization of floating sustained-release drug delivery systems of polyphenols.

    Science.gov (United States)

    Rosenzweig, Ohad; Lavy, Eran; Gati, Irith; Kohen, Ron; Friedman, Michael

    2013-01-01

    The aim of this study was to develop and characterize floating stomach-retentive matrix tablets that will deliver polyphenols in a controlled release manner. The tablets were prepared by direct compression. A number of polymers were examined and egg albumin was chosen in light of a better performance in terms of floating behavior and decomposition time. Dissolution studies for three representative polyphenols loaded into a number of formulations were performed using the "f₂" factor in order to compare release profiles of different polyphenols and formulations. The release data showed a good fit into the power law equation and zero-order kinetics has been determined for some of the systems. Erosion and textural analysis studies revealed that higher concentration of egg albumin results in a higher gel strength that is less susceptible to erosion, potentially leading to a prolonged delivery time of drug. The ability of egg albumin-based tablets to resist high mechanical forces was also determined, while comparison to cellulose-derived polymers revealed that the latter have a much lower ability to resist the same forces. The developed delivery system has the potential to increase the efficacy of the therapy for various pathological stomach conditions and to improve patient compliance.

  15. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation.

    Directory of Open Access Journals (Sweden)

    Juçara Ribeiro Franca

    Full Text Available The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM. Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a

  16. Formulation and Characterization of Sustained Release Floating ...

    African Journals Online (AJOL)

    Conclusion: Microballoons is a potential suitable delivery system for sustained release of metformin hydrochloride with improved bioavailability when compared with conventional dosage forms of the drug. Keywords: Gastroretentive drug delivery system (GDDS), Solvent evaporation and diffusion method, Higuchi, ...

  17. Local sustained-release delivery systems of the antibiofilm agent thiazolidinedione-8 for prevention of catheter-associated urinary tract infections.

    Science.gov (United States)

    Shenderovich, Julia; Feldman, Mark; Kirmayer, David; Al-Quntar, Abed; Steinberg, Doron; Lavy, Eran; Friedman, Michael

    2015-05-15

    Thiazolidinedione-8 (TZD-8) is an anti-quorum-sensing molecule that has the potential to effectively prevent catheter-associated urinary tract infections, a major healthcare challenge. Sustained-release drug-delivery systems can enhance drugs' therapeutic potential, by maintaining their therapeutic level and reducing their side effects. Varnishes for sustained release of TZD-8 based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit(®) RL) were developed. The main factors affecting release rate were found to be film thickness and presence of a hydrophilic or swellable polymer in the matrix. The release mechanism of ethylcellulose-based systems matched the Higuchi model. Selected varnishes were retained on catheters for at least 8 days. Sustained-release delivery systems of TZD-8 were active against Candida albicans biofilms. The present study demonstrates promising results en route to developing applications for the prevention of catheter-associated infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthetic geopolymers for controlled delivery of oxycodone: adjustable and nanostructured porosity enables tunable and sustained drug release.

    Science.gov (United States)

    Forsgren, Johan; Pedersen, Christian; Strømme, Maria; Engqvist, Håkan

    2011-03-15

    In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2:1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial.

  19. Synthetic Geopolymers for Controlled Delivery of Oxycodone: Adjustable and Nanostructured Porosity Enables Tunable and Sustained Drug Release

    Science.gov (United States)

    Forsgren, Johan; Pedersen, Christian; Strømme, Maria; Engqvist, Håkan

    2011-01-01

    In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2∶1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial. PMID:21423616

  20. Synthetic geopolymers for controlled delivery of oxycodone: adjustable and nanostructured porosity enables tunable and sustained drug release.

    Directory of Open Access Journals (Sweden)

    Johan Forsgren

    Full Text Available In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2:1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial.

  1. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material.

    Science.gov (United States)

    Al Thaher, Yazan; Perni, Stefano; Prokopovich, Polina

    2017-11-01

    Total joint replacement (TJR), such as hip and knee replacement, is a popular procedure worldwide. Prosthetic joint infections (PJI) after this procedure have been widely reported, where treatment of such infections is complex with high cost and prolonged hospital stay. In cemented arthroplasties, the use of antibiotic loaded bone cement (ALBC) is a standard practice for the prophylaxis and treatment of PJI. Recently, the development of bacterial resistance by pathogenic microorganisms against most commonly used antibiotics increased the interest in alternative approaches for antimicrobial delivery systems such as nanotechnology. This review summarizes the efforts made to improve the antimicrobial properties of PMMA bone cements using nanotechnology based antibiotic and non-antibiotic delivery systems to overcome drawbacks of ALBC in the prophylaxis and treatment of PJIs after hip and knee replacement. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Ramasamy, S; Ramakrishnan, V; Kumar, J

    2011-12-01

    Hydroxyapatite is a bioceramic which has a wide range of medical application for bone diseases. To enhance its usage, we have prepared ciprofloxacin loaded nano hydroxyapatite (HA) composite with a natural polymer, alginate, using wet chemical method at low temperature. The prepared composites were analyzed by various physicochemical methods. The results show that the nano HA crystallites are well intact with the alginate macromolecules. For the composite system FT-IR and micro Raman results are reported in this paper. Studies on the drug loading and drug release have been done. The drug is pre-adsorbed onto the ceramic particle before the formation of composite. The thermal behavior of composite has been studied using thermo gravimetric analysis (TGA). This work, reports that the nanocomposite prepared under optimum condition could prolong the release of ciprofloxacin compared with the ciprofloxacin loaded hydroxyapatite.

  3. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  4. Poly(glycerol adipate-co-ω-pentadecalactone) spray-dried microparticles as sustained release carriers for pulmonary delivery.

    Science.gov (United States)

    Tawfeek, Hesham; Khidr, Sayed; Samy, Eman; Ahmed, Sayed; Murphy, Mark; Mohammed, Afzaal; Shabir, Anjum; Hutcheon, Gillian; Saleem, Imran

    2011-09-01

    The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers ((L)-arginine and (L)-leucine) (0.5-1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 μm. However, (L)-leucine was significantly superior in enhancing the aerosolization performance ((L-)arginine:%FPF 27.61 ± 4.49-26.57 ± 1.85; FPD 12.40 ± 0.99-19.54 ± 0.16 μg and MMAD 2.18 ± 0.35-2.98 ± 0.25 μm, (L)-leucine:%FPF 36.90 ± 3.6-43.38 ± 5.6; FPD 18.66 ± 2.90-21.58 ± 2.46 μg and MMAD 2.55 ± 0.03-3.68 ± 0.12 μm). Incorporating (L)-leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi's pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with (L)-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment. The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery.

  5. Intratumoral chemotherapy with a sustained-release drug delivery system inhibits growth of human pancreatic cancer xenografts.

    Science.gov (United States)

    Smith, J P; Stock, E; Orenberg, E K; Yu, N Y; Kanekal, S; Brown, D M

    1995-12-01

    This study provides the first evidence that treatment of human pancreatic adenocarcinoma is markedly improved by the intratumoral administration of chemotherapeutic agents in a novel drug delivery system. The effect of chemotherapeutic agents delivered in a sustained-release, protein-based, injectable gel was evaluated on the growth of human pancreatic adenocarcinoma cell line, BxPC-3. In vitro chemosensitivity of BxPC-3 cells exposed for 24 or 72 h to fluorouracil (0.01-5 mM), cisplatin or doxorubicin (0.1-50 microM) and floxuridine, vinblastine, mitomycin or paclitaxel (1.0-100 microM) was compared with that of untreated cells. In vitro chemosensitivity was also studied with fluorouracil and mitomycin in the poorly differentiated PANC-1, human pancreatic cancer cell line. Survival was determined after 7-10 days. All drugs decreased cell growth in a dose-dependent fashion. The efficacy of fluorouracil, cisplatin and doxorubicin increased with prolonged exposure, rendering these drugs most appropriate for a sustained-release preparation. For in vivo studies, athymic nude mice bearing BxPC-3 xenografts were treated either with fluorouracil, cisplatin or doxorubicin in the therapeutic injectable gel containing epinephrine or with vehicle alone administered intratumorally on days 1 and 4. After 28 days, the mice were sacrificed and tumors dissected and weighed. Tumors in mice treated with the injectable gel decreased in size by 72-79% compared with tumors in untreated controls and tumors treated with vehicle alone. Intratumoral injection of drug solution and intraperitoneal injection of drug in the injectable gel did not change tumor size compared with controls. In a drug-retention study, mice were injected intratumorally with [3H]fluorouracil either in the injectable gel or in solution. Sustained radioactivity was observed in tumors injected with the gel, and, conversely, greater radioactivity was detected in the liver and kidneys in mice receiving the radiolabeled

  6. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems

    DEFF Research Database (Denmark)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da

    2015-01-01

    A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while...... the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations...

  7. Extracellular Matrix (ECM Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Soon Sim Yang

    Full Text Available Recombinant human transforming growth factor beta-3 (rhTGF-β3 is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs using western blot and circular dichroism (CD analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+ rhTGF-β3 EMLDS in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.

  8. Is gentamycin delivery via sustained-release vehicles a safe and effective treatment for refractory Meniere's disease? A critical analysis of published interventional studies.

    Science.gov (United States)

    Vlastarakos, Petros V; Iacovou, Emily; Nikolopoulos, Thomas P

    2017-03-01

    The aim of this study is to review the literature on sustained-release vehicles delivering gentamycin in the inner ear of patients suffering from Meniere's disease (MD), and critically assess their respective clinical effectiveness and safety. A systematic literature review was conducted in Medline and other database sources until January 2016, along with critical analysis of pooled data. Overall, six prospective and four retrospective studies were systematically analyzed. The total number of treated patients was 320. A 2 year patient follow up was only reported in 40 % of studies. Inner ear gentamycin delivery using sustained-release vehicles is associated with improved vertigo control (strength of recommendation B), and quality of life (strength of recommendation B) in MD sufferers. In addition, dynamic-release devices seem to achieve high rates of improvement in the appearance of tinnitus (65.4 %) and aural pressure (76.2 %). By contrast, percentages of complete and partial hearing loss appear unacceptably high (31.08 and 23.38 % of patients, respectively), compared to historical data involving simple intratympanic gentamycin injections. Sustained-release vehicles for gentamycin delivery may have a role in the management of MD patients who have previously failed intratympanic gentamycin injections, or those who have already lost serviceable hearing. Their use as first line treatment over single intratympanic injections for all MD patients, who do not respond to conservative treatment should be discouraged.

  9. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    Science.gov (United States)

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2018-01-01

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  10. Evaluation of carbopol-methyl cellulose based sustained-release ocular delivery system for pefloxacin mesylate using rabbit eye model.

    Science.gov (United States)

    Sultana, Yasmin; Aqil, M; Ali, Asgar; Zafar, Shadaab

    2006-01-01

    The major purpose of this study was to develop and characterize a series of carbopol- and methyl cellulose-based solutions as the in situ gelling vehicles for ophthalmic drug delivery. The rheological properties, in vitro release as well as in vivo pharmacological response of a combination of polymer solutions, including carbopol and methyl cellulose, were evaluated. It was found that the optimum concentration of carbopol solution for the in situ gel-forming delivery systems was 0.3% (w/w), and that for methyl cellulose solution was 1.5% (w/w). The mixture of 0.3% carbopol and 1.5% methyl cellulose solutions showed a significant enhancement in gel strength in the physiological condition; this gel mixture was also found to be free flowing at pH 4.0 and 25 degrees C. The rheological behaviors of carbopol/methyl cellulose solution were not affected by the incorporation of the drug. Drug levels in the aqueous humor of the rabbits were well above the MIC-values of relevant bacteria after 12 hours, the results of an optimized formulation containing 0.18% of pefloxacin mesylate compared well with the 0.3% marketed eye drop formulation, indicating our formulation to be significantly better considering that a similar effect was obtained at half the concentration. Both the in vitro release and in vivo pharmacological studies indicated that the carbopol/methyl cellulose solution had better ability to retain drug than did the carbopol or methyl cellulose solutions alone. The results demonstrated that the carbopol/methyl cellulose mixture can be used as an in situ gelling vehicle to enhance the ocular bioavailability of pefloxacin mesylate.

  11. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water-soluble drugs II. In-vivo evaluation.

    Science.gov (United States)

    Nguyen, Tri-Hung; Hanley, Tracey; Porter, Christopher J H; Larson, Ian; Boyd, Ben J

    2010-07-01

    Lipid-based liquid crystals formed from phytantriol (PHY) and glyceryl monooleate (GMO) retain their cubic-phase structure on dilution in physiologically relevant simulated gastrointestinal media, suggesting their potential application as sustained-release drug-delivery systems for poorly water-soluble drugs. In this study the potential of PHY and GMO to serve as sustained-release lipid vehicles for a model poorly-water-soluble drug, cinnarizine, was assessed and compared to that of an aqueous suspension formulation. Small-angle X-ray scattering was used to confirm the nanostructure of the liquid-crystalline matrix in the presence of the selected model drug, cinnarizine. Oral bioavailability studies were conducted in rats, and disposition of lipid and drug in segments of the gastrointestinal tract was determined over time. Differences in the digestibility and stability of formulations under digestion conditions were investigated using an in-vitro lipolysis model. The oral bioavailability of cinnarizine using the PHY formulation was 41%, compared to 19% for the GMO formulation and 6% for an aqueous suspension. The PHY formulation provided a T(max) for cinnarizine of 33 h, with absorption apparent up to 55 h after administration. In contrast, the T(max) for the GMO formulation was only 5 h. The PHY formulation was retained in the stomach for extended periods of time, with 56% of lipid remaining in the stomach after 24 h, in contrast to less than 1% of the GMO formulation after 8 h, suggesting that gastric retention was a key aspect of the prolonged period of absorption, which correlated with the formulations' relative susceptibility to in-vitro lipolysis and degradation. PHY provides a dramatic sustained-release effect for cinnarizine on oral administration, which is linked to gastric retention of the formulation and its ability to resist digestive processing. Poorly digested liquid crystal lipid formulations therefore offer a novel class of sustained-release

  12. Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Cha Yee Kuen

    2017-11-01

    Full Text Available Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB, a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS and Field Emission-Scanning Electron Microscopy (FESEM results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.

  13. Organic Nanovesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Botcha

    2014-01-01

    Full Text Available “Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nanomedicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nanovesicles (diameter: 200 nm from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nanovesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nanotubes (diameter: 150 nm, which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nanovesicles were externally protected with biocompatible poly(ethyleneglycol-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nanovesicles was demonstrated by zebrafish teratogenicity assay. Biocompatible nanovesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h in zebrafish larvae, which is recognized as an emerging in vivo model system.

  14. Assay of 6-gingerol in CO2 supercritical fluid extracts of ginger and evaluation of its sustained release from a transdermal delivery system across rat skin.

    Science.gov (United States)

    Chen, Yan; Zhang, Cuiping; Zhang, Mei; Fu, Xiaobing

    2014-07-01

    Ginger has been widely used as healthy food condiment as well as traditional Chinese medicine since antiquity. Multiple potentials of ginger for treatment of various ailments have been revealed. However, the biological half-life of 6-gingerol (a principal pungent ingredient of ginger) is only 7.23 minutes while taken orally. Delivery of ginger compositions by routes other than oral have scarcely been reported. Therefore, we studied a noninvasive transdermal drug delivery system (TDDS) of ginger to bypass hepatic first pass metabolism, avoid gastrointestinal degradation and achieve long persistent release of effective compositions. After establishment of a HPLC analysis method of 6-gingerol, assays of 6-gingerol were performed to compare two kinds of ginger extracts. Then, the characteristics of transdermal delivery of 6-gingerol in TDDS were exhibited. The results showed that the contents of 6-gingerol in two kinds of ginger extracts were significantly different. The maximal delivery percentage of 6-gingerol across rat skin at 20 h was more than 40% in different TDDS formulations. TDDS may provide long-lasting delivery of ginger compounds.

  15. Formulation of Sustained-Release Matrix Tablets Using Cross ...

    African Journals Online (AJOL)

    HP

    2012-02-23

    Feb 23, 2012 ... appears simple, but in reality, the release pattern is a complex phenomenon. At the molecular level, it ... The drug is thus a suitable model candidate for sustained drug delivery [12]. The objective of the .... anomalous transport (non-Fickian) refers to a combination of both diffusion and erosion controlled-drug ...

  16. Development of Sustained-Release Microbeads of Nifedipine and In ...

    African Journals Online (AJOL)

    Purpose: To formulate and evaluate sustained-release microbeads of nifedipine for prolonged delivery. Methods: Nifedipine microbeads were prepared using sodium alginate and pectin in different ratios by ionic-gelation method. The microbeads were evaluated for surface morphology and shape by scanning electron ...

  17. Use of rotary fluidized-bed technology for development of sustained-release plant extracts pellets: potential application for feed additive delivery.

    Science.gov (United States)

    Meunier, J-P; Cardot, J-M; Gauthier, P; Beyssac, E; Alric, M

    2006-07-01

    The aim of this study was to develop sustained release plant extracts as a potential alternative to antibiotic growth promoters for growing pigs. Pellets with a core based on microcrystalline cellulose and 3 active compounds (eugenol, carvacrol, and thymol) were prepared using rotary fluidized-bed technology. Two particle sizes were produced that had a mean size of approximately 250 and 500 mum. Results show the process was able to produce pellets with a spherical and homogenous form when 10% of the active compounds were incorporated into the core. When active compounds were increased to 20%, the pellet became stickier, and the yield decreased from 90 to 65%. Different amounts of coating in the form of an aqueous-based ethylcellulose (EC) dispersion (Surelease) were applied to the core to modify the release of active compounds. The efficacy of the coating was evaluated in vitro using a flow-through cell apparatus. The time to achieve 50 and 90% dissolution increased with the increase in particle size (P eugenol was always faster than for thymol or carvacrol. The close monitoring of plant extract behavior in the gastrointestinal tract could become a key factor in the continued use of phyto-molecules as alternatives to antibiotic growth promoters and in optimizing the balance between cost and efficacy. Different microencapsulation technologies can be used, of which the rotary fluidized bed warrants consideration because of the quality of the products obtained.

  18. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Dena Dorniani

    2014-01-01

    Full Text Available The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG and polyvinyl alcohol-GA (FPVAG, respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.

  19. Sustained delivery of commensal bacteria from pod-intravaginal rings.

    Science.gov (United States)

    Gunawardana, Manjula; Mullen, Madeline; Yoo, Jennifer; Webster, Paul; Moss, John A; Baum, Marc M

    2014-01-01

    Topical administration of live commensal bacteria to the vaginal tract holds significant potential as a cost-effective strategy for the treatment of sexually transmitted infections and the delivery of mucosal vaccines. Probiotic-releasing intravaginal rings (IVRs) embody significant theoretical advantages over traditional daily-dosage forms, such as sustained and controlled delivery leading to improved adherence to therapy compared to that of frequent dosing. The conventional IVR designs, however, are not amenable to the delivery of live bacteria. We have developed a novel pod-IVR technology where polymer-coated tablets ("pods") of Lactobacillus gasseri strain ATCC 33323, a commensal microorganism of human origin, are embedded in silicone IVRs. The release rate of bacterial cells is controlled by the diameter of a delivery channel that exposes a portion of the pod to external fluids. In vitro studies demonstrated that the prototype devices released between 1.1×10(7) and 14×10(7) cells per day for up to 21 days in a controlled sustained fashion with stable burst-free release kinetics. The daily release rates were correlated with the cross-sectional area of the delivery channel. Bacteria in the IVR pods remained viable throughout the in vitro studies and formed biofilms on the surfaces of the devices. This proof-of-principle study represents the first demonstration of a prolonged, sustained release of bacteria from an intravaginal device and warrants further investigation of this device as a nonchemotherapeutic agent for the restoration and maintenance of normal urogenital flora.

  20. Preparation and Characterization of Sustained Release Matrix ...

    African Journals Online (AJOL)

    Purpose: To formulate matrix type sustained-release (SR) tablets of tizanidine hydrochloride (TH) for prolonged drug release and improvement in motor activity after spinal injuries. Methods: Matrix tablets were prepared by the wet granulation method using four polymers (hydroxyl propyl methyl cellulose [HPMC] K 100, ethyl ...

  1. Development of sustained release tablets containing solid ...

    African Journals Online (AJOL)

    Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier.

  2. Chitosan microneedle patches for sustained transdermal delivery of macromolecules.

    Science.gov (United States)

    Chen, Mei-Chin; Ling, Ming-Hung; Lai, Kuan-Ying; Pramudityo, Esar

    2012-12-10

    This paper introduces a chitosan microneedle patch for efficient and sustained transdermal delivery of hydrophilic macromolecules. Chitosan microneedles have sufficient mechanical strength to be inserted in vitro into porcine skin at approximately 250 μm in depth and in vivo into rat skin at approximately 200 μm in depth. Bovine serum albumin (BSA, MW=66.5 kDa) was used as a model protein to explore the potential use of chitosan microneedles as a transdermal delivery device for protein drugs. In vitro drug release showed that chitosan microneedles can provide a sustained release of BSA for at least 8 days (approximately 95% of drugs released in 8 days). When the Alexa Fluor 488-labeled BSA (Alexa 488-BSA)-loaded microneedles were applied to the rat skin in vivo, confocal microscopic images showed that BSA can gradually diffuse from the puncture sites to the dermal layer and the fluorescence of Alexa 488-BSA can be observed at the depth of 300 μm. In addition, encapsulation of BSA within the microneedle matrix did not alter the secondary structure of BSA, indicating that the gentle nature of the fabrication process allowed for encapsulation of fragile biomolecules. These results suggested that the developed chitosan microneedles may serve as a promising device for transdermal delivery of macromolecules in a sustained manner.

  3. Sustained tobramycin release from polyphosphate double network hydrogels.

    Science.gov (United States)

    Lane, Dwight D; Fessler, Amber K; Goo, Seungah; Williams, Dustin L; Stewart, Russell J

    2017-03-01

    Sustained local delivery of antibiotics from a drug reservoir to treat or prevent bacterial infections can avoid many of the drawbacks of systemic administration of antibiotics. Prolonged local release of high concentrations of antibiotics may also be more effective at treating bacteria in established biofilm populations that are resistant to systemic antibiotics. A double network hydrogel comprising an organic polyphosphate pre-polymer network polymerized within a polyacrylamide network de-swelled to about 50% of its initial volume when the polyphosphate network was crosslinked with polycationic tobramycin, an aminoglycoside antibiotic. The antibiotic-loaded hydrogels contained approximately 200mg/ml of tobramycin. The hydrogels continuously released daily amounts of tobramycin above the Pseudomonas aeruginosa minimal bactericidal concentration for greater than 50days, over the pH range 6.0-8.0, and completely eradicated established P. aeruginosa biofilms within 72h in a flow cell bioreactor. The presence of physiological concentrations of Mg2+ and Ca2+ ions doubled the cumulative release over 60days. The polyphosphate hydrogels show promise as materials for sustained localized tobramycin delivery to prevent post-operative P. aeruginosa infections including infections established in biofilms. Polyphosphate hydrogels were loaded with high concentrations of tobramycin. The hydrogels provided sustained release of bactericidal concentrations of tobramycin for 50days, and were capable of completely eradicating P. aeruginosa in established biofilms. The hydrogels have potential for localized prevention or treatment of P. aeruginosa infections. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. [Preparation and release behaviour of mesoporous silica/ethylcellulose sustained-release mini-matrix].

    Science.gov (United States)

    Wu, Qiao-li; Quan, Gui-lan; Hong, Yu; Wu, Lin-na; Zeng, You-mei; Li, Ge; Pan, Xin; Wu, Chuan-bin

    2015-04-01

    Hot-melt extrusion was applied to prepare mesoporous silica/ethylcellulose mini-matrix for sustained release, and fenofibrate was used as a model drug, ethylcellulose and xanthan gum were chosen as sustained-release agent and releasing moderator, respectively. This novel matrix obtained the controlled release ability by combining mesoporous silica drug delivery system and hot-melt extrusion technology. And mesoporous silica particle (SBA-15) was chosen as drug carrier to increase the dissolution rate of fenofibrate in this martix. Scanning electron microscope, transmission electron microscope, small angle X-ray powder diffraction and N2 adsorption-desorption were introduced to determine the particle morphology, particle size and pore structure of the synthesized SBA-15. The results showed that SBA-15 had a very high Brunauer-Emmett-Teller specific surface area, a narrow pore size distribution, large pore volume and a ordered two-dimensional hexagonal structure of p6mm symmetry. Differential scanning calorimetry and X-ray powder diffraction results demonstrated that fenofibrate dispersed in an amorphous state inside the pores of the mesoporous silica which contributed to the improvement in the dissolution rate. The drug release of mini-matrices was influenced by ethylcellulose viscosity grades and xanthan gum concentration, which increased with the increasing of xanthan gum concentration and decreasing of ethylcellulose viscosity. Mini-matrix containing 22% xanthan gum exhibited a good sustained release performance, and the drug release behavior followed the first-order kinetics.

  5. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

    Science.gov (United States)

    Li, Longfei; Chen, Lin; Zhang, Huan; Yang, Yongzhen; Liu, Xuguang; Chen, Yongkang

    2016-04-01

    Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150 nm with a typical core-shell structure, and the thickness of the coating layer is approximately 50 nm. TMMIPs also displayed obvious magnetic properties and thermo-sensitivity. The adsorption results show that the prepared TMMIPs exhibit good adsorption capacity (up to 96.53 mg/g at 25 °C) and recognition towards 5-FU. The studies on 5-FU loading and release in vitro suggest that the release rate increases with increasing temperature. Meanwhile, adsorption mechanisms were explored by using a computational analysis to simulate the imprinted site towards 5-FU. The interaction energy between the imprinted site and 5-FU is -112.24 kJ/mol, originating from a hydrogen bond, Van der Waals forces and a hydrophobic interaction between functional groups located on 5-FU and a NIPAM monomer. The electrostatic potential charges and population analysis results suggest that the imprinted site of 5-FU can be introduced on the surface of TMMIPs, confirming their selective adsorption behavior for 5-FU. Copyright © 2015. Published by Elsevier B.V.

  6. Controllable synthesis and characterisation of palladium (II) anticancer complex-loaded colloidal gelatin nanoparticles as a novel sustained-release delivery system in cancer therapy.

    Science.gov (United States)

    Alasvand, Neda; Saeidifar, Maryam; Saboury, Ali Akbar; Mozafari, Masoud

    2017-08-01

    Over the past few years, there have been several attempts to deliver anticancer drugs into the body. It has been shown that compared to other available carriers, colloidal gelatin nanoparticles (CGNPs) have distinct properties due to their exceptional physico-chemical and biological characteristics. In this study, a novel water-soluble palladium (II) anticancer complex was first synthesised, and then loaded into CGNPs. The CGNPs were synthesised through a two-step desolvation method with an average particle size of 378 nm. After confirming the stability of the drug in the nanoparticles, the drug-loaded CGNPs were tested for in vitro cytotoxicity against human breast cancer cells. The results showed that the average drug encapsulating efficiency and drug loading of CGNPs were 64 and 10 ± 2.1% (w/w), respectively. There was a slight shift to higher values of cumulative release, when the samples were tested in lower pH values. In addition, the in vitro cytotoxicity test indicated that the number of growing cells significantly decreased after 48 h in the presence of different concentrations of drug. The results also demonstrated that the released drug could bind to DNA by a static mechanism at low concentrations (0.57 µM) on the basis of hydrophobic and hydrogen binding interactions.

  7. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.

    Science.gov (United States)

    Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.

  9. Sustained Release of a Water~§oiuble itrng i'rom Directly ...

    African Journals Online (AJOL)

    desirable properties have encouraged a more extensive assessment of the gum as a hydrophilic controlled release delivery system. The aim of this study was to evaluate the gum extracted from the pods of Hibiscus esculentus. (commonly known as okra) in in vitro sustained release formulations containing the water-.

  10. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  11. [Sustained-release Opioids: Morphine, Oxycodone and Tapentadol].

    Science.gov (United States)

    Takahashi, Yoshika; Iseki, Masako

    2015-11-01

    Opioid analgesics are widely used for managing moderate to severe pain. In cancer pain management sustained-release opioids are used for continuous pain as well as immediate-release opioids for breakthrough pain. Sustained-release drugs have the advantage of stabilizing the blood concentration, although it takes some time to exert their effects. In Japan, the currently available oral sustained-release opioids include six types of sustained-release morphine (three are once-a-day formulations, while the rest are twice-a-day), one type of oxycodone and tapentadol. In this article, we will discuss the pharmacokinetic properties of MS Contin, Morphes, Kadian, P guard and Pacif as sustained-release morphine, Oxycontin as sustained-release oxycodone and Tapenta as sustained-release tapentadol.

  12. Development of enteric coated sustained release minitablets containing mesalamine

    National Research Council Canada - National Science Library

    Souza, Dayse Fernanda de; Goebel, Karin; Andreazza, Itamar Francisco

    2013-01-01

    The aim of this study was to develop and evaluate a multiparticulate modified release system, composed of minitablets with a sustained release matrix system coated with a pH-dependent release polymer...

  13. Sustained release nitric oxide from long-lived circulating nanoparticles.

    Science.gov (United States)

    Cabrales, Pedro; Han, George; Roche, Camille; Nacharaju, Parimala; Friedman, Adam J; Friedman, Joel M

    2010-08-15

    The current limitations of nitric oxide (NO) delivery systems have stimulated an extraordinary interest in the development of compounds that generate NO in a controlled and sustained manner with a heavy emphasis on the treatment of cardiovascular disease states. This work describes the positive physiological response to the infusion of NO-releasing nanoparticles prepared using a new platform based on hydrogel/glass hybrid nanoparticles. When exposed to moisture, these nanoparticles slowly release therapeutic levels of NO, previously generated through thermal reduction of nitrite to NO trapped within the dry particles. The controlled and sustained release of NO observed from these nanoparticles (NO-np) is regulated by its hydration over extended periods of time. In a dose-dependent manner, circulating NO-np both decreased mean arterial blood pressure and increased exhaled concentrations of NO over a period of several hours. Circulating NO-np induced vasodilatation and increased microvascular perfusion during their several hour circulation lifetime. Control nanoparticles (control-np; without nitrite) did not induce changes in arterial pressure, although a decrease in the number of capillaries perfused and an increase in leukocyte rolling and immobilization in the microcirculation were observed. The NO released by the NO-np prevents the inflammatory response observed after infusion of control-np. These data suggest that NO release from NO-np is advantageous relative to other NO-releasing compounds, because it does not depend on chemical decomposition or enzymatic catalysis; it is only determined by the rate of hydration. Based on the observed physiological properties, NO-np has clear potential as a therapeutic agent and as a research tool to increase our understanding of NO signaling mechanisms within the vasculature. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Biodegradable Injectable In Situ Implants and Microparticles for Sustained Release of Montelukast: In Vitro Release, Pharmacokinetics, and Stability

    OpenAIRE

    Ahmed, Tarek A.; Ibrahim, Hany M.; Ahmed M Samy; Kaseem, Alaa; Nutan, Mohammad T. H.; Hussain, Muhammad Delwar

    2014-01-01

    The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueou...

  15. Ocular Insert: Dosage Form for Sustain Opthalmic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-06-01

    Full Text Available Except for skin, the eye is the most easily accessible site for topical administration of a medication. Traditional topical ophthalmic formulations (eye drops and ointments have poor bioavailability because of rapid pre-corneal elimination, conjunctival absorption, solution drainage by gravity, induced lacrimation and normal tear turnover. This leads to frequent installations of concentrated medication to achieve a therapeutic effect. The typical “pulse-entry” type drug release observed with ocular aqueous solutions (eye drops, suspensions and ointments can be replaced by more controlled, sustained, and continuous drug delivery, using a controlled-release ocular drug delivery system. Ocular inserts are solid or semisolid sterile preparations, of appropriate size and shape, designed to be inserted behind the eyelid or held on the eye and to deliver drugs for topical or systemic effect. These are polymeric systems into which the drug is incorporated as a solution or dispersion. They are better tolerated as to drainage and tear flow compared with other ophthalmic formulation and produce reliable drug release in the conjunctival cul-de-sac.

  16. Comparison of gastroretentive microspheres and sustained-release preparations using theophylline pharmacokinetics.

    Science.gov (United States)

    Miyazaki, Yasunori; Yakou, Shigeru; Takayama, Kozo

    2008-06-01

    The objective of this study was to use the pharmacokinetics of theophylline to compare various gastroretentive microspheres. Three types of theophylline microspheres prepared from a hydrophobic dextran derivative were characterized in terms of drug release in-vitro and floating and mucoadhesive properties. Theophylline pharmacokinetic studies were conducted in Beagle dogs, comparing bulk powder, commercial sustained-release granules (Theodur), sustained-release microspheres, floatable microspheres and mucoadhesive microspheres. Theodur and sustained-release microspheres resulted in a lower maximum concentration (Cmax) (P mucoadhesive microspheres indicated an increase in AUC without decreasing the rate of bioavailability. Overall, the gastroretentive microspheres improved the extent of bioavailability of theophylline, which is absorbable from the entire gastrointestinal tract. The mucoadhesive microsphere showed a prolonged serum drug level, indicating a superior sustained-release delivery system for theophylline.

  17. [Study on sustained release preparations of Epimedium component].

    Science.gov (United States)

    Yan, Hong-mei; Ding, Dong-mei; Zhang, Zhen-hai; Sun, E; Song, Jie; Jia, Xiao-bin

    2015-04-01

    The formulation for sustained release tablet of Epinedium component was selected and the evaluation equation of in vitro release was established. The liquidity of component was improved with the help of colloidal silica aided by spray drying, which would be the main drug in the sustained release tablets. Dissolution was selected as an evaluation index to investigate skeletal material type, fillers, impact porogen, lubricants and other materials on the quality of sustained release tablet. The sustained release tablets were prepared by dry compression. Formulation of sustained release preparations was main drug 35%, HPMC K(4M) 20% and HPMC K(15M) 10% as skeleton material, MCC 31% as filler, PEG6000 2% as porogen and magnesium stearate 2% as lubricant. The sustained release tablets released up to 80% in 8 h. The zero order equation, primary equation and Higuchi equation could simulate the release characteristics of sustained release tablets in vitro, the correlation coefficients r were larger than 0.96. The primary equation was most similar in vitro release characteristics and its correlation coefficient r was 0.9950. The preparation method is simple and the results of formulation selection are reliable. It can be used to guide the production of Epimedium component sustained release preparations.

  18. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    Science.gov (United States)

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.

  19. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  20. Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies

    Science.gov (United States)

    Guziewicz, Nicholas; Best, Annie; Perez-Ramirez, Bernardo; Kaplan, David L.

    2011-01-01

    The development of sustained delivery systems compatible with protein therapeutics continues to be a significant unmet need. A lyophilized silk fibroin hydrogel matrix (lyogel) for the sustained release of pharmaceutically relevant monoclonal antibodies is described. Sonication of silk fibroin prior to antibody incorporation avoids exposing the antibody to the sol-gel transition inducing shear stress. Fourier Transform Infrared (FTIR) analysis showed no change in silk structural composition between hydrogel and lyogel or with increasing silk fibroin concentration. Antibody release from hydrogels occurred rapidly over 10 days regardless of silk concentration. Upon lyophilization, sustained antibody release was observed over 38 days from lyogels containing 6.2% (w/w) silk fibroin and above. In 3.2% (w/w) silk lyogels, antibody release was comparable to hydrogels. Swelling properties of lyogels followed a similar threshold behavior. Lyogels at 3.2% (w/w) silk recovered approximately 90% of their fluid mass upon rehydration, while approximately 50% fluid recovery was observed at 6.2% (w/w) silk and above. Antibody release was primarily governed by hydrophobic/hydrophilic silk-antibody interactions and secondarily altered by the hydration resistance of the lyogel. Hydration resistance was controlled by altering β-sheet (crystalline) density of the matrix. The antibody released from lyogels maintained biological activity. Silk lyogels offer an advantage as a delivery matrix over other hydrogel materials for the slow release of the loaded protein, making lyogels suitable for long-term sustained release applications. PMID:21216004

  1. Multiparticulate Drug Delivery Systems for Controlled Release | Dey ...

    African Journals Online (AJOL)

    Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. Recent trends indicate that multiparticulate drug delivery systems are especially suitable for achieving controlled or delayed release oral formulations with low ...

  2. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  3. Polymer nanocomposite particles of S-nitrosoglutathione: A suitable formulation for protection and sustained oral delivery.

    Science.gov (United States)

    Wu, Wen; Gaucher, Caroline; Fries, Isabelle; Hu, Xian-ming; Maincent, Philippe; Sapin-Minet, Anne

    2015-11-10

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor with therapeutic potential for cardiovascular disease treatment. Chronic oral treatment with GSNO is limited by high drug sensitivity to the environment and limited oral bioavailability, requiring the development of delivery systems able to sustain NO release. The present work describes new platforms based on polymer nanocomposite particles for the delivery of GSNO. Five types of optimized nanocomposite particles have been developed (three based on chitosan, two based on alginate sodium). Those nanocomposite particles encapsulate GSNO with high efficiency from 64% to 70% and an average size of 13 to 61 μm compatible with oral delivery. Sustained release of GSNO in vitro was achieved. Indeed, chitosan nanocomposites discharged their payload within 24h; whereas alginate nanocomposites released GSNO more slowly (10% of GSNO was still remaining in the dosage form after 24h). Their cytocompatibility toward intestinal Caco-2 cells (MTT assay) was acceptable (IC50: 6.07 ± 0.07-9.46 ± 0.08 mg/mL), demonstrating their suitability as oral delivery systems for GSNO. These delivery systems presented efficient GSNO loading and sustained release as well as cytocompatibility, showing their promise as a means of improving the oral bioavailability of GSNO and as a potential new treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design and development of sustained-release glyburide-loaded ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 2. Design and development of sustained-release ... Keywords. Silica nanoparticles; glyburide; sustained release; sol–gel method. ... Silica nanoparticles were synthesized by the sol–gel method using tetra-ethyl ortho-silane as a precursor. Glyburide was ...

  5. Controlled release for local delivery of drugs: barriers and models.

    Science.gov (United States)

    Weiser, Jennifer R; Saltzman, W Mark

    2014-09-28

    Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Storage and sustained release of volatile substances from a hollow silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiexin [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Ding Haomin [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Tao Xia [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Chen Jianfeng [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China)

    2007-06-20

    Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO{sub 3} template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 ml{sub perfume}/mg{sub carrier}) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.

  7. Organically modified titania nanoparticles for sustained drug release applications.

    Science.gov (United States)

    Sethi, Komal; Roy, Indrajit

    2015-10-15

    In this paper, we report the synthesis, characterization of drug-doped organically modified titania nanoparticles, and their applications in sustained drug release. The drug-doped nanoparticles were synthesized in the hydrophobic core of oil-in-water microemulsion medium. Structural aspects obtained through TEM and FESEM depicted that organically modified titania nanoparticles are monodispersed with spherical morphology, with an average size of around 200 nm. Their polymorphic forms and porosity were determined using powder XRD and BET, respectively, which showed that they are present in the anatase form, with a surface area of 136.5 m(2)/g and pore-diameter of 5.23 nm. After synthesis and basic structural characterizations, optical properties were studied for both fluorophore and drug encapsulated nanoparticles. The results showed that though the optical properties of the fluorophore are partially diminished upon nanoencapsulation, it became more stable against chemical quenching. The nanoparticles showed pH-dependent drug release pattern. In vitro studies showed that the nanoparticles were efficiently uptaken by cells. Cell viability assay results showed that though the placebo nanoparticles are non-cytotoxic, the drug-doped nanoparticles show drug-induced toxicity. Therefore, such porous nanoparticles can be used in non-toxic drug delivery applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  9. Preparation and Dissolution Characteristics of Sustained Release ...

    African Journals Online (AJOL)

    In the present study, the applicability of Eudragit to produce matrix tablet by a wet granulation technique was evaluated. The effect of various formulation variables on the release of drug from these tablets was examined. Release profiles of diltiazem hydrochloride were investigated using the rotating basket method ...

  10. Rationale and Safety Assessment of a Novel Intravaginal Drug-Delivery System with Sustained DL-Lactic Acid Release, Intended for Long-Term Protection of the Vaginal Microbiome.

    Directory of Open Access Journals (Sweden)

    Hans Verstraelen

    Full Text Available Bacterial vaginosis is a prevalent state of dysbiosis of the vaginal microbiota with wide-ranging impact on human reproductive health. Based on recent insights in community ecology of the vaginal microbiome, we hypothesize that sustained vaginal DL-lactic acid enrichment will enhance the recruitment of lactobacilli, while counteracting bacterial vaginosis-associated bacteria. We therefore aimed to develop an intravaginal device that would be easy to insert and remove, while providing sustained DL-lactic acid release into the vaginal lumen. The final prototype selected is a vaginal ring matrix system consisting of a mixture of ethylene vinyl acetate and methacrylic acid-methyl methacrylate copolymer loaded with 150 mg DL-lactic acid with an L/D-lactic acid ratio of 1:1. Preclinical safety assessment was performed by use of the Slug Mucosal Irritation test, a non-vertebrate assay to evaluate vaginal mucosal irritation, which revealed no irritation. Clinical safety was evaluated in a phase I trial with six healthy nulliparous premenopausal volunteering women, with the investigational drug left in place for 7 days. Colposcopic monitoring according to the WHO/CONRAD guidelines for the evaluation of vaginal products, revealed no visible cervicovaginal mucosal changes. No adverse events related to the investigational product occurred. Total release from the intravaginal ring over 7 days was estimated through high performance liquid chromatography at 37.1 (standard deviation 0.9 mg DL-lactic acid. Semisolid lactic acid formulations have been studied to a limited extent in the past and typically consist of a large volume of excipients and very high doses of lactic acid, which is of major concern to mucosal safety. We have documented the feasability of enriching the vaginal environment with pure DL-lactic acid with a prototype intravaginal ring. Though the efficacy of this platform remains to be established possibly requiring further development, this

  11. Benchmarking Sustainability Practices Use throughout Industrial Construction Project Delivery

    Directory of Open Access Journals (Sweden)

    Sungmin Yun

    2017-06-01

    Full Text Available Despite the efforts for sustainability studies in building and infrastructure construction, the sustainability issues in industrial construction remain understudied. Further, few studies evaluate sustainability and benchmark sustainability issues in industrial construction from a management perspective. This study presents a phase-based benchmarking framework for evaluating sustainability practices use focusing on industrial facilities project. Based on the framework, this study quantifies and assesses sustainability practices use, and further sorts the results by project phase and major project characteristics, including project type, project nature, and project delivery method. The results show that sustainability practices were implemented higher in the construction and startup phases relative to other phases, with a very broad range. An assessment by project type and project nature showed significant differences in sustainability practices use, but no significant difference in practices use by project delivery method. This study contributes to providing a benchmarking method for sustainability practices in industrial facilities projects at the project phase level. This study also discusses and provides an application of phase-based benchmarking for sustainability in industrial construction.

  12. Preparation and Evaluation of Sustained Release Matrix Tablets of ...

    African Journals Online (AJOL)

    Erah

    Purpose: To prepare oral sustained release matrix tablets of a highly water soluble drug, tramadol hydrochloride, and to evaluate the effect of .... (IRAffinity-1, Shimadzu). Their spectra were obtained over the wave number range of ... square root kinetic model describes a time- dependent release process. The value of n.

  13. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  14. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine.

    Science.gov (United States)

    Park, Calum R; Munday, Dale L

    2004-07-01

    Some naturally occurring biocompatible materials were evaluated as mucoadhesive controlled release excipients for buccal drug delivery. A range of tablets were prepared containing 0-50% w/w xanthan gum, karaya gum, guar gum, and glycol chitosan and were tested for swelling, drug release, and mucoadhesion. Guar gum was a poor mucoadhesive and lacked sufficient physical integrity for buccal delivery. Karaya gum demonstrated superior adhesion to guar gum and was able to provide zero-order drug release, but concentrations greater than 50% w/w may be required to provide suitable sustained release. Xanthan gum showed strong adhesion to the mucosal membrane and the 50% w/w formulation produced zero-order drug release over 4 hours, about the normal time interval between daily meals. Glycol chitosan produced the strongest adhesion, but concentrations greater than 50% w/w are required to produce a nonerodible matrix that can control drug release for over 4 hours. Swelling properties of the tablets were found to be a valuable indicator of the ability of the material to produce sustained release. Swelling studies also gave an indication of the adhesion values of the gum material where adhesion was solely dependent upon penetration of the polymer chains into the mucus layer.

  15. Fibrin sealant as a carrier for sustained delivery of antibiotics

    Directory of Open Access Journals (Sweden)

    Selçuk Kara

    2014-06-01

    Full Text Available Objective: To evaluate the activity and sustained release of antibiotics from fibrin sealant against common strains of ocular bacteria. Methods: Vancomycin, ceftazidime, moxifloxacin and lomefloxacin were incorporated into fibrin sealant in the shape of discs. Each antibiotic disc and control fibrin disc without drug was tested in vitro against standard bacterial strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae and Pseudomonas aeroginosa. After 24 hours of incubation at 37 °C, the discs were transferred to new plates of bacteria and triplicated for each antibiotic. Results: All antibiotic discs demonstrated detectable activity after 24 hours. Vancomycin had the longest duration of activity (4 days on the S. pneumonia grown plate. The moxifloxacin discs showed a prolonged inhibition of S. aureus and S. pneumonia for 3 days and inhibited the other strains for 2 days. Conclusion: Fibrin sealants provided prolonged drug delivery, which indicates that antibiotic-loaded fibrin clots could be useful for early ocular postoperative care and treatment. J Clin Exp Invest 2014; 5 (2: 194-199

  16. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release.

    Science.gov (United States)

    Ibrahim, Mohammed Mostafa; Abd-Elgawad, Abd-Elgawad Helmy; Soliman, Osama Abd-Elazeem; Jablonski, Monica M

    2013-03-01

    Celecoxib-loaded NPs were prepared from biodegradable polymers such as poly-ε-caprolactone (PCL), poly(L-lactide) (PLA), and poly(D,L-lactide-co-glycolide) (PLGA) by spontaneous emulsification solvent diffusion method. Different concentrations of polymers, emulsifier, and cosurfactants were used for formulation optimization. Nanoparticles (NPs) were characterized regarding their particle size, PDI, zeta potential, shape, morphology, and drug content. Celecoxib-loaded NPs were incorporated into eye drops, in situ gelling system, and gel and characterized regarding their pH, viscosity, uniformity of drug content, in vitro release, and cytotoxicity. The results of optimized celecoxib-loaded PCL-, PLGA-, and PLA-NPs, respectively, are particle size 119 ± 4, 126.67 ± 7.08, and 135.33 ± 4.15 nm; zeta potential -22.43 ± 2.91, -25.46 ± 2.35, and -31.81 ± 2.54 mV; and encapsulation efficiency 93.44 ± 3.6%, 86.00 ± 1.67%, and 79.04 ± 2.6%. TEM analyses revealed that NPs have spherical shapes with dense core and distinct coat. Formulations possessed uniform drug content with pH and viscosity compatible with the eye. Formulations showed sustained release without any burst effect with the Higuchi non-fickian diffusion mechanism. Cytotoxicity studies revealed that all formulations are nontoxic. Our formulations provide a great deal of flexibility to formulation scientist whereby sizes and zeta potentials of our NPs can be tuned to suit the need using scalable and robust methodologies. These formulations can thus serve as a potential drug delivery system for both anterior and posterior eye diseases. Copyright © 2012 Wiley Periodicals, Inc.

  17. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation

    Science.gov (United States)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou; Xu, Yingqian

    2014-02-01

    Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core-shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core-shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.

  18. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, 04-01, The Nanos, Singapore 138669 (Singapore)

    2006-07-25

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved.

  19. Transscleral sustained vasohibin-1 delivery by a novel device suppressed experimentally-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Hideyuki Onami

    Full Text Available We established a sustained vasohibin-1 (a 42-kDa protein, delivery device by a novel method using photopolymerization of a mixture of polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and collagen microparticles. We evaluated its effects in a model of rat laser-induced choroidal neovascularization (CNV using a transscleral approach. We used variable concentrations of vasohibin-1 in the devices, and used an enzyme-linked immunosorbent assay and Western blotting to measure the released vasohibin-1 (0.31 nM/day when using the 10 μM vasohibin-1 delivery device [10VDD]. The released vasohibin-1 showed suppression activity comparable to native effects when evaluated using endothelial tube formation. We also used pelletized vasohibin-1 and fluorescein isothiocyanate-labeled 40 kDa dextran as controls. Strong fluorescein staining was observed on the sclera when the device was used for drug delivery, whereas pellet use produced strong staining in the conjunctiva and surrounding tissue, but not on the sclera. Vasohibin-1 was found in the sclera, choroid, retinal pigment epithelium (RPE, and neural retina after device implantation. Stronger immunoreactivity at the RPE and ganglion cell layers was observed than in other retinal regions. Significantly lower fluorescein angiography (FA scores and smaller CNV areas in the flat mounts of RPE-choroid-sclera were observed for the 10VDD, VDD (1 μM vasohibin-1 delivery device, and vasohibin-1 intravitreal direct injection (0.24 μM groups when compared to the pellet, non-vasohibin-1 delivery device, and intravitreal vehicle injection groups. Choroidal neovascularization can be treated with transscleral sustained protein delivery using our novel device. We offer a safer sustained protein release for treatment of retinal disease using the transscleral approach.

  20. Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi, E-mail: nidhiandhariya@gmail.com [Thapar University, School of Physics and Materials Science (India); Upadhyay, Ramesh [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India); Mehta, Rasbindu [Maharaja Krishnakumarsinhji Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India)

    2013-01-15

    Targeting tumors by means of their vascular endothelium is a promising strategy, which utilizes targets that are easily accessible, stable, and do not develop resistance against therapeutic agents. Folate receptor is a highly specific tumor marker, frequently over expressed in cancer tumors. In the present study, an active drug delivery system, which can effectively target cancer cells by means of folate receptor-mediated endocytosis, have ability to escape from opsonization and capability of magnetic targeting to withstand the drag force of the body fluid have been designed and synthesized. The core of the drug delivery system is of mono-domain magnetic particles of magnetite. Magnetite nanoparticles are shielded with PEG, which prevents their phagocytosis by reticuloendothelial system. These PEG shielded magnetite nanoparticles are further decorated with an antitumor receptor-folic acid and loaded with an antineoplastic agent doxorubicin. An in vitro drug loading and release kinetics study reveals that the drug delivery system can take 52 % of drug load and can release doxorubicin over a sustained period of 7 days. The control and sustained release over a period of several days may find its practical utilities in chemotherapy where frequent dosing is not possible.

  1. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2015-07-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  2. Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies.

    Science.gov (United States)

    Risbud, M V; Bhonde, R R

    2000-01-01

    Controlled drug delivery is gaining importance over the conventional methods of drug administration because of its inherent benefits. Self-regulated release from the delivery vehicle may enhance drug potency with a sustained action. The present study describes a novel hydrogel blend of polyacrylamide with chitosan for controlled delivery of antibiotics. Hydrogel was synthesized by cross-linking acrylamide-chitosan mixture (8:2 v/v) with N,N' methylene bisacrylamide. Hydrogel was characterized for surface morphology, hydrophilicity, pH-dependent swelling properties, cytotoxicity, and control release properties. Scanning electron microscopy (SEM) revealed the macroporous surface morphology of the matrix with average pore size at 104 +/- 7.61 mu. Hydrogel was found to be highly hydrophilic as assessed by octane contact angle (154.5 + 0.572) measurement. Hydrogel showed no cytotoxic effects on NIH3T3 and HeLa cells up to 40% of extract concentrations as determined by MTT and neutral red assay. This showed hydrogel biocompatibility and thus absence of deleterious effects of the hydrogel on cell viability and functionality. Hydrogels did not show any pH-dependent swelling profile, and they swelled considerably to achieve a swelling ratio of approximately 16.0 at the end of 24 hr. Amoxicillin was incorporated in the hydrogel matrix as a candidate antibiotic for release studies. In vitro release studies of amoxicillin revealed the sustained nature of delivery and matrix released 56.47 + 1.12% and 77.096 + 1.72% of amoxicillin at the end of 24 and 75 hr, respectively. Although in vivo studies are awaited, the present study provides enough documentation to consider polyacrylamide-chiotsan hydrogel as a possible candidate for controlled delivery of antibiotics.

  3. Naproxen release from sustained release matrix system and effect of cellulose derivatives.

    Science.gov (United States)

    Sarfraz, Muhammad Khan; Rehman, Nisar Ur; Mohsin, Sabeeh

    2006-07-01

    The present study was conducted to investigate the low viscosity grades of hydroxypropylmethyl cellulose (HPMC) and ethyl cellulose (EC) in sustaining the release of water insoluble drug, naproxen from the matrix tablets. Both HPMC and EC were incorporated in the matrix system separately or in combinations by wet granulation technique. In vitro dissolution studies indicated that EC significantly reduced the rate of drug release compared to HPMC in 12 hour testing time. But, no significant difference was observed in the release profiles of matrix tablets made by higher percentages of EC. The tablets prepared with various combinations of HPMC and EC also failed to produce produce the desired release profiles. However, comparatively linear and desirable sustained release was obtained from EC-based matrix tablets prepared by slightly modifying the granulation method. Moreover, two different compression forces used in tableting had no remarkable effect on the release profile of naproxen.

  4. Polymeric particles for sustained and local drug delivery

    NARCIS (Netherlands)

    Ramazani, F.

    2015-01-01

    Controlled drug delivery systems have been extensively investigated as means to prolong the action of drugs in the body. In this regard, a drug is incorporated into a carrier (e.g., polymeric material) in such a way that the drug is released from the matrix in a controlled manner for an extended

  5. Molecularly imprinted polymer nanocarriers for sustained release of erythromycin.

    Science.gov (United States)

    Kempe, Henrik; Parareda Pujolràs, Anna; Kempe, Maria

    2015-02-01

    To develop and evaluate molecularly imprinted nanocarriers for sustained release of erythromycin in physiological buffer media. Erythromycin-imprinted poly(methacrylic acid-co-trimethylolpropane trimethacrylate) nanocarriers and corresponding control nanocarriers were prepared by free-radical precipitation polymerization. The nanocarriers were characterized by transmission electron microscopy, dynamic light scattering, and nitrogen sorption analysis. Binding studies were carried out with erythromycin and five structurally unrelated drugs. Molecular descriptors of the drugs were computed and correlated to measured binding data by multivariate data analysis. Loading with erythromycin and in vitro release studies were carried out in physiological buffer media. Kinetic models were fitted to drug release data. The template affected the size and morphology of the nanocarriers. Binding isotherms showed that erythromycin-imprinted nanocarriers had a higher erythromycin binding capacity than corresponding control nanocarriers. Multivariate data analysis, correlating binding to molecular descriptors of the drugs, indicated a molecular imprinting effect. Erythromycin loading capacity was 76 mg/g with a loading efficiency of 87%. Release studies in physiological buffer showed an initial burst release of a quarter of loaded erythromycin during the first day and an 82% release after a week. The release was best described by the Korsmeyer-Peppas model. Sustained release of erythromycin in physiological buffer was demonstrated.

  6. Sustained release from a metal - Analgesics entrapped within biocidal silver.

    Science.gov (United States)

    Menagen, Barak; Pedahzur, Rami; Avnir, David

    2017-06-23

    Matrices for sustained release of drugs have been based on polymers, biomaterials and oxides. The use of the major family of metals as matrices for sustained release is, to the best of our knowledge, unknown. In this context we describe a new family of bio-composites for sustained release of drugs, namely analgesic drugs entrapped within metallic silver. Synthetic methodologies were developed for the preparation of ibuprofen@Ag, naproxen@Ag, tramadol@Ag and bupivacaine@Ag composites. Detailed kinetic analysis of the release of the drugs from within the metal, is provided, demonstrating that metals can indeed serve as reservoirs for drug release. The metal in our case acts not only as a drug releasing source, but also as an antibacterial agent and this property of the composites was studied. Unexpectedly, it was found that the entrapment of the analgesics within silver, dramatically enhances the growth inhibition activity of wild type Pseudomonas aeruginosa, exceeding by far the inhibition activity of the separate components. A mechanism for this interesting observation is provided. The strong antimicrobial activity combined with the analgesic activity open the road for future applications of these materials as dual-purpose components in wound treatment.

  7. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids.

    Science.gov (United States)

    Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim

    2017-10-06

    Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.

  8. Tailor-Made Pentablock Copolymer Based Formulation for Sustained Ocular Delivery of Protein Therapeutics

    Directory of Open Access Journals (Sweden)

    Sulabh P. Patel

    2014-01-01

    Full Text Available The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone were selected for synthesis and to optimize release profile of FITC-BSA, IgG, and bevacizumab from nanoparticles (NPs and thermosensitive gel. NPs were characterized for particle size, polydispersity, entrapment efficiency, and drug loading. In vitro release study of proteins from NPs alone and composite formulation (NPs suspended in thermosensitive gel was performed. Composite formulations demonstrated no or negligible burst release with continuous near zero-order release in contrast to NPs alone. Hydrodynamic diameter of protein therapeutics and hydrophobicity of PB copolymer exhibited significant effect on entrapment efficiency and in vitro release profile. CD spectroscopy confirmed retention of structural conformation of released protein. Biological activity of released bevacizumab was confirmed by in vitro cell proliferation and cell migration assays. It can be concluded that novel PB polymers can serve a platform for sustained delivery of therapeutic proteins.

  9. PLGA-Based Microparticles for the Sustained Release of BMP-2

    Directory of Open Access Journals (Sweden)

    Maria A. Woodruff

    2011-03-01

    Full Text Available The development of growth factor delivery strategies to circumvent the burst release phenomenon prevalent in most current systems has driven research towards encapsulating molecules in resorbable polymer matrices. For these polymer release techniques to be efficacious in a clinical setting, several key points need to be addressed. This present study has investigated the encapsulation of the growth factor, BMP-2 within PLGA/PLGA-PEG-PLGA microparticles. Morphology, size distribution, encapsulation efficiency and release kinetics were investigated and we have demonstrated a sustained release of bioactive BMP-2. Furthermore, biocompatibility of the PLGA microparticles was established and released BMP-2 was shown to promote the differentiation of MC3T3-E1 cells towards the osteogenic lineage to a greater extent than osteogenic supplements (as early as day 10 in culture, as determined using alkaline phosphatase and alizarin red assays. This study showcases a potential BMP-2 delivery system which may now be translated into more complex delivery systems, such as 3D, mechanically robust scaffolds for bone tissue regeneration applications.

  10. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride.

    Science.gov (United States)

    Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A

    2016-01-01

    The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031). The pharmacokinetic results indicated that the area under the curve (AUC0-∞) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton(®)) and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022). The prepared floating tablets of ITO HCl (F10) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.

  11. Sustained release of complexed DNA from films: Study of bioactivity and intracellular tracking.

    Science.gov (United States)

    Mondal, Debasish; Ramgopal, Yamini; Tiwari, Sandeep Kumar; Venkatraman, Subbu S

    2010-09-01

    Sustained DNA delivery from polymeric films provides a means for localized and prolonged gene therapy. However, in the case of bioactive molecules such as plasmid DNA (pDNA), there are limitations on the achievable release profiles as well as on the maintenance of bioactivity over time. In this report, the authors have investigated the bioactivity of the released DNA (naked and complexed with lipofectamine) from polymeric films using in vitro cell transfection of COS-7 cell lines. The polymeric system consists of a biodegradable semicrystalline polymer such as poly(ε-caprolactone) (PCL) with or without blended gelatin. Sustained release of lipoplexes and of pDNA is shown over several days. However, lipoplexes released from pure PCL films show no transfection on day 18, whereas lipoplexes released from PCL-gelatin films continue to transfect cells on day 18 of release. Confocal studies were used to determine the reasons for this difference in transfection efficiency, and it is proposed that association of the lipoplex with gelatin confers protection from degradation in the cytoplasm. The results also showed that the bioactivity of released lipoplexes was superior to that of the naked pDNA. For both naked pDNA and the lipoplexes, the presence of gelatin helped to maintain the bioactivity over several days.

  12. Formulation of Sustained-Release Matrix Tablets Using Cross ...

    African Journals Online (AJOL)

    Erah

    characterized by scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: Tablets with MK showed higher mean ..... Park CR, Munday DL. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of ...

  13. Lyophilized Oral Sustained Release Polymeric Nanoparticles of Nateglinide

    OpenAIRE

    Kaleemuddin, Mohammad; Srinivas, Prathima

    2012-01-01

    The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlati...

  14. daily, sustained-release theophylline on sleep in nocturnal asthmatics

    African Journals Online (AJOL)

    To examine the effects of once-daily, sustained- release theophylline on sleep patterns in nocturnal asthmatics. Design. Double-blind, randomised, cross-over, placebo- controlled trial ... 22-day trial, 3 patients having withdrawn due to adverse events. During the initial 7 days of the stUdy, serum was obtained at 07hOO and ...

  15. daily, sustained-release theophylline on sleep in nocturnal asthmatics

    African Journals Online (AJOL)

    during the early hours of the morning and nocturnal asthma attacks are therefore not always prevented.2 However, improved control of nocturnal asthma has been reported with the use of once-daily, sustained-release, evening- administered theophylline.1. The influence of theophylline on sleep is not clear and.

  16. Formulation of Sustained-Release Matrix Tablets Using Cross ...

    African Journals Online (AJOL)

    SEM images of the tablets before and after dissolution showed some morphological changes on the tablet surface while FTIR and DSC thermogram studies confirmed ... Conclusion: The results of the study demonstrate that modified karaya gum is a potential matrix material for formulating suitable sustained-release matrix ...

  17. Development of Novel Protocol for Preclinical Monitoring the Release of Adjuvants Encapsulated Mucosal Delivery Carriers

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim-Saeed

    2015-12-01

    Full Text Available This work contributes in vaccines down-stream process by introducing a novel platform for in-vitro monitoring of vaccine-adjuvant delivery profile as a crucial preclinical optimizing step in mucosal vaccines. Nano and micro particles of Calcium phosphate (Cap vaccine-adjuvant were encapsulated in Chitosan and Alginate polymeric carriers. Adjuvants release profiles monitored in a permeable bag at 37°C, pH 2, incubated in isotonic buffer for 96 hours. The released Calcium in the outer buffer was monitored and compared in-addition to the carrier’s swelling and biophysical properties. The adjuvants and carriers did not interfere with the proliferation of cultured hepatocytes an indicator of their safe use; Chitosan’s viscosity and swelling were higher than Alginate. Chitosan’s Zeta-potential was significantly high positive, while Cap and Alginate were negative. The prepared CaP and Chitosan particles were in nano-size, while the ready-made CaP adjuvant and Alginate were in micro-size using zeta-seizer and scanning electron-micrograph. The release of nano-size particle was in ascending, extended and controlled manner compared to micro-size adjuvant. Moreover, nano-adjuvant release profile from Chitosan was superior compared to Alginate. The core controlling factors in vaccine-adjuvant sustained release includes; smaller adjuvant particles (nano-size, carrier’s low swelling, high viscosity and importantly carrier-adjuvant entrapment reversibility. Chitosan offers sustained ascending superior capacity in releasing Nano-Cap adjuvant. This novel in-vitro pre-clinical study answer a crucial downstream preparative step for optimizing mucosal vaccines before their direct routine in-vivo trial on animal regardless of adjuvant’s particle size or delivery kinetics.

  18. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering

    NARCIS (Netherlands)

    Kempen, Diederik H. R.; Lu, Lichun; Hefferan, Teresa E.; Creemers, Laura B.; Maran, Avudaiappan; Classic, Kelly L.; Dhert, Wouter J. A.; Yaszemski, Michael J.

    In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres

  19. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief.

    Science.gov (United States)

    Lee, Ji Eun; Park, Subin; Park, Min; Kim, Myung Hun; Park, Chun Gwon; Lee, Seung Ho; Choi, Sung Yoon; Kim, Byung Hwi; Park, Hyo Jin; Park, Ji-Ho; Heo, Chan Yeong; Choy, Young Bin

    2013-09-01

    Surgical suture is a strand of biocompatible material designed for wound closure, and therefore can be a medical device potentially suitable for local drug delivery to treat pain at the surgical site. However, the preparation methods previously introduced for drug-delivery sutures adversely influenced the mechanical strength of the suture itself - strength that is essential for successful wound closure. Thus, it is not easy to control drug delivery with sutures, and the drug-delivery surgical sutures available for clinical use are now limited to anti-infection roles. Here, we demonstrate a surgical suture enabled to provide controlled delivery of a pain-relief drug and, more importantly, we demonstrate how it can be fabricated to maintain the mechanical strength of the suture itself. For this purpose, we separately prepare a drug-delivery sheet composed of a biocompatible polymer and a pain-relief drug, which is then physically assembled with a type of surgical suture that is already in clinical use. In this way, the drug release profiles can be tailored for the period of therapeutic need by modifying only the drug-loaded polymer sheet without adversely influencing the mechanical strength of the suture. The drug-delivery sutures in this work can effectively relieve the pain at the surgical site in a sustained manner during the period of wound healing, while showing biocompatibility and mechanical properties comparable to those of the original surgical suture in clinical use. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release

    Science.gov (United States)

    Samanta, Devleena; Meiser, Jana L.; Zare, Richard N.

    2015-05-01

    We report the development of a generalized pH-sensitive drug delivery system that can release any charged drug preferentially at the pH range of interest. Our system is based on polypyrrole nanoparticles (PPy NPs), synthesized via a simple one-step microemulsion technique. These nanoparticles are highly monodisperse, stable in solution over the period of a month, and have good drug loading capacity (~15 wt%). We show that PPy NPs can be tuned to release drugs at both acidic and basic pH by varying the pH, the charge of the drug, as well as by adding small amounts of charged amphiphiles. Moreover, these NPs may be delivered locally by immobilizing them in a hydrogel. Our studies show encapsulation within a calcium alginate hydrogel results in sustained release of the incorporated drug for more than 21 days. Such a nanoparticle-hydrogel composite drug delivery system is promising for treatment of long-lasting conditions such as cancer and chronic pain which require controlled, localized, and sustained drug release.

  1. Starch/Carbopol spray-dried mixtures as excipients for oral sustained drug delivery.

    Science.gov (United States)

    Pringels, E; Ameye, D; Vervaet, C; Foreman, P; Remon, J P

    2005-04-18

    The present study evaluated if mixtures prepared by spray-drying an aqueous dispersion of Amioca starch and Carbopol 974P could be used as matrix for oral sustained drug delivery. The influence of the Amioca/Carbopol 974P ratio (0/100, 25/75, 50/50, 60/40, 85/15, 90/10, 95/5 and 100/0) and the pH and ionic strength (mu) of the dissolution medium on the drug release was investigated. The matrices composed of the spray-dried mixtures with 10% or 15% Carbopol 974P sustained the drug release over the longest time period. At this Carbopol concentration, shear viscosity measurements indicated the formation of an optimal network between the polymer chains of Amioca starch and Carbopol 974P, forming a rigid gel layer offering resistance to erosion during the dissolution experiments.

  2. Lyophilized oral sustained release polymeric nanoparticles of nateglinide.

    Science.gov (United States)

    Kaleemuddin, Mohammad; Srinivas, Prathima

    2013-03-01

    The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlation spectroscopy and evaluated for in vitro drug release and pharmacodynamic studies. The influence of increase in polymer concentration, ultrasonication time, and solvent evaporation rate on nanoparticle properties was investigated. The formulations were optimized based on the above characterization, and the formulation using 5% polymer, 3-min sonication time, and rota-evaporated was found to have the best drug entrapment efficiency of 64.09±4.27% and size of 310.40±11.42 nm. Based on SEM, nanoparticles were found to be spherical with a smooth surface. In vitro drug release data showed that nanoparticles sustained the nateglinide release for over 12 h compared to conventional tablets (Glinate 60 mg), and drug release was found to follow Fickian mechanism. In vivo studies showed that nanoparticles prolonged the antidiabetic activity of nateglinide in rats significantly (p≤0.05) compared to the conventional tablets (Glinate 60 mg) over a period of 12 h. Accelerated stability data indicated that there was minimal to no change in drug entrapment efficiency.

  3. Physical crosslinking modulates sustained drug release from recombinant silk-elastinlike protein polymer for ophthalmic applications.

    Science.gov (United States)

    Teng, Weibing; Cappello, Joseph; Wu, Xiaoyi

    2011-12-10

    We evaluated the drug release capability of optically transparent recombinant silk-elastinlike protein polymer, SELP-47K, films to sustainably deliver the common ocular antibiotic, ciprofloxacin. The ciprofloxacin release kinetics from drug-loaded SELP-47K films treated with ethanol or methanol vapor to induce different densities of physical crosslinking was investigated. Additionally, the drug-loaded protein films were embedded in a protein polymer coating to further prolong the release of the drug. Drug-loaded SELP-47K films released ciprofloxacin for up to 132 h with near first-order release kinetics. Polymer coating of drug-loaded films prolonged drug release for up to 220 h. The antimicrobial activity of ciprofloxacin released from the drug delivery matrices was not impaired by the film casting process or the ethanol or methanol treatments. The mechanism of drug release was elucidated by analyzing the physical properties of the film specimens, including equilibrium swelling, soluble fraction, surface roughness and hydrophobicity. Additionally, the conformation of the SELP-47K and its physical crosslinks in the films was analyzed by FTIR and Raman spectroscopy. A three-parameter physics based model accurately described the release rates observed for the various film and coating treatments and attributed the effects to the degree of physical crosslinking of the films and to an increasing affinity of the drug with the polymer network. Together, these results indicate that optically transparent silk-elastinlike protein films may be attractive material candidates for novel ophthalmic drug delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Coaxial Electrospray of Ranibizumab-Loaded Microparticles for Sustained Release of Anti-VEGF Therapies.

    Directory of Open Access Journals (Sweden)

    Leilei Zhang

    Full Text Available Age-related macular degeneration (AMD is the leading cause of vision loss and blindness in people over age 65 in industrialized nations. Intravitreous injection of anti-VEGF (vascular endothelial growth factor therapies, such as ranibizumab (trade name: Lucentis, provides an effective treatment option for neovascular AMD. We have developed an improved coaxial electrospray (CES process to encapsulate ranibizumab in poly(lactic-co-glycolic acid (PLGA microparticles (MPs for intravitreous injection and sustained drug release. This microencapsulation process is advantageous for maintaining the stability of the coaxial cone-jet configurations and producing drug-loaded MPs with as high as 70% encapsulation rate and minimal loss of bioactivitiy. The utility of this emerging process in intravitreous drug delivery has been demonstrated in both benchtop and in vivo experiments. The benchtop test simulates ocular drug release using PLGA MPs encapsulating a model drug. The in vivo experiment evaluates the inflammation and retinal cell death after intravitreal injection of the MPs in a chick model. The experimental results show that the drug-load MPs are able to facilitate sustained drug release for longer than one month. No significant long term microglia reaction or cell death is observed after intravitreal injection of 200 μg MPs. The present study demonstrates the technical feasibility of using the improved CES process to encapsulate water-soluble drugs at a high concentration for sustained release of anti-VEGF therapy.

  5. Reproductive system behavior following exposure of sustained delivery of npy antagonist in ovariectomized (ovx) rats.

    Science.gov (United States)

    Cason, Zelma; Wilson, Gerri; Golanov, Olga; Tucci, Michelle; McGuire, Robert; Benghuzzi, Hamed

    2012-01-01

    Several investigations have documented that sustained delivery of estrogen can modulate or sustain normal female reproductive functions. However, the literature is lacking scientific evidence regarding the mechanism of estrogen and neuropeptide Y antagonist (NPY) effect on the hypothalamic-pituitary-gonadal axis. The objective of this study was to explore the role of sustained delivery of estrogen and its effects on reproductive unction compared to an antagonist such as NPY. A total of twenty adult female rats (OVX, n=15; intact control, n=5) were divided into five groups (intact control, OVX, sham, OVX + estrogen, and OVX + NPY). Animals in two groups were surgically implanted with a TCP delivery device loaded with estrogen or NPY. Vaginal smears and body weights (BW) were evaluated at baseline and at two weeks post implantation. At the end of two weeks, all animals were euthanized and vital and reproductive organs were retrieved for histopathological evaluation. The results revealed differences in BW between intact control and OVX animals. Furthermore, there was statistical difference (P<0.05) in BW between OVX and OVX + NPY animals. Vaginal smear evaluation revealed that estrogen exposure induced estrus cyclic activities as compared to OVX and sham animals. The animals exposed to sustained delivery of NPY triggered moderate cyclic activities compared to intact control animals. There were no significant differences (P<0.5) in vital organ wet weights among and between animals in all groups. Overall this study proved the capability of TCP to release estrogen and NPY at sustained levels, which resulted inpathophysiological changes in female reproductive organs.

  6. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel

    DEFF Research Database (Denmark)

    Briuglia, Maria-Lucia; Urquhart, Andrew; Lamprou, Dimitrios A.

    2014-01-01

    Materials which undergo self-assembly to form supramolecular structures can provide alternative strategies to drug loading problems in controlled release application. RADA 16 is a simple and versatile self-assembling peptide with a designed structure formed of two distinct surfaces, one hydrophilic...... and one hydrophobic that are positioned in such a well-ordered fashion allowing precise assembly into a predetermined organization. A "smart" architecture in nanostructures can represent a good opportunity to use RADA16 as a carrier system for hydrophobic drugs solving problems of drugs delivery....... In this work, we have investigated the diffusion properties of Pindolol, Quinine and Timolol maleate from RADA16 in PBS and in BSS-PLUS at 37°C. A sustained, controlled, reproducible and efficient drug release has been detected for all the systems, which allows to understand the dependence of release kinetics...

  7. Taste masking of ofloxacin and formation of interpenetrating polymer network beads for sustained release

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2017-08-01

    Full Text Available The objective of this study was to carry out taste masking of ofloxacin (Ofl by ion exchange resins (IERs followed by sustained release of Ofl by forming interpenetrating polymer network (IPN beads. Drug-resin complexes (DRCs with three different ratios of Ofl to IERs (1:1, 1:2, 1:4 were prepared by batch method and investigated for in vivo and in vitro taste masking. DRC of methacrylic acid-divinyl benzene (MD resin and Ofl prepared at a ratio of 1:4 was used to form IPN beads. IPN beads of MD 1:4 were prepared by following the ionic cross-linking method using sodium carboxymethyl xanthan gum (SCMXG and SCMXG-sodium carboxymethyl cellulose (SCMXG-SCMC. IPN beads were characterized with FT-IR and further studied on sustained release of Ofl at different pH. In vivo taste masking carried out by human volunteers showed that MD 1:4 significantly reduced the bitterness of Ofl. Characterization studies such as FT-IR, DSC, P-XRD and taste masking showed that complex formation took place between drug and resin. In vitro study at gastric pH showed complete release of drug from MD 1:4 within 30 min whereas IPN beads took 5 h at gastric pH and 10 h at salivary pH for the complete release of drug. As the crosslinking increased the release kinetics changed into non-Fickian diffusion to zero-order release mechanism. MD 1:4 showed better performance for the taste masking of Ofl and IPNs beads prepared from it were found useful for the sustained release of Ofl at both the pH, indicating a versatile drug delivery system.

  8. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis.

    Science.gov (United States)

    Uskokovic, Vuk

    2015-01-01

    This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.

  9. Nanostructured Platforms for the Sustained and Local Delivery of Antibiotics in the Treatment of Osteomyelitis

    Science.gov (United States)

    Uskoković, Vuk

    2015-01-01

    This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically “perfect” antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics. PMID:25746204

  10. Double-layer weekly sustained release transdermal patch containing gestodene and ethinylestradiol.

    Science.gov (United States)

    Gao, Yanli; Liang, Jinying; Liu, Jianping; Xiao, Yan

    2009-07-30

    The combination therapy of gestodene (GEST) and ethinylestradiol (EE) has shown advanced contraception effect and lower side effect. The present study was designed to develop a weekly sustained release matrix type transdermal patch containing GEST and EE using blends of different polymeric combinations. The multiple-layer technique was adopted in order to maintain a steady permeation flux for 7 days. The effects of polymer types, polymer ratios, permeation enhancers, drug loadings and drug ratios in different layers on the skin permeations of the drugs were evaluated using excised mice skin. Polariscope examination was carried out to observe the drug distribution behavior. The formulation with the mixture of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) (7:1) was found to provide the regular release and propylene glycol (PG) could enhance the permeation fluxes of drugs. Double-layer transdermal drug delivery system (TDDS) could sustain the steady permeation flux of drugs for 7 days when the ratio of drug in drug release layer and drug reservoir layer was 1:4 with the identical total drug amount. The in vitro transdermal permeation fluxes were 0.377 microg/cm(2)/h and 0.092 microg/cm(2)/h, for GEST and EE respectively. The uniformity of dosage units test showed that the distribution of drugs in the matrix was homogeneous, which was further demonstrated by the polariscope result. The developed transdermal delivery system containing GEST and EE could be a promising non-oral contraceptive method.

  11. Chitosan-Montmorillonite microspheres: A sustainable fertilizer delivery system.

    Science.gov (United States)

    dos Santos, Bruna Rodrigues; Bacalhau, Fabiana Britti; Pereira, Tamires dos Santos; Souza, Claudinei Fonseca; Faez, Roselena

    2015-08-20

    Controlled release fertilizers are efficient tools that increase the sustainability of agricultural practices. However, the biodegradability of the matrices and the determination of the release into soil still require some investigation. This paper describes the preparation of potassium-containing microspheres based on chitosan and montmorillonite clay and the in situ soil release. The chitosan-montmorillonite microspheres were prepared using a coagulation method and different proportions of montmorillonite. The structural, thermal and morphological properties as well the water swelling and fertilizer sorption capacity were evaluated. The best formulations were applied in soil, and the fertilizer release was monitored using time-domain reflectometry (TDR). Montmorillonite clay provides better sorption properties than the chitosan microspheres because of the rough and porous surface. Due to these properties, high levels of fertilizer were sorbed onto the material. ChMMT33-containing potassium shows two specific periods of fertilizer release: the first one lasted approximately three days and was assigned to the external fertilizer on the microspheres. The second was assigned to the internal fertilizer. TDR is an important and fast tool and was used to determine the fertilizer release and the ion movement in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A controlled and sustained local gentamicin delivery system for inner ear applications.

    Science.gov (United States)

    Xu, Lei; Heldrich, Jonna; Wang, Haibo; Yamashita, Taku; Miyamoto, Shunsuke; Li, Andrew; Uboh, Cornelius E; You, Youwen; Bigelow, Douglas; Ruckenstein, Michael; O'Malley, Bert; Li, Daqing

    2010-09-01

    Intratympanic gentamicin injection (ITGI) has gained acceptance worldwide for the treatment of Ménière's disease. Reports assessing the efficacy of ITGI suffer from high variability between patients. This variability may be due to ITGI, which does not permit a sustained diffusion of gentamicin across the round window membrane. The present study investigates the effectiveness of a sustained local hydrogel system on the delivery of gentamicin into the inner ear for the treatment of Ménière's disease. A matrix of hydrogel loaded with/without gentamicin was explored in vivo. Gentamicin was applied to the ear of mice either through ITGI or in the hydrogel system. Pharmacokinetics, hearing, and balance function were examined to study how the hydrogel system affected the gentamicin delivery and inner ear functions. The 2 gentamicin delivery methods yielded different kinetics curves. The hydrogel system achieved sustained release during a 7-day period, with a flat plateau phase from Day 1 to Day 3 and slow descent in the subsequent days. The ITGI curve dramatically declined after the peak concentration at Day 1 and was almost eliminated by Day 3. The hydrogel system yielded noticeable balance dysfunction with no significant hearing changes. In contrast, ITGI exhibited no significant influences on the inner ear functions after applying the same dose of 40 kg of gentamicin. The hydrogel system established in this research allows for more sustained and consistent and efficient drug release than traditional ITGI for the transport of gentamicin into the inner ear, offering a new and exciting treatment of Ménière's disease.

  13. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin.

    Science.gov (United States)

    Guo, Xinming; Chen, Muwan; Feng, Wenzhou; Liang, Jiabi; Zhao, Huibin; Tian, Lin; Chao, Hui; Zou, Xuenong

    2011-01-01

    Many studies in recent years have focused on surface engineering of implant materials in order to improve their biocompatibility and other performance. Porous tantalum implants have increasingly been used in implant surgeries, due to their biocompatibility, physical stability, and good mechanical strength. In this study we functionalized the porous tantalum implant for sustained drug delivery capability via electrostatic self-assembly of polyelectrolytes of hyaluronic acid, methylated collagen, and terpolymer on the surface of a porous tantalum implant. The anticancer drug doxorubicin was encapsulated into the multilayer copolymer membranes on the porous tantalum implants. Results showed the sustained released of doxorubicin from the functionalized porous tantalum implants for up to 1 month. The drug release solutions in 1 month all had inhibitory effects on the proliferation of chondrosarcoma cell line SW1353. These results suggest that this functionalized implant could be used in reconstructive surgery for the treatment of bone tumor as a local, sustained drug delivery system.

  14. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet.

    Directory of Open Access Journals (Sweden)

    Ali Kadivar

    .In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy.

  15. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet.

    Science.gov (United States)

    Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim

    2015-01-01

    , in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy.

  16. Self-assembled pentablock copolymers for selective and sustained gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingqi [Iowa State Univ., Ames, IA (United States)

    2011-05-15

    The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.

  17. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  18. Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder.

    Science.gov (United States)

    Barthelmes, Jan; Perera, Glen; Hombach, Juliane; Dünnhaupt, Sarah; Bernkop-Schnürch, Andreas

    2011-09-15

    Purpose of the present study was the development of a mucoadhesive nanoparticulate drug delivery system for local use in intravesical therapy of interstitial cystitis, since only a small fraction of drug actually reaches the affected site by conventional treatment of bladder diseases via systemic administration. Chitosan-thioglycolic acid (chitosan-TGA) nanoparticles (NP) and unmodified chitosan NP were formed via ionic gelation with tripolyphosphate (TPP). Trimethoprim (TMP) was incorporated during the preparation process of NP. Thereafter, the mucoadhesive properties of NP were determined in porcine urinary bladders and the release of TMP among simulated conditions with artificial urine was evaluated. The particles size ranged from 183nm to 266nm with a positive zeta potential of +7 to +13mV. Under optimized conditions the encapsulation efficiency of TMP was 37%. The adhesion of prehydrated chitosan-TGA NP on the urinary bladder mucosa under continuous urine voiding was 14-fold higher in comparison to unmodified chitosan NP. Release studies indicated a more sustained TMP release from covalently cross linked particles in comparison to unmodified chitosan-TPP NP over a period of 3h in artificial urine at 37°C. Utilizing the method described here, chitosan-TGA NP might be a useful tool for local intravesical drug delivery in the urinary bladder. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  20. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Mazur Steven

    2010-09-01

    Full Text Available Abstract Background The mutation in the cystic fibrosis transmembrane conductance regulator (CFTR gene results in CF. The most common mutation, ΔF508-CFTR, is a temperature-sensitive, trafficking mutant with reduced chloride transport and exaggerated immune response. The ΔF508-CFTR is misfolded, ubiquitinated, and prematurely degraded by proteasome mediated- degradation. We recently demonstrated that selective inhibition of proteasomal pathway by the FDA approved drug PS-341 (pyrazylcarbonyl-Phe-Leuboronate, a.k.a. Velcade or bortezomib ameliorates the inflammatory pathophysiology of CF cells. This proteasomal drug is an extremely potent, stable, reversible and selective inhibitor of chymotryptic threonine protease-activity. The apprehension in considering the proteasome as a therapeutic target is that proteasome inhibitors may affect proteostasis and consecutive processes. The affect on multiple processes can be mitigated by nanoparticle mediated PS-341 lung-delivery resulting in favorable outcome observed in this study. Results To overcome this challenge, we developed a nano-based approach that uses drug loaded biodegradable nanoparticle (PLGA-PEGPS-341 to provide controlled and sustained drug delivery. The in vitro release kinetics of drug from nanoparticle was quantified by proteasomal activity assay from days 1-7 that showed slow drug release from day 2-7 with maximum inhibition at day 7. For in vivo release kinetics and biodistribution, these drug-loaded nanoparticles were fluorescently labeled, and administered to C57BL6 mice by intranasal route. Whole-body optical imaging of the treated live animals demonstrates efficient delivery of particles to murine lungs, 24 hrs post treatment, followed by biodegradation and release over time, day 1-11. The efficacy of drug release in CF mice (Cftr-/- lungs was determined by quantifying the changes in proteasomal activity (~2 fold decrease and ability to rescue the Pseudomonas aeruginosa LPS (Pa

  1. Transdermal delivery devices: fabrication, mechanics and drug release from silk.

    Science.gov (United States)

    Raja, Waseem K; Maccorkle, Scott; Diwan, Izzuddin M; Abdurrob, Abdurrahman; Lu, Jessica; Omenetto, Fiorenzo G; Kaplan, David L

    2013-11-11

    Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, the fabrication of dense microneedle arrays from silk with different drug release kinetics is reported. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles, to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs are delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1

    Science.gov (United States)

    Khanna, Omaditya; Moya, Monica L; Opara, Emmanuel C; Brey, Eric M

    2010-01-01

    Alginate microcapsules coated with a permselective poly-L-ornithine (PLO) membrane have been investigated for the encapsulation and transplantation of islets as a treatment for type 1 diabetes. The therapeutic potential of this approach could be improved through local stimulation of microvascular networks in order to meet mass transport demands of the encapsulated cells. Fibroblast growth factor-1 (FGF-1) is a potent angiogenic factor with optimal effect occurring when it is delivered in a sustained manner. In this paper, a technique is described for the generation of multilayered alginate microcapsules with an outer alginate layer that can be used for the delivery of FGF-1. The influence of alginate concentration and composition (high mannuronic acid (M) or guluronic acid (G) content) on outer layer size and stability, protein encapsulation efficiency, and release kinetics was investigated. The technique results in a stable outer layer of alginate with a mean thickness between 113–164 µm, increasing with alginate concentration and G-content. The outer layer was able to encapsulate and release FGF-1 for up to thirty days, with 1.25% of high G alginate displaying the most sustained release. The released FGF-1 retained its biologic activity in the presence of heparin, and the addition of the outer layer did not alter the permselectivity of the PLO coat. This technique could be used to generate encapsulation systems that deliver proteins to stimulate local neovascularization around encapsulated islets. PMID:20725969

  3. Preparation and Evaluation of Dexamethasone-Loaded Electrospun Nanofiber Sheets as a Sustained Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    2016-03-01

    Full Text Available Recently, electrospinning technology has been widely used as a processing method to make nanofiber sheets (NS for biomedical applications because of its unique features, such as ease of fabrication and high surface area. To develop a sustained dexamethasone (Dex delivery system, in this work, poly(ε-caprolactone-co-l-lactide (PCLA copolymer with controllable biodegradability was synthesized and further utilized to prepare electrospun Dex-loaded NS using water-insoluble Dex (Dex(b or water-soluble Dex (Dex(s. The Dex-NS obtained by electrospinning exhibited randomly oriented and interconnected fibrillar structures. The in vitro and in vivo degradation of Dex-NS was confirmed over a period of a few weeks by gel permeation chromatography (GPC and nuclear magnetic resonance (NMR. The evaluation of in vitro and in vivo Dex(b and Dex(s release from Dex-NS showed an initial burst of Dex(b at day 1 and, thereafter, almost the same amount of release as Dex(b for up to 28 days. In contrast, Dex(s-NS exhibited a small initial burst of Dex(s and a first-order releasing profile from Dex-NS. In conclusion, Dex-NS exhibited sustained in vitro and in vivo Dex(s release for a prolonged period, as well as controlled biodegradation of the NS over a defined treatment period.

  4. Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine

    Directory of Open Access Journals (Sweden)

    Chen Y

    2014-10-01

    Full Text Available Yufei Chen,1 Yannick Leandre Traore,1 Amanda Li,1 Keith R Fowke,2,3 Emmanuel A Ho1 1Laboratory for Drug Delivery and Biomaterials, Faculty of Pharmacy, 2Department of Medical Microbiology and Infectious Diseases, 3Department of Community Health Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada Abstract: Hydroxychloroquine (HCQ has been shown to demonstrate anti-­inflammatory properties and direct anti-HIV activity. In this study, we describe for the first time the fabrication and in vitro evaluation of two types of intravaginal ring (IVR devices (a surfaced-modified matrix IVR and a reservoir segmental IVR for achieving sustained delivery (>14 days of HCQ as a strategy for preventing male-to-female transmission of HIV. Both IVRs were fabricated by hot-melt injection molding. Surface-modified matrix IVRs with polyvinylpyrrolidone or poly(vinyl alcohol coatings exhibited significantly reduced burst release on the first day (6.45% and 15.72% reduction, respectively. Reservoir IVR segments designed to release lower amounts of HCQ displayed near-zero-order release kinetics with an average release rate of 28.38 µg/mL per day for IVRs loaded with aqueous HCQ and 32.23 µg/mL per day for IVRs loaded with HCQ mixed with a rate-controlling excipient. Stability studies demonstrated that HCQ was stable in coated or noncoated IVRs for 30 days. The IVR segments had no significant effect on cell viability, pro-inflammatory cytokine production, or colony formation of vaginal and ectocervical epithelial cells. Both IVR systems may be suitable for the prevention of HIV transmission and other sexually transmitted infections. Keywords: intravaginal delivery, matrix system, reservoir system, polymeric drug carrier, drug release, microbicide, HIV/AIDS

  5. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin

    Directory of Open Access Journals (Sweden)

    Peng X

    2015-08-01

    Full Text Available Xinsheng Peng,1* Yanfang Zhou,1* Ke Han,2,3 Lingzhen Qin,3 Linghui Dian,1 Ge Li,4 Xin Pan,3 Chuanbin Wu3 1Guangdong Medical University, Dongguan, 2The Second Affiliated Hospital of Guangzhou Medical University, 3School of Pharmaceutical Sciences, Sun Yat-Sen University, 4Guangzhou Neworld Pharmaceuticals Co. Ltd., Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this work Abstract: Phytantriol- and glycerol monooleate-based cubosomes were produced and characterized as a targeted and sustained transdermal delivery system for capsaicin. The cubosomes were prepared by emulsification and homogenization of phytantriol (F1, glycerol monooleate (F2, and poloxamer dispersions, characterized for morphology and particle size distribution by transmission electron microscope and photon correlation spectroscopy. Their Im3m crystallographic space group was confirmed by small-angle X-ray scattering. An in vitro release study showed that the cubosomes provided a sustained release system for capsaicin. An in vitro diffusion study conducted using Franz diffusion cells indicated that the skin retention of capsaicin from cubosomes in the stratum corneum was much higher (2.75±0.22 µg versus 4.32±0.13 µg, respectively than that of capsaicin cream (0.72±0.13 µg. The stress testing showed that the cubosome formulations were stable under strong light and high temperature for up to 10 days. After multiapplications on mouse skin, the irritation of capsaicin cubosomes and cream was light with the least amount of side effects. Overall, the present study demonstrated that cubosomes may be a suitable skin-targeted and sustained delivery system for the transdermal administration of capsaicin. Keywords: cubosomes, skin-targeted delivery, capsaicin

  6. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    Directory of Open Access Journals (Sweden)

    Satheesh Jogala

    2015-01-01

    Full Text Available The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c. nanoparticles of low molecular weight heparin (LMWH. The nanoparticles were prepared by water-in-oil in-water (w/o/w emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15, and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1% aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC and X-ray diffraction (XRD studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16-38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH.

  7. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    Science.gov (United States)

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance.

  8. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  9. Injectable Chitosan/β-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests.

    Science.gov (United States)

    Dalmoro, Annalisa; Abrami, Michela; Galzerano, Barbara; Bochicchio, Sabrina; Barba, Anna Angela; Grassi, Mario; Larobina, Domenico

    2017-01-01

    Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Advances in Hybrid Polymer-Based Materials for Sustained Drug Release

    Directory of Open Access Journals (Sweden)

    Lígia N. M. Ribeiro

    2017-01-01

    Full Text Available The use of biomaterials composed of organic pristine components has been successfully described in several purposes, such as tissue engineering and drug delivery. Drug delivery systems (DDS have shown several advantages over traditional drug therapy, such as greater therapeutic efficacy, prolonged delivery profile, and reduced drug toxicity, as evidenced by in vitro and in vivo studies as well as clinical trials. Despite that, there is no perfect delivery carrier, and issues such as undesirable viscosity and physicochemical stability or inability to efficiently encapsulate hydrophilic/hydrophobic molecules still persist, limiting DDS applications. To overcome that, biohybrid systems, originating from the synergistic assembly of polymers and other organic materials such as proteins and lipids, have recently been described, yielding molecularly planned biohybrid systems that are able to optimize structures to easily interact with the targets. This work revised the biohybrid DDS clarifying their advantages, limitations, and future perspectives in an attempt to contribute to further research of innovative and safe biohybrid polymer-based system as biomaterials for the sustained release of active molecules.

  11. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sustainable strategies for nano-in-micro particle engineering for pulmonary delivery

    Science.gov (United States)

    Silva, A. Sofia; Tavares, Márcia T.; Aguiar-Ricardo, Ana

    2014-11-01

    With the increasing popularity and refinement of inhalation therapy, there has been a huge demand for the design and development of fine-tuned inhalable drug particles capable of assuring an efficient delivery to the lungs with optimal therapeutic outcomes. To cope with this demand, novel particle technologies have arisen over the last decade agreeing with the progress of pulmonary therapeutics that were commonly given by injection. Nanotechnology holds a considerable potential in the development of new release mechanisms of active ingredients to the deep lungs. For an accurate deep lung deposition and effective delivery of nanoparticles, respirable nano-in-micro formulations have been extensively investigated. Microparticles with nanoscale features can now be developed, and their functionalities have contributed to stabilize and improve the efficacy of the particulated dosage form. This paper reviews the different types of the aerosolizable nano-in-micro particles, as well as their sustainable production and characterization processes as dry powders. This review also intends to provide a critical insight of the current goals and technologies of particle engineering for the development of pulmonary drug delivery systems with a special emphasis on nano-micro dry powder formulations prepared by spray-drying and supercritical fluid-assisted techniques. The merits and limitations of these technologies are debated with reference to their appliance to specific drug and/or excipient materials. Finally, a list of most recent/ongoing clinical trials regarding pulmonary delivery of this type of formulation is described.

  13. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect.

    Science.gov (United States)

    Miao, Yanfei; Chen, Guoguang; Ren, Lili; Pingkai, Ouyang

    2016-09-01

    The purpose of this work was to develop self-nanomulsifying drug delivery systems (SNEDDS) in sustained-release pellets of ziprasidone to enhance the oral bioavailability and overcome the food effect of ziprasidone. Preformulation studies including screening of excipients for solubility and pseudo-ternary phase diagrams suggested the suitability of Capmul MCM as oil phase, Labrasol as surfactant, and PEG 400 as co-surfactant for preparation of self-nanoemulsifying formulations. Preliminary composition of the SNEDDS formulations were selected from the pseudo-ternary phase diagrams. The prepared ziprasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized ziprasidone-SNEDDS were used to prepare ziprasidone-SNEDDS sustained-release pellets via extrusion-spheronization method. The pellets were characterized for SEM, particle size, droplet size distribution and zeta potential. In vitro drug release studies indicated the ziprsidone-SNEDDS sustained-release pellets showed sustained release profiles with 90% released within 10 h. The ziprsidone-SNEDDS sustained-release pellets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation of Zeldox as a control. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolonged actions and enhanced bioavailability with no food effect was achieved simultaneously in ziprsidone-SNEDDS sustained-release pellets compared with Zeldox in fed state. The results indicated a sustained release with prolonged actions of schizophrenia and bipolar disorder treatment.

  14. Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery

    Science.gov (United States)

    Lu, Ying; Sturek, Michael; Park, Kinam

    2014-01-01

    Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2 % and 92 % for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles. PMID:24333903

  15. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Science.gov (United States)

    Caixàs, Assumpta; Albert, Lara; Capel, Ismael; Rigla, Mercedes

    2014-01-01

    Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer), reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave®). We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed. PMID:25258511

  16. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  17. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects.

    Science.gov (United States)

    Mansour, Heidi M; Sohn, Minji; Al-Ghananeem, Abeer; Deluca, Patrick P

    2010-09-15

    Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  18. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hai-dong [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Cui, Guo-hong; Yang, Jia-jun [Department of Neurology, Shanghai No. 6 People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233 (China); Wang, Cun [Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Jing; Zhang, Li-sheng; Jiang, Jun [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shao, Shui-jin, E-mail: shaoshuijin@163.com [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  19. Continuous direct compression as manufacturing platform for sustained release tablets.

    Science.gov (United States)

    Van Snick, B; Holman, J; Cunningham, C; Kumar, A; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C

    2017-03-15

    This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of

  20. Dual delivery nanosystem for biomolecules. Formulation, characterization, and in vitro release.

    Science.gov (United States)

    Ortega-Oller, Inmaculada; Del Castillo-Santaella, Teresa; Padial-Molina, Miguel; Galindo-Moreno, Pablo; Jódar-Reyes, Ana Belén; Peula-García, José Manuel

    2017-11-01

    Because of the biocompatible and biodegradable properties of poly (lactic-co-glycolic acid) (PLGA), nanoparticles (NPs) based on this polymer have been widely studied for drug/biomolecule delivery and long-term sustained-release. In this work, two different formulation methods for lysozyme-loaded PLGA NPs have been developed and optimized based on the double-emulsion (water/oil/water, W/O/W) solvent evaporation technique. They differ mainly in the phase in which the surfactant (Pluronic® F68) is added: water (W-F68) and oil (O-F68). The colloidal properties of these systems (morphology by SEM and STEM, hydrodynamic size by DLS and NTA, electrophoretic mobility, temporal stability in different media, protein encapsulation, release, and bioactivity) have been analyzed. The interaction surfactant-protein depending on the formulation procedure has been characterized by surface tension and dilatational rheology. Finally, cellular uptake by human mesenchymal stromal cells and cytotoxicity for both systems have been analyzed. Spherical hard NPs are made by the two methods However, in one case, they are monodisperse with diameters of around 120nm (O-F68), and in the other case, a polydisperse system of NPs with diameters between 100 and 500nm is found (W-F68). Protein encapsulation efficiency, release and bioactivity are maintained better by the W-F68 formulation method. This multimodal system is found to be a promising "dual delivery" system for encapsulating hydrophilic proteins with strong biological activity at the cell-surface and cytoplasmic levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    Science.gov (United States)

    Kamath, Manjunath Srinivas; Ahmed, Shiek SSJ; Dhanasekaran, M; Santosh, S Winkins

    2014-01-01

    Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol. Resveratrol-loaded albumin nanoparticles (RNP) were synthesized and entrapped into a PCL scaffold to form PCL-RNP by a solvent casting and leaching method. An X-ray diffraction study of RNP and PCL-RNP showed that resveratrol underwent amorphization, which is highly desired in drug delivery. Furthermore, Fourier transform infrared spectroscopy indicates that resveratrol was not chemically modified during the entrapment process. Release of resveratrol from PCL-RNP was sustained, with a cumulative release of 64% at the end of day 12. The scaffold was evaluated for its bone-forming potential in vitro using human bone marrow-derived mesenchymal stem cells for 16 days. Alkaline phosphatase activity assayed on days 8 and 12 showed a significant increase in activity (1.6-fold and 1.4-fold, respectively) induced by PCL-RNP compared with the PCL scaffold (the positive control). Moreover, von Kossa staining for calcium deposits on day 16 showed increased mineralization in PCL-RNP. These results suggest PCL-RNP significantly improves mineralization due to its controlled and prolonged release of resveratrol, thereby increasing the therapeutic potential in bone tissue engineering. PMID:24399875

  2. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  3. Pharmaceutical suspension containing both immediate/sustained-release amoxicillin-loaded gelatin nanoparticles: preparation and in vitro characterization

    Science.gov (United States)

    Harsha, Sree

    2013-01-01

    Pharmaceutical suspension containing oral dosage forms delivering both immediate-release and sustained-release amoxicillin was developed as a new dosage form to eradicate Helicobacter pylori. Amoxicillin-loaded gelatin nanoparticles are able to bind with the mucosal membrane after delivery to the stomach and could escalate the effectiveness of a drug, providing dual release. The objective of this study was to develop amoxicillin nanoparticles using innovative new technology – the Büchi Nano Spray Dryer B-90 – and investigate such features as drug content, particle morphology, yield, in vitro release, flow properties, and stability. The nanoparticles had an average particle size of 571 nm. The drug content and percentage yield was 89.2% ± 0.5% and 93.3% ± 0.6%, respectively. Angle of repose of nanoparticle suspension was 26.3° and bulk density was 0.59 g/cm3. In vitro drug release of formulations was best fitted by first-order and Peppas models with R2 of 0.9841 and 0.9837 respectively; release profile was 15.9%, while; for the original drug, amoxicillin, under the same conditions, 90% was released in the first 30 minutes. The nanoparticles used in this study enabled sustained release of amoxicillin over an extended period of time, up to 12 hours, and were stable for 12 months under accelerated storage conditions of 25°C ± 2°C and 60% ± 5% relative humidity. PMID:24101859

  4. Montmorillonite-alginate nanocomposite as a drug delivery system--incorporation and in vitro release of irinotecan.

    Science.gov (United States)

    Iliescu, Ruxandra Irina; Andronescu, Ecaterina; Ghitulica, Cristina Daniela; Voicu, Georgeta; Ficai, Anton; Hoteteu, Mihai

    2014-03-25

    The scope of the present study was the preparation and characterization of irinotecan nanocomposite beads based on montmorillonite (Mt) and sodium alginate (AL) as drug carriers. After irinotecan (I) incorporation into Mt, the resulting hybrid was compounded with alginate, and I-Mt-AL nanocomposite beads were obtained by ionotropic gelation technique. The structure and surface morphology of the hybrid and composite materials were established by means of X-ray diffraction (XRD), IR spectroscopy (FT-IR), thermal analysis (TG-DTA) and scanning electron microscopy (SEM). Irinotecan incorporation efficiency in Mt and in alginate beads was determined both by UV-vis spectroscopy and thermal analysis and was found to be high. The hybrid and composite materials were tested in vitro in simulated intestinal fluid (pH 7.4, at 37 °C) in order to establish if upon administering the beads at the site of a resected colorectal tumor, the delivery of the drug is sustained and can represent an alternative to the existing systemic chemotherapy. The in vitro drug release test results clearly suggested that Mt, and Mt along with AL were able to control the release of irinotecan by making it sustained, without any burst effect, and by reducing the released amount and the release rate. The nanocomposite beads may be a promising drug delivery system in chemotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Directory of Open Access Journals (Sweden)

    Caixàs A

    2014-09-01

    Full Text Available Assumpta Caixàs, Lara Albert, Ismael Capel, Mercedes Rigla Endocrinology and Nutrition Department, Parc Tauli Sabadell University Hospital, Autonomous University of Barcelona, Barcelona, Spain Abstract: Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer, reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave®. We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed. Keywords: Contrave, weight loss, overweight, cardiovascular disease, diabetes, cancer

  6. A Prospective Survey on Safety of Sustained-Release Theophylline in Treatment of Asthma and COPD

    Directory of Open Access Journals (Sweden)

    Sohei Makino

    2006-01-01

    Conclusions: The present survey demonstrates that sustained-release theophylline is safe, as long as used appropriately, although adverse reactions tend to develop early after initiation of administration.

  7. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Salil, E-mail: sdesai@ncat.ed [Department of Industrial and Systems Engineering, North Carolina A and T State University, NC 27411 (United States); Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States); Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC 27157 (United States); Perkins, Jessica [Department of Industrial and Systems Engineering, North Carolina A and T State University, NC 27411 (United States); Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States); Harrison, Benjamin S. [Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC 27157 (United States); Sankar, Jag [Center for Advanced Materials and Smart Structures, North Carolina A and T State University, Greensboro, NC 27411 (United States)

    2010-04-15

    Drug delivery and dosage concentrations are considered as major focal points in conventional as well as battlefield emergency medicine. The concept of localizing drug delivery via microcapsules is an evolving field to confine the adverse side effects of high concentration drug doses. This paper focuses on understanding release kinetics through biopolymer microcapsules for time-dependent drug release. Calcium alginate microcapsules were manufactured using a direct-write inkjet technique. Rhodamine 6G was used as the release agent to observe the release kinetics from calcium alginate beads in distilled water. A design of experiments was constructed to compare the effect of the microcapsule diameter and different concentrations of calcium chloride (M) and sodium alginate (%, w/v) solutions on the release kinetics profiles of the microcapsules. This research gives insight to identify favorable sizes of microcapsules and concentrations of sodium alginate and calcium chloride solutions for controlled release behavior of drug delivery microcapsules.

  8. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy

    2015-06-01

    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  9. [Preparation and evaluation of sustained-release microsphere of Sanguis Draconis in vitro].

    Science.gov (United States)

    Ding, Li-Yu; Xia, Peng-Fei; Yang, Cai-Qin; Lin, Yu-Long; Wang, Jing

    2007-03-01

    To prepare sustained-release microsphere containing extract of Sanguis Draconis and to measure its dissolution in vitro. Sustained-release microsphere was prepared with polylactic acid (PLA) as carriers using the oil-in-water (O/W) emulsion solvent evaporation method. The powder particle's characteristics of sustainded-release microsphere were evaluated comprehensively, and its dissolution characteristics in vitro were studied. The microsphere was round and its surface was smooth, drug-loading rate was 21.97% and the entrapment rate was 55.76%, the accumulative release percentage was 76. 71% in 16 hours. The sustained release effect of Sanguis Draconis microspheres was formed with potentially wide applications.

  10. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride

    Directory of Open Access Journals (Sweden)

    Ahmed SM

    2016-12-01

    Full Text Available Sayed M Ahmed,1 Adel Ahmed Ali,2 Ahmed MA Ali,2,3 Omiya A Hassan2,4 1Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 2Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; 3Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia; 4Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, El-Minia Gadida, Egypt Purpose: The aim of the present study was to improve the bioavailability of itopride (ITO and sustain its action by formulating as a floating dosage form. Materials and methods: Sustained-release floating tablets of ITO hydrochloride (HCl were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol. Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. Results: In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031.The pharmacokinetic results indicated that the area under the curve (AUC0–∞ of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton® and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022. Conclusion: The prepared floating tablets of ITO HCl (F10 could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability. Keywords: itopride HCl, oral drug delivery, stability study, bioavailability

  11. ORAL CONTROLLED RELEASE DRUG DELIVERY SYSTEM: AN OVERVIEW

    OpenAIRE

    Modi Kushal; Modi Monali; Mishra Durgavati; Panchal Mittal; Sorathiya Umesh; Shelat Pragna

    2013-01-01

    Oral drug delivery is the most preferred and convenient option as the oral route provides maximum active surface area among all drug delivery system for administration of various drugs. The attractiveness of these dosage forms is due to awareness to toxicity and ineffectiveness of drugs when administered by oral conventional method in the form of tablets and capsules. Usually conventional dosage form produces wide range of fluctuation in drug concentration in the bloodstream and tissues with ...

  12. Formulation Design, Optimization and Pharmacodynamic Evaluation of Sustained Release Mucoadhesive Microcapsules of Venlafaxine HCl.

    Science.gov (United States)

    Swain, S; Behera, A; Dinda, S C; Patra, C N; Jammula, Sruti; Beg, S; Rao, M E B

    2014-07-01

    The objective of present research work was to design and characterize the venlafaxine HCl-loaded sodium alginate-based mucoadhesive microcapsules by ionic gelation technique using HPMC K100M as mucoadhesive polymer. The Placket-Burman Design was applied for preliminary screening of the formulations and systematic optimization by using Box-Behnken Design. The prepared microcapsules were characterized for drug content, entrapment efficiency, micromeritic properties, particle size, swelling index, mucoadhesive strength, in vitro drug release and in vivo antidepressant activity. FTIR and differential scanning calorimetry studies showed no incompatibility. Surface morphology studies revealed spherical nature of the prepared microcapsules. In vitro drug release studies revealed sustained release by diffusion mechanism. Further, the microcapsules were effective in reducing the depression induced by forced swimming test in Sprague-Dawley rats compared to the pure drug. The microcapsules were found to be stable under accelerated stability conditions, which suggest them as better alternative delivery systems for enhanced therapeutic efficacy of antidepressant drug, venlafaxine HCl.

  13. Modified silicone elastomer vaginal gels for sustained release of antiretroviral HIV microbicides.

    Science.gov (United States)

    Forbes, Claire J; McCoy, Clare F; Murphy, Diarmaid J; Woolfson, A David; Moore, John P; Evans, Abbey; Shattock, Robin J; Malcolm, R Karl

    2014-05-01

    We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Modified silicone elastomer vaginal gels for sustained release of antiretroviral HIV microbicides

    Science.gov (United States)

    Forbes, Claire J.; McCoy, Clare F.; Murphy, Diarmaid J.; Woolfson, A. David; Moore, John P.; Evans, Abbey; Shattock, Robin J.; Malcolm, R. Karl

    2014-01-01

    We previously reported non-aqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc. Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). Maraviroc and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard hydroxyethylcellulose (HEC) vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e. as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides. PMID:24585370

  15. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  16. Sustained release of hydrophilic drug from polyphosphazenes/poly(methyl methacrylate) based microspheres and their degradation study.

    Science.gov (United States)

    Akram, Muhammad; Yu, Haojie; Wang, Li; Khalid, Hamad; Abbasi, Nasir M; Zain-ul-Abdin; Chen, Yongsheng; Ren, Fujie; Saleem, Muhammad

    2016-01-01

    Drug delivery system is referred as an approach to deliver the therapeutic agents to the target site safely in order to achieve the maximum therapeutic effects. In this perspective, synthesis of three new polyphosphazenes and their blend fabrication system with poly(methyl methacrylate) is described and characterized with (1)H NMR, (31)P NMR, GPC and DSC. Furthermore, these novel blends were used to fabricate microspheres and evaluated for sustain release of hydrophilic drug (aspirin as model drug). Microspheres of the two blends showed excellent encapsulation efficacy (about 93%), controlled burst release (2.3% to 7.93%) and exhibited sustain in vitro drug release (13.44% to 32.77%) up to 218 h. At physiological conditions, the surface degradation of microspheres and diffusion process controlled the drug release sustainability. Furthermore, it was found that the degree of porosity was increased with degradation and the resulting porous network was responsible for water retention inside the microspheres. The percentage water retention was found to be interrelated with degradation time and percentage drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Design and optimization of thermosensitive nanoemulsion hydrogel for sustained-release of praziquantel.

    Science.gov (United States)

    Cong, Zhaotong; Shi, Yanbin; Peng, Xue; Wei, Bei; Wang, Yu; Li, Jincheng; Li, Jianyong; Li, Jiazhong

    2017-04-01

    This work aimed to develop an alternative sustained-release thermosensitive praziquantel-loaded nanoemulsion (PZQ-NE) hydrogel for better schistosomiasis treatment. PZQ-NE-dispersed chitosan/glycerol 2-phosphate disodium/HPMC (NE/CS/β-GP/HMPC) hydrogel was successfully prepared to improve bioavailability of PZQ. Solubility tests and pseudo-ternary phase diagrams were applied to screen optimal oils, surfactants and co-surfactants of NE. The hydrogels were characterized for gelling time, surface exudates, rheological properties and in vitro drug release. Formulation optimization of NE/CS/β-GP/HMPC hydrogel was conducted by Box-Behnken experimental design combined with response surface methodology. In vitro cytotoxicity of hydrogel was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. The sustained-release property of PZQ in NE and optimized hydrogel was evaluated by pharmacokinetic study in rabbits. The formulation of PZQ-NE consisted of mass ratio of 12.5% capryol 90 containing PZQ (160 mg/g), 40% cremophor RH 40/tween 20 and transcutol HP (S/CoS = 2:1), 47.5% deionized water. PZQ releasing from NE/CS/β-GP/HMPC hydrogels was best fitted to Higuchi model and governed by diffusion. Rheological investigation evidenced the themosensitive gelation of different hydrogel systems and their gel-like character at 37 °C. The optimized hydrogel formulation consisted of HPMC solution (103.69 mg/g), 3.03% (w/v) chitosan and 14.1% (w/v) β-GP showed no cytotoxicity when the addition of NE was no more than 100 mg/g. Pharmacokinetic parameters indicated that NE/CS/β-GP/HMPC hydrogel can significantly slow down drug elimination, prolong mean residence time and improve bioavailability of PZQ. NE/CS/β-GP/HMPC hydrogel possessed sustained-release property and could be an alternative antischistosomal drug delivery system with improved therapeutic effect.

  18. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    2016-07-01

    Full Text Available In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS and β-cyclodextrin (β-CD embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles–chitosan hydrogel (IVG improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution–chitosan hydrogel (ISG. In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  19. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor

    2015-10-01

    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  20. Dual-functional Polyurea Microcapsules for Chronic Wound Care Dressings: Sustained Drug Delivery and Non-leaching Infection Control

    Science.gov (United States)

    He, Wei

    A new design of dual-functional polyurea microcapsules was proposed for chronic wound dressings to provide both non-leaching infection control and sustained topical drug delivery functionalities. Quaternary ammonium functionalized polyurea microcapsules (MCQs) were synthesized under mild conditions through an interfacial crosslinking reaction between branched polyethylenimine (PEI) and 2,4-toluene diisocyanate (TDI) in a dimethylformamide/cyclohexane emulsion. An in-situ modification method was developed to endow non-leaching surface antimicrobial properties to MCQs via bonding antimicrobial surfactants to surface isocyanate residues on the polyurea shells. The resultant robust MCQs with both non-leaching antimicrobial properties and sustained drug releasing properties have potential applications in medical textiles, such as chronic wound dressings, for infection control and drug delivery.

  1. Functionalized, Biodegradable Hydrogels for Control over Sustained and Localized siRNA Delivery to Incorporated and Surrounding Cells

    Science.gov (United States)

    Nguyen, Khanh; Dang, Phuong Ngoc; Alsberg, Eben

    2012-01-01

    Currently, the most severe limitation to applying RNA interference (RNAi) technology is delivery, including localizing the molecules to a specific site of interest to target a specific cell population and sustaining the presentation of these molecules for a controlled period of time. In this study, we engineered a functionalized, biodegradable system created by covalent incorporation of cationic linear polyethyleneimine (LPEI) into photocrosslinked dextran (DEX) hydrogels through a biodegradable ester linkage. The key innovation of this system is that control over the sustained release of short interference RNA (siRNA) was achieved, as LPEI could electrostatically interact with siRNA to maintain siRNA within the hydrogels and degradation of the covalent ester linkages between the LPEI and the hydrogels led to tunable release of LPEI/siRNA complexes over time. The covalent conjugation of LPEI did not affect the swelling or degradation properties of the hydrogels, and the addition of siRNA and LPEI had minimal effect on their mechanical properties. These hydrogels exhibited low cytotoxicity against human embryonic kidney 293 cells (HEK293). The release profiles could be tailored by varying DEX (8 and 12 %w/w) and LPEI (0, 5, 10 μg/ 100 μl gel) concentrations with nearly 100% cumulative release achieved at day 9 (8 %w/w gel) and day 17 (12 %w/w gel). The released siRNA exhibited high bioactivity with cells surrounding and inside the hydrogels over an extended time period. This controllable and sustained siRNA delivery hydrogel system that permits tailored siRNA release profiles may be valuable to guide cell fate for regenerative medicine and other therapeutic applications such as cancer. PMID:22902819

  2. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    HP

    2013-07-15

    Jul 15, 2013 ... Purpose: To develop and optimise sustained release (SR) matrix tablets of diltiazem hydrochloride (DHL). Methods: ... Keywords: Diltiazem, Matrix tablet, Hydroxypropyl methylcellulose Eudragit, In vitro/in vivo correlation, Optimization. Tropical ..... Makhija S, Vavia P. Once daily sustained release tablets.

  3. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery.

    Science.gov (United States)

    Li, Haiyan; Lv, Nana; Li, Xue; Liu, Botao; Feng, Jing; Ren, Xiaohong; Guo, Tao; Chen, Dawei; Fraser Stoddart, J; Gref, Ruxandra; Zhang, Jiwen

    2017-06-08

    Metal-organic frameworks (MOFs), which are typically embedded in polymer matrices as composites, are emerging as a new class of carriers for sustained drug delivery. Most of the MOFs and the polymers used so far in these composites, however, are not pharmaceutically acceptable. In the investigation reported herein, composites of γ-cyclodextrin (γ-CD)-based MOFs (CD-MOFs) and polyacrylic acid (PAA) were prepared by a solid in oil-in-oil (s/o/o) emulsifying solvent evaporation method. A modified hydrothermal protocol has been established which produces efficiently at 50 °C in 6 h micron (5-10 μm) and nanometer (500-700 nm) diameter CD-MOF particles of uniform size with smooth surfaces and powder X-ray diffraction patterns that are identical with those reported in the literature. Ibuprofen (IBU) and Lansoprazole (LPZ), both insoluble in water and lacking in stability, were entrapped with high drug loading in nanometer-sized CD-MOFs by co-crystallisation (that is more effective than impregnation) without causing MOF crystal degradation during the loading process. On account of the good dispersion of drug-loaded CD-MOF nanocrystals inside polyacrylic acid (PAA) matrices and the homogeneous distribution of the drug molecules within these crystals, the composite microspheres exhibit not only spherical shapes and sustained drug release over a prolonged period of time, but they also demonstrate reduced cell toxicity. The cumulative release rate for IBU (and LPZ) follows the trend: IBU-γ-CD complex microspheres (ca. 80% in 2 h) > IBU microspheres > IBU-CD-MOF/PAA composite microspheres (ca. 50% in 24 h). Importantly, no burst release of IBU (and LPZ) was observed from the CD-MOF/PAA composite microspheres, suggesting an even distribution of the drug as well as strong drug carrier interactions inside the CD-MOF. In summary, these composite microspheres, composed of CD-MOF nanocrystals embedded in a biocompatible polymer (PAA) matrix, constitute an efficient and

  4. Sustained Release of a Water-Soluble Drug from Directly ...

    African Journals Online (AJOL)

    Okra gum was evaluated as a controlled-release agent in modified release matrices in comparison with sodium carboxymethylcellulose (NaCMC) using aspirin as the model drug. Tablets were produced by direct compression and the in vitro drug release was assessed under conditions similar to those in the gastrointestinal ...

  5. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype.

    Science.gov (United States)

    Demento, Stacey L; Cui, Weiguo; Criscione, Jason M; Stern, Eric; Tulipan, Jacob; Kaech, Susan M; Fahmy, Tarek M

    2012-06-01

    Particulate vaccines are emerging promising technologies for the creation of tunable prophylactics against a wide variety of conditions. Vesicular and solid biodegradable polymer platforms, exemplified by liposomes and polyesters, respectively, are two of the most ubiquitous platforms in vaccine delivery studies. Here we directly compared the efficacy of each in a long-term immunization study and in protection against a model bacterial antigen. Immunization with poly(lactide-co-glycolide) (PLGA) nanoparticles elicited prolonged antibody titers compared to liposomes and alum. The magnitude of the cellular immune response was also highest in mice vaccinated with PLGA, which also showed a higher frequency of effector-like memory T cell phenotype, leading to an effective clearance of intracellular bacteria. The difference in performance of these two common particulate platforms is shown not to be due to material differences but appears to be connected to the kinetics of antigen delivery. Thus, this study highlights the importance of sustained antigen release mediated by particulate platforms and its role in the long-term appearance of effector memory cellular response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2015-01-22

    To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Porous silicon-based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  7. Sustained-Release Permanganate: Passive Reactive Barriers for Green and Sustainable Remediation

    Science.gov (United States)

    Dugan, P. J.

    2011-12-01

    Reactive materials in permeable reactive barriers (PRBs) have proven very useful for transforming or destroying organic waste in situ. Once emplaced they typically do not require a continued supply of electrical power and have the added benefit of creating a reactive zone for the destruction of contaminants in place. Controlled-release techniques have been utilized extensively in diverse fields such as pharmaceutical and agrochemical technologies. However, controlled- and sustained release of an oxidant during in situ chemical oxidation (ISCO) is an emerging concept that is extremely relevant to the field of environmental remediation, yet to-date has received little attention. ISCO using the oxidants permanganate, persulfate, and catalyzed hydrogen peroxide has shown great promise for remediation of many recalcitrant organic contaminants of concern (COC). Because the oxidant also reacts with natural organic matter, inorganic soil constituents, and other reduced compounds, the presence of a protective barrier that controls oxidant release may enhance the efficiency of ISCO and allow for long-term low-cost treatment of chlorinated solvents. To this end, sustained-release permanganate (SRP) was developed. Paraffin wax was used as the environmentally benign and biodegradable matrix material for encapsulating the solid potassium permanganate (KMnO4) particles. The paraffin matrix protects the solid KMnO4 particles from fast dissolution and potentially undesirable nonproductive reactions. The SRP material contains between 60%-80% permanganate and can be formed as candles for direct push applications in reactive barriers, or chipped material for hydro-fracturing into low permeability media. One-dimensional (1-D) SRP column experiments were conducted to evaluate permanganate release behavior using deionized (DI) water as the influent or COC removal efficiency using dissolved trichloroethene (TCE) as the influent. The influent dissolved TCE concentrations were 1 mg/L and

  8. Engineered Hydrogels for Local and Sustained Delivery of RNA-Interference Therapies.

    Science.gov (United States)

    Wang, Leo L; Burdick, Jason A

    2017-01-01

    It has been nearly two decades since RNA-interference (RNAi) was first reported. While there are no approved clinical uses, several phase II and III clinical trials suggest the great promise of RNAi therapeutics. One challenge for RNAi therapies is the controlled localization and sustained presentation to target tissues, to both overcome systemic toxicity concerns and to enhance in vivo efficacy. One approach that is emerging to address these limitations is the entrapment of RNAi molecules within hydrogels for local and sustained release. In these systems, nucleic acids are either delivered as siRNA conjugates or within nanoparticles. A plethora of hydrogels has been implemented using these approaches, including both traditional hydrogels that have already been developed for other applications and new hydrogels developed specifically for RNAi delivery. These hydrogels have been applied to various applications in vivo, including cancer, bone regeneration, inflammation and cardiac repair. This review will examine the design and implementation of such hydrogel RNAi systems and will cover the most recent applications of these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems.

    Science.gov (United States)

    Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J

    2017-09-28

    We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. New Poly(3-hydroxybutyrate) Microparticles with Paclitaxel Sustained Release for Intraperitoneal Administration.

    Science.gov (United States)

    Bonartsev, Anton P; Zernov, Anton L; Yakovlev, Sergey G; Zharkova, Irina I; Myshkina, Vera L; Mahina, Tatiana K; Bonartseva, Garina A; Andronova, Natalia V; Smirnova, Galina B; Borisova, Juliya A; Kalishjan, Mikhail S; Shaitan, Konstantin V; Treshalina, Helena M

    2017-01-01

    Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Effect of different polymers and their combinations on the release of metoclopramide HCl from sustained-release hydrophilic matrix tablets.

    Science.gov (United States)

    Savaşer, Ayhan; Taş, Çetin; Bayrak, Ziya; Özkan, Cansel Köse; Özkan, Yalçın

    2013-01-01

    Metoclopramide HCl (MTC) is commonly used for the management of gastrointestinal disorders. It has a short biological half-life and is usually administered four times daily to maintain effective concentrations throughout the day. The aim of this study is to develop sustained-release hydrophilic matrix tablet formulations of drug to achieve reproducible and predictable release rates, extended duration of activity, decreased toxicity, reduction of required dose, optimized therapy, and improved patient compliance. Hydroxypropylmethyl cellulose (HPMC), carboxymethylcellulose sodium (NaCMC), chitosan and Carbopol 981 were incorporated in the matrix system separately or in combinations as release controlling factor by direct compression technique. Compatibility among the formulation components was assessed by DSC and FTIR analysis. MTC release from matrix was evaluated by using the US Pharmacopeia dissolution apparatus II. All formulations met the criteria of pharmacopeial requirements. Dissolution studies show that polymer type and concentration are important parameters on drug release. Chitosan, carbopol and NaCMC formulations exhibited pH-dependent drug release profile whereas HPMC did not. All the formulations containing 1:1 ratio of HPMC and chitosan exhibited desired drug release showing that all active substance releases progressively in a period of whole dissolution time and therefore it can be regarded as worthy of consideration for the manufacture of sustained-release MTC product.

  12. Evaluation of dibutyrylchitin as new excipient for sustained drug release.

    Science.gov (United States)

    Casettari, Luca; Cespi, Marco; Castagnino, Enzo

    2012-08-01

    Dibutyrylchitin (DBC), a lipophilic chitin diester, has been synthesized from chitin and butyric anhydride with methanesulfonic acid as catalyst. Exhaustive esterification of free alcoholic groups of chitin was assessed by FT-IR and (1)H-NMR spectroscopy. High degree of alkyl substitution allowed DBC to acquire an almost completely lipophilic character. Tablets of paracetamol and metformin employing DBC as major excipient, in comparison with starch, microcrystalline cellulose, lactose and polyvinylpyrrolidone, were prepared and rates of drug release were checked by dissolution test assays. DBC released drug at a lower rate than that of the other tested materials. A comparison study of rate release of metformin from DBC tablets and from metformin-hydroxypropyl methylcellulose prolonged release oral formulation available on the market has been also curried out. Under the same conditions and in the presence of the same amount of loaded drug, DBC released 64% of metformin whereas hypromellose-based tablets released 87%.

  13. Sustainability, Biodiversity and Ethical Aspects of Deliberate Release of GMOs

    DEFF Research Database (Denmark)

    Agger, Peder Winkel

    2006-01-01

    Sustainable development is a way to organize complex political issues at a higher level where both natural scientific rationality and normative based arguments may be parts of a more coherent comprehension.......Sustainable development is a way to organize complex political issues at a higher level where both natural scientific rationality and normative based arguments may be parts of a more coherent comprehension....

  14. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Klapková, E.; Horný, L.; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, R.; Veselý, J.; Chlup, H.; Denk, František

    2016-01-01

    Roč. 105, č. 3 (2016), 1288-1294 ISSN 0022-3549 R&D Projects: GA TA ČR(CZ) TA04010330 Institutional support: RVO:67985891 Keywords : anti-infectives * HPLC * coating * controlled release * degradation products * drug delivery systems * nanoparticles * pharmacokinetics * polymeric drug delivery systems Subject RIV: JI - Composite Materials Impact factor: 2.713, year: 2016

  15. Sustained Release Oral Nanoformulated Green Tea for Prostate Cancer

    Science.gov (United States)

    2011-05-01

    of chemopreventive agents. However, many agents have low bioavailability because of their poor biopharmaceutical and/or pharmacokinetic profile. As a...cases high oral dose leads to adverse effects. Various drug delivery systems, each one having its own limitations, have been developed to overcome the...hurdles of bioavailability and toxicity. Polymeric nanoparticles offer a great promise for drug delivery and in line with this fact we have

  16. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration

    NARCIS (Netherlands)

    Song, J.; Leeuwenburgh, S.C.G.

    2014-01-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of

  17. Letter to the editor: naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    Directory of Open Access Journals (Sweden)

    Buehler AM

    2015-01-01

    Full Text Available Anna M Buehler Hospital Alemao Oswaldo Cruz, Institute of Health Education and Sciences, Sao Paulo, BrazilI read with great interest the systematic review by Caixàs et al1 on the effect of naltrexone sustained-release/bupropion sustained-release (NB for the management of obesity. By comprehensively appraising five recent clinical trials, the authors concluded that the naltrexone/bupropion combination might represent an important new therapeutic option for the management of obesity, with a weight reduction effect that is similar to other drugs approved for the treatment of obesity.View original paper by Caixàs and colleagues.

  18. Pharmacokinetics of nifedipine slow-release during sustained tocolysis

    NARCIS (Netherlands)

    ter Laak, Maureen A.; Roos, Carolien; Touw, Daan J.; van Hattum, Paul R. M.; Kwee, Anneke; Lotgering, Frederik K.; Mol, Ben Willem J.; van Pampus, Mariëlle G.; Porath, Martina M.; Spaanderman, Marc E. A.; van der Post, Joris A. M.; Papatsonis, Dimitri N. M.; van 't Veer, Nils E.

    2015-01-01

    The pharmacokinetics of nifedipine as a tocolytic agent has not been studied in great detail in pregnant women and has instead focused on immediate release tablets and gastrointestinal therapeutic system (GITS) tablets. The aim of this study was to determine nifedipine slow-release half-life and

  19. Pharmacokinetics of nifedipine slow-release tablets during sustained tocolysis

    NARCIS (Netherlands)

    ter Laak, Maureen A.; Roos, Carolien; Touw, Daan J.; van Hattum, Paul R. M.; Kwee, Anneke; Lotgering, Frederik K.; Moi, Ben Willem J.; van Pampus, Marielle G.; Porath, Martina M.; Spaanderman, Marc E. A.; van der Post, Joris A. M.; Papatsonis, Dimitri N. M.; van 't Veer, Nils E.

    Objective: The pharmacokinetics of nifedipine as a tocolytic agent has not been studied in great detail in pregnant women and has instead focused on immediate release tablets and gastrointestinal therapeutic system (GITS) tablets. The aim of this study was to determine nifedipine slow-release

  20. Formulation of Sustained-Release Matrix Tablets Using Cross ...

    African Journals Online (AJOL)

    Matrix tablets of DTZ were prepared using varying ratios of unmodified karaya gum (K) and MK by direct compression. The matrix tablets were evaluated for pharmacotechnical properties and in vitro release, including release kinetics. The optimized formulation was compared with Dilzem SR which served as reference.

  1. Development and evaluation of sustained release losartan potassium matrix tablet using kollidon SR as release retardant

    Directory of Open Access Journals (Sweden)

    Shahid Sarwar

    2012-12-01

    Full Text Available The present study was undertaken to develop sustained release (SR matrix tablets of losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method, along with Kollidon SR as release retardant polymer. The amount of losartan potassium remains fixed (100 mg for all the three formulations whereas the amounts of Kollidon SR were 250 mg, 225 mg, and 200 mg for F-1, F-2, and F-3 respectively. The evaluation involves three stages: the micromeritic properties evaluation of granules, physical property studies of tablets, and in-vitro release kinetics studies. The USP apparatus type II was selected to perform the dissolution test, and the dissolution medium was 900 mL phosphate buffer pH 6.8. The test was carried out at 75 rpm, and the temperature was maintained at 37 ºC ± 0.5 ºC. The release kinetics was analyzed using several kinetics models. Higher polymeric content in the matrix decreased the release rate of drug. At lower polymeric level, the rate and extent of drug release were enhanced. All the formulations followed Higuchi release kinetics where the Regression co-efficient (R² values are 0.958, 0.944, and 0.920 for F-1, F-2, and F-3 respectively, and they exhibited diffusion dominated drug release. Statistically significant (PO presente estudo foi realizado para desenvolver (SR matriz de comprimidos de liberação sustentada de losartana, um antagonista da angiotensina II, para o tratamento da hipertensão arterial. Os comprimidos foram preparados pelo método de compressão direta com Kollidon SR como polímero de liberação lenta. A quantidade de losartana potássica permanece fixa (100 mg para todas as três formulações enquanto que as quantidades de Kollidon SR foram de 250 mg, 225 mg e 200 mg para F-1, F-2 e F-3, respectivamente. A avaliação envolve três etapas- propriedades micromeríticas dos grânulos, estudo das propriedades físicas dos comprimidos e

  2. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin

    OpenAIRE

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J.; Freeman, William R.; Cheng, Lingyun

    2015-01-01

    Mild oxidation and subsequent silanization of the porous silicon (pSi) rendered the resultant pSi particles optimized for rapamycin loading/release as an intravitreal injectable delivery system. The system slowly released rapamycin and safely resided in rabbit vitreous more than 8 weeks.

  3. Bypassing the EPR effect with a nanomedicine harboring a sustained-release function allows better tumor control.

    Science.gov (United States)

    Shen, Yao An; Shyu, Ing Luen; Lu, Maggie; He, Chun Lin; Hsu, Yen Mei; Liang, Hsiang Fa; Liu, Chih Peng; Liu, Ren Shyan; Shen, Biing Jiun; Wei, Yau Huei; Chuang, Chi Mu

    2015-01-01

    The current enhanced permeability and retention (EPR)-based approved nanomedicines have had little impact in terms of prolongation of overall survival in patients with cancer. For example, the two Phase III trials comparing Doxil(®), the first nanomedicine approved by the US Food and Drug Administration, with free doxorubicin did not find an actual translation of the EPR effect into a statistically significant increase in overall survival but did show less cardiotoxicity. In the current work, we used a two-factor factorial experimental design with intraperitoneal versus intravenous delivery and nanomedicine versus free drug as factors to test our hypothesis that regional (intraperitoneal) delivery of nanomedicine may better increase survival when compared with systemic delivery. In this study, we demonstrate that bypassing, rather than exploiting, the EPR effect via intraperitoneal delivery of nanomedicine harboring a sustained-release function demonstrates dual pharmacokinetic advantages, producing more efficient tumor control and suppressing the expression of stemness markers, epithelial-mesenchymal transition, angiogenesis signals, and multidrug resistance in the tumor microenvironment. Metastases to vital organs (eg, lung, liver, and lymphatic system) are also better controlled by intraperitoneal delivery of nanomedicine than by standard systemic delivery of the corresponding free drug. Moreover, the intraperitoneal delivery of nanomedicine has the potential to replace hyperthermic intraperitoneal chemotherapy because it shows equal efficacy and lower toxicity. In terms of efficacy, exploiting the EPR effect may not be the best approach for developing a nanomedicine. Because intraperitoneal chemotherapy is a type of regional chemotherapy, the pharmaceutical industry might consider the regional delivery of nanomedicine as a valid alternative pathway to develop their nanomedicine(s) with the goal of better tumor control in the future.

  4. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs.

    Science.gov (United States)

    Lee, Kathy W Y; Nguyen, Tri-Hung; Hanley, Tracey; Boyd, Ben J

    2009-01-05

    Nanostructured lipid-based liquid crystalline systems have been proposed as sustained oral drug delivery systems, but the interplay between their intrinsic release rates, susceptibility to digestive processes, and the manner in which these effects impact on their application in vivo, are not well understood. In this study, two different bicontinuous cubic phases, prepared from glyceryl monooleate and phytantriol, and a reversed hexagonal phase formed by addition of a small amount of vitamin E to phytantriol (Q(II GMO), Q(II PHYT) and H(II PHYT+VitEA), respectively) were prepared. The release kinetics for a number of model hydrophilic drugs with increasing molecular weights (glucose, Allura Red and FITC-dextrans) was determined in in vitro release experiments. Diffusion-controlled release was observed in all cases as anticipated from previous studies with liquid crystalline systems, and it was discovered that the release rates of each drug decreased as the matrix was changed from Q(II GMO) to Q(II PHYT) to H(II PHYT+VitEA). Formulations containing (14)C-glucose, utilized as a rapidly absorbed marker of drug release, were then orally administered to rats to determine the relative in vivo absorption rates from the different formulations. The results showed a trend by which the rate of absorption of (14)C-glucose followed that observed in the corresponding in vitro release studies, providing the first indication that the nanostructure of these materials may provide the ability to tailor the absorption kinetics of hydrophilic drugs in vivo, and hence form the basis of a new drug delivery system.

  5. Diclofenac transdermal patch versus the sustained release tablet: A ...

    African Journals Online (AJOL)

    Conclusion: Transdermal films of diclofenac, formulated with permeation enhancers, may have greater therapeutic advantages over conventional oral tablets in terms of prolonged release and improvement of patient compliance in rheumatoid arthritis. Keywords: Analgesic activity, Diclofenac, Permeation enhancer, ...

  6. Pharmacokinetics and in vivo scintigraphic monitoring of a sustained release acetylsalicylic acid formulation

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.G.; Hardy, J.C. (Queen' s Medical Centre, Nottingham (UK)); Parr, G.D.; Kennerley, J.W.; Taylor, M.J.; Davis, S.S. (Nottingham Univ. (UK)); Rees, J.A. (Boots Research Laboratories, Nottingham (UK))

    1984-01-01

    The in vivo dissolution and pharmacokinetics of a sustained release aspirin formulation labelled with (sup(99m)Tc)diethylenetriaminepentaacetic acid has been monitored in 5 subjects by the use of gamma scintigraphy and drug analysis undertaken of blood and urine samples. The data obtained enabled the position of the tablet in vivo to be related to the plasma and urinary salicylate levels. The study confirms the sustained release properties of the cellulose acetate phthalate formulation.

  7. Sustained release myofascial release as treatment for a patient with complications of rheumatoid arthritis and collagenous colitis: a case report.

    Science.gov (United States)

    Cubick, Erin E; Quezada, Vanessa Y; Schumer, Ariel D; Davis, Carol M

    2011-01-01

    Myofascial release (MFR) is a manual therapeutic technique used to release fascial restrictions, which may cause neuromusculoskeletal and systemic pathology. This case report describes the use of sustained release MFR techniques in a patient with a primary diagnosis of rheumatoid arthritis (RA) and a secondary diagnosis of collagenous colitis. Changes in pain, cervical range of motion, fatigue, and gastrointestinal tract function, as well as the impact of RA on daily activities, were assessed. A 54-year-old white woman presented with signs and symptoms attributed to RA and collagenous colitis. Pre and post measurements were taken with each treatment and during the interim between the initial and final treatment series. The patient recorded changes in pain, fatigue, gastrointestinal tract function, and quality of life. Cervical range of motion was assessed. Six sustained release MFR treatment sessions were provided over a 2-week period. Following an 8-week interim, two more treatments were performed. The patient showed improvements in pain, fatigue, gastrointestinal tract function, cervical range of motion, and quality of life following the initial treatment series of six sessions. The patient maintained positive gains for 5 weeks following the final treatment, after which her symptoms returned to near baseline measurements. Following two more treatments, positive gains were achieved once again. In a patient with RA and collagenous colitis, the application of sustained release MFR techniques in addition to standard medical treatment may provide short-term and long-term improvements in comorbid symptoms and overall quality of life.

  8. Use of dika fat in the formulation of sustained release theophylline ...

    African Journals Online (AJOL)

    Sustained release theophylline tablets and capsules were prepared with dika fat, a solid vegetable oil extracted from the kernels of Irvingia gabonesis var gabonesis and var excelsia. Anhydrous theophylline was incorporated into dika fat by the fusion method. The in vitro release of the theophylline was monitored by the ...

  9. Preparation in high-shear mixer of sustained-release pellets by melt pelletisation.

    Science.gov (United States)

    Voinovich, D; Moneghini, M; Perissutti, B; Filipovic-Grcic, J; Grabnar, I

    2000-08-10

    The preparation of sustained-release pellets by melt pelletisation was investigated in a 10-l high shear mixer and ternary mixtures containing stearic acid as a melting binder, anhydrous lactose as a filler and theophylline as a model drug. A translated Doehlert matrix was applied for the optimisation of process variables and quality control of pellets characteristics. After determination of size distribution, the pellets were characterised with scanning electron microscopy, X-ray photoelectron spectroscopy and porosimetric analysis. Finally, the in vitro release from every single size fraction was evaluated and the release mechanism was analysed. Since the drug release rate decreased when enhancing the pellet size fraction, the 2000-microm fraction, exhibiting a substantially zero-order release, was selected for further in vivo biovailability studies. These data demonstrated that pellets based on the combination of stearic acid and lactose can be used to formulate sustained release pellets for theophylline.

  10. A diels-alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Koehler, Kenneth C.; Alge, Daniel L.; Anseth, Kristi S.; Bowman, Christopher N.

    2013-01-01

    We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion model, the release kinetics were tuned to achieve sustained concentrations conducive to osteogenic differentiation of human mesenchymal stem cells (hMSCs). Efficacy was first demonstrated in a 2D culture model, in which dexamethasone release induced significant increases in alkaline phosphatase (ALP) activity and mineral deposition in hMSCs compared to a dexamethasone-free treatment. The results were similar to that observed with a soluble dexamethasone treatment. More dramatic differences were observed in 3D culture, where co-encapsulation of a dexamethasone releasing hydrogel depot within an hMSC-laden extracellular matrix mimetic poly(ethylene glycol) hydrogel resulted in a local and robust osteogenic differentiation. ALP activity reached levels that were up to six times higher than the dexamethasone free treatment. Interestingly, at 5 and 10 day time points, the ALP activity exceeded the dexamethasone positive control, suggesting a potential benefit of sustained release in 3D culture. After 21 days, substantial mineralization comparable to the positive control was also observed in the hydrogels. Collectively, these results demonstrate Diels-Alder modulated release as an effective and versatile new platform for controlled drug delivery that may prove especially beneficial for sustaining the release of low molecular weight molecules in hydrogel systems. PMID:23465826

  11. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery.

    Science.gov (United States)

    Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei

    2017-02-01

    Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth

  12. Diclofenac transdermal patch versus the sustained release tablet: A ...

    African Journals Online (AJOL)

    therapeutic advantages over conventional oral tablets in terms of prolonged release and improvement of ... arthritic therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed frequently for the management of pain and local inflammation. (similar to gout) [5]. ... systems, transdermal films/patches are the most.

  13. Alginate-Chitosan Particulate System for Sustained Release of ...

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... diffraction (XRD), and atomic absorption spectroscopy (AAS) were also applied to investigate the physicochemical characteristics of the drug in ... Both calcium alginate beads and the beads treated with chitosan failed to release the drug at pH 1.2 over the period of ...

  14. Pharmacokinetics of nifedipine slow-release during sustained tocolysis

    NARCIS (Netherlands)

    Laak, M.A. Ter; Roos, C.; Touw, D.J.; Hattum, P.R. van; Kwee, A.; Lotgering, F.K.; Moi, B.W.J.; Pampus, M.G. van; Porath, M.M.; Spaanderman, M.E.; Post, J.A. van der; Papatsonis, D.N.; Veer, N.E. van 't

    2015-01-01

    OBJECTIVE: The pharmacokinetics of nifedipine as a tocolytic agent has not been studied in great detail in pregnant women and has instead focused on immediate release tablets and gastrointestinal therapeutic system (GITS) tablets. The aim of this study was to determine nifedipine slowrelease

  15. Pharmacokinetics of nifedipine slow-release tablets during sustained tocolysis

    NARCIS (Netherlands)

    Ter Laak, Maureen A.; Roos, Carolien; Touw, Daan J.; Van Hattum, Paul R M; Kwee, Anneke|info:eu-repo/dai/nl/290465648; Lotgering, Frederik K.; Mol, Ben Willem J; Van Pampus, Mariëlle G.; Porath, Martina M.; Spaanderman, Marc E A; Van Der Post, Joris A M; Papatsonis, Dimitri N M; Van'T Veer, Nils E.

    2015-01-01

    Objective: The pharmacokinetics of nifedipine as a tocolytic agent has not been studied in great detail in pregnant women and has instead focused on immediate release tablets and gastrointestinal therapeutic system (GITS) tablets. The aim of this study was to determine nifedipine slowrelease

  16. Performance Evaluation of Marketed Brands of Sustained Release ...

    African Journals Online (AJOL)

    Statistical tests such as repeated ANOVA, Friedman test, Friedman ANOVA, Kendall's coefficient of concordance and Tukey-Kramer multiple comparison tests were applied on the range of data obtained from different brands. The results indicated non-significant differences in physical parameters and in vitro drug release, ...

  17. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  18. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release.

    Science.gov (United States)

    Nummelin, Sami; Liljeström, Ville; Saarikoski, Eve; Ropponen, Jarmo; Nykänen, Antti; Linko, Veikko; Seppälä, Jukka; Hirvonen, Jouni; Ikkala, Olli; Bimbo, Luis M; Kostiainen, Mauri A

    2015-10-05

    Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self-assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G'≫G'') with outstanding mechanical properties and storage modulus of G'>1000 Pa. The G' value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol-solvated dendrimers into an aqueous solution. Cryogenic TEM, small-angle X-ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small-molecule drugs, to be used for sustained release in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Lin, Wei-Jhih; Ling, Thai-Yen; Young, Tai-Horng

    2017-03-15

    Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we

  20. Sustained ocular delivery of brimonidine tartrate using ion activated in situ gelling system.

    Science.gov (United States)

    Geethalakshmi, A; Karki, Roopa; Jha, Sajal Kumar; Venkatesh, D P; Nikunj, B

    2012-03-01

    The poor bioavailability and therapeutic response exhibited by conventional eye drops due to rapid precorneal elimination of the drug may be overcome by the use of an in situ gelling systems that are instilled as drops into the eye and undergo a sol-to-gel transition in the cul-de-sac which improves patient compliance as the dosage regimen is one drop of the dosage form twice a day. The loss of drug overcomes due to the immediate gel formation between the eye membrane and the drug being entrapped simultaneously in sol-gel transition in the cul de sac. The present work describes the formulation and evaluation of an ophthalmic delivery system of an antiglaucomal agent, brimonidine tartrate based on the concept of ion-activated in situ gelation. Gelrite was used as the gelling agent, which gels in the presence of mono or divalent cations present in the lacrimal fluid. The formulations were evaluated for clarity, pH measurement, gelling capacity, drug content estimation, rheological study, in-vitro diffusion study, antibacterial activity, isotonicity testing, eye irritation testing. In the developed formulations Gelrite Brimonidine-3 (GB3) exhibited sustained release of drug from formulation over a period of 8 hrs thus increasing residence time of the drug, non-irritating with no ocular damage or abnormal clinical signs to the cornea, iris or conjunctiva, stable and sterile. These results demonstrate that the developed system is an alternative to conventional ophthalmic drops, with better patient compliance, and is industrially oriented and economical.

  1. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Optimizing Prednisolone Loading into Distiller's Dried Grain Kafirin Microparticles, and In vitro Release for Oral Delivery.

    Science.gov (United States)

    Lau, Esther T L; Johnson, Stuart K; Williams, Barbara A; Mikkelsen, Deirdre; McCourt, Elizabeth; Stanley, Roger A; Mereddy, Ram; Halley, Peter J; Steadman, Kathryn J

    2017-05-19

    Kafirin microparticles have potential as colon-targeted delivery systems because of their ability to protect encapsulated material from digestive processes of the upper gastrointestinal tract (GIT). The aim was to optimize prednisolone loading into kafirin microparticles, and investigate their potential as an oral delivery system. Response surface methodology (RSM) was used to predict the optimal formulation of prednisolone loaded microparticles. Prednisolone release from the microparticles was measured in simulated conditions of the GIT. The RSM models were inadequate for predicting the relationship between starting quantities of kafirin and prednisolone, and prednisolone loading into microparticles. Compared to prednisolone released in the simulated gastric and small intestinal conditions, no additional drug release was observed in simulated colonic conditions. Hence, more insight into factors affecting drug loading into kafirin microparticles is required to improve the robustness of the RSM model. This present method of formulating prednisolone-loaded kafirin microparticles is unlikely to offer clinical benefits over commercially available dosage forms. Nevertheless, the overall amount of prednisolone released from the kafirin microparticles in conditions simulating the human GIT demonstrates their ability to prevent the release of entrapped core material. Further work developing the formulation methods may result in a delivery system that targets the lower GIT.

  3. Encapsulation and sustained release of a model drug, indomethacin, using CO(2)-based microencapsulation.

    Science.gov (United States)

    Liu, H; Finn, N; Yates, M Z

    2005-01-04

    A carbon dioxide (CO(2))-based microencapsulation technique was used to impregnate indomethacin, a model drug, into biodegradable polymer nanoparticles. Compressed CO(2) was emulsified into aqueous suspensions of biodegradable particles. The CO(2) plasticizes the biodegradable polymers, increasing the drug diffusion rate in the particles so that drug loading is enhanced. Four types of biodegradable polymers were investigated, including poly(d,l-lactic acid) (PLA), poly(d,l-lactic acid-co-glycolic acid) (PLGA) with two different molar ratios of LA to GA, and a poly(d,l-lactic acid-b-ethylene glycol) (PLA-PEG) block copolymer. Biodegradable nanoparticles were prepared from polymer solutions through nonsolvent-induced precipitation in the presence of surfactants. Indomethacin was incorporated into biodegradable nanoparticles with no change of the particle size and morphology. The effects of a variety of experimental variables on the drug loadings were investigated. It was found that the drug loading was the highest for PLA homopolymer and decreased in PLGA copolymers as the fraction of glycolic acid increased. Indomethacin was predicted to have higher solubility in PLA than in PLGA based on the calculated solubility parameters. The drug loading in PLA increased markedly as the temperature for impregnation was increased from 35 to 45 degrees C. Drug release from the particles is a diffusion-controlled process, and sustained release can be maintained over 10 h. A simple Fickian diffusion model was used to estimate the diffusion coefficients of indomethacin in the biodegradable polymers. The diffusion coefficients are consistent with previous studies, suggesting that the polymer properties are unchanged by supercritical fluid processing. Supercritical CO(2) is nontoxic, easily separated from the polymers, can extract residual organic solvent, and can sterilize biodegradable polymers. The CO(2)-based microencapsulation technique is promising for the production of drug

  4. Nanoparticle-based topical ophthalmic formulation for sustained release of stereoisomeric dipeptide prodrugs of ganciclovir.

    Science.gov (United States)

    Yang, Xiaoyan; Shah, Sujay J; Wang, Zhiying; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K

    2016-09-01

    Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of Val-Val dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV) and D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1)-induced viral corneal keratitis. Nanoparticles containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Nanoparticles were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential and crystallinity. Prodrugs-loaded NP were incorporated into in situ gelling system. These formulations were examined for in vitro release and cytotoxicity. The results of optimized entrapment efficiencies of LLGCV-, LDGCV- and DLGCV-loaded NP are of 38.7 ± 2.0%, 41.8 ± 1.9%, and 45.3 ± 2.2%; drug loadings 3.87 ± 0.20%, 2.79 ± 0.13% and 3.02 ± 0.15%; yield 85.2 ± 3.0%, 86.9 ± 4.6% and 76.9 ± 2.1%; particle sizes 116.6 ± 4.5, 143.0 ± 3.8 and 134.1 ± 5.2 nm; and zeta potential -15.0 ± 4.96, -13.8 ± 5.26 and -13.9 ± 5.14 mV, respectively. Cytotoxicity studies suggested that all the formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases.

  5. Dendrimer-like assemblies based on organoclays as multi-host system for sustained drug delivery.

    Science.gov (United States)

    Li, Wei; Sun, Lili; Pan, Lijun; Lan, Zuopin; Jiang, Tao; Yang, Xiaolan; Luo, Jianchun; Li, Ronghua; Tan, Liqing; Zhang, Shurong; Yu, Mingan

    2014-11-01

    Chemical modification of nanoclay will ensure further progress on these materials. In this work, we show that montmorillonite (MTM) nanosheets can be modified with β-cyclodextrin (CD) via a nucleophilic substitution reaction between mono-6-(p-toluenesulfonyl)-6-deoxy-β-CD and an amino group of 3-aminopropyltriethoxysilane (APTES)-functionalized MTM. The resulting MTM-APTES-CD can be further self-assembled into dendrimer-like assemblies, exhibit a well-dispersed property even in Dulbecco's phosphate-buffered saline and do not aggregate for a period of at least 20days. The structure, morphology and assembly mechanism are systematically studied by (29)Si MAS NMR, FT-IR, (1)H NMR, SEM, FE-TEM, DLS and AFM, and the change in assemblies during the drug release is monitored using FE-TEM images. MTT assays indicate that the assemblies only have low cytotoxicity, while CLSM and TEM observations reveal that the assemblies can easily penetrate cultured human endothelial cells. When clopidogrel is used as a guest molecule, the assemblies show not only much higher loading capacities compared to MTM and other containing β-CD assemblies or nanoparticles, but also a sustained release of clopidogrel up to 30days. This is attributed to the fact that the guest molecule is both supramolecularly complexed within the dendritic scaffold and intercalated into CD and MTM hosts. Host-guest systems between assemblies and various guests hold promising applications in drug delivery system and in the biomedical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Formulation of Sustained-Release Diltiazem Matrix Tablets Using ...

    African Journals Online (AJOL)

    Methods: Matrix tablets of DTZ were prepared at different ratios of drug:gum (1:1, 1:2, and 1:4) and of the gum blends (K, K/LB, K/H and K/LB/H) by direct compression. The matrix tablets were evaluated for hardness, friability, in vitro release and drug content. The formulations were also characterised by scanning electron ...

  7. Preparation and Application of Sustained-Release Potassium Ferrate(VI

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available In this study, a composite system for the sustained release of potassium ferrate(VI (sustained-release K2FeO4 was prepared and applied for water treatment. The objective of this research was to maximize the effectiveness of K2FeO4 for water treatment by enhancing its stability using diatomite. The sustained-release K2FeO4 was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that no new crystal phase was formed during the preparation and some K2FeO4 crystals entered the pores of the diatomite. From K2FeO4 release experiments, we found that the decomposition rate of K2FeO4 was obviously decreased, which greatly improved the contact rate between released K2FeO4 and pollutants. Via degradation of methyl orange, which was used as a model pollutant, the influential factor of K2FeO4 content within the complete sustained-release K2FeO4 system was studied. The optimal K2FeO4 content within the sustained-release K2FeO4 system was approximately 70%. In natural water samples, sustained-release K2FeO4 at a dosage of 0.06 g/L and with a reaction time of 20 minutes removed 36.84% of soluble microbial products and 17.03% of simple aromatic proteins, and these removal rates were better than those observed after traditional chlorine disinfection.

  8. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    Science.gov (United States)

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Freeze-dried mucoadhesive polymeric system containing pegylated lipoplexes: Towards a vaginal sustained released system for siRNA.

    Science.gov (United States)

    Furst, Tania; Dakwar, George R; Zagato, Elisa; Lechanteur, Anna; Remaut, Katrien; Evrard, Brigitte; Braeckmans, Kevin; Piel, Geraldine

    2016-08-28

    Topical vaginal sustained delivery of siRNA presents a significant challenge due to the short residence time of formulations. Therefore, a drug delivery system capable to adhere to the vaginal mucosa is desirable, as it could allow a prolonged delivery and increase the effectiveness of the therapy. The aim of this project is to develop a polymeric solid mucoadhesive system, loaded with lipoplexes, able to be progressively rehydrated by the vaginal fluids to form a hydrogel and to deliver siRNA to vaginal tissues. To minimize adhesive interactions with vaginal mucus components, lipoplexes were coated with different derivatives of polyethylene glycol: DPSE-PEG2000, DPSE-PEG750 and ceramide-PEG2000. Based on stability and diffusion properties in simulated vaginal fluids, lipoplexes containing DSPE-PEG2000 were selected and incorporated in hydroxyethyl cellulose (HEC) hydrogels. Solid systems, called sponges, were then obtained by freeze-drying. Sponges meet acceptable mechanical characteristics and their hardness, deformability and mucoadhesive properties are not influenced by the presence of lipoplexes. Finally, mobility and stability of lipoplexes inside sponges rehydrated with vaginal mucus, mimicking in situ conditions, were evaluated by advanced fluorescence microscopy. The release rate was found to be influenced by the HEC concentration and consequently by the viscosity after rehydration. This study demonstrates the feasibility of entrapping pegylated lipoplexes into a solid matrix system for a prolonged delivery of siRNA into the vagina. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  11. Development of sustained-release matrix tablets of BKP-01-041 (tilorone derivative) containing Hypromellose.

    Science.gov (United States)

    Chen, Liangmei; Wang, Fei

    2013-10-01

    The objective of this research was to develop and evaluate sustained-release matrix tablets of BKP-01-041 (tilorone derivative) based on Hypromellose (hydroxypropyl methylcellulose, HPMC) as the matrix forming polymer. The sustained-release tablets were prepared by the wet granulation method. The influence of HPMC viscosity and ratios on drug release was investigated in vitro. Dissolution of the tablets developed with 26% HPMC K4 M/K100 M (1:2) (w/w) content showed a better drug release profile than the other batches tested in 12 h. Drug release from the optimal formulation was analyzed using release kinetics equations. The release kinetics parameters were determined and the value of the exponent (n) representing the apparent drug release mechanism determined from the Peppas equation was about 0.726. These results suggest that the drug release mechanism was non-Fickian (0.45 < n < 0.89), and drug release was dependent on both drug diffusion and polymer erosion.

  12. Observation of reward delivery to a conspecific modulates dopamine release in ventral striatum.

    Science.gov (United States)

    Kashtelyan, Vadim; Lichtenberg, Nina T; Chen, Mindy L; Cheer, Joseph F; Roesch, Matthew R

    2014-11-03

    Dopamine (DA) neurons increase and decrease firing for rewards that are better and worse than expected, respectively. These correlates have been observed at the level of single-unit firing and in measurements of phasic DA release in ventral striatum (VS). Here, we ask whether DA release is modulated by delivery of reward, not to oneself, but to a conspecific. It is unknown what, if anything, DA release encodes during social situations in which one animal witnesses another animal receive reward. It might be predicted that DA release will increase, suggesting that watching a conspecific receive reward is a favorable outcome. Conversely, DA release may be entirely dependent on personal experience, or perhaps observation of receipt of reward might be experienced as a negative outcome because another individual, rather than oneself, receives the reward. Our data show that animals display a mixture of affective states during observation of conspecific reward, first exhibiting increases in appetitive calls (50 kHz), then exhibiting increases in aversive calls (22 kHz). Like ultrasonic vocalizations (USVs), DA signals were modulated by delivery of reward to the conspecific. We show stronger DA release during observation of the conspecific receiving reward relative to observation of reward delivered to an empty box, but only on the first trial. During the following trials, this relationship reversed: DA release was reduced during observation of the conspecific receiving reward. These findings suggest that positive and negative states associated with conspecific reward delivery modulate DA signals related to learning in social situations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ratiometric Monitoring of Intracellular Drug Release by an Upconversion Drug Delivery Nanosystem.

    Science.gov (United States)

    Li, Kai; Su, Qianqian; Yuan, Wei; Tian, Bo; Shen, Bin; Li, Yuhao; Feng, Wei; Li, Fuyou

    2015-06-10

    Nanoscale drug delivery systems have been widely investigated due to their well-recognized advantages including controlled delivery of chemotherapeutic agents, enhanced therapeutic effectiveness, and reduced adverse effects compared to conventional chemotherapy with small molecules. However, further progress in the use of nanoscale delivery systems in clinical applications has been hampered by pharmacokinetic studies in biological samples which were associated with significant experimental challenges. Here, we report a rational ratiometric approach to monitor drug release kinetics by quantitatively investigating luminescence resonance energy transfer (LRET) from upconversion nanoparticles to the antitumor drug doxorubicin (DOX). Specifically, DOX molecules within the shell of mesoporous silica-coated upconversion nanoparticles selectively quenched the green emission of upconversion nanoparticles, while the intensity of red emission was essentially unaltered. Consequently, when DOX was gradually released, a steady recovery of green emission was observed. The ability to monitor the intensity ratio of green-to-red luminescence enabled a rational design for real-time investigation of drug delivery release kinetics. Importantly, the internal standard effect of red emission made this ratiometric approach suitable for complex biological microenvironments.

  14. A sustainable and affordable support system for rural healthcare delivery

    CSIR Research Space (South Africa)

    Barjis, J

    2013-12-01

    Full Text Available et al., 2009). Furthermore, many projects that have taken place, started by government or non-government organizations, have delivered ‘white elephants’ rather than a sustainable system. The idiom of ‘white elephant’ (Robinson and Toryik, 2005, p.... The remainder of this paper is structured as follows: in part one we discuss the socio-cultural and economic context, which sets the stage for the research carried out and the results presented in this article; in part we discuss the underlying theoretical...

  15. Soft contact lenses capable of sustained delivery of timolol.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Hiratani, Haruyiki; Gómez-Amoza, José Luis; Martínez-Pacheco, Ramón; Souto, Consuelo; Concheiro, Angel

    2002-10-01

    The aim of this work was to evaluate the influence of the composition and the application of an imprinting technique on the loading capability of weakly crosslinked hydroxyethyl methacrylate (HEMA) hydrogels, with a view to their use as reloadable soft contact lenses for administration of timolol. Hydrogels were prepared by dissolution of ethylene glycol dimethacrylate (EGDMA, 10 mM) in HEMA with or without methacrylic acid (MAA) or methyl methacrylate (MMA; 100-400 mM) and with or without timolol maleate (10 mg/mL), initiation of polymerization by addition of 2,2'-azo-bis(isobutyronitrile) (AIBN, 10 mM), injection in molds, and curing in an oven at 50-70 degrees C. Unreacted reagents were removed by boiling. The dry hydrogels were clear and fully polymerized with smooth, poreless surfaces and presented optimal mechanical properties. The hydrogels were then characterized by determination of their swelling and timolol release kinetics in 0.9% NaCl, phosphate buffer (pH 7.4) and artificial lacrimal fluid, and of the timolol loading capacity of both nonimprinted hydrogels and de-timololized imprinted hydrogels at various pHs. Both water uptake and timolol release exhibited Fickian kinetics, except in the case of hydrogels made with 400 mM MAA. Timolol diffusion into 0.9% NaCl from HEMA or HEMA/MMA was slow; release from HEMA/MAA into phosphate buffer or lacrimal fluid was faster and increased with the MAA content of the polymer. Timolol loading was significant for HEMA/MAA hydrogels (imprinted or not) at pH 5.5-7.5, and specially for imprinted hydrogels containing 100 mM MAA, which absorb 12 mg timolol/g dry hydrogel. The results indicate that the incorporation of MAA as comonomer increases the timolol loading capacity to therapeutically useful levels while retaining appropriate release characteristics. Copyright 2002 Wiley-Liss Inc. and the American Pharmaceutical Association

  16. Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection.

    Science.gov (United States)

    Ni, Shilei; Xia, Tongliang; Li, Xingang; Zhu, Xiaodong; Qi, Hongxu; Huang, Shanying; Wang, Jiangang

    2015-10-22

    We describe the sustained delivery of chondroitinase ABC (ChABC) in the hemisected spinal cord using polypropylene carbonate (PPC) electrospun fibers with chitosan (CS) microspheres as a vehicle. PPC and ChABC-loaded CS microspheres were mixed with acetonitrile, and micron fibers were generated by electrospinning. ChABC release was assessed in vitro with high-performance liquid chromatography (HPLC) and revealed stabilized and prolonged release. Moreover, the released ChABC showed sustained activity. PPC-CS micron fibers with or without ChABC were then implanted into a hemisected thoracic spinal cord. In the following 4 weeks, we examined functional recovery and performed immunohistochemical analyses. We found that sustained delivery of ChABC promoted axon sprouting and functional recovery and reduced glial scarring; PPC-CS micron fibers without ChABC did not show these effects. The present findings suggest that PPC-CS micron fibers containing ChABC are a feasible option for spinal cord injury treatment. Furthermore, the system described here may be useful for local delivery of other therapeutic agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The impact of the injection mold temperature upon polymer crystallization and resulting drug release from immediate and sustained release tablets.

    Science.gov (United States)

    Van Renterghem, Jeroen; Dhondt, Heleen; Verstraete, Glenn; De Bruyne, Michiel; Vervaet, Chris; De Beer, Thomas

    2018-01-31

    It was the aim of this study to elucidate the impact of the injection mold temperature upon the polymer crystallinity, its microstructure and the resulting drug release from immediate and sustained release tablets containing semi-crystalline polymers. The immediate release formulation contained 20% (w/w) ketoprofen (KETO) in poly (ethylene oxide) (PEO) and the sustained release formulation contained 20 - 40% (w/w) metoprolol tartrate (MPT) in polycaprolactone (PCL). Physical mixtures of drug-polymer were characterized via isothermal crystallization experiments using DSC and rheological measurements to elucidate the impact of the drug solid-state upon the crystallization kinetics. Tablets were prepared using various thermal histories (extrusion barrel temperature and injection mold temperatures). Polymer crystallinity and microstructure in the tablets was characterized via DSC and polarized optical microscopy. The polymer microstructure was altered by the various applied thermal histories. The differences in PEO crystallinity induced by the various mold temperatures did not affect the KETO dissolution from the tablets. On the other hand, MPT (20 - 40% w/w) dissolution from the PCL matrix when extruded at 80 °C and injection molded at 25 and 35 °C was significantly different due to the changes in the polymer microstructure. More perfect polymer crystals are obtained with higher mold temperatures, decreasing the drug diffusion rate through the PCL matrix. The results presented in this study imply that the injection mold temperature should be carefully controlled for sustained release formulations containing hydrophobic semi-crystalline polymers. Copyright © 2018. Published by Elsevier B.V.

  18. Effect of functionalization of polymeric nanoparticles incorporated with whole attenuated rabies virus antigen on sustained release and efficacy

    Directory of Open Access Journals (Sweden)

    Kiran Nivedh

    2016-12-01

    Full Text Available Nanovaccines introduced a new dimension to prevent or cure diseases in an efficient and sustained manner. Various polymers have been used for the drug delivery to increase the therapeutic value with minimal side effects. Thus the present study incorporates both nanotechnology and polymers for the drug delivery. Poly(d,l-lactic-co-glycolic acid-b-poly(ethylene glycol was incorporated with the rabies whole attenuated viral antigen using double emulsion (W/O/W method and characterized by Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. Chitosan-PEG nanoparticles incorporated with the rabies whole attenuated virus antigen (CS-PEG NP-RV Ag. were prepared using Ionic Gelation method. The CS-PEG NP-RV Ag. was surface modified with biocompatible polymers such as Acacia, Bovine Serum Albumin (BSA, Casein, Ovalbumin and Starch by Ionic Gelation method. The morphology was confirmed by SEM and Transmission Electron Microscopy (TEM. The surface modification was confirmed by Fourier Transform Infrared Spectroscopy (FTIR, Zeta potential. The size distribution of CS-PEG-RV Ag. and surface modified CS-PEG-RV Ag. by respective biocompatible polymers was assessed by Zetasizer. Release profile of both stabilized nanoparticles was carried out by modified centrifugal ultrafiltration method which showed the sustained release pattern of the Rabies Ag. Immune stimulation under in-vitro condition was studied using rosette assay and phagocytosis assay. In-vitro toxicity using human blood and genotoxicity using human blood DNA was also studied to assess the toxicity of the nanoformulations. The results of these studies infer that PLGA-b-PEG nanoparticles, CS-PEG and surface modified CS-PEG nanoparticles may be an efficient nanocarrier for the RV Ag. to elicit immune response sustainably with negligible toxic effect to the human system.

  19. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination.

    Science.gov (United States)

    Chen, Mei-Chin; Huang, Shih-Fang; Lai, Kuan-Ying; Ling, Ming-Hung

    2013-04-01

    This study introduces a microneedle transdermal delivery system, composed of embeddable chitosan microneedles and a poly(L-lactide-co-D,L-lactide) (PLA) supporting array, for complete and sustained delivery of encapsulated antigens to the skin. Chitosan microneedles were mounted to the top of a strong PLA supporting array, providing mechanical strength to fully insert the microneedles into the skin. When inserted into rat skin in vivo, chitosan microneedles successfully separated from the supporting array and were left within the skin for sustained drug delivery without requiring a transdermal patch. The microneedle penetration depth was approximately 600 μm (i.e. the total length of the microneedle), which is beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. To evaluate the utility of chitosan microneedles for intradermal vaccination, ovalbumin (OVA; MW = 44.3 kDa) was used as a model antigen. When the OVA-loaded microneedles were embedded in rat skin in vivo, histological examination showed that the microneedles gradually degraded and prolonged OVA exposure at the insertion sites for up to 14 days. Compared to traditional intramuscular immunization, rats immunized by a single microneedle dose of OVA showed a significantly higher OVA-specific antibody response which lasted for at least 6 weeks. These results suggest that embeddable chitosan microneedles are a promising depot for extended delivery of encapsulated antigens to provide sustained immune stimulation and improve immunogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers.

    Directory of Open Access Journals (Sweden)

    Maria Abdul Ghafoor Raja

    Full Text Available Chitosan (CS nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP, dextran sulphate (DS and poly-D-glutamic acid (PGA were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95% and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1, in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting.

  1. A formulation approach for development of HPMC-based sustained release tablets for tolterodine tartrate with a low release variation

    DEFF Research Database (Denmark)

    Cao, Qing-Ri; Choi, Jae-Seung; Liu, Yan

    2013-01-01

    Objective: The purpose of this study was to develop hydroxypropylmethylcellulose (HPMC)-based sustained release (SR) tablets for tolterodine tartrate with a low drug release variation. Methods: The SR tablets were prepared by formulating a combination of different grades of HPMC as the gelling...... agents. The comparative dissolution study for the HPMC-based SR tablet as a test and Detrusitol(®) SR capsule as a reference was carried out, and the bioequivalence study of the two products was also conducted in human volunteers. Results: The amount of HPMC, the grade of HPMC and the combination ratio...... of different grades of HPMC had remarkable effects on drug release from the SR tablets. Both the test and reference products had no significant difference in terms of comparative dissolution patterns in four different media (f(2) > 50). Furthermore, the dissolution method and rotation speed showed no effects...

  2. Sustainability of Farm Credit Delivery by Cooperatives and NGOs in Edo and Delta States, Nigeria

    Science.gov (United States)

    Alufohai, G. O.

    2006-01-01

    The paper examined the sustainability rates of co-operatives and NGOs in farm credit delivery in Edo and Delta States of Nigeria. The Subsidy Dependence Indices (SDI) and the capital formation rates were determined using both primary and secondary data obtained from 80 and 20 purposively selected cooperatives and NGOs respectively, based on their…

  3. A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release

    Science.gov (United States)

    Liu, Heng; Fu, Yike; Li, Yangyang; Ren, Zhaohui; Li, Xiang; Han, Gaorong; Mao, Chuanbin

    2016-01-01

    Implantable localized drug delivery systems (LDDSs) with intelligent functionalities have emerged as a powerful chemotherapeutic platform in curing cancer. Developing LDDSs with rationally controlled drug release and real-time monitoring functionalities holds promise for personalized therapeutic protocols but suffers daunting challenges. To overcome such challenges, a series of porous Yb3+/Er3+ codoped CaTiO3 (CTO:Yb,Er) nanofibers, with specifically designed surface functionalization, were synthesized for doxorubicin (DOX) delivery. The content of DOX released could be optically monitored by increase in the intensity ratio of green to red emission (I550/I660) of upconversion photoluminescent nanofibers under 980 nm near-infrared (NIR) excitation owing to the fluorescence resonance energy transfer (FRET) effect between DOX molecules and the nanofibers. More importantly, the 808 nm NIR irradiation enabled markedly accelerated DOX release, confirming representative NIR-triggered drug release properties. In consequence, such CTO:Yb,Er nanofibers presented significantly enhanced in vitro anticancer efficacy under NIR irradiation. This study has thus inspired another promising fibrous LDDS platform with NIR-triggered and optics-monitored DOX releasing for personalized tumor chemotherapy. PMID:27557281

  4. A pillararene-based ternary drug-delivery system with photocontrolled anticancer drug release.

    Science.gov (United States)

    Yu, Guocan; Yu, Wei; Mao, Zhengwei; Gao, Changyou; Huang, Feihe

    2015-02-25

    A novel ternary drug delivery system (DDS) is constructed using a photodegradable anticancer prodrug (Py-Cbl), a water-soluble pillararene supramolecular container (WP6), and the diblock copolymer methoxy-poly(ethylene glycol)114 -block-poly(L -lysine hydrochloride)200. This DDS successfully addresses three important issues: enhancement of the water solubility of the anticancer prodrug; controlled release of the anticancer drug; accurate and quantitative measurement of the drug release. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of Novel Protocol for Preclinical Monitoring the Release of Adjuvants Encapsulated Mucosal Delivery Carriers

    OpenAIRE

    Mohamed Ibrahim-Saeed; Abd Rahaman-Omar; Mohd Zobir-Hussein; Isam Mohamed-Elkhidir; Samer Hussein-Al-Ali; Mothanna Sadiq-Al-Qubaisi; Zamberi Sekawi

    2015-01-01

    This work contributes in vaccines down-stream process by introducing a novel platform for in-vitro monitoring of vaccine-adjuvant delivery profile as a crucial preclinical optimizing step in mucosal vaccines. Nano and micro particles of Calcium phosphate (Cap) vaccine-adjuvant were encapsulated in Chitosan and Alginate polymeric carriers. Adjuvants release profiles monitored in a permeable bag at 37°C, pH 2, incubated in isotonic buffer for 96 hours. The released Calcium in the outer buffer w...

  6. Influence of additives on a thermosensitive hydrogel for buccal delivery of salbutamol: relation between micellization, gelation, mechanic and release properties.

    Science.gov (United States)

    Zeng, Ni; Dumortier, Gilles; Maury, Marc; Mignet, Nathalie; Boudy, Vincent

    2014-06-05

    Thermosensitive hydrogels developed for buccal delivery of salbutamol were prepared using poloxamer analogs (Kolliphor(®) P407/P188), xanthan gum (Satiaxane(®) UCX930) and NaCl. P188 increased gelation temperature (Tsol-gel) by 2.5-5°C, micellization temperature (3s. To obtain a suitable Tsol-gel at 28-34°C, P407 and P188 concentrations were set to 18-19% and 1%. NaCl reduced Tsol-gel (>2°C) out of the optimal range. Six formulations containing 0.05-0.1% Satiaxane(®) fulfilled the temperature criteria. Concerning the gel strength, 1% P188 had no significant effect, NaCl increased it at 20°C, and Satiaxane(®) enhanced it at 20°C and 37°C. The release study using membrane-less (to mimic oral cavity) and membrane (to mimic buccal mucosa side) methods allowed a complete investigation showing that erosion and diffusion both contributed to the drug release but differed according to the formulation. In the membraneless method, simple P407 formulations had weak ability to retain salbutamol (T80=35 min). P188 accelerated drug release. NaCl accelerated release in the membraneless method by 5-11 min but slightly reduced it in the membrane method. The hydrogels containing Satiaxane(®) exhibited the slowest release. In the membrane method, combination of P407/P188/Satiaxane(®) provided a sustained diffusion with a burst effect (T25=9.6 min, T80=97.8 min), which provides potential clinical interests. Copyright © 2014. Published by Elsevier B.V.

  7. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear

    Science.gov (United States)

    Yu, Zhan; Yu, Min; Zhang, Zhibao; Hong, Ge; Xiong, Qingqing

    2014-07-01

    Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.

  8. Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Chun-Ling Zhu

    2014-03-01

    Full Text Available To develop novel tumor cell microenvironment stimuli-responsive smart controlled-release delivery systems is one of the current common interests of materials science and clinical medicine. Meanwhile, mesoporous silica nanoparticles as a promising drug carrier have become the new area of interest in the field of biomedical application in recent years because of their unique characteristics and abilities to efficiently and specifically entrap cargo molecules. This review describes the more recent developments and achievements of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled-release systems that are able to respond to tumor cell environmental changes, such as pH, glucose, adenosine-5′-triphosphate (ATP, glutathione (GSH, and H2O2.

  9. Formulation and evaluation of sustained release matrix tablets of pioglitazone hydrochloride using processed Aloe vera mucilage as release modifier

    Directory of Open Access Journals (Sweden)

    Manoj Choudhary

    2015-01-01

    Full Text Available Background: Natural gums and mucilage which hydrates and swells on contact with aqueous media are used as additives in the formulation of hydrophilic drug delivery system. Aim: The purpose of this study was to develop a new monolithic matrix system for complete delivery of Pioglitazone hydrochloride (HCl, in a zero-order manner over an extended time period using processed Aloe vera gel mucilage (PAG as a release modifier. Materials and Methods: The matrices were prepared by dry blending of selected ratios of polymer and ingredients using direct compression technique. Physicochemical properties of dried powdered mucilage of A. vera were studied. Various formulations of pioglitazone HCl and A. vera mucilage were prepared using different drug: Polymer ratios viz., 1:1, 1:2, 1:3, 1:4, 1:5 for PAG by direct compression technique. Results: The formulated matrix tablets were found to have better uniformity of weight and drug content with low statistical deviation. The swelling behavior and in vitro release rate characteristics were also studied. Conclusion: The study proved that the dried A. vera mucilage can be used as a matrix forming material for controlled release of Pioglitazone HCl matrix tablets.

  10. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  11. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Science.gov (United States)

    Dai, Yu; Zhang, Xiaojin

    2017-05-01

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly( ɛ-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  12. Tailor-Making Fluorescent Hyaluronic Acid Microgels via Combining Microfluidics and Photoclick Chemistry for Sustained and Localized Delivery of Herceptin in Tumors.

    Science.gov (United States)

    Chen, Jing; Huang, Ke; Chen, Qijun; Deng, Chao; Zhang, Jian; Zhong, Zhiyuan

    2018-01-31

    Antibody therapeutics, though representing a most used biomedicine, suffers from poor in vivo stability, rapid degradation, and frequent injections. Here, we report that fluorescent hyaluronic acid microgels (HMGs) tailor-made by combining microfluidics and "tetrazole-alkene" photoclick chemistry enable sustained and localized delivery of Herceptin in ovarian tumors. HMGs were obtained with a defined size (25-50 μm), narrow size distribution, high stability, and strong green fluorescence. Notably, HMGs exhibited a remarkably high loading of proteins such as Herceptin and IgG with a loading efficiency exceeding 90% at a theoretical protein-loading content of 30 wt %. In vitro protein release experiments revealed a sustained and hyaluronidase (HAase)-dependent release of Herceptin from HMGs, in which 80.6% of Herceptin was released at 1 U/mL HAase in 10 days. The released Herceptin maintained its secondary structure and antitumor activity. In vivo imaging results demonstrated obviously better tumoral retention for Cy5-labeled Herceptin-loaded HMGs following subcutaneous (sc) injection than for the free-protein counterpart. Interestingly, sc injection of the Herceptin-loaded HMGs into SKOV-3 human ovarian tumor-bearing nude mice at a dose of 30 mg Herceptin equiv/kg induced nearly complete tumor suppression, which was significantly more effective than the sc or systemic injection of free Herceptin. These tailor-made fluorescent HMGs appeared as a robust injectable platform for sustained and localized delivery of therapeutic proteins.

  13. Sustained Release of Amoxicillin from Ethyl Cellulose-Coated Amoxicillin/Chitosan–Cyclodextrin-Based Tablets

    OpenAIRE

    Songsurang, Kultida; Pakdeebumrung, Jatuporn; Praphairaksit, Narong; Muangsin, Nongnuj

    2010-01-01

    Sustained release mucoadhesive amoxicillin tablets with tolerance to acid degradation in the stomach were studied. The sustained-release tablets of amoxicillin were prepared from amoxicillin coated with ethyl cellulose (EC) and then formulated into tablets using chitosan (CS) or a mixture of CS and beta-cyclodextrin (CD) as the retard polymer. The effects of various (w/w) ratios of EC/amoxicillin, the particle sized of EC coated amoxicillin and the different (w/w) ratios of CS/CD for the reta...

  14. Relationship among reaction rate, release rate and efficiency of nanomachine-based targeted drug delivery.

    Science.gov (United States)

    Zhao, Qingying; Li, Min; Luo, Jun

    2017-12-04

    In nanomachine applications towards targeted drug delivery, drug molecules released by nanomachines propagate and chemically react with tumor cells in aqueous environment. If the nanomachines release drug molecules faster than the tumor cells react, it will result in loss and waste of drug molecules. It is a potential issue associated with the relationship among reaction rate, release rate and efficiency. This paper aims to investigate the relationship among reaction rate, release rate and efficiency based on two drug reception models. We expect to pave a way for designing a control method of drug release. We adopted two analytical methods that one is drug reception process based on collision with tumors and another is based on Michaelis Menten enzymatic kinetics. To evaluate the analytical formulations, we used the well-known simulation framework N3Sim to establish simulations. The analytical results of the relationship among reaction rate, release rate and efficiency is obtained, which match well with the numerical simulation results in a 3-D environment. Based upon two drug reception models, the results of this paper would be beneficial for designing a control method of nanomahine-based drug release.

  15. Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs

    Directory of Open Access Journals (Sweden)

    Liping Pan

    2015-01-01

    Full Text Available This paper describes the development and validation of a liquid chromatography–mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test, as an instant-release tablet (IR-reference and as the market leader sustained-release capsule (Rythmol, SR-reference in male beagle dogs (n=8. In Study A comparing SR-test with IR-reference in a crossover design Tmax and t1/2 of propafenone for SR-test were significantly higher than those for IR-reference while Cmax and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed Cmax and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.

  16. Drug Release Characteristics and Tissue Distribution of Rifapentine Polylactic Acid Sustained-Release Microspheres in Rabbits after Paravertebral Implantation.

    Science.gov (United States)

    Zhang, Zheng; Wu, Linbo; Li, Haijian; Long, Zhicheng; Song, Xinghua

    2016-11-01

    Rates of drug-resistant tuberculosis (TB) and TB associated with human immunodeficiency virus (HIV) infection have increased dramatically, intensifying challenges in TB control. New formulations of TB treatment drugs that control drug release and increase local drug concentrations will have a significant impact on mitigating the toxic side effects and increasing the clinical efficacy of anti-TB drugs. The aim was to observe the sustained release characteristics of rifapentine polylactic acid sustained-release microspheres in vivo and the accumulation of rifapentine in other tissues following paravertebral implantation. This study is a basic animal experimental study that began on July 17, 2014 in the Fifth Affiliated hospital of Xinjiang Medical University. One hundred and eight New Zealand white rabbits (weighing 2.8 - 3.0 kg, male and female, China) were randomly divided into three groups of 36 rabbits each. Blood and tissue samples from the liver, lungs, kidneys, vertebrae, and paravertebral muscle were collected at different time points post-surgery. High performance liquid chromatography (HPLC) analysis with a biological internal standard was used to determine the drug concentrations in samples. In group A, no significant differences in rifapentine concentrations in the liver were detected between any two time points (P > 0.05). However, the differences in rifapentine concentrations between day 10 and day 21 were statistically significant (P 0.05). In group B, the differences in rifapentine concentration between days 3 and 10 in vertebral bone and in paravertebral muscles were statistically significant (P polylactic acid sustained-release microspheres, the concentration of rifapentine in local vertebral bone tissues was maintained above the TB minimum inhibitory concentration for up to 60 days with no apparent accumulation of the drug in other tissues.

  17. GM as a route for delivery of sustainable crop protection.

    Science.gov (United States)

    Bruce, Toby J A

    2012-01-01

    Modern agriculture, with its vast monocultures of lush fertilized crops, provides an ideal environment for adapted pests, weeds, and diseases. This vulnerability has implications for food security: when new pesticide-resistant pest biotypes evolve they can devastate crops. Even with existing crop protection measures, approximately one-third yield losses occur globally. Given the projected increase in demand for food (70% by 2050 according to the UN), sustainable ways of preventing these losses are needed. Development of resistant crop cultivars can make an important contribution. However, traditional crop breeding programmes are limited by the time taken to move resistance traits into elite crop genetic backgrounds and the limited gene pools in which to search for novel resistance. Furthermore, resistance based on single genes does not protect against the full spectrum of pests, weeds, and diseases, and is more likely to break down as pests evolve counter-resistance. Although not necessarily a panacea, GM (genetic modification) techniques greatly facilitate transfer of genes and thus provide a route to overcome these constraints. Effective resistance traits can be precisely and conveniently moved into mainstream crop cultivars. Resistance genes can be stacked to make it harder for pests to evolve counter-resistance and to provide multiple resistances to different attackers. GM-based crop protection could substantially reduce the need for farmers to apply pesticides to their crops and would make agricultural production more efficient in terms of resources used (land, energy, water). These benefits merit consideration by environmentalists willing to keep an open mind on the GM debate.

  18. Enhanced Vascularization in Hybrid PCL/Gelatin Fibrous Scaffolds with Sustained Release of VEGF

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-01-01

    Full Text Available Creating a long-lasting and functional vasculature represents one of the most fundamental challenges in tissue engineering. VEGF has been widely accepted as a potent angiogenic factor involved in the early stages of blood vessel formation. In this study, fibrous scaffolds that consist of PCL and gelatin fibers were fabricated. The gelatin fibers were further functionalized by heparin immobilization, which provides binding sites for VEGF and thus enables the sustained release of VEGF. In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days. In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells. More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF. Therefore, the heparinized PCL/gelatin scaffolds developed in this study may be a promising candidate for regeneration of complex tissues with sufficient vascularization.

  19. Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Chen, Cuiwei; Zheng, Hongyue; Xu, Junjun; Shi, Xiaowei; Li, Fanzhu; Wang, Xuanshen

    2017-09-04

    Exenatide (EXT), the first glucagon-like peptide-1 receptor agonist, has been approved as an adjunctive therapy for patients with type 2 diabetes. Due to EXT's short half-life, EXT must be administrated by continuous subcutaneous (s.c.) injection twice daily. In previous studies, many studies on EXT loaded into polymer materials carriers for sustained release had been reported. However, these carriers have some defects, such as hydrophobicity, low surface energy, low mechanical strength, and poor chemical stability. Therefore, this study aims to develop a novel drug delivery system, which is EXT loaded into well-ordered hexagonal mesoporous silica structures (EXT-SBA-15), to control the sustainability of EXT. SBA-15 was prepared by hydrothermal method with uniform size. Morphology of SBA-15 was employed by transmission electron microscopy. The pore size of SBA-15 was characterized by N2 adsorption-desorption isotherms. The in vitro drug release behavior and pharmacokinetics of EXT-SBA-15 were investigated. Furthermore, the blood glucose levels of diabetic mice were monitored after subcutaneous injection of EXT-Sol and EXT-SBA-15 to evaluate further the stable hypoglycemic effect of EXT-SBA-15. EXT-SBA-15 showed a higher drug loading efficiency (15.2 ± 2.0%) and sustained-release features in vitro. In addition, pharmacokinetic studies revealed that the EXT-SBA-15 treatment group extended the half-life t 1/2(β) to 14.53 ± 0.70 h compared with that of the EXT solution (EXT-Sol) treatment group (0.60 ± 0.08 h) in vivo. Results of the pharmacodynamics study show that the EXT-SBA-15 treatment group had inhibited blood glucose levels below 20 mmol/L for 25 days, and the lowest blood glucose level was 13 mmol/L on the 10th day. This study demonstrates that the EXT-SBA-15 delivery system can control the sustainability of EXT and contribute to improve EXT clinical use.

  20. Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery.

    Science.gov (United States)

    Qureshi, Omer Salman; Zeb, Alam; Akram, Muhammad; Kim, Myung-Sic; Kang, Jong-Ho; Kim, Hoo-Seong; Majid, Arshad; Han, Inbo; Chang, Sun-Young; Bae, Ok-Nam; Kim, Jin-Ki

    2016-11-01

    The aim of this study was to enhance the anti-inflammatory effects of carbon monoxide (CO) via sustained release of CO from carbon monoxide-releasing molecule-2-loaded lipid nanoparticles (CORM-2-NPs). CORM-2-NPs were prepared by hot high pressure homogenization method using trilaurin as a solid lipid core and Tween 20/Span 20/Myrj S40 as surfactant mixture. The physicochemical properties of CORM-2-NPs were characterized and CO release from CORM-2-NPs was assessed by myoglobin assay. In vitro anti-inflammatory effects were evaluated by nitric oxide assay in lipopolysaccharide-stimulated RAW 264.7 macrophages. In vivo anti-inflammatory activity was investigated by measuring paw volumes and histological examination in carrageenan-induced rat paw edema. Spherical CORM-2-NPs were around 100nm with narrow particle size distribution. The sustained CO release from CORM-2-NPs was observed and the half-life of CO release increased up to 10 times compared with CORM-2 solution. CORM-2-NPs showed enhanced in vitro anti-inflammatory effects by inhibition of nitric oxide production. Edema volume in rat paw was significantly reduced after treatment with CORM-2-NPs. Taken together, CORM-2-NPs have a great potential for CO therapeutics against inflammation via sustained release of CO. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of lipid micromatrices based sustained release tablets of glipizide: suitability of stearic acid as release retardant

    Directory of Open Access Journals (Sweden)

    Deepak Singh

    2016-06-01

    Full Text Available The objective of research was to explore the suitability of lipids like compritol 888 ATO and stearic acid as release retardant to develop sustained release (SR tablets. The SR micromatrices of lipid (s and glipizide were prepared (LM1- LM6 as intermediate product by fusion method and assessed for various pharmacotechnical properties. Micromatrices were formulated as SR tablets (F1-F6 by direct compression method and subjected to Pharmacopoeial and Non Pharmacopoeial tests.  In vitro drug release behavior of SR tablets demonstrated incomplete release of drug from compitrol based formulations whereas stearic acid based formulations (F4-F6 released more than 90% drug in 12 h with F5 displaying  maximum %CDR of  95.70 ± 0.78%. A t50% of 3 h exhibited by F5 was significantly lower (2.7 h than of marketed formulation (Glytop SR® (t50% = 5.7 h. Similarity and dissimilarity factor for F5, with reference to Glytop SR® was 21.65% and 26.34% respectively, suggesting F5 has potential to exercise better control on drug release. Scanning Electron Microscopy (SEM revealed drug particles embedded in stearic acid micromatrices that were confirmed by The X-ray powder diffraction (XRPD and simultaneously Diffuse Reflectance Infrared Fourier Transform (DRIFT confirmed the stability of F5. Conclusively, stearic acid explored as a suitable lipidic release retardant for development of SR tablet of glipizide that were stable for the test period of 6 months.

  2. Modifications to ART service delivery models by health facilities in Uganda in promotion of intervention sustainability: a mixed methods study.

    Science.gov (United States)

    Zakumumpa, Henry; Bennett, Sara; Ssengooba, Freddie

    2017-04-04

    In November 2015, WHO released new treatment guidelines recommending that all diagnosed as HIV positive be enrolled on antiretroviral therapy (ART). Sustaining and expanding ART scale-up programs in resource-limited settings will require adaptations and modifications to traditional ART delivery models to meet the rapid increase in demand. We identify modifications to ART service delivery models by health facilities in Uganda to sustain ART interventions over a 10-year period (2004-2014). A mixed methods approach involving two study phases was adopted. In the first phase, a survey of a nationally representative sample of health facilities (n = 195) in Uganda which were accredited to provide ART between 2004 and 2009 was conducted. The second phase involved semi-structured interviews (n = 18) with ART clinic managers of 6 of the 195 health facilities purposively selected from the first study phase. We adopted a thematic framework consisting of four categories of modifications (format, setting, personnel, and population). The majority of health facilities 185 (95%) reported making modifications to ART interventions between 2004 and 2014. Of the 195 health facilities, 157 (81%) rated the modifications made to ART as "major." Modifications to ART were reported under all the four themes. The quantitative and qualitative findings are integrated and presented under four themes. Format: Reducing the frequency of clinic appointments and pharmacy-only refill programs was identified as important strategies for decongesting ART clinics. Home-based care programs were introduced to reduce provider ART delivery costs. Personnel: Task shifting to non-physician cadre was reported in 181 (93%) of the health facilities. Visits to the ART clinic were rationalized in favor of the sub-population deemed to have more clinical need. Two health facilities focused on patients living nearer the health facilities to align with targets set by external donors. Over the study period

  3. β-Cyclodextrin grafted polypyrrole magnetic nanocomposites toward the targeted delivery and controlled release of doxorubicin

    Science.gov (United States)

    Hong, Shasha; Li, Zengbo; Li, Chenzhong; Dong, Chuan; Shuang, Shaomin

    2018-01-01

    The Fe3O4@PPy-HA-β-CD nanocomposites as the novel nanocarrier were prepared by grafting ethylenediamine derivative of​ β-​CD to the surface of polypyrrole-coated magnetic nanoparticles (Fe3O4@PPy) via using hyaluronan (HA) as the intermediate linker. HA was also the efficient target ligand for CD44. The as-prepared drug carrier was characterized by TEM, TGA, XRD, and VSM and used for the delivery of doxorubicin hydrochloride (DOX) with the high loading content of 447 mg/g. The multilayer Freundlich isotherm model was found to be a good fit for the loading of the drug carrier for DOX. Significant NIR-triggered release of DOX was observed in a weak acidic pH. And the release data in vitro was well described using the Retiger-Pepper kinetic model. Furthermore, MTT assay and confocal microscopy against Hep-G2 cells clearly illustrated that the drug carrier had no associated cytotoxicity and could easily enter the cells. The release and accumulation of DOX were observed in the cell nuclei. Thus, the DOX-loaded drug carrier killed the cancer cells efficaciously and minimized adverse side effects due to its target effect. These results suggested the as-prepared drug carrier would be of great potential for the controlled release and targeted delivery of DOX.

  4. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  5. Sustained release matrix tablets prepared from cospray dried mixtures with starch hydrophobic esters.

    Science.gov (United States)

    Sakhnini, N; Al-Zoubi, N; Al-Obaidi, G H; Ardakani, A

    2015-03-01

    In this work, starch acetate and propanoate derivatives with moderate degree of substitution were synthesized and characterized for employment as matrix formers for sustained release from tablets. Matrix tablets were prepared from cospray-dried and simple physical mixtures of starch/starch derivatives and theophylline as a model drug. The release was rapid for matrix tablets prepared from simple physical mixtures. On the other hand, tablets prepared from cospray-dried mixtures with starch acetate and starch propanoate showed much slower and extended release. Scanning electron micrographs of tablet surfaces revealed enhanced inter-particulate bonding and plastification for cospray-dried agglomerates in comparison with physical mixtures.

  6. Sustained zero-order delivery of GC-1 from a nanochannel membrane device alleviates metabolic syndrome.

    Science.gov (United States)

    Filgueira, C S; Nicolov, E; Hood, R L; Ballerini, A; Garcia-Huidobro, J; Lin, J Z; Fraga, D; Webb, P; Sabek, O M; Gaber, A O; Phillips, K J; Grattoni, A

    2016-11-01

    Our objective was to assess the sustained, low-dose and constant administration of the thyroid receptor-β (TRβ)-selective agonist GC-1 (sobetirome) from a novel nanochannel membrane device (NMD) for drug delivery. As it known to speed up metabolism, accomplish weight loss, improve cholesterol levels and possess anti-diabetic effects, GC-1 was steadily administered by our NMD, consisting of an implantable nanochannel membrane, as an alternative to conventional daily administration, which is subject to compliance issues in clinical settings. Diet-induced obese C57BL/J6 male mice were fed a very high-fat diet (VHFD) and received NMD implants subcutaneously. Ten mice per group received capsules containing GC-1 or phosphate-buffered saline (control). Weight, lean and fat mass, as well as cholesterol, triglycerides, insulin and glucose, were monitored for 24 days. After treatment, plasma levels of thyroid-stimulating hormone (TSH) and thyroxine were compared. mRNA levels of a panel of thermogenic markers were examined using real-time PCR in white adipose tissue (WAT) and brown adipose tissue (BAT). Adipose tissue, liver and local inflammatory response to the implant were examined histologically. Pancreatic islet number and β-cell area were assessed. GC-1 released from the NMD reversed VHFD-induced obesity and normalized serum cholesterol and glycemia. Significant reductions in body weight and fat mass were observed within 10 days, whereas reductions in serum cholesterol and glucose levels were seen within 7 days. The significant decrease in TSH was consistent with TRβ selectivity for GC-1. Levels of transcript for Ucp1 and thermogenic genes PGC1a, Cidea, Dio2 and Cox5a showed significant upregulation in WAT in NMD-GC-1-treated mice, but decreased in BAT. Although mice treated by NMD-GC-1 showed a similar number of pancreatic islets, they exhibited significant increase in β-cell area. Our data demonstrate that the NMD implant achieves steady administration of GC-1

  7. In vitro characterization of a controlled-release ocular insert for delivery of brimonidine tartrate.

    Science.gov (United States)

    Mealy, J E; Fedorchak, M V; Little, S R

    2014-01-01

    Glaucoma is the second leading cause of blindness in the US. Brimonidine tartrate (BT) is a modern anti-glaucoma agent that is currently administered as frequently as a thrice-daily topical eye drop medication. Accordingly, compliance with BT regimens is low, limiting overall effectiveness. One attempt that has previously proved effective in addressing non-adherence is the formation of ocular inserts, such as the Ocusert(®), whose diffusion-based control released an older drug (pilocarpine) for a week-long period. Modern controlled drug-release technology provides an avenue for extending the release of practically any drug (including new drugs such as BT) for as long as 1 month from a singular insert. Currently, no controlled-release formulations for BT exist. This work outlines the development and characterization of a BT-releasing ocular insert designed from poly(lactic co-glycolic) acid/polyethylene glycol (PEG). It was found that a formulation containing 15% PEG can be created that produces a linear BT-release profile corresponding to BT eye drop delivery estimates. Additionally, these inserts were shown, through the use of atomic force microscopy and scanning electron microscopy, to have smooth surfaces and physical properties suitable for ophthalmic use. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    Science.gov (United States)

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. © 2016 John Wiley & Sons A/S.

  9. Preparation of Coated Valproic Acid and Sodium Valproate Sustained-release Matrix Tablets.

    Science.gov (United States)

    Phaechamud, T; Mueannoom, W; Tuntarawongsa, S; Chitrattha, S

    2010-03-01

    The aim of this research was to investigate the technique for preparation of coated valproic acid and sodium valproate sustained-release matrix tablets. Different diluents were tested and selected as the effective absorbent for oily valproic acid. Effect of the amount of absorbent and hydroxypropylmethylcellulose on drug release from valproic acid-sodium valproate matrix tablets prepared with wet granulation technique was evaluated in pH change system. Colloidal silicon dioxide effectively adsorbed liquid valproic acid during wet granulation and granule preparation. The amounts of colloidal silicon dioxide and hydroxypropylmethylcellulose employed in tablet formulations affected drug release from the tablets. The drug release was prominently sustained for over 12 h using hydroxypropylmethylcellulose-based hydrophilic matrix system. The mechanism of drug release through the matrix polymer was a diffusion control. The drug release profile of the developed matrix tablet was similar to Depakine Chrono(®), providing the values of similarity factor (f2) and difference factor (f1) of 85.56 and 2.37, respectively. Eudragit(®) L 30 D-55 was used as effective subcoating material for core matrix tablets before over coating with hydroxypropylmethylcellulose film with organic base solvent. Drug release profile of coated matrix tablet was almost similar to that of Depakine Chrono(®).

  10. Sustained Release of BMP-2 in Bioprinted Alginate for Osteogenicity in Mice and Rats

    Science.gov (United States)

    Poldervaart, Michelle T.; Wang, Huanan; van der Stok, Johan; Weinans, Harrie; Leeuwenburgh, Sander C. G.; Öner, F. Cumhur; Dhert, Wouter J. A.; Alblas, Jacqueline

    2013-01-01

    The design of bioactive three-dimensional (3D) scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2) influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs) was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs) and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo. PMID:23977328

  11. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  12. Polymer excipients enable sustained drug release in low pH from mechanically strong inorganic geopolymers.

    Science.gov (United States)

    Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria

    2012-01-01

    Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.

  13. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    Purpose: To develop and optimise sustained release (SR) matrix tablets of diltiazem hydrochloride (DHL). Methods: DHL tablets were prepared by direct compression and consisted of hydroxyprpoylmethyl cellulose, Kollidon SR and Eudragit RSPO. A 32 full factorial design was applied to study the effect of polymers used ...

  14. Formulation and In vitro/In vivo Evaluation of Sustained Release ...

    African Journals Online (AJOL)

    HP

    2013-07-15

    Jul 15, 2013 ... Purpose: To develop and optimise sustained release (SR) matrix tablets of diltiazem hydrochloride (DHL). Methods: DHL tablets were prepared by direct compression and consisted of hydroxyprpoylmethyl cellulose,. Kollidon SR and Eudragit RSPO. A 32 full factorial design was applied to study the effect of ...

  15. Development of time and pH dependent controlled release colon specific delivery of tinidazole

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Purpose: Tinidazole is used in treatment of amoebiasis and other protozoal infections in doses of 2.0 g/ day (60 mg/kg for three days. In the present paper, controlled release formulation of tinidazole was developed with an objective to achieve colon specific drug delivery with reduced frequency of dosing, to minimize gastric side effects and thus to increase patient compliance. Methods: Matrix systems of tinidazole (500 mg were prepared by using swellable and pH dependent polymers like hydroxypropyl methylcellulose (HPMC K4M and K15M and eudragit (eudragit L-100 and S-100. Prepared tablets were enteric coated in order to overcome variability in gastric emptying time and delay in the release, to reduce gastric side effects and to provide prolonged localized action in colon. Process of manufacture was optimized during the scale up studies. Bioavailability study (using parallel group design was carried of on conventional marketed, developed uncoated and enteric coated tablets in healthy human volunteers. Results: Bioavailability study showed that greater portion of tinidazole was released in the large intestine and drug level in plasma was above 4 mg/mL in blood for 24 hours. Conclusion: From the results of this study it appears that, the proposed single enteric coated tinidazole (500 mg tablet per day could be used in place of 3-4 doses of 500 mg tinidazole conventional tablet with better control of drug release for targeted drug delivery. In addition developed colon-specific drug delivery system (CDDS was relatively inexpensive and easy to manufacture using conventional pharmaceutical coating technique.

  16. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: In vitro and in vivo characterization.

    Science.gov (United States)

    Ni, Rui; Muenster, Uwe; Zhao, Jing; Zhang, Lan; Becker-Pelster, Eva-Maria; Rosenbruch, Martin; Mao, Shirui

    2017-03-10

    Sustained pulmonary drug delivery is regarded as an effective strategy for local treatment of chronic lung diseases. Despite of the progress made so far, there remains a need for respirable drug loaded porous microparticles, where porosity of the microparticles can be readily engineered during the preparation process, with tunable sustained drug release upon lung deposition. In this work, polyvinyl pyrrolidone (PVP) was used as a novel porogen to engineer PLGA-based large porous particles (LPPs) using single emulsion method, with fine tuning of the porosity, sustained drug release both in vitro and in vivo. Using cinaciguat as the model drug, influence of PVP content and PLGA type on the properties of the LPPs was characterized, including geometric particle size, drug encapsulation efficiency, tap density, theoretical and experimental aerodynamic particle size, specific surface area, morphology, and in vitro drug release. Solid state of cinaciguat in the LPPs was studied based on DSC and X-ray analysis. LPPs retention in the rat lung was carried out using bronchoalveolar lavage fluid method. Raw 264.7 macrophage cells were used for LPPs uptake study. Pharmacodynamic study was performed in mini-pigs in a well-established model of pulmonary arterial hypertension (thromboxane challenge). It was demonstrated that porosity of the LPPs is tunable via porogen content variation. Cinaciguat can be released from the LPP in a controlled manner for over 168h. Significant reduction of macrophage phagocytosis was presented for LPPs. Furthermore, LPPs was found to have extended retention time (~36h) in the rat lung and accordingly, sustained pharmacodynamics effect was achieved in mini-pig model. Taken together, our results demonstrated that this simple PLGA based LPPs engineering using single emulsion method with PVP as porogen may find extensive application for the pulmonary delivery of hydrophobic drugs to realize tunable sustained effect with good safety profile. Copyright

  17. Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide

    DEFF Research Database (Denmark)

    Svagan, Anna Justina; Müllertz, Anette; Löbmann, Korbinian

    2017-01-01

    OBJECTIVES: This study aimed to prepare a furosemide-loaded sustained release cellulose nanofibre (CNF)-based nanofoams with buoyancy. METHODS: Dry foams consisting of CNF and the model drug furosemide at concentrations of 21% and 50% (w/w) have been prepared by simply foaming a CNF-drug suspension...... followed by drying. The resulting foams were characterized towards their morphology, solid state properties and dissolution kinetics. KEY FINDINGS: Solid state analysis of the resulting drug-loaded foams revealed that the drug was present as an amorphous sodium furosemide salt and in form of furosemide...... form I crystals embedded in the CNF foam cell walls. The foams could easily be shaped and were flexible, and during the drug release study, the foam pieces remained intact and were floating on the surface due to their positive buoyancy. Both foams showed a sustained furosemide release compared...

  18. [Application of an artificial neural network in the design of sustained-release dosage forms].

    Science.gov (United States)

    Wei, X H; Wu, J J; Liang, W Q

    2001-09-01

    To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.

  19. Continuous melt granulation to develop high drug loaded sustained release tablet of Metformin HCl

    Directory of Open Access Journals (Sweden)

    Pradnya Vaingankar

    2017-01-01

    The developed matrix tablet (75% drug loading resulted in 670 mg of weight for 500 mg dose strength and showed sustained drug release over 10 h. When compared, with conventional granulation techniques, it was observed that, under identical compression force, the tablet prepared by MG exhibited superior compactibility along with tablet hardness and optimal drug release profile. FTIR suggested nonexistence of chemical interaction between the drug and the other excipients while XRD and DSC analysis revealed the crystalline state of the drug. Furthermore, the results obtained from Raman spectroscopy proved the uniform distribution of the Metformin HCl and polymer in the final dosage form. This technology leads to the manufacture of sustained release matrix formulation with reduced tablet size of a high dose, highly water soluble drug otherwise difficult to process using standard batch-granulation.

  20. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro.

    Science.gov (United States)

    Guillaume, Olivier; Garric, Xavier; Lavigne, Jean-Philippe; Van Den Berghe, Helene; Coudane, Jean

    2012-09-28

    One of the most critical post-surgical complications is mesh-related infection. This paper describes how a commercially available polypropylene (PP) mesh was modified to minimize the risk of post-implantation infection. A dual drug-release coating was created around mesh filaments using an airbrush spray system. This coating was composed of three layers containing ofloxacin and rifampicin dispersed in a degradable polymer reservoir made up of [poly(ε-caprolactone) (PCL) and poly(DL-lactic acid) (PLA)]. Drug release kinetics were managed by varying the structure of the degradable polymer and the multilayer coating. In vitro, this new drug delivery polymer system was seen to be more rapidly invaded by fibroblasts than was the initial PP mesh. Active mesh showed excellent antibacterial properties with regard to microorganism adhesion, biofilm formation and the periprosthetic inhibition of bacterial growth. Sustained release of the two antibiotics from the coated mesh prevented mesh contamination for at least 72 h. This triple-layer coating technology is potentially of great interest for it can be easily extrapolated to other medical devices and drug combinations for the prevention or treatment of other diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae.

    Science.gov (United States)

    Ni, Lixiao; Acharya, Kumud; Ren, Gaoxiang; Li, Shiyin; Li, Yiping; Li, Yong

    2013-04-01

    The objectives of this work were to prepare and characterize an anti-algal sustained-release granule, then study its mode of action on Microcystis aeruginosa. The anti-algal sustained-release granule was prepared with artemisinin using alginate-chitosan microcapsule technology and characterized by a high performance liquid chromatography with an evaporative light-scattering detector, Fourier transform infrared spectral analysis, and a scanning electron microscope. The optimum preparation (in %, w/v) using the orthogonal method was: 2.5 sodium alginate; 0.25 chloride; 0.6 artemisinin; 2 calcium chloride; and 1.5 mL of the cross-linking agent, glutaraldehyde. These artemisinin sustained-release granules had a high encapsulation efficiency (up to 68%) and good release properties (release time of more than 40 d). Artemisinin sustained-release granules released cumulatively in a solution containing M. aeruginosa, and the stress on algae increased gradually within 30 d. Artemisinin sustained-release granules decreased the content of the soluble protein, Chlorophyll a in 30 d, increased the superoxide dismutase activity of M. aeruginosa, but exerted no effect on the soluble sugar content. Compared to direct dosing of artemisinin, algae can be inhibited longer and more effectively by the artemisinin sustained-release granules. The results of our research can aid in the development of new anti-algal sustained-release granules and lead to further study of their application in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Sustained delivery of rhBMP-2 via PLGA microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis

    Science.gov (United States)

    Wink, Jason D.; Gerety, Patrick A.; Sherif, Rami D.; Lim, Youngshin; A.Clarke, Nadya; Rajapakse, Chamith S.; Nah, Hyun-Duck; Taylor, Jesse A.

    2014-01-01

    Background Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. In this study, we utilize rhBMP2 encapsulated in PLGA microspheres (PLGA-rhBMP2) placed in a rabbit cranial defect model to test whether low-dose, sustained, delivery can effectively induce bone regeneration. Methods rhBMP2 was encapsulated in 15% poly (lactic-co-glycolic acid), using a double emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10mm) were created in the calvarium of New Zealand White rabbits (5-7 mos of age, M/F) and filled with a collagen scaffold containing one of four groups: 1) no implant, 2) collagen scaffold only, 3) PLGA-rhBMP2(0.1ug/implant), or 4) free rhBMP2 (0.1ug/implant). After 6 weeks, the rabbits were sacrificed and defects were analyzed by μCT, histology, and finite element analysis. Results RhBMP2 delivered via bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by μCT and histology (p=0.025, 0.025). FEA indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. Conclusions Sustained delivery via PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reduce the risk for recently reported rhBMP2 related adverse effects. Level of Evidence Animal Study PMID:24622573

  3. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system.

    Science.gov (United States)

    Dai, Tian; Yang, Enyun; Sun, Yongjun; Zhang, Linan; Zhang, Li; Shen, Ning; Li, Shuo; Liu, Lei; Xie, Yinghua; Wu, Shaomei; Gao, Zibin

    2013-11-01

    Targeting delivery of anticancer agents is a promising field in anticancer therapy. Inherent tumor-tropic and migratory properties of mesenchymal stem cells (MSCs) make them potential vehicles for targeting drug delivery systems for tumors. Although, MSCs have been successfully studied and discussed as a vehicle for cancer gene therapy, they have not yet been studied adequately as a potential vehicle for traditional chemical anticancer drugs. In this study, we have engineered MSCs as a potential targeting delivery vehicle for paclitaxel (TAX)-loaded nanoparticles (NPs). The size, surface charge, starving time of MSCs, incubating time and concentration of NPs could influence the efficiency of NPs uptake. In vitro release of TAX from CTS (chitosan)-TAX-NP-MSCs and the expression of P-glycoprotein demonstrated that release of TAX from MSCs might involve both passive diffusion and active transport. In vitro migration assays indicated that MSCs at passage number 3 have the highest migrating ability. Although, the migration ability of CTS-TAX-NP-MSCs could be inhibited by uptake of CTS-TAX-NPs, this ability could recover 6 days after the internalization. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Gelucire Based In Situ Gelling Emulsions: A Potential Carrier for Sustained Stomach Specific Delivery of Gastric Irritant Drugs

    Directory of Open Access Journals (Sweden)

    Ashwin Saxena

    2013-01-01

    Full Text Available Non steroidal anti-inflammatory drugs (NSAIDs are commonly prescribed medications to the geriatric patients for the treatment of arthritis and other painful disorders. The major side effects of NSAIDs are related to their effects on the stomach and bowels. The present study concerns assessment of the potential of liquid in situ gelling emulsion formulations (emulgels as patient compliant stomach specific sustained release carrier for the delivery of highly gastric irritant drug, Piroxicam. Emulgels were prepared, without using any emulgent, by mixing different concentrations of molten Gelucire 39/01 with low viscosity sodium alginate solution prepared in deionized water at 50°C. CaCO3 was used as buoyancy imparting as well as crosslinking agent. Emulgels so prepared were homogenous, physically stable, and rapidly formed into buoyant gelled mass when exposed to simulated gastric fluid (SGF, pH 1.2. Drug release studies carried out in SGF revealed significant retardation (P<0.05 of Piroxicam release from emulgels compared to conventional in situ gelling formulations prepared without Gelucire 39/01. Pharmacodynamic studies carried out in albino rats revealed significantly increased analgesic/anti-inflammatory response from in situ emulgels compared to conventional in situ gelling formulations. Further, in vivo toxicity studies carried out in albino rats revealed no signs of gastric ulceration upon prolonged dosing.

  5. Probucol release from novel multicompartmental microcapsules for the oral targeted delivery in type 2 diabetes.

    Science.gov (United States)

    Mooranian, Armin; Negrulj, Rebecca; Al-Sallami, Hesham S; Fang, Zhongxiang; Mikov, Momir; Golocorbin-Kon, Svetlana; Fakhoury, Marc; Watts, Gerald F; Matthews, Vance; Arfuso, Frank; Lambros, Amanda; Al-Salami, Hani

    2015-02-01

    In previous studies, we developed and characterised multicompartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in type 2 diabetes (T2D). We also designed a new microencapsulated formulation of probucol-sodium alginate (PB-SA), with good structural properties and excipient compatibility. The aim of this study was to examine the stability and pH-dependent targeted release of the microcapsules at various pH values and different temperatures. Microencapsulation was carried out using a Büchi-based microencapsulating system developed in our laboratory. Using SA polymer, two formulations were prepared: empty SA microcapsules (SA, control) and loaded SA microcapsules (PB-SA, test), at a constant ratio (1:30), respectively. Microcapsules were examined for drug content, zeta potential, size, morphology and swelling characteristics and PB release characteristics at pH 1.5, 3, 6 and 7.8. The production yield and microencapsulation efficiency were also determined. PB-SA microcapsules had 2.6 ± 0.25% PB content, and zeta potential of -66 ± 1.6%, suggesting good stability. They showed spherical and uniform morphology and significantly higher swelling at pH 7.8 at both 25 and 37°C (p microcapsules showed multiphasic release properties at pH 7.8. The production yield and microencapsulation efficiency were high (85 ± 5 and 92 ± 2%, respectively). The PB-SA microcapsules exhibited distal gastrointestinal tract targeted delivery with a multiphasic release pattern and with good stability and uniformity. However, the release of PB from the microcapsules was not controlled, suggesting uneven distribution of the drug within the microcapsules.

  6. Polypyrrole Film as a Drug Delivery System for the Controlled Release of Risperidone

    Science.gov (United States)

    Svirskis, Darren; Travas-Sejdic, Jadranka; Rodgers, Anthony; Garg, Sanjay

    2009-07-01

    Conducting polymers are finding applications in medicine including drug delivery systems, biosensors and templates for the regeneration of nervous pathways. We aim to develop a novel system where the drug release rate can be controlled by electrical stimulation. Polypyrrole (PPY) is being used as a drug delivery system due to its inherent electrical conductivity, ease of preparation and apparent biocompatibility. Risperidone is an atypical antipsychotic drug used in the treatment of psychosis and related disorders, including schizophrenia. PPY was synthesised using p-toluene sulfonic acid as a primary dopant, in the presence of risperidone. A validated high performance liquid chromatography (HPLC) analytical method was used to quantify risperidone release. It has been demonstrated that the release rate of risperidone can be altered through the application, or absence, of electrical stimulation. Technology such as this would find use in drug-delivering implants where the dose could be adjusted through application of external stimulus, optimising benefit to side effect ratio, while simultaneously ensuring patient adherence (which is a particular challenge in mental health conditions).

  7. Sustained protein release from hydrogel microparticles using layer-by-layer (LbL) technology.

    Science.gov (United States)

    Sakr, Omar S; Jordan, Olivier; Borchard, Gerrit

    2016-10-01

    Since most of developed therapeutic proteins are intended to treat chronic diseases, patients are prescribed multiple injections for long time periods, and therefore, sustained release formulations are much needed. However, challenges facing these formulations are quite significant. In this context, a model protein, lysozyme (Lys), was loaded on hydrogel microparticles (beads) and the ability of layer-by-layer (LbL) coating to control Lys release and maintain its activity over a one-month period was investigated. LbL coating was composed of chondroitin sulfate as a negatively charged polyelectrolyte and a biocompatible, hydrolytically degradable poly β-aminoester as a positively charged polyelectrolyte. Loading distribution was monitored by fluorescence imaging, and followed by depositing a series of LbL coatings of different thicknesses. Release of Lys from these formulations was studied and activity of released fraction was determined. Lys was loaded effectively on hydrogel beads achieving about 9 mg protein/100 mg wet spheres. LbL coating was proven successful by monitoring the zeta potential of the beads, which was reversed after the addition of each layer. In vitro release studies showed sustained release profiles that depend on the thickness of the deposited coat, with t50 extended from 4.9 to 143.9 h. More importantly, released Lys possessed a high degree of biological activity during the course of release maintaining at least 72% of initial activity. Successful loading of Lys and extension of its release while maintaining a considerable degree of activity might make this formulation suitable for use with other active therapeutic proteins.

  8. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    Science.gov (United States)

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tao [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tan, Lei [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Cheng, Ning; Yan, Qi; Zhang, Yu-Feng [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Liu, Chuan-Jun, E-mail: cjliu@whu.edu.cn [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Shi, Bin, E-mail: shibin_dentist@126.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2016-05-01

    This work presented a sustained release system of simvastatin (SIM) based on the mesoporous hydroxyapatite (MHA) capped with poly(N-isopropylacrylamide) (PNIPAAM). The MHA was prepared by using cetyltrimethylammonium bromide (CTAB) as a template and the modified PNIPAAM layer on the surface of MHA was fabricated through surface-initiated atom transfer radical polymerization (SI-ATRP). The SIM loaded MHA-PNIPAAM showed a sustained release of SIM at 37 °C over 16 days. The bone marrow mesenchymal stem cell (BMSC) proliferation was assessed by cell counting kit-8 (CCK-8) assay, and the osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity and Alizarin Red staining. The release profile showed that the release of SIM from MHA-SIM-PNIPAAM lasted 16 days and the cumulative amount of released SIM was almost seven-fold than MHA-SIM. Besides, SIM loaded MHA-PNIPAAM exhibited better performance on cell proliferation, ALP activity, and calcium deposition than pure MHA due to the sustained release of SIM. The quantity of ALP in MHA-SIM-PNIPAAM group was more than two fold than pure MHA group at 7 days. Compared to pure MHA, better BMSC attachment on PNIPAAM modified MHA was observed using fluorescent microscopy, indicating the better biocompatibility of MHA-PNIPAAM. - Highlights: • PNIPAAM modified mesoporous hydroxyapatite (MHA) was fabricated by SI-ATRP. • SIM loaded MHA-PNIPAAM continually released SIM in effect concentration for 16 days. • MHA-SIM-PNIPAAM behaved well on cell proliferation, ALP activity and calcium deposition.

  10. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage

    Directory of Open Access Journals (Sweden)

    M. Kaleemullah

    2017-07-01

    Full Text Available Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor (f2 value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05 between the F3 and reference drug in terms of MDT and

  11. Compression of coated drug beads for sustained release tablet of glipizide: formulation, and dissolution.

    Science.gov (United States)

    Nguyen, Chien; Christensen, J Mark; Ayres, James W

    2014-02-01

    A promising glipizide formulation comprising compression of four-layer coated beads into tablets was prepared. The tablet offered the advantages of: a two-hour lag time before drug release, retaining sustained release characteristics and providing approximately zero-order drug release. Drug release was nearly independent of paddle speeds of 50 and 100 rpm releasing 80% over 14 h similar to the commercial glipizide osmotic pump tablet during dissolution testing while keeping the benefits of multiparticular dosage forms. The tablets contain beads with four layers: (1) the innermost layer consists of 2.5 g glipizide and 3.75 g solid ethylcellulose (Surelease®) coated onto 71.25 g of sugar beads; (2) next a hardening layer of 5 g of hypromellose; (3) the controlled release layer of 7.5 g of Surelease®:lactose at a solids ratio of 100:7 and (4) an outermost layer of 20 g of lactose:sodium starch glycolate (Explotab®) at a 2:1 ratio. Then, beads were compressed into tablets containing 11 mg of glipizide using 1500 lbs of compression pressure. The dissolution test similarity factor (f2) was above 50 for all test conditions for formulation F13 and Glucotrol® with a high of 69.9. The two Surelease® layers both aid controlling drug release, with the Surelease®-drug layer affecting drug release to a greater extent.

  12. Alginate hydrogels allow for bioactive and sustained release of VEGF-C and VEGF-D for lymphangiogenic therapeutic applications.

    Science.gov (United States)

    Campbell, Kevin T; Hadley, Dustin J; Kukis, David L; Silva, Eduardo A

    2017-01-01

    Lymphatic dysfunction is associated with the progression of many cardiovascular disorders due to their role in maintaining tissue fluid homeostasis. Promoting new lymphatic vessels (lymphangiogenesis) is a promising strategy to reverse these cardiovascular disorders via restoring lymphatic function. Vascular endothelial growth factor (VEGF) members VEGF-C and VEGF-D are both potent candidates for stimulating lymphangiogenesis, though maintaining spatial and temporal control of these factors represents a challenge to developing efficient therapeutic lymphangiogenic applications. Injectable alginate hydrogels have been useful for the controlled delivery of many angiogenic factors, including VEGF-A, to stimulate new blood vasculature. However, the utility of these tunable hydrogels for delivering lymphangiogenic factors has never been closely examined. Thus, the objective of this study was to utilize ionically cross-linked alginate hydrogels to deliver VEGF-C and VEGF-D for potential lymphangiogenic applications. We demonstrated that lymphatic endothelial cells (LECs) are sensitive to temporal presentation of VEGF-C and VEGF-D but with different responses between the factors. The greatest LEC mitogenic and sprouting response was observed for constant concentrations of VEGF-C and a high initial concentration that gradually decreased over time for VEGF-D. Additionally, alginate hydrogels provided sustained release of radiolabeled VEGF-C and VEGF-D. Finally, VEGF-C and VEGF-D released from these hydrogels promoted a similar number of LEC sprouts as exogenously added growth factors and new vasculature in vivo via a chick chorioallantoic membrane (CAM) assay. Overall, these findings demonstrate that alginate hydrogels can provide sustained and bioactive release of VEGF-C and VEGF-D which could have applications for therapeutic lymphangiogenesis.

  13. Postoperative Analgesia Due to Sustained-Release Buprenorphine, Sustained-Release Meloxicam, and Carprofen Gel in a Model of Incisional Pain in Rats (Rattus norvegicus).

    Science.gov (United States)

    Seymour, Travis L; Adams, Sean C; Felt, Stephen A; Jampachaisri, Katechan; Yeomans, David C; Pacharinsak, Cholawat

    2016-01-01

    Postoperative analgesia in laboratory rats is complicated by the frequent handling associated with common analgesic dosing requirements. Here, we evaluated sustained-release buprenorphine (Bup-SR), sustained-release meloxicam (Melox-SR), and carprofen gel (CG) as refinements for postoperative analgesia. The aim of this study was to investigate whether postoperative administration of Bup-SR, Melox-SR, or CG effectively controls behavioral mechanical and thermal hypersensitivity in a rat model of incisional pain. Rats were randomly assigned to 1 of 5 treatment groups: saline, 1 mL/kg SC BID; buprenorphine HCl (Bup HCl), 0.05 mg/kg SC BID; Bup-SR, 1.2 mg/kg SC once; Melox-SR, 4 mg/kg SC once; and CG, 2 oz PO daily. Mechanical and thermal hypersensitivity were tested daily from day-1 through 4. Bup HCl and Bup-SR attenuated mechanical and thermal hypersensitivity on days 1 through 4. Melox-SR and CG attenuated mechanical hypersensitivity-but not thermal hypersensitivity-on days 1 through 4. Plasma concentrations, measured by using UPLC with mass spectrometry, were consistent between both buprenorphine formulations. Gross pathologic examination revealed no signs of toxicity in any group. These findings suggest that postoperative administration of Bup HCl and Bup-SR-but not Melox-SR or CG-effectively attenuates mechanical and thermal hypersensitivity in a rat model of incisional pain.

  14. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia

    Science.gov (United States)

    Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan

    2017-01-01

    Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants.

  15. Development of molecularly imprinted polymer as sustain release drug carrier for propranolol HCL.

    Science.gov (United States)

    Barde, Laxmikant N; Ghule, Mahesh M; Roy, Arghya A; Mathur, Vijay B; Shivhare, Umesh D

    2013-08-01

    Applications of molecularly imprinted polymer (MIPs), is rapidly increasing, especially in the drug delivery field. Molecularly imprinted polymers are the molecular traps, which can entrap the specific molecule and also control its release. Polymer complexes were prepared with and without propranolol HCl as templates, MAA (methacrylic acid) as monomer and EGDMA (ethyleneglycol dimethacrylate) as crosslinker by solvent polymerization technique. Drug release pattern from these polymer complexes were compared and maximum drug release in 12 h was consider to optimize the ratio of MAA and EGDMA. Since, the maximum propranolol HCl release from polymer complex was low (62.15%) in optimized batch, inclusion complex of drug with β-cyclodextrin were prepared for the higher drug release (80.32%). The selected polymer complexes were treated with methanol for complete removal of the drug to form MIPs. These MIPs were reloaded with the drug and subjected for drug release. The release patterns from reloaded MIP's were observed to be slightly quicker than their corresponding MIP's.

  16. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release

    Science.gov (United States)

    Li, Xiao; Zhao, Yang; Wang, Kaijie; Yang, Xiaohui; Zhu, Siquan

    2017-01-01

    To improve the efficacy of anti-inflammatory factors in patients who undergo cataract surgery, poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) hydrogels containing β-cyclodextrin (β-CD) (pHEMA/MMA/β-CD) were designed and prepared as intraocular lens (IOLs) biomaterials that could be loaded with and achieve the sustained release of dexamethasone. A series of pHEMA/MMA/β-CD copolymers containing different ratios of β-CD (range, 2.77 to 10.24 wt.%) were obtained using thermal polymerization. The polymers had high transmittance at visible wavelengths and good biocompatibility with mouse connective tissue fibroblasts. Drug loading and release studies demonstrated that introducing β-CD into hydrogels increased loading efficiency and achieved the sustained release of the drug. Administering β-CD via hydrogels increased the equilibrium swelling ratio, elastic modulus and tensile strength. In addition, β-CD increased the hydrophilicity of the hydrogels, resulting in a lower water contact angle and higher cellular adhesion to the hydrogels. In summary, pHEMA/MMA/β-CD hydrogels show great potential as IOL biomaterials that are capable of maintaining the sustained release of anti-inflammatory drugs after cataract surgery. PMID:29244868

  17. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    Science.gov (United States)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  18. Structural and biological properties of thermosensitive chitosan-graphene hybrid hydrogels for sustained drug delivery applications.

    Science.gov (United States)

    Saeednia, Leyla; Yao, Li; Berndt, Marcus; Cluff, Kim; Asmatulu, Ramazan

    2017-09-01

    Chitosan has the ability to make injectable thermosensitive hydrogels which has been highly investigated for drug delivery applications. The addition of nanoparticles is one way to increase the mechanical strength of thermosensitive chitosan hydrogel and subsequently and control the burst release of drug. Graphene nanoparticles have shown unique mechanical, optical and electrical properties which can be exploited for biomedical applications, especially in drug delivery. This study, have focused on the mechanical properties of a thermosensitive and injectable hybrid chitosan hydrogel incorporated with graphene nanoparticles. Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) have been used for morphological and chemical characterization of graphene infused chitosan hydrogels. The cell viability and cytotoxicity of graphene-contained hydrogels were analyzed using the alamarBlue® technique. In-vitro methotrexate (MTX) release was investigated from MTX-loaded hybrid hydrogels as well. As a last step, to evaluate their efficiency as a cancer treatment delivery system, an in vitro anti-tumor test was also carried out using MCF-7 breast cancer cell lines. Results confirmed that a thermosensitive chitosan-graphene hybrid hydrogel can be used as a potential breast cancer therapy system for controlled delivery of methotrexate. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2381-2390, 2017. © 2017 Wiley Periodicals, Inc.

  19. Sustained release of diclofenac from polymer-containing suppository and the mechanism involved.

    Science.gov (United States)

    Azechi, Y; Ishikawa, K; Mizuno, N; Takahashi, K

    2000-11-01

    Sustained release of diclofenac sodium (DcNa) from suppositories composed of triglycerides and polymer was investigated by dissolution testing through an artificial membrane. DcNa was slowly released from a suppository containing carboxyvinyl polymer (CVP), and the extent of the release decreased with the amount of CVP added. Little effect was noted with the addition of other water-soluble polymers, such as hydroxyethylcellulose (HEC), xanthan gum, and polyvinylalcohol (PVA). When sodium benzoate was used instead of DcNa, a similar result was obtained with the addition of CVP. The result of release rate analysis together with the viscosity and pH in these cases showed that the reduction of solubility and diffusion due to sodium exchange between DcNa and CVP played an important role in the sustained release from the suppository. Also, in comparison with the results when CVP was not used, the plasma concentration profile of diclofenac after the administration of CVP suppository displayed a twofold longer half-life time.

  20. Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets.

    Science.gov (United States)

    Khamanga, Sandile M; Walker, Roderick B

    2006-01-01

    Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.

  1. Once-Daily, Controlled-Release Tramadol and Sustained-Release Diclofenac Relieve Chronic Pain due to Osteoarthritis: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    André D Beaulieu

    2008-01-01

    Full Text Available OBJECTIVE: The present study was a randomized, parallel, double-blind comparison between controlled-release (CR tramadol and sustained-release (SR diclofenac in patients with chronic pain due to osteoarthritis of the hips and/or knees.

  2. Experience with sustained-release melatonin for the treatment of sleep disorders in depression

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirovna Prokhorova

    2015-01-01

    Full Text Available The data available in the literature on the role of melatonin in the regulation of circadian rhythms and sleep disorders in the population and in patients with mental diseases are analyzed. The cause of insomnia may be circadian rhythm disorders due to the age-related decline in the elaboration of the endogenous hormones that are responsible for the quality and duration of sleep, one of which is melatonin.Sustained-release melatonin is a synthetic analogue of the endogenous human pineal hormone melatonin. According to clinical findings, the main proven clinical effects of sustained-release melatonin 2 mg are a reduction in the latency of sleep, improvement of its quality, and lack of daytime sleepiness. The drug causes no dependence on its long use and rebound symptoms (increased insomnia symptoms, positively affects cognitive functions, and lowers nocturnal blood pressure in hypertensive patients.The paper describes a clinical case of a female patient with recurrent depressive disorder, in whom sustained-release melatonin 2 mg has demonstrated high efficacy and good tolerability in the combination therapy of sleep disorders in the pattern of depression.

  3. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  4. Chitosan based nanoparticles as a sustained protein release carrier for tissue engineering applications

    Science.gov (United States)

    Hou, Yaping; Hu, Junli; Park, Hyejin; Lee, Min

    2012-01-01

    Chitosan/tripolyphosphate/chondroitin sulfate (Chi/TPP/CS) nanoparticles were prepared by an ionic gelation method to obtain a controlled release of proteins. Using Nel-like molecule-1 (Nell-1), a novel osteogenic protein, as a model protein, it was demonstrated that adjusting the composition of the particles modulated the protein association and release kinetics of incorporated proteins. Increasing the amounts of chitosan crosslinking agents, TPP and CS, in the particles achieved sustained protein release. An increase in crosslinking density decreased degradation rates of the particles. Furthermore, the bioactivity of the protein was preserved during the encapsulating procedure into the particles. To demonstrate the feasibility of Chi/TPP/CS nanoparticles as sustained release carriers for tissue engineering scaffold applications, protein-loaded nanoparticles were successfully incorporated into collagen hydrogels or prefabricated porous poly (lactide-co-glycolide) (PLGA) scaffolds without obstructing the integrity of the hydrogels or porous structure of the scaffolds. Thus, we expect that these particles have a potential for efficient protein carriers in tissue engineering applications, and will be further evaluated in vivo. PMID:22275184

  5. Chlorhexidine sustained-release varnishes for catheter coating - Dissolution kinetics and antibiofilm properties.

    Science.gov (United States)

    Gefter Shenderovich, Julia; Zaks, Batya; Kirmayer, David; Lavy, Eran; Steinberg, Doron; Friedman, Michael

    2018-01-15

    Catheter-associated urinary tract infections are difficult to eradicate or prevent, due to their biofilm-related nature. Chlorhexidine, a widely used antiseptic, was previously found to be effective against catheter-related biofilms. For the present study, we developed sustained-release chlorhexidine varnishes for catheter coating and evaluated their antibiofilm properties and chlorhexidine-dissolution kinetics under various conditions. The varnishes were based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit® RL). Chlorhexidine was released by diffusion from a heterogeneous matrix in the case of the ethylcellulose-based formulation, and from a homogeneous matrix in the case of Eudragit® RL. This dictated the release pattern of chlorhexidine under testing conditions: from film specimens, and from coated catheters in a static or flow-through system. Momentary saturation was observed with the flow-through system in Eudragit® RL-based coatings, an effect that might be present in vivo with other formulations as well. The coatings were retained on the catheters for at least 2weeks, and showed prolonged activity in a biological medium, including an antibiofilm effect against Pseudomonas aeruginosa. The current study demonstrates the potential of catheter coatings with sustained release of chlorhexidine in the prevention of catheter-associated urinary tract infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sustained release gastroretentive tablet of metformin hydrochloride based on poly (acrylic acid)-grafted-gellan.

    Science.gov (United States)

    Sarkar, Debjani; Nandi, Gouranga; Changder, Abhijit; Hudati, Prasenjit; Sarkar, Sayani; Ghosh, Lakshmi Kanta

    2017-03-01

    Development of a gastroretentive sustained release tablet of metformin based on poly (acrylic acid)-grafted-gellan (PAAc-g-GG) is the main purpose of this study. At first, PAAc-g-GG was synthesized by microwave-promoted free radical initiation method using cerric (IV) ammonium nitrate (CAN) as redox initiator and characterized by elemental analysis, FTIR, DSC-TGA, (13)C NMR, biodegradation and viscosity study. The synthetic parameters were optimized by 2(3) full factorial design using Design Expert software. Acute oral toxicity and histological studies were also performed as per OECD guideline. Tablets were then prepared employing wet granulation method using PAAc-g-GG and evaluated for various physical characters, in vitro drug release, ex-vivo mucoadhesion and swelling. Compatibility between drug and excipients was checked by DSC and FTIR analysis. The F3 batch showed excellent mucoadhesion and sustained drug release over a period of 10h with dissolution similarity factor, f2=77.43. Kinetic modeling unveiled Case-1 Fickian diffusion based drug release mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications.

    Science.gov (United States)

    Hou, Yaping; Hu, Junli; Park, Hyejin; Lee, Min

    2012-04-01

    Chitosan/tripolyphosphate/chondroitin sulfate (Chi/TPP/CS) nanoparticles were prepared by an ionic gelation method to obtain a controlled release of proteins. Using Nel-like molecule-1 (Nell-1), a novel osteogenic protein, as a model protein, it was demonstrated that adjusting the composition of the particles modulated the protein association and release kinetics of incorporated proteins. Increasing the amounts of Chi crosslinking agents, TPP and CS, in the particles achieved sustained protein release. An increase in crosslinking density decreased degradation rates of the particles. Furthermore, the bioactivity of the protein was preserved during the encapsulating procedure into the particles. To demonstrate the feasibility of Chi/TPP/CS nanoparticles as sustained release carriers for tissue engineering scaffold applications, protein-loaded nanoparticles were successfully incorporated into collagen hydrogels or prefabricated porous poly(lactide-co-glycolide) (PLGA) scaffolds without obstructing the integrity of the hydrogels or porous structure of the scaffolds. Thus, we expect that these particles have a potential for efficient protein carriers in tissue engineering applications, and will be further evaluated in vivo. Copyright © 2012 Wiley Periodicals, Inc.

  8. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate.

    Science.gov (United States)

    Gonzalez Novoa, Gelsys Ananay; Heinämäki, Jyrki; Mirza, Sabir; Antikainen, Osmo; Colarte, Antonio Iraizoz; Paz, Alberto Suzarte; Yliruusi, Jouko

    2005-02-01

    Solid-state compatibility and in vitro dissolution of direct-compressed sustained-release matrices of polyvinylacetate (PVAc) and polyvinylpyrrolidone (PVP) containing ibuprofen as a model drug were studied. Polyvinylalcohol (PVA) was used as an alternative water-soluble polymer to PVP. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) were used for characterizing solid-state polymer-polymer and drug-polymer interactions. The mechanical treatment for preparing physical mixtures of polyvinyl polymers and the drug (i.e. simple blending or stressed cogrinding) was shown not to affect the physical state of the drug and the polymers. With the drug-polymer mixtures the endothermic effect due to drug melting was always evident, but a considerable modification of the melting point of the drug in physical binary mixtures (drug:PVP) was observed, suggesting some interaction between the two. On the other hand, the lack of a significant shift of the melting endothermic peak of the drug in physical tertiary drug-polymer mixtures revealed no evidence of solid-state interaction between the drug and the present polymers. Sustained-release dissolution profiles were achieved from the direct-compressed matrices made from powder mixtures of the drug and PVAc combined with PVP, and the proportion of PVAc in the mixture clearly altered the drug release profiles in vitro. The drug release from the present matrix systems is controlled by both diffusion of the drug through the hydrate matrix and the erosion of the matrix itself.

  9. Pharmacokinetic profile of a sustained-delivery system for physostigmine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 04-01, Singapore 138669 (Singapore)

    2006-07-25

    Physostigmine (PHY) is involved in clinical treatments of glaucoma, Alzheimer's disease and has been suggested as an alternative prophylactic treatment against organophosphate poisoning. However, one of the therapeutic uses of physostigmine is limited by short elimination half-life. In this study, PHY-loaded microparticles, prepared by a spray-drying method with biodegradable poly(D,L-lactide-co-glycolide) (PLGA) with a size ranging from 1 to 5 {mu}M was developed on a sustained release preparation to prevent multiple dosing and yet maintaining constant plasma level. The release of PHY-loaded microparticles was characterized in vitro and in vivo after oral administration in Sprague-Dawley rats. After oral administration of physostigmine-loaded microparticles in rats, the time course of physostigmine in blood plasma was followed over 48 h and samples were analysed using a validated high-performance liquid chromatography (HPLC) assay. In the pharmacokinetics profile of physostigmine for the elimination half-life and area-under-curve, PHY release was sustained in vitro for over 1 week with a low initial burst release. The pharmacokinetics results show a 15-fold increase in the elimination half-life of physostigmine microparticle formulation, coupled with a larger area under the concentration-time curve (AUC), without affecting the peak concentration and the latency to peak concentration, when compared to the standard formulation.

  10. Hydrocolloid-based nutraceutical delivery systems: Effect of counter-ions on the encapsulation and release.

    Science.gov (United States)

    Polowsky, Patrick J; Janaswamy, Srinivas

    2015-01-01

    Nutraceuticals provide health benefits, especially for the prevention and treatment of chronic diseases such as diabetes, obesity, cardiovascular disease and cancer. Their incorporation in food supplements, functional foods and medicinal foods is a major technological challenge due to lower water solubility, instability during processing and storage conditions. Carriers that can effectively overcome these predicaments and protect them during product development, consumption and delivery are in high demand. Toward this end, our research approach is to entrap nutraceuticals in the ordered networks of hydrocolloids. We have examined the effect cations in regulating the encapsulated amounts and release characteristics. Iota-carrageenan and eugenol have been chosen as models of hydrocolloid and nutraceutical, respectively, in the presence of Na and Ca ions. The results suggest that carrageenan maintains its network organization even after encapsulating the eugenol molecules. Increased eugenol amounts are found in the Na carrageenan complex compared to the Ca complex, and the release rate is faster from the former but it is more controlled from the latter. These differences highlight the vital role of cations on the encapsulation efficiency and release profiles of hydrocolloid-based nutraceutical carriers. The outcome offers an elegant opportunity for developing novel and value-added food systems employing low-in-cost, nontoxic and heavily consumed food grade hydrocolloids.

  11. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy

    Science.gov (United States)

    Barreto, A. C. H.; Santiago, V. R.; Mazzetto, S. E.; Denardin, J. C.; Lavín, R.; Mele, Giuseppe; Ribeiro, M. E. N. P.; Vieira, Icaro G. P.; Gonçalves, Tamara; Ricardo, N. M. P. S.; Fechine, P. B. A.

    2011-12-01

    Quercetin belongs to the chemical class of flavonoids and can be found in many common foods, such as apples, nuts, berries, etc. It has been demonstrated that quercetin has a wide array of biological effects that are considered beneficial to health treatment, mainly as anticancer. However, therapeutic applications of quercetin have been restricted to oral administration due to its sparing solubility in water and instability in physiological medium. A drug delivery methodology was proposed in this work to study a new quercetin release system in the form of magnetite-quercetin-copolymer (MQC). These materials were characterized through XRD, TEM, IR, and Thermal analysis. In addition, the magnetization curves and quercetin releasing experiments were performed. It was observed a nanoparticle average diameter of 11.5 and 32.5 nm at Fe3O4 and MQC, respectively. The presence of magnetic nanoparticles in this system offers the promise of targeting specific organs within the body. These results indicate the great potential for future applications of the MQC to be used as a new quercetin release system.

  12. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction

    Science.gov (United States)

    Sy, Jay C.; Seshadri, Gokulakrishnan; Yang, Stephen C.; Brown, Milton; Oh, Teresa; Dikalov, Sergey; Murthy, Niren; Davis, Michael E.

    2008-11-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of death in the world and there is a compelling need for new therapeutic strategies. In this report we demonstrate that a direct cardiac injection of drug-loaded microparticles, formulated from the polymer poly(cyclohexane-1,4-diylacetone dimethylene ketal) (PCADK), improves cardiac function following myocardial infarction. Drug-delivery vehicles have great potential to improve the treatment of cardiac dysfunction by sustaining high concentrations of therapeutics within the damaged myocardium. PCADK is unique among currently used polymers in drug delivery in that its hydrolysis generates neutral degradation products. We show here that PCADK causes minimal tissue inflammatory response, thus enabling PCADK for the treatment of inflammatory diseases, such as cardiac dysfunction. PCADK holds great promise for treating myocardial infarction and other inflammatory diseases given its neutral, biocompatible degradation products and its ability to deliver a wide range of therapeutics.

  13. Bupropion sustained release for pregnant smokers: a randomized, placebo-controlled trial.

    Science.gov (United States)

    Nanovskaya, Tatiana N; Oncken, Cheryl; Fokina, Valentina M; Feinn, Richard S; Clark, Shannon M; West, Holly; Jain, Sunil K; Ahmed, Mahmoud S; Hankins, Gary D V

    2017-04-01

    Bupropion is used to treat depression during pregnancy. However, its usefulness as a smoking cessation aid for pregnant women is not fully known. The objective of the study was to evaluate the preliminary efficacy of bupropion sustained release for smoking cessation during pregnancy. We conducted a randomized, prospective, double-blind, placebo-controlled, pilot trial. Pregnant women who smoked daily received individualized behavior counseling and were randomly assigned to a 12 week, twice-a-day treatment with 150 mg bupropion sustained release or placebo. The primary study objectives were to determine whether bupropion sustained release reduces nicotine withdrawal symptoms on the quit date and during the treatment period compared with placebo and whether it increases 7 day point prevalence abstinence at the end of the treatment period and at the end of pregnancy. Subjects in the bupropion (n = 30) and placebo (n = 35) groups were comparable in age, smoking history, number of daily smoked cigarettes, and nicotine dependence. After controlling for maternal age and race, bupropion sustained release reduced cigarette cravings (1.5 ± 1.1 vs 2.1 ± 1.2, P = .02) and total nicotine withdrawal symptoms (3.8 ± 4.3 vs 5.4 ± 5.1, P = .028) during the treatment period. Administration of bupropion sustained release reduced tobacco exposure, as determined by levels of carbon monoxide in exhaled air (7.4 ± 6.4 vs 9.1 ± 5.8, P = .053) and concentrations of cotinine in urine (348 ± 384 ng/mL vs 831 ± 727 ng/mL, P = .007) and increased overall abstinence rates during treatment (19% vs 2%, P = .003). However, there was no significant difference in 7 day point prevalence abstinence rates between the 2 groups at the end of medication treatment (17% vs 3%, P = .087) and at the end of pregnancy (10% vs 3%, P = .328). Individual smoking cessation counseling along with the twice-daily use of 150 mg bupropion

  14. Development of indomethacin sustained release microcapsules using chitosan-carboxymethylcellulose complex coacervation

    Directory of Open Access Journals (Sweden)

    Garnpimol C. Ritthidej

    2003-05-01

    Full Text Available Indomethacin sustained release microcapsules were prepared by complex coacervation of chitosan (CS and carboxymethylcellulose (CMC and then were hardened with glutaraldehyde (GA. The effects of concentration and pH of CS solution, amount of GA and hardening time on the physicochemical properties and drug release of these microcapsules were investigated. The SEM photomicrographs revealed that surface morphology of microcapsules depended on the pH of CS solution. Decreasing the pH increased the smoothness of the surface due to the relaxation of CS chain in acidic medium. The geometric mean diameters of the microcapsules were between 126-212 microns. Those prepared from CS solution of pH 4 and hardening time of 3 hours seemed to have the narrowest size distribution. The percent drug entrapment was comparable in the range of 40%-50% while the percent drug recovery varied between 60%-87%. The latter increased when decreasing the pH and increasing the concentration of CS solution but decreased when increasing the hardening time. Dissolution study showed that microcapsules prepared from CS solution of high pH initially released the drug faster than those from CS solution of lower pH. After 3 hours their release rate was similar.Increasing the amount of GA and hardening time decreased the drug release due to denser membrane. In contrast, the concentration of CS solution had no effect on drug release. The mechanism of drug release was prominently diffusion controlled through wall membrane and pore. The kinetics of drug release followed Higuchi’s model.

  15. Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs.

    Science.gov (United States)

    Figueroa-Ochoa, Edgar B; Villar-Alvarez, Eva M; Cambón, Adriana; Mistry, Dharmista; Llovo, José; Attwood, David; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo

    2016-08-20

    In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration. These polymeric micellar nanocarriers were able to release drugs in a sustained manner, being the release rate slower as the copolymer chain hydrophobicity increased. Different sustained drug release profiles were observed depending on the medium conditions. Gel nanocarriers were shown to display longer sustained release rates than micellar formulations, with the existence of a pulsatile-like release mode under certain solution conditions as a result of their inner network structure. Certain bioadhesive properties were observed for the polymeric physical gels, being moderately tuned by the length and hydrophobicity of the polymeric chains. Furthermore, polymeric gels and micelles showed activity against the yeast Candida albicans and the mould demartophytes (Trichophyton rubrum and Microsporum canis) and, thus, may be useful for the treatment of different cutaneous fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Development of smart hydrogels of etherified gum ghatti for sustained oral delivery of ropinirole hydrochloride.

    Science.gov (United States)

    Ray, Somasree; Roy, Goutam; Maiti, Sabyasachi; Bhattacharyya, Uttam Kumar; Sil, Ayantika; Mitra, Ritwika

    2017-10-01

    Gum Ghatti (GG) is a water soluble complex polysaccharide obtained from Anogeissus latifolia. Due to its non toxic and excellent emulsifying characteristics, it was widely used in different pharmaceutical preparations. Currently another facet was explored for its utility as release retardant polymer in oral controlled drug delivery system. As GG solely was incapable of forming microspheres therefore modification of GG to Sodium carboxymethyl (NaCMGG) derivative was done by carboxymethylation process and its gel forming capacity was explored by the use of trivalent cation (Aluminium chloride) which results into complete microbead system in a complete aqueous environment for controlled delivery of Ropinirole Hydrochloride (RHCl). Rheological property of NaCMGG showed pseudoplastic shear thinning behavior. Spherical shape of bead was observed under scanning electron microscope. Depending upon the formulation variables, Drug entrapment efficiency (DEE) varies from 47.66±3.51 % to 71.4±2.65%., and 80 to 90% drug was released in 6h in pH 6.8 phosphate buffer. Drug release was governed by both fickian diffusion and polymer relaxation simultaneously. Compatible environment for drug entrapment was established by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Thus the modified derivative NaCMGG could be a promising polymer in biomedical application. Copyright © 2017. Published by Elsevier B.V.

  17. Generic sustained release tablets of trimetazidine hydrochloride: Preparation and in vitro–in vivo correlation studies

    Directory of Open Access Journals (Sweden)

    Longmei Wang

    2016-06-01

    Full Text Available The aim of the current work was to develop generic sustained-release tablets containing 35 mg trimetazidine dihydrochloride and to establish an in vitro–in vivo correlation that could predict the bioavailability. The marketed sustained release tablet (Vastarel MR used as reference, a sustained-release matrix tablet was prepared using hydroxypropyl methylcellulose (HPMC as matrix by wet granulation and the in vitro dissolution profiles of the self-made tablets were determined in four different dissolution media (0.1 M HCl, pH 4.5 PBS, pH 6.8 PBS and water. A higher similarity between prepared tablets and Vastarel MR was established, with similarity factor (f2 ranging from 60 to 75 in the four media. The in vivo pharmacokinetics was studied in six healthy beagles. Compared with Vastarel MR, the Cmax of self-made tablets was slightly decreased, while the Tmax and MRT0–t were slightly prolonged, but with no significant difference (P > 0.05. The average of relative bioavailability (F was 102.52% based on AUC0–t. For log-transformed AUC0–t and Cmax, the upper confidence limit on the appropriate criterion is <0, indicating these two formulations were population bioequivalent. The in vivo–in vitro correlation coefficient obtained from point-to-point analysis of self-made tablets was 0.9720. In conclusion, the prepared tablets were bioequivalent to the marketed tablets, according to both the in vitro release rate and extent of absorption, and a good in vivo–in vitro correlation was established for the self-made tablets that indicated in vitro dissolution tests could be used as a surrogate for bioavailability studies.

  18. Sustained nitric oxide (NO)-releasing compound reverses dysregulated NO signal transduction in priapism

    Science.gov (United States)

    Lagoda, Gwen; Sezen, Sena F.; Hurt, K. Joseph; Cabrini, Marcelo R.; Mohanty, Dillip K.; Burnett, Arthur L.

    2014-01-01

    We evaluated the therapeutic potential of a sustained nitric oxide (NO)-releasing compound to correct the molecular hallmarks and pathophysiology of priapism, an important but poorly characterized erectile disorder. 1,5-Bis-(dihexyl-N-nitrosoamino)-2,4-dinitrobenzene (C6′) and an inactive form of the compound [1,5-bis-(dihexylamino)-2,4-dinitrobenzene (C6)] were tested in neuronal cell cultures and penile lysates for NO release (Griess assay) and biological activity (cGMP production). The effect of local depot C6′ or C6 was evaluated in mice with a priapic phenotype due to double neuronal and endothelial NO synthase deletion (dNOS−/−) or human sickle hemoglobin transgenic expression (Sickle). Changes in NO signaling molecules and reactive oxygen species (ROS) surrogates were assessed by Western blot. The physiological response after C6′ treatment was assessed using an established model of electrically stimulated penile erection. C6′ generated NO, increased cGMP, and dose dependently increased NO metabolites. C6′ treatment reversed abnormalities in key penile erection signaling molecules, including phosphodiesterase type 5, phosphorylated endothelial nitric oxide synthase, and phosphorylated vasodilator-stimulated phosphoprotein. In Sickle mice, C6′ also attenuated the increased ROS markers gp91phox, 4-hydroxynonenal, and 3-nitrotyrosine. Finally, C6′ corrected the excessive priapic erection response of dNOS−/− mice. Exogenous sustained NO release from C6′ corrects pathological erectile signaling in mouse models of priapism and suggests novel approaches to human therapy.—Lagoda, G., Sezen, S. F., Hurt, K. J., Cabrini, M. R., Mohanty, D. K., Burnett, A. L. Sustained nitric oxide (NO)-releasing compound reverses dysregulated NO signal transduction in priapism. PMID:24076963

  19. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network.

    Science.gov (United States)

    Luo, Chunhong; Zhao, Jianhao; Tu, Mei; Zeng, Rong; Rong, Jianhua

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10(5), 1.26 ± 0.43 × 10(5), 0.96 ± 0.09 × 10(5), 0.64 ± 0.03 × 10(5), and 0.11 ± 0.01 × 10(5) respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of transdermal system containing nicotine by using sustained release dosage design.

    Science.gov (United States)

    Tirnaksiz, Figen; Yuce, Zeynep

    2005-09-01

    This study was carried out to develop a membrane-controlled transdermal formulation (TF) of nicotine by using sustained release dosage design (SRDD). TFs were prepared with polyethylene membrane as a rate-controlling barrier; a carbomer was used as the gel reservoir with or without propylene glycol (PG). The in vitro target flux (0.0535 mg cm(-2) h(-1)) was calculated according to SRDD calculations. Nicotine permeation through the membrane with or without transfer adhesive was also studied using diffusion cells. Nicotine permeated through membrane (without adhesive) with a flux of 0.0555 mg cm(-2) h(-1) and this value was similar to that of the in vitro target flux. The release from the TFs and from a commercial product (Nicotinell, 52.5 mg 30 cm(-2)) was studied using the FDA paddle method. The nicotine amount was increased from 22.7 to 56.5 mg in gel reservoir, and a plateau was reached beyond 45.4 mg of drug; the system attained the maximum thermodynamic activity with 56.5 mg of nicotine. The release rate from TFs (without adhesive layer) containing PG in the reservoir was very similar to the target release rate (1.07 mg h(-1)). The fluxes of nicotine from Nicotinell and TF containing 45.4 mg of nicotine were close to the in vitro target release rate.

  1. Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle.

    Science.gov (United States)

    Pantano, Daniele; Neubauer, Nicole; Navratilova, Jana; Scifo, Lorette; Civardi, Chiara; Stone, Vicki; von der Kammer, Frank; Müller, Philipp; Sobrido, Marcos Sanles; Angeletti, Bernard; Rose, Jerome; Wohlleben, Wendel

    2018-02-06

    Here we compare the standard European benchmark of wood treatment by molecularly dissolved copper amine (Cu-amine), also referred to as aqueous copper amine (ACA), against two nanoenabled formulations: copper(II)oxide nanoparticles (CuO NPs) in an acrylic paint to concentrate Cu as a barrier on the wood surface, and a suspension of micronized basic copper carbonate (CuCO 3 ·Cu(OH) 2 ) for wood pressure treatment. After characterizing the properties of the (nano)materials and their formulations, we assessed their effects in vitro against three fungal species: Coniophora puteana, Gloeophyllum trabeum, and Trametes versicolor, finding them to be mediated only partially by ionic transformation. To assess the use phase, we quantify both release rate and form. Cu leaching rates for the two types of impregnated wood (conventional and nanoenabled) are not significantly different at 172 ± 6 mg/m 2 , with Cu being released predominantly in ionic form. Various simulations of outdoor aging with release sampling by runoff, during condensation, by different levels of mechanical shear, all resulted in comparable form and rate of release from the nanoenabled or the molecular impregnated woods. Because of dissolving transformations, the nanoenabled impregnation does not introduce additional concern over and above that associated with the traditional impregnation. In contrast, Cu released from wood coated with the CuO acrylate contained particles, but the rate was at least 100-fold lower. In the same ranking, the effectiveness to protect against the wood-decaying basidiomycete Coniophora puteana was significant with both impregnation technologies but remained insignificant for untreated wood and wood coated by the acrylic CuO. Accordingly, a lifecycle-based sustainability analysis indicates that the CuO acrylic coating is less sustainable than the technological alternatives, and should not be developed into a commercial product.

  2. High-throughput NIR-chemometric methods for chemical and pharmaceutical characterization of sustained release tablets.

    Science.gov (United States)

    Porfire, Alina; Filip, Cristina; Tomuta, Ioan

    2017-05-10

    The aim of this study was the development and validation of methods based on near-infrared spectroscopy (NIRS) and chemometry, useful for characterization of sustained release (SR) tablets with indapamide, in terms of tablet composition (API and two excipients), in vitro drug release mechanism (k and n Peppas) and crushing strength. A calibration set consisting of 25 different tablets formulations containing API, HPMC and lactose at five different content levels in the range 100±20% relative to a targeted tablet composition, were manufactured by direct compression in order to develop the methods for prediction of tablet composition, and in vitro drug release mechanism. On the other hand, a 15 batches calibration set prepared at five different compression forces was used for development of methods for prediction of crushing strength. Moreover, independent batches were manufactured for validation of all methods Intact tablets were analyzed by transmission mode with NIRS, the spectra were pre-processed, and partial least square (PLS) regression was used to build prediction models. Cross-validation was carried out in order to select the optimal number of PLS factors for all models, and the best model was chosen based on their RMSECV and bias. All developed methods were validated in terms of trueness, precision and accuracy. Based on the validation results, the methods proposed in this work can successfully be applied for routine determination of indapamide, HPMC and lactose content of sustained release tablets, as well as for prediction of their in vitro drug release mechanism (k and n Peppas) and crushing strength. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Sustained-Release Membrane of Thiazolidinedione-8: Effect on Formation of a Candida/Bacteria Mixed Biofilm on Hydroxyapatite in a Continuous Flow Model

    Directory of Open Access Journals (Sweden)

    Mark Feldman

    2017-01-01

    Full Text Available Thiazolidinediones (TZDs have been found to act as effective quorum sensing quenchers, capable of preventing biofilm formation. Our previous studies demonstrated a profound antibiofilm effect of the TZD derivative thiazolidinedione-8 (S-8, either in solution or incorporated into a sustained-release membrane (SRM-S-8 under batch conditions. In the present study, we used a constant depth film fermenter model in order to investigate the impact of SRM-S-8 on mixed C. albicans-S. mutans biofilm development, under flow conditions. We found that essential parameters of cospecies biofilm maintenance and maturation, such as metabolic activity, biofilm thickness, roughness, extracellular polysaccharides production, and morphology of both pathogens, were altered by SRM-S-8 in the flow system. We propose that prolonged and sustained release of S-8 in a flow-through system allows better penetration of the active agent to deeper layers of the mixed biofilm, thereby increasing its activity against both pathogens. In conclusion, the use of a locally applied sustained-release drug delivery system of S-8 can affect the dental polymicrobial biofilm, resulting in clinical improvements and a better patient compliance.

  4. A Sustained-Release Membrane of Thiazolidinedione-8: Effect on Formation of a Candida/Bacteria Mixed Biofilm on Hydroxyapatite in a Continuous Flow Model

    Science.gov (United States)

    Feldman, Mark; Shenderovich, Julia; Lavy, Eran; Friedman, Michael

    2017-01-01

    Thiazolidinediones (TZDs) have been found to act as effective quorum sensing quenchers, capable of preventing biofilm formation. Our previous studies demonstrated a profound antibiofilm effect of the TZD derivative thiazolidinedione-8 (S-8), either in solution or incorporated into a sustained-release membrane (SRM-S-8) under batch conditions. In the present study, we used a constant depth film fermenter model in order to investigate the impact of SRM-S-8 on mixed C. albicans-S. mutans biofilm development, under flow conditions. We found that essential parameters of cospecies biofilm maintenance and maturation, such as metabolic activity, biofilm thickness, roughness, extracellular polysaccharides production, and morphology of both pathogens, were altered by SRM-S-8 in the flow system. We propose that prolonged and sustained release of S-8 in a flow-through system allows better penetration of the active agent to deeper layers of the mixed biofilm, thereby increasing its activity against both pathogens. In conclusion, the use of a locally applied sustained-release drug delivery system of S-8 can affect the dental polymicrobial biofilm, resulting in clinical improvements and a better patient compliance. PMID:29130039

  5. Montmorillonite-alginate nanocomposites as a drug delivery system: intercalation and in vitro release of vitamin B1 and vitamin B6.

    Science.gov (United States)

    Kevadiya, Bhavesh D; Joshi, Ghanshyam V; Patel, Hasmukh A; Ingole, Pravin G; Mody, Haresh M; Bajaj, Hari C

    2010-08-01

    Sustained intestinal delivery of thiamine hydrochloride (Vitamin B(1); VB(1)) and pyridoxine hydrochloride (Vitamin B(6); VB(6)) seems to be a feasible alternative to existing therapy. The vitamins (VB(1)/VB(6)) intercalated in montmorillonite (MMT) and intercalated VB(1)/VB(6)-MMT hybrid is further used for synthesis of VB(1)/VB(6)-MMT-alginate nanocomposite beads by gelation method and in vitro release in the intestinal environment. The structure and surface morphology of the synthesized VB(1)/VB(6)-MMT hybrid, VB(1)/VB(6)-alginate and VB(1)/VB(6)-MMT-alginate nanocomposite beads were characterized by XRD, FT-IR, TGA and SEM. In vitro release experiments revealed that the VB(1)/VB(6) releases suddenly from VB(1)/VB(6)-MMT hybrid and is pH dependent. The controlled release of VB(1)/VB(6) from VB(1)/VB(6)-MMT-alginate nanocomposite beads was observed to be controlled as compared to their release from VB(1)/VB(6)-MMT hybrid and VB(1)/VB(6)-alginate beads.

  6. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    Science.gov (United States)

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  7. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  8. Isosorbide-5-mononitrate (5-ISMN) sustained-release pellets prepared by double layer coating for reducing 5-ISMN migration and sublimation.

    Science.gov (United States)

    Li, Guofei; Han, Dandan; Guan, Tingting; Zhao, Xingna; He, Haibing; Tang, Xing

    2010-11-15

    The major aim of this study was to prepare isosorbide-5-mononitrate (5-ISMN) sustained-release pellets and evaluate their stability. The pellets were prepared by extrusion/spheronization, and then the core pellets were coated with ethylcellulose (EC 10cp) and Eudragit(®)NE30D. Here, EC was used as the subcoating agent while Eudragit(®)NE30D acted as the outer-coating agent. 5-ISMN sustained-release pellets as a novel drug delivery system contained the immediate-release portion in the outer-coating layer. Unexpectedly, 5-ISMN was found to migrate from the interior of the pellets to the surface forming needle crystals and exhibited the phenomenon of sublimation, which resulted in a tremendous increase in the release rate. Our research showed that the migration and sublimation of the active ingredient was related to the temperature and humidity. Polyvinylpyrrolidone (PVP K30) can affect the precipitation of 5-ISMN by forming a charge transfer complex between the drug and PVP, while hydroxypropyl methyl cellulose (HPMC E5) had no effect, and confirmed the correctness of this view through photographs and IR spectra. In the investigation of the stability, the results showed that there was no sublimation and migration while the pellets stored at 25°C/60%RH (ambient conditions) and 40°C/75% RH (stress conditions) during a 6-month period. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding

    2016-12-01

    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  10. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  11. Modulation of a pulsatile release drug delivery system using different swellable/rupturable materials.

    Science.gov (United States)

    El-Maradny, Hoda A

    2007-11-01

    Diclofenac sodium tablets consisting of core coated with two layers of swelling and rupturable coatings were prepared and evaluated as a pulsatile drug delivery system. Cores containing the drug were prepared by direct compression using microcrystalline cellulose and Ludipress as hydrophilic excipients with the ratio of 1:1. Cores were then coated sequentially with an inner swelling layer of different swellable materials; either Explotab, Croscarmellose sodium, or Starch RX 1500, and an outer rupturable layer of different levels of ethylcellulose. The effect of the nature of the swelling layer and the level of the rupturable coating on the lag time and the water uptake were investigated. Drug release rate studies were performed using USP paddle method. Results showed the dependence of the lag time and water uptake prior to tablet rupture on the nature of the swelling layer and the coating levels. Explotab showed a significant decrease in the lag time, followed by Croscarmellose sodium and finally by Starch RX 1500. Increasing the level of ethylcellulose coating retarded the diffusion of the release medium to the swelling layer and the rupture of the coat, thus prolonging the lag time.

  12. Heparinized collagen sutures for sustained delivery of PDGF-BB: Delivery profile and effects on tendon-derived cells In-Vitro.

    Science.gov (United States)

    Younesi, Mousa; Donmez, Baris Ozgur; Islam, Anowarul; Akkus, Ozan

    2016-09-01

    term studies are needed to confirm whether this proliferation is outweighs the moderate reduction in the expression of tendon-associated genes. A mechanically robust pure collagen suture was fabricated via linear electrocompaction and conjugated with heparin for prolonged delivery of PDFG-BB. Sustained delivery of the PDGF-BB improved the proliferation of tendon derived cells substantially at the expense of a moderate downregulation of tenogenic markers. The collagen threads were functionally applicable as epitendinous sutures when applied to chicken flexor tendons in vitro. Overall, electrocompacted collagen sutures holds potential to improve repair outcome in flexor tendon surgeries by improving cellularity and collagen production through delivery of the PDGF-BB. The bioinductive suture concept can be applied to deliver other growth factors for a wide-array of applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Formulation and in vivo evaluation of diclofenac sodium sustained release matrix tablet: effect of compression force.

    Science.gov (United States)

    Taha, Ehab Ibrahim; Shazly, Gamal Abdel-Ghany; Harisa, Gamaleldin Ibrahim; Barakat, Nahla Sedik; Al-Enazi, Fouza Kayem; Elbagory, Ibrahim Mostafa

    2015-03-01

    In the present study, Diclofenac Sodium (DS) matrix tablets were prepared by direct compression method under different compression forces (5, 10, 15 and 20 KN), using ethylcellulose as matrix forming material. The produced tablets were characterized on the foundation of satisfactory tablet properties such as hardness, friability, drug content, weight variations and in vitro drug release rate. Differential scanning calorimetry (DSC), Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction have been used to investigate any incompatibilities of the tablet's ingredients. Additionally, in vivo bioavailability has been investigated on beagle dogs. Data obtained revealed that, upon increasing compression force the in vitro drug release was sustained and the T(max) value was four hours (for formulations compressed at 15 and 20 kN) compared to the conventional voltarine(®) 50 tablets (T(max) value of 2 hours).

  14. Assembly of a Tripeptide and Anti-Inflammatory Drugs into Supramolecular Hydrogels for Sustained Release

    Directory of Open Access Journals (Sweden)

    Marina Kurbasic

    2017-08-01

    Full Text Available Supramolecular hydrogels offer interesting opportunities for co-assembly with drugs towards sustained release over time, which could be achieved given that the drug participates in the hydrogel nanostructure, and it is not simply physically entrapped within the gel matrix. dLeu-Phe-Phe is an attractive building block of biomaterials in light of the peptide’s inherent biocompatibility and biodegradability. This study evaluates the assembly of the tripeptide in the presence of either of the anti-inflammatory drugs ketoprofen or naproxen at levels analogous to commercial gel formulations. Fourier-transformed infrared (FT-IR, circular dichroism, Thioflavin T fluorescence, transmission electron microscopy (TEM, and oscillatory rheometry are used. Drug release over time is monitored by means of reverse-phase high performance liquid chromatography, and shows different kinetics for the two drugs.

  15. Modular approach for bimodal antibacterial surfaces combining photo-switchable activity and sustained biocidal release.

    Science.gov (United States)

    Pallavicini, Piersandro; Bassi, Barbara; Chirico, Giuseppe; Collini, Maddalena; Dacarro, Giacomo; Fratini, Emiliano; Grisoli, Pietro; Patrini, Maddalena; Sironi, Laura; Taglietti, Angelo; Moritz, Marcel; Sorzabal-Bellido, Ioritz; Susarrey-Arce, Arturo; Latter, Edward; Beckett, Alison J; Prior, Ian A; Raval, Rasmita; Diaz Fernandez, Yuri A

    2017-07-12

    Photo-responsive antibacterial surfaces combining both on-demand photo-switchable activity and sustained biocidal release were prepared using sequential chemical grafting of nano-objects with different geometries and functions. The multi-layered coating developed incorporates a monolayer of near-infrared active silica-coated gold nanostars (GNS) decorated by silver nanoparticles (AgNP). This modular approach also enables us to unravel static and photo-activated contributions to the overall antibacterial performance of the surfaces, demonstrating a remarkable synergy between these two mechanisms. Complementary microbiological and imaging evaluations on both planktonic and surface-attached bacteria provided new insights on these distinct but cooperative effects.

  16. Solid lipid particles for oral delivery of peptide and protein drugs I - Elucidating the release mechanism of lysozyme during lipolysis

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten B; Zhang, L.; Yang, M

    2013-01-01

    The mechanism of protein release from solid lipid particles was investigated by a new lipolysis model in a biorelevant medium containing both bile salts and phospholipids. Lysozyme, a model protein, was formulated into solid lipid particles using four different types of lipids, two triglycerides ...... the drug release mechanism from solid lipid particles and can potentially be used in rational selection of lipid excipients for oral delivery of peptide/protein drugs....

  17. Sustained release of antibiotic from poly(2-hydroxyethyl methacrylate) to prevent blinding infections after cataract surgery.

    Science.gov (United States)

    Anderson, Erin M; Noble, Misty L; Garty, Shai; Ma, Hongyan; Bryers, James D; Shen, Tueng T; Ratner, Buddy D

    2009-10-01

    Intraocular lens implantation after opacified natural lens removal is the primary treatment for cataracts in developed countries. Cataract surgery is generally considered safe, but entails significant risks in countries where sophisticated sterile operating theaters are not widely available. Post-operative infection (endophthalmitis) is a potential blinding complication. Infection often results from bacterial colonization of the new lens implant and subsequent antibiotic-tolerant biofilm formation. To combat this risk, we developed a polymeric hydrogel system that can deliver effective levels of antibiotic over an extended period of time within the globe of the eye. Norfloxacin antibiotic was loaded into cross-linked poly(2-hydroxyethyl methacrylate) (pHEMA) gels, which were subsequently surface-modified with octadecyl isocyanate to produce a hydrophobic rate-limiting barrier controlling norfloxacin release. Octadecyl surface modification was characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A 15-min modification leads to a uniform surface coating and near zero order release of norfloxacin from the matrix. Norfloxacin released from coated pHEMA kills Staphylococcus epidermidis in suspension and on a simulated medical implant surface. With these data, we demonstrate a new and effective system for sustained drug release from a hydrogel matrix with specific application for intraocular lens surgery.

  18. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC.

    Science.gov (United States)

    Dong, Xia; Sun, Zhiting; Wang, Xiaoxiao; Zhu, Dunwan; Liu, Lanxia; Leng, Xigang

    2017-11-01

    Monitoring drug release and therapeutic efficacy is crucial for developing drug delivery systems. Our preliminary study demonstrated that, as compared with pristine multiwalled carbon nanotubes (MWCNTs), transactivator of transcription (TAT)-chitosan functionalized MWCNTs (MWCNTs-TC) were a more promising candidate for drug delivery in cancer therapy. In the present study, a MWCNTs/TC-based drug delivery system was developed for an anticancer drug, doxorubicin (DOX). The drug loading and in vitro release profiles, cellular uptake and cytotoxicity were assessed. More importantly, the in vivo drug release and antitumor effect of MWCNTs/DOX/TC were evaluated by noninvasive fluorescence and bioluminescence imaging. It was demonstrated that MWCNTs/DOX/TC can be efficiently taken up by BEL-7402 hepatoma cells. The release of DOX from MWCNTs/DOX/TC was faster under lower pH condition, which was beneficial for intrcellular drug release. The in vivo release process of DOX and antitumor effect in animal model were monitored simultaneously by noninvasive fluorescence and luminescence imaging, which demonstrated the application potential of MWCNTs/DOX/TC for cancer therapy.

  19. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam); Tran, Van-Thanh [Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City (Viet Nam); Duan, Wei [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Phuong Ha-Lien, E-mail: phuong.tran1@deakin.edu.au [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Thao Truong-Dinh, E-mail: ttdthao@hcmiu.edu.vn [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-10-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  20. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes.

    Science.gov (United States)

    Hollander, Priscilla; Gupta, Alok K; Plodkowski, Raymond; Greenway, Frank; Bays, Harold; Burns, Colleen; Klassen, Preston; Fujioka, Ken

    2013-12-01

    To assess the efficacy and safety of 32 mg naltrexone sustained-release (SR)/360 mg bupropion SR (NB) in overweight/obese individuals with type 2 diabetes with or without background oral antidiabetes drugs. This was a 56-week, double-blind, placebo-controlled study in which 505 patients received standardized lifestyle intervention and were randomized 2:1 to NB or placebo. Coprimary end points were percent weight change and achievement of ≥5% weight loss. Secondary end points included achievement of HbA1c blood glucose, and lipids. In the modified intent-to-treat population (54% female, 80% Caucasian, and mean age 54 years, weight 106 kg, BMI 37 kg/m(2), and HbA1c 8.0% [64 mmol/mol]), NB resulted in significantly greater weight reduction (-5.0 vs. -1.8%; P select cardiovascular risk factors and was generally well tolerated with a safety profile similar to that in patients without diabetes.

  1. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer

    NARCIS (Netherlands)

    Rahimian, Sima; Fransen, Marieke F.; Kleinovink, Jan Willem; Amidi, Maryam; Ossendorp, Ferry; Hennink, Wim E.

    2015-01-01

    This study investigated the feasibility of the use of polymeric microparticles for sustained and local delivery of immunomodulatory antibodies in immunotherapy of cancer. Local delivery of potent immunomodulatory antibodies avoids unwanted systemic side effects while retaining their anti-tumor

  2. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    Directory of Open Access Journals (Sweden)

    Zeng SG

    2015-05-01

    Full Text Available Shuguang Zeng,1,* Manwen Ye,1,2,* Junqi Qiu,1 Wei Fang,1 Mingdeng Rong,1 Zehong Guo,1 Wenfen Gao11Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, 2Department of Stomatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: We report the effects of distinct concentrations of genipin and silk fibroin (SF:chitosan (CS ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA, and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 µm to 147 µm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the

  3. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  4. Sustained Release of Prindopril Erbumine from Its Chitosan-Coated Magnetic Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Dena Dorniani

    2013-12-01

    Full Text Available The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE. Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE. The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated, cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.

  5. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin.

    Science.gov (United States)

    Marcos, Xelhua; Pérez-Casas, Silvia; Llovo, José; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2016-03-16

    Supramolecular gels of poloxamer-hydroxyethyl cellulose (HEC)-α-cyclodextrin (αCD) were developed aiming to obtain synergisms regarding solubilization and sustained release of griseofulvin for topical application. The effects of αCD concentration (0-10%w/w) on the phase behavior of aqueous dispersions of Pluronic(®) P123 (14%w/w) mixed with HEC (2%w/w) were evaluated at 4, 20 and 37°C. The cooperative effects of the inclusion complex formation between poly(ethylene oxide) (PEO) blocks and HEC with αCD prevented phase separation and led to supramolecular networks that solubilize the antifungal drug. Rheological and bioadhesive properties of gels with and without griseofulvin could be easily tuned modulating the polymers proportions. Supramolecular gels underwent sol-gel transition at lower temperature than P123 solely dispersions and enabled drug sustained release for at least three weeks. All gels demonstrated good biocompatibility in the HET-CAM test. Furthermore, the drug-loaded gels showed activity against Trichophyton rubrum and Trichophyton mentagrophytes and thus may be useful for the treatment of tinea capitis and other cutaneous fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A dual strategy to improve psychotic patients’ compliance using sustained release quetiapine oral disintegrating tablets

    Directory of Open Access Journals (Sweden)

    Refaat Ahmed

    2016-12-01

    Full Text Available Quetiapine (QT is a short acting atypical antipsychotic drug effective in schizophrenia and bipolar disorder. This study aims at designing a novel dosage form of sustained release taste-masked QT orally disintegrating tablets (ODTs based on solid lipid micro-pellets (SLMPs. QT SLMPs were prepared using the hot melt extrusion technique and utilizing three lipid carriers: Compritol, Precirol and white beeswax either alone or in mixtures. They showed sustained QT release and a taste masking effect. The selected QT SLMP was further blended with an aqueous solution containing polyvinylpyrollidone (2.5 %, croscarmellose sodium (2 % and mannitol (50 %; it was then lyophilized into ODT in a mass ratio of 1:2, respectively. ODTs containing QT SLMPs showed: average wetting time (40.92 s, average oral disintegration time (21.49 s, average hardness (16.85 N and also imparted suitable viscosity to suspend pellets during the lyophilization process. In conclusion, lyophilization is a promising technique for the formulation of multiparticulate systems into ODTs.

  7. A dual strategy to improve psychotic patients' compliance using sustained release quetiapine oral disintegrating tablets.

    Science.gov (United States)

    Refaat, Ahmed; Sokar, Magda; Ismail, Fatma; Boraei, Nabila

    2016-12-01

    Quetiapine (QT) is a short acting atypical antipsychotic drug effective in schizophrenia and bipolar disorder. This study aims at designing a novel dosage form of sustained release taste-masked QT orally disintegrating tablets (ODTs) based on solid lipid micro-pellets (SLMPs). QT SLMPs were prepared using the hot melt extrusion technique and utilizing three lipid carriers: Compritol, Precirol and white beeswax either alone or in mixtures. They showed sustained QT release and a taste masking effect. The selected QT SLMP was further blended with an aqueous solution containing polyvinylpyrollidone (2.5 %), croscarmellose sodium (2 %) and mannitol (50 %); it was then lyophilized into ODT in a mass ratio of 1:2, respectively. ODTs containing QT SLMPs showed: average wetting time (40.92 s), average oral disintegration time (21.49 s), average hardness (16.85 N) and also imparted suitable viscosity to suspend pellets during the lyophilization process. In conclusion, lyophilization is a promising technique for the formulation of multiparticulate systems into ODTs.

  8. Higher quality quercetin sustained release ethyl cellulose nanofibers fabricated using a spinneret with a Teflon nozzle.

    Science.gov (United States)

    Li, Chen; Wang, Zhuan-Hua; Yu, Deng-Guang

    2014-02-01

    This study investigates the usage of a spinneret with a Teflon nozzle for fabrication of higher quality drug sustained-release electrospun nanofibers. Ethyl cellulose (EC) and quercetin were used as a filament-forming polymer matrix and an active pharmaceutical ingredient, respectively. The electrospinning was conducted using both a traditional stainless steel spinneret and a spinneret with a Teflon nozzle. Experimental results demonstrated that a Teflon-fluid interface at the spinneret's nozzle provided a better performance for implementing electrospinning than a traditional metal-fluid interface in the following aspects: (1) keeping more electrical energy on the working fluids for an efficacious process; (2) exerting less negative effect on the fluid to draw it back to the tube; and (3) making less possibility of clogging. The resulted nanofibers from the spinneret with a Teflon nozzle exhibited higher quality than those from the traditional spinneret in those: (1) smaller diameter and narrower distribution, 520±70 nm for the former and 750±280 nm for the later, as indicated by the field emission scanning electron microscopic images; and (2) better sustained-release profiles of quercetin from the former than the latter, as demonstrated by the in vitro dissolution tests. The new protocols about usage of Teflon as a spinneret's nozzle and the related knowledge disclosed here should promote the preparation and application of electrospun functional nanofibers. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method

    DEFF Research Database (Denmark)

    Cui, Fude; Yang, Mingshi; Jiang, Yanyan

    2003-01-01

    that the particle size of microspheres was determined mainly by the agitation speed. The dissolution rate of nitrendipine from microspheres was enhanced significantly with increasing the amount of dispersing agents, and sustained by adding retarding agents. The release rate of microspheres could be controlled...... as amorphous state. The release profiles and content of the microspheres stored at a temperature of 40 degrees C and a relative humidity of 75% were unchanged during 3 months of accelerating condition of storage. And the relative bioavailability of the sustained-release microspheres compared with the Baypress...

  10. Gastro-floating bilayer tablets for the sustained release of metformin and immediate release of pioglitazone: preparation and in vitro/in vivo evaluation.

    Science.gov (United States)

    He, Wei; Li, Yongji; Zhang, Rao; Wu, Zhannan; Yin, Lifang

    2014-12-10

    Owing to the complementary mechanisms of action of metformin hydrochloride (MH) and pioglitazone hydrochloride (PG), combination therapy for type 2 diabetes mellitus using the two drugs is highly desired; on the other hand, MH is not well absorbed in lower gastrointestinal tract and has a short half-life, therefore compromising the therapeutic effects. Herein, the present study was to develop gastro-floating bilayer matrix tablets in which the two drugs were incorporated into two separate layers, aiming at sustaining MH release with enhanced absorption and achieving immediate release of PG. The tablets of the optimized formulation floated on the test medium for more than 24 h with 5 min of floating lag time, and sustained MH release for 12 h via a diffusion-dependent manner; and complete release of PG within 5 min were achieved. Moreover, a steady plasma concentration of MH with a 1.5-fold increase in bioavailability, decreased C(max) and reduced T(max) was obtained, and the in vivo behavior of PG was similar to the marked product. Summarily, sustained MH release with improved absorption and immediate release of PG were obtained simultaneously using the gastro-floating bilayer tablet, allowing strengthened combination therapy for diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cell-mediated BMP-2 release from a novel dual-drug delivery system promotes bone formation

    NARCIS (Netherlands)

    Liu, T.; Wu, G.; Zheng, Y.; Wismeijer, D.; Everts, V.; Liu, Y.

    2014-01-01

    Objectives In this study, a novel biomimetic calcium phosphate bone substitute (BioCaP) is introduced as a dual-drug release system with two drug/protein delivery modes: protein is incorporated into (i) the interior of BioCaP (an internal depot); and (ii) a superficial calcium phosphate coating on

  12. In vitro release kinetics of gentamycin from a sodium hyaluronate gel delivery system suitable for the treatment of peripheral vestibular disease.

    Science.gov (United States)

    Kelly, R M; Meyer, J D; Matsuura, J E; Shefter, E; Hart, M J; Malone, D J; Manning, M C

    1999-01-01

    For certain patients who experience intense vertigo arising from unilateral vestibular lesions, the primary therapy is a vestibular nerve section, an intracranial surgical procedure. One alternative to this treatment is therapeutic ablation of vestibular function on the unaffected side using an ototoxic agent. We prepared a biodegradable sustained-release gel delivery system using sodium hyaluronate that can be administered into the middle ear using only a local anesthetic. The gel contains gentamycin sulfate, the ototoxic agent of choice for treatment of unilateral vestibulopathy, and it exhibits diffusion-controlled release of the drug over a period of hours. The released gentamycin could then diffuse into the inner ear through the round membrane. This represents an important advance over previous formulations, which used only gentamycin sulfate solutions, in that it should allow more careful control of the dose, it should reduce loss of the drug from the middle ear site, and it should maintain intimate contact with the round membrane. By carefully controlling the dose, it should be possible to inhibit vestibular function while minimizing hearing loss. Herein we describe the in vitro release kinetics of gentamycin sulfate from sodium hyaluronate gels and find that the system obeys Fickian behavior.

  13. Well-defined degradable brush polymer-drug conjugates for sustained delivery of Paclitaxel.

    Science.gov (United States)

    Yu, Yun; Chen, Chih-Kuang; Law, Wing-Cheung; Mok, Jorge; Zou, Jiong; Prasad, Paras N; Cheng, Chong

    2013-03-04

    To achieve a conjugated drug delivery system with high drug loading but minimal long-term side effects, a degradable brush polymer-drug conjugate (BPDC) was synthesized through azide-alkyne click reaction of acetylene-functionalized polylactide (PLA) with azide-functionalized paclitaxel (PTXL) and poly(ethylene glycol) (PEG). Well-controlled structures of the resulting BPDC and its precursors were verified by (1)H NMR and gel permeation chromatography (GPC) characterizations. With nearly quantitative click efficiency, drug loading amount of the BPDC reached 23.2 wt %. Both dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM) imaging indicated that the BPDC had a nanoscopic size around 10-30 nm. The significant hydrolytic degradability of the PLA backbone of the BPDC was confirmed by GPC analysis of its incubated solution. Drug release study showed that PTXL moieties can be released through the cleavage of the hydrolyzable conjugation linkage in pH 7.4 at 37 °C, with 50% release in about 22 h. As illustrated by cytotoxicity study, while the polymeric scaffold of the BPDC is nontoxic, the BPDC exhibited higher therapeutic efficacy toward MCF-7 cancer cells than free PTXL at 0.1 and 1 μg/mL. Using Nile red as encapsulated fluorescence probe, cell uptake study showed effective internalization of the BPDC into the cells.

  14. Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Wenjia Guo

    2015-10-01

    Full Text Available The purpose of this study was to develop a PLGA microspheres-based donepezil (DP formulation which was expected to sustain release of DP for one week with high encapsulation efficiency (EE. DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method. The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size, morphology, drug loading and EE, physical state of DP in the matrix and in vitro and in vivo release behavior. DP microspheres were prepared successfully with average diameter of 30 µm, drug loading of 15.92 ± 0.31% and EE up to 78.79 ± 2.56%. Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface. Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres. The Tg of PLGA was increased with the addition of DP. The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model, which suggested the diffusion governing release mechanism. After single-dose administration of DP microspheres via subcutaneous injection in rats, the plasma concentration of DP reached peak concentration at 0.50 d, and then declined gradually, but was still detectable at 15 d. A good correlation between in vitro and in vivo data was obtained. The results suggest the potential use of DP microspheres for treatment of Alzheimer's disease over long periods.

  15. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension.

    Science.gov (United States)

    Cheng, Yung-Hsin; Hung, Kuo-Hsuan; Tsai, Tung-Hu; Lee, Chia-Jung; Ku, Ruy-Yu; Chiu, Allen Wen-Hsiang; Chiou, Shih-Hwa; Liu, Catherine Jui-Ling

    2014-10-01

    Glaucoma is an irreversible ocular disease that may lead to progressive visual field loss and eventually to blindness with inadequately controlled intraocular pressure (IOP). Latanoprost is one of the most potent ocular hypotensive compounds, the current first-line therapy in glaucoma. However, the daily instillation required for efficacy and undesirable side-effects are major causes of treatment adherence failure and persistence in glaucoma therapy. In the present study, we developed an injectable thermosensitive chitosan/gelatin/glycerol phosphate (C/G/GP) hydrogel as a sustained-release system of latanoprost for glaucoma treatment. The latanoprost-loaded C/G/GP hydrogel can gel within 1min at 37°C. The results show a sustained release of latanoprost from C/G/GP hydrogel in vitro and in vivo. The latanoprost-loaded C/G/GP hydrogel showed a good in vitro and in vivo biocompatibility. A rabbit model of glaucoma was established by intravitreal injection of triamcinolone acetonide. After a single subconjunctival injection of latanoprost-loaded C/G/GP hydrogel, IOP was significantly decreased within 8days and then remained at a normal level. The results of the study suggest that latanoprost-loaded C/G/GP hydrogel may have a potential application in glaucoma therapy. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Pharmacokinetics of diltiazem hydrochloride delay-onset sustained-release pellet capsules in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Xi-Qing Yan

    2013-03-01

    Full Text Available The pharmacokinetics (PK of ordinary tablets and sustained release capsules of diltiazem hydrochloride in human clinical trials had been studied. The PK of diltiazem hydrochloride delay-onset sustained-release pellet capsules, a new dosage form, has not been reported, although it is very important to clinical use. In this paper, we investigated the PK of diltiazem hydrochloride delay-onset sustained-release pellet capsules and the food influence in Chinese healthy volunteers. The PK parameters indicated that the diltiazem hydrochloride delay-onset sustained-release pellet capsules appeared marked characteristics of delayed and controlled release. An opened-label, randomized and parallel clinical trial was conducted in 36 Chinese healthy volunteers with single oral dose (90 mg, 180 mg or 270 mg and a multiple oral dose (90 mg d-1×6 d administration. The effect of food on the PK of one single oral dose (360 mg was investigated in 24 healthy Chinese volunteers. Plasma diltiazem concentration was determined by reversed-phase high-performance liquid chromatography (RP-HPLC and the main pharmacokinetic parameters were analyzed by PKSolver (Ver 2.0. All clinical studies were conducted in the Clinical Pharmacological Center (No. JDX1999064 of Xiangya Hospital Affiliated Central South University, China. The PK parameters suggested that the new formulation had marked characteristics of delayed and controlled release of diltiazem, and food intake did not alter significantly diltiazem pharmacokinetic parameters.Embora a farmacocinética (PK do cloridrato de diltiazem nas formas de comprimidos de liberação imediata e cápsulas de liberação modificada em ensaios clínicos já tenha sido relatada, a pesquisa da PK do cloridrato de diltiazem na forma de cápsulas com peletes de liberação retardada e sustentada ainda é muito importante. Neste trabalho, propusemos avaliar a farmacocinética do cloridrato de diltiazem administrado através desta nova forma

  17. Evaluation of gum mastic (Pistacia lentiscus as a microencapsulating and matrix forming material for sustained drug release

    Directory of Open Access Journals (Sweden)

    Dinesh M. Morkhade

    2017-09-01

    Full Text Available In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS and diltiazem hydrochloride (DLTZ were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 µm and 50–87%, respectively. Increase in mastic: drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation, and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.

  18. HPLC determination and steady-state bioavailability study of levodropropizine sustained-release tablets in dogs.

    Science.gov (United States)

    Yan, Lin; Li, Tongling; Zhang, Rongqin; Xu, Xiaohong; Zheng, Pengcheng

    2006-06-01

    A simple HPLC method using UV detection was developed and validated for the determination of levodropropizine (LDP) in dog plasma. The sample was prepared for injection using a liquid-liquid extraction method with 1-phenypiperazine as the internal standard. The mobile phase was methanol-diethylamine solution (0.05 M) (20:80, v/v, pH adjusted to 3.0 with H3PO4) with a detection wavelength of 240 nm. The limit of quantitation (LOQ) of LDP in a biological matrix was determined to be 25.25 ng/mL. The calibration curve was linear across the concentration range of 25.25 to 2020 ng/mL. The intra-day and inter-day precision values (CV %) were within 7% and accuracy (R.E. %) was within 6% of the nominal values for medium (252.5 ng/mL) and high (2020 ng/mL) LDP concentrations. For the LDP concentration at the LOQ, the intra-day and inter-day precision and accuracy were within 20% and 10%, respectively. The average absolute recovery for LDP was 70.28%. This method was successfully used to analyze plasma samples in a steady-state bioavailability study of a newly developed sustained-release LDP tablets (SR) using immediate-release tablets (IR) as the reference. The relative bioavailability of the SR was determined to be 106.3 +/- 12.8% (n=6). The Cmax of the SR was significantly lower (P<0.05), and the tmax was significantly longer than that of the IR (P<0.05). The results of ANOVA and two one-sided tests indicated that the SR exhibited acceptable sustained release properties and was bioequivalent to the IR.

  19. Clinical Assessment of Urinary Tract Damage during Sustained-Release Estrogen Supplementation in Mice.

    Science.gov (United States)

    Collins, Dalis E; Mulka, Kathleen R; Hoenerhoff, Mark J; Taichman, Russell S; Villano, Jason S

    2017-02-01

    Estrogen supplementation is a key component of numerous mouse research models but can adversely affect the urinary system. The goal of this study was to develop a clinical scoring system and identify biomarkers of occult urinary tract lesions prior to the development of systemic illness in mice. Ovariectomized or sham-surgery SCID mice were implanted subcutaneously with a placebo pellet or one containing sustained-release estradiol (0.18 mg 60-d release 17β-estradiol). Mice were assessed twice weekly for 4 to 6 wk by using a clinical scoring system that included body condition, general activity, posture, hair coat, hydration, abdominal distension, urine staining of coat and skin, and ability to urinate. Samples were collected weekly for urinalysis, BUN, creatinine, and serum estradiol levels. Terminal samples were analyzed for histopathologic lesions. Compared with placebo controls, estradiolsupplemented mice had higher serum estradiol levels at weeks 2 and 3; significant differences in total clinical scores by the 3-wk time point; and in body condition, general activity, posture, hair coat, and urine staining scores by the 6-wk terminal time point. Urinary tract lesions included hydronephrosis, pyelonephritis, cystitis, and urolithiasis. All mice with urolithiasis had crystalluria, and 5 of the 6 mice with pyelonephritis or hydroureter had dilute urine (that is, specific gravity less than 1.030). However, these findings were not specific to mice with lesions. A total clinical score of 3.5 (maximum, 24) identified estradiol-supplemented mice with 83% specificity and 50% sensitivity, but no single clinical parameter, biomarker, or the total clinical score accurately predicted occult urinary tract lesions. Considering the lesions we observed, prudence is warranted when using pelleted sustained-release estradiol in mice, and important parameters to monitor for animal health include urine staining, body condition score, urine sediment, and urine specific gravity.

  20. The preparation of the sustained release metformin hydrochloride microcapsules by the Wurster fluidized bed.

    Science.gov (United States)

    Cao, Jin; Liu, Hongfei; Pan, Weisan; Sun, Changshan; Feng, Yingshu; Zhong, Hui; Shi, Shuang Shuang; He, Yan

    2014-07-01

    The main objective of this study was to prepare sustained release metformin hydrochloride microcapsules by the Wurster fluidized bed and to obtain the optimized coating process and formulation. Fine microcapsules without agglomeration were obtained in a continuous coating process with the atomization air pressure of 0.2Mpa and an appropriate coating speed temperature. With other design variables of coating process fixed, the effects of different fluidizing air volume, coating temperature, coating speed, coating material, coating materials amount, plasticizer type and plasticizer amount on drug release were investigated respectively. Coating solution was achieved by dissolving EC45cps of 21 g, EC100cps of 7 g, DBS of 2.8 g and talcum powder of 8 g in ethanol to get a final volume of 500 ml. Particles of 150g along with 500mL coating solution would be fine. The results showed that with the air volume of 35 m3•h-1, coating temperature of 35o, coating speed of 6 mL•min-1 and proper amount of coating solution, fine microcapsules were obtained. The mean diameter of the microcapsules obtained eventually were 213 μm and the drug content were 23%, which was suitable for producing a suspension. Particle diameter distribution corresponded to the normal distribution and obviously prolonged drug-release was achieved.

  1. Water hyacinth: a possible alternative rate retarding natural polymer used in sustained release tablet design.

    Science.gov (United States)

    Khatun, Sabera; Sutradhar, Kumar B

    2014-01-01

    In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations.

  2. WATER HYACINTH: A POSSIBLE ALTERNATIVE RATE RETARDING NATURAL POLYMER USED IN SUSTAINED RELEASE TABLET DESIGN

    Directory of Open Access Journals (Sweden)

    Sabera eKhatun

    2014-06-01

    Full Text Available In recent years natural polymers have been widely used, because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5%, 10%, 15%, 20%, 25% and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr’s Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR, Differential Scanning Calorimetry (DSC and Scanning Electron Microscopy (SEM studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37oC ± 0.5 temperature, for 8 hours. All the formulations comply with both BP and USP requirements, but among all the formulations F-1 (5% of Water hyacinth was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations.

  3. IPX066 , a mixed immediate/sustained-release levodopa preparation for Parkinson's disease.

    Science.gov (United States)

    Ondo, William

    2014-10-01

    L-DOPA has long been the 'gold standard' treatment for Parkinson's disease (PD), but suffers from poor oral bioavailability and rapid pharmacokinetic elimination. A longer acting preparation has long been sought. We conducted PubMed search for IPX066 and reviewed abstracts from meetings that included the topic of PD. IPX066 is a novel mixed immediate release (IR) and sustained-release levodopa preparation designed to prolong the clinical effect of a single dose. Pharmacokinetic studies demonstrate similar time to peak dose as regular IR L-DOPA, but a longer duration of time with > 50% of peak dose. This contrasts with available controlled release preparations that have a delay to onset. Clinic trials in fluctuating PD patients show that IPX066 provided more 'on' time despite fewer daily doses, compared to IR L-DOPA. As expected, it was also superior to placebo in early PD. However, it is not known whether it can achieve l-DOPA levels that are continuous enough to delay the onset of fluctuations when given early in the disease. Although not a radical advance in L-DOPA therapy, the drug will clearly have a role in more advanced patients taking multiple L-DOPA doses and may have a role as first-line therapy when starting l-DOPA.

  4. An epichlorohydrin-crosslinked semi-interpenetrating GG-PEO network as a xerogel matrix for sustained release of sulpiride.

    Science.gov (United States)

    Hoosain, Famida G; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; du Toit, Lisa C; Pillay, Viness

    2014-10-01

    The current study involved the development of a novel sustained release crosslinked semi-IPN xerogel matrix tablet prepared by chemical crosslinking of poly(ethylene) oxide (PEO) and gellan gum (GG) employing epichlorohydrin (EPI) as crosslinker. A Box-Behnken design was employed for the statistical optimization of the matrix system to ascertain the ideal combination of native polymeric and crosslinking agents. Characterization studies were performed by employing standard polymer characterization techniques such as Fourier transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy. Formulated matrix tablets displayed zero-order release kinetics, extending over 24 h. The mechanism of drug release was primarily by swelling and surface erosion. Crosslinked semi-IPN xerogel matrix tablets were compared to non-crosslinked polymer blends; results from the study conducted showed that the physiochemical properties of the PEO and GG were sufficiently modified to allow for sustained release of sulpiride with a 100% drug release at 24 h in a controlled manner as compared to non-crosslinked formulations which displayed further release beyond the test period. Crosslinked formulations displayed water uptake between 450 and 500% indicating a controlled rate of swelling and erosion allowing for sustained release. Surface morphology of the crosslinked system depicted a porous structure formed by interpenetrating networks of polymers, allowing for a greater degree of controlled penetration into the system affording it the ability to sustain drug release. Therefore, conclusively, based on the study performed, crosslinked PEO-GG allows for the sustained release of sulpiride from a hydrophilic semi-IPN xerogel matrix system.

  5. Sustained Local Delivery of siRNA from an Injectable Scaffold

    Science.gov (United States)

    Nelson, Christopher E.; Gupta, Mukesh K.; Adolph, Elizabeth J.; Shannon, Joshua M.; Guelcher, Scott A.; Duvall, Craig L.

    2011-01-01

    Controlled gene silencing technologies have significant, unrealized potential for use in tissue regeneration applications. The design described herein provides a means to package and protect siRNA within pH-responsive, endosomolytic micellar nanoparticles (si-NPs) that can be incorporated into nontoxic, biodegradable, and injectable polyurethane (PUR) tissue scaffolds. The si-NPs were homogeneously incorporated throughout the porous PUR scaffolds, and they were shown to be released via a diffusion-based mechanism for over three weeks. The siRNA-loaded micelles were larger but retained nano particulate morphology of approximately 100 nm diameter following incorporation into and release from the scaffolds. PUR scaffold releasate collected in vitro in PBS at 37°C for 1–4 days was able to achieve dose-dependent siRNA-mediated silencing with approximately 50% silencing achieved of the model gene GAPDH in NIH3T3 mouse fibroblasts. This promising platform technology provides both a research tool capable of probing the effects of local gene silencing and a potentially high-impact therapeutic approach for sustained, local silencing of deleterious genes within tissue defects. PMID:22061489

  6. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yun; Ling, Li; Li, Xiaofang [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Chen, Meng [Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Su, Likai, E-mail: zhangdong19992003@163.com [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China)

    2015-03-15

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.

  7. Constraints in animal health service delivery and sustainable improvement alternatives in North Gondar, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hassen Kebede

    2014-02-01

    Full Text Available Poor livestock health services remain one of the main constraints to livestock production in many developing countries, including Ethiopia. A study was carried out in 11 districts of North Gondar, from December 2011 to September 2012, with the objective of identifying the existing status and constraints of animal health service delivery, and thus recommending possible alternatives for its sustainable improvement. Data were collected by using pre-tested questionnaires and focus group discussion. Findings revealed that 46.34% of the responding farmers had taken their animals to government veterinary clinics after initially trying treatments with local medication. More than 90.00% of the clinical cases were diagnosed solely on clinical signs or even history alone. The antibacterial drugs found in veterinary clinics were procaine penicillin (with or without streptomycin, oxytetracycline and sulphonamides, whilst albendazole, tetramisole and ivermectin were the only anthelmintics. A thermometer was the only clinical aid available in all clinics, whilst only nine (45.00% clinics had a refrigerator. In the private sector, almost 95.00% were retail veterinary pharmacies and only 41.20% fulfilled the requirement criteria set. Professionals working in the government indicated the following problems: lack of incentives (70.00%, poor management and lack of awareness (60.00% and inadequate budget (40.00%. For farmers, the most frequent problems were failure of private practitioners to adhere to ethical procedures (74.00% and lack of knowledge of animal diseases and physical distance from the service centre (50.00%. Of all responding farmers, 58.54% preferred the government service, 21.14% liked both services equally and 20.33% preferred the private service. Farmers’ indiscriminate use of drugs from the black market (23.00% was also mentioned as a problem by private practitioners. Sustainable improvement of animal health service delivery needs increased

  8. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats.

    Science.gov (United States)

    Boyd, Ben J; Khoo, Shui-Mei; Whittaker, Darryl V; Davey, Greg; Porter, Christopher J H

    2007-08-01

    Liquid crystalline phases that are stable in excess water, formed using lipids such as glyceryl monooleate (GMO) and oleyl glycerate (OG), are known to provide a sustained release matrix for poorly water soluble drugs in vitro, yet there has been no report of the use of these materials to impart oral sustained release behaviour in vivo. In the first part of this study, in vitro lipolysis experiments were used to compare the digestibility of GMO with a second structurally related lipid, oleyl glycerate, which was found to be less susceptible to hydrolysis by pancreatic lipase than GMO. Subsequent oral bioavailability studies were conducted in rats, in which a model poorly water soluble drug, cinnarizine (CIN), was administered orally as an aqueous suspension, or as a solution in GMO or OG. In the first bioavailability study, plasma samples were taken over a 30 h period and CIN concentrations determined by HPLC. Plasma CIN concentrations after administration in the GMO formulation were only sustained for a few hours after administration while for the OG formulation, the plasma concentration of cinnarizine was at its highest level 30 h after dosing, and appeared to be increasing. A second study in which CIN was again administered in OG, and plasma samples taken for 120 h, revealed a Tmax for CIN in rats of 36 h and a relative oral bioavailability of 344% when compared to the GMO formulation (117%) and the aqueous suspension formulation (assigned a nominal bioavailability of 100%). The results indicate that lipids that form liquid crystalline structures in excess water, may have application as an oral sustained release delivery system, providing they are not digested rapidly on administration.

  9. Effects of immediate-release opioid on memory functioning: a randomized-controlled study in patients receiving sustained-release opioids.

    Science.gov (United States)

    Kamboj, S K; Conroy, L; Tookman, A; Carroll, E; Jones, L; Curran, H V

    2014-11-01

    The effects of opioid medication on cognitive functioning in patients with cancer and non-cancer pain remain unclear. In this mechanistic randomized, double-blind, placebo-controlled, cross-over study of patients (n = 20) receiving sustained-release and immediate-release opioid medication as part of their palliative care, we examine memory effects of an additional dose of participants' immediate-release medication (oxycodone or morphine) or placebo. Immediate prose recall and recall of related and unrelated word pairs was assessed pre-and post-drug (placebo or immediate-release opioid). Memory for these stimuli was also tested after a delay on each testing occasion. Finally, performance on an 'interference' word pair task was assessed on the two testing occasions since proactive interference has been posited as a mechanism for acute opioid-induced memory impairment. Unlike previous work, we found no evidence of memory impairment for material presented before or after individually tailored, 'breakthrough' doses of immediate-release opioid. Furthermore, immediate-release opioid did not result in increased memory interference. On the other hand, we found enhanced performance on the interference word pair task after immediate-release opioid, possibly indicating lower levels of interference. These results suggest that carefully titrated immediate-release doses of opioid drugs may not cause extensive memory impairment as previously reported, and in fact, may improve memory in certain circumstances. Importantly, our findings contrast strikingly with those of a study using the same robust design that showed significant memory impairment. We propose that factors, such as depressive symptoms, education level and sustained-release opioid levels may influence whether impairment is observed following immediate-release opioid treatment. © 2014 European Pain Federation - EFIC®

  10. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis.

    Science.gov (United States)

    Tarafder, Solaiman; Bose, Susmita

    2014-07-09

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca(2+) ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca(2+) release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague-Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation.

  11. Hollow microcapsules built by layer by layer assembly for the encapsulation and sustained release of curcumin.

    Science.gov (United States)

    Manju, S; Sreenivasan, K

    2011-02-01

    Hollow microcapsules fabricated by layer-by-layer assembly (LbL) using oppositely charged polyelectrolytes have figured in studies towards the design of novel drug delivery systems. The possibility of loading a fair amount of active component of poor aqueous solubility is one of the encouraging factors on the wide spread interest of this emerging technology. Curcumin has potent anti-cancer properties. Clinical application of this efficacious agent in cancer and other diseases has been limited due to poor aqueous solubility and consequently minimal systemic bioavailability. LbL constructed polyelectrolyte microcapsules based drug delivery systems have the potential for dispersing hydrophobic agent like curcumin in aqueous media. Here we report the preparation of LbL assembled microcapsules composed of poly(sodium 4-styrene sulfonic acid) and poly(ethylene imine) one after another. The microcapsules were characterized using various analytical techniques. Curcumin was encapsulated in these microcapsules and the efficacy of the released curcumin was studied using L929 cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Development of Sustained Release "NanoFDC (Fixed Dose Combination" for Hypertension - An Experimental Study.

    Directory of Open Access Journals (Sweden)

    Anjuman Arora

    Full Text Available The present study was planned to formulate, characterize and evaluate the pharmacokinetics of a novel "NanoFDC" comprising three commonly prescribed anti-hypertensive drugs, hydrochlorothiazide (a diuretic, candesartan (ARB and amlodipine (a calcium channel blocker.The candidate drugs were loaded in Poly (DL-lactide-co-gycolide (PLGA by emulsion- diffusion-evaporation method. The formulations were evaluated for their size, morphology, drug loading and in vitro release individually. Single dose pharmacokinetic profiles of the nanoformulations alone and in combination, as a NanoFDC, were evaluated in Wistar rats.The candidate drugs encapsulated inside PLGA showed entrapment efficiencies ranging from 30%, 33.5% and 32% for hydrochlorothiazide, candesartan and amlodipine respectively. The nanoparticles ranged in size from 110 to 180 nm. In vitro release profile of the nanoformulation showed 100% release by day 6 in the physiological pH 7.4 set up with PBS (phosphate buffer saline and by day 4-5 in the intestinal pH 1.2 and 8.0 set up SGF (simulated gastric fluid and SIF (simulated intestinal fluid respectively. In pharmacokinetic analysis a sustained-release for 6 days and significant increase in the mean residence time (MRT, as compared to the respective free drugs was noted [MRT of amlodipine, hydrochlorothiazide and candesartan changed from 8.9 to 80.59 hours, 11 to 69.20 hours and 9 to 101.49 hours respectively].We have shown for the first time that encapsulating amlodipine, hydrochlorothiazide and candesartan into a single nanoformulation, to get the "NanoFDC (Fixed Dose Combination" is a feasible strategy which aims to decrease pill burden.

  13. Sustained-release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth

    Directory of Open Access Journals (Sweden)

    Jin-Lu Liu

    2016-05-01

    Full Text Available AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein (Gen-NLC to inhibit human lens epithelial cells (HLECs proliferation. METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size (PS, zeta potentials (ZP, encapsulation efficiency (EE and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier (NLC, genistein (Gen and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8 (CCK-8 assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction (RT-qPCR and immunofluorescence analyses. RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was -7.14±0.38 mV and the EE of Gen in the nanoparticles was 92.3%±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The mRNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group. CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.

  14. Design and evaluation of a dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release.

    Science.gov (United States)

    Efentakis, M; Koligliati, S; Vlachou, M

    2006-03-27

    In this investigation a novel oral pulsatile drug delivery system based on a core-in-cup dry coated tablet, where the core tablet surrounded on the bottom and circumference wall with inactive material, is proposed. The system consists of three different parts, a core tablet, containing the active ingredient, an impermeable outer shell and a top cover layer-barrier of a soluble polymer. The core contained either diclofenac sodium or ketoprofen as model drugs. The impermeable coating cup consisted of cellulose acetate propionate and the top cover layer of hydrophilic swellable materials, such as polyethylene oxide, sodium alginate or sodium carboxymethyl cellulose. The effect of the core, the polymer characteristics and quantity at the top cover layer, on the lag time and drug release was investigated. The results show that the system release of the drug after a certain lag time generally due to the erosion of the top cover layer. The quantity of the material, its characteristics (viscosity, swelling, gel layer thickness) and the drug solubility was found to modify lag time and drug release. The lag time increased when the quantity of top layer increased, whereas drug release decreased. The use of sodium carboxymethyl cellulose resulted in the greatest swelling, gel thickness and lag time, but the lowest drug release from the system. Polyethylene oxide showed an intermediate behaviour while, the sodium alginate exhibited the smallest swelling, gel thickness and the shortest lag time, but the fastest release. These findings suggest that drug delivery can be controlled by manipulation of these formulations.

  15. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review.

    Science.gov (United States)

    Wang, Zhe; Deng, Xiangping; Ding, Jinsong; Zhou, Wenhu; Zheng, Xing; Tang, Guotao

    2017-11-04

    During the past decades, chemotherapy has been regarded as the most effective method for tumor therapy, but still faces significant challenges, such as poor tumor selectivity and multidrug resistance. The development of targeted drug delivery systems brings certain dramatic advantages for reducing the side effects and improving the therapeutic efficacy. Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for targeted therapy. Among these approaches, pH-sensitive micelles are regarded as the most general strategy with advantages of increasing solubility of water-insoluble drugs, pH-sensitive release, high drug loading, etc. This review will focus on the potential of pH-sensitive micelles in tumor therapy, analyze four types of drug-loaded micelles and mechanisms of drug release and give an exhaustive collection of recent investigations. Sufficient understanding of these mechanisms will help us to design more efficient pH-sensitive drug delivery system to address the challenges encountered in targeted drug delivery systems for tumor therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Application of time-resolved fluorescence for direct and continuous probing of release from polymeric delivery vehicles.

    Science.gov (United States)

    Viger, Mathieu L; Sheng, Wangzhong; McFearin, Cathryn L; Berezin, Mikhail Y; Almutairi, Adah

    2013-11-10

    Though accurately evaluating the kinetics of release is critical for validating newly designed therapeutic carriers for in vivo applications, few methods yet exist for release measurement in real time and without the need for any sample preparation. Many of the current approaches (e.g. chromatographic methods, absorption spectroscopy, or NMR spectroscopy) rely on isolation of the released material from the loaded vehicles, which require additional sample purification and can lead to loss of accuracy when probing fast kinetics of release. In this study we describe the use of time-resolved fluorescence for in situ monitoring of small molecule release kinetics from biodegradable polymeric drug delivery systems. This method relies on the observation that fluorescent reporters being released from polymeric drug delivery systems possess distinct excited-state lifetime components, reflecting their different environments in the particle suspensions, i.e., confined in the polymer matrices or free in the aqueous environment. These distinct lifetimes enable real-time quantitative mapping of the relative concentrations of dye in each population to obtain precise and accurate temporal information on the release profile of particular carrier/payload combinations. We found that fluorescence lifetime better distinguishes subtle differences in release profiles (e.g. differences associated with dye loading) than conventional steady-state fluorescence measurements, which represent the averaged dye behavior over the entire scan. Given the method's applicability to both hydrophobic and hydrophilic cargo, it could be employed to model the release of any drug-carrier combination. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Ciprofloxacin-imprinted hydrogels for drug sustained release in aqueous media.

    Science.gov (United States)

    Kioomars, Sajedeh; Heidari, Somayeh; Malaekeh-Nikouei, Bizhan; Shayani Rad, Maryam; Khameneh, Bahman; Mohajeri, Seyed Ahmad

    2017-02-01

    In this study several ciprofloxacin (CFX) imprinted and non-imprinted hydrogels were prepared and evaluated as ocular drug delivery systems in aqueous media. 2-Hydroxyethyl methacrylate (HEMA) was used as a solvent and backbone monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, methacrylic acid (MAA) as a functional monomer and CFX as the template molecule. CFX-imprinted hydrogels (MIPs) were prepared applying different CFX:MAA molar ratios (1:16, 1:20 and 1:32) in feed composition of monomer solutions. Thermal polymerization was applied and hydrogels were synthesized in a polypropylene mold (0.4 mm thickness). Swelling and binding properties of hydrogels were evaluated in water. Release profile of the MIPs was evaluated in NaCl (0.9%) and artificial tears. The data showed that enhancing the MAA concentration, as a co-monomer, and using molecular imprinting improved binding properties of the synthesized hydrogels. The optimized MIPs with 400 mM MAA and CFX: MAA molar ratio of 1:20 and 1:16 showed the greatest affinity for CFX and the highest ability to control drug release. In vitro antibacterial activity of hydrogels was studied and demonstrated the effect of CFX-loaded hydrogels against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) isolated from patients' eyes. This study indicated antibacterial efficacy of CFX-loaded MIP hydrogels.

  18. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes

    Directory of Open Access Journals (Sweden)

    Xing Chen

    2015-08-01

    Full Text Available Curcumin is a multifunctional and natural agent considered to be pharmacologically safe. However, its application in the food and medical industry is greatly limited by its poor water solubility, physicochemical instability and inadequate bioavailability. Nanoliposome encapsulation could significantly enhance the solubility and stability of curcumin. Curcumin nanoliposomes exhibited good physicochemical properties (entrapment efficiency = 57.1, particle size = 68.1 nm, polydispersity index = 0.246, and zeta potential = −3.16 mV. Compared with free curcumin, curcumin nanoliposomes exhibited good stability against alkaline pH and metal ions as well as good storage stability at 4 °C. Curcumin nanoliposomes also showed good sustained release properties. Compared with free curcumin, curcumin nanoliposomes presented an equal cellular antioxidant activity, which is mainly attributed to its lower cellular uptake as detected by fluorescence microscopy and flow cytometry. This study provide theoretical and practical guides for the further application of curcumin nanoliposomes.

  19. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes.

    Science.gov (United States)

    Chen, Xing; Zou, Li-Qiang; Niu, Jing; Liu, Wei; Peng, Sheng-Feng; Liu, Cheng-Mei

    2015-08-05

    Curcumin is a multifunctional and natural agent considered to be pharmacologically safe. However, its application in the food and medical industry is greatly limited by its poor water solubility, physicochemical instability and inadequate bioavailability. Nanoliposome encapsulation could significantly enhance the solubility and stability of curcumin. Curcumin nanoliposomes exhibited good physicochemical properties (entrapment efficiency = 57.1, particle size = 68.1 nm, polydispersity index = 0.246, and zeta potential = -3.16 mV). Compared with free curcumin, curcumin nanoliposomes exhibited good stability against alkaline pH and metal ions as well as good storage stability at 4 °C. Curcumin nanoliposomes also showed good sustained release properties. Compared with free curcumin, curcumin nanoliposomes presented an equal cellular antioxidant activity, which is mainly attributed to its lower cellular uptake as detected by fluorescence microscopy and flow cytometry. This study provide theoretical and practical guides for the further application of curcumin nanoliposomes.

  20. Evaluation of free and liposome-encapsulated gentamycin for intramuscular sustained release in rabbits.

    Science.gov (United States)

    Cabanes, A; Reig, F; Garcia-Anton, J M; Arboix, M

    1998-01-01

    Gentamycin sulphate (GS) and gentamycin oleate (GO) were encapsulated in liposomes composed of phosphatidylcholine (HPC) and cholesterol (CHOL) (molar ratio 7:7:2 and 5:5:1, respectively), and were administered via intramuscular injection to rabbits, to evaluate their potential use as sustained release formulations. Five groups of five animals each were used for the pharmacokinetic study, and treatments were established as follows: 3 mg kg(-1) of GS i.v., 3 mg kg(-1) of GS i.m., 3 mg kg(-1) of liposome-containing gentamycin sulphate (LGS) i.m., 3 mg kg(-1) of GO i.m., and 3 mg kg(-1) of liposome-containing gentamycin oleate (LGO) i.m. Gentamycin plasma concentrations after i.m. administration of LGS were extremely low compared with those obtained after the i.m. administration of GS; the peak plasma concentration (Cmax) showed an eight-fold decrease with LGS, and the area under the concentration-time curve (AUC) was four-fold lower for the liposomal form. The apparent elimination half-life estimated after administration of LGS showed a three-fold increase compared with values calculated for free GS. After the administration of the same dose of LGO, Cmax obtained showed a 2.5-fold decrease in relation to peak concentrations of free GO, and the apparent beta-half life of encapsulated GO showed a three-fold increase compared with i.m. GO. Large-size liposomes containing gentamycin administered i.m. to rabbits gave sustained drug release from the injection site, providing prolonged plasma concentrations of the drug in the body.

  1. Taste masking of azithromycin by resin complex and sustained release through interpenetrating polymer network with functionalized biopolymers.

    Science.gov (United States)

    Rajesh, A Michael; Popat, Kiritkumar Mangaldas

    2017-05-01

    The objective was to evaluate taste masking of azithromycin (AZI) by ion exchange resins (IERs) and the formation of covalent semi interpenetrating polymer network (IPN) beads using chitosan (CS) and sodium carboxylated agarose (SCAG) for sustained release of drug. Methacrylic acid (MAA)-based IERs were prepared by suspension polymerization method. Drug release complexes (DRCs) were prepared by different drug:resin ratios i.e. 1:1, 1:2 and 1:4. The resultant DRCs were characterized using DSC, FTIR, PXRD, in vivo and in vitro taste masking, and in vitro drug release at gastric pH. IPN beads were prepared by entrapping DRCs with bio polymers and cross linked with trisodium citrate (NaCIT), and further cross-linked with glutaraldehyde (GA) for sustained release of AZI. In vitro and in vivo taste masking studies showed that MD1:4 DRC formulation was optimal. The release of AZI from DRC was found to be very fast at gastric pH i.e. 97.37 ± 1.02% within 45 min. The formation of IPN beads was confirmed by FTIR. The release of drug from IPN beads at gastric and intestinal pH was found to be "taste masking and newly formulated IPN beads demonstrated sustained release of AZI.

  2. Propolis Varnish: Antimicrobial Properties against Cariogenic Bacteria, Cytotoxicity, and Sustained-Release Profile

    Directory of Open Access Journals (Sweden)

    Mariana P. De Luca

    2014-01-01

    Full Text Available Varnishes are preparations that differ in the polymeric matrix and therapeutical agents. In dentistry they are used to prevent caries. In this study we developed a propolis varnish, considering propolis properties against cariogenic bacteria. To a chitosan polymeric base (CHV was added ethanolic propolis extract in different concentrations: PV1 (5%, PV2 (10%, and PV3 (15%. Antimicrobial activity was carried out against Streptococcus mutans (SM, Streptococcus sanguinis (SG, Streptococcus salivarius (SS, and Lactobacillus casei (LC through agar diffusion method. The three propolis concentrations incorporated were effective in inhibiting the growth of all microorganisms, but without significant difference between the zones of inhibition observed. Cytotoxicity assay was done by MTT method. Data were analyzed by one-way ANOVA and Bonferroni test. None of the varnishes were cytotoxic, keeping 80% of viable cells, while CHV allowed cellular proliferation (120%. Sustained-release test was carried out by applying 40 μL of each varnish in the buccal surface of bovine teeth and kept in an ethanol/water solution removed in regular times. According to the “independent model approach,” the release profiles were distinct from each varnish and the most prolonged was PV3 (8 weeks. Varnish formulations had satisfactory antimicrobial activity against cariogenic bacteria and have a low cytotoxicity (<50%.

  3. A Strategy to Develop Bioactive Nanoarchitecture Cellulose: Sustained Release and Multifarious Applications.

    Science.gov (United States)

    Karuppusamy, Sembanadar; Pratheepkumar, Annamalai; Dhandapani, Perumal; Maruthamuthu, Sundaram; Kulandainathan, Manickam Anbu

    2015-09-01

    Cellulose membranes were engineered to produce hydrophobic surfaces via a simple and soft chemical process to introduce multifunctional properties of an otherwise hydrophilic cellulose surface with polymer-grafted nanosilver to form a core-shell nanostructure. A superhydrophobic domain of the polymer on cellulose was created through the amide bond formation between the anhydride units of the polymer and the aminosiloxane-functionalized cellulose through layer-over-layer formulation. This formulation was confirmed through XPS, XRD, 29Si-NMR, and FTIR studies. Further, SEM and TEM analysis revealed that short linear silver nanowires were uniformly obtained with an average diameter of 60 nm and length of 288 nm, using a mild reducing agent at 60 degrees C, which resulted in a hierarchical cellulose surface. The nanosilver colloids released from the hierarchical cellulose surface were stabilized by the polymer matrix in solution, which led to a decrease in the rate of formation of Ag+ enhancing the material's killing efficacy against microbes. This biodegradable nanocomposite-based cellulose hierarchical surface development has potential for application as superhydrophobic membranes for oil-water separation, antimicrobial activity, and pH-triggered sustained release of colloidal silver for wound healing, which could possibly be applied for use as smart bandages.

  4. A statistical study on the development of micro particulate sustained drug delivery system for Losartan potassium by 32 factorial design approach

    Directory of Open Access Journals (Sweden)

    Gokul Khairnar

    2017-06-01

    Full Text Available The purpose of this study was to investigate the effect of polymer and surfactant concentration on drug loading and in vitro drug release of micro particulate drug delivery system of Losartan potassium (LST. Microparticles were prepared by O/O solvent emulsification method. A 32 full factorial design was used to derive statistical equation and construct contour plots to predict responses. The independent variables selected were polymer concentration (A, surfactant concentration (B. Dependent variables were percentage drug loading (Y1 and percentage drug release at 12 h (Y2. The in vitro drug release profile of prepared microparticles was compared with marketed tablet formulation. The release profile of microparticles was found to be sustained as compared to the marketed formulation. The drug loading was found to be in the range of 15.32% (F6 to 22.27% (F5. FT-IR analysis revealed no drug excipient interference. The morphology of evaluated microparticles at −1 level was found to be spherical and smooth in nature while at higher level +1 it was found to be rough, irregular, with erosion, cracks and wrinkles on the surface. In XRD analysis crystalline pattern of pure LST was changed to amorphous pattern when converted to microparticles.

  5. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  6. In Vitro – In Vivo Evaluation of SustainedRelease Lithium Carbonate Matrix Tablets: Influence of Hydrophilic Matrix Materials

    Directory of Open Access Journals (Sweden)

    J Emami

    2004-04-01

    Full Text Available Background: Conventional Lithium carbonate (LC tablets produce rapid and relatively high peak blood levels resulting in adverse effects. These drawbacks can be overcome by designing a suitable sustained or controlled-release LC preparation. Methods: Sustained-release matrix tablets were therefore developed using different types and ratios of polymers including carbomer (CP, Na carboxymethylcellulose (Na CMC and hydroxypropylmethylcellulose (HPMC, to assess the release profiles and in vivo performance of the formulations. The tablets were prepared by either direct compression (DC or wet granulation (WG. In the DC method, 69% (450 mg LC, 5, 10 or 15% CP or Na CMC (of total tablet weight, lactose and /or Avicel (to maintain constant tablet weight were mixed and directly compressed. In the WG method, 450 mg LC and 10, 20, or 30% HPMC were granulated with Eudragit S100 solution, dried, and then compressed to formulate the tablets. In vitro and in vivo, newly formulated sustained-release LC tablets were compared with sustained-release commercial tablets (Eskalith and Priadel. In vivo studies were conducted in nine healthy subjects in a cross-over design, with a 3x3 Latin square sequence, and pharmacokinetic parameters were estimated using classical methods. Results: The matrix tablets containing 15% CP exhibited suitable release kinetics and uniform absorption characteristics comparable to that of Eskalith. In vivo, this formulation produced a smooth and extended absorption phase very much similar to that of Eskalith with the identical elimination half-life and extent of absorption. Conclusion: The matrix tablets containing 15% CP reduces the incidence of side effects often associated with high serum concentration of Lithium and blood level variations. Direct correlation between the dissolution profiles and the relative bioavailability of the formulations could be observed. Keywords: Lithium carbonate, Matrix tablets, Sustained-release, In vitro

  7. Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems.

    Science.gov (United States)

    Tang, Yu; Singh, Jagdish

    2008-06-05

    The objective of this study was to develop poly (d,l-lactide-co-glycolide) (PLGA) based injectable phase sensitive in situ gel forming delivery system for controlled delivery of aspirin, and to characterize the effect of drug/polymer interaction on the in vitro release of aspirin and polymer degradation. Aspirin was dissolved into PLGA solution in 1-methyl-2-pyrrolidone. Poly(ethylene glycol)400 was used as plasticizer to reduce initial burst release. The solution formulation was injected into aqueous release medium to form a gel depot. Released samples were withdrawn periodically and assayed for aspirin content by high performance liquid chromatography. The effect of aspirin on the degradation of PLGA matrix was evaluated using Proton Nuclear Magnetic Resonance and Gel Permeation Chromatography. PLGA based in situ gel forming formulations controlled the in vitro release of aspirin for 7 days only. Analysis of PLGA matrix residuals revealed that PLGA in aspirin loaded formulations exhibited a significantly (pdegradation compared to blank formulations. These findings suggest that aspirin causes an unusually faster degradation of PLGA. Such faster degradation of PLGA has not been noticed for any other drugs reported in the literature.

  8. Controlled protein delivery from electrospun non-wovens: novel combination of protein crystals and a biodegradable release matrix.

    Science.gov (United States)

    Puhl, Sebastian; Li, Linhao; Meinel, Lorenz; Germershaus, Oliver

    2014-07-07

    Poly-ε-caprolactone (PCL) is an excellent polymer for electrospinning and matrix-controlled drug delivery combining optimal processability and good biocompatibility. Electrospinning of proteins has been shown to be challenging via the use of organic solvents, frequently resulting in protein unfolding or aggregation. Encapsulation of protein crystals represents an attractive but largely unexplored alternative to established protein encapsulation techniques because of increased thermodynamic stability and improved solvent resistance of the crystalline state. We herein explore the electrospinning of protein crystal suspensions and establish basic design principles for this novel type of protein delivery system. PCL was deployed as a matrix, and lysozyme was used as a crystallizing model protein. By rational combination of lysozyme crystals 0.7 or 2.1 μm in diameter and a PCL fiber diameter between 1.6 and 10 μm, release within the first 24 h could be varied between approximately 10 and 100%. Lysozyme loading of PCL microfibers between 0.5 and 5% was achieved without affecting processability. While relative release was unaffected by loading percentage, the amount of lysozyme released could be tailored. PCL was blended with poly(ethylene glycol) and poly(lactic-co-glycolic acid) to further modify the release rate. Under optimized conditions, an almost constant lysozyme release over 11 weeks was achieved.

  9. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.

    Science.gov (United States)

    Xie, Xin-Hui; Wang, Xin-Luan; Zhang, Ge; He, Yi-Xin; Leng, Yang; Tang, Ting-Ting; Pan, Xiaohua; Qin, Ling

    2015-08-01

    A phytomolecule, icaritin, has been identified and shown to be osteopromotive for the prevention of osteoporosis and osteonecrosis. This study aimed to produce a bioactive poly (l-lactide-co-glycolide)-tricalcium phosphate (PLGA-TCP)-based porous scaffold incorporating the osteopromotive phytomolecule icaritin, using a fine spinning technology. Both the structure and the composition of icaritin-releasing PLGA-TCP-based scaffolds were evaluated by scanning electron microscopy (SEM). The porosity was quantified by both water absorption and micro-computed tomography (micro-CT). The mechanical properties were evaluated using a compression test. In vitro release of icaritin from the PLGA-TCP scaffold was quantified by high-performance liquid chromatography (HPLC). The attachment, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the composite scaffold were evaluated. Both an in vitro cytotoxicity test and an in vivo test via muscular implantation were conducted to confirm the scaffold's biocompatibility. The results showed that the PLGA-TCP-icaritin composite scaffold was porous, with interconnected macro- (about 480 µm) and micropores (2-15 µm). The mechanical properties of the PLGA-TCP-icaritin scaffold were comparable with those of the pure PLGA-TCP scaffold, yet was spinning direction-dependent. Icaritin content was detected in the medium and increased with time. The PLGA-TCP-icaritin scaffold facilitated the attachment, proliferation and osteogenic differentiation of BMSCs. In vitro cytotoxicity test and in vivo intramuscular implantation showed that the composite scaffold had no toxicity with good biocompatibility. In conclusion, an osteopromotive phytomolecule, icaritin, was successfully incorporated into PLGA-TCP to form an innovative porous composite scaffold with sustained release of osteopromotive icaritin, and this scaffold had good biocompatibility and osteopromotion, suggesting its potential for orthopaedic

  10. Novel 'nano in nano' composites for sustained drug delivery: biodegradable nanoparticles encapsulated into nanofiber non-wovens.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Thieme, Marcel; Nguyen, Juliane; Schmehl, Thomas; Gessler, Tobias; Seeger, Werner; Agarwal, Seema; Greiner, Andreas; Kissel, Thomas

    2010-12-08

    Novel 'nano in nano' composites consisting of biodegradable polymer nanoparticles incorporated into polymer nanofibers may efficiently modulate drug delivery. This is shown here using a combination of model compound-loaded biodegradable nanoparticles encapsulated in electrospun fibers. The dye coumarin 6 is used as model compound for a drug in order to simulate drug release from loaded poly(lactide-co-glycolide) nanoparticles. Dye release from the nanoparticles occurs immediately in aqueous solution. Dye-loaded nanoparticles which are encapsulated by electrospun polymer nanofibers display a significantly retarded release. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Science.gov (United States)

    Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C

    2016-06-15

    Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization. PMID:26251592

  13. Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery.

    Science.gov (United States)

    Gan, Qi; Dai, Danwei; Yuan, Yuan; Qian, Jiangchao; Sha, Sha; Shi, Jianlin; Liu, Changsheng

    2012-04-01

    Due to the unique physicochemical properties and membrane-permeable capacity, mesoporous silica nanoparticles (MSNs) are considered as an ideal carrier for intracellular delivery. Herein, we endeavored to address the size effect of MSNs on the cellular uptake, endosomal escape and controlled release, the key steps for the intracellular delivery. The well-ordered MSNs in the range from 55-nm to 440-nm with similar pore texture were prepared by modified base-catalyzed sol-gel method. With MC3T3-E1 model cell line, the in vitro results indicated that after 12 h cultivation, MSNs within 55 ~ 440 nm could all be internalized into the cells, and further escaped out of the endosomal compartment. The efficiency of the cellular uptake and endosomal escape strongly depended on the particle size, with the best efficiencies from 100-nm MSNs. Furthermore, the MTT results indicated that these MSNs materials were all biocompatible. The controlled release experiments with hydrophobic dexamethasone and hydrophilic vitamin C as models showed that for these small-molecular drugs, the loading amount all mainly determined by the surface area of the MSNs, and the subsequent release of the drug dramatically decreased with the increasing of the particle size. By contrast, the release rate of vitamin C was much quicker than that of the dexamethasone. These findings presented here could provide new means to tailor the size of MSNs and thus to guide the design of MSNs-based intracellular delivery system. Due to the good cell biocompatibility, high cellular uptake and endosomal escape, we conjectured that the 100-nm MSNs are more favorable for the intracellular delivery of drugs in live cells.

  14. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  15. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2015-07-01

    Full Text Available The aim of the study was to taste mask ciprofloxacin (CP by using ion-exchange resins (IERs followed by sustain release of CP by forming interpenetrating polymer network (IPN. IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised. Drug-resin complexes (DRCs with three different ratios of drug to IERs (1:1, 1:2, 1:4 were prepared & evaluated for taste masking by following in vivo and in vitro methods. Human volunteers graded ADC 1:4, acrylic acid-divinyl benzene (ADC-3 resin as tasteless. Characterization studies such as FTIR, SEM, DSC, P-XRD differentiated ADC 1:4, from physical mixture (PM 1:4 and confirmed the formation of complex. In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid (SGF i.e. pH 1.2. IPN beads were prepared with ADC 1:4 by using sodium alginate (AL and sodium alginate-chitosan (AL-CS for sustain release of CP at SGF pH and followed by simulated intestinal fluid (SIF i.e. pH 7.4. FTIR spectra confirmed the formation of IPN beads. The release of CP was sustain at SGF pH (75%. The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.

  16. Remote-controlled delivery of CO via photoactive CO-releasing materials on a fiber optical device.

    Science.gov (United States)

    Gläser, Steve; Mede, Ralf; Görls, Helmar; Seupel, Susanne; Bohlender, Carmen; Wyrwa, Ralf; Schirmer, Sina; Dochow, Sebastian; Reddy, Gandra Upendar; Popp, Jürgen; Westerhausen, Matthias; Schiller, Alexander

    2016-08-16

    Although carbon monoxide (CO) delivery materials (CORMAs) have been generated, remote-controlled delivery with light-activated CORMAs at a local site has not been achieved. In this work, a fiber optic-based CO delivery system is described in which the photoactive and water insoluble CO releasing molecule (CORM) manganese(i) tricarbonyl [(OC)3Mn(μ3-SR)]4 (R = nPr, 1) has been non-covalently embedded into poly(l-lactide-co-d/l-lactide) and poly(methyl methacrylate) non-woven fabrics via the electrospinning technique. SEM images of the hybrid materials show a porous fiber morphology for both polymer supports. The polylactide non-woven fabric was attached to a fiber optical device. In combination with a laser irradiation source, remote-controlled and light-triggered CO release at 405 nm excitation wavelength was achieved. The device enabled a high flexibility of the spatially and timely defined application of CO with the biocompatible hybrid fabric in aqueous media. The rates of liberated CO were adjusted with the light intensity of the laser. CO release was confirmed via ATR-IR spectroscopy, a portable electrochemical CO sensor and a heterogeneous myoglobin assay.

  17. Microspheres made of poly(epsilon-caprolactone)-based amphiphilic copolymers: potential in sustained delivery of proteins.

    Science.gov (United States)

    Quaglia, Fabiana; Ostacolo, Luisanna; Nese, Giuseppe; De Rosa, Giuseppe; La Rotonda, Maria Immacolata; Palumbo, Rosario; Maglio, Giovanni

    2005-10-20

    Microspheres of amphiphilic multi-block poly(ester-ether)s (PEE)s and poly(ester-ether-amide)s (PEEA)s based on poly(epsilon-caprolactone) (PCL) were investigated as delivery systems for proteins. The interest was mainly focused on the effect of their molecular structure and composition on the overall properties of the microspheres, encapsulating bovine serum albumin (BSA) as a model protein. PEEs and PEEAs were prepared using a alpha,omega-dihydroxy-terminated PCL macromer (Mn= 2.0 kDa) as a hydrophobic component. Hydrophilic oxyethylene sequences were generated using poly(ethylene oxide)s (PEO)s of different molecular mass (Mn= 300-600 Da) in the case of PEEs, or 4,7,10-trioxa-1,13-tridecanediamine (Trioxy) and PEO150 (Mn= 150 Da) in the case of PEEAs. The copolymers showed a decrease of Tm and crystallinity values as compared with PCL. Within each class of copolymers, the bulk hydrophilicity increased with increasing the number of oxyethylene groups in the chain repeat unit. PEEAs were more hydrophilic than PEEs with a similar number of oxyethylene groups. Discrete spherical particles were prepared by both PEEs and PEEAs and their BSA encapsulation efficiency related to copolymer properties. Interestingly, the insertion of short hydrophilic segments is enough to significantly affect protein distribution inside microspheres and its release profiles, as compared to PCL microspheres. Different degradation rates and mechanisms were observed for copolymer microspheres, mainly depending on the distribution of oxyethylene units along the chain. The results highlight that a fine control over the structural parameters of amphiphilic PCL-based multi-block copolymers is a key factor for their application in the field of protein delivery.

  18. A qualitative study examining the sustainability of shared care in the delivery of palliative care services in the community.

    Science.gov (United States)

    Demiglio, Lily; Williams, Allison M

    2013-08-29

    This paper focuses on the sustainability of existing palliative care teams that provide home-based care in a shared care model. For the purposes of this study, following Evashwick and Ory (2003), sustainability is understood and approached as the ability to continue the program over time. Understanding factors that influence the sustainability of teams and ways to mitigate these factors is paramount to improving the longevity and quality of service delivery models of this kind. Using qualitative data collected in interviews, the aim of this study is twofold: (1) to explore the factors that affect the sustainability of the teams at three different scales, and; (2) based on the results of this study, to propose a set of recommendations that will contribute to the sustainability of PC teams. Sustainability was conceptualized from two angles: internal and external. An overview of external sustainability was provided and the merging of data from all participant groups showed that the sustainability of teams was largely dependent on actors and organizations at the local (community), regional (Local Health Integration Network or LHIN) and provincial scales. The three scales are not self-contained or singular entities but rather are connected. Integration and collaboration within and between scales is necessary, as community capacity will inevitably reach its threshold without support of the province, which provides funding to the LHIN. While the community continues to advocate for the teams, in the long-term, they will need additional supports from the LHIN and province. The province has the authority and capacity to engrain its support for teams through a formal strategy. The recommendations are presented based on scale to better illustrate how actors and organizations could move forward. This study may inform program and policy specific to strategic ways to improve the provision of team-based palliative home care using a shared care model, while simultaneously providing

  19. The characterization of protein release from sericin film in the presence of an enzyme: towards fibroblast growth factor-2 delivery.

    Science.gov (United States)

    Nishida, Ayumu; Naganuma, Tsuyoshi; Kanazawa, Takanori; Takashima, Yuuki; Yamada, Masaki; Okada, Hiroaki

    2011-07-29

    Aqueous preparations of silk protein (sericin) films were prepared to evaluate their biodegradation properties. In the absence of trypsin, sericin film swelled rapidly, kept its shape, and remained unaltered for 28 days or longer due to form β-sheet structures. In the presence of trypsin, sericin film gradually degraded; since the rate depended on the concentration of trypsin, the films likely underwent enzymatic hydrolysis. Sericin film incorporating the model protein drug fluorescein isothiocyanate-albumin (FA) also gradually degraded in the presence of trypsin and resulted in the sustained release of FA for 2 weeks or longer; in contrast, FA release was quite slow in the absence of trypsin. It is expected that sericin film has potential as a biodegradable and drug-releasing carrier. To evaluate the practical applicability of sericin film for the repair of defective tissues, fibroblast growth factor-2 (FGF-2) was incorporated into sericin films and the films were implanted on skull defects in rats. Whereas FGF-2 release was suppressed in the absence of trypsin in vitro, it appears that FGF-2, immobilized by ionic interactions between sericin and FGF-2, can be sustained-released in vivo from films incorporating 2500 or 250 ng of FGF-2 to support the growth of tissue around wounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A sustained release formulation of novel quininib-hyaluronan microneedles inhibits angiogenesis and retinal vascular permeability in vivo.

    Science.gov (United States)

    Galvin, Orla; Srivastava, Akshay; Carroll, Oliver; Kulkarni, Rajiv; Dykes, Steve; Vickers, Steven; Dickinson, Keith; Reynolds, Alison L; Kilty, Claire; Redmond, Gareth; Jones, Rob; Cheetham, Sharon; Pandit, Abhay; Kennedy, Breandán N

    2016-07-10

    Pathologic neovascularisation and ocular permeability are hallmarks of proliferative diabetic retinopathy and age-related macular degeneration. Current pharmacologic interventions targeting VEGF are effective in only 30-60% of patients and require multiple intraocular injections associated with iatrogenic infection. Thus, our goal is to develop novel small molecule drugs that are VEGF-independent are amenable to sustained ocular-release, and which reduce retinal angiogenesis and retinal vascular permeability. Here, the anti-angiogenic drug quininib was formulated into hyaluronan (HA) microneedles whose safety and efficacy was evaluated in vivo. Quininib-HA microneedles were formulated via desolvation from quininib-HA solution and subsequent cross-linking with 4-arm-PEG-amine prior to freeze-drying. Scanning electron microscopy revealed hollow needle-shaped particle ultrastructure, with a zeta potential of -35.5mV determined by electrophoretic light scattering. The incorporation efficiency and pharmacokinetic profile of quininib released in vitro from the microneedles was quantified by HPLC. Quininib incorporation into these microneedles was 90%. In vitro, 20% quininib was released over 4months; or in the presence of increasing concentrations of hyaluronidase, 60% incorporated quininib was released over 4months. Zebrafish hyaloid vasculature assays demonstrated quininib released from these microneedles significantly (pmicroneedles allow for sustained release of quininib; are safe in vivo and quininib released from these microneedles effectively inhibits angiogenesis and RVP in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of sustained-release isosorbide dinitrate on post-prandial gastric emptying and gastroduodenal motility in healthy humans

    DEFF Research Database (Denmark)

    Madsen, J L; Rasmussen, S L; Linnet, J

    2004-01-01

    and gastroduodenal motility after a meal. Eleven healthy volunteers participated in a double-blind, placebo-controlled, cross-over study. Each subject ingested 40 mg isosorbide dinitrate orally as a sustained-release formulation or oral placebo, in random order. Gastric emptying and gastroduodenal motility were...

  2. Preparation of rifampicin/poly(d,l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2014-11-01

    Full Text Available In this work supercritical assisted atomization (SAA) process was used for the co-precipitation of poly(d,l-lactide) (PDLLA) and rifampicin (RIF) as nanoparticles for sustained release applications. The effect of the variation of PDLLA/RIF ratio...

  3. A pillar[5]arene based gel from a low-molecular-weight gelator for sustained dye release in water.

    Science.gov (United States)

    Yao, Yong; Sun, Yan; Yu, Huaxu; Chen, Wenrui; Dai, Hong; Shi, Yujun

    2017-11-24

    A soft gel based on pillar[5]arene was successfully prepared using a carbazone reaction. Furthermore, dyes such as TPP or TPPE can be incorporated into this gel and were observed to be released in a sustained way in water due to solvent exchange.

  4. Managing cancer pain and symptoms of outpatients by rotation to sustained-release hydromorphone: a prospective clinical trial

    NARCIS (Netherlands)

    Wirz, Stefan; Wartenberg, Hans Christian; Elsen, Christian; Wittmann, Maria; Diederichs, Marta; Nadstawek, Joachim

    2006-01-01

    PURPOSE: In this prospective clinical trial we examined the technique of opioid rotation to oral sustained-release hydromorphone for controlling pain and symptoms in outpatients with cancer pain. METHODS: Before and after rotation, 50 patients were assessed by Numerical Analog Scales [Numerical

  5. Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease

    OpenAIRE

    Bradley, Jessica M.; Islam, Kazi N.; Polhemus, David J.; Donnarumma, Erminia; Brewster, Luke P.; Tao, Ya-Xiong; Goodchild, Traci T.; Lefer, David J.

    2015-01-01

    In a clinically relevant porcine model of metabolic syndrome and peripheral vascular disease, treatment with a novel sustained-release nitrite formulation restored cardiac endothelial nitric oxide synthase, enhancing myocardial nitrite levels, reduced oxidative stress, and improved ex vivo coronary vascular function via endothelium-independent vasodilation mechanism in obese Ossabaw swine.

  6. Absorption kinetics and steady-state plasma concentrations of theophylline following therapeutic doses of two sustained-release preparations

    DEFF Research Database (Denmark)

    Nielsen, M K; Eriksen, P B; Fenger, M

    1983-01-01

    Ten healthy volunteers received two sustained-release preparations as a single and multiple dose regimen in an open crossover study. Plasma theophylline concentrations were measured by an enzyme immunoassay. The limited fluctuation of the theophylline levels at steady state, with twice daily...... theophylline concentration....

  7. Effect of core size and excipients on the lag time and drug release from a pulsatile drug delivery system.

    Science.gov (United States)

    Efentakis, M; Iliopoyloy, A; Siamidi, A

    2011-01-01

    Pulsatile drug delivery system, based on a core-in-cup dry-coated tablet was examined and evaluated. The system consisted of three different parts: a core tablet (with increasing diameter), containing the active ingredient acting as reservoir; an impermeable outer shell; and a top cover layer barrier. The core tablet contained either caffeine or theophylline as model drugs. To investigate and evaluate how the geometrical characteristics of the core tablets, drugs, and excipients influence the behavior of the system presented, namely, lag time and drug release. Drug release exhibited a lag time period dependent on the core tablet size, drug solubility, and characteristics of polymer and polymer mixtures. The lag time was increased by increasing the core tablet diameter and the quantity of soluble lactose in the top cover layer. The quantity and characteristics of materials, the core tablet size, and the erosion of the top cover layer were found to be important factors in controlling the lag time and release. Increase in core tablet diameter resulted in lower lag times and greater release and release rates. Similarly, by increasing sufficiently the quantity of the soluble excipient lactose, in the top layer we observed a decrease of the lag times and an increase of release.

  8. Evaluation of an injectable polymeric delivery system for controlled and localized release of biological factors to promote therapeutic angiogenesis

    Science.gov (United States)

    Rocker, Adam John

    Cardiovascular disease remains as the leading cause of death worldwide and is frequently associated with partial or full occlusion of coronary arteries. Currently, angioplasty and bypass surgery are the standard approaches for treating patients with these ischemic heart conditions. However, a large number of patients cannot undergo these procedures. Therapeutic angiogenesis provides a minimally invasive tool for treating cardiovascular diseases by inducing new blood vessel growth from the existing vasculature. Angiogenic growth factors can be delivered locally through gene, cell, and protein therapy. Natural and synthetic polymer growth factor delivery systems are under extensive investigation due their widespread applications and promising therapeutic potential. Although biocompatible, natural polymers often suffer from batch-to-batch variability which can cause unpredictable growth factor release rates. Synthetic polymers offer advantages for growth factor delivery as they can be easily modified to control release kinetics. During the angiogenesis process, vascular endothelial growth factor (VEGF) is necessary to initiate neovessel formation while platelet-derived growth factor (PDGF) is needed later to help stabilize and mature new vessels. In the setting of myocardial infarction, additional anti-inflammatory cytokines like IL-10 are needed to help optimize cardiac repair and limit the damaging effects of inflammation following infarction. To meet these angiogenic and anti-inflammatory needs, an injectable polymer delivery system created from a sulfonated reverse thermal gel encapsulating micelle nanoparticles was designed and evaluated. The sulfonate groups on the thermal gel electrostatically bind to VEGF which controls its release rate, while the micelles are loaded with PDGF and are slowly released as the gel degrades. IL-10 was loaded into the system as well and diffused from the gel over time. An in vitro release study was performed which demonstrated the

  9. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  10. Evaluation of formulation and effects of process parameters on drug release and mechanical properties of tramadol hydrocloride sustained release matrix tablets

    Directory of Open Access Journals (Sweden)

    Nikolić Nenad D.

    2015-01-01

    Full Text Available This study investigates using of high molecular weight polyethylene oxide (PEO WSR Coagulant for the preparation of sustained release matrix tablets containing high dose, highly water soluble drug, tramadol HCl. Proportion of PEO polymer, type of insoluble filler, proportion of tramadol HCl, amount of drug in tablet, tablet diameter and compression pressure were recognized as critical formulation and process parameters and their influence on drug release and tablet mechanical properties was evaluated. Percentages of tramadol HCl released after 30 and 240 minutes were selected for evaluation of drug release, while tensile strength was used as indicator of tablet mechanical properties. Only proportion of tramadol HCl exhibits statistically significant effect on percentages of tramadol HCl released after 30 and 240 minutes, with higher, wherein increasing of the tramadol HCl proportion increased its release rate among the evaluated variables in selected ranges. All of the investigated factors exhibit statistically significant effect on tablets tensile strength, with the largest influence of filler type. Tablets prepared with highly compressible filler (microcrystalline celullose exhibit higher tensile strength and therefore better mechanical properties to those prepared with partially pregelatinised starch (Strach 1500. [Projekat Ministarstva nauke Republike Srbije, br. TR 34007

  11. Preparation and evaluation of sustained-release matrix tablets based on metoprolol and an acrylic carrier using injection moulding.

    Science.gov (United States)

    Quinten, T; Andrews, G P; De Beer, T; Saerens, L; Bouquet, W; Jones, D S; Hornsby, P; Remon, J P; Vervaet, C

    2012-12-01

    Sustained-release matrix tablets based on Eudragit RL and RS were manufactured by injection moulding. The influence of process temperature; matrix composition; drug load, plasticizer level; and salt form of metoprolol: tartrate (MPT), fumarate (MPF) and succinate (MPS) on ease of processing and drug release were evaluated. Formulations composed of 70/30% Eudragit RL/MPT showed the fastest drug release, substituting part of Eudragit RL by RS resulted in slower drug release, all following first-order release kinetics. Drug load only affected drug release of matrices composed of Eudragit RS: a higher MPT concentration yielded faster release rates. Adding triethyl citrate enhanced the processability, but was detrimental to long-term stability. The process temperature and plasticizer level had no effect on drug release, whereas metoprolol salt form significantly influenced release properties. The moulded tablets had a low porosity and a smooth surface morphology. A plasticizing effect of MPT, MPS and MPF on Eudragit RS and Eudragit RL was observed via DSC and DMA. Solubility parameter assessment, thermal analysis and X-ray diffraction demonstrated the formation of a solid solution immediately after production, in which H-bonds were formed between metoprolol and Eudragit as evidenced by near-infrared spectroscopy. However, high drug loadings of MPS and MPF showed a tendency to recrystallise during storage. The in vivo performance of injection-moulded tablets was strongly dependent upon drug loading.

  12. Formation of mannitol core microparticles for sustained release with lipid coating in a mini fluid bed system.

    Science.gov (United States)

    Wang, Bifeng; Friess, Wolfgang

    2017-11-01

    The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Formulation and evaluation of rifampicin sustained release tablets using juice of Citrus limetta as bio-retardant

    Directory of Open Access Journals (Sweden)

    K Pawan Gaur

    2012-01-01

    Full Text Available The advantages of biopolymers over synthetic polymers are low cost, natural origin, free from side effects, biocompatible, bio-acceptable, environmental friendly processing, local availability, better patient tolerance as well as public acceptance. Sustained release tablets containing rifampicin was prepared by adding 100 mg polymer and 50 mg Drug and Granules. Same procedure was followed with 3% and 5% of polymer for preparation of sustained release tablets. Additional Tablets of 100 mg, 200 mg and 400 mg were prepared using 5% of the polymer. The results indicated that the selected biopolymer had a good release retardant property thus it can be concluded that the selected biopolymer can be utilized as low cost natural biocompatible and biodegradable agent.

  14. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose.

    Directory of Open Access Journals (Sweden)

    Ying-Chen Chen

    Full Text Available The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS composed of hydroxyethyl cellulose (HEC and sodium carboxymethyl cellulose (NaCMC and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole. Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4 and formulation (F1-1 were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW. Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug's release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics.

  15. In Vitro Evaluation of Nasogastric Tube Delivery Performance of Esomeprazole Magnesium Delayed-Release Capsules.

    Science.gov (United States)

    Hoover, Alicia; Sun, Dajun; Wen, Hong; Jiang, Wenlei; Cui, Minglei; Jiang, Xiaojian; Keire, David; Guo, Changning

    2017-07-01

    Enteral feeding tubes are used to deliver food or drugs to patients who cannot swallow. To deliver delayed-release drugs that are formulated as enteric coated granules to these patients via feeding tubes requires that they be suspended in water before administration. Importantly, the suspension of enteric granules in water of varying pH can cause damage to the enteric coating and affect the bioavailability of the drug. Here, analytical methods for testing acid resistance stability and particle size distribution (PSD) of esomeprazole granules were used to monitor the integrity of the granule enteric coating after water pretreatment and delivery through an oral syringe and nasogastric (NG) tube. Granules from esomeprazole magnesium delayed-release capsules were transferred to an oral syringe, suspended in water, and delivered on the bench through an NG tube. Subsequently, acid resistance stability (i.e., the amount of drug released after 2-h acid dissolution) was determined via high-performance liquid chromatography, and the PSD were measured with a laser diffraction system. All the granules demonstrated acid resistance stability when the granules were delivered immediately (0 min incubation) through the oral syringe and NG tube. In contrast, some granules demonstrated significant drug release during acid exposure after a 15-min incubation period which mimics a possible delay in delivery of the drug from the syringe by the caregiver. A bimodal PSD was observed with these granules, which was attributed to debris from damaged enteric coating and particle agglomeration. The methods developed in this study could be used to distinguish batches with suboptimal product quality for delivery using NG tubes and to confirm the substitutability of generic drug products for this alternative route of administration. Published by Elsevier Inc.

  16. Sustained delivery of rhBMP-2 by means of poly(lactic-co-glycolic acid) microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis.

    Science.gov (United States)

    Wink, Jason D; Gerety, Patrick A; Sherif, Rami D; Lim, Youngshin; Clarke, Nadya A; Rajapakse, Chamith S; Nah, Hyun-Duck; Taylor, Jesse A

    2014-07-01

    Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. The authors used rhBMP2 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres placed in a rabbit cranial defect model to test whether low-dose, sustained delivery can effectively induce bone regeneration. The rhBMP2 was encapsulated in 15% PLGA using a double-emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10 mm) were created in the calvaria of New Zealand white rabbits (5 to 7 months of age, male and female) and filled with a collagen scaffold containing either (1) no implant, (2) collagen scaffold only, (3) PLGA-rhBMP2 (0.1 μg per implant), or (4) free rhBMP2 (0.1 μg per implant). After 6 weeks, the rabbits were killed and defects were analyzed by micro-computed tomography, histology, and finite element analysis. The rhBMP2 delivered by means of bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by micro-computed tomography (p=0.025 and p=0.025). Finite element analysis indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. Sustained delivery by means of PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reducing the risk for recently reported rhBMP2-related adverse effects.

  17. Treatment of Gastrin-Secreting Tumor With Sustained-Release Octreotide Acetate in a Dog.

    Science.gov (United States)

    Kim, Sangho; Hosoya, Kenji; Takagi, Satoshi; Okumura, Masahiro

    2015-01-01

    An 8 yr old, intact male Shiba Inu was presented with loose stool, polydipsia, hematuria, vomiting, and anorexia. On abdominal ultrasonography, numerous nodules were detected in the hepatic parenchyma distributed diffusely throughout all lobes. Excisional biopsy of one of the nodules was performed via exploratory laparotomy. A histopathological diagnosis of the lesion was carcinoid, and the tumor cells stained positive to chromogranin A and gastrin. The serum gastrin level of the dog was 45,613 pg/mL (reference range: 160-284). In addition to medical treatment with omeprazole(c) and famotidine(e), suppression of gastrin secretion was attempted with octreotide acetate. A test dose of octreotide acetate significantly decreased the serum gastrin level to approximately one third of the baseline in 2 hr and the effect lasted approximately for 6 hr. On day 21, treatment with sustained-release formulation of octreotide acetate(a) (5 mg intramuscular, q 4 wk) was initiated. The serum gastrin concentration gradually decreased over 32 days and then progressively increased in parallel with the progression of the hepatic nodules. The dog gradually developed recurrence of initial clinical signs, and was lost to follow-up on day 510.

  18. Bupropion sustained release in adolescents with comorbid attention-deficit/hyperactivity disorder and depression.

    Science.gov (United States)

    Daviss, W B; Bentivoglio, P; Racusin, R; Brown, K M; Bostic, J Q; Wiley, L

    2001-03-01

    To determine whether bupropion sustained release (SR) is effective and well-tolerated in adolescents with comorbid attention-deficit/hyperactivity disorder (ADHD) and depression. Subjects were 24 adolescents (aged 11-16 years old) with ADHD and either major depressive disorder or dysthymic disorder. After a 2-week, single-blind placebo lead-in, subjects were treated for 8+ weeks with bupropion SR at doses flexibly titrated up to 3 mg/kg b.i.d. (mean final doses: 2.2 mg/kg q A.M. and 1.7 mg/kg q P.M.). Outcomes were global improvement in ADHD and depression (clinician-rated), along with changes in depressive symptomatology (parent- and child-rated), ADHD symptomatology (parent- and teacher-rated), and functional impairment (parent-rated). Clinicians rated 14 subjects (58%) responders in both depression and ADHD, 7 (29%) responders in depression only, and 1 (4%) a responder in ADHD only. Compared with post-placebo ratings, final parents' (p depressive symptomatology improved significantly, as did parents' (p depressive disorders. However, randomized, placebo-controlled studies are needed.

  19. Effectiveness and tolerability of tapentadol sustained release in the Australian setting.

    Science.gov (United States)

    Russo, Marc A; Santarelli, Danielle M

    2016-01-01

    To assess the effectiveness and tolerability of tapentadol sustained release (SR) following its introduction to the Australian private market. A retrospective audit of routine clinical practice with data collection beginning 2 months after the first tapentadol SR prescription. A multidisciplinary Australian pain clinic. Fifty patients who were prescribed tapentadol SR as part of routine clinical management at the pain clinic. Trial of tapentadol SR with subsequent dose titration if the patient was satisfied with or tolerant of the medication. Patient-reported pain outcome, side effects, medication adherence, and concomitant analgesic medications. Sixty-eight percent of patients reported major reductions in pain. Seventy-two percent of patients tolerated and adhered to treatment and 76 percent reported no side effects. Pain outcome was independent of pain type and prior opioid exposure; however, patients taking tapentadol in combination were more likely to report a positive outcome (Pearson χ(2) = 9.867, n = 46, p = 0.0072). Tapentadol was effective and generally well tolerated in the majority of patients for neuropathic, nociceptive and mixed pain types and this was regardless of prior opioid use.

  20. Laboratory and Field Evaluation of Biodegradable Polyesters for Sustained Release of Isometamidium and Ethidium

    Directory of Open Access Journals (Sweden)

    Geerts S

    1999-01-01

    Full Text Available An overview is presented of the results obtained with biodegradable sustained release devices (SRDs containing a mixture of polymers and either isometamidium (ISMM or ethidium. Under controlled laboratory conditions (monthly challenge with tsetse flies infected with Trypanosoma congolense the protection period in SRD treated cattle could be extended by a factor 2.8 (for ethidium up to 4.2 (for ISMM as compared to animals treated intramuscularly with the same drugs. Using a competitive drug ELISA ISMM concentrations were detected up to 330 days after the implantation of the SRDs, whereas after i.m. injection the drug was no longer present three to four months post treatment. Two field trials carried out in Mali under heavy tsetse challenge showed that the cumulative infection rate was significantly lower in the ISMM-SRD implanted cattle than in those which received ISMM intramuscularly. Using ethidium SRD, however, contradictory results were obtained in field trials in Zambia and in Mali. The potential advantages and inconvenients of the use of SRDs are discussed and suggestions are made in order to further improve the currently available devices.

  1. Isolation and physicochemical characterization of sustained releasing starches from Dioscorea of Jharkhand.

    Science.gov (United States)

    Deepika, V; Jayaram Kumar, K; Anima, P

    2013-04-01

    Starches were isolated from varieties of Dioscorea (Da1, Da2) grown in Jharkhand state of India and it was characterized in terms of moisture, ash, amylose content, bulk density, tapped density, true density, porosity, Carr's index, Hausner's ratio, swelling power, solubility, water holding capacity, paste clarity. Morphological, thermal and IR spectroscopic studies were also done to characterize the isolated starch. The shape and size of starch granules were round/oval to ellipsoid and 5-10μm. There were considerable differences in powder characteristics, amylose content, ash values, and water holding capacity, swelling and solubility power. Starch from variety Da2 showed high enthalpy of gelatinization temperature as compared to variety Da1. Peaks in FTIR spectra of both starches revealed its carbohydrate nature. In vitro studies revealed that both the starches from Da1 and Da2 can be used in developing sustained release formulations. The result showed that starches from both Dioscorea can be used in pharmaceutical industries as excipients with minimal modifications. Copyright © 2013. Published by Elsevier B.V.

  2. PEGylated TNF-related apoptosis-inducing ligand (TRAIL)-loaded sustained release PLGA microspheres for enhanced stability and antitumor activity.

    Science.gov (United States)

    Kim, Tae Hyung; Jiang, Hai Hua; Park, Chan Woong; Youn, Yu Seok; Lee, Seulki; Chen, Xiaoyuan; Lee, Kang Choon

    2011-02-28

    The purpose of this work was to develop an effective PEGylated TNF-related apoptosis-inducing ligand (PEG-TRAIL) delivery system for antitumor therapy based on local injection to tumor sites that has a sustained effect without protein aggregation or an initial release burst. The authors designed poly (lactic-co-glycolic) acid (PLGA) microspheres that deliver PEG-TRAIL locally and continuously at tumor sites with sustained biological activity and compared its performance with that of TRAIL microspheres. TRAIL or PEG-TRAIL was microencapsulated into PLGA microspheres using a double-emulsion solvent extraction method. Prepared TRAIL and PEG-TRAIL microspheres showed entirely spherical, smooth surfaces. However, PEG-TRAIL microspheres exhibited a 2.07-fold higher encapsulation efficiency than TRAIL microspheres, and exhibited a tri-phasic in vitro release profile with a lower initial burst (15.8%) than TRAIL microspheres (42.7%). Furthermore, released PEG-TRAIL showed a continued ability to induce apoptosis over 14 days. In vivo pharmacokinetic studies also demonstrated that PEG-TRAIL microspheres had a sustained release profile (18 days), and that the steady-state concentration of PEG-TRAIL in rat plasma was reached at day 3 and maintained until day 15; its steady-state concentration in rat plasma changed from 1444.3 ± 338.4 to 2697.7 ± 419.7 pg/ml. However, TRAIL microspheres were released out within 2 days after administration. Finally, in vivo antitumor tests revealed that tumor growths were significantly more inhibited by a single dose of PEG-TRAIL microspheres than TRAIL microspheres when delivered at 300 μg of TRAIL/mouse. Tumors taken from mouse treated with PEG-TRAIL microspheres showed 78.3% tumor suppression at 24 days, and this was 3.02-fold higher than that observed for TRAIL microspheres (25.9% tumor inhibition). Furthermore, these improved pharmaceutical characteristics of PEG-TRAIL microspheres resulted in superior therapeutic effects without

  3. Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system.

    Science.gov (United States)

    Noukrati, Hassan; Cazalbou, Sophie; Demnati, Imane; Rey, Christian; Barroug, Allal; Combes, Christèle

    2016-02-01

    The introduction of an antibiotic, sodium fusidate (SF), into the liquid phase of calcium carbonate-calcium phosphate (CaCO3-CaP) bone cement was evaluated, considering the effect of the liquid to powder ratio (L/P) on the composition and microstructure of the set cement and the injectability of the paste. In all cases, we obtained set cements composed mainly of biomimetic carbonated apatite analogous to bone mineral. With this study, we evi-denced a synergistic effect of the L/P ratio and SF presence on the injectability (i.e., the filter-pressing pheno-menon was suppressed) and the setting time of the SF-loaded cement paste compared to reference cement (without SF). In addition, the in vitro study of SF release, according to the European Pharmacopoeia recommendations, showed that, regardless of the L/P ratio, the cement allowed a sustained release of the antibiotic over 1month in sodium chloride isotonic solution at 37°C and pH7.4; this release is discussed considering the microstructure characteristics of SF-loaded cements (i.e., porosity, pore-size distribution) before and after the release test. Finally, modelling antibiotic release kinetics with several models indicated that the SF release was controlled by a diffusion mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Sustained delivery of vincristine inside an orthotopic mouse sarcoma model decreases tumor growth.

    Science.gov (United States)

    Harris, Jamie C; Coburn, Jeannine M; Kajdacsy-Balla, Andre; Kaplan, David L; Chiu, Bill

    2016-12-01

    Sarcoma accounts for 20% of solid tumors in children. Surgery has significant morbidity. We hypothesized that delivering chemotherapy directly into tumors through sustained release silk systems could slow tumor growth. Human Ewing sarcoma cells A673 were cultured with vincristine and doxorubicin to determine half maximal inhibitory concentration (IC50). Cells were injected into mouse hind leg to create orthotopic tumors. Tumor volumes were measured using ultrasound. When volume reached >250mm(3,) interventions included: implantation of drug-free silk foam (Control-F), doxorubicin 400μg foam (Dox400-F), vincristine 50μg foam (Vin50-F), drug-free silk gel (Control-G), vincristine 50μg gel (Vin50-G), or single dose intravenous vincristine 50μg (Vin50-IV). End-point was volume>1000mm(3). Kaplan Meier and ANOVA were used. IC50 for vincristine and doxorubicin was 0.5ng/mL and 200ng/mL, respectively. There was no difference between Dox400-F [6±1days to end point (DTEP)] and Control-F (5±1.3 DTEP). Vin50-F (12.4±3.5 DTEP) had slower growth compared to Control-F (pinside the sarcoma tumor with silk gel decreased tumor growth. Applying this intratumoral treatment strategy may potentially decrease the extent of surgical excision. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nanoemulsion for Solubilization, Stabilization, and In Vitro Release of Pterostilbene for Oral Delivery

    National Research Council Canada - National Science Library

    Zhang, Yue; Shang, Zhenhua; Gao, Chunhui; Du, Man; Xu, Shixia; Song, Haiwen; Liu, Tingting

    2014-01-01

    .... But the poor solubility and stability of pterostilbene strictly restrained its applications. As a good protection and oral delivery system, an optimal nanoemulsion for pterostilbene was developed by using low-energy emulsification method...

  6. Controlled release delivery of penciclovir via a silicone (MED-4750) polymer: kinetics of drug delivery and efficacy in preventing primary feline herpesvirus infection in culture.

    Science.gov (United States)

    Semenkow, Samantha L; Johnson, Nicole M; Maggs, David J; Margulies, Barry J

    2014-02-22

    Herpesviruses are ubiquitous pathogens that infect and cause recurrent disease in multiple animal species. Feline herpesvirus-1 (FHV-1), a member of the alphaherpesvirus family, causes respiratory illness and conjunctivitis, and approximately 80% of domestic cats are latently infected. Oral administration of famciclovir or topical application of cidofovir has been shown in masked, placebo-controlled prospective trials to reduce clinical signs and viral shedding in experimentally inoculated cats. However, to the authors' knowledge, other drugs have not been similarly assessed or were not safe or effective. Likewise, to our knowledge, no drugs have been assessed in a placebo-controlled manner in cats with recrudescent herpetic disease. Controlled-release devices would permit long-term administration of these drugs and enhance compliance. We therefore engineered implantable cylindrical devices made from silicone (MED-4750) impregnated with penciclovir, for long-term, steady-state delivery of this drug. Our data show that these devices release penciclovir with a burst of drug delivery until the tenth day of release, then at an average rate of 5.063 ± 1.704 μg per day through the next 50 days with near zero-order kinetics (in comparison to MED-4750-acyclovir devices, which show the same burst kinetics and average 2.236 ± 0.625 μg/day thereafter). Furthermore, these devices suppress primary infection of FHV-1 in a cell culture system. The clinical deployment of these silicone-penciclovir devices may allow long-term treatment of FHV-1 infection with a single intervention that could last the life of the host cat.

  7. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study.

    Science.gov (United States)

    Sankar, R; Jain, Subheet Kumar

    2013-01-01

    Acyclovir has pharmacokinetic limitations, including poor oral bioavailability of 15%-30%, high variability, and short elimination half-life of 2.3 hours. These limitations necessitate frequent administration of acyclovir, up to five times daily, leading to poor patient compliance, which in turn leads to a reduction in therapeutic efficacy and development of resistance. A gastroretentive sustained-release (GR) formulation of acyclovir, based on a combination of swelling and mucoadhesive mechanisms, has been developed. Composition has been optimized after evaluation of different polymers, carbomer, polyethylene oxide, and sodium alginate alone and/or in combination. GR formulations were characterized for in-process quality-control tests, drug release and release rate kinetics, similarity factor analysis, swelling index, and matrix erosion. A formulation containing a combination of carbomer and polyethylene oxide had the highest similarity of drug release compared with a target drug-release profile obtained by pharmacokinetic simulations. The measurement of mucoadhesive strength, carried out with a texture analyzer, showed that the mucoadhesive strength of the GR formulation was significantly higher than that of the immediate-release (IR) tablet. The optimized GR formulation was found to be retained in the upper part of the gastrointestinal tract for 480 minutes; the IR tablet was retained for only 90 minutes as measured using a gastrointestinal retention study in albino rabbits. The GR formulation was also found to maintain more sustained plasma concentrations than the IR tablet. Mean residence time of the GR formulation was 7 hours versus 3.3 hours for the IR formulation. The relative bioavailability of the GR formulation was 261% of the IR formulation. The GR formulation of acyclovir, based on swelling and mucoadhesive mechanisms, has prolonged retention in the upper gastrointestinal tract, sustained in vitro drug release, prolonged in vivo absorption, and better

  8. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies

    Science.gov (United States)

    Hu, Yuwei; Chen, Jian; Li, Xiufang; Sun, Yanhua; Huang, Shen; Li, Yuqing; Liu, Hui; Xu, Jiangfeng; Zhong, Shian

    2017-09-01

    The current state of cancer therapy encourages researchers to develop novel efficient nanocarriers. Halloysite nanotubes (HNTs) are good nanocarrier candidates due to their unique nanoscale (40-80 nm in diamter and 200-500 nm in length) and hollow lumen, as well as good biocompatibility and low cost. In our study, we prepared a type of folate-mediated targeting and redox-triggered anticancer drug delivery system, so that Doxorubicin (DOX) can be specifically transported to tumor sites due to the over-expressed folate-receptors on the surface of cancer cells. Furthermore, it can then be released by the reductive agent glutathione (GSH) in cancer cells where the content of GSH is nearly 103-fold higher than in the extracellular matrix. A series of methods have demonstrated that per-thiol-β-cyclodextrin (β-CD-(SH)7) was successfully combined with HNTs via a redox-responsive disulfide bond, and folic acid-polyethylene glycol-adamantane (FA-PEG-Ad) was immobilized on the HNTs through the strong complexation between β-CD/Ad. In vitro studies indicated that the release rate of DOX raised sharply in dithiothreitol (DTT) reducing environment and the amount of released DOX reached 70% in 10 mM DTT within the first 10 h, while only 40% of DOX was released in phosphate buffer solution (PBS) even after 79 h. Furthermore, the targeted HNTs could be specifically endocytosed by over-expressed folate-receptor cancer cells and significantly accelerate the apoptosis of cancer cells compared to non-targeted HNTs. In vivo studies further verified that the targeted HNTs had the best therapeutic efficacy and no obvious side effects for tumor-bearing nude mice, while free DOX showed damaging effects on normal tissues. In summary, this novel nanocarrier system shows excellent potential for targeted delivery and controlled release of anticancer drugs and provides a potential platform for tumor therapy.

  9. Modeling Sustained Delivery of Agroecosystem Services at a Watershed Scale under Climate Change

    Science.gov (United States)

    Jaradat, A. A.; Starr, J.

    2015-12-01

    The intensive land use and agricultural production systems in the Chippewa River Watershed (CRW) in Minnesota, USA, contribute to inherent environmental problems and have major direct impact on soil conservation, and on several competing agro-ecosystem services (AESs); and may have indirect impact on AESs in the Upper Mississippi River Basin (UMRB). Field-scale indicators of AESs are largely absent in the highly diverse soils of the CRW. Therefore, proxy indicators were developed to assess these services under current (A0) and predicted (A2; 100 years) global climate change (GCC) scenarios. Individual indices were developed for biomass, grain yield, NO3- and NH4-N, soil carbon, runoff, and soil erosion for 132 soil series classified into three land capability classes (LCCs). The indices and a weighted index (Iw) were subjected to multivariate analyses procedures, including distance-weighted least squares, and variance components estimation. Three-D maps delineated contiguous areas of increasing or decreasing AESs in response to projected GCC. Largest significant variance portions in Iw were attributed to GCC scenarios; followed by the interaction of crop rotations and LCCs within conventional and organic cropping systems. The AES were predicted with larger certainty under A2 in organically-managed LCC-1 compared to conventional management. Significantly more runoff and soil erosion are predicted in conventionally-managed LCC-2 and LCC-3 under the same GCC scenario, regardless of soil heterogeneity. The modeling framework and the mapped AES indicators are designed to achieve multiple goals and will be used to support farmers in designing specific crop rotations that are suitable for each of the three LCCs and for major and vulnerable soil series in the watershed. Also, the modeling framework will address sustained delivery of multiple AESs, while enhancing soil conservation, water quality, and environmental protection aspects of farming in the CRW and the UMRB.

  10. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement.

    Directory of Open Access Journals (Sweden)

    Bai Xue

    Full Text Available In this work, a lysostaphin-loaded, control-released, self-setting and injectable porous bone cement with efficient protein delivery was prepared by a novel setting method using hydroxyapatite/chitosan (HA/CS composite scaffold. The cement samples were made through cementitious reactions by mixing solid powder, a mixture of HA/CS composite particles, lysostaphin, Ca(OH2, CaCO3 and NaHCO3, with setting liquid containing citric acid, acetic acid, NaH2PO4, CaCl2 and poloxamer. The setting parameters of the cement samples were determined. The results showed that the final setting time was 96.6±5.2 min and the pH value increased from approximately 6.2 to nearly 10 during the setting process and the porosity was 34% at the end. And the microstructure and composition were detected by scanning electron microscopy (SEM, x-ray diffraction and Fourier transform-infrared spectroscopy. For the release behavior of lysostaphin loaded in the cement sample, the in vitro cement extract experiment indicated that about 94.2±10.9% of the loaded protein was released before day 8 and the in vivo Qdot 625 fluorescence tracking experiment showed that the loaded protein released slower than the free one. Then the biocompatibility of the cement samples was evaluated using the methylthiazol tetrazolium assay, SEM and hematoxylin-eosin staining, which suggested good biocompatibility of cement samples with MC 3T3-E1 cells and subcutaneous tissues of mice. Finally the antibacterial activity assay indicated that the loaded lysostaphin had good release ability and strong antibacterial enzymatic activity against methicillin-resistant Staphylococcus aureus. Collectively, all the results suggested that the lysostaphin-loaded self-setting injectable porous bone cement released the protein in a controlled and effective way and the protein activity was well retained during the setting and releasing process. Thus this bone cement can be potentially applied as a combination of

  11. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shashwat S; Chen, D-H [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: chendh@mail.ncku.edu.tw

    2009-05-06

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe{sub 3}O{sub 4} magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  12. Comparative bioequivalence studies of tramadol hydrochloride sustained-release 200 mg tablets

    Directory of Open Access Journals (Sweden)

    Suhas S Khandave

    2010-11-01

    Full Text Available Suhas S Khandave1, Satish V Sawant1, Santosh S Joshi1, Yatish K Bansal2, Sonal S Kadam21Accutest Research Laboratories (I Private Limited, Koparkhirne, Navi Mumbai, Maharashtra, India; 2Ipca Laboratories Limited, Kandivli Mumbai, Maharashtra, IndiaBackground: Tramadol hydrochloride is available as 50 mg immediate-release (IR and 100 mg, 200 mg, and 300 mg sustained-release (SR tablets. The recommended dose of tramadol is 50–100 mg IR tablets every 4–6 hours. The tramadol SR 200 mg tablet is a better therapeutic option, with a reduced frequency of dosing, and improved patient compliance and quality of life. The present study evaluated the bioequivalence of a generic tramadol SR 200 mg tablet.Methods: A comparative in vitro dissolution study was performed on the test and reference products, followed by two separate single-dose bioequivalence studies under fasting and fed conditions and one multiple-dose bioequivalence study under fasting conditions. These bioequivalence studies were conducted in healthy human subjects using an open-label, randomized, two-treatment, two-period, two-sequence, crossover design. The oral administration of the test and reference products was done on day 1 for both the single-dose studies and on days 1–5 for the multiple-dose study in each study period as per the randomization code. Serial blood samples were collected at predefined time points in all the studies. Analysis of plasma concentrations of tramadol and O-desmethyltramadol (the M1 metabolite was done by a validated liquid chromatography-mass spectrometry analytical method. The standard acceptance criterion of bioequivalence was applied on log-transformed pharmacokinetic parameters for tramadol and its M1 metabolite.Results: The ratios for geometric least-square means and 90% confidence intervals were within the acceptance range of 80%–125% for log-transformed primary pharmacokinetic parameters for tramadol and its M1 metabolite in all the three studies

  13. Beyond a Carrier: Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery, Release, and Response.

    Science.gov (United States)

    Ding, Hui; Zhang, Fan; Zhao, Chaochao; Lv, Yanlin; Ma, Guanghui; Wei, Wei; Tian, Zhiyuan

    2017-08-23

    On the basis of the unique physicochemical properties of graphene quantum dots (GQDs), we developed a novel type of theranostic agent by loading anticancer drug doxorubicin (DOX) to GQD's surface and conjugating Cy5.5 (Cy) dye to GQD though a cathepsin D-responsive (P) peptide. Such type of agents demonstrated superior therapeutic performance both in vitro and in vivo because of the improved tissue penetration and cellular uptake. More importantly, they are capable of functioning as probes for programmed tracking the delivery and release of anticancer drug as well as drug-induced cancer cell apoptosis through GQD's, DOX's, and Cy's charateristic fluorescence, respectively.

  14. Psyllium: a promising polymer for sustained release formulations in combination with HPMC polymers.

    Science.gov (United States)

    Kaialy, Waseem; Emami, Parastou; Asare-Addo, Kofi; Shojaee, Saeed; Nokhodchi, Ali

    2014-05-01

    Psyllium has a mucilaginous property that makes it a good candidate to be utilized as an excipient in the preparation of controlled release systems. Various formulations were prepared using theophylline as a model drug and investigated with a view to achieve an ideal slow drug release profile. The addition of hydroxypropyl methylcellulose (HPMC) to psyllium significantly reduced the burst release; however, the percentage of drug release within a 12 h period was too slow and thereby inadequate. This was overcome by the addition of lactose as a hydrophilic filler that enabled a slow release with roughly 80% drug release in 12 h. The inclusion of HPMC within psyllium formulations changed the drug release kinetics from Fickian diffusion to anomalous transport. Granulated formulations demonstrated slower drug release than ungranulated or physical mixture and caused a change in the dissolution kinetics from Fickian diffusion to anomalous transport. Milled granules showed more efficient controlled drug release with no burst release. Milling of the granules also changed the drug release kinetics to anomalous transport. Although psyllium was proved to be a promising polymer to control the drug release, a combination of psyllium-HPMC and formulation processes should be considered in an attempt to achieve a zero-order release.

  15. Pharmacokinetic Profiles of Meloxicam and Sustained-release Buprenorphine in Prairie Dogs (Cynomys ludovicianus).

    Science.gov (United States)

    Cary, Cynthia D; Lukovsky-Akhsanov, Nicole L; Gallardo-Romero, Nadia F; Tansey, Cassandram M; Ostergaard, Sharon D; Taylor, Willie D; Morgan, Clint N; Powell, Nathaniel; Lathrop, George W; Hutson, Christina L

    2017-03-01

    In this study, we evaluated the pharmacokinetic profiles of meloxicam and sustained-release (SR) buprenorphine in prairie dogs. The 4 treatment groups were: low-dose meloxicam (0.2 mg/kg SC), high-dose meloxicam (4 mg/kg SC), low-dose buprenorphine SR (0.9 mg/kg SC), and high-dose buprenorphine SR (1.2 mg/kg SC). The highest plasma concentrations occurred within 4 h of administration for both meloxicam treatment groups. The therapeutic range of meloxicam in prairie dogs is currently unknown. However, as compared with the therapeutic range documented in other species (0.39 - 0.91 μg/mL), the mean plasma concentration of meloxicam fell below the minimal therapeutic range prior to 24 h in the low-dose group but remained above therapeutic levels for more than 72 h in the high-dose group. These findings suggest that the current meloxicam dosing guidelines may be subtherapeutic for prairie dogs. The highest mean plasma concentration for buprenorphine SR occurred at the 24-h time point (0.0098 μg/mL) in the low-dose group and at the 8-h time point (0.015 μg/mL) for the high-dose group. Both dosages of buprenorphine SR maintained likely plasma therapeutic levels (0.001 μg/mL, based on previous rodent studies) beyond 72 h. Given the small scale of the study and sample size, statistical analysis was not performed. The only adverse reactions in this study were mild erythematous reactions at injection sites for buprenorphine SR.

  16. Pharmacokinetics and pharmacodynamics of buprenorphine and sustained-release buprenorphine after administration to adult alpacas.

    Science.gov (United States)

    Dooley, S Bryce; Aarnes, Turi K; Lakritz, Jeffrey; Lerche, Phillip; Bednarski, Richard M; Hubbell, John A E

    2017-03-01

    OBJECTIVE To determine pharmacokinetics and pharmacodynamics of buprenorphine after IV and SC administration and of sustained-release (SR) buprenorphine after SC administration to adult alpacas. ANIMALS 6 alpacas. PROCEDURES Buprenorphine (0.02 mg/kg, IV and SC) and SR buprenorphine (0.12 mg/kg, SC) were administered to each alpaca, with a 14-day washout period between administrations. Twenty-one venous blood samples were collected over 96 hours and used to determine plasma concentrations of buprenorphine. Pharmacokinetic parameters were calculated by use of noncompartmental analysis. Pharmacodynamic parameters were assessed via sedation, heart and respiratory rates, and thermal and mechanical antinociception indices. RESULTS Mean ± SD maximum concentration after IV and SC administration of buprenorphine were 11.60 ± 4.50 ng/mL and 1.95 ± 0.80 ng/mL, respectively. Mean clearance was 3.00 ± 0.33 L/h/kg, and steady-state volume of distribution after IV administration was 3.8 ± l.0 L/kg. Terminal elimination half-life was 1.0 ± 0.2 hours and 2.7 ± 2.8 hours after IV and SC administration, respectively. Mean residence time was 1.3 ± 0.3 hours and 3.6 ± 3.7 hours after IV and SC administration, respectively. Bioavailability was 64 ± 28%. Plasma concentrations after SC administration of SR buprenorphine were below the LLOQ in samples from 4 alpacas. There were no significant changes in pharmacodynamic parameters after buprenorphine administration. Alpacas exhibited mild behavioral changes after all treatments. CONCLUSIONS AND CLINICAL RELEVANCE Buprenorphine administration to healthy alpacas resulted in moderate bioavailability, rapid clearance, and a short half-life. Plasma concentrations were detectable in only 2 alpacas after SC administration of SR buprenorphine.

  17. Bioavailability of two manufacturers' sustained-release quinidine gluconate tablets at steady state.

    Science.gov (United States)

    Zinny, M A; Taggart, W V

    1984-01-01

    Steady-state bioavailability of sustained-release quinidine gluconate tablets manufactured by two companies was compared in a crossover study. The tablets were Quinaglute Dura-Tabs, manufactured by Berlex Laboratories, Inc., and generic quinidine gluconate tablets, manufactured by Bolar Pharmaceutical Company. Sixteen healthy male volunteers were given multiple doses of the two products in randomized sequence. Blood samples were obtained immediately before administration of the seventh dose (hour 72) and at 1, 2, 3, 4, 5, 6, 8, 10, and 12 hours after administration. Plasma samples were assayed for quinidine content by high-performance liquid chromatography. The tablets manufactured by Berlex provided statistically significantly higher plasma levels during the second half of the dosing interval (six to 12 hours postdose). A 29% difference in plasma levels was observed between the products at the end of the dosing interval. The Bolar quinidine gluconate tablets had a statistically significant lower area under the curve (AUC). The greatest difference in AUC occurred during the last six hours of the dosing period. The six- to 12-hour AUC for the Bolar tablets was 24% less than that for Berlex tablets. The generic tablets also achieved peak plasma level 31% sooner than did Quinaglute Dura-Tabs. The pharmacokinetic characteristics of the two products at steady state indicate that the Bolar quinidine gluconate tablet exhibited a more rapid onset of peak plasma levels and a more rapid decline to minimum plasma levels. In summary, the data from this multiple-dose study, performed using commercially available material, indicate that differences exist in pharmacokinetic performance of the products. However, the exact correlation between pharmacokinetic data and clinical effectiveness has not been established.

  18. The Use of Hibiscus esculentus (Okra) Gum in Sustaining the Release of Propranolol Hydrochloride in a Solid Oral Dosage Form

    Science.gov (United States)

    Noordin, Mohamed Ibrahim; Kadivar, Ali

    2014-01-01

    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength. PMID:24678512

  19. Formulation and pharmaceutical development of quetiapine fumarate sustained release matrix tablets using a QbD approach

    Directory of Open Access Journals (Sweden)

    Gavan Alexandru

    2017-03-01

    Full Text Available The main objective of the present study was to apply QbD methodology in the development of once-a-day sustained release quetiapine tablets. The quality target product profile (QTPP was defined after the pharmaceutical properties and kinetic release of the innovator product, Seroquel XR 200 mg. For the D-optimal experimental design, the level and ratio of matrix forming agents and the type of extragranular diluent were chosen as independent inputs, which represented critical formulation factors. The critical quality attributes (CQAs studied were the cumulative percentages of quetiapine released after certain time intervals. After the analysis of the experimental design, optimal formulas and the design space were defined. Optimal formulas demonstrated zero-order release kinetics and a dissolution profile similar to the innovator product, with f2 values of 74.53 and 83.74. It was concluded that the QbD approach allowed fast development of sustained release tablets with similar dissolution behavior as the innovator product.

  20. Original research paper. Formulation and pharmaceutical development of quetiapine fumarate sustained release matrix tablets using a QbD approach.

    Science.gov (United States)

    Gavan, Alexandru; Porfire, Alina; Marina, Cristina; Tomuta, Ioan

    2017-03-01

    The main objective of the present study was to apply QbD methodology in the development of once-a-day sustained release quetiapine tablets. The quality target product profile (QTPP) was defined after the pharmaceutical properties and kinetic release of the innovator product, Seroquel XR 200 mg. For the D-optimal experimental design, the level and ratio of matrix forming agents and the type of extragranular diluent were chosen as independent inputs, which represented critical formulation factors. The critical quality attributes (CQAs) studied were the cumulative percentages of quetiapine released after certain time intervals. After the analysis of the experimental design, optimal formulas and the design space were defined. Optimal formulas demonstrated zero-order release kinetics and a dissolution profile similar to the innovator product, with f2 values of 74.53 and 83.74. It was concluded that the QbD approach allowed fast development of sustained release tablets with similar dissolution behavior as the innovator product.

  1. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    Science.gov (United States)

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The use of Hibiscus esculentus (Okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form.

    Science.gov (United States)

    Zaharuddin, Nurul Dhania; Noordin, Mohamed Ibrahim; Kadivar, Ali

    2014-01-01

    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.

  3. Improving sustained drug delivery from ophthalmic lens materials through the control of temperature and time of loading.

    Science.gov (United States)

    Topete, Ana; Oliveira, Andreia S; Fernandes, A; Nunes, T G; Serro, A P; Saramago, B

    2018-02-14

    Although the possibility of using drug-loaded ophthalmic lens to promote sustained drug release has been thoroughly pursued, there are still problems to be solved associated to the different alternatives. In this work, we went back to the traditional method of drug loading by soaking in the drug solution and tried to optimize the release profiles by changing the temperature and the time of loading. Two materials commercially available under the names of CI26Y and Definitive 50 were chosen. CI26Y is used for intraocular lenses (IOLs) and Definitive 50 for soft contact lenses (SCLs). Three drugs were tested: an antibiotic, moxifloxacin, and two anti-inflammatories, diclofenac and ketorolac. Sustained drug release from CI26Y disks for, at least 15 days, was obtained for moxifloxacin and diclofenac increasing the loading temperature up to 60 °C or extending the loading time till two months. The sustained release of ketorolac was limited to about 8 days. In contrast, drug release from Definitive 50 disks could not be improved by changing the loading conditions. An attempt to interpret the impact of the loading conditions on the drug release behavior was done using solid-state NMR and differential scanning calorimetry. These studies suggested the establishment of reversible, endothermic interactions between CI26Y and the drugs, moxifloxacin and diclofenac. The loading temperature had a slight effect on the mechanical and optical properties of drug loaded CI26Y samples, which still kept adequate properties to be used as IOL materials. The in vivo efficacy of CI26Y samples, drug loaded at 60 °C for two weeks, was predicted using a simplified mathematical model to estimate the drug concentration in the aqueous humor. The estimated concentrations were found to comply with the therapeutic needs, at least, for moxifloxacin and diclofenac. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    KAUST Repository

    Cui, Lina

    2012-09-26

    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.

  5. Plasma concentrations of buprenorphine following a single subcutaneous administration of a sustained release formulation of buprenorphine in sheep

    OpenAIRE

    Zullian, Chiara; Lema, Pablo; Lavoie, Melissa; Dodelet-Devillers, Aurore; Beaudry, Francis; Vachon, Pascal

    2016-01-01

    The goal of the present study was to evaluate the potential use of slow release buprenorphine in sheep. Twelve adult female sheep (6 Dorset and 6 Suffolk, 12 months of age) were used for this project and were divided into 2 experimental groups (n = 6/group comprising 3 Dorset and 3 Suffolk sheep). Sustained release (SR) buprenorphine was administered subcutaneously in the scapular region at a concentration of 0.1 mg/kg body weight (BW) for group 1 and of 0.05 mg/kg BW for group 2. Following b...

  6. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...... that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...

  7. Comparative study of sustained-release lipid microparticles and solid dispersions containing ibuprofen

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2012-09-01

    Full Text Available Ibuprofen is one of the most important non-steroidal anti-inflammatory drugs used in the treatment of inflammatory diseases. In its pure state, ibuprofen presents poor physical and mechanical characteristics and its use in solid dosage forms needs the addition of excipients that improve these properties. The selection of the best excipients and the most suitable pharmaceutical dosage form to carry ibuprofen is very important for the industrial success of this drug. Given these factors, lipid microparticles and solid dispersions of ibuprofen with cetyl alcohol, stearic acid, and hydrogenated castor oil were prepared. These formulations were intended to improve the physical and mechanical characteristics and to sustain the release of this drug. Physical mixtures were also prepared with the same ingredients in similar proportions. The solid dispersions of ibuprofen/stearic acid and ibuprofen/hydrogenated castor oil showed the best flow characteristics compared with pure ibuprofen. Further, gelatin capsules filled with lipid microparticles and solid dispersions were submitted to dissolution tests in order to study the influence of the prepared systems in the release profiles of ibuprofen. Prolonged release of ibuprofen was achieved with the lipid microparticles and solid dispersions prepared with the different types of excipients.O ibuprofeno é um dos antiinflamatórios não esteróides mais utilizados no tratamento de patologias associadas a processos inflamatórios. Este fármaco, quando no seu estado puro, apresenta características físicas e mecânicas pouco satisfatórias e a sua utilização em formas sólidas só é possível se forem adicionados excipientes que permitam melhorar estas propriedades. A seleção dos excipientes ideais e da forma farmacêutica mais adequada para veicular o ibuprofeno é fundamental para o sucesso industrial deste fármaco. Tendo em conta estes fatores, prepararam-se micropartículas lipídicas e dispersões s

  8. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  9. pH-triggered drug release from biodegradable microwells for oral drug delivery

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Gordon, Sarah

    2015-01-01

    Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height...

  10. Formulation Study and Evaluation of Matrix and Three-layer Tablet Sustained Drug Delivery Systems Based on Carbopols with Isosorbite Mononitrate

    National Research Council Canada - National Science Library

    Efentakis, M; Peponaki, C

    2008-01-01

    The purpose of this research was to develop and evaluate different preparations of sustained delivery systems, using Carbopols as carriers, in the form of matrices and three-layer tablets with isosorbite mononitrate...

  11. Faecal blood loss during administration of acetylsalicylic acid, ketoprofen and two new ketoprofen sustained-release compounds.

    Science.gov (United States)

    Ranløv, P J; Nielsen, S P; Bärenholdt, O

    1983-01-01

    The influence of one week's treatment with acetylsalicylic acid, ketoprofen, ketoprofen sustained-release capsules (Biovail capsules), and ketoprofen sustained-release tablets (IBP tablet) on gastrointestinal bleeding was investigated in 41 healthy male volunteers by means of a radiochromium assay. The physiological faecal bleeding was 0.10 to 0.90 ml/day (99% confidence limits). It appeared that faecal bleeding during treatment with acetylsalicylic acid medication was greater than bleeding during medication with ketoprofen capsules in equipotent dosage, the latter being in turn causing significantly more bleeding than during medication with the newly developed Biovail capsules. The most modest faecal bleeding (0.8 ml/day) was seen with IBP tablets.

  12. Preparation and Evaluation of Diclofenac Sodium Tablet Coated with Polyelectrolyte Multilayer Film Using Hypromellose Acetate Succinate and Polymethacrylates for pH-Dependent, Modified Release Drug Delivery

    National Research Council Canada - National Science Library

    Jeganathan, Balamurugan; Prakya, Vijayalakshmi; Deshmukh, Abhijit

    2016-01-01

    .... The prepared IPCs were investigated using Fourier transform infrared spectroscopy. Diclofenac sodium (DS) tablets were prepared and were coated with polymer solution of HPMCAS and EE to achieve pH-dependent and sustained-release tablets...

  13. Formulation and In-vitro Characterization of Sustained Release Matrix Type Ocular Timolol Maleate Mini-Tablet

    OpenAIRE

    Mortazavi, Seyed Alireza; Jafariazar, Zahra; Ghadjahani, Yasaman; Mahmoodi, Hoda; Mehtarpour, Farzaneh

    2014-01-01

    The purpose of this study was preparation and evaluation of sustained release matrix type ocular mini-tablets of timolol maleate, as a potential formulation for the treatment of glaucoma. Following the initial studies on timolol maleate powder, it was formulated into ocular mini-tablets. The polymers investigated in this study included cellulose derivatives (HEC, CMC, EC) and Carbopol 971P. Mannitol was used as the solubilizing agent and magnesium stearate as the lubricant. Mini-tablets were ...

  14. Evaluation of gum mastic (Pistacia lentiscus) as a microencapsulating and matrix forming material for sustained drug release

    OpenAIRE

    Dinesh M. Morkhade

    2017-01-01

    In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS) and diltiazem hydrochloride (DLTZ) were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules w...

  15. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    Science.gov (United States)

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Gold Nanoplates as Cancer-Targeted Photothermal Actuators for Drug Delivery and Triggered Release

    Directory of Open Access Journals (Sweden)

    Tyler Brann

    2016-01-01

    Full Text Available The selective exposure of cancerous tissue to systemically delivered chemotherapeutic agents remains a major challenge facing cancer therapy. To address this question, a near infrared responsive oligonucleotide-coated (AS1411, hairpin, or both gold nanoplate loaded with doxorubicin is demonstrated to be nontoxic to cells without triggered release, while being acutely toxic to cells after 5 minutes of laser exposure to trigger DOX release. Conjugation of oligonucleotides to the nanoplates is confirmed by an average increase in hydrodynamic diameter of 30.6 nm, an average blue shift of the plasmon resonance peak by 36 nm, and an average −10 mV shift in zeta potential of the particles. DOX loading through intercalation into the hairpin DNA structure is confirmed through fluorescence measurements. For both GNP-Hairpin and GNP-Hairpin-AS1411, ~60% of loaded DOX is released after the first 5 minutes of laser exposure (λ=817 nm, with complete release after two more 5-minute exposures. Preliminary proof of concept is demonstrated in vitro using A549 and MDA-MB-231 cell lines as models for breast and lung cancer, respectively. Exposure of cells to untriggered DOX-loaded conjugate with no laser exposure results in little to no toxicity, while laser-triggered release of DOX causes significant cell death.

  17. Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164.

    Science.gov (United States)

    Sacchi, Veronica; Mittermayr, Rainer; Hartinger, Joachim; Martino, Mikaël M; Lorentz, Kristen M; Wolbank, Susanne; Hofmann, Anna; Largo, Remo A; Marschall, Jeffrey S; Groppa, Elena; Gianni-Barrera, Roberto; Ehrbar, Martin; Hubbell, Jeffrey A; Redl, Heinz; Banfi, Andrea

    2014-05-13

    Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1-8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1-8-fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1-8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1-8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 μg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01-5.0 μg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1-8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.

  18. Sustained-release dexamethasone intravitreal implant in juvenile idiopathic arthritis-related uveitis.

    Science.gov (United States)

    Pichi, Francesco; Nucci, Paolo; Baynes, Kimberly; Lowder, Careen Y; Srivastava, Sunil K

    2017-02-01

    The purpose of this study is to review the results of treatment of juvenile idiopathic arthritis-related uveitis with the use of intravitreal dexamethasone implant. Sixteen eyes with Juvenile idiopathic arthritis (JIA)-associated uveitis received intravitreal dexamethasone implant to treat recalcitrant anterior segment inflammation (43.7 %), chronic macular edema (6.2 %), or a combination of both (50 %). One month after injection, mean visual acuity had improvement to 39.6 ± 11 ETDRS letters (p < 0.001). Mean AC cells measure at 1 month was 0.79 and 0.75 at 3 months. One month after injection, there was a significant reduction of central retinal thickness (CRT) to 342.4 ± 79.3 µm (p < 0.01). One month after the second implant, 11 eyes (91.6 %) achieved improved activity of the anterior uveitis, and mean best-corrected visual acuity improved to 44.6 ± 8.1 ETDRS letters (p < 0.01). At 1 month after the second injection, 4/5 eyes had resolution of macular edema with CRT of 250.4 ± 13.7 µm (p < 0.01). Of the 16 eyes, 12 eyes received a second injection at mean of 7.5 ± 3.1 months after the first treatment, and 5 eyes received a third Ozurdex injection on average 7 ± 4.6 months after the second injection. Of the 16 eyes, five eyes were pseudophakic prior to injection. Of the remaining 11 eyes, 8 (73 %) developed worsening posterior subcapsular cataract at a mean of 7.3 ± 1.2 months after the first injection. After the first injection, only one eye required topical antiglaucoma therapy with maximum pressure of 25 mmHg. In patients with recalcitrant JIA-associated active uveitis, injection of sustained-release dexamethasone can achieve control of anterior inflammation and resolution of macular edema.

  19. Controlled release drug delivery systems to improve post-operative pharmacotherapy.

    Science.gov (United States)

    Bhusal, Prabhat; Harrison, Jeff; Sharma, Manisha; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2016-10-01

    Over 230 million surgical procedures are conducted worldwide each year with numbers increasing. Pain, undesirable inflammation and infection are common complications experienced by patients following surgery. Opioids, non-steroidal anti-inflammatory drugs (NSAIDs), local anaesthetics (LAs) and antibiotics are the commonly administered drugs peri-operatively to manage these complications. Post-operative pharmacotherapy is typically achieved using immediate-release dosage forms of drugs, which lead to issues around fluctuating plasma concentrations, systemic adverse effects and poor patient adherence. Controlled release (CR) systems for certain medicines including opioids, NSAIDs and antibiotics have demonstrably enhanced treatment efficacy in the post-surgical setting. However, challenges remain to ensure patient safety while achieving individual therapeutic needs. Newer CR systems in the research and development pipeline have a high level of control over medicine release, which can be initiated, tuned or stopped on-demand. Future systems will self-regulate drug release in response to biological markers providing precise individualized therapy. In this review, we cover currently adopted CR systems in post-operative pharmacotherapy, including drug eluting medical devices, and highlight a series of examples of novel CR technologies that have the potential for translation into post-surgical settings to improve medication efficacy and enhance post-surgical recovery.

  20. Formulation of novel sustained release rifampicin-loaded solid lipid microparticles based on structured lipid matrices from Moringa oleifera.

    Science.gov (United States)

    Onyishi, Ikechukwu V; Chime, Salome A; Ogudiegwu, Echezona O

    2015-01-01

    To formulate sustained release rifampicin-loaded solid lipid microparticles (SLMs) using structured lipid matrices based on Moringa oil (MO) and Phospholipon 90G (P90G). Rifampicin-loaded and unloaded SLMs were formulated by melt homogenization and characterized in terms of particle morphology and size, percentage drug content (PDC), pH stability, stability in simulated gastric fluid (SGF, pH 1.2), minimum inhibitory concentration (MIC) and in vitro release. In vivo release was studied in Wistar rats. Rifampicin-loaded SLMs had particle size range of 32.50 ± 2.10 to 34.0 ± 8.40 μm, highest PDC of 87.6% and showed stable pH. SLMs had good sustained release properties with about 77.1% release at 12 h in phosphate buffer (pH 6.8) and 80.3% drug release at 12 h in simulated intestinal fluid (SIF, pH 7.4). SLMs exhibited 48.51% degradation of rifampicin in SGF at 3 h, while rifampicin pure sample had 95.5% degradation. Formulations exhibited MIC range of 0.781 to 1.562, 31.25 to 62.5 and 6.25 to 12.5 μg/ml against Salmonella typhi, Escherichia coli, and Bacillus subtilis respectively and had higher in vivo absorption than the reference rifampicin (p < 0.05). Rifampicin-loaded SLMs could be used once daily for the treatment tuberculosis.

  1. Determination of solid state characteristics of spray-congealed Ibuprofen solid lipid microparticles and their impact on sustaining drug release.

    Science.gov (United States)

    Wong, Priscilla Chui Hong; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-05-04

    This study was used to find solid state characteristics of ibuprofen loaded spray-congealed solid lipid microparticles (SLMs) by employing simple lipids as matrices, with or without polymeric additives, and the impact of solid drug-matrix miscibility on sustaining drug release. Solid miscibility of ibuprofen with two lipids, cetyl alcohol (CA) and stearic acid (SA), were investigated using differential scanning calorimetry (DSC). SLMs containing 20% w/w ibuprofen with or without polymeric additives, PVP/VA and EC, were produced by spray congealing, and the resultant microparticles were subjected to visual examination by scanning electron microscopy (SEM), thermal analysis using DSC, and hot-stage microscopy. Intermolecular interactions between lipids and drug as well as additives were investigated by Fourier-transformed infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). X-ray diffractometry (XRD) was utilized to study polymorphic changes of drug and matrix over the course of a year. Ibuprofen was found to depress the melting points of CA and SA in a colligative manner, reaching maximum solubility at 10% w/w and 30% w/w for CA and SA, respectively. Drug encapsulation efficiencies and yields of spray-congealed SLMs containing 20% w/w ibuprofen were consistently high for both lipid matrices. CA and SA were found to adopt their stable γ- and β-polymorphs, respectively, immediately after spray congealing. The spray congealing process resulted in ibuprofen adopting an amorphous or poorly crystalline state, with no further changes over the course of a year. SEM, DSC, and hot stage microscope studies on the SLMs confirmed the formation of a solid dispersion between ibuprofen and CA and a solid solution between ibuprofen and SA. SA was found to sustain the release of ibuprofen significantly better than CA. PVP/VA and EC showed some interactions with CA, which led to an expansion of unit cell dimensions of CA upon spray congealing, whereas they

  2. In-vitro trials to ascertain sustained release efficacy of assembly pheromone micro particles for the control of brown dog tick, Rhipicephalus sanguineus.

    Science.gov (United States)

    Bhoopathy, Dhivya; Bhaskaran Ravi, Latha

    2017-12-01

    Sustained release micro particles were prepared incorporating assembly pheromone and deltamethrin. Two natural polymers, namely, chitosan and calcium alginate and a synthetic polymer, poly-ε-caprolactone were used for encapsulating the assembly pheromone-acaricide combination. The micro particles were subjected to in vitro evaluation freshly after preparation and then at monthly intervals to assess their sustained release efficacy. The response of the unfed stages of dog tick, Rhipicephalus sanguineus to fresh and aged micro particles was assessed and results were recorded. The micro particles were found to release assembly pheromone in a sustained manner up to 2 months of study period.

  3. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes.

    Science.gov (United States)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo; Zheng, Lixia

    2016-11-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  5. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study

    Directory of Open Access Journals (Sweden)

    Sankar R

    2013-12-01

    Full Text Available R Sankar,1 Subheet Kumar Jain1,2 1Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India; 2Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India Background: Acyclovir has pharmacokinetic limitations, including poor oral bioavailability of 15%–30%, high variability, and short elimination half-life of 2.3 hours. These limitations necessitate frequent administration of acyclovir, up to five times daily, leading to poor patient compliance, which in turn leads to a reduction in therapeutic efficacy and development of resistance. Methods: A gastroretentive sustained-release (GR formulation of acyclovir, based on a combination of swelling and mucoadhesive mechanisms, has been developed. Composition has been optimized after evaluation of different polymers, carbomer, polyethylene oxide, and sodium alginate alone and/or in combination. GR formulations were characterized for in-process quality-control tests, drug release and release rate kinetics, similarity factor analysis, swelling index, and matrix erosion. Results: A formulation containing a combination of carbomer and polyethylene oxide had the highest similarity of drug release compared with a target drug-release profile obtained by pharmacokinetic simulations. The measurement of mucoadhesive strength, carried out with a texture analyzer, showed that the mucoadhesive strength of the GR formulation was significantly higher than that of the immediate-release (IR tablet. The optimized GR formulation was found to be retained in the upper part of the gastrointestinal tract for 480 minutes; the IR tablet was retained for only 90 minutes as measured using a gastrointestinal retention study in albino rabbits. The GR formulation was also found to maintain more sustained plasma concentrations than the IR tablet. Mean residence time of the GR formulation was 7 hours versus 3.3 hours for the IR formulation. The relative

  6. The impact of selected preparations of trace elements - magnesium, potassium, calcium, and zinc on the release of diclofenac sodium from enteric coated tablets and from sustained release capsules.

    Science.gov (United States)

    Biernat, Paweł; Musiał, Witold; Gosławska, Dorota; Pluta, Janusz

    2014-01-01

    In an aging society, many patients require long-term treatment. This fact is associated clearly with the simultaneous occurrence of lifestyle diseases such as hypertension, diabetes, and even osteoarthritis. Concomitant medications, which are a common practice, pose a major threat of an interaction between these drugs. Very popular now "fast way of life" that makes people have less and less time to prepare well-balanced meals of high nutritional value. The result of this lifestyle is an increased need for supplementation preparations necessary vitamins and minerals. Given the wide availability of dietary supplements (shops, kiosks, petrol stations) raises the question about the possibility of an interaction between the uncontrolled intake of dietary supplements and medications received in the most common diseases of civilization. The aim of this study was to investigate the effect of the most important minerals (magnesium, potassium, calcium, zinc) contained in the popular nutritional supplements, the release also often used as an anti-pain, anti-inflammatory, diclofenac sodium from the different formulations. Among the many as sodium diclofenac selected two most common: film-coated tablets and sustained release capsules. The study showed a significant effect of minerals on the release of diclofenac sodium and differences that impact, depending on the test form of the drug.

  7. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs.

    Science.gov (United States)

    Salonen, J; Laitinen, L; Kaukonen, A M; Tuura, J; Björkqvist, M; Heikkilä, T; Vähä-Heikkilä, K; Hirvonen, J; Lehto, V-P

    2005-11-28

    Mesoporous silicon (PSi) microparticles were produced using thermal carbonization (TCPSi) or thermal oxidation (TOPSi) to obtain surfaces suitable for oral drug administration applications. The loading of five model drugs (antipyrine, ibuprofen, griseofulvin, ranitidine and furosemide) into the microparticles and their subsequent release behaviour were studied. Loading of drugs into TCPSi and TOPSi microparticles showed, that in addition to effects regarding the stability of the particles in the presence of aqueous or organic solvents, surface properties will affect compound affinity towards the particle. In addition to the surface properties, the chemical nature of the drug and the loading solution seems to be critical to the loading process. This was reflected in the obtained loading efficiencies, which varied between 9% and 45% with TCPSi particles. The release rate of a loaded drug from TCPSi microparticles was found to depend on the characteristic dissolution behaviour of the drug substance. When the dissolution rate of the free/unloaded drug was high, the microparticles caused a delayed release. However, with poorly dissolving drugs, the loading into the mesoporous microparticles clearly improved dissolution. In addition, pH dependency of the dissolution was reduced when the drug substance was loaded into the microparticles.

  8. Carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanoparticles with pH-responsive and prolonged release properties for oral delivery of the antitumor drug, Docetaxel.

    Science.gov (United States)

    Zhang, Yanzhuo; Zhu, Wufu; Zhang, Heran; Han, Jin; Zhang, Lihua; Lin, Qisi; Ai, Fengwei

    2017-10-30

    In this article, a new type of carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanomatrix (CCS/PL/MC) was fabricated as a potential nano-drug delivery system. In this drug delivery system, a mesoporous carbon nanomatrix (MC) acts as the support for loading drug molecules, a positively charged phospholipid (PL) layer works as the inner shell for prolonged drug release and a negatively charged carboxymethyl chitosan (CCS) layer serves as the outer shell for pH-responsive drug release. Docetaxel (DTX) was selected as a model drug. The drug-loaded CCS/PL/MC was synthesized via a combination approach of double emulsion/solvent evaporation followed by lyophilization. The drug-loaded nanoparticles were characterized for their particle size, structure, morphology, zeta (ζ)-potential, specific surface area, porosity, drug loading and solid state. In vitro drug release tests showed that the drug-loaded CCS/PL/MC nanoparticles possess a good pH-sensitivity and prolonged releasing ability with negligible release in gastric media and controlled release in intestinal media. Compared with MC and PL-capped MC, CCS/PL/MC had a greater mucoadhesiveness. Moreover, cellular uptake study indicated that CCS/PL/MC might improve intracellular drug delivery. These results suggest that this hybrid nanocarrier, combining the beneficial features of CCS, PL and MC, is a promising drug delivery system able to improve the oral absorption of antitumor drugs. Copyright © 2017. Published by Elsevier B.V.

  9. [Solubilizing and sustained-releasing abilities and safety preliminary evaluation for paclitaxel based on N-octyl-O, N-carboxymethyl chitosan polymeric micelles].

    Science.gov (United States)

    Huo, Mei-Rong; Zhang, Yong; Zhou, Jian-Ping; Lü, Lin; Liu, Huan; Liu, Fang-Jie

    2008-08-01

    A series of novel self-assembled polymeric micelles based on carboxymethyl chitosan bearing long chain alkyl chains (N-octyl-O, N-carboxymethyl chitosan, OCC) was synthesized. PTX loaded OCC polymeric micelles (PTX-OCC) were prepared by dialysis method. The effects of the degree of substitutions (DS) of octyl groups on the solubilizing abilities of OCC for paclitaxel were studied. The PTX-OCC were characterized using drug loading content, drug encapsulation efficiency, dynamic light scattering, zeta potential and transmission electron microscopy (TEM). Take PTX injection (PTX-INJ) as control, the safety of PTX-OCC including hemolysis, hypersensitiveness in guinea pigs and acute toxicity in mice were also evaluated. OCC showed excellent loading capacities for paclitaxel with the DS of octyl groups in the range of 37.9% - 58.6%. Drug loading contents were up to 24.9% - 34.4% with drug encapsulation efficiency 56.3% - 89.3%, which both increased with the increasing of DS of octyl groups. The mean size of PTX-OCC was 186.4 - 201.1 nm which decreased with the increasing of DS of octyl groups. The zeta potential was -47.5 to -50.9 mV, which had no obvious relation with the DS of octyl groups. The TEM images showed a spherical shape. No burst release phenomena were observed and drug cumulative release was in the range of 60% -95% in 15 days. PTX-OCC with higher DS of octyl groups showed stronger sustained releasing ability. In terms of the induction of membrane damage and hypersensitiveness, PTX-OCC was superior to PTX-INJ. The LD50 and its 95% confidence interval of PTX-OCC were 134.4 (125.0 - 144.6) mg x kg(-1), which was 2.7 fold of PTX-INJ. The present PTX-OCC could be potentially useful as safety carriers for intravenous delivery.

  10. Octadecylamine-Mediated Versatile Coating of CoFe2O4 NPs for the Sustained Release of Anti-Inflammatory Drug Naproxen and in Vivo Target Selectivity.

    Science.gov (United States)

    Georgiadou, Violetta; Makris, George; Papagiannopoulou, Dionysia; Vourlias, Georgios; Dendrinou-Samara, Catherine

    2016-04-13

    Magnetic nanoparticles (MNPs) can play a distinct role in magnetic drug delivery via their distribution to the targeted area. The preparation of such MNPs is a challenging multiplex task that requires the optimization of size, magnetic, and surface properties for the achievement of desirable target selectivity, along with the sustained drug release as a prerequisite. In that context, CoFe2O4 MNPs with a small size of ∼7 nm and moderate saturation magnetization of ∼60 emu g(-1) were solvothermally synthesized in the presence of octadecylamine (ODA) with a view to investigate the functionalization route effect on the drug release. Synthetic regulations allowed us to prepare MNPs with aminated (AmMNPs) and amine-free (FAmMNPs) surface. The addition of the nonsteroidal anti-inflammatory drug with a carboxylate donor, Naproxen (NAP), was achieved by direct coupling with the NH2 groups, rendered by ODA, through the formation of an amide bond in the case of AmMNPs. In the case of FAmMNPs, indirect coupling of NAP was performed through an intermediate linker (polyethylenimine) and on PEG-ylated MNPs. FT-IR, (1)H NMR, (13)C NMR, and UV-vis data confirmed the addition of NAP, whereas diverse drug-release behavior was observed for the different functionalization approaches. The biological behavior of the MNPs@NAP was evaluated in vitro in rat serum and in vivo in mice, after radiolabeling with a γ-emitting radionuclide, (99m)Tc. The in vivo fate of MNPs@NAP carriers was in straightforward relation with the direct or indirect coupling of NAP. Furthermore, an inflammation was induced intramuscularly, where the directly coupled (99m)Tc-MNPs@NAP carriers showed increased accumulation at the inflammation site.

  11. A poly({epsilon}-caprolactone) device for sustained release of an anti-glaucoma drug

    Energy Technology Data Exchange (ETDEWEB)

    Natu, Madalina V; De Sousa, HermInio C; Gil, M H [Department of Chemical Engineering, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290, Coimbra (Portugal); Gaspar, Manuel N; Fontes Ribeiro, Carlos A [Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra (Portugal); Correia, IlIdio J; Silva, Daniela, E-mail: hgil@eq.uc.pt [Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2011-04-15

    Implantable dorzolamide-loaded discs were prepared by blending poly({epsilon}-caprolactone), PCL, with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), Lu. By blending, crystallinity, water uptake and mass loss were modified relative to the pure polymers. Burst was diminished by coating the discs with a PCL shell. All samples presented burst release except PCL-coated samples that showed controlled release during 18 days. For PCL-coated samples, barrier control of diffusion coupled with partition control from the core slowed down the release, while for 50/50 Lu/PCL-coated samples, the enhancement in the porosity of the core diminished partition control of drug release. Nonlinear regression analysis suggested that a degradation model fully describes the release curve considering a triphasic release mechanism: the instantaneous diffusion (burst), diffusion and polymer degradation stages. The MTT test indicated that the materials are not cytotoxic for corneal endothelial cells. A good in vitro-in vivo correlation was obtained, with similar amounts of drug released in vitro and in vivo. The discs decreased intraocular pressure (IOP) in normotensive rabbit eyes by 13.0% during 10 days for PCL-coated and by 13.0% during 4 days for 50/50 Lu/PCL-coated samples. The percentages of IOP decrease are similar to those obtained by dorzolamide eyedrop instillation (11.0%).

  12. Real-time observation of aortic vessel dilation through delivery of sodium nitroprusside via slow release mesoporous nanoparticles.

    Science.gov (United States)

    Farooq, Asima; Tosheva, Lubomira; Azzawi, May; Whitehead, Debra

    2016-09-15

    Spherical mesoporous nanoparticles (MNPs) with a diameter of ∼100nm were synthesised via a sol-gel method in the presences of organic template (with and without fluorescein dye encapsulation). The template molecules were removed by acidic extraction to form a regular pore lattice structure. The nanoparticle size and morphology were analysed using transmission electron microscopy and dynamic light scattering analysis. The MNPs were further characterised by zeta potential, nitrogen adsorption measurements and infra-red spectroscopy. The interior pores had an average diameter of ∼3nm and were loaded with an endothelial-independent vasodilator, sodium nitroprusside (SNP). The optimal drug loading and drug release was determined in high potassium physiological salt solution using dialysis and atomic absorption spectroscopy. We demonstrate that the initial instantaneous release is due to the surface desorption of the drug followed by diffusion from the pores. Furthermore, these drug loaded MNPs (with and without fluorescein dye encapsulation) were added to viable aortic vessels and release in real-time was observed, ex vivo. MNPs and loaded with and without SNP were incubated with the vessel (at 1.96×10(12)NPmL(-1)) over a 3h time period. The real-time exposure to unloaded MNPs resulted in a small attenuation in constriction that occurred after approximately 1h. In contrast, MNPs loaded with SNP led to a rapid relaxation of aortic vessels that was sustained over the 3h period (p<0.001). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Calcium Alginate-Neusilin US2 Nanocomposite Microbeads for Oral Sustained Drug Delivery of Poor Water Soluble Drug Aceclofenac Sodium

    Directory of Open Access Journals (Sweden)

    Manjanna Kolammanahalli Mallappa

    2015-01-01

    Full Text Available The aim of the present study was to formulate and investigate the calcium alginate- (CA- Neusilin US2 nanocomposite microbeads containing preconcentrate of aceclofenac sodium (ACF-Na liquid microemulsion (L-ME for enhancement of oral bioavailability. The preconcentrate L-ME is prepared by using Labrafac PG, Labrasol, and Span 80 as oil, surfactant, and cosurfactant, respectively. The solid CA nanocomposite microbeads of L-ME prepared by microemulsification internal gelation technique using sodium alginate (SA gelling agent, Neusilin US2 as adsorbent, and calcium chloride as crosslinking agent. L-ME has good thermodynamic stability; globule size was found to be 32.4 nm with polydispersity index 0.219 and −6.32 mV zeta potential. No significant interactions of excipients, drug in the formulations observed by FT-IR, DSC and XPRD. The concentration of SA and Neusilin US2 influences the flow properties, mean particle size, mechanical strength, drug entrapment efficiency, and percentage of drug release. All the formulations show minimum drug release in simulated gastric fluid (SGF pH 1.2 for initial 2 h, maximum drug release in pH 6.8 phosphate buffer solution (PBS at 6 h, followed by sustaining in simulated intestinal fluid (SIF of pH 7.4 up to 12 h. The interaction of SA with Neusilin US2 creates a thick thixotropic gel network structure which acts as barrier to control the release of drug in the alkaline pH environment. Neusilin US2 is a novel filler used to convert L-ME into solid nanocomposite microbeads to enhance dissolution rate of poor water soluble drugs sustaining the drug release for prolonged period of time.

  14. Calcium Alginate-Neusilin US2 Nanocomposite Microbeads for Oral Sustained Drug Delivery of Poor Water Soluble Drug Aceclofenac Sodium.

    Science.gov (United States)

    Mallappa, Manjanna Kolammanahalli; Kesarla, Rajesh; Banakar, Shivakumar

    2015-01-01

    The aim of the present study was to formulate and investigate the calcium alginate- (CA-) Neusilin US2 nanocomposite microbeads containing preconcentrate of aceclofenac sodium (ACF-Na) liquid microemulsion (L-ME) for enhancement of oral bioavailability. The preconcentrate L-ME is prepared by using Labrafac PG, Labrasol, and Span 80 as oil, surfactant, and cosurfactant, respectively. The solid CA nanocomposite microbeads of L-ME prepared by microemulsification internal gelation technique using sodium alginate (SA) gelling agent, Neusilin US2 as adsorbent, and calcium chloride as crosslinking agent. L-ME has good thermodynamic stability; globule size was found to be 32.4 nm with polydispersity index 0.219 and -6.32 mV zeta potential. No significant interactions of excipients, drug in the formulations observed by FT-IR, DSC and XPRD. The concentration of SA and Neusilin US2 influences the flow properties, mean particle size, mechanical strength, drug entrapment efficiency, and percentage of drug release. All the formulations show minimum drug release in simulated gastric fluid (SGF) pH 1.2 for initial 2 h, maximum drug release in pH 6.8 phosphate buffer solution (PBS) at 6 h, followed by sustaining in simulated intestinal fluid (SIF) of pH 7.4 up to 12 h. The interaction of SA with Neusilin US2 creates a thick thixotropic gel network structure which acts as barrier to control the release of drug in the alkaline pH environment. Neusilin US2 is a novel filler used to convert L-ME into solid nanocomposite microbeads to enhance dissolution rate of poor water soluble drugs sustaining the drug release for prolonged period of time.

  15. Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; de Wit, Heidi; Walter, Alexander M

    2013-01-01

    Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal...... resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent...

  16. Sustained-release microspheres of amifostine for improved radio-protection, patient compliance, and reduced side effects.

    Science.gov (United States)

    Wu, Hong-Yu; Hu, Zhen-Hua; Jin, Tuo

    2016-11-01

    A biweekly administration of sustained-release microsphere dosage form of amifostine, a radioprotective drug used in radiotherapy, was performed to examine the feasibility to minimize injection frequency and blood concentration-associated side effects. Model animal trials indicated that this subcutaneously injecting microspheres, 50-100 μm in diameter, achieved bi-weekly prolonged radio-protective efficacy and, at the same time, significantly reduced skin irritation than the solution form of amifostine given by the same administration route. In addition, the hypertension associated with blood concentration of amifostine was not observed in the drug-treated rats. The animals given the amifostine microspheres and amifostine showed significantly differences in white blood cell, red blood cell, hematocrit, hemoglobin and spleen tissue histopathology after exposed under a cobalt-60 γ-radiation at a dose rate of 1.0 Gy/min for 6 min. The in vitro release profile of amifostine from the micropsheres showed a minor initial burst (less than 20% of total drug loading in the first day of administration), consisting with the side effects observations. The results suggest that amifostine encapsulated in sustained-release microspheres may be an ideal dosage form for prolonged radio-protective efficacy and improved patient compliance.

  17. Development of Denticap, a matrix based sustained release formulation for treatment of toothache, dental infection and other gum problem.

    Science.gov (United States)

    Mukherjee, Biswajit; Roy, Gopa; Ghosh, Soma

    2009-04-01

    Toothache is a serious problem worldwide. To give relief from this intolerable toothache, doctors prescribe painkillers along with antibiotics. Most of the painkillers, if not all, produce hyperacidity and gastric irritation upon oral administration. Oral antibiotics have slow onset of action and undergo hepatic "first-pass" effect. Moreover, available dental formulations are mostly liquid and last only few hours upon application, before being washed out by saliva. To overcome the above-mentioned problems, a soft polymeric mold containing antibiotic and analgesic drugs and having an appropriate consistency to adhere to the tooth, was developed for sustained drug release to provide better relief in dental patients. Eudragit L 100-55, carbopol 971 P, gum karaya powder and ethyl cellulose were used to prepare the mold "Denticaps" containing Lidocaine hydrochloride and Amoxicillin trihydrate individually and in combination, by mixing and solvent evaporation technique. Different physicochemical characterization studies such as mucoadhesion test, water absorption capacity and swelling index were carried out. In vitro drug release studies showed sustained release of Lidocaine hydrochloride and Amoxicillin trihydrate in simulated saliva for 24 h. Further studies are warranted to succeed with these formulations in humans. Upon success, this type of dosage form may open up new avenues towards dentistry.

  18. High-Amylose Sodium Carboxymethyl Starch Matrices: Development and Characterization of Tramadol Hydrochloride Sustained-Release Tablets for Oral Administration

    Science.gov (United States)

    Nabais, Teresa; Leclair, Grégoire

    2014-01-01

    Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (10