WorldWideScience

Sample records for sustained hypoxia sh

  1. Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats.

    Science.gov (United States)

    Mayer, C A; Ao, J; Di Fiore, J M; Martin, R J; MacFarlane, P M

    2013-06-15

    Neonatal chronic intermittent hypoxia (CIH) enhances the ventilatory sensitivity to acute hypoxia (acute hypoxic ventilatory response, HVR), whereas sustained hypoxia (SH) can have the opposite effect. Therefore, we investigated whether neonatal rats pre-treated with SH prior to CIH exhibit a modified HVR. Rat pups were exposed to CIH (5% O2/5min, 8h/day) between 6 and 15 days of postnatal age (P6-15) after pre-treatment with either normoxia or SH (11% O2; P1-5). Using whole-body plethysmography, the acute (5min, 10% O2) HVR at P16 (1 day post-CIH) was unchanged following CIH (67.9±6.7% above baseline) and also SH (58.8±10.5%) compared to age-matched normoxic rats (54.7±6.3%). In contrast, the HVR was attenuated (16.5±6.0%) in CIH exposed rats pre-treated with SH. These data suggest that while neonatal SH and CIH alone have little effect on the magnitude of the acute HVR, their combined effects impose a synergistic disturbance to postnatal development of the HVR. These data could provide important insight into the consequences of not maintaining adequate levels of oxygen saturation during the early neonatal period, especially in vulnerable preterm infants susceptible to frequent bouts of hypoxemic events (CIH) that are commonly associated with apnea of prematurity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Intermittent but not sustained hypoxia activates orexin-containing neurons in mice.

    Science.gov (United States)

    Yamaguchi, Keiji; Futatsuki, Takahiro; Ushikai, Jumpei; Kuroki, Chiharu; Minami, Toshiaki; Kakihana, Yasuyuki; Kuwaki, Tomoyuki

    2015-01-15

    Hypothalamic orexin-containing neurons are activated by CO2 and contribute to hypercapnic ventilatory activation. However, their role in oxygen-related regulation of breathing is not well defined. In this study, we examined whether an experimental model mimicking apnea-induced repetitive hypoxemia (intermittent hypoxia [IH]) activates orexin-containing neurons. Mice were exposed to IH (5×5min at 10% O2), intermittent hyperoxia (IO; 5×5min at 50% O2), sustained hypoxia (SH; 25min at 10% O2), or sham stimulation. Their brains were examined using double immunohistochemical staining for orexin and c-Fos. The results indicated that IH (25.8±3.0%), but not SH (9.0±1.5%) activated orexin-containing neurons when compared to IO (5.5±0.6%) and sham stimulation (5.9±1.4%). These results correlate with those of our previous work showing that IH-induced respiratory long-term facilitation is dependent on orexin-containing neurons. Taken together, orexin contributes to repetitive hypoxia-induced respiratory activation and the hypoxic activation of orexin-containing neurons is pattern dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Antihypoxic effect of miR-24 in SH-SY5Y cells under hypoxia via downregulating expression of neurocan

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingyuan, E-mail: sunxingyuan@sina.com; Ren, Zhanjun; Pan, Yunzhi; Zhang, Chenxin

    2016-09-02

    Hypoxia-induced apoptosis-related mechanisms involved in the brain damage following cerebral ischemia injury. A subset of the small noncoding microRNA (miRNAs) is regulated by tissue oxygen levels, and miR-24 was found to be activated by hypoxic conditions. However, the roles of miR-24 and its target gene in neuron are not well understood. Here, we validated miRNA-24 is down-regulated in patients with cerebral infarction. Hypoxia suppressed the expression of miR-24, but increased the expression of neurocan in both mRNA and protein levels in SH-SY5Y cells. MiR-24 mimics reduced the expression of neurocan, suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. By luciferase reporter assay, neurocan is validated a direct target gene of miR-24. Furthermore, knockdown of neurocan suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. Taken together, miR-24 overexpression or silencing of neurocan shows an antihypoxic effect in SH-SY5Y cells. Therefore, miR-24 and neurocan play critical roles in neuron cell apoptosis and are potential therapeutic targets for ischemic brain disease. - Highlights: • miR-24 and neurocan play critical roles in neuron cell apoptosis. • miR-24 and neurocan are potential therapeutic targets for ischemic brain disease. • Antihypoxic effect of miR-24 and neurocan in SH-SY5Y cells.

  4. Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma.

    Science.gov (United States)

    Fujioka, Takashi; Matsunaga, Naoya; Okazaki, Hiroyuki; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-01-01

    Hypoxia-induced gene expression frequently occurs in malignant solid tumors because they often have hypoxic areas in which circulation is compromised due to structurally disorganized blood vessels. Hypoxia-response elements (HREs) are responsible for activating gene transcription in response to hypoxia. In this study, we constructed a hypoxia-response plasmid vector producing short hairpin RNA (shRNA) against B-cell leukemia/lymphoma-2 (bcl-2), an anti-apoptotic factor. The hypoxia-response promoter was made by inserting tandem repeats of HREs upstream of cytomegalovirus (CMV) promoter (HRE-CMV). HRE-CMV shbcl-2 vector consisted of bcl-2 shRNA under the control of HRE-CMV promoter. In hypoxic mouse rectum carcinoma cells (colon-26), the production of bcl-2 shRNA driven by HRE-CMV promoter was approximately 2-fold greater than that driven by CMV promoter. A single intratumoral (i.t.) injection of 40 microg HRE-CMV shbcl-2 to colon-26 tumor-bearing mice caused apoptotic cell death, and repetitive treatment with HRE-CMV shbcl-2 (40 microg/mouse, i.t.) also significantly suppressed the growth of colon-26 tumor cells implanted in mice. Apoptotic and anti-tumor effects were not observed in tumor-bearing mice treated with CMV shbcl-2. These results reveal the ability of HRE-CMV shbcl-2 vector to suppress the expression of bcl-2 in hypoxic tumor cells and suggest the usefulness of our constructed hypoxia-response plasmid vector to treat malignant tumors. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10054FP].

  5. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy.

    Science.gov (United States)

    Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid

    2018-04-12

    This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2017. Published by Elsevier Inc.

  6. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  7. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  8. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  9. Neuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons

    Directory of Open Access Journals (Sweden)

    Rosenthal LM

    2017-05-01

    Full Text Available Lisa-Maria Rosenthal,1 Giang Tong,1 Christoph Walker,1 Sylvia J Wowro,1 Jana Krech,1 Constanze Pfitzer,1,2 Georgia Justus,1 Felix Berger,1,3 Katharina Rose Luise Schmitt1 1Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, 2Berlin Institute of Health (BIH, 3Department of Pediatric Cardiology, Charité – University Medical Center, Berlin, Germany Objective: Therapeutic hypothermia is an established treatment for perinatal asphyxia. Yet, many term infants continue to die or suffer from neurodevelopmental disability. Several experimental studies have demonstrated a beneficial effect of mild-to-moderate hypothermia after hypoxic injury, but the understanding of hypothermia-induced neuroprotection remains incomplete. In general, global protein synthesis is attenuated by hypothermia, but a small group of RNA-binding proteins including the RNA-binding motif 3 (RBM3 is upregulated in response to cooling. The aim of this study was to establish an in vitro model to investigate the effects of hypoxia and hypothermia on neuronal cell survival, as well as to examine the kinetics of concurrent cold-shock protein RBM3 gene expression. Methods: Experiments were performed by using human SK-N-SH neurons exposed to different oxygen concentrations (21%, 8%, or 0.2% O2 for 24 hours followed by moderate hypothermia (33.5°C or normothermia for 24, 48, or 72 hours. Cell death was determined by quantification of lactate dehydrogenase and neuron-specific enolase releases into the cell cultured medium, and cell morphology was assessed by using immunofluorescence staining. The regulation of RBM3 gene expression was assessed by reverse transcriptase-quantitative polymerase chain reaction and Western blot analysis.Results: Exposure to hypoxia (0.2% O2 for 24 hours resulted in significantly increased cell death in SK-N-SH neurons, whereas exposure to 8% O2 had no significant impact on cell viability. Post-hypoxia treatment with

  10. Construction and expression of secreting type human TRAIL gene vector mediated by hypoxia/radiation double sensitive promoter

    International Nuclear Information System (INIS)

    Yang Yanming; Jia Xiaojing; Qu Yaqin; Li Yanbo

    2009-01-01

    Objective: To construct secreting type human TRAIL (shTRAIL) gene vector pcDNA3.1-HRE/Egr1-shTRAIL mediated by hypoxia/radiation double sensitive promoter, and observe the effect of hypoxia and radiation on shTRAIL. Methods: HRE upper and lower strands were gotten by chemical synthesis, double strands HRE was gotten by PCR; pMD19T-Egr1 was digested by Sac I and Hind III, then Egr1 was obtained, pshuttle-shTRAIL was digested by Kpn I and BamH I, then shTRAIL was obtained; HRE/Egr1 double sensitive promoter mediated shTRAIL expression vector pcDNA3.1-HRE/Egr1-shTRAIL was constructed by gene recombination technique, it was identified correctly by enzyme digestion, PCR and sequencing. A549 cells were divided into normal, hypoxia (0.1%), irradiation (6 Gy) and hypoxia + irradiation groups. Results: After enzyme digestion by BamH I and Sma I, the fragments which lengths were 1284 bp and 4 998 bp, 2 292 bp and 3 990 bp were obtained; the vector was amplified by PCR with Egr1 and shTRAIL primer, the products which lengthens were 469 bp and 820 bp were obtained; pcDNA3.1-HRE/Egr1-shTRAIL was sequenced, the result was same to designed, this demonstrated that the construction was right. The vectors were transfected into A549 cells of adenocarcinoma of lung, the expression levels of shTRAIL mRNA and protein were increased after treated with hypoxia and radiation, it had statistically significant differences compared with normal group (P<0.05), and when they were combinated, the effect was more obvious. Conclusion: Secreting type human TRAIL gene vector pcDNA3.1-HRE/Egr1-shTRAIL mediated by hypoxia/radiation double sensitive promoter is constructed successfully, and hypoxia and radiation could increase the expression of TRAIL, and they have synergetic effect. (authors)

  11. Fentanyl activates hypoxia-inducible factor 1 in neuronal SH-SY5Y cells and mice under non-hypoxic conditions in a μ-opioid receptor-dependent manner.

    Science.gov (United States)

    Daijo, Hiroki; Kai, Shinichi; Tanaka, Tomoharu; Wakamatsu, Takuhiko; Kishimoto, Shun; Suzuki, Kengo; Harada, Hiroshi; Takabuchi, Satoshi; Adachi, Takehiko; Fukuda, Kazuhiko; Hirota, Kiichi

    2011-09-30

    Hypoxia-inducible factor 1 (HIF-1) is the main transcription factor responsible for hypoxia-induced gene expression. Perioperative drugs including anesthetics have been reported to affect HIF-1 activity. However, the effect of fentanyl on HIF-1 activity is not well documented. In this study, we investigated the effect of fentanyl and other opioids on HIF-1 activity in human SH-SY5Y neuroblastoma cells, hepatoma Hep3B cells, lung adenocarcinoma A549 cells and mice. Cells were exposed to fentanyl, and HIF-1 protein expression was examined by Western blot analysis using anti-HIF-1α and β antibodies. HIF-1-dependent gene expression was investigated by semi-quantitative real-time reverse transcriptase (RT)-PCR (qRT-PCR) and luciferase assay. Furthermore, fentanyl was administered intraperitoneally and HIF-1-dependent gene expression was investigated by qRT-PCR in the brains and kidneys of mice. A 10-μM concentration of fentanyl and other opioids, including 1 μM morphine and 4 μM remifentanil, induced HIF-1α protein expression and HIF-1 target gene expression in an opioid receptor-dependent manner in SH-SY5Y cells with activity peaking at 24h. Fentanyl did not augment HIF-1α expression during hypoxia-induced induction. HIF-1α stabilization assays and experiments with cycloheximide revealed that fentanyl increased translation from HIF-1α mRNA but did not stabilize the HIF-1α protein. Furthermore, fentanyl induced HIF-1 target gene expression in the brains of mice but not in their kidneys in a naloxone-sensitive manner. In this report, we describe for the first time that fentanyl, both in vitro and in vivo, induces HIF-1 activation under non-hypoxic conditions, leading to increases in expression of genes associated with adaptation to hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The impact of intermittent or sustained carbon dioxide on intermittent hypoxia initiated respiratory plasticity. What is the effect of these combined stimuli on apnea severity?

    Science.gov (United States)

    Mateika, Jason H; Panza, Gino; Alex, Raichel; El-Chami, Mohamad

    2017-10-31

    The following review explores the effect that intermittent or sustained hypercapnia coupled to intermittent hypoxia has on respiratory plasticity. The review explores published work which suggests that intermittent hypercapnia leads to long-term depression of respiration when administered in isolation and prevents the initiation of long-term facilitation when administered in combination with intermittent hypoxia. The review also explores the impact that sustained hypercapnia alone and in combination with intermittent hypoxia has on the magnitude of long-term facilitation. After exploring the outcomes linked to intermittent hypoxia/hypercapnia and intermittent hypoxia/sustained hypercapnia the translational relevance of the outcomes as it relates to breathing stability during sleep is addressed. The likelihood that naturally induced cycles of intermittent hypoxia, coupled to oscillations in carbon dioxide that range between hypocapnia and hypercapnia, do not initiate long-term facilitation is addressed. Moreover, the conditions under which intermittent hypoxia/sustained hypercapnia could serve to improve breathing stability and mitigate co-morbidities associated with sleep apnea are considered. Published by Elsevier B.V.

  13. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Koki Maeda

    2016-06-01

    Full Text Available Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT-PCR. The hypoxia responsive element (HRE was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.

  14. Intermittent hypobaric hypoxia exposure does not cause sustained alterations in autonomic control of blood pressure in young athletes.

    NARCIS (Netherlands)

    Fu, Q.; Townsend, N.E.; Shiller, S.M.; Martini, E.R.; Okazaki, K.; Shibata, S.; Truijens, M.J.; Rodriquez, F.A.; Gore, C.J.; Stray-Gundersen, J.; Levine, B.D.

    2007-01-01

    Intermittent hypoxia (IH), which refers to the discontinuous use of hypoxia to reproduce some key features of altitude acclimatization, is commonly used in athletes to improve their performance. However, variations of IH are also used as a model for sleep apnea, causing sustained sympathoexcitation

  15. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  16. Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries

    Science.gov (United States)

    Yan, Xu; Meng, Zhaozhong; Ouyang, Jiting; Qiao, Yajun; Li, Jiaxin; Jia, Mei; Yuan, Fang; (Ken Ostrikov, Kostya

    2018-02-01

    Atmospheric pressure plasma jet (APPJ) has recently been the focus of cytoprotective research due to the physiological roles of ROS and RNS. In the current study, we investigated the effect of APPJ treatment on the hypoxia (1% oxygen) induced cell injuries. SH-SY5Y cells were treated by APPJ for different duration and incubated in normoxic condition (20% oxygen) for 5 h followed by 24 h hypoxia treatment. Cell viability was evaluated by lactate dehydrogenase (LDH) release and further monitored using the electric cell-substrate impedance sensing (ECIS) system after APPJ treatment. Results showed that APPJ could reduce cell injuries after 24 h hypoxia, which was consistent with the ECIS results. Furthermore, extracellular NO and H2O2 production was significantly increased with the APPJ treatment. It was also interesting to find that APPJ treatment reduced SH-SY5Y cells proliferation in the hypoxic microenvironment during the first 20 h of hypoxia. Although more work was still need to clarify whether the cell viability maintenance was related to the cell proliferation during hypoxia, our results provide the first evidence of real-time cell viability changes after APPJ treatment under both normoxic and hypoxic conditions, which could provide evidence for the neuroprotective applications of APPJ.

  17. Exposure to intermittent hypoxia and sustained hypercapnia reduces therapeutic CPAP in participants with obstructive sleep apnea.

    Science.gov (United States)

    El-Chami, Mohamad; Sudan, Sukhesh; Lin, Ho-Sheng; Mateika, Jason H

    2017-10-01

    Our purpose was to determine whether exposure to mild intermittent hypoxia leads to a reduction in the therapeutic continuous positive airway pressure required to eliminate breathing events. Ten male participants were treated with twelve 2-min episodes of hypoxia ([Formula: see text] ≈50 mmHg) separated by 2-min intervals of normoxia in the presence of [Formula: see text] that was sustained 3 mmHg above baseline. During recovery from the last episode, the positive airway pressure was reduced in a stepwise fashion until flow limitation was evident. The participants also completed a sham protocol under normocapnic conditions, which mimicked the time frame of the intermittent hypoxia protocol. After exposure to intermittent hypoxia, the therapeutic pressure was significantly reduced (i.e., 5 cmH 2 O) without evidence of flow limitation (103.4 ± 6.3% of baseline, P = 0.5) or increases in upper airway resistance (95.6 ± 15.0% of baseline, P = 0.6). In contrast, a similar decrease in pressure was accompanied by flow limitation (77.0 ± 1.8% of baseline, P = 0.001) and an increase in upper airway resistance (167.2 ± 17.5% of baseline, P = 0.01) after the sham protocol. Consistent with the initiation of long-term facilitation of upper airway muscle activity, exposure to intermittent hypoxia reduced the therapeutic pressure required to eliminate apneic events that could improve treatment compliance. This possibility, coupled with the potentially beneficial effects of intermittent hypoxia on comorbidities linked to sleep apnea, suggests that mild intermittent hypoxia may have a multipronged therapeutic effect on sleep apnea. NEW & NOTEWORTHY Our new finding is that exposure to mild intermittent hypoxia reduced the therapeutic pressure required to treat sleep apnea. These findings are consistent with previous results, which have shown that long-term facilitation of upper muscle activity can be initiated following exposure to intermittent hypoxia in humans.

  18. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  19. Impact of repeated daily exposure to intermittent hypoxia and mild sustained hypercapnia on apnea severity.

    Science.gov (United States)

    Yokhana, Sanar S; Gerst, David G; Lee, Dorothy S; Badr, M Safwan; Qureshi, Tabarak; Mateika, Jason H

    2012-02-01

    We examined whether exposure to intermittent hypoxia (IH) during wakefulness impacted on the apnea/hypopnea index (AHI) during sleep in individuals with sleep apnea. Participants were exposed to twelve 4-min episodes of hypoxia in the presence of sustained mild hypercapnia each day for 10 days. A control group was exposed to sustained mild hypercapnia for a similar duration. The intermittent hypoxia protocol was completed in the evening on day 1 and 10 and was followed by a sleep study. During all sleep studies, the change in esophageal pressure (ΔPes) from the beginning to the end of an apnea and the tidal volume immediately following apneic events were used to measure respiratory drive. Following exposure to IH on day 1 and 10, the AHI increased above baseline measures (day 1: 1.95 ± 0.42 fraction of baseline, P ≤ 0.01, vs. day 10: 1.53 ± 0.24 fraction of baseline, P < 0.06). The indexes were correlated to the hypoxic ventilatory response (HVR) measured during the IH protocol but were not correlated to the magnitude of ventilatory long-term facilitation (vLTF). Likewise, ΔPes and tidal volume measures were greater on day 1 and 10 compared with baseline (ΔPes: -8.37 ± 0.84 vs. -5.90 ± 1.30 cmH(2)0, P ≤ 0.04; tidal volume: 1,193.36 ± 101.85 vs. 1,015.14 ± 119.83 ml, P ≤ 0.01). This was not the case in the control group. Interestingly, the AHI on day 10 (0.78 ± 0.13 fraction of baseline, P ≤ 0.01) was significantly less than measures obtained during baseline and day 1 in the mild hypercapnia control group. We conclude that enhancement of the HVR initiated by exposure to IH may lead to increases in the AHI during sleep and that initiation of vLTF did not appear to impact on breathing stability. Lastly, our results suggest that repeated daily exposure to mild sustained hypercapnia may lead to a decrease in breathing events.

  20. Protective role of downregulated MLK3 in myocardial adaptation to chronic hypoxia.

    Science.gov (United States)

    He, Siyi; Liu, Shunbi; Wu, Xiaochen; Xin, Mei; Ding, Sheng; Xin, Dong; Ouyang, Hui; Zhang, Jinbao

    2016-08-01

    A series of protective responses could be evoked to achieve compensatory adaptation once cardiomyocytes are subjected to chronic hypoxia. MLK3/JNK/c-jun signaling pathway was previously demonstrated to be involved in this process. In the present study, we aim to further examine the performance of MLK3 in hypoxic H9C2 cells and potential mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected. H9C2 cells were cultured in hypoxic conditions for various durations. MLK3 was silenced by transfection of shRNA to evaluate its role in cell viability. We found expression of MLK3 protein was lower in patients with cyanotic CHD. In hypoxic H9C2 cells, its expression was gradually decreased in a time-dependent manner. However, there was no significant difference about expression of MLK3 mRNA. According to the results of MTT, LDH, and TUNEL, faster cell growth curve, lower death rate, and less apoptotic cells could be observed in MLK-shRNA group compared with scramble-shRNA group. Silencing of MLK3 significantly reduced expression of cleaved caspase-3, cleaved PARP, Bad, and Bax, together with increased expression of Bcl-2 and ration of Bcl-2/Bax. Both ratio of phospho-JNK/total JNK and ratio of phospho-c-jun/total c-jun were significantly decreased once MLK3 was silenced. At various reoxygenation time, MLK3 shRNA could significantly promote cell survival and decrease cell death according to MTT and LDH. Our results suggested that chronic hypoxia could reduce MLK3 expression in a posttranscriptional regulatory manner. Downregulation of MLK3 protects H9C2 cells from hypoxia-induced apoptosis and H/R injury via blocking the activation of JNK and c-jun.

  1. THE EFFECT OF HYPOXIA ON THE MAXIMUM MATABOLIC RATE AND SPECIFIC DYNAMIC ACTION IN ATLANTIC COD Gadus morhua

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    John Fleng Steffensen' and Anders Drud Jordan Aquaculture 2010 - San Diego - Physiological Insights Towards Improving Fish Culture. Hypoxia is an increasing problem in coastal near areas and estuaries. Hypoxia can also be a problem in aquaculture systems with a high degree of recirculating water...... reduced the Scope for Activity by 55 % in nonnoxia. In hypoxia the effect was more pronounced with a 69 % reduction of the scope for activity. In conclusion hypoxia prolong the postabsorptive state of fi sh by limiting the peak metabolic rate, causing that less food is assimilated over a certain period...

  2. Intermittent Hypoxia Affects the Spontaneous Differentiation In Vitro of Human Neutrophils into Long-Lived Giant Phagocytes

    Directory of Open Access Journals (Sweden)

    Larissa Dyugovskaya

    2016-01-01

    Full Text Available Previously we identified, for the first time, a new small-size subset of neutrophil-derived giant phagocytes (Gϕ which spontaneously develop in vitro without additional growth factors or cytokines. Gϕ are CD66b+/CD63+/MPO+/LC3B+ and are characterized by extended lifespan, large phagolysosomes, active phagocytosis, and reactive oxygen species (ROS production, and autophagy largely controls their formation. Hypoxia, and particularly hypoxia/reoxygenation, is a prominent feature of many pathological processes. Herein we investigated Gϕ formation by applying various hypoxic conditions. Chronic intermittent hypoxia (IH (29 cycles/day for 5 days completely abolished Gϕ formation, while acute IH had dose-dependent effects. Exposure to 24 h (56 IH cycles decreased their size, yield, phagocytic ability, autophagy, mitophagy, and gp91-phox/p22-phox expression, whereas under 24 h sustained hypoxia (SH the size and expression of LC3B and gp91-phox/p22-phox resembled Gϕ formed in normoxia. Diphenyl iodide (DPI, a NADPH oxidase inhibitor, as well as the PI3K/Akt and autophagy inhibitor LY294002 abolished Gϕ formation at all oxygen conditions. However, the potent antioxidant, N-acetylcysteine (NAC abrogated the effects of IH by inducing large CD66b+/LC3B+ Gϕ and increased both NADPH oxidase expression and phagocytosis. These findings suggest that NADPH oxidase, autophagy, and the PI3K/Akt pathway are involved in Gϕ development.

  3. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang, Lin; Feng, Xiaobin; Dong, Jiahong; Qian, Cheng; Huang, Gang; Li, Xiaowu; Zhang, Yujun; Jiang, Yan; Shen, Junjie; Liu, Jia; Wang, Qingliang; Zhu, Jin

    2013-01-01

    High invasion and metastasis are the primary factors causing poor prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia promotes HCC invasion and metastasis through inducing epithelial-mesenchymal transition (EMT). The expression of EMT markers was analyzed by immunohistochemistry. Effect of hypoxia on induction of EMT and ability of cell migration and invasion were performed. Luciferase reporter system was used for evaluation of Snail regulation by hypoxia-inducible factor -1α (HIF-1α). We found that overexpression of HIF-1α was observed in HCC liver tissues and was related to poor prognosis of HCC patients. HIF-1α expression profile was correlated with the expression levels of SNAI1, E-cadherin, N-cadherin and Vimentin. Hypoxia was able to induce EMT and enhance ability of invasion and migration in HCC cells. The same phenomena were also observed in CoCl2-treated cells. The shRNA-mediated HIF-1α suppression abrogated CoCl2-induced EMT and reduced ability of migration and invasion in HCC cells. Luciferase assay showed that HIF-1α transcriptional regulated the expression of SNAI1 based on two hypoxia response elements (HREs) in SNAI1 promoter. We demonstrated that hypoxia-stabilized HIF1α promoted EMT through increasing SNAI1 transcription in HCC cells. This data provided a potential therapeutic target for HCC treatment

  4. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  5. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    Directory of Open Access Journals (Sweden)

    Stephen A Brose

    2016-11-01

    Full Text Available Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA biosynthesis (FAS followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FAS maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FAS inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FAS inhibitors, TOFA (inhibits Acetyl-CoA carboxylase and cerulenin (inhibits FA synthase, increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FAS inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

  6. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia.

    Science.gov (United States)

    Brose, Stephen A; Golovko, Svetlana A; Golovko, Mikhail Y

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

  7. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    International Nuclear Information System (INIS)

    Doi, Nobutaka; Ogawa, Ryohei; Cui, Zheng-Guo; Morii, Akihiro; Watanabe, Akihiko; Kanayama, Shinji; Yoneda, Yuko; Kondo, Takashi

    2015-01-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl 2 confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype

  8. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Nobutaka [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Ogawa, Ryohei, E-mail: ogawa@med.u-toyama.ac.jp [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Cui, Zheng-Guo [Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Morii, Akihiro; Watanabe, Akihiko [Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Kanayama, Shinji; Yoneda, Yuko [New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan)

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  9. SH2/SH3 signaling proteins.

    Science.gov (United States)

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  10. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives.

    Science.gov (United States)

    Brutsaert, Tom D; Parra, Esteban J; Shriver, Mark D; Gamboa, Alfredo; Rivera-Ch, Maria; León-Velarde, Fabiola

    2005-07-01

    Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.

  11. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1α.

    Science.gov (United States)

    Yang, Yeon Ju; Na, Hwi Jung; Suh, Michelle J; Ban, Myung Jin; Byeon, Hyung Kwon; Kim, Won Shik; Kim, Jae Wook; Choi, Eun Chang; Kwon, Hyeong Ju; Chang, Jae Won; Koh, Yoon Woo

    2015-11-01

    Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1α (HIF-1α) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1α-induced invasive characteristics. Cells were cultured under controlled hypoxic environments (1% O₂) or normoxic conditions. The effect of hypoxia on HIF-1α, and epithelial-to-mesenchymal transition (EMT) related markers were evaluated by quantitative real-time PCR, Western blot analysis and immunocytochemistry. Invasion and wound healing assay were conducted to identify functional character of EMT. The involvement of HIF-1α and Twist in EMT were studied using gene overexpression or silencing. After orthotopic nude mouse model was established using the cells transfected with lentiviral shHIF-1α, tissue analysis was done. Hypoxia induces HIF-1α expression and EMT, including typical morphologic changes, cadherin shift, and increased vimentin expression. We showed that overexpression of HIF-1α via transfection resulted in the aforementioned changes without hypoxia, and repression of HIF-1α with RNA interference suppressed hypoxia-induced HIF-1α and EMT. Furthermore, we also observed that Twist expression was regulated by HIF-1α. These were confirmed in the orthotopic FTC model. Hypoxia induced HIF-1α, which in turn induced EMT, resulting in the increased capacity for invasion and migration of cells via regulation of the Twist signal pathway in FTC cells. These findings provide insight into a possible therapeutic strategy to prevent invasive and metastatic FTC.

  12. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

    Directory of Open Access Journals (Sweden)

    Kemal Erdem Basaran

    Full Text Available Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400 mg every 8 hrs or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m. Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease.

  13. Time-dependent changes in cardiorespiratory functions of anesthetized rats exposed to sustained hypoxia.

    Science.gov (United States)

    Kato, Kouki; Morinaga, Ryosuke; Fushuku, Seigo; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2018-07-01

    Although cardiovascular responses may be altered by respiratory changes under prolonged hypoxia, the relationship between respiratory and cardiovascular changes remains unknown. The aim of the present study is to clarify cardiorespiratory changes in anesthetized rats during and after hypoxic conditions using simultaneous recordings of cardiorespiratory variables with 20-sec recording intervals. After air breathing for 20 min (pre-exposure period), rats were subjected to 10% O 2 for 2 h (hypoxic exposure period) and then air for 30 min (recovery period). Minute ventilation (V E ), respiratory frequency, tidal volume, arterial blood pressure (BP), and heart rate (HR) were continuously monitored during the experimental period. Just after hypoxic exposure, V E , BP, and HR exhibited an overshoot, undershoot, and overshoot followed by a decrease, respectively. During the remaining hypoxic exposure period, continuous high V E and low BP were observed, whereas HR re-increased. In the recovery period, V E , BP, and HR showed an undershoot, increase, and decrease followed by an increase, respectively. These results suggest that the continuation of enhanced V E and re-increased HR, probably, due to carotid body excitation and accompanying sympathetic activation, during the late period of hypoxic exposure are protective responses to avoid worsening hypoxemia and further circulatory insufficiencies under sustained hypoxia. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GLI1 Expression Associated With the Radioresistance of Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiancheng [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Wu, Kaijie [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Gao, Dexuan [Department of Urology, Shandong Provincial Hospital affiliated with Shandong University, Ji' nan (China); Zhu, Guodong; Wu, Dapeng; Wang, Xinyang; Chen, Yule; Du, Yuefeng; Song, Wenbin; Ma, Zhenkun [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Authement, Craig; Saha, Debabrata [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Hsieh, Jer-Tsong, E-mail: jt.hsieh@utsouthwestern.edu [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); He, Dalin, E-mail: dalinhe@yahoo.com [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China)

    2014-11-15

    Purpose: Renal cell carcinoma (RCC) is often considered a radioresistant tumor, but the molecular mechanism underlying its radioresistance is poorly understood. This study explored the roles of hypoxia-inducible factor 2α (HIF2α) and sonic hedgehog (SHH)-GLI1 signaling in mediating the radioresistance of RCC cells and to unveil the interaction between these 2 signaling pathways. Methods and Materials: The activities of SHH-GLI1 signaling pathway under normoxia and hypoxia in RCC cells were examined by real-time polymerase chain reaction, Western blot, and luciferase reporter assay. The expression of HIF2α and GLI1 in RCC patients was examined by immunohistochemistry, and their correlation was analyzed. Furthermore, RCC cells were treated with HIF2α-specific shRNA (sh-HIF2α), GLI1 inhibitor GANT61, or a combination to determine the effect of ionizing radiation (IR) on RCC cells based on clonogenic assay and double-strand break repair assay. Results: RCC cells exhibited elevated SHH-GLI1 activities under hypoxia, which was mediated by HIF2α. Hypoxia induced GLI1 activation through SMO-independent pathways that could be ablated by PI3K inhibitor or MEK inhibitor. Remarkably, the SHH-GLI1 pathway also upregulated HIF2α expression in normoxia. Apparently, there was a positive correlation between HIF2α and GLI1 expression in RCC patients. The combination of sh-HIF2α and GLI1 inhibitor significantly sensitized RCC cells to IR. Conclusions: Cross-talk between the HIF2α and SHH-GLI1 pathways was demonstrated in RCC. Cotargeting these 2 pathways, significantly sensitizing RCC cells to IR, provides a novel strategy for RCC treatment.

  15. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...... tumour tissue in vivo and that FoxO3A short-hairpin RNA (shRNA)-expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia....... reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes...... cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  16. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  17. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure.

    Science.gov (United States)

    Saxena, Ashwini; Little, Joel T; Nedungadi, T Prashant; Cunningham, J Thomas

    2015-03-01

    Sleep apnea is associated with hypertension. The mechanisms contributing to a sustained increase in mean arterial pressure (MAP) even during normoxic awake-state remain unknown. Rats exposed to chronic intermittent hypoxia for 7 days, a model of the hypoxemia associated with sleep apnea, exhibit sustained increases in MAP even during the normoxic dark phase. Activation of the renin-angiotensin system (RAS) has been implicated in chronic intermittent hypoxia (CIH) hypertension. Since the subfornical organ (SFO) serves as a primary target for the central actions of circulating ANG II, we tested the effects of ANG II type 1a receptor (AT1aR) knockdown in the SFO on the sustained increase in MAP in this CIH model. Adeno-associated virus carrying green fluorescent protein (GFP) and small-hairpin RNA against either AT1aR or a scrambled control sequence (SCM) was stereotaxically injected in the SFO of rats. After recovery, MAP, heart rate, respiratory rate, and activity were continuously recorded using radiotelemetry. In the normoxic groups, the recorded variables did not deviate from the baseline values. Both CIH groups exhibited significant increases in MAP during CIH exposures (P < 0.05). During the normoxic dark phase in the CIH groups, only the SCM-injected group exhibited a sustained increase in MAP (P < 0.05). The AT1aR-CIH group showed significant decreases in FosB/ΔFosB staining in the median preoptic nucleus and the paraventricular nuclei of the hypothalamus compared with the SCM-CIH group. Our data indicate that AT1aRs in the SFO are critical for the sustained elevation in MAP and increased FosB/ΔFosB expression in forebrain autonomic nuclei associated with CIH. Copyright © 2015 the American Physiological Society.

  18. Hypoxia and metastasis in an orthotopic cervix cancer xenograft model

    International Nuclear Information System (INIS)

    Chaudary, Naz; Mujcic, Hilda; Wouters, Bradly G.; Hill, Richard P.

    2013-01-01

    Background: Hypoxia can promote tumor metastasis by mechanisms that are believed to result from changes in gene expression. The current study examined the role of putative metastatic genes regulated by cyclic hypoxia in relation to metastasis formation in orthotopic models of cervix cancer. Methods: Orthotopic tumors derived from ME180 human cervix cancer cells or from early generation human cervix cancer xenografts were exposed to cyclic hypoxic conditions during growth in vivo and tumor growth and lymphnode metastases were monitored. Expression of the chemokine receptor CXCR4 and various genes in the Hedgehog (Hh) pathway were inhibited using genetic (inducible shRNA vs CXCR4) small molecule (AMD3100) or antibody (5E1) treatment (CXCR4 and Hh genes, respectively) during tumor growth. Results: As reported previously, exposure of tumor bearing mice to cyclic hypoxia caused a reduction of tumor growth but a large increase in metastasis. Inhibition of CXCR4 or Hh gene activity during tumor growth further reduced primary tumor size and reduced lymphatic metastasis to levels below those seen in control mice exposed to normoxic conditions. Conclusion: Blocking CXCR4 or Hh gene expression are potential therapeutic pathways for improving cervix cancer treatment

  19. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation.

    Directory of Open Access Journals (Sweden)

    Laura Asnaghi

    Full Text Available The transcriptional response promoted by hypoxia-inducible factors has been associated with metastatic spread of uveal melanoma. We found expression of hypoxia-inducible factor 1α (HIF-1α protein in well-vascularized tumor regions as well as in four cell lines grown in normoxia, thus this pathway may be important even in well-oxygenated uveal melanoma cells. HIF-1α protein accumulation in normoxia was inhibited by rapamycin. As expected, hypoxia (1% pO2 further induced HIF-1α protein levels along with its target genes VEGF and LOX. Growth in hypoxia significantly increased cellular invasion of all 5 uveal melanoma lines tested, as did the introduction of an oxygen-insensitive HIF-1α mutant into Mel285 cells with low HIF-1α baseline levels. In contrast, HIF-1α knockdown using shRNA significantly decreased growth in hypoxia, and reduced by more than 50% tumor invasion in four lines with high HIF-1α baseline levels. Pharmacologic blockade of HIF-1α protein expression using digoxin dramatically suppressed cellular invasion both in normoxia and in hypoxia. We found that Notch pathway components, including Jag1-2 ligands, Hes1-Hey1 targets and the intracellular domain of Notch1, were increased in hypoxia, as well as the phosphorylation levels of Erk1-2 and Akt. Pharmacologic and genetic inhibition of Notch largely blocked the hypoxic induction of invasion as did the pharmacologic suppression of Erk1-2 activity. In addition, the increase in Erk1-2 and Akt phosphorylation by hypoxia was partially reduced by inhibiting Notch signaling. Our findings support the functional importance of HIF-1α signaling in promoting the invasive capacity of uveal melanoma cells in both hypoxia and normoxia, and suggest that pharmacologically targeting HIF-1α pathway directly or through blockade of Notch or Erk1-2 pathways can slow tumor spread.

  20. H-alpha observations of Sh2-190, Sh2-222, Sh2-229, Sh2-236 HII regions

    Science.gov (United States)

    Sahan, Muhittin

    2018-02-01

    Hα spectral line (6563Å) profiles of four northern HII regions in the our galaxy (Sh2-190, Sh2-222, Sh2-229, Sh2-236) have been obtained using DEFPOS spectrometer, located at coude focus of 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey). Observations were carried out at nights of 2015 December 24-27 with long exposure times ranging from 900s to 3600s. The LSR velocities and the linewidths (Full Width Half Maximum: FWHM) of the Hα emission lines were found to be in the range of -45.46 kms-1 to +3.57 kms-1 and 38.50 kms-1 to 44.10 kms-1, respectively. The Sh2-229 HII region is the faintest one (211.16 R), while the Sh2-236 HII region (IC410) is brightest source (535.75 R). The LSR velocity and the line width (FWHM) results of the DEFPOS/RTT150 system were compared with the data by several authors given in literature and results of DEFPOS data were found to be in good agreement with data given in literature.

  1. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    Science.gov (United States)

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  2. Ventilatory response of the newborn infant to mild hypoxia.

    Science.gov (United States)

    Cohen, G; Malcolm, G; Henderson-Smart, D

    1997-09-01

    The transition from an immature (biphasic) to a mature (sustained hyperpneic) response to a brief period of sustained hypoxia is believed to be well advanced by postnatal day 10 for newborn infants. However, a review of the supporting evidence convinced us that this issue warranted further, more systematic investigation. Seven healthy term infants aged 2 days to 8 weeks were studied. The ventilatory response (VR) elicited by 5 min breathing of 15% O2 was measured during quiet sleep. Arterial SaO2 (pulse oximeter) and minute ventilation (expressed as a change from control, delta V'i) were measured continuously. Infants were wrapped in their usual bedding and slept in open cots at room temperature (23 degrees-25 degrees). Infants aged 2-3 days exhibited predominantely a sustained hypopnea during the period of hypoxia (delta V'i = -2% at 1 min, -13% at 5 min). At 8 weeks of age, the mean response was typically biphasic (delta V'i = +9% at 1 min, -4% at 5 min). This age-related difference between responses was statistically significant (two-way ANOVA by time and age-group; interaction P < 0.05). These data reveal that term infants studied under ambient conditions during defined quiet sleep may exhibit an immature VR to mild, sustained hypoxia for at least 2 months after birth. This suggests that postnatal development of the O2 chemoreflex is slower than previously thought.

  3. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    Science.gov (United States)

    2012-01-01

    Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis increased HPV during

  4. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Ketabchi Farzaneh

    2012-01-01

    Full Text Available Abstract Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV optimizes gas exchange during local acute (0-30 min, as well as sustained (> 30 min hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate, and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA, a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS, decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc. This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis

  5. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction.

    Science.gov (United States)

    Ketabchi, Farzaneh; Ghofrani, Hossein A; Schermuly, Ralph T; Seeger, Werner; Grimminger, Friedrich; Egemnazarov, Bakytbek; Shid-Moosavi, S Mostafa; Dehghani, Gholam A; Weissmann, Norbert; Sommer, Natascha

    2012-01-31

    Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The

  6. Anti-Proliferation and Anti-Invasion Effects of Diosgenin on Gastric Cancer BGC-823 Cells with HIF-1α shRNAs

    Directory of Open Access Journals (Sweden)

    Yuan-Neng Chou

    2012-05-01

    Full Text Available Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α, a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA, diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrinβ6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α.

  7. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling.

    Science.gov (United States)

    Dyugovskaya, Larissa; Polyakov, Andrey; Cohen-Kaplan, Victoria; Lavie, Peretz; Lavie, Lena

    2012-10-22

    Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1 increase. In SH, only p38MAPK

  8. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling

    Directory of Open Access Journals (Sweden)

    Dyugovskaya Larissa

    2012-10-01

    Full Text Available Abstract Background Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA characterized by nightly intermittent hypoxia (IH. This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Methods Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Results Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated

  9. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    Science.gov (United States)

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  10. Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress.

    Science.gov (United States)

    Barben, Maya; Ail, Divya; Storti, Federica; Klee, Katrin; Schori, Christian; Samardzija, Marijana; Michalakis, Stylianos; Biel, Martin; Meneau, Isabelle; Blaser, Frank; Barthelmes, Daniel; Grimm, Christian

    2018-04-17

    Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD). Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients.

  11. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    Science.gov (United States)

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Angiotensin converting enzyme 1 in the median preoptic nucleus contributes to chronic intermittent hypoxia hypertension.

    Science.gov (United States)

    Faulk, Katelynn E; Nedungadi, T Prashant; Cunningham, J Thomas

    2017-05-01

    Obstructive sleep apnea is associated with hypertension and cardiovascular disease. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in sleep apnea patients and is associated with increased sympathetic nerve activity and a sustained diurnal increase in blood pressure. The renin angiotensin system has been associated with hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1, which cleaves angiotensin I to the active counterpart angiotensin II, is present within the central nervous system and has been shown to be regulated by AP-1 transcription factors, such as ΔFosB. Our previous study suggested that this transcriptional regulation in the median preoptic nucleus contributes to the sustained blood pressure seen following chronic intermittent hypoxia. Viral mediated delivery of a short hairpin RNA against angiotensin converting enzyme 1 in the median preoptic nucleus was used along with radio-telemetry measurements of blood pressure to test this hypothesis. FosB immunohistochemistry was utilized in order to assess the effects of angiotensin converting enzyme 1 knockdown on the activity of nuclei downstream from median preoptic nucleus. Angiotensin converting enzyme 1 knockdown within median preoptic nucleus significantly attenuated the sustained hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1 seems to be partly responsible for regulating downstream regions involved in sympathetic and blood pressure control, such as the paraventricular nucleus and the rostral ventrolateral medulla. The data suggest that angiotensin converting enzyme 1 within median preoptic nucleus plays a critical role in the sustained hypertension seen in chronic intermittent hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    OpenAIRE

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2010-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with c...

  14. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia.

    Science.gov (United States)

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-03-18

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.

  15. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    Science.gov (United States)

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia. PMID:21135096

  16. Inhalation of the nerve gas sarin impairs ventilatory responses to hypercapnia and hypoxia in rats

    International Nuclear Information System (INIS)

    Zhuang Jianguo; Xu Fadi; Campen, Matthew J.; Zhang Cancan; Pena-Philippides, Juan C.; Sopori, Mohan L.

    2008-01-01

    Sarin, a highly toxic nerve gas, is believed to cause bronchoconstriction and even death primarily through respiratory failure; however, the mechanism underlying the respiratory failure is not fully understood. The goals of this study were to ascertain whether sarin affects baseline ventilation (V E ) and V E chemoreflexes as well as airway resistance and, if so, whether these changes are reversible. Four groups of F344 rats were exposed to vehicle (VEH) or sarin at 2.5, 3.5, and 4.0 mg h m -3 (SL, SM, and SH, respectively). V E and V E responses to hypercapnia (7% CO 2 ) or hypoxia (10% O 2 ) were measured by plethysmography at 2 h and 1, 2, and 5 days after VEH or sarin exposure. Total pulmonary resistance (R L ) also was measured in anesthetized VEH- and SH-exposed animals 2 h after exposure. Our results showed that within 2 h after exposure 11% of the SM- and 52% of the SH- exposed groups died. Although the SM and SH significantly decreased hypercapnic and hypoxic V E to similar levels (64 and 69%), SH induced greater respiratory impairment, characterized by lower baseline V E (30%; P E impairment recovered within 1-2 days after sarin exposure; interestingly, SH did not significantly affect baseline R L . Moreover, sarin induced body tremors that were unrelated to the changes in the V E responses. Thus, LC 50 sarin causes a reversible impairment of V E that is not dependent on the sarin-induced body tremors and not associated with changes in R L

  17. Mechanisms Causing Hypoxia in the Baltic Sea at Different Spatial and Temporal Scales

    Science.gov (United States)

    Conley, D. J.; Carstensen, J.; Gustafsson, B.; Slomp, C. P.

    2016-02-01

    A number of synthesis efforts have documented the world-wide increase in hypoxia, which is primarily driven by nutrient inputs with consequent organic matter enrichment. Physical factors including freshwater or saltwater inputs, stratification and temperature also play an important role in causing and sustaining hypoxia. The Baltic Sea provides an interesting case study to examine changes in oxygen dynamics over time because of the diversity of the types of hypoxia that occur, which ranges from episodic to seasonal hypoxia to perennial hypoxia. Hypoxia varies spatially across the basin with differences between open water bottoms and coastal systems. In addition, the extent and intensity of hypoxia has also varied greatly over the history of the basin, e.g. the last 8000 years. We will examine the mechanisms causing hypoxia at different spatial and temporal scales. The hydrodynamical setting is an important governing factor controlling possible time scales of hypoxia, but enhanced nutrient fluxes and global warming amplify oxygen depletion when oxygen supply by physical processes cannot meet oxygen demands from respiration. Our results indicate that climate change is counteracting management efforts to reduce hypoxia. We will address how hypoxia in the Baltic Sea is terminated at different scales. More importantly, we will explore the prospects of getting rid of hypoxia with the nutrient reductions that have been agreed upon by the countries in the Baltic Sea basin and discuss the time scales of improvement in bottom water oxygen conditions.

  18. The role of mRNA translation in the adaptation to hypoxia

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia commonly occurs in human tumours and is associated with a poor prognosis. We and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, such as those coding for HIF-1 α and VEGF, remain efficiently translated. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We are investigating the mechanisms responsible for the down regulation of protein synthesis during hypoxia, and how specific mRNAs maintain their ability to be translated under such conditions. Our goal is to understand the significance of these regulatory mechanisms for hypoxia tolerance in vitro and tumor growth in vivo. We have previously shown that one mechanism responsible for inhibiting protein synthesis during hypoxia is the activation of PERK, which inhibits the essential translation factor eIF2 α . Here we show that PERK-/- MEFs are not able to inhibit protein synthesis efficiently during hypoxia and are significantly less tolerant to hypoxia than wt cells. We also show that other mechanisms are important for sustained low protein synthesis during chronic hypoxia. We demonstrate that the eIF4F complex is disrupted during prolonged hypoxia, and that this is mediated by 4E-BP1 and 4E-T. eIF4F is essential for translation which is dependent upon the 5'mRNA cap-structure. These studies therefore indicate a switch from the inhibition of all translation through eIF2 α during acute hypoxia, to the inhibition of only cap-dependent translation during chronic hypoxia. This model predicts the differential induction of genes that can be translated cap-independently during chronic hypoxia, which is consistent with the observed differential translation of HIF-1 α and VEGF. The functional significance of the disruption of the eIF4F complex during hypoxia is currently being addressed

  19. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism.

    Science.gov (United States)

    Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I

    2010-11-12

    Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.

  20. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation.

    Science.gov (United States)

    Engen, J R; Smithgall, T E; Gmeiner, W H; Smith, D L

    1999-04-02

    Protein dynamics play an important role in protein function and regulation of enzymatic activity. To determine how additional interactions with surrounding structure affects local protein dynamics, we have used hydrogen exchange and mass spectrometry to investigate the SH2 and SH3 domains of the protein tyrosine kinase Hck. Exchange rates of isolated Hck SH3 and SH2 domains were compared with rates for the same domains when part of a larger SH(3+2) construct. Increased deuterium incorporation was observed for the SH3 domain in the joint construct, particularly near the SH2 interface and the short sequence that connects SH3 to SH2, implying greater flexibility of SH3 when it is part of SH(3+2). Slow cooperative unfolding of the SH3 domain occurred at the same rate in isolated SH3 as in the SH(3+2) construct, suggesting a functional significance for this unfolding. The SH2 domain displayed relatively smaller changes in flexibility when part of the SH(3+2) construct. These results suggest that the domains influence each other. Further, our results imply a link between functional regulation and structural dynamics of SH3 and SH2 domains. Copyright 1999 Academic Press.

  1. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2010-05-01

    Full Text Available Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes a deterioration of the structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, coastal waters, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include freshwater runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses. Their different interactions set up mechanisms that drive the system towards hypoxia. Coastal systems also vary in their relative susceptibility to hypoxia depending on their physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences include compression and loss of habitat, as well as changes in organism life cycles and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in non-linear ways with pronounced feedbacks to other compartments of the Earth System, including those that affect human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behavior that will improve confidence in remediation management strategies for coastal hypoxia.

  2. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    Science.gov (United States)

    Zhang, J.; Gilbert, D.; Gooday, A. J.; Levin, L.; Naqvi, S. W. A.; Middelburg, J. J.; Scranton, M.; Ekau, W.; Peña, A.; Dewitte, B.; Oguz, T.; Monteiro, P. M. S.; Urban, E.; Rabalais, N. N.; Ittekkot, V.; Kemp, W. M.; Ulloa, O.; Elmgren, R.; Escobar-Briones, E.; van der Plas, A. K.

    2010-05-01

    Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes a deterioration of the structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, coastal waters, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include freshwater runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses. Their different interactions set up mechanisms that drive the system towards hypoxia. Coastal systems also vary in their relative susceptibility to hypoxia depending on their physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences include compression and loss of habitat, as well as changes in organism life cycles and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in non-linear ways with pronounced feedbacks to other compartments of the Earth System, including those that affect human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behavior that will improve confidence in remediation management strategies for coastal hypoxia.

  3. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.

    Science.gov (United States)

    Koch, C A; Anderson, D; Moran, M F; Ellis, C; Pawson, T

    1991-05-03

    Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.

  4. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery

    International Nuclear Information System (INIS)

    Steckbauer, A; Duarte, C M; Vaquer-Sunyer, R; Carstensen, J; Conley, D J

    2011-01-01

    Coastal hypoxia is increasing in the global coastal zone, where it is recognized as a major threat to biota. Managerial efforts to prevent hypoxia and achieve recovery of ecosystems already affected by hypoxia are largely based on nutrient reduction plans. However, these managerial efforts need to be informed by predictions on the thresholds of hypoxia (i.e. the oxygen levels required to conserve biodiversity) as well as the timescales for the recovery of ecosystems already affected by hypoxia. The thresholds for hypoxia in coastal ecosystems are higher than previously thought and are not static, but regulated by local and global processes, being particularly sensitive to warming. The examination of recovery processes in a number of coastal areas managed for reducing nutrient inputs and, thus, hypoxia (Northern Adriatic; Black Sea; Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxia, and typically involve decadal timescales. The extended lag time for ecosystem recovery from hypoxia results in non-linear pathways of recovery due to hysteresis and the shift in baselines, affecting the oxygen thresholds for hypoxia through time.

  5. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.

    Science.gov (United States)

    Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom

    2018-04-01

    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

  6. SH2 Binding Site Protection Assay: A Method for Identification of SH2 Domain Interaction Partners by Exploiting SH2 Mediated Phosphosite Protection.

    Science.gov (United States)

    Jadwin, Joshua A

    2017-01-01

    Over the last two decades there has been a significant effort in the field to characterize the phosphosite binding specificities of SH2 domains with the goal of deciphering the pY signaling code. Although high throughput studies in various formats using most SH2 domains have collectively provided a rich resource of in vitro SH2-pTyr site specificity maps, this data can only be used approximate what is happening in the cell where protein concentrations and localization are not homogenous, as they are for in vitro experiments. Here we describe an in vivo approach, SH2 site protection assay, which can capture the pTyr binding specificity of SH2 domains in the cell. The basis of this approach is SH2-pY site protection, the ability of SH2 domains to prevent the PTP-dependent dephosphorylation of their pY site binding partners. We overexpress a tracer SH2 domain in cells and quantify the change in abundance of tyrosine phosphorylated sites using MS. Since the method is performed in vivo, it has the advantage of identifying SH2-pY interactions as they occur within in the cell.

  7. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

    Science.gov (United States)

    Mao, Yuqing; Lu, Zhiyong

    2017-04-17

    MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

  8. Diversity in peptide recognition by the SH2 domain of SH2B1.

    Science.gov (United States)

    McKercher, Marissa A; Guan, Xiaoyang; Tan, Zhongping; Wuttke, Deborah S

    2018-02-01

    SH2B1 is a multidomain protein that serves as a key adaptor to regulate numerous cellular events, such as insulin, leptin, and growth hormone signaling pathways. Many of these protein-protein interactions are mediated by the SH2 domain of SH2B1, which recognizes ligands containing a phosphorylated tyrosine (pY), including peptides derived from janus kinase 2, insulin receptor, and insulin receptor substrate-1 and -2. Specificity for the SH2 domain of SH2B1 is conferred in these ligands either by a hydrophobic or an acidic side chain at the +3 position C-terminal to the pY. This specificity for chemically disparate species suggests that SH2B1 relies on distinct thermodynamic or structural mechanisms to bind to peptides. Using binding and structural strategies, we have identified unique thermodynamic signatures for each peptide binding mode, and several SH2B1 residues, including K575 and R578, that play distinct roles in peptide binding. The high-resolution structure of the SH2 domain of SH2B1 further reveals conformationally plastic protein loops that may contribute to the ability of the protein to recognize dissimilar ligands. Together, numerous hydrophobic and electrostatic interactions, in addition to backbone conformational flexibility, permit the recognition of diverse peptides by SH2B1. An understanding of this expanded peptide recognition will allow for the identification of novel physiologically relevant SH2B1/peptide interactions, which can contribute to the design of obesity and diabetes pharmaceuticals to target the ligand-binding interface of SH2B1 with high specificity. © 2017 Wiley Periodicals, Inc.

  9. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia.

    Science.gov (United States)

    Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J; Jansen van Rensburg, Peet J; Mason, Shayne; Vosloo, Andre; Lindeque, Jeremie Z

    2018-03-23

    Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone ( Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  10. The cross-tissue metabolic response of abalone (Haliotis midae to functional hypoxia

    Directory of Open Access Journals (Sweden)

    Leonie Venter

    2018-03-01

    Full Text Available Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper.

  11. Identification of SH2B2β as an Inhibitor for SH2B1- and SH2B2α-Promoted Janus Kinase-2 Activation and Insulin Signaling

    OpenAIRE

    Li, Minghua; Li, Zhiqin; Morris, David L.; Rui, Liangyou

    2007-01-01

    The SH2B family has three members (SH2B1, SH2B2, and SH2B3) that contain conserved dimerization (DD), pleckstrin homology, and SH2 domains. The DD domain mediates the formation of homo- and heterodimers between members of the SH2B family. The SH2 domain of SH2B1 (previously named SH2-B) or SH2B2 (previously named APS) binds to phosphorylated tyrosines in a variety of tyrosine kinases, including Janus kinase-2 (JAK2) and the insulin receptor, thereby promoting the activation of JAK2 or the ins...

  12. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons

    Science.gov (United States)

    Streeter, Kristi A.; Sunshine, Michael D.; Patel, Shreya; Gonzalez-Rothi, Elisa J.; Reier, Paul J.

    2017-01-01

    Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O2, H1–H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; p phrenic motoneurons and excitatory inputs to these “pre-phrenic” cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network. SIGNIFICANCE STATEMENT Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our results demonstrate that AIH recruits excitatory C-INs into the spinal respiratory (phrenic) network. AIH also enhances excitatory and reduces inhibitory connections among the C-IN network. We conclude that C-INs are part of the respiratory, somatic, and/or autonomic response to AIH, and that propriospinal plasticity may contribute to sustained increases in motor output after AIH. PMID:28751456

  13. Investigation of Endogenous Retrovirus Sequences in the Neighborhood of Genes Up-regulated in a Neuroblastoma Model after Treatment with Hypoxia-Mimetic Cobalt Chloride.

    Science.gov (United States)

    Brütting, Christine; Narasimhan, Harini; Hoffmann, Frank; Kornhuber, Malte E; Staege, Martin S; Emmer, Alexander

    2018-01-01

    Human endogenous retroviruses (ERVs) have been found to be associated with different diseases, e.g., multiple sclerosis (MS). Most human ERVs integrated in our genome are not competent to replicate and these sequences are presumably silent. However, transcription of human ERVs can be reactivated, e.g., by hypoxia. Interestingly, MS has been linked to hypoxia since decades. As some patterns of demyelination are similar to white matter ischemia, hypoxic damage is discussed. Therefore, we are interested in the association between hypoxia and ERVs. As a model, we used human SH-SY5Y neuroblastoma cells after treatment with the hypoxia-mimetic cobalt chloride and analyzed differences in the gene expression profiles in comparison to untreated cells. The vicinity of up-regulated genes was scanned for endogenous retrovirus-derived sequences. Five genes were found to be strongly up-regulated in SH-SY5Y cells after treatment with cobalt chloride: clusterin, glutathione peroxidase 3, insulin-like growth factor 2, solute carrier family 7 member 11, and neural precursor cell expressed developmentally down-regulated protein 9. In the vicinity of these genes we identified large (>1,000 bp) open reading frames (ORFs). Most of these ORFs showed only low similarities to proteins from retro-transcribing viruses. However, we found very high similarity between retrovirus envelope sequences and a sequence in the vicinity of neural precursor cell expressed developmentally down-regulated protein 9. This sequence encodes the human endogenous retrovirus group FRD member 1, the encoded protein product is called syncytin 2. Transfection of syncytin 2 into the well-characterized Ewing sarcoma cell line A673 was not able to modulate the low immunostimulatory activity of this cell line. Future research is needed to determine whether the identified genes and the human endogenous retrovirus group FRD member 1 might play a role in the etiology of MS.

  14. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Science.gov (United States)

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  15. Meshable: searching PubMed abstracts by utilizing MeSH and MeSH-derived topical terms.

    Science.gov (United States)

    Kim, Sun; Yeganova, Lana; Wilbur, W John

    2016-10-01

    Medical Subject Headings (MeSH(®)) is a controlled vocabulary for indexing and searching biomedical literature. MeSH terms and subheadings are organized in a hierarchical structure and are used to indicate the topics of an article. Biologists can use either MeSH terms as queries or the MeSH interface provided in PubMed(®) for searching PubMed abstracts. However, these are rarely used, and there is no convenient way to link standardized MeSH terms to user queries. Here, we introduce a web interface which allows users to enter queries to find MeSH terms closely related to the queries. Our method relies on co-occurrence of text words and MeSH terms to find keywords that are related to each MeSH term. A query is then matched with the keywords for MeSH terms, and candidate MeSH terms are ranked based on their relatedness to the query. The experimental results show that our method achieves the best performance among several term extraction approaches in terms of topic coherence. Moreover, the interface can be effectively used to find full names of abbreviations and to disambiguate user queries. https://www.ncbi.nlm.nih.gov/IRET/MESHABLE/ CONTACT: sun.kim@nih.gov Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Hypoxic induction of the regulator of G-protein signalling 4 gene is mediated by the hypoxia-inducible factor pathway.

    Directory of Open Access Journals (Sweden)

    Sam W Z Olechnowicz

    Full Text Available The transcriptional response to hypoxia is largely dependent on the Hypoxia Inducible Factors (HIF-1 and HIF-2 in mammalian cells. Many target genes have been characterised for these heterodimeric transcription factors, yet there is evidence that the full range of HIF-regulated genes has not yet been described. We constructed a TetON overexpression system in the rat pheochromocytoma PC-12 cell line to search for novel HIF and hypoxia responsive genes. The Rgs4 gene encodes the Regulator of G-Protein Signalling 4 (RGS4 protein, an inhibitor of signalling from G-protein coupled receptors, and dysregulation of Rgs4 is linked to disease states such as schizophrenia and cardiomyopathy. Rgs4 was found to be responsive to HIF-2α overexpression, hypoxic treatment, and hypoxia mimetic drugs in PC-12 cells. Similar responses were observed in human neuroblastoma cell lines SK-N-SH and SK-N-BE(2C, but not in endothelial cells, where Rgs4 transcript is readily detected but does not respond to hypoxia. Furthermore, this regulation was found to be dependent on transcription, and occurs in a manner consistent with direct HIF transactivation of Rgs4 transcription. However, no HIF binding site was detectable within 32 kb of the human Rgs4 gene locus, leading to the possibility of regulation by long-distance genomic interactions. Further research into Rgs4 regulation by hypoxia and HIF may result in better understanding of disease states such as schizophrenia, and also shed light on the other roles of HIF yet to be discovered.

  17. Hypoxic Induction of the Regulator of G-Protein Signalling 4 Gene Is Mediated by the Hypoxia-Inducible Factor Pathway

    Science.gov (United States)

    Olechnowicz, Sam W. Z.; Fedele, Anthony O.; Peet, Daniel J.

    2012-01-01

    The transcriptional response to hypoxia is largely dependent on the Hypoxia Inducible Factors (HIF-1 and HIF-2) in mammalian cells. Many target genes have been characterised for these heterodimeric transcription factors, yet there is evidence that the full range of HIF-regulated genes has not yet been described. We constructed a TetON overexpression system in the rat pheochromocytoma PC-12 cell line to search for novel HIF and hypoxia responsive genes. The Rgs4 gene encodes the Regulator of G-Protein Signalling 4 (RGS4) protein, an inhibitor of signalling from G-protein coupled receptors, and dysregulation of Rgs4 is linked to disease states such as schizophrenia and cardiomyopathy. Rgs4 was found to be responsive to HIF-2α overexpression, hypoxic treatment, and hypoxia mimetic drugs in PC-12 cells. Similar responses were observed in human neuroblastoma cell lines SK-N-SH and SK-N-BE(2)C, but not in endothelial cells, where Rgs4 transcript is readily detected but does not respond to hypoxia. Furthermore, this regulation was found to be dependent on transcription, and occurs in a manner consistent with direct HIF transactivation of Rgs4 transcription. However, no HIF binding site was detectable within 32 kb of the human Rgs4 gene locus, leading to the possibility of regulation by long-distance genomic interactions. Further research into Rgs4 regulation by hypoxia and HIF may result in better understanding of disease states such as schizophrenia, and also shed light on the other roles of HIF yet to be discovered. PMID:22970249

  18. Phosphorylation of eIF2α is required for mRNA translation inhibition and survival during moderate hypoxia

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Rouschop, Kasper M.A.; Beucken, Twan van den; Magagnin, Michael G.; Savelkouls, Kim; Lambin, Philippe; Wouters, Bradly G.

    2007-01-01

    Abstracts: Background and purpose: Human tumors are characterized by temporal fluctuations in oxygen tension. The biological pathways that respond to the dynamic tumor microenvironment represent potential molecular targets for cancer therapy. Anoxic conditions result in eIF2α dependent inhibition of overall mRNA translation, differential gene expression, hypoxia tolerance and tumor growth. The signaling pathway which governs eIF2α phosphorylation has therefore emerged as a potential molecular target. In this study, we investigated the role of eIF2α in regulating mRNA translation and hypoxia tolerance during moderate hypoxia. Since other molecular pathways that regulate protein synthesis are frequently mutated in cancer, we also assessed mRNA translation in a panel of cell lines from different origins. Materials and methods: Immortalized human fibroblast, transformed mouse embryo fibroblasts (MEFs) and cells from six cancer cell lines were exposed to 0.2% or 0.0% oxygen. We assayed global mRNA translation efficiency by polysome analysis, as well as proliferation and clonogenic survival. The role of eIF2α was assessed in MEFs harboring a homozygous inactivating mutation (S51A) as well as in U373-MG cells overexpressing GADD34 (C-term) under a tetracycline-dependent promoter. The involvement of eIF4E regulation was investigated in HeLa cells stably expressing a short hairpin RNA (shRNA) targeting 4E-BP1. Results: All cells investigated inhibited mRNA translation severely in response to anoxia and modestly in response to hypoxia. Two independent genetic cell models demonstrated that inhibition of mRNA translation in response to moderate hypoxia was dependent on eIF2α phosphorylation. Disruption of eIF2α phosphorylation caused sensitivity to hypoxia and anoxia. Conclusions: Disruption of eIF2α phosphorylation is a potential target for hypoxia-directed molecular cancer therapy

  19. Analysis of hypoxia and hypoxia-like states through metabolite profiling.

    Directory of Open Access Journals (Sweden)

    Julie E Gleason

    Full Text Available In diverse organisms, adaptation to low oxygen (hypoxia is mediated through complex gene expression changes that can, in part, be mimicked by exposure to metals such as cobalt. Although much is known about the transcriptional response to hypoxia and cobalt, little is known about the all-important cell metabolism effects that trigger these responses.Herein we use a low molecular weight metabolome profiling approach to identify classes of metabolites in yeast cells that are altered as a consequence of hypoxia or cobalt exposures. Key findings on metabolites were followed-up by measuring expression of relevant proteins and enzyme activities. We find that both hypoxia and cobalt result in a loss of essential sterols and unsaturated fatty acids, but the basis for these changes are disparate. While hypoxia can affect a variety of enzymatic steps requiring oxygen and heme, cobalt specifically interferes with diiron-oxo enzymatic steps for sterol synthesis and fatty acid desaturation. In addition to diiron-oxo enzymes, cobalt but not hypoxia results in loss of labile 4Fe-4S dehydratases in the mitochondria, but has no effect on homologous 4Fe-4S dehydratases in the cytosol. Most striking, hypoxia but not cobalt affected cellular pools of amino acids. Amino acids such as aromatics were elevated whereas leucine and methionine, essential to the strain used here, dramatically decreased due to hypoxia induced down-regulation of amino acid permeases.These studies underscore the notion that cobalt targets a specific class of iron proteins and provide the first evidence for hypoxia effects on amino acid regulation. This research illustrates the power of metabolite profiling for uncovering new adaptations to environmental stress.

  20. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  1. Hypoxia-induced invadopodia formation involves activation of NHE-1 by the p90 ribosomal S6 kinase (p90RSK.

    Directory of Open Access Journals (Sweden)

    Fabrice Lucien

    Full Text Available The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis, and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na(+/H(+ exchanger NHE-1, along with intracellular pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH homeostasis, an event that involves activation of the Na(+/H(+ exchange rate by NHE-1. Further characterization indicates that hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK, which resulted in invadopodia formation and site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors.

  2. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.

    Science.gov (United States)

    Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min

    2011-02-01

    Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.

  3. Optical and millimeter wavelength study of the complex Sh2-147/Sh2-153

    International Nuclear Information System (INIS)

    Heydari-Malayeri, M.; Testor, G.; Kahane, C.; Lucas, R.

    1982-01-01

    Sh2-147/Sh2-153 is a vast HII region-molecular cloud complex of dimension 1 0 .5 located in the Perseus arm at l approximately 109 0 . This cloud embodies the HII regions Sh2-147, 148, 149, 152 and 153. In this direction were detected several H 2 O and OH masers, a number of infrared sources, and a supernova remnant. The authors present the 13 CO map and also optical results on two of the HII regions: Sh2-152 and 148. (Auth.)

  4. Hypoxia Room

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypoxia Room is a 8x8x8 ft. clear vinyl plastic and aluminum frame construction enclosure located within USAREIM laboratory 028. The Hypoxia Room (manufactured...

  5. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  6. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    Science.gov (United States)

    Zhang, J.; Gilbert, D.; Gooday, A.; Levin, L.; Naqvi, W.; Middelburg, J.; Scranton, M.; Ekau, W.; Pena, A.; Dewitte, B.; Oguz, T.; Monteiro, P. M. S.; Urban, E.; Rabalais, N.; Ittekkot, V.; Kemp, W. M.; Ulloa, O.; Elmgren, R.; Escobar-Briones, E.; van der Plas, A.

    2009-11-01

    Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes deterioration of structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include fresh water runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses; their different interactions set up mechanisms that drive the system towards hypoxia. However, whether the coastal environment becomes hypoxic or not, under the combination of external forcings, depends also on the nature of the ecosystem, e.g. physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences can be compression and loss of habitat, as well as change in life cycle and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in a non-linear way and has pronounced feedbacks to other compartments of the Earth System, hence affecting human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behaviour that will improve confidence in remediation management strategies for coastal hypoxia.

  7. In vitro ischemia suppresses hypoxic induction of hypoxia-inducible factor-1α by inhibition of synthesis and not enhanced degradation.

    Science.gov (United States)

    Karuppagounder, Saravanan S; Basso, Manuela; Sleiman, Sama F; Ma, Thong C; Speer, Rachel E; Smirnova, Natalya A; Gazaryan, Irina G; Ratan, Rajiv R

    2013-08-01

    Hypoxia-inducible factor (HIF) mediates a broad, conserved adaptive response to hypoxia, and the HIF pathway is a potential therapeutic target in cerebral ischemia. This study investigated the mechanism by which in vitro ischemia (oxygen-glucose deprivation; OGD) affects canonical hypoxic HIF-1α stabilization. We validated the use of a reporter containing the oxygen-dependent degradation domain of HIF-1α fused to firefly luciferase (ODD-luc) to monitor quantitatively distinct biochemical events leading to hypoxic HIF-1α expression or stabilization in a human neuroblastoma cell line (SH-SY5Y). When OGD was imposed following a 2-hr hypoxic stabilization of ODD-luc, the levels of the reporter were reduced, consistent with prior models proposing that OGD enhances HIF prolylhydroxylase (PHD) activity. Surprisingly, PHD inhibitors and proteasome inhibitors do not stabilize ODD-luc in OGD. Furthermore, OGD does not affect the half-life of ODD-luc protein following hypoxia, suggesting that OGD abrogates hypoxic HIF-1α induction by reducing HIF-1α synthesis rather than by enhancing its degradation. We observed ATP depletion under OGD vs. hypoxia and propose that ATP depletion enhances translational suppression, overcoming the selective synthesis of HIF concurrent with global decreases in protein synthesis in hypoxia. Taken together, these findings biochemically characterize a practical reporter for monitoring HIF-1α levels and support a novel model for HIF regulation in an in vitro model of human ischemia. Copyright © 2013 Wiley Periodicals, Inc.

  8. Human erythropoietin response to hypocapnic hypoxia, normocapnic hypoxia, and hypocapnic normoxia

    DEFF Research Database (Denmark)

    Klausen, T; Christensen, H; Hansen, J M

    1996-01-01

    exposed to 2 h each of hypocapnic hypoxia, normocapnic hypoxia, hypocapnic normoxia, and normal breathing of room air (control experiment). During the control experiment, serum-EPO showed significant variations (ANOVA P = 0.047) with a 15% increase in mean values. The serum-EPO measured in the other...... (10% Co2 with 10% O2) to the hypoxic gas mixture. This elicited an increased ventilation, unaltered arterial pH and haemoglobin oxygen affinity, a lower degree of hypoxia than during hypocapnic hypoxia, and no significant changes in serum-EPO (ANOVA P > 0.05). Hypocapnic normoxia, produced...

  9. SH2 Domain Histochemistry.

    Science.gov (United States)

    Buhs, Sophia; Nollau, Peter

    2017-01-01

    Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.

  10. Hypoxia signaling pathways: modulators of oxygen-related organelles

    Science.gov (United States)

    Schönenberger, Miriam J.; Kovacs, Werner J.

    2015-01-01

    Oxygen (O2) is an essential substrate in cellular metabolism, bioenergetics, and signaling and as such linked to the survival and normal function of all metazoans. Low O2 tension (hypoxia) is a fundamental feature of physiological processes as well as pathophysiological conditions such as cancer and ischemic diseases. Central to the molecular mechanisms underlying O2 homeostasis are the hypoxia-inducible factors-1 and -2 alpha (HIF-1α and EPAS1/HIF-2α) that function as master regulators of the adaptive response to hypoxia. HIF-induced genes promote characteristic tumor behaviors, including angiogenesis and metabolic reprogramming. The aim of this review is to critically explore current knowledge of how HIF-α signaling regulates the abundance and function of major O2-consuming organelles. Abundant evidence suggests key roles for HIF-1α in the regulation of mitochondrial homeostasis. An essential adaptation to sustained hypoxia is repression of mitochondrial respiration and induction of glycolysis. HIF-1α activates several genes that trigger mitophagy and represses regulators of mitochondrial biogenesis. Several lines of evidence point to a strong relationship between hypoxia, the accumulation of misfolded proteins in the endoplasmic reticulum, and activation of the unfolded protein response. Surprisingly, although peroxisomes depend highly on molecular O2 for their function, there has been no evidence linking HIF signaling to peroxisomes. We discuss our recent findings that establish HIF-2α as a negative regulator of peroxisome abundance and suggest a mechanism by which cells attune peroxisomal function with O2 availability. HIF-2α activation augments peroxisome turnover by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We discuss potential mechanisms by which HIF-2α might trigger pexophagy and place special emphasis on the potential pathological implications of HIF-2α-mediated pexophagy for human health. PMID:26258123

  11. Hypoxia in the changing marine environment

    Science.gov (United States)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  12. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    Science.gov (United States)

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. © 2013.

  13. The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities

    Science.gov (United States)

    Walsh, Joseph C.; Lebedev, Artem; Aten, Edward; Madsen, Kathleen; Marciano, Liane

    2014-01-01

    I. Introduction II. The Clinical Importance of Tumor Hypoxia A. Pathophysiology of hypoxia B. Hypoxia's negative impact on the effectiveness of curative treatment 1. Hypoxic tumors accumulate and propagate cancer stem cells 2. Hypoxia reduces the effectiveness of radiotherapy 3. Hypoxia increases metastasis risk and reduces the effectiveness of surgery 4. Hypoxic tumors are resistant to the effects of chemotherapy and chemoradiation C. Hypoxia is prognostic for poor patient outcomes III. Diagnosis of Tumor Hypoxia A. Direct methods 1. Oxygen electrode—direct pO2 measurement most used in cancer research 2. Phosphorescence quenching—alternative direct pO2 measurement 3. Electron paramagnetic resonance 4. 19F-magnetic resonance spectroscopy 5. Overhauser-enhanced MRI B. Endogenous markers of hypoxia 1. Hypoxia-inducible factor-1α 2. Carbonic anhydrase IX 3. Glucose transporter 1 4. Osteopontin 5. A combined IHC panel of protein markers for hypoxia 6. Comet assay C. Physiologic methods 1. Near-infrared spectroscopy/tomography—widely used for pulse oximetry 2. Photoacoustic tomography 3. Contrast-enhanced color duplex sonography 4. MRI-based measurements 5. Blood oxygen level-dependent MRI 6. Pimonidazole 7. EF5 (pentafluorinated etanidazole) 8. Hypoxia PET imaging—physiologic hypoxia measurement providing tomographic information a. 18F-fluoromisonidazole b. 18F-fluoroazomycinarabinofuranoside c. 18F-EF5 (pentafluorinated etanidazole) d. 18F-flortanidazole e. Copper (II) (diacetyl-bis (N4-methylthiosemicarbazone)) f. 18F-FDG imaging of hypoxia IV. Modifying Hypoxia to Improve Therapeutic Outcomes A. Use of hypoxia information in radiation therapy planning B. Use of hypoxia assessment for selection of patients responsive to nimorazole C. Use of hypoxia assessment for selection of patients responsive to tirapazamine D. Use of hypoxia assessment for selection of patients

  14. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5 expression through both hypoxia inducible factor-1α and proteasome-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Jitesh D Kawedia

    Full Text Available The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5, we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70% decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.

  15. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    Science.gov (United States)

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  16. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  17. The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon.

    Science.gov (United States)

    Carra, Graciela E; Ibáñez, Jorge E; Saraví, Fernando D

    2013-09-01

    In isolated colonic mucosa, decreases in short-circuit current (ISC) and transepithelial resistivity (RTE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia. Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side. 1st series: Dithiothreitol significantly decreased the unstirred layer and ISC but increased RTE. 2nd series: Both hypoxia and ouabain decreased ISC, but ouabain increased RTE and this effect on RTE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of ISC and RTE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation. In mucolytic concentration, dithiothreitol modifies ISC and RTE. Oxygen supply from the serosal side is more important to sustain ISC and RTE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on RTE suggests that their depressing effect on ISC involves different mechanisms.

  18. Hypoxia: The Force that Drives Chronic Kidney Disease

    Science.gov (United States)

    Fu, Qiangwei; Colgan, Sean P; Shelley, Carl Simon

    2016-01-01

    In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy. PMID:26847481

  19. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    Science.gov (United States)

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization. Copyright © 2017 the American Physiological Society.

  20. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Science.gov (United States)

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  1. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory

  2. Role of hypoxia and hypoxia inducible factor in physiological and pathological conditions

    Directory of Open Access Journals (Sweden)

    Mozhgan Jahani

    2017-11-01

    Full Text Available Introduction: Organisms are exposed to oxygen deprivation (Hypoxia in various physiological and pathological conditions. There are different conserve evolutionary responses to counterview with this stress that primary transcriptional response to stress related to hypoxia is interceded by hypoxia-inducible factor (HIF-1 in mammals. This factor can regulate different genes that have essential roles in adaptation to this condition. In this review, the role of this factor in physiological and pathological conditions under hypoxic condition has been evaluated after examining structural features and regulation characteristics of HIF-1. Methods: First, articles related to the keywords of hypoxia and HIF-1 (from 1991-2016 were searched from valid databases such as Springer Link, Google Scholar, PubMed and Science direct. Then, the articles correlated with hypoxia, HIF-1 and their roles in physiological and pathological conditions (120 articles were searched and just 64 articles were selected for this study. Result: According to studies, there are different genes in cells and organs that can be regulated by HIF-1. Activation of genes expression by this protein occurs through its linkage to cis-acting of 50 base pair hypoxia response element (HRE region located in their promotor and enhancer. Depending on circumstances, activation of these genes can be beneficial or harmful. Conclusion: Activation of different genes in hypoxia by HIF-1 has different effects on physiological and pathological conditions. Therefore, HIF-1, as a hypoxia-inducible factor in hypoxic conditions, plays an essential role in the adaptation of cells and organs to changes related to the presence of oxygen.

  3. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    Science.gov (United States)

    Raabe, T; Olivier, J P; Dickson, B; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-06-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is required for Drk binding, probably because it provides a recognition site for the Drk SH2 domain. Interestingly, a mutation at this site does not completely block Sev function in vivo. This may suggest that Sev can signal in a Drk-independent, parallel pathway or that Drk can also bind to an intermediate docking protein. Analysis of the Drk-Sos interaction has identified a high affinity binding site for Drk SH3 domains in the Sos tail. We show that the N-terminal Drk SH3 domain is primarily responsible for binding to the tail of Sos in vitro, and for signalling to Ras in vivo.

  4. Hypoxia modulates the differentiation potential of stem cells of the apical papilla.

    Science.gov (United States)

    Vanacker, Julie; Viswanath, Aiswarya; De Berdt, Pauline; Everard, Amandine; Cani, Patrice D; Bouzin, Caroline; Feron, Olivier; Diogenes, Anibal; Leprince, Julian G; des Rieux, Anne

    2014-09-01

    Stem cells from the apical papilla (SCAP) are a population of mesenchymal stem cells likely involved in regenerative endodontic procedures and have potential use as therapeutic agents in other tissues. In these situations, SCAP are exposed to hypoxic conditions either within a root canal devoid of an adequate blood supply or in a scaffold material immediately after implantation. However, the effect of hypoxia on SCAP proliferation and differentiation is largely unknown. Therefore, the objective of this study was to evaluate the effect of hypoxia on the fate of SCAP. SCAP were cultured under normoxia (21% O2) or hypoxia (1% O2) in basal or differentiation media. Cellular proliferation, gene expression, differentiation, and protein secretion were analyzed by live imaging, quantitative reverse-transcriptase polymerase chain reaction, cellular staining, and enzyme-linked immunosorbent assay, respectively. Hypoxia had no effect on SCAP proliferation, but it evoked the up-regulation of genes specific for osteogenic differentiation (runt-related transcription factor 2, alkaline phosphatase, and transforming growth factor-β1), neuronal differentiation ( 2'-3'-cyclic nucleotide 3' phosphodiesterase, SNAIL, neuronspecific enolase, glial cell-derived neurotrophic factor and neurotrophin 3), and angiogenesis (vascular endothelial growth factor A and B). Hypoxia also increased the sustained production of VEGFa by SCAP. Moreover, hypoxia augmented the neuronal differentiation of SCAP in the presence of differentiation exogenous factors as detected by the up-regulation of NSE, VEGFB, and GDNF and the expression of neuronal markers (PanF and NeuN). This study shows that hypoxia induces spontaneous differentiation of SCAP into osteogenic and neurogenic lineages while maintaining the release of the proangiogenic factor VEGFa. This highlights the potential of SCAP to promote pulp-dentin regeneration. Moreover, SCAP may represent potential therapeutic agents for neurodegenerative

  5. Hypoxia in the changing marine environment

    International Nuclear Information System (INIS)

    Zhang, J; Cowie, G; Naqvi, S W A

    2013-01-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926–9, Stramma et al 2008 Science 320 655–8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1–24). (synthesis and review)

  6. The SH2 Domain Interaction Landscape

    Directory of Open Access Journals (Sweden)

    Michele Tinti

    2013-04-01

    Full Text Available Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells.

  7. New small molecule inhibitors of UPR activation demonstrate that PERK, but not IRE1α signaling is essential for promoting adaptation and survival to hypoxia

    International Nuclear Information System (INIS)

    Cojocari, Dan; Vellanki, Ravi N.; Sit, Brandon; Uehling, David; Koritzinsky, Marianne; Wouters, Bradly G.

    2013-01-01

    Background and purpose: The unfolded protein response (UPR) is activated in response to hypoxia-induced stress in the endoplasmic reticulum (ER) and consists of three distinct signaling arms. Here we explore the potential of targeting two of these arms with new potent small-molecule inhibitors designed against IRE1α and PERK. Methods: We utilized shRNAs and small-molecule inhibitors of IRE1α (4μ8c) and PERK (GSK-compound 39). XBP1 splicing and DNAJB9 mRNA was measured by qPCR and was used to monitor IRE1α activity. PERK activity was monitored by immunoblotting eIF2α phosphorylation and qPCR of DDIT3 mRNA. Hypoxia tolerance was measured using proliferation and clonogenic cell survival assays of cells exposed to mild or severe hypoxia in the presence of the inhibitors. Results: Using knockdown experiments we show that PERK is essential for survival of KP4 cells while knockdown of IRE1α dramatically decreases the proliferation and survival of HCT116 during hypoxia. Further, we show that in response to both hypoxia and other ER stress-inducing agents both 4μ8c and the PERK inhibitor are selective and potent inhibitors of IRE1α and PERK activation, respectively. However, despite potent inhibition of IRE1α activation, 4μ8c had no effect on cell proliferation or clonogenic survival of cells exposed to hypoxia. This was in contrast to the inactivation of PERK signaling with the PERK inhibitor, which reduced tolerance to hypoxia and other ER stress inducing agents. Conclusions: Our results demonstrate that IRE1α but not its splicing activity is important for hypoxic cell survival. The PERK signaling arm is uniquely important for promoting adaptation and survival during hypoxia-induced ER stress and should be the focus of future therapeutic efforts

  8. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Shirley Lam

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection. METHODS: Plasmid-based small hairpin RNA (shRNA was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection. RESULTS: Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1. CONCLUSION: Taken together, these

  9. Ageing and cardiorespiratory response to hypoxia.

    Science.gov (United States)

    Lhuissier, François J; Canouï-Poitrine, Florence; Richalet, Jean-Paul

    2012-11-01

    The risk of severe altitude-induced diseases is related to ventilatory and cardiac responses to hypoxia and is dependent on sex, age and exercise training status. However, it remains unclear how ageing modifies these physiological adaptations to hypoxia. We assessed the physiological responses to hypoxia with ageing through a cross-sectional 20 year study including 4675 subjects (2789 men, 1886 women; 14-85 years old) and a longitudinal study including 30 subjects explored at a mean 10.4 year interval. The influence of sex, training status and menopause was evaluated. The hypoxia-induced desaturation and the ventilatory and cardiac responses to hypoxia at rest and exercise were measured. In men, ventilatory response to hypoxia increased (P ageing. Cardiac response to hypoxia was blunted with ageing in both sexes (P ageing. These adaptive responses were less pronounced or absent in post-menopausal women (P ageing in men while cardiac response is blunted with ageing in both sexes. Training aggravates desaturation at exercise in hypoxia, improves the ventilatory response and limits the ageing-induced blunting of cardiac response to hypoxia. Training limits the negative effects of menopause in cardiorespiratory adaptations to hypoxia.

  10. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.

    Science.gov (United States)

    Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F

    2017-03-01

    Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    Science.gov (United States)

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  12. The SH2 domain interaction landscape.

    Science.gov (United States)

    Tinti, Michele; Kiemer, Lars; Costa, Stefano; Miller, Martin L; Sacco, Francesca; Olsen, Jesper V; Carducci, Martina; Paoluzi, Serena; Langone, Francesca; Workman, Christopher T; Blom, Nikolaj; Machida, Kazuya; Thompson, Christopher M; Schutkowski, Mike; Brunak, Søren; Mann, Matthias; Mayer, Bruce J; Castagnoli, Luisa; Cesareni, Gianni

    2013-04-25

    Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Linker length dependent binding of a focal adhesion kinase derived peptide to the Src SH3-SH2 domains.

    Science.gov (United States)

    Lindfors, Hanna E; Venkata, Bharat Somireddy; Drijfhout, Jan W; Ubbink, Marcellus

    2011-02-18

    The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and tumor biology

    International Nuclear Information System (INIS)

    Varia, Mahesh A.; Kennedy, Andrew S.; Calkins-Adams, Dennise P.; Rinker, Lillian; Novotny, Debra; Fowler, Wesley C.; Raleigh, James A.

    1997-01-01

    Purpose/Objectives: Tumor hypoxia appears to be associated with treatment resistance and with gene expression that may lead to hypoxia-mediated selection of tumor cells as a source for cell growth and metastases. The objective of this study was to develop complementary techniques of hypoxia detection with molecular markers of cell proliferation and metastases in order to investigate the role of tumor hypoxia in tumor biology. Materials and Methods: Pimonidazole is a 2-nitroimidazole which is reductively-activated and becomes covalently bound to thiol-containing proteins only in hypoxic cells. These adducts can be detected using immunohistochemistry, enzyme linked immunosorbent assay or flow cytometry as a measure of hypoxia in tumors. Quantitative immunohistochemical analysis has been completed for five patients with squamous cell carcinoma of the cervix who were given pimonidazole hydrochloride (0.5 g/m 2 intravenously) followed by cervical biopsies 24 hours later. Informed consent was obtained according to a protocol approved by the Institutional Review Board. A minimum of 3 random biopsies were obtained from the tumors and at least four sections examined from each biopsy site. Formalin fixed, paraffin embedded tissue sections were immunostained for pimonidazole binding using a mouse monoclonal antibody. Commercially available monoclonal antibodies were used to detect cell proliferation markers MIB-1 (Ki-67) and to detect vascular endothelial growth factor (VEGF) in tumor cells in contiguous sections. The extent of immunostaining was expressed as the percent of immunostained to total tumor cells as determined by Chalkley point counting. Results: No clinical toxicities were associated with pimonidazole infusion. Immunostaining with pimonidazole antibody was observed in all patients indicating the presence of tumor hypoxia. Qualitatively there is little or no overlap between the areas of hypoxia and proliferation. Quantitative data tabulated below show the

  15. Migraine induced by hypoxia

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik Winther; Britze, Josefine

    2016-01-01

    in the visual cortex were measured by proton magnetic resonance spectroscopy. The circumference of cranial arteries was measured by 3 T high-resolution magnetic resonance angiography. Hypoxia induced migraine-like attacks in eight patients compared to one patient after sham (P = 0.039), aura in three...... and possible aura in 4 of 15 patients. Hypoxia did not change glutamate concentration in the visual cortex compared to sham, but increased lactate concentration (P = 0.028) and circumference of the cranial arteries (P ... suggests that hypoxia may provoke migraine headache and aura symptoms in some patients. The mechanisms behind the migraine-inducing effect of hypoxia should be further investigated....

  16. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.

    Science.gov (United States)

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D

    2013-09-03

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.

  17. Transformed human mesenchymal stem cells are more radiosensitive compared to their cells of origin in normoxia and in physiological hypoxia

    International Nuclear Information System (INIS)

    Worku, M.; Fersht, N.; Martindale, C.; Funes, J.M.; Shah, S.; Short, S.C.

    2013-01-01

    The full text of the publication follows. Purpose: The presence of hypoxic regions in tumours is associated with the recurrence of solid tumours after treatment with radiotherapy and thought to be an important element in defining the stem cell niche. We studied the effect of hypoxia on the response to radiation in sequentially transformed human mesenchymal stem cells (MSC) to investigate how the genetic events that lead to tumorigenicity influence the cellular response to radiation under hypoxic and normoxic conditions. Experimental Design: Human bone marrow derived SH2+, SH4+, Stro-1+ MSC were transformed step-wise by retroviral transfection of hTERT, HPV-16 E6 and E7, SV40 small T antigen and oncogenic H-ras. Cells were grown and irradiated with 0, 1 to 5 Gy, X-Ray at 20%, 5% and 1% oxygen tensions. Cytotoxicity, DNA double-strand break (DSB) repair and checkpoint signalling were compared between cells at three different stages of transformation and in different oxygen concentrations. Results: MSCs became more radiosensitive at each point during step-wise transformation, and this effect persisted when cells were irradiated in physiological hypoxia. Increased cytotoxicity of radiation was associated with increased residual DNA DSB at 24 post X-irradiation assessed by gamma-H2AX foci. Growth and irradiation in 1% but not 5% oxygen promoted increased radioresistance compared to growth in 20% oxygen but did not change the relative sensitivity of tumorigenic cells compared to parental cells. Activation of checkpoint signalling before and after single radiation doses is more marked in tumorigenic cells compared to parental lines, and is not altered when cells are irradiated and grown in hypoxic conditions. Conclusions: These data show that tumorigenic cells are more radiosensitive compared to non-tumorigenic parental cells in both normoxic and hypoxic conditions. 1% hypoxia promotes radioresistance in all cells. Checkpoint signalling is up-regulated in tumorigenic

  18. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  19. SH2 domains: modulators of nonreceptor tyrosine kinase activity.

    Science.gov (United States)

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-12-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.

  20. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  1. Preferred SH3 domain partners of ADAM metalloproteases include shared and ADAM-specific SH3 interactions.

    Directory of Open Access Journals (Sweden)

    Iivari Kleino

    Full Text Available A disintegrin and metalloproteinases (ADAMs constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3 domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior.

  2. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  3. Two-state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N-cap

    Science.gov (United States)

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D.

    2013-01-01

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3–SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3–SH2 connector, which involve a phosphorylation site. We also show that the SH3–SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3–SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization. PMID:23959873

  4. Expression and Production of SH2 Domain Proteins.

    Science.gov (United States)

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  5. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives

    Science.gov (United States)

    Bishop, Tammie; Ratcliffe, Peter J

    2014-01-01

    By the early 1900s, the close matching of oxygen supply with demand was recognized to be a fundamental requirement for physiological function, and multiple adaptive responses to environment hypoxia had been described. Nevertheless, the widespread operation of mechanisms that directly sense and respond to levels of oxygen in animal cells was not appreciated for most of the twentieth century with investigators generally stressing the regulatory importance of metabolic products. Work over the last 25 years has overturned that paradigm. It has revealed the existence of a set of “oxygen-sensing” 2-oxoglutarate dependent dioxygenases that catalyze the hydroxylation of specific amino acid residues and thereby control the stability and activity of hypoxia-inducible factor. The hypoxia-inducible factor hydroxylase pathway regulates a massive transcriptional cascade that is operative in essentially all animal cells. It transduces a wide range of responses to hypoxia, extending well beyond the classical boundaries of hypoxia physiology. Here we review the discovery and elucidation of these pathways, and consider the opportunities and challenges that have been brought into focus by the findings, including new implications for the integrated physiology of hypoxia and therapeutic approaches to ischemic/hypoxic disease. PMID:27774477

  6. Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers.

    Science.gov (United States)

    Vaupel, Peter; Mayer, Arnulf

    Tumor hypoxia is a hallmark of solid malignant tumor growth, profoundly influences malignant progression and contributes to the development of therapeutic resistance. Pathogenesis of tumor hypoxia is multifactorial, with contributions from both acute and chronic factors. Spatial distribution of hypoxia within tumors is markedly heterogeneous and often changes over time, e.g., during a course of radiotherapy. Substantial changes in the oxygenation status can occur within the distance of a few cell layers, explaining the inability of currently used molecular imaging techniques to adequately assess this crucial trait. Due to the possible importance of tumor hypoxia for clinical decision-making, there is a great demand for molecular tools which may provide the necessary resolution down to the single cell level. Exogenous and endogenous markers of tumor hypoxia have been investigated for this purpose. Their potential use may be greatly enhanced by multiparametric in situ methods in experimental and human tumor tissue.

  7. Kinase activation through dimerization by human SH2-B.

    Science.gov (United States)

    Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E

    2005-04-01

    The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.

  8. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  9. High-altitude hypoxia as a therapeutic factor in the management of X-ray and cytostatic lymphocytopenias in cancer patients

    International Nuclear Information System (INIS)

    Kulish, u.P.; Galkina, K.A.; Karabekova, Z.K.; Kudryavtsev, V.I.; Gudi, T.P.

    1984-01-01

    An attempt is made to clarify possibilities of high-altitude conditions use in clinics to restore hematological indices deteriorating as a result of antitumoral radiation or cytostatic therapy. Using conventional methods the content of hemoglobin, the number of erythrocytes and leukocytes, leukocytic formula in the blood of patients have been determined. Using the method of hemocultures the ability of the blood serum to affect leukocyte migration of practically healthy people (donors) has been studied and by the method of amperometric titration the content of SH-groups in the blood is determined. In patients examined under high-altitude conditions the content of hemoglobin and the number of erythrocytes in blood increased, the level of total SH-groups of blood also grew. Blood serum of patients with the expressed lymphocytopenia instead of suppressing effect on leukocyte migration, observed under low-altitude conditions (Frunze), under high-altitude conditions attained the ability to increase leukocyte migration. The conclusion is made that high-altitude hypoxia is a positive factor in the treatment of radiation and cytostatic lymphopenias in cancer patients

  10. Selective vulnerability in brain hypoxia

    DEFF Research Database (Denmark)

    Cervos-Navarro, J.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis......Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis...

  11. Developmental Hypoxia Has Negligible Effects on Long-Term Hypoxia Tolerance and Aerobic Metabolism of Atlantic Salmon (Salmo salar).

    Science.gov (United States)

    Wood, Andrew T; Clark, Timothy D; Andrewartha, Sarah J; Elliott, Nicholas G; Frappell, Peter B

    Exposure to developmental hypoxia can have long-term impacts on the physiological performance of fish because of irreversible plasticity. Wild and captive-reared Atlantic salmon (Salmo salar) can be exposed to hypoxic conditions during development and continue to experience fluctuating oxygen levels as juveniles and adults. Here, we examine whether developmental hypoxia impacts subsequent hypoxia tolerance and aerobic performance of Atlantic salmon. Individuals at 8°C were exposed to 50% (hypoxia) or 100% (normoxia) dissolved oxygen (DO) saturation (as percent of air saturation) from fertilization for ∼100 d (800 degree days) and then raised in normoxic conditions for a further 15 mo. At 18 mo after fertilization, aerobic scope was calculated in normoxia (100% DO) and acute (18 h) hypoxia (50% DO) from the difference between the minimum and maximum oxygen consumption rates ([Formula: see text] and [Formula: see text], respectively) at 10°C. Hypoxia tolerance was determined as the DO at which loss of equilibrium (LOE) occurred in a constantly decreasing DO environment. There was no difference in [Formula: see text], [Formula: see text], or aerobic scope between fish raised in hypoxia or normoxia. There was some evidence that hypoxia tolerance was lower (higher DO at LOE) in hypoxia-raised fish compared with those raised in normoxia, but the magnitude of the effect was small (12.52% DO vs. 11.73% DO at LOE). Acute hypoxia significantly reduced aerobic scope by reducing [Formula: see text], while [Formula: see text] remained unchanged. Interestingly, acute hypoxia uncovered individual-level relationships between DO at LOE and [Formula: see text], [Formula: see text], and aerobic scope. We discuss our findings in the context of developmental trajectories and the role of aerobic performance in hypoxia tolerance.

  12. Obstructive sleep apnea and intermittent hypoxia increase expression of dual specificity phosphatase 1.

    Science.gov (United States)

    Hoffmann, Michal S; Singh, Prachi; Wolk, Robert; Narkiewicz, Krzysztof; Somers, Virend K

    2013-12-01

    Dual specificity phosphatase 1 (DUSP1) inhibits mitogen activated protein kinase activity, and is activated by several stimuli such as sustained hypoxia, oxidative stress, and hormones. However, the effect of intermittent hypoxia is not known. The aim of this study was to evaluate the role of intermittent hypoxia on DUSP1 expression, and to validate its role in a human model of intermittent hypoxia, as seen in obstructive sleep apnea (OSA). OSA is characterized by recurrent episodes of hypoxemia/reoxygenation and is a known risk factor for cardiovascular morbidity. In-vitro studies using human coronary artery endothelial cells (HCAEC) and ex-vivo studies using white blood cells isolated from healthy and OSA subjects. Intermittent hypoxia induced DUSP1 expression in human coronary artery endothelial cells (HCAEC), and in granulocytes isolated from healthy human subjects. Functionally, DUSP1 increased the expression and activity of manganese superoxide dismutase (MnSOD) in HCAEC. Further, significant increases in DUSP1 mRNA from total blood, and in DUSP1 protein in mononuclear cells and granulocytes isolated from OSA subjects, were observed in the early morning hours after one night of intermittent hypoxemia due to untreated OSA. This early-morning OSA-induced augmentation of DUSP1 gene expression was attenuated by continuous positive airway pressure (CPAP) treatment of OSA. Intermittent hypoxia increases MnSOD activity via increased DUSP1 expression in HCAEC. Similarly, overnight intermittent hypoxemia in patients with OSA induces expression of DUSP1, which may mediate increases of MnSOD expression and activity. This may contribute significantly to neutralizing the effects of reactive oxygen species, a consequence of the intermittent hypoxemia/reperfusion elicited by OSA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Coastal hypoxia and sediment biogeochemistry

    Directory of Open Access Journals (Sweden)

    J. J. Middelburg

    2009-07-01

    Full Text Available The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways, the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification, there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis with consequences for coastal ecosystem dynamics.

  14. Introduction: History of SH2 Domains and Their Applications.

    Science.gov (United States)

    Liu, Bernard A; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain is the prototypical protein interaction module that lies at the heart of phosphotyrosine signaling. Since its serendipitous discovery, there has been a tremendous advancement in technologies and an array of techniques available for studying SH2 domains and phosphotyrosine signaling. In this chapter, we provide a glimpse of the history of SH2 domains and describe many of the tools and techniques that have been developed along the way and discuss future directions for SH2 domain studies. We highlight the gist of each chapter in this volume in the context of: the structural biology and phosphotyrosine binding; characterizing SH2 specificity and generating prediction models; systems biology and proteomics; SH2 domains in signal transduction; and SH2 domains in disease, diagnostics, and therapeutics. Many of the individual chapters provide an in-depth approach that will allow scientists to interrogate the function and role of SH2 domains.

  15. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  16. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  17. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  18. Probing SH2-domains using Inhibitor Affinity Purification (IAP).

    Science.gov (United States)

    Höfener, Michael; Heinzlmeir, Stephanie; Kuster, Bernhard; Sewald, Norbert

    2014-01-01

    Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.

  19. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation.

    Science.gov (United States)

    Maybin, Jacqueline A; Murray, Alison A; Saunders, Philippa T K; Hirani, Nikhil; Carmeliet, Peter; Critchley, Hilary O D

    2018-01-23

    Heavy menstrual bleeding (HMB) is common and debilitating, and often requires surgery due to hormonal side effects from medical therapies. Here we show that transient, physiological hypoxia occurs in the menstrual endometrium to stabilise hypoxia inducible factor 1 (HIF-1) and drive repair of the denuded surface. We report that women with HMB have decreased endometrial HIF-1α during menstruation and prolonged menstrual bleeding. In a mouse model of simulated menses, physiological endometrial hypoxia occurs during bleeding. Maintenance of mice under hyperoxia during menses decreases HIF-1α induction and delays endometrial repair. The same effects are observed upon genetic or pharmacological reduction of endometrial HIF-1α. Conversely, artificial induction of hypoxia by pharmacological stabilisation of HIF-1α rescues the delayed endometrial repair in hypoxia-deficient mice. These data reveal a role for HIF-1 in the endometrium and suggest its pharmacological stabilisation during menses offers an effective, non-hormonal treatment for women with HMB.

  20. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor.

    Science.gov (United States)

    Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A

    2010-07-16

    Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1alpha and HIF-2alpha immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1alpha-positive, 15 HIF-2alpha-positive and 10 positive for HIF-1alpha and HIF-2alpha. Expression of HIF-1alpha and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1alpha and HIF-2alpha in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2alpha in Ewing's. Downstream transcription was HIF-1alpha-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by >or= 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1alpha and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

  1. Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence.

    Science.gov (United States)

    Cooper, Janine M; Gadian, David G; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-06-01

    Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. © The Author 2013. Published by Oxford University Press.

  2. Exercise Improves Mood State in Normobaric Hypoxia.

    Science.gov (United States)

    Seo, Yongsuk; Fennell, Curtis; Burns, Keith; Pollock, Brandon S; Gunstad, John; McDaniel, John; Glickman, Ellen

    2015-11-01

    The purpose of this study was to quantify the efficacy of using exercise to alleviate the impairments in mood state associated with hypoxic exposure. Nineteen young, healthy men completed Automated Neuropsychological Assessment Metrics-4(th) Edition (ANAM4) versions of the mood state test before hypoxia exposure, after 60 min of hypoxia exposure (12.5% O(2)), and during and after two intensities of cycling exercise (40% and 60% adjusted Vo(2max)) under the same hypoxic conditions. Peripheral oxygen saturation (Spo(2)) and regional cerebral oxygen saturation (rSo(2)) were continuously monitored. At rest in hypoxia, Total Mood Disturbance (TMD) was significantly increased compared to baseline in both the 40% and 60% groups. TMD was significantly decreased during exercise compared to rest in hypoxia. TMD was also significantly decreased during recovery compared to rest in hypoxia. Spo(2) significantly decreased at 60 min rest in hypoxia, during exercise, and recovery compared to baseline. Regional cerebral oxygen saturation was also reduced at 60 min rest in hypoxia, during exercise, and recovery compared to baseline. The current study demonstrated that exercise at 40% and 60% of adjusted Vo(2max) attenuated the adverse effects of hypoxia on mood. These findings may have significant applied value, as negative mood states are known to impair performance in hypoxia. Further studies are needed to replicate the current finding and to clarify the possible mechanisms associated with the potential benefits of exercise on mood state in normobaric hypoxia.

  3. Critical role of the Src homology 2 (SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice.

    Science.gov (United States)

    Morris, David L; Cho, Kae Won; Rui, Liangyou

    2010-08-01

    SH2B1 is an SH2 domain-containing adaptor protein that plays a key role in the regulation of energy and glucose metabolism in both rodents and humans. Genetic deletion of SH2B1 in mice results in obesity and type 2 diabetes. Single-nucleotide polymorphisms in the SH2B1 loci and chromosomal deletions of the SH2B1 loci associate with obesity and insulin resistance in humans. In cultured cells, SH2B1 promotes leptin and insulin signaling by binding via its SH2 domain to phosphorylated tyrosines in Janus kinase 2 and the insulin receptor, respectively. Here we generated three lines of mice to analyze the role of the SH2 domain of SH2B1 in the central nervous system. Transgenic mice expressing wild-type, SH2 domain-defective (R555E), or SH2 domain-alone (DeltaN503) forms of SH2B1 specifically in neurons were crossed with SH2B1 knockout mice to generate KO/SH2B1, KO/R555E, or KO/DeltaN503 compound mutant mice. R555E had a replacement of Arg(555) with Glu within the SH2 domain. DeltaN503 contained an intact SH2 domain but lacked amino acids 1-503. Neuron-specific expression of recombinant SH2B1, but not R555E or DeltaN503, corrected hyperphagia, obesity, glucose intolerance, and insulin resistance in SH2B1 null mice. Neuron-specific expression of R555E in wild-type mice promoted obesity and insulin resistance. These results indicate that in addition to the SH2 domain, N-terminal regions of neuronal SH2B1 are also required for the maintenance of normal body weight and glucose metabolism. Additionally, mutations in the SH2 domain of SH2B1 may increase the susceptibility to obesity and type 2 diabetes in a dominant-negative manner.

  4. Hepcidin: A Critical Regulator Of Iron Metabolism During Hypoxia

    Science.gov (United States)

    2011-01-01

    inducible factor (HIF)/hypoxia response element ( HRE ) system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may...mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF)/hypoxia response element ( HRE ) system, as...a battery of genes are induced by the hypoxia inducible factor (HIF)/hypoxia response element ( HRE ) system. The HIF system senses O2 levels through

  5. Hypoxia training: symptom replication in experienced military aircrew.

    Science.gov (United States)

    Johnston, Ben J; Iremonger, Gareth S; Hunt, Sheena; Beattie, Elizabeth

    2012-10-01

    Military aircrew are trained to recognize the signs and symptoms of hypoxia in a safe environment using a variety of methods to simulate altitude. In order to investigate the effectiveness of hypoxia training, this study compared the recall of hypoxia symptoms in military aircrew between two consecutive hypobaric chamber hypoxia training sessions conducted, on average, 4.5 yr apart. Previously trained subjects completed a questionnaire immediately before and after they underwent refresher hypoxia training and recorded the occurrence, order, and severity of symptoms experienced. Responses from refresher training were compared with their recall of symptoms experienced during previous training. There was no difference in the recall of most hypoxia symptoms between training sessions. Slurred speech was recalled more frequently from previous training compared to refresher training (14 vs. 4 subjects), whereas hot/cold flushes were recalled less frequently from previous training compared to refresher training (5 vs. 17 subjects). There was a statistically significant difference in overall hypoxia score (10.3 vs. 8.3), suggesting that from memory subjects may underestimate the level of hypoxia experienced in previous training. A high level of similarity between the recall of previously experienced hypoxia symptoms and recent experience supports the effectiveness of hypoxia training. These results replicate the finding of a 'hypoxia signature' reported by a previous study. Small differences in the recall of some symptoms and in overall hypoxia score highlight the importance of drawing attention to the more subtle symptoms of early hypoxia, and of using training techniques which optimize aircrew recall.

  6. Abl N-terminal cap stabilization of SH3 domain dynamics.

    Science.gov (United States)

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  7. Losartan reduces the immediate and sustained increases in muscle sympathetic nerve activity after hyperacute intermittent hypoxia.

    Science.gov (United States)

    Jouett, Noah P; Moralez, Gilbert; Raven, Peter B; Smith, Michael L

    2017-04-01

    Obstructive sleep apnea (OSA) is characterized by intermittent hypoxemia, which produces elevations in sympathetic nerve activity (SNA) and associated hypertension in experimental models that persist beyond the initial exposure. We tested the hypotheses that angiotensin receptor blockade in humans using losartan attenuates the immediate and immediately persistent increases in 1 ) SNA discharge and 2 ) mean arterial pressure (MAP) after hyperacute intermittent hypoxia training (IHT) using a randomized, placebo-controlled, repeated-measures experimental design. We measured ECG and photoplethysmographic arterial pressure in nine healthy human subjects, while muscle SNA (MSNA) was recorded in seven subjects using microneurography. Subjects were exposed to a series of hypoxic apneas in which they inhaled two to three breaths of nitrogen, followed by a 20-s apnea and 40 s of room air breathing every minute for 20 min. Hyperacute IHT produced substantial and persistent elevations in MSNA burst frequency (baseline: 15.3 ± 1.8, IHT: 24 ± 1.5, post-IHT 20.0 ± 1.3 bursts/min, all P 0.70). This investigation confirms the role of angiotensin II type 1a receptors in the immediate and persistent sympathoexcitatory and pressor responses to IHT. NEW & NOTEWORTHY This study demonstrates for the first time in humans that losartan, an angiotensin receptor blocker (ARB), abrogates the acute and immediately persistent increases in muscle sympathetic nerve activity and arterial pressure in response to acute intermittent hypoxia. This investigation, along with others, provides important beginning translational evidence for using ARBs in treatment of the intermittent hypoxia observed in obstructive sleep apnea patients. Copyright © 2017 the American Physiological Society.

  8. Regulation of mRNA translation influences hypoxia tolerance

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia is a heterogenous but common characteristic of human tumours and poor oxygenation is associated with poor prognosis. We believe that the presence of viable hypoxic tumor cells reflects in part an adaptation and tolerance of these cells to oxygen deficiency. Since oxidative phosphorylation is compromized during hypoxia, adaptation may involve both the upregulation of glycolysis as well as downregulation of energy consumption. mRNA translation is one of the most energy costly cellular processes, and we and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, including those coding for HIF-1 α and VEGF, remain efficiently translated during hypoxia. Clearly, the mechanisms responsible for the overall inhibition of translation during hypoxia does not compromize the translation of certain hypoxia-induced mRNA species. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We have recently identified two pathways that are responsible for the global inhibition of translation during hypoxia. The phosphorylation of the eukaryotic initiation factor eIF2 α by the ER resident kinase PERK results in down-regulation of protein synthesis shortly after the onset of hypoxia. In addition, the initiation complex eIF4F is disrupted during long lasting hypoxic conditions. The identification of the molecular pathways responsible for the inhibition of overall translation during hypoxia has rendered it possible to investigate their importance for hypoxia tolerance. We have found that mouse embryo fibroblasts that are knockout for PERK and therefore not able to inhibit protein synthesis efficiently during oxygen deficiency are significantly less tolerant to hypoxia than their wildtype counterparts. We are currently also investigating the functional significance

  9. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor

    Directory of Open Access Journals (Sweden)

    Dirksen Uta

    2010-07-01

    Full Text Available Abstract Background Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor. Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. Methods HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. Results 17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Conclusions Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

  10. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.

  11. Progress towards the development of SH2 domain inhibitors.

    Science.gov (United States)

    Kraskouskaya, Dziyana; Duodu, Eugenia; Arpin, Carolynn C; Gunning, Patrick T

    2013-04-21

    Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.

  12. Time course of air hunger mirrors the biphasic ventilatory response to hypoxia.

    Science.gov (United States)

    Moosavi, S H; Banzett, R B; Butler, J P

    2004-12-01

    Determining response dynamics of hypoxic air hunger may provide information of use in clinical practice and will improve understanding of basic dyspnea mechanisms. It is hypothesized that air hunger arises from projection of reflex brain stem ventilatory drive ("corollary discharge") to forebrain centers. If perceptual response dynamics are unmodified by events between brain stem and cortical awareness, this hypothesis predicts that air hunger will exactly track ventilatory response. Thus, during sustained hypoxia, initial increase in air hunger would be followed by a progressive decline reflecting biphasic reflex ventilatory drive. To test this prediction, we applied a sharp-onset 20-min step of normocapnic hypoxia and compared dynamic response characteristics of air hunger with that of ventilation in 10 healthy subjects. Air hunger was measured during mechanical ventilation (minute ventilation = 9 +/- 1.4 l/min; end-tidal Pco(2) = 37 +/- 2 Torr; end-tidal Po(2) = 45 +/- 7 Torr); ventilatory response was measured during separate free-breathing trials in the same subjects. Discomfort caused by "urge to breathe" was rated every 30 s on a visual analog scale. Both ventilatory and air hunger responses were modeled as delayed double exponentials corresponding to a simple linear first-order response but with a separate first-order adaptation. These models provided adequate fits to both ventilatory and air hunger data (r(2) = 0.88 and 0.66). Mean time constant and time-to-peak response for the average perceptual response (0.36 min(-1) and 3.3 min, respectively) closely matched corresponding values for the average ventilatory response (0.39 min(-1) and 3.1 min). Air hunger response to sustained hypoxia tracked ventilatory drive with a delay of approximately 30 s. Our data provide further support for the corollary discharge hypothesis for air hunger.

  13. A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bixiu; Burgman, Paul; Zanzonico, Pat; O' Donoghue, Joseph; Li, Gloria C.; Ling, C. Clifton [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics, New York (United States); Cai Shangde; Finn, Ron [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York (United States); Serganova, Inna [Memorial Sloan-Kettering Cancer Center, Department of Neurology, New York (United States); Blasberg, Ronald; Gelovani, Juri [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York (United States); Memorial Sloan-Kettering Cancer Center, Department of Neurology, New York (United States)

    2004-11-01

    Hypoxia is associated with tumor aggressiveness and is an important cause of resistance to radiation therapy and chemotherapy. Assays of tumor hypoxia could provide selection tools for hypoxia-modifying treatments. The purpose of this study was to develop and characterize a rodent tumor model with a reporter gene construct that would be transactivated by the hypoxia-inducible molecular switch, i.e., the upregulation of HIF-1. The reporter gene construct is the herpes simplex virus 1-thymidine kinase (HSV1-tk) fused with the enhanced green fluorescent protein (eGFP) under the regulation of an artificial hypoxia-responsive enhancer/promoter. In this model, tumor hypoxia would up-regulate HIF-1, and through the hypoxia-responsive promoter transactivate the HSV1-tkeGFPfusion gene. The expression of this reporter gene can be assessed with the {sup 124}I-labeled reporter substrate 2'-fluoro-2'-deoxy-1-{beta}-d-arabinofuranosyl-5-iodouracil ({sup 124}I-FIAU), which is phosphorylated by the HSV1-tk enzyme and trapped in the hypoxic cells. Animal positron emission tomography (microPET) and phosphor plate imaging (PPI) were used in this study to visualize the trapped {sup 124}I-FIAU, providing a distribution of the hypoxia-induced molecular events. The distribution of {sup 124}I-FIAU was also compared with that of an exogenous hypoxic cell marker, {sup 18}F-fluoromisonidazole (FMISO). Our results showed that {sup 124}I-FIAU microPET imaging of the hypoxia-induced reporter gene expression is feasible, and that the intratumoral distributions of {sup 124}I-FIAU and {sup 18}F-FMISO are similar. In tumor sections, detailed radioactivity distributions were obtained with PPI which also showed similarity between {sup 124}I-FIAU and {sup 18}F-FMISO. This reporter system is sufficiently sensitive to detect hypoxia-induced transcriptional activation by noninvasive imaging and might provide a valuable tool in studying tumor hypoxia and in validating existing and future

  14. Protein S-glutathionylation induced by hypoxia increases hypoxia-inducible factor-1α in human colon cancer cells.

    Science.gov (United States)

    Jeon, Daun; Park, Heon Joo; Kim, Hong Seok

    2018-01-01

    Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial-mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  16. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications.

    Science.gov (United States)

    Vaupel, Peter; Mayer, Arnulf

    2014-01-01

    Hypoxia is a hallmark of tumors leading to (mal-)adaptive processes, development of aggressive phenotypes and treatment resistance. Based on underlying mechanisms and their duration, two main types of hypoxia have been identified, coexisting with complex spatial and temporal heterogeneities. Chronic hypoxia is mainly caused by diffusion limitations due to enlarged diffusion distances and adverse diffusion geometries (e.g., concurrent vs. countercurrent microvessels, Krogh- vs. Hill-type diffusion geometry) and, to a lesser extent, by hypoxemia (e.g., in anemic patients, HbCO formation in heavy smokers), and a compromised perfusion or flow stop (e.g., due to disturbed Starling forces or intratumor solid stress). Acute hypoxia mainly results from transient disruptions in perfusion (e.g., vascular occlusion by cell aggregates), fluctuating red blood cell fluxes or short-term contractions of the interstitial matrix. In each of these hypoxia subtypes oxygen supply is critically reduced, but perfusion-dependent nutrient supply, waste removal, delivery of anticancer or diagnostic agents, and repair competence can be impaired or may not be affected. This detailed differentiation of tumor hypoxia may impact on our understanding of tumor biology and may aid in the development of novel treatment strategies, tumor detection by imaging and tumor targeting, and is thus of great clinical relevance.

  17. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    Science.gov (United States)

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply. Copyright

  18. SH2 domains: modulators of nonreceptor tyrosine kinase activity

    OpenAIRE

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-01-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed ...

  19. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  20. Fuel Consumption Analysis and Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    and a feasibility study of a sustainable energy system for a 100% renewables smart house (SH) in Denmark is presented. Due to the continuous increasing penetration levels of wind and solar power in today’s energy system call for the development of high efficiency optimizations and Smart Grid (SG) enabling options....... In case of renewable energies, one main challenge is the discontinuity of generation which can be solved with planning and control optimization methods. The results of the economic analysis and the feasibility of the sustainable energy system for a 100% renewables SH show that this could be possible...

  1. Inhibition of calcium uptake during hypoxia in developing zebrafish is mediated by hypoxia-inducible factor.

    Science.gov (United States)

    Kwong, Raymond W M; Kumai, Yusuke; Tzaneva, Velislava; Azzi, Estelle; Hochhold, Nina; Robertson, Cayleih; Pelster, Bernd; Perry, Steve F

    2016-12-15

    The present study investigated the potential role of hypoxia-inducible factor (HIF) in calcium homeostasis in developing zebrafish (Danio rerio). It was demonstrated that zebrafish raised in hypoxic water (30 mmHg; control, 155 mmHg P O 2 ) until 4 days post-fertilization exhibited a substantial reduction in whole-body Ca 2+ levels and Ca 2+ uptake. Ca 2+ uptake in hypoxia-treated fish did not return to pre-hypoxia (control) levels within 2 h of transfer back to normoxic water. Results from real-time PCR showed that hypoxia decreased the whole-body mRNA expression levels of the epithelial Ca 2+ channel (ecac), but not plasma membrane Ca 2+ -ATPase (pmca2) or Na + /Ca 2+ -exchanger (ncx1b). Whole-mount in situ hybridization revealed that the number of ecac-expressing ionocytes was reduced in fish raised in hypoxic water. These findings suggested that hypoxic treatment suppressed the expression of ecac, thereby reducing Ca 2+ influx. To further evaluate the potential mechanisms for the effects of hypoxia on Ca 2+ regulation, a functional gene knockdown approach was employed to prevent the expression of HIF-1αb during hypoxic treatment. Consistent with a role for HIF-1αb in regulating Ca 2+ balance during hypoxia, the results demonstrated that the reduction of Ca 2+ uptake associated with hypoxic exposure was not observed in fish experiencing HIF-1αb knockdown. Additionally, the effects of hypoxia on reducing the number of ecac-expressing ionocytes was less pronounced in HIF-1αb-deficient fish. Overall, the current study revealed that hypoxic exposure inhibited Ca 2+ uptake in developing zebrafish, probably owing to HIF-1αb-mediated suppression of ecac expression. © 2016. Published by The Company of Biologists Ltd.

  2. Teleosts in hypoxia : Aspects of anaerobic metabolism

    NARCIS (Netherlands)

    Van den Thillart, G.; van Waarde, Aren

    1985-01-01

    Moderate hypoxia can be tolerated by many fish species, while only some species survive severe hypoxia or anoxia. Hypoxia usually activates anaerobic glycolysis, which may be temporary when the animals are able to improve their oxygen extraction capacity. Switching over to aerobic metabolism allows

  3. HYPOXIA IN THE GULF OF MEXICO: ASSESSING AND MANAGING RISKS FROM NONPOINT SOURCE POLLUTANTS IN THE MISSISSIPPI RIVER BASIN

    Science.gov (United States)

    . Hypoxia is the condition in which dissolved oxygen levels are below that necessary to sustain most animal life. The largest zone of oxygen depletion in U.S. coastal waters is found in the northern Gulf of Mexico (NGOM) on the Louisiana/Texas continental shelf. In response to...

  4. Critical Role of the Src Homology 2 (SH2) Domain of Neuronal SH2B1 in the Regulation of Body Weight and Glucose Homeostasis in Mice

    OpenAIRE

    Morris, David L.; Cho, Kae Won; Rui, Liangyou

    2010-01-01

    SH2B1 is an SH2 domain-containing adaptor protein that plays a key role in the regulation of energy and glucose metabolism in both rodents and humans. Genetic deletion of SH2B1 in mice results in obesity and type 2 diabetes. Single-nucleotide polymorphisms in the SH2B1 loci and chromosomal deletions of the SH2B1 loci associate with obesity and insulin resistance in humans. In cultured cells, SH2B1 promotes leptin and insulin signaling by binding via its SH2 domain to phosphorylated tyrosines ...

  5. SH2 dependent autophosphorylation within the Tec family kinase Itk

    Science.gov (United States)

    Joseph, Raji E.; Severin, Andrew; Min, Lie; Fulton, D. Bruce; Andreotti, Amy H.

    2009-01-01

    The Tec family kinase, Itk, undergoes an in cis autophosphorylation on Y180 within its SH3 domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening SH2 domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk, a Tec family kinase linked to the B cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA causing mutations might impair Btk phosphorylation. PMID:19523959

  6. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival

    Directory of Open Access Journals (Sweden)

    Joffrey ePelletier

    2012-02-01

    Full Text Available The hypoxia-inducible factor 1 (HIF-1, in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1, were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these hypoxia-preconditioned cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an alarm that prepares the cells to face subsequent nutrient depletion and to survive.

  7. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Joffrey; Bellot, Grégory [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France); Gounon, Pierre; Lacas-Gervais, Sandra [Centre Commun de Microscopie Appliquée, University of Nice-Sophia Antipolis, Nice (France); Pouysségur, Jacques; Mazure, Nathalie M., E-mail: mazure@unice.fr [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France)

    2012-02-28

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO{sub 2} acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  8. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    International Nuclear Information System (INIS)

    Pelletier, Joffrey; Bellot, Grégory; Gounon, Pierre; Lacas-Gervais, Sandra; Pouysségur, Jacques; Mazure, Nathalie M.

    2012-01-01

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO 2 acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  9. Hypoxia: From Placental Development to Fetal Programming.

    Science.gov (United States)

    Fajersztajn, Lais; Veras, Mariana Matera

    2017-10-16

    Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity.

    Science.gov (United States)

    Lorenz, Sonja; Deng, Patricia; Hantschel, Oliver; Superti-Furga, Giulio; Kuriyan, John

    2015-06-01

    Constitutive activation of the non-receptor tyrosine kinase c-Abl (cellular Abelson tyrosine protein kinase 1, Abl1) in the Bcr (breakpoint cluster region)-Abl1 fusion oncoprotein is the molecular cause of chronic myeloid leukaemia (CML). Recent studies have indicated that an interaction between the SH2 (Src-homology 2) domain and the N-lobe (N-terminal lobe) of the c-Abl kinase domain (KD) has a critical role in leukaemogenesis [Grebien et al. (2011) Cell 147, 306-319; Sherbenou et al. (2010) Blood 116, 3278-3285]. To dissect the structural basis of this phenomenon, we studied c-Abl constructs comprising the SH2 and KDs in vitro. We present a crystal structure of an SH2-KD construct bound to dasatinib, which contains the relevant interface between the SH2 domain and the N-lobe of the KD. We show that the presence of the SH2 domain enhances kinase activity moderately and that this effect depends on contacts in the SH2/N-lobe interface and is abrogated by specific mutations. Consistently, formation of the interface decreases slightly the association rate of imatinib with the KD. That the effects are small compared with the dramatic in vivo consequences suggests an important function of the SH2-N-lobe interaction might be to help disassemble the auto-inhibited conformation of c-Abl and promote processive phosphorylation, rather than substantially stimulate kinase activity.

  11. Approximate Simulation of Acute Hypobaric Hypoxia with Normobaric Hypoxia

    Science.gov (United States)

    Conkin, J.; Wessel, J. H., III

    2011-01-01

    INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.

  12. Divergent hypoxia tolerance in adult males and females of the plainfin midshipman (Porichthys notatus).

    Science.gov (United States)

    LeMoine, Christophe M R; Bucking, Carol; Craig, Paul M; Walsh, Patrick J

    2014-01-01

    In the summer, the plainfin midshipman (Poricththys notatus) migrates to reproduce in the nearshore environment, where oxygen levels are influenced by the tidal cycles. Parental males establish nests under rocks in the intertidal zone, where they reside until the eggs they guard are fully developed. In contrast, females and sneaker males leave the nests shortly after spawning. We examined the physiological resistance and metabolic response of parental male and female adult midshipman to hypoxia to test whether they exhibited sex-specific differences reflecting their reproductive strategies. Further, we assessed whether metabolic enzymes and metabolites were differentially enriched in tissues of parental males and females to explain the differences observed in their hypoxia tolerance. While parental males and females exhibited similar depression of their oxygen consumption in response to graded hypoxia, parental males could withstand significantly longer exposures to severe hypoxic stress. At the biochemical level, parental males showed higher hepatic glycogen reserves and higher glycolytic enzyme capacities in gills and skeletal muscles than females. Although some of these enzymatic variations could be explained by differences in body size, we also observed a significant effect of sex on some of these factors. These results suggest that parental male midshipman may benefit from sexual dimorphism at the whole-organismal (larger body size) and biochemical (enzyme activities) levels, conferring on them a higher glycolytic potential to sustain the extensive hypoxia bouts they experience in nature.

  13. Purging of the neuroblastoma stem cell compartment and tumor regression on exposure to hypoxia or cytotoxic treatment.

    Science.gov (United States)

    Marzi, Ilaria; D'Amico, Massimo; Biagiotti, Tiziana; Giunti, Serena; Carbone, Maria Vittoria; Fredducci, David; Wanke, Enzo; Olivotto, Massimo

    2007-03-15

    We worked out an experimental protocol able to purge the stem cell compartment of the SH-SY5Y neuroblastoma clone. This protocol was based on the prolonged treatment of the wild-type cell population with either hypoxia or the antiblastic etoposide. Cell fate was monitored by immunocytochemical and electrophysiologic (patch-clamp) techniques. Both treatments produced the progressive disappearance of neuronal type (N) cells (which constitute the bulk of the tumor), leaving space for a special category of epithelial-like substrate-adherent cells (S(0)). The latter represent a minimal cell component of the untreated population and are endowed with immunocytochemical markers (p75, c-kit, and CD133) and the electrophysiologic "nude" profile, typical of the neural crest stem cells. S(0) cells displayed a highly clonogenic potency and a substantial plasticity, generating both the N component and an alternative subpopulation terminally committed to the fibromuscular lineage. Unlike the N component, this lineage was highly insensitive to the apoptotic activity of hypoxia and etoposide and developed only when the neuronal option was abolished. Under these conditions, the fibromuscular progeny of S(0) expanded and progressed up to the exhaustion of the staminal compartment and to the extinction of the tumor. When combined, hypoxia and etoposide cooperated in abolishing the N cell generation and promoting the conversion of the tumor described. This synergy might mirror a natural condition in the ischemic areas occurring in cancer. These results have relevant implications for the understanding of the documented tendency of neuroblastomas to regress from a malignant to a benign phenotype, either spontaneously or on antiblastic treatment.

  14. SH2-dependent autophosphorylation within the Tec family kinase Itk.

    Science.gov (United States)

    Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H

    2009-08-07

    The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.

  15. Subclinical hyperthyroidism (Sh) in atomic-bomb survivors in Japan

    International Nuclear Information System (INIS)

    Ashizawa, K.; Imaizumi, M.; Usa, T.; Tominaga, T.; Hida, A.; Ejima, E.; Neriishi, K.; Soda, M.; Fujiwara, S.; Maeda, R.; Akahoshi, M.; Nagataki, S.; Eguchi, K.

    2005-01-01

    Full text: Purpose/Background Subclinical hyperthyroidism (Sh) is defined as a biochemical abnormality characterized by a subnormal level of TSH with otherwise normal thyroid tests (F T 3 , F T 4 ) and no clinical symptoms. There are only a small number of cross-sectional studies on the prevalence of Sh. With the improvement of the sensitivity of TSH assay, it has become possible to survey the clinical significance of Sh. With regard to both Sh and subclinical hypothyroidism, discussions are being focused on such as the necessity of treatment. In order to elucidate the clinical significance of Sh, examination data of A-bomb survivors in Hiroshima and Nagasaki were analyzed. Subjects and Method Between 2000 and 2003, of 4,090 A-bomb survivors (1,352 males and 2,738 females with average age of 70.7), 75 individuals (1.83%) with Sh were found who had normal Free T 4 (0.71∼1.51 ng/dL) and TSH<0.45 m U/L. Analysis was limited to those who had not taken antithyroid drugs or thyroxin, and the Sh group (n=35; 9 males and 26 females) was compared with a control group with TSH:0.45∼4.5 m U/L (Group C; N=3,243; 1,109 males and 2,134 females). Result: Nine individuals had TSH<0.1 m U/L. In the Sh group, six individuals were TPO antibody-positive (17%) and 14 were TG antibody-positive (40%); hence, TG antibody-positive was significantly greater in number (p=0.0096). Hematological biochemical tests showed no significant difference between the two groups. Electrocardiograms indicated that more individuals had atrial fibrillation [p=0.028; Odds ratio (OR)=3.98; 95% Confidential interval (CI)=1.2-13.7] or ventricular premature contraction [p=0.016; OR=3.29; 95% CI=1.3-8.6] in the Sh group. In terms of the presence or absence of diabetes, dyslipidemia, hypertension, and hyperuricemia, there was no difference between the two groups. One individual from the Sh group was confirmed to have Graves' disease two years later. Conclusion: Since more individuals in the Sh group were

  16. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  17. Hepcidin: A Critical Regulator of Iron Metabolism during Hypoxia

    Directory of Open Access Journals (Sweden)

    Korry J. Hintze

    2011-01-01

    Full Text Available Iron status affects cognitive and physical performance in humans. Recent evidence indicates that iron balance is a tightly regulated process affected by a series of factors other than diet, to include hypoxia. Hypoxia has profound effects on iron absorption and results in increased iron acquisition and erythropoiesis when humans move from sea level to altitude. The effects of hypoxia on iron balance have been attributed to hepcidin, a central regulator of iron homeostasis. This paper will focus on the molecular mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF/hypoxia response element (HRE system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may affect hepcidin signaling and organismal iron metabolism.

  18. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor

    International Nuclear Information System (INIS)

    Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A

    2010-01-01

    Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas

  19. Modification of bacterial cell survival by postirradiation hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Vexler, F B; Eidus, L Kh

    1986-01-27

    It is shown that postirradiation hypoxia affects the survival of E.coli. Hypoxic conditions immediately after a single-dose irradiation diminish cell survival in nutrient medium. Increasing time intervals between irradiation and hypoxia decrease the efficiency of the latter, while 1 h after irradiation hypoxia does not modify the survival of irradiated cells. These findings reveal that the mechanisms of action of postirradiation hypoxia on eu- and prokaryotic cells are similar.

  20. In-Solution SH2 Domain Binding Assay Based on Proximity Ligation.

    Science.gov (United States)

    Machida, Kazuya

    2017-01-01

    Protein-protein interactions mediated by SH2 domains confer specificity in tyrosine kinase pathways. Traditional assays for assessing interactions between an SH2 domain and its interacting protein such as far-Western and pull-down are inherently low throughput. We developed SH2-PLA, an in-solution SH2 domain binding assay, that takes advantage of the speed and sensitivity of proximity ligation and real-time PCR. SH2-PLA allows for rapid assessment of SH2 domain binding to a target protein using only a few microliters of cell lysate, thereby making it an attractive new tool to study tyrosine kinase signaling.

  1. [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, Lien [CHU de Caen, Department of Neurology, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Neurosurgery, Caen (France); CHU de Caen, Service de Neurochirurgie, Caen (France); Valable, Samuel; Collet, Solene; Bordji, Karim; Petit, Edwige; Bernaudin, Myriam [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); Lechapt-Zalcman, Emmanuele [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Pathology, Caen (France); Ponte, Keven [CHU de Caen, Department of Neurosurgery, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); Constans, Jean-Marc [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Neuroradiology, Caen (France); Levallet, Guenaelle [CHU de Caen, Department of Pathology, Caen (France); Branger, Pierre [CHU de Caen, Department of Neurology, Caen (France); Emery, Evelyne [CHU de Caen, Department of Neurosurgery, Caen (France); Manrique, Alain [CHU de Caen, Department of Nuclear Medicine, Caen (France); Barre, Louisa [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, Caen (France); Guillamo, Jean-Sebastien [CHU de Caen, Department of Neurology, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Nimes, Department of Neurology, Nimes (France)

    2017-08-15

    Hypoxia in gliomas is associated with tumor resistance to radio- and chemotherapy. However, positron emission tomography (PET) imaging of hypoxia remains challenging, and the validation of biological markers is, therefore, of great importance. We investigated the relationship between uptake of the PET hypoxia tracer [18F]-FMISO and other markers of hypoxia and angiogenesis and with patient survival. In this prospective single center clinical study, 33 glioma patients (grade IV: n = 24, III: n = 3, and II: n = 6) underwent [18F]-FMISO PET and MRI including relative cerebral blood volume (rCBV) maps before surgery. Maximum standardized uptake values (SUVmax) and hypoxic volume were calculated, defining two groups of patients based on the presence or absence of [18F]-FMISO uptake. After surgery, molecular quantification of CAIX, VEGF, Ang2 (rt-qPCR), and HIF-1α (immunohistochemistry) were performed on tumor specimens. [18F]-FMISO PET uptake was closely linked to tumor grade, with high uptake in glioblastomas (GB, grade IV). Expression of biomarkers of hypoxia (CAIX, HIF-1α), and angiogenesis markers (VEGF, Ang2, rCBV) were significantly higher in the [18F]-FMISO uptake group. We found correlations between the degree of hypoxia (hypoxic volume and SUVmax) and expression of HIF-1α, CAIX, VEGF, Ang2, and rCBV (p < 0.01). Patients without [18F]-FMISO uptake had a longer survival time than uptake positive patients (log-rank, p < 0.005). Tumor hypoxia as evaluated by [18F]-FMISO PET is associated with the expression of hypoxia markers on a molecular level and is related to angiogenesis. [18F]-FMISO uptake is a mark of an aggressive tumor, almost always a glioblastoma. Our results underline that [18F]-FMISO PET could be useful to guide glioma treatment, and in particular radiotherapy, since hypoxia is a well-known factor of resistance. (orig.)

  2. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis.

    Science.gov (United States)

    Ren, Decheng; Zhou, Yingjiang; Morris, David; Li, Minghua; Li, Zhiqin; Rui, Liangyou

    2007-02-01

    SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1beta was specifically expressed in neural tissue in SH2B1-transgenic (SH2B1(Tg)) mice. SH2B1(Tg) mice were crossed with SH2B1-knockout (SH2B1(KO)) mice to generate SH2B1(TgKO) mice expressing SH2B1 only in neural tissue but not in other tissues. Systemic deletion of the SH2B1 gene resulted in metabolic disorders in SH2B1(KO) mice, including hyperlipidemia, leptin resistance, hyperphagia, obesity, hyperglycemia, insulin resistance, and glucose intolerance. Neuron-specific restoration of SH2B1beta not only corrected the metabolic disorders in SH2B1(TgKO) mice, but also improved JAK2-mediated leptin signaling and leptin regulation of orexigenic neuropeptide expression in the hypothalamus. Moreover, neuron-specific overexpression of SH2B1 dose-dependently protected against high-fat diet-induced leptin resistance and obesity. These observations suggest that neuronal SH2B1 regulates energy balance, body weight, peripheral insulin sensitivity, and glucose homeostasis at least in part by enhancing hypothalamic leptin sensitivity.

  3. SH2B1 regulation of energy balance, body weight, and glucose metabolism

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and...

  4. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis

    NARCIS (Netherlands)

    Sluimer, Judith C.; Gasc, Jean-Marie; van Wanroij, Job L.; Kisters, Natasja; Groeneweg, Mathijs; Sollewijn Gelpke, Maarten D.; Cleutjens, Jack P.; van den Akker, Luc H.; Corvol, Pierre; Wouters, Bradly G.; Daemen, Mat J.; Bijnens, Ann-Pascale J.

    2008-01-01

    We sought to examine the presence of hypoxia in human carotid atherosclerosis and its association with hypoxia-inducible transcription factor (HIF) and intraplaque angiogenesis. Atherosclerotic plaques develop intraplaque angiogenesis, which is a typical feature of hypoxic tissue and expression of

  5. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Khadjavi, Amina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Magnetto, Chiara [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Panariti, Alice [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Argenziano, Monica [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Gulino, Giulia Rossana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Rivolta, Ilaria [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Cavalli, Roberta [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Giribaldi, Giuliana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Guiot, Caterina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Prato, Mauro, E-mail: mauro.prato@unito.it [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino (Italy)

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  6. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    International Nuclear Information System (INIS)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-01-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  7. The usability of a 15-gene hypoxia classifier as a universal hypoxia profile in various cancer cell types

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Knudsen, Anders Bisgård; Wittrup, Catja Foged

    2015-01-01

    genes, with BNIP3 not being upregulated at hypoxic conditions in 3 out of 6 colon cancer cell lines, and ALDOA in OE21 and FAM162A and SLC2A1 in SW116 only showing limited hypoxia induction. Furthermore, in the esophagus cell lines, the normoxic and hypoxic expression levels of LOX and BNIP3 were below...... the tissue type dependency of hypoxia induced genes included in a 15-gene hypoxic profile in carcinoma cell lines from prostate, colon, and esophagus cancer, and demonstrated that in vitro, with minor fluctuations, the genes in the hypoxic profile are hypoxia inducible, and the hypoxia profile may......BACKGROUND AND PURPOSE: A 15-gene hypoxia profile has previously demonstrated to have both prognostic and predictive impact for hypoxic modification in squamous cell carcinoma of the head and neck. This gene expression profile may also have a prognostic value in other histological cancer types...

  8. Cycling hypoxia: A key feature of the tumor microenvironment.

    Science.gov (United States)

    Michiels, Carine; Tellier, Céline; Feron, Olivier

    2016-08-01

    A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hypoxia and cyanobacteria blooms - are they really natural features of the late Holocene history of the Baltic Sea?

    Directory of Open Access Journals (Sweden)

    L. Zillén

    2010-08-01

    Full Text Available During the last century (1900s industrialized forms of agriculture and human activities have caused eutrophication of Baltic Sea waters. As a consequence, the hypoxic zone in the Baltic Sea has increased, especially during the last 50 years, and has caused severe ecosystem disturbance. Climate forcing has been proposed to be responsible for the reported trends in hypoxia (< 2 mg/l O2 both during the last c. 100 years (since c. 1900 AD and the Medieval Period. By contrast, investigations of the degree of anthropogenic forcing on the ecosystem on long time-scales (millennial and greater have not been thoroughly addressed. This paper examines evidence for anthropogenic disturbance of the marine environment beyond the last century through the analysis of the human population growth, technological development and land-use changes in the drainage area. Natural environmental changes, i.e. changes in the morphology and depths of the Baltic basin and the sills, were probably the main driver for large-scale hypoxia during the early Holocene (8000–4000 cal yr BP. We show that hypoxia during the last two millennia has followed the general expansion and contraction trends in Europe and that human perturbation has been an important driver for hypoxia during that time. Hypoxia occurring during the Medieval Period coincides with a doubling of the population (from c. 4.6 to 9.5 million in the Baltic Sea watershed, a massive reclamation of land in both established and marginal cultivated areas and significant increases in soil nutrient release. The role of climate forcing on hypoxia in the Baltic Sea has yet to be demonstrated convincingly, although it could have helped to sustain hypoxia through enhanced salt water inflows or through changes in hydrological inputs. In addition, cyanobacteria blooms are not natural features of the Baltic Sea as previously deduced, but are a consequence of enhanced phosphorus release from the seabed that occurs during

  10. Application of the biosurfactants produced by Bacillus spp. (SH 20 ...

    African Journals Online (AJOL)

    Application of the biosurfactants produced by Bacillus spp. (SH 20 and SH 26) and P. aeruginosa SH 29 isolated from the rhizosphere soil of an Egyptian salt marsh plant for the cleaning of oil - contaminataed vessels and enhancing the biodegradat.

  11. Subclinical hyperthyroidism (Sh) in atomic-bomb survivors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ashizawa, K; Imaizumi, M; Usa, T; Tominaga, T; Hida, A; Ejima, E; Neriishi, K; Soda, M; Fujiwara, S; Maeda, R; Akahoshi, M; Nagataki, S; Eguchi, K [Radiation Effects Research Foundation, Nagasaki (Japan). Nagasaki Branch

    2005-07-01

    Full text: Purpose/Background Subclinical hyperthyroidism (Sh) is defined as a biochemical abnormality characterized by a subnormal level of TSH with otherwise normal thyroid tests (F T{sub 3}, F T{sub 4}) and no clinical symptoms. There are only a small number of cross-sectional studies on the prevalence of Sh. With the improvement of the sensitivity of TSH assay, it has become possible to survey the clinical significance of Sh. With regard to both Sh and subclinical hypothyroidism, discussions are being focused on such as the necessity of treatment. In order to elucidate the clinical significance of Sh, examination data of A-bomb survivors in Hiroshima and Nagasaki were analyzed. Subjects and Method Between 2000 and 2003, of 4,090 A-bomb survivors (1,352 males and 2,738 females with average age of 70.7), 75 individuals (1.83%) with Sh were found who had normal Free T{sub 4} (0.71{approx}1.51 ng/dL) and TSH<0.45 m U/L. Analysis was limited to those who had not taken antithyroid drugs or thyroxin, and the Sh group (n=35; 9 males and 26 females) was compared with a control group with TSH:0.45{approx}4.5 m U/L (Group C; N=3,243; 1,109 males and 2,134 females). Result: Nine individuals had TSH<0.1 m U/L. In the Sh group, six individuals were TPO antibody-positive (17%) and 14 were TG antibody-positive (40%); hence, TG antibody-positive was significantly greater in number (p=0.0096). Hematological biochemical tests showed no significant difference between the two groups. Electrocardiograms indicated that more individuals had atrial fibrillation [p=0.028; Odds ratio (OR)=3.98; 95% Confidential interval (CI)=1.2-13.7] or ventricular premature contraction [p=0.016; OR=3.29; 95% CI=1.3-8.6] in the Sh group. In terms of the presence or absence of diabetes, dyslipidemia, hypertension, and hyperuricemia, there was no difference between the two groups. One individual from the Sh group was confirmed to have Graves' disease two years later. Conclusion: Since more individuals in

  12. Brain blood flow and blood pressure during hypoxia in the epaulette shark Hemiscyllium ocellatum, a hypoxia-tolerant elasmobranch.

    Science.gov (United States)

    Söderström, V; Renshaw, G M; Nilsson, G E

    1999-04-01

    The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.

  13. Sympathoexcitation and arterial hypertension associated with obstructive sleep apnea and cyclic intermittent hypoxia.

    Science.gov (United States)

    Weiss, J Woodrow; Tamisier, Renaud; Liu, Yuzhen

    2015-12-15

    Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction during sleep. These obstructive episodes are characterized by cyclic intermittent hypoxia (CIH), by sleep fragmentation, and by hemodynamic instability, and they result in sustained sympathoexcitation and elevated arterial pressure that persist during waking, after restoration of normoxia. Early studies established that 1) CIH, rather than sleep disruption, accounts for the increase in arterial pressure; 2) the increase in arterial pressure is a consequence of the sympathoactivation; and 3) arterial hypertension after CIH exposure requires an intact peripheral chemoreflex. More recently, however, evidence has accumulated that sympathoactivation and hypertension after CIH are also dependent on altered central sympathoregulation. Furthermore, although many molecular pathways are activated in both the carotid chemoreceptor and in the central nervous system by CIH exposure, two specific neuromodulators-endothelin-1 and angiotensin II-appear to play crucial roles in mediating the sympathetic and hemodynamic response to intermittent hypoxia. Copyright © 2015 the American Physiological Society.

  14. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    Science.gov (United States)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  15. The expanding universe of hypoxia.

    Science.gov (United States)

    Zhang, Huafeng; Semenza, Gregg L

    2008-07-01

    Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.

  16. Imaging tumor hypoxia: Blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes

    Directory of Open Access Journals (Sweden)

    Peter Vaupel

    2014-03-01

    Full Text Available Hypoxic tissue subvolumes are a hallmark feature of solid malignant tumors, relevant for cancer therapy and patient outcome because they increase both the intrinsic aggressiveness of tumor cells and their resistance to several commonly used anticancer strategies. Pathogenetic mechanisms leading to hypoxia are diverse, may coexist within the same tumor and are commonly grouped according to the duration of their effects. Chronic hypoxia is mainly caused by diffusion limitations resulting from enlarged intercapillary distances and adverse diffusion geometries and — to a lesser extent — by hypoxemia, compromised perfusion or long-lasting microregional flow stops. Conversely, acute hypoxia preferentially results from transient disruptions in perfusion. While each of these features of the tumor microenvironment can contribute to a critical reduction of oxygen availability, the delivery of imaging agents (as well as nutrients and anticancer agents may be compromised or remain unaffected. Thus, a critical appraisal of the effects of the various mechanisms leading to hypoxia with regard to the blood-borne delivery of imaging agents is necessary to judge their ability to correctly represent the hypoxic phenotype of solid malignancies.

  17. Vagal activity and oxygen saturation response to hypoxia: Effects of aerobic fitness and rating of hypoxia tolerance

    Directory of Open Access Journals (Sweden)

    Tomáš Macoun

    2017-10-01

    Full Text Available Background: A reduction in the inspired oxygen fraction (FiO2 induces a decline in arterial oxygen saturation (SpO2 and changes of heart rate variability (HRV. It has been shown that SpO2 and HRV responses to similar levels of acute normobaric hypoxia are inter-individual variable. Variable response may be influenced by normoxia reached maximal oxygen uptake (VO2max value. Objective: The primary aim was to assess HRV and the SpO2 response to hypoxia, and examine the association with normoxic VO2max. Methods: Supine HRV and SpO2 were monitored during normobaric hypoxia (FiO2 = 9.6% for 10 minutes in 28 subjects, aged 23.7 ± 1.7 years. HRV was evaluated by using both spectral and time domain HRV analysis. Low frequency (LF, 0.05-0.15 Hz and high frequency (HF, 0.15-0.50 Hz power together with square root of the mean of the squares of the successive differences (rMSSD were calculated and transformed by natural logarithm (Ln. Based on the SpO2 in hypoxia, subjects were divided into Resistant (RG, SpO2 ≥ 70.9%, n = 14 and Sensitive (SG, SpO2 < 70.9%, n = 14 groups. Perceived hypoxia tolerance was self-scored on a 4-level scale. Results: VO2max was higher in SG (62.4 ± 7.2 ml ⋅ kg-1 ⋅ min-1 compared with RG (55.5 ± 7.1 ml ⋅ kg-1 ⋅ min-1, p = .017, d = 0.97. A significant relationship (r = -.45, p = .017 between hypoxic-normoxic difference in SpO2 and normoxic VO2max level was found. Vagal activity (Ln rMSSD was significantly decreased (SG: p < .001, d = 2.64; RG: p < .001, d = 1.22, while sympathetic activity (Ln LF/HF was relatively increased (p < .001, d = -1.40 in only the SG during hypoxia. Conclusions: Results show that subjects with a higher aerobic capacity exhibited a greater decline in SpO2, accompanied by greater autonomic cardiac disturbances during hypoxia. The SpO2 reduction was associated with perceived hypoxia comfort/discomfort. The hypoxia

  18. SH2 Ligand Prediction-Guidance for In-Silico Screening.

    Science.gov (United States)

    Li, Shawn S C; Li, Lei

    2017-01-01

    Systematic identification of binding partners for SH2 domains is important for understanding the biological function of the corresponding SH2 domain-containing proteins. Here, we describe two different web-accessible computer programs, SMALI and DomPep, for predicting binding ligands for SH2 domains. The former was developed using a Scoring Matrix method and the latter based on the Support Vector Machine model.

  19. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway.

    Science.gov (United States)

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng; Qiao, Yong

    2016-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia-reperfusion injury. © 2015 by the Society for Experimental Biology and Medicine.

  20. Structural insights into the intertwined dimer of fyn SH2.

    Science.gov (United States)

    Huculeci, Radu; Garcia-Pino, Abel; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico

    2015-12-01

    Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand. © 2015 The Protein Society.

  1. Intermittent Hypoxia Causes Inflammation and Injury to Human Adult Cardiac Myocytes.

    Science.gov (United States)

    Wu, Jing; Stefaniak, Joanna; Hafner, Christina; Schramel, Johannes Peter; Kaun, Christoph; Wojta, Johann; Ullrich, Roman; Tretter, Verena Eva; Markstaller, Klaus; Klein, Klaus Ulrich

    2016-02-01

    Intermittent hypoxia may occur in a number of clinical scenarios, including interruption of myocardial blood flow or breathing disorders such as obstructive sleep apnea. Although intermittent hypoxia has been linked to cardiovascular and cerebrovascular disease, the effect of intermittent hypoxia on the human heart is not fully understood. Therefore, in the present study, we compared the cellular responses of cultured human adult cardiac myocytes (HACMs) exposed to intermittent hypoxia and different conditions of continuous hypoxia and normoxia. HACMs were exposed to intermittent hypoxia (0%-21% O2), constant mild hypoxia (10% O2), constant severe hypoxia (0% O2), or constant normoxia (21% O2), using a novel cell culture bioreactor with gas-permeable membranes. Cell proliferation, lactate dehydrogenase release, vascular endothelial growth factor release, and cytokine (interleukin [IL] and macrophage migration inhibitory factor) release were assessed at baseline and after 8, 24, and 72 hours of exposure. A signal transduction pathway finder array was performed to determine the changes in gene expression. In comparison with constant normoxia and constant mild hypoxia, intermittent hypoxia induced earlier and greater inflammatory response and extent of cell injury as evidenced by lower cell numbers and higher lactate dehydrogenase, vascular endothelial growth factor, and proinflammatory cytokine (IL-1β, IL-6, IL-8, and macrophage migration inhibitory factor) release. Constant severe hypoxia showed more detrimental effects on HACMs at later time points. Pathway analysis demonstrated that intermittent hypoxia primarily altered gene expression in oxidative stress, Wnt, Notch, and hypoxia pathways. Intermittent and constant severe hypoxia, but not constant mild hypoxia or normoxia, induced inflammation and cell injury in HACMs. Cell injury occurred earliest and was greatest after intermittent hypoxia exposure. Our in vitro findings suggest that intermittent hypoxia

  2. Understanding and exploiting the genomic response to hypoxia

    International Nuclear Information System (INIS)

    Giaccia, A.J.

    2003-01-01

    The tumor microenvironment influences both therapeutic outcome and malignant progression. Of the many factors that may be altered in the tumor microenvironment, changes in tumor oxygenation have been strongly associated with a lower probability of local tumor control and survival. In vitro studies indicate that cells exposed to a low oxygen environment exhibit multiple phenotypes, including cell-cycle arrest, increased expression of pro-angiogenic genes, increased invasive capacity, increased apoptosis, increased anaerobic metabolism and altered differentiation programs. While the mechanistic basis of hypoxia as an impediment to radiotherapy and chemotherapy is well understood, it is unclear what changes in the cellular phenotype are important in understanding how hypoxia modifies malignant progression. One insight into how hypoxia modulates malignant progression comes from understanding the critical transcriptional regulators of gene expression under hypoxic conditions such as hypoxia inducible factor 1 (HIF-1) as well as changes in gene expression in untransformed and transformed cells. Overall, about 1.5% of the genome is found to be transcriptionally responsive to changes in oxygenation. Most importantly, the coordinated changes in gene expression under hypoxic conditions underscore the physiologic basis for altering gene expression in response to a low oxygen environment. In addition, some hypoxia-induced genes exhibit increased expression after reoxygenation, suggesting that they are regulated both by hypoxia and oxidative stress. Analysis of the genomic response to hypoxia has several therapeutic uses. First, it allows one to ask the question of what the cellular consequences are to inhibition of the transcriptional response to hypoxia such as by targeting the HIF-1 transcription factor. While the effect of loss of HIF-1 in tumors leads to inhibition of tumor growth, it does not eliminate tumors. In fact, studies indicate that inhibition of HIF-1 leads to a

  3. Induction of gastrin expression in gastrointestinal cells by hypoxia or cobalt is independent of hypoxia-inducible factor (HIF).

    Science.gov (United States)

    Xiao, Lin; Kovac, Suzana; Chang, Mike; Shulkes, Arthur; Baldwin, Graham S; Patel, Oneel

    2012-07-01

    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporter assay. Exposure to a low oxygen concentration (1%) increased gastrin mRNA concentrations in wild-type AGS cells (AGS) and in AGS cells overexpressing the gastrin receptor (AGS-cholecystokinin receptor 2) by 2.1 ± 0.4- and 4.1 ± 0.3-fold (P factor hypoxia-inducible factor 1 (HIF-1) or knockdown of either the HIF-1α or HIF-1β subunit did not affect gastrin promoter inducibility under hypoxia indicated that the hypoxic activation of the gastrin gene is likely HIF independent. Mutational analysis of previously identified Sp1 regulatory elements in the gastrin promoter also failed to abrogate the induction of promoter activity by hypoxia. The observations that hypoxia up-regulates the gastrin gene in AGS cells by HIF-independent mechanisms, and that this effect is enhanced by the presence of gastrin receptors, provide potential targets for gastrointestinal cancer therapy.

  4. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Oldham, William M; Loscalzo, Joseph

    2014-01-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology. (paper)

  5. Recombinant adeno-associated virus-delivered hypoxia-inducible stanniocalcin-1 expression effectively inhibits hypoxia-induced cell apoptosis in cardiomyocytes.

    Science.gov (United States)

    Shi, Xin; Wang, Jianzhong; Qin, Yan

    2014-12-01

    Ischemia/hypoxia-induced oxidative stress is detrimental for the survival of cardiomyocytes and cardiac function. Stanniocalcin-1 (STC-1), a glycoprotein, has been found to play an inhibitory role in the production of reactive oxygen species (ROS). Here, we speculated that the overexpression of STC-1 might alleviate oxidative damage in cardiomyocytes under conditions of hypoxia. To control the expression of STC-1 in hypoxia, we constructed a recombinant adeno-associated virus (AAV) carrying the hypoxia-responsive element (HRE) to mediate hypoxia induction. Cardiomyocytes were infected with AAV-HRE-STC-1 and cultured in normoxic or hypoxic conditions, and STC-1 overexpression was only detected in hypoxic cultured cardiomyocytes by using quantitative real-time polymerase chain reaction and Western blot analysis. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, AAV-HRE-STC-1 infection was shown to significantly enhance cell survival under hypoxia. Hypoxia-induced cell apoptosis was inhibited by AAV-HRE-STC-1 infection by using the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide apoptosis assay. Moreover, the proapoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2, which were dysregulated by hypoxia, were reversed by AAV-HRE-STC-1 infection. AAV-HRE-STC-1-mediated STC-1 overexpression markedly inhibited ROS production in cardiomyocytes cultured under hypoxic conditions. AAV-HRE-STC-1 infection significantly upregulated uncoupled protein 3 (UCP3), whereas silencing of UCP3 blocked the inhibitory effect of AAV-HRE-STC-1 on ROS production. In contrast, AAV-HRE-STC-1 infection had no effect on UCP2, and knockdown of UCP2 did not block the inhibitory effect of AAV-HRE-STC-1 on ROS production in the cardiomyocytes cultured under hypoxic conditions. Taken together, STC1 activates antioxidant pathway in cardiomyocytes through the induction of UCP3, implying that AAV-HRE-STC-1 has potential in the treatment of ischemic

  6. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  7. Redox signaling during hypoxia in mammalian cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Smith

    2017-10-01

    Full Text Available Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS such as hydrogen peroxide (H2O2 occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(PH oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.

  8. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis

    OpenAIRE

    Ren, Decheng; Zhou, Yingjiang; Morris, David; Li, Minghua; Li, Zhiqin; Rui, Liangyou

    2007-01-01

    SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (α, β, γ, and/or δ) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1β was specifically expressed in neural tissue in SH2B1-tran...

  9. Cognitive responses to hypobaric hypoxia: implications for aviation training

    Directory of Open Access Journals (Sweden)

    Neuhaus C

    2014-11-01

    Full Text Available Christopher Neuhaus,1,2 Jochen Hinkelbein2,31Department of Anesthesiology, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, 2Emergency Medicine and Air Rescue Working Group, German Society of Aviation and Space Medicine (DGLRM, Munich, 3Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, GermanyAbstract: The aim of this narrative review is to provide an overview on cognitive responses to hypobaric hypoxia and to show relevant implications for aviation training. A principal element of hypoxia-awareness training is the intentional evocation of hypoxia symptoms during specific training sessions within a safe and controlled environment. Repetitive training should enable pilots to learn and recognize their personal hypoxia symptoms. A time span of 3–6 years is generally considered suitable to refresh knowledge of the more subtle and early symptoms especially. Currently, there are two different technical approaches available to induce hypoxia during training: hypobaric chamber training and reduced-oxygen breathing devices. Hypoxia training for aircrew is extremely important and effective, and the hypoxia symptoms should be emphasized clearly to aircrews. The use of tight-fitting masks, leak checks, and equipment checks should be taught to all aircrew and reinforced regularly. It is noteworthy that there are major differences in the required quality and quantity of hypoxia training for both military and civilian pilots.Keywords: cognitive response, aviation training, pilot, hypoxia, oxygen, loss of consciousness

  10. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P intermittent hypoxia is dependent on the disruption of leptin pathways.

  11. SH2B Regulation of Growth, Metabolism, and Longevity in Both Insects and Mammals

    OpenAIRE

    Song, Wei; Ren, Decheng; Li, Wenjun; Jiang, Lin; Cho, Kae Won; Huang, Ping; Fan, Chen; Song, Yiyun; Liu, Yong; Rui, Liangyou

    2010-01-01

    SH2B1 is a key regulator of body weight in mammals. Here we identified dSH2B as the Drosophila homolog of SH2B1. dSH2B bound to Chico and directly promoted insulin-like signaling. Disruption of dSH2B decreased insulin-like signaling and somatic growth in flies. dSH2B deficiency also increased hemolymph carbohydrate levels, whole body lipid levels, lifespan, and resistance to starvation and oxidative stress. Systemic overexpression of dSH2B resulted in opposite phenotypes. dSH2B overexpression...

  12. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  13. Characterization of breakpoint cluster region kinase and SH2-binding activities.

    Science.gov (United States)

    Afar, D E; Witte, O N

    1995-01-01

    BCR is an interesting signaling protein, whose cellular function is currently unknown. Its biochemical properties include serine kinase activity, SH2-binding activity, and a GTPase-activating activity. The SH2-binding activity is particularly interesting because it may link BCR to signaling pathways involving SH2-containing molecules. Since tyrosine phosphorylation of BCR has been detected in CML-derived cell lines and since tyrosine-phosphorylated BCR shows increased affinity toward certain SH2 domains, it seems particularly important to further characterize this activity. This chapter described a simple purification scheme for partial purification of BCR, which can be used to assess in vitro kinase and SH2-binding activities.

  14. Macrophage-mediated response to hypoxia in disease

    Directory of Open Access Journals (Sweden)

    Tazzyman S

    2014-11-01

    Full Text Available Simon Tazzyman,1 Craig Murdoch,2 James Yeomans,1 Jack Harrison,1 Munitta Muthana3 1Department of Oncology, 2School of Clinical Dentistry, 3Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment. Keywords: macrophage, hypoxia, inflammation, cytokine

  15. Interproximal grooving in the Atapuerca-SH hominid dentitions.

    Science.gov (United States)

    Bermúdez de Castro, J M; Arsuaga, J L; Pérez, P J

    1997-03-01

    The dental sample recovered from the Sima de los Huesos (SH) Middle Pleistocene cave site of the Sierra de Atapuerca (Spain) includes 296 specimens. Interproximal wear grooves have been observed in 20 maxillary and mandibular posterior teeth belonging to at least five of the 32 individuals identified so far in the SH hypodigm. Interproximal grooving affected only the adults, and at an age between 25 and 40 years. The appearance, morphology, and location pattern of the SH wear grooves are similar to those reported in other fossil hominids and in more recent human populations. Two alternative proposals, the toothpicking and the fiber or sinew processing hypotheses, compete for explaining the formation of this anomalous wear. The characteristics observed in the wear grooves of the SH teeth are compatible only with the habitual probing of interdental spaces by means of hard and inflexible objects. Dietary grit may also have contributed to the abrasion of the root walls during the motion of the dental probes.

  16. Hypoxia-inducible factor signalling mechanisms in the central nervous system.

    Science.gov (United States)

    Corcoran, A; O'Connor, J J

    2013-08-01

    In the CNS, neurones are highly sensitive to the availability of oxygen. In conditions where oxygen availability is decreased, neuronal function can be altered, leading to injury and cell death. Hypoxia has been implicated in a number of central nervous system pathologies including stroke, head trauma and neurodegenerative diseases. Cellular responses to oxygen deprivation are complex and result in activation of short- and long-term mechanisms to conserve energy and protect cells. Failure of synaptic transmission can be observed within minutes following this hypoxia. The acute effects of hypoxia on synaptic transmission are primarily mediated by altering ion fluxes across membranes, pre-synaptic effects of adenosine and other actions at glutamatergic receptors. A more long-term feature of the response of neurones to hypoxia is the activation of transcription factors such as hypoxia-inducible factor. The activation of hypoxia-inducible factor is governed by a family of dioxygenases called hypoxia-inducible factor prolyl 4 hydroxylases (PHDs). Under hypoxic conditions, PHD activity is inhibited, thereby allowing hypoxia-inducible factor to accumulate and translocate to the nucleus, where it binds to the hypoxia-responsive element sequences of target gene promoters. Inhibition of PHD activity stabilizes hypoxia-inducible factor and other proteins thus acting as a neuroprotective agent. This review will focus on the response of neuronal cells to hypoxia-inducible factor and its targets, including the prolyl hydroxylases. We also present evidence for acute effects of PHD inhibition on synaptic transmission and plasticity in the hippocampus. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. The impact of hypoxia on oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Guo ZS

    2011-11-01

    Full Text Available Z Sheng GuoUniversity of Pittsburgh Cancer Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: The hypoxic tumor microenvironment plays significant roles in tumor cell metabolism and survival, tumor growth, and progression. Hypoxia modulates target genes in target cells mainly through an oxygen-sensing signaling pathway mediated by hypoxia-inducible factor of transcription factors. As a result, hypoxic tumor cells are resistant to conventional therapeutics such as radiation and chemotherapy. Oncolytic virotherapy may be a promising novel therapeutic for hypoxic cancer. Some oncolytic viruses are better adapted than others to the hypoxic tumor environment. Replication of adenoviruses from both groups B and C is inhibited, yet replication of herpes simplex virus is enhanced. Hypoxia seems to exert little or no effect on the replication of other oncolytic viruses. Vaccinia virus displayed increased cytotoxicity in some hypoxic cancer cells even though viral protein synthesis and transgene expression were not affected. Vesicular stomatitis virus replicated to similar levels in both hypoxic and normoxic conditions, and is effective for killing hypoxic cancer cells. However, vesicular stomatitis virus and reovirus, but not encephalomyocarditis virus, are sensitive to elevated levels of hypoxia-inducible factor-1α in renal cancer cells with the loss of von Hippel–Lindau tumor suppressor protein, because elevated hypoxia-inducible factor activity confers dramatically enhanced resistance to cytotoxicity mediated by vesicular stomatitis virus or reovirus. A variety of hypoxia-selective and tumor-type-specific oncolytic adenoviruses, generated by incorporating hypoxia-responsive elements into synthetic promoters to control essential genes for viral replication or therapeutic genes, have been shown to be safe and efficacious. Hypoxic tumor-homing macrophages can function effectively as carrier

  18. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression.

    Science.gov (United States)

    Serebrovska, Tetiana V; Portnychenko, Alla G; Drevytska, Tetiana I; Portnichenko, Vladimir I; Xi, Lei; Egorov, Egor; Gavalko, Anna V; Naskalova, Svitlana; Chizhova, Valentina; Shatylo, Valeriy B

    2017-09-01

    The present study aimed at examining beneficial effects of intermittent hypoxia training (IHT) under prediabetic conditions. We investigate the effects of three-week IHT on blood glucose level, tolerance to acute hypoxia, and leukocyte mRNA expression of hypoxia inducible factor 1α (HIF-1α) and its target genes, i.e. insulin receptor, facilitated glucose transporter-solute carrier family-2, and potassium voltage-gated channel subfamily J. Seven healthy and 11 prediabetic men and women (44-70 years of age) were examined before, next day and one month after three-week IHT (3 sessions per week, each session consisting 4 cycles of 5-min 12% O 2 and 5-min room air breathing). We found that IHT afforded beneficial effects on glucose homeostasis in patients with prediabetes reducing fasting glucose and during standard oral glucose tolerance test. The most pronounced positive effects were observed at one month after IHT termination. IHT also significantly increased the tolerance to acute hypoxia (i.e. SaO 2 level at 20th min of breathing with 12% O 2 ) and improved functional parameters of respiratory and cardiovascular systems. IHT stimulated HIF-1α mRNA expression in blood leukocytes in healthy and prediabetic subjects, but in prediabetes patients the maximum increase was lagged. The greatest changes in mRNA expression of HIF-1α target genes occurred a month after IHT and coincided with the largest decrease in blood glucose levels. The higher expression of HIF-1α was positively associated with higher tolerance to hypoxia and better glucose homeostasis. In conclusion, our results suggest that IHT may be useful for preventing the development of type 2 diabetes. Impact statement The present study investigated the beneficial effects of intermittent hypoxia training (IHT) in humans under prediabetic conditions. We found that three-week moderate IHT induced higher HIF-1α mRNA expressions as well as its target genes, which were positively correlated with higher tolerance

  19. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  20. Evolution of SH2 domains and phosphotyrosine signalling networks

    Science.gov (United States)

    Liu, Bernard A.; Nash, Piers D.

    2012-01-01

    Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907

  1. Hypoxia symptoms during altitude training in professional Iranian fighter pilots.

    Science.gov (United States)

    Alagha, Babak; AhmadBeygi, Shervin; Ahmadbeigy, Shervin; Moosavi, Seyed Ali Javad; Jalali, Seyed Mahmood

    2012-01-01

    Susceptibility to hypoxia is influenced by a multitude of factors, including fatigue, physical activity, illnesses, ambient temperature, rate of ascent, destination altitude, medications, and alcohol. Anecdotally, several reports have been made regarding changes in the form of hypoxia presentation in Iranian fighter pilots in the absence of these factors. This study focused specifically on the effect of pilot age on susceptibility to hypoxia and its initial presentation. We assumed that a pilot's age may increase his susceptibility to hypoxia and consequently reduce the amount of time it takes for hypoxia to present. Because our literature review did not reveal any previous study addressing the possible relationship between age and susceptibility to hypoxia, the purpose of this study is to address and clarify this relationship. In this retrospective study, we collected information from Iranian fighter pilots (n = 30) through an anonymous questionnaire in 2000. The form of hypoxia presentation of each subject was evaluated during five altitude chamber training (ACT) sessions that were conducted routinely from 1972 to 1984. To enhance the accuracy of the study's results, confounding factors such as prior hypoxia experience in an ACT session have been taken into consideration. The results revealed a statistically significant relationship between age and a change in the form of hypoxia presentation in our subjects. Increased age reduced the amount of time before the first individual hypoxia symptom appeared (P < .000002). Although having previous hypoxia experience may help pilots to recognize their symptoms earlier, its effect was not statistically significant (P < .18). A few changes in the nature of individual symptoms were observed; however, we did not find a meaningful statistical correlation between pilot age and change in the nature of symptoms. Susceptibility ot hypoxia increases with pilot age. Copyright © 2012 Air Medical Journal Associates. Published by

  2. Inflammation and hypoxia in the kidney: friends or foes?

    Science.gov (United States)

    Haase, Volker H

    2015-08-01

    Hypoxic injury is commonly associated with inflammatory-cell infiltration, and inflammation frequently leads to the activation of cellular hypoxia response pathways. The molecular mechanisms underlying this cross-talk during kidney injury are incompletely understood. Yamaguchi and colleagues identify CCAAT/enhancer-binding protein δ as a cytokine- and hypoxia-regulated transcription factor that fine-tunes hypoxia-inducible factor-1 signaling in renal epithelial cells and thus provide a novel molecular link between hypoxia and inflammation in kidney injury.

  3. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn

    NARCIS (Netherlands)

    Panchamoorthy, G.; Fukazawa, T.; Stolz, L.; Payne, G.; Reedquist, K.; Shoelson, S.; Songyang, Z.; Cantley, L.; Walsh, C.; Band, H.

    1994-01-01

    The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The

  4. Physiological determinants of human acute hypoxia tolerance.

    Science.gov (United States)

    2013-11-01

    AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...

  5. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    Science.gov (United States)

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  6. Hypoxia is increasing in the coastal zone of the Baltic Sea.

    Science.gov (United States)

    Conley, Daniel J; Carstensen, Jacob; Aigars, Juris; Axe, Philip; Bonsdorff, Erik; Eremina, Tatjana; Haahti, Britt-Marie; Humborg, Christoph; Jonsson, Per; Kotta, Jonne; Lännegren, Christer; Larsson, Ulf; Maximov, Alexey; Medina, Miguel Rodriguez; Lysiak-Pastuszak, Elzbieta; Remeikaité-Nikiené, Nijolé; Walve, Jakob; Wilhelms, Sunhild; Zillén, Lovisa

    2011-08-15

    Hypoxia is a well-described phenomenon in the offshore waters of the Baltic Sea with both the spatial extent and intensity of hypoxia known to have increased due to anthropogenic eutrophication, however, an unknown amount of hypoxia is present in the coastal zone. Here we report on the widespread unprecedented occurrence of hypoxia across the coastal zone of the Baltic Sea. We have identified 115 sites that have experienced hypoxia during the period 1955-2009 increasing the global total to ca. 500 sites, with the Baltic Sea coastal zone containing over 20% of all known sites worldwide. Most sites experienced episodic hypoxia, which is a precursor to development of seasonal hypoxia. The Baltic Sea coastal zone displays an alarming trend with hypoxia steadily increasing with time since the 1950s effecting nutrient biogeochemical processes, ecosystem services, and coastal habitat.

  7. [Effects of interleukin-18 and hypoxia-inducible factor-1α in serum and gingival tissues of rat model with periodontitis exposed to chronic intermittent hypoxia].

    Science.gov (United States)

    Wang, Bin; Wang, Xiaoqin

    2015-08-01

    This study evaluates the expression of interleukin-18 (IL-18) and hypoxia-inducible factor (HIF)-lα in rat periodontitis model exposed to normoxia and chronic intermittent hypoxia (CIH) environments. The possible correlation between periodontitis and obstructive sleep apnea-hypopnea syndrome (OSAHS) was also investigated. Methods: Thirty-two Sprague-Dawley (SD) rats were randomly assigned into four groups: normoxia control, normoxia periodontitis, hypoxia control, and hypoxia periodontitis groups. The periodontitis models were established by ligating the bilateral maxillary second molars and employing high-carbohydrate diets. Rats in hypoxia control and hypoxia periodontitis groups were exposed to CIH treatment mimicking a moderately severe OSAHS condition. All animals were sacrificed after eight weeks, and the clinical periodontal indexes were detected. The levels of IL-18 and HIF-1α in serum and gingival tissues were determined using enzyme-linked immunosorbent assay (ELISA). The correlation between attachment loss (AL) and the levels of IL-18 and HIF-lα in hypoxia periodontitis group was evaluated. The levels of IL-18 and HIF-lα in hypoxia periodontitis group were significantly higher than that in normoxia periodontitis and hypoxia control groups (Pperiodontal tissues, which is correlated with IL-18 and HIF-lα levels.

  8. Optical Imaging of Tumor Hypoxia and Evaluation of Efficacy of a Hypoxia-Targeting Drug in Living Animals

    Directory of Open Access Journals (Sweden)

    Hiroshi Harada

    2005-07-01

    Full Text Available Solid tumors containing more hypoxic regions show a more malignant phenotype by increasing the expression of genes encoding angiogenic and metastatic factors. Hypoxia-inducible factor-1 (HIF-1 is a master transcriptional activator of such genes, and thus, imaging and targeting hypoxic tumor cells where HIF-1 is active are important in cancer therapy. In the present study, HIF-1 activity was monitored via an optical in vivo imaging system by using a luciferase reporter gene under the regulation of an artificial HIF-1-dependent promoter, 5HRE. To monitor tumor hypoxia, we isolated a stable reporter-transfectant, HeLa/5HRE-Luc, which expressed more than 100-fold luciferase in response to hypoxic stress, and observed bioluminescence from its xenografts. Immunohistochemical analysis of the xenografts with a hypoxia marker, pimonidazole, confirmed that the luciferase-expressing cells were hypoxic. Evaluation of the efficacy of a hypoxia-targeting prodrug, TOP3, using this optical imaging system revealed that hypoxic cells were significantly diminished by TOP3 treatment. Immunohistochemical analysis of the TOP3-treated xenografts confirmed that hypoxic cells underwent apoptosis and were removed after TOP3 treatment. These results demonstrate that this model system using the 5HRE-luciferase reporter construct provides qualitative information (hypoxic status of solid tumors and enables one to conveniently evaluate the efficacy of cancer therapy on hypoxia in malignant solid tumors.

  9. Hypoxia tolerance in coral-reef triggerfishes (Balistidae)

    Science.gov (United States)

    Wong, Corrie C.; Drazen, Jeffrey C.; Callan, Chatham K.; Korsmeyer, Keith E.

    2018-03-01

    Despite high rates of photosynthetic oxygen production during the day, the warm waters of coral reefs are susceptible to hypoxia at night due to elevated respiration rates at higher temperatures that also reduce the solubility of oxygen. Hypoxia may be a challenge for coral-reef fish that hide in the reef to avoid predators at night. Triggerfishes (Balistidae) are found in a variety of reef habitats, but they also are known to find refuge in reef crevices and holes at night, which may expose them to hypoxic conditions. The critical oxygen tension ( P crit) was determined as the point below which oxygen uptake could not be maintained to support standard metabolic rate (SMR) for five species of triggerfish. The triggerfishes exhibited similar levels of hypoxia tolerance as other coral-reef and coastal marine fishes that encounter low oxygen levels in their environment. Two species, Rhinecanthus rectangulus and R. aculeatus, had the lowest P crit ( 3.0 kPa O2), comparable to the most hypoxia-tolerant obligate coral-dwelling gobies, while Odonus niger and Sufflamen bursa were moderately tolerant to hypoxia ( P crit 4.5 kPa), and Xanthichthys auromarginatus was intermediate ( P crit 3.7 kPa). These differences in P crit were not due to differences in oxygen demand, as all the species had a similar SMR once mass differences were taken into account. The results suggest that triggerfish species are adapted for different levels of hypoxia exposure during nocturnal sheltering within the reef.

  10. Genetic loss of SH2B3 in acute lymphoblastic leukemia.

    Science.gov (United States)

    Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Hadler, Michael; Rigo, Isaura; LeDuc, Charles A; Kelly, Kara; Jalas, Chaim; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Paganin, Maddalena; Basso, Giuseppe; Tong, Wei; Chung, Wendy K; Ferrando, Adolfo A

    2013-10-03

    The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis.

  11. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    Directory of Open Access Journals (Sweden)

    Belén Feriche

    Full Text Available When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17 in conditions of normoxia (N1 and hypobaric hypoxia (HH and G2 (n = 11 in conditions of normoxia (N2 and normobaric hypoxia (NH. Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax was recorded as the highest P(mean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max (∼ 3% and maximal strength (1 RM (∼ 6% in G1 attributable to the climb to altitude (P<0.05. We also observed a stimulating effect of natural hypoxia on P(mean and P(peak in the middle-high part of the curve (≥ 60 kg; P<0.01 and a 7.8% mean increase in barbell displacement velocity (P<0.001. No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.

  12. Designing a dataflow processor using CλaSH

    NARCIS (Netherlands)

    Niedermeier, A.; Wester, Rinse; Wester, Rinse; Rovers, K.C.; Baaij, C.P.R.; Kuper, Jan; Smit, Gerardus Johannes Maria

    2010-01-01

    In this paper we show how a simple dataflow processor can be fully implemented using CλaSH, a high level HDL based on the functional programming language Haskell. The processor was described using Haskell, the CλaSH compiler was then used to translate the design into a fully synthesisable VHDL code.

  13. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Omar A Mesarwi

    Full Text Available Obstructive sleep apnea (OSA is associated with the progression of non-alcoholic fatty liver disease (NAFLD to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1, a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis.Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2 or normoxia (16% O2 for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking.Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03, which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia.Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver

  14. Coffee induces vascular endothelial growth factor (VEGF) expression in human neuroblastama SH-SY5Y cells.

    Science.gov (United States)

    Kakio, Shota; Funakoshi-Tago, Megumi; Kobata, Kenji; Tamura, Hiroomi

    2017-07-01

    Recent evidence indicates that hypoxia-inducible vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective effects on neuronal and glial cells. On the other hand, recent epidemiological studies showed that daily coffee consumption has been associated with a lower risk of several neuronal disorders. Therefore, we investigated the effect of coffee on VEGF expression in human neuroblastoma SH-SY5Y cells. We found that even low concentration of coffee (coffee was attributed to the coffee-dependent inhibition of prolyl hydroxylation of HIF1α, which is essential for proteolytic degradation of HIF-1α. However, no inhibition was observed at the catalytic activity in vitro. Coffee component(s) responsible for the activation of HIF-1α was not major constituents such as caffeine, caffeic acid, chlorogenic acid, and trigonelline, but was found to emerge during roasting process. The active component(s) was extractable with ethyl acetate. Our results suggest that daily consumption of coffee may induce VEGF expression in neuronal cells. This might be related to protective effect of coffee on neural disorders such as Alzheimer's disease and Parkinson's disease.

  15. Kinetic modeling in PET imaging of hypoxia

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Hansen, Anders E

    2014-01-01

    be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET......Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can...... analysis for PET imaging of hypoxia....

  16. Modulation of radioprotective effects of respiratory hypoxia by changing the duration of hypoxia before irradiation and by combining hypoxia and administration of hemopoiesis-stimulating agents

    International Nuclear Information System (INIS)

    Vacek, A.; Hofer, M.

    2001-01-01

    Aim: Analysis of radioprotective effect of respiratory hypoxia on hemopoietic tissue and enhancement of this effect by hemopoietic activation. Material and methods: In mice breathing hypoxic gas mixture during total body gamma irradiation the recovery of pluripotent and committed granulocyte-macrophage progenitor cells and animal lethality were determined. Results: In mice forced to breathe 10% O 2 and 8% O 2 during irradiation, the oxygen tension in the spleen decreased to 40% and 20%, respectively, of control values. Hypoxia mitigated the lethal effect of gamma-rays and improved the recovery of hemopoiesis in compartments of pluripotent and committed progenitor cells. Enhancement of the proliferative activity in hemopoietic tissue by a cytokine (rmGM-CSF) or an immunomodulator (dextran sulfate) increased the effect of hypoxic radioprotection, while elimination of proliferative cells by hydroxyurea decreased the radioprotective effect. Adaptation of experimental animals to hypoxic conditions was found to reduce the radioprotective effect without influencing tissue partial oxygen pressure lowered by hypoxic conditions. Conclusion: The data presented confirm the radioprotective effect of 10% and 8% O 2 respiratory hypoxia on hemopoiesis. These findings may represent a way out for further experimental and clinical research aimed at considering differential protection of various tissues by hypoxia. (orig.) [de

  17. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  18. Gene expression promoted by the SV40 DNA targeting sequence and the hypoxia-responsive element under normoxia and hypoxia

    Directory of Open Access Journals (Sweden)

    C.B. Sacramento

    2010-08-01

    Full Text Available The main objective of the present study was to find suitable DNA-targeting sequences (DTS for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS and hypoxia-responsive element (HRE sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF. The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2 and hypoxia (less than 5% O2 were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.

  19. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    Science.gov (United States)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  20. Mechanisms of c-myc degradation by nickel compounds and hypoxia.

    Directory of Open Access Journals (Sweden)

    Qin Li

    2009-12-01

    Full Text Available Nickel (Ni compounds have been found to cause cancer in humans and animal models and to transform cells in culture. At least part of this effect is mediated by stabilization of hypoxia inducible factor (HIF1a and activating its downstream signaling. Recent studies reported that hypoxia signaling might either antagonize or enhance c-myc activity depending on cell context. We investigated the effect of nickel on c-myc levels, and demonstrated that nickel, hypoxia, and other hypoxia mimetics degraded c-myc protein in a number of cancer cells (A549, MCF-7, MDA-453, and BT-474. The degradation of the c-Myc protein was mediated by the 26S proteosome. Interestingly, knockdown of both HIF-1alpha and HIF-2alpha attenuated c-Myc degradation induced by Nickel and hypoxia, suggesting the functional HIF-1alpha and HIF-2alpha was required for c-myc degradation. Further studies revealed two potential pathways mediated nickel and hypoxia induced c-myc degradation. Phosphorylation of c-myc at T58 was significantly increased in cells exposed to nickel or hypoxia, leading to increased ubiquitination through Fbw7 ubiquitin ligase. In addition, nickel and hypoxia exposure decreased USP28, a c-myc de-ubiquitinating enzyme, contributing to a higher steady state level of c-myc ubiquitination and promoting c-myc degradation. Furthermore, the reduction of USP28 protein by hypoxia signaling is due to both protein degradation and transcriptional repression. Nickel and hypoxia exposure significantly increased the levels of dimethylated H3 lysine 9 at the USP28 promoter and repressed its expression. Our study demonstrated that Nickel and hypoxia exposure increased c-myc T58 phosphorylation and decreased USP28 protein levels in cancer cells, which both lead to enhanced c-myc ubiquitination and proteasomal degradation.

  1. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    Science.gov (United States)

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  2. Endogenous markers of tumor hypoxia. Predictors of clinical radiation resistance?

    International Nuclear Information System (INIS)

    Vordermark, D.; Brown, J.M.

    2003-01-01

    Background: Eppendorf electrode measurements of tumor oxygenation have defined an adverse effect of tumor hypoxia on prognosis after radiotherapy and other treatment modalities, in particular in head and neck and cervix carcinomas as well as soft tissue sarcomas. Recently, the immunohistochemical detection of proteins involved in the ''hypoxic response'' of tumor cells has been discussed as a method to estimate hypoxia in clinical tumor specimens. Material and Methods: This review focuses on clinical and experimental data, regarding prognostic impact and comparability with other methods of hypoxia detection, for three proteins suggested as endogenous markers of tumor hypoxia: hypoxia-inducible factor-1α (HIF-1α), carbonic anhydrase 9 (CA 9), and glucose transporter 1 (GLUT1). Results: None of the three potential hypoxia markers is exclusively hypoxia-specific, and in each case protein can be detected under normoxic conditions in vitro. HIF-1α responds rapidly to hypoxia but also to reoxygenation, making this marker quite unstable in the context of clinical sample collection. The perinecrotic labeling pattern typical of chronic hypoxia and a reasonable agreement with injectable hypoxia markers such as pimonidazole have most consistently been described for CA 9. All three markers showed correlation with Eppendorf electrode measurements of tumor oxygenation in carcinoma of the cervix. In nine of 13 reports, among them all three that refer to curative radiotherapy for head and neck cancer, HIF-1α overexpression was associated with poor outcome. CA 9 was an adverse prognostic factor in cervix, head and neck and lung cancer, but not in two other head and neck cancer reports. GLUT1 predicted for poor survival in colorectal, cervix and lung cancer. Conclusion: Endogenous markers have the potential to indicate therapeutically relevant levels of hypoxia within tumors. Clinical trials assessing a marker's ability to predict a benefit from specific hypoxia

  3. Endogenous markers of tumor hypoxia. Predictors of clinical radiation resistance?

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, D. [Dept. of Radiation Oncology, Univ. of Wuerzburg (Germany); Dept. of Radiation Oncology, Stanford Univ. School of Medicine, Stanford, CA (United States); Brown, J.M. [Dept. of Radiation Oncology, Stanford Univ. School of Medicine, Stanford, CA (United States)

    2003-12-01

    Background: Eppendorf electrode measurements of tumor oxygenation have defined an adverse effect of tumor hypoxia on prognosis after radiotherapy and other treatment modalities, in particular in head and neck and cervix carcinomas as well as soft tissue sarcomas. Recently, the immunohistochemical detection of proteins involved in the ''hypoxic response'' of tumor cells has been discussed as a method to estimate hypoxia in clinical tumor specimens. Material and Methods: This review focuses on clinical and experimental data, regarding prognostic impact and comparability with other methods of hypoxia detection, for three proteins suggested as endogenous markers of tumor hypoxia: hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), carbonic anhydrase 9 (CA 9), and glucose transporter 1 (GLUT1). Results: None of the three potential hypoxia markers is exclusively hypoxia-specific, and in each case protein can be detected under normoxic conditions in vitro. HIF-1{alpha} responds rapidly to hypoxia but also to reoxygenation, making this marker quite unstable in the context of clinical sample collection. The perinecrotic labeling pattern typical of chronic hypoxia and a reasonable agreement with injectable hypoxia markers such as pimonidazole have most consistently been described for CA 9. All three markers showed correlation with Eppendorf electrode measurements of tumor oxygenation in carcinoma of the cervix. In nine of 13 reports, among them all three that refer to curative radiotherapy for head and neck cancer, HIF-1{alpha} overexpression was associated with poor outcome. CA 9 was an adverse prognostic factor in cervix, head and neck and lung cancer, but not in two other head and neck cancer reports. GLUT1 predicted for poor survival in colorectal, cervix and lung cancer. Conclusion: Endogenous markers have the potential to indicate therapeutically relevant levels of hypoxia within tumors. Clinical trials assessing a marker's ability to predict a

  4. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  5. Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine

    Directory of Open Access Journals (Sweden)

    Andrew J. O’Leary

    2018-01-01

    Full Text Available Oxygen deficit (hypoxia is a major feature of cardiorespiratory diseases characterized by diaphragm dysfunction, yet the putative role of hypoxic stress as a driver of diaphragm dysfunction is understudied. We explored the cellular and functional consequences of sustained hypoxic stress in a mouse model. Adult male mice were exposed to 8 hours of normoxia, or hypoxia (FiO2 = 0.10 with or without antioxidant pretreatment (N-acetyl cysteine, 200 mg/kg i.p.. Ventilation and metabolism were measured. Diaphragm muscle contractile function, myofibre size and distribution, gene expression, protein signalling cascades, and oxidative stress (TBARS were determined. Hypoxia caused pronounced diaphragm muscle weakness, unrelated to increased respiratory muscle work. Hypoxia increased diaphragm HIF-1α protein content and activated MAPK, mTOR, Akt, and FoxO3a signalling pathways, largely favouring protein synthesis. Hypoxia increased diaphragm lipid peroxidation, indicative of oxidative stress. FoxO3 and MuRF-1 gene expression were increased. Diaphragm 20S proteasome activity and muscle fibre size and distribution were unaffected by acute hypoxia. Pretreatment with N-acetyl cysteine substantially enhanced cell survival signalling, prevented hypoxia-induced diaphragm oxidative stress, and prevented hypoxia-induced diaphragm dysfunction. Hypoxia is a potent driver of diaphragm weakness, causing myofibre dysfunction without attendant atrophy. N-acetyl cysteine protects the hypoxic diaphragm and may have application as a potential adjunctive therapy.

  6. Identifying novel hypoxia-associated markers of chemoresistance in ovarian cancer.

    LENUS (Irish Health Repository)

    McEvoy, Lynda M

    2015-01-01

    Ovarian cancer is associated with poor long-term survival due to late diagnosis and development of chemoresistance. Tumour hypoxia is associated with many features of tumour aggressiveness including increased cellular proliferation, inhibition of apoptosis, increased invasion and metastasis, and chemoresistance, mostly mediated through hypoxia-inducible factor (HIF)-1α. While HIF-1α has been associated with platinum resistance in a variety of cancers, including ovarian, relatively little is known about the importance of the duration of hypoxia. Similarly, the gene pathways activated in ovarian cancer which cause chemoresistance as a result of hypoxia are poorly understood. This study aimed to firstly investigate the effect of hypoxia duration on resistance to cisplatin in an ovarian cancer chemoresistance cell line model and to identify genes whose expression was associated with hypoxia-induced chemoresistance.

  7. HRGFish: A database of hypoxia responsive genes in fishes

    Science.gov (United States)

    Rashid, Iliyas; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kumar, Ravindra; Pathak, Ajey Kumar; Singh, Mahender; Kushwaha, Basdeo

    2017-02-01

    Several studies have highlighted the changes in the gene expression due to the hypoxia response in fishes, but the systematic organization of the information and the analytical platform for such genes are lacking. In the present study, an attempt was made to develop a database of hypoxia responsive genes in fishes (HRGFish), integrated with analytical tools, using LAMPP technology. Genes reported in hypoxia response for fishes were compiled through literature survey and the database presently covers 818 gene sequences and 35 gene types from 38 fishes. The upstream fragments (3,000 bp), covered in this database, enables to compute CG dinucleotides frequencies, motif finding of the hypoxia response element, identification of CpG island and mapping with the reference promoter of zebrafish. The database also includes functional annotation of genes and provides tools for analyzing sequences and designing primers for selected gene fragments. This may be the first database on the hypoxia response genes in fishes that provides a workbench to the scientific community involved in studying the evolution and ecological adaptation of the fish species in relation to hypoxia.

  8. Superbinder SH2 domains act as antagonists of cell signaling.

    Science.gov (United States)

    Kaneko, Tomonori; Huang, Haiming; Cao, Xuan; Li, Xing; Li, Chengjun; Voss, Courtney; Sidhu, Sachdev S; Li, Shawn S C

    2012-09-25

    Protein-ligand interactions mediated by modular domains, which often play important roles in regulating cellular functions, are generally of moderate affinities. We examined the Src homology 2 (SH2) domain, a modular domain that recognizes phosphorylated tyrosine (pTyr) residues, to investigate how the binding affinity of a modular domain for its ligand influences the structure and cellular function of the protein. We used the phage display method to perform directed evolution of the pTyr-binding residues in the SH2 domain of the tyrosine kinase Fyn and identified three amino acid substitutions that critically affected binding. We generated three SH2 domain triple-point mutants that were "superbinders" with much higher affinities for pTyr-containing peptides than the natural domain. Crystallographic analysis of one of these superbinders revealed that the superbinder SH2 domain recognized the pTyr moiety in a bipartite binding mode: A hydrophobic surface encompassed the phenyl ring, and a positively charged site engaged the phosphate. When expressed in mammalian cells, the superbinder SH2 domains blocked epidermal growth factor receptor signaling and inhibited anchorage-independent cell proliferation, suggesting that pTyr superbinders might be explored for therapeutic applications and useful as biological research tools. Although the SH2 domain fold can support much higher affinity for its ligand than is observed in nature, our results suggest that natural SH2 domains are not optimized for ligand binding but for specificity and flexibility, which are likely properties important for their function in signaling and regulatory processes.

  9. Evolution of Src Homology 2 (SH2) Domain to Recognize Sulfotyrosine.

    Science.gov (United States)

    Ju, Tong; Niu, Wei; Guo, Jiantao

    2016-09-16

    Protein tyrosine O-sulfation is considered as the most common type of post-translational tyrosine modification in nature and plays important roles in extracellular biomolecular interactions. To facilitate the mapping, biological study, and medicinal application of this type of post-translational modification, we seek to evolve a small protein scaffold that recognizes sulfotyrosine with high affinity. We focused our efforts on the engineering of the Src Homology 2 (SH2) domain, which represents the largest class of known phosphotyrosine-recognition domain in nature and has a highly evolvable binding pocket. By using phage display, we successfully engineered the SH2 domain to recognize sulfotyrosine with high affinity. The best mutant, SH2-60.1, displayed more than 1700 fold higher sulfotyrosine-binding affinity than that of the wild-type SH2 domain. We also demonstrated that the evolved SH2 domain mutants could be used to detect sulfoprotein levels on the cell surface. These evolved SH2 domain mutants can be potentially applied to the study of protein tyrosine O-sulfation with proper experimental designs.

  10. CARMA2sh and ULK2 control pathogen-associated molecular patterns recognition in human keratinocytes: psoriasis-linked CARMA2sh mutants escape ULK2 censorship.

    Science.gov (United States)

    Scudiero, Ivan; Mazzone, Pellegrino; D'Andrea, Luca E; Ferravante, Angela; Zotti, Tiziana; Telesio, Gianluca; De Rubis, Gabriele; Reale, Carla; Pizzulo, Maddalena; Muralitharan, Shanmugakonar; Vito, Pasquale; Stilo, Romania

    2017-02-23

    The molecular complexes formed by specific members of the family of CARMA proteins, the CARD domain-containing adapter molecule BCL10 and MALT1 (CBM complex) represent a central hub in regulating activation of the pleiotropic transcription factor NF-κB. Recently, missense mutations in CARMA2sh have been shown to cause psoriasis in a dominant manner and with high penetrancy. Here, we demonstrate that in human keratinocytes CARMA2sh plays an essential role in the signal transduction pathway that connects pathogen-associated molecular patterns recognition to NF-κB activation. We also find that the serine/threonine kinase ULK2 binds to and phosphorylates CARMA2sh, thereby inhibiting its capacity to activate NF-κB by promoting lysosomal degradation of BCL10, which is essential for CARMA2sh-mediated NF-κB signaling. Remarkably, CARMA2sh mutants associated with psoriasis escape ULK2 inhibition. Finally, we show that a peptide blocking CARD-mediated BCL10 interactions reduces the capacity of psoriasis-linked CARMA2sh mutants to activate NF-κB. Our work elucidates a fundamental signaling mechanism operating in human keratinocytes and opens to novel potential tools for the therapeutical treatment of human skin disorders.

  11. Src binds cortactin through an SH2 domain cystine-mediated linkage

    Science.gov (United States)

    Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.

    2012-01-01

    Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045

  12. Src binds cortactin through an SH2 domain cystine-mediated linkage.

    Science.gov (United States)

    Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A

    2012-12-15

    Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.

  13. Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain.

    Science.gov (United States)

    Wang, Kang; Smith, Zachary M; Buxton, Richard B; Swenson, Erik R; Dubowitz, David J

    2015-12-15

    Low doses of the carbonic anhydrase inhibitor acetazolamide provides accelerated acclimatization to high-altitude hypoxia and prevention of cerebral and other symptoms of acute mountain sickness. We previously observed increases in cerebral O2 metabolism (CMRO2 ) during hypoxia. In this study, we investigate whether low-dose oral acetazolamide (250 mg) reduces this elevated CMRO2 and in turn might improve cerebral tissue oxygenation (PtiO2 ) during acute hypoxia. Six normal human subjects were exposed to 6 h of normobaric hypoxia with and without acetazolamide prophylaxis. We determined CMRO2 and cerebral PtiO2 from MRI measurements of cerebral blood flow (CBF) and cerebral venous O2 saturation. During normoxia, low-dose acetazolamide resulted in no significant change in CBF, CMRO2 , or PtiO2 . During hypoxia, we observed increases in CBF [48.5 (SD 12.4) (normoxia) to 65.5 (20.4) ml·100 ml(-1)·min(-1) (hypoxia), P effect was improved cerebral tissue PtiO2 during acute hypoxia [11.4 (2.7) (hypoxia) to 16.5 (3.0) mmHg (hypoxia + acetazolamide), P effect, low-dose acetazolamide is effective at the capillary endothelium, and we hypothesize that local interruption in cerebral CO2 excretion accounts for the improvements in CMRO2 and ultimately in cerebral tissue oxygenation during hypoxia. This study suggests a potentially pivotal role of cerebral CO2 and pH in modulating CMRO2 and PtiO2 during acute hypoxia. Copyright © 2015 the American Physiological Society.

  14. Assessment of Hypoxia in the Stroma of Patient-Derived Pancreatic Tumor Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, Ines; Lourenco, Corey; Ibrahimov, Emin; Pintilie, Melania [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Tsao, Ming-Sound [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON M5G2C4 (Canada); Department of Laboratory Medicine and Pathobiology, 27 King’s College Circle, University of Toronto, Toronto, ON M5S1A1 (Canada); Hedley, David W., E-mail: david.hedley@uhn.ca [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Departments of Medical Biophysics University of Toronto, 610 University Ave., Toronto, ON M5G2M9 (Canada); Departments of Medicine, University of Toronto, 610 University Ave., Toronto, ON M5G2M9 (Canada); Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, 610 University Ave., Toronto, ON M5G2M9 (Canada)

    2014-02-26

    The unusually dense stroma of pancreatic cancers is thought to play an important role in their biological aggression. The presence of hypoxia is also considered an adverse prognostic factor. Although it is usually assumed that this is the result of effects of hypoxia on the epithelial component, it is possible that hypoxia exerts indirect effects via the tumor stroma. We therefore measured hypoxia in the stroma of a series of primary pancreatic cancer xenografts. Nine patient-derived pancreatic xenografts representing a range of oxygenation levels were labeled by immunohistochemistry for EF5 and analyzed using semi-automated pattern recognition software. Hypoxia in the tumor and stroma was correlated with tumor growth and metastatic potential. The extent of hypoxia varied from 1%–39% between the different models. EF5 labeling in the stroma ranged from 0–20% between models, and was correlated with the level of hypoxia in the tumor cell area, but not microvessel density. Tumor hypoxia correlated with spontaneous metastasis formation with the exception of one hypoxic model that showed disproportionately low levels of hypoxia in the stroma and was non-metastatic. Our results demonstrate that hypoxia exists in the stroma of primary pancreatic cancer xenografts and suggest that stromal hypoxia impacts the metastatic potential.

  15. New investigation on THz spectra of OH and SH radicals (X∏)

    Science.gov (United States)

    Martin-Drumel, M. A.; Eliet, S.; Pirali, O.; Guinet, M.; Hindle, F.; Mouret, G.; Cuisset, A.

    2012-10-01

    Pure rotational transitions of OH and SH radicals have been recorded in the THz spectral range using cw-THz and synchrotron-based FT-FIR techniques. Line lists on these radicals have been completed in the three and two lowest vibrational states for OH and SH, respectively. Furthermore, the hyperfine structure of OH and SH has been observed for the first time using infrared IR FT-spectroscopy, and at frequencies higher than 1 THz, respectively. A combined fit has been made for each of these radicals including v = 0, 1 and 2 for OH and v = 0 and 1 for SH.

  16. Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes

    Directory of Open Access Journals (Sweden)

    Shih-Han Kao

    2016-02-01

    Full Text Available Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT, metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation (TET proteins induces major epigenetic changes and controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine-specific dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which also serves as a co-activator of HIF-1α transcriptional regulation to modulate HIF-1α downstream target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor for tumor progression, hypoxia-activated prodrugs (HAPs may provide a favorable therapeutic approach to lessen hypoxia-induced malignancy.

  17. Radiation, hypoxia and genetic stimulation: implications for future therapies

    International Nuclear Information System (INIS)

    Adams, Gerald E.; Hasan, Na'il M.; Joiner, Michael C.

    1997-01-01

    The cellular stress response, whereby very low doses of cytotoxic agents induce resistance to much higher doses, is an evolutionary defence mechanism and is stimulated following challenges by numerous chemical, biological and physical agents including particularly radiation, drugs, heat and hypoxia. There is much homology in the effects of these agents which are manifest through the up-regulation of various genetic pathways. Low-dose radiation stress influences processes involved in cell-cycle control, signal transduction pathways, radiation sensitivity, changes in cell adhesion and cell growth. There is also homology between radiation and other cellular stress agents, particularly hypoxia. Whereas traditionally, hypoxia was regarded mainly as an agent conferring resistance to radiation, there is now much evidence illustrating the cytokine-like properties of hypoxia as well as radiation. Stress phenomena are likely to be important in risks arising from low doses of radiation. Conversely, exploitation of the stress response in settings appropriate to therapy can be particularly beneficial not only in regard to radiation alone but in combinations of radiation and drugs. Similarly, tissue hypoxia can be exploited in novel ways of enhancing therapeutic efficacy. Bioreductive drugs, which are cytotoxically activated in hypoxic regions of tissue, can be rendered even more effective by hypoxia-induced increased expression of enzyme reductases. Nitric oxide pathways are influenced by hypoxia thereby offering possibilities for novel vascular based therapies. Other approaches are discussed

  18. Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction.

    Science.gov (United States)

    Huang, Tao; Huang, Weiyi; Zhang, Zhiqiang; Yu, Lei; Xie, Caijun; Zhu, Dongan; Peng, Zizhuang; Chen, Jiehan

    2014-10-01

    Activated microglia were considered to be the toxic inflammatory mediators that induce neuron degeneration after brain ischemia. Hypoxia can enhance the expression of hypoxia-inducible factor-1α (HIF-1α) in microglia and cause microglial activation. However, intermittent hypoxia has been reported recently to be capable of protecting the body from myocardial ischemia. We established a high-altitude environment as the hypoxic condition in this study. The hypoxic condition displayed a neuroprotective effect after brain ischemia, and mice exposed to this condition presented better neurological performance and smaller infarct size. At the same time, a high level of HIF-1α, low level of isoform of nitric oxide synthase, and a reduction in microglial activation were also seen in ischemic focus of hypoxic mice. However, this neuroprotective effect could be blocked by 2-methoxyestradiol, the HIF-1α inhibitor. Our finding suggested that HIF-1α expression was involved in microglial activation in vitro and was regulated by oxygen supply. The microglia were inactivated by re-exposure to hypoxia, which might be due to overexpression of HIF-1α. These results indicated that hypoxic conditions can be exploited to achieve maximum neuroprotection after brain ischemia. This mechanism possibly lies in microglial inactivation through regulation of the expression of HIF-1α.

  19. Characterizing SH2 Domain Specificity and Network Interactions Using SPOT Peptide Arrays.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Src Homology 2 (SH2) domains are protein interaction modules that recognize and bind tyrosine phosphorylated ligands. Their ability to distinguish binding to over thousands of potential phosphotyrosine (pTyr) ligands within the cell is critical for the fidelity of receptor tyrosine kinase (RTK) signaling. Within humans there are over a hundred SH2 domains with more than several thousand potential ligands across many cell types and cell states. Therefore, defining the specificity of individual SH2 domains is critical for predicting and identifying their physiological ligands. Here, in this chapter, I describe the broad use of SPOT peptide arrays for examining SH2 domain specificity. An orientated peptide array library (OPAL) approach can uncover both favorable and non-favorable residues, thus providing an in-depth analysis to SH2 specificity. Moreover, I discuss the application of SPOT arrays for paneling SH2 ligand binding with physiological peptides.

  20. Hypoxia-based strategies for regenerative dentistry-Views from the different dental fields.

    Science.gov (United States)

    Müller, Anna Sonja; Janjić, Klara; Lilaj, Bledar; Edelmayer, Michael; Agis, Hermann

    2017-09-01

    The understanding of the cell biological processes underlying development and regeneration of oral tissues leads to novel regenerative approaches. Over the past years, knowledge on key roles of the hypoxia-based response has become more profound. Based on these findings, novel regenerative approaches for dentistry are emerging, which target cellular oxygen sensors. These approaches include hypoxia pre-conditioning and pharmacologically simulated hypoxia. The increase in studies on hypoxia and hypoxia-based strategies in regenerative dentistry highlights the growing attention to hypoxia's role in regeneration and its underlying biology, as well as its application in a therapeutic setting. In this narrative review, we present the current knowledge on the role of hypoxia in oral tissues and review the proposed hypoxia-based approaches in different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown

    Science.gov (United States)

    Moore, Chris B.; Guthrie, Elizabeth H.; Huang, Max Tze-Han; Taxman, Debra J.

    2013-01-01

    Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery. PMID:20387148

  2. Growth hormone transgenic tilapia (Oreochromis sp.) compensate for increased metabolic rate to preserve exercise performance and hypoxia tolerance

    DEFF Research Database (Denmark)

    McKenzie, D.J.; Martínez, R.; Morales, A.

    2001-01-01

    Transgenic tilapia hybrids (Oreochromis mossambicus × O. hornorum) carrying a single copy of a homologous cDNA growth hormone exhibit higher growth rates than their wild-type conspecifics (Martinez et al. 1999). Swimming respirometry was employed to determine whether the increased growth rate...... higher in transgenics, such that aerobic scope was similar in both groups, and there was no difference in maximum sustainable U (5.2 ± 0.5 vs. 4.5 ± 0.7 bl s-1 in transgenics vs. wild-types, respectively). Following 2 h recovery from exercise, tilapia were exposed to progressive hypoxia (stepwise......Pa, respectively). The results indicate that stimulation of growth consequent to ectopic expression of growth hormone in transgenic tilapia (Martinez et al. 1999) is linked to increased rates of maintenance metabolism. The swimming and hypoxia experiments indicate, however, that the transgenics were able...

  3. Towards Antiviral shRNAs Based on the AgoshRNA Design.

    Directory of Open Access Journals (Sweden)

    Ying Poi Liu

    Full Text Available RNA interference (RNAi can be induced by intracellular expression of a short hairpin RNA (shRNA. Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA. Dicer is also involved in microRNA (miRNA processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2 protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.

  4. Response of skeletal muscle mitochondria to hypoxia.

    Science.gov (United States)

    Hoppeler, Hans; Vogt, Michael; Weibel, Ewald R; Flück, Martin

    2003-01-01

    This review explores the current concepts relating the structural and functional modifications of skeletal muscle mitochondria to the molecular mechanisms activated when organisms are exposed to a hypoxic environment. In contrast to earlier assumptions it is now established that permanent or long-term exposure to severe environmental hypoxia decreases the mitochondrial content of muscle fibres. Oxidative muscle metabolism is shifted towards a higher reliance on carbohydrates as a fuel, and intramyocellular lipid substrate stores are reduced. Moreover, in muscle cells of mountaineers returning from the Himalayas, we find accumulations of lipofuscin, believed to be a mitochondrial degradation product. Low mitochondrial contents are also observed in high-altitude natives such as Sherpas. In these subjects high-altitude performance seems to be improved by better coupling between ATP demand and supply pathways as well as better metabolite homeostasis. The hypoxia-inducible factor 1 (HIF-1) has been identified as a master regulator for the expression of genes involved in the hypoxia response, such as genes coding for glucose transporters, glycolytic enzymes and vascular endothelial growth factor (VEGF). HIF-1 achieves this by binding to hypoxia response elements in the promoter regions of these genes, whereby the increase of HIF-1 in hypoxia is the consequence of a reduced degradation of its dominant subunit HIF-1a. A further mechanism that seems implicated in the hypoxia response of muscle mitochondria is related to the formation of reactive oxygen species (ROS) in mitochondria during oxidative phosphorylation. How exactly ROS interfere with HIF-1a as well as MAP kinase and other signalling pathways is debated. The current evidence suggests that mitochondria themselves could be important players in oxygen sensing.

  5. Dental size variation in the Atapuerca-SH Middle Pleistocene hominids.

    Science.gov (United States)

    Bermúdez de Castro, J M; Sarmiento, S; Cunha, E; Rosas, A; Bastir, M

    2001-09-01

    The Middle Pleistocene Atapuerca-Sima de los Huesos (SH) site in Spain has yielded the largest sample of fossil hominids so far found from a single site and belonging to the same biological population. The SH dental sample includes a total of 452 permanent and deciduous teeth, representing a minimum of 27 individuals. We present a study of the dental size variation in these hominids, based on the analysis of the mandibular permanent dentition: lateral incisors, n=29; canines, n=27; third premolars, n=30; fourth premolars, n=34; first molars, n=38; second molars, n=38. We have obtained the buccolingual diameter and the crown area (measured on occlusal photographs) of these teeth, and used the bootstrap method to assess the amount of variation in the SH sample compared with the variation of a modern human sample from the Museu Antropologico of the Universidade of Coimbra (Portugal). The SH hominids have, in general terms, a dental size variation higher than that of the modern human sample. The analysis is especially conclusive for the canines. Furthermore, we have estimated the degree of sexual dimorphism of the SH sample by obtaining male and female dental subsamples by means of sexing the large sample of SH mandibular specimens. We obtained the index of sexual dimorphism (ISD=male mean/female mean) and the values were compared with those obtained from the sexed modern human sample from Coimbra, and with data found in the literature concerning several recent human populations. In all tooth classes the ISD of the SH hominids was higher than that of modern humans, but the differences were generally modest, except for the canines, thus suggesting that canine size sexual dimorphism in Homo heidelbergensis was probably greater than that of modern humans. Since the approach of sexing fossil specimens has some obvious limitations, these results should be assessed with caution. Additional data from SH and other European Middle Pleistocene sites would be necessary to test

  6. Radioprotective effect of exogenic hypoxia in fractionated irradiation

    International Nuclear Information System (INIS)

    Kazymbetov, P.; Yarmonenko, S.P.; Vajnson, A.A.

    1988-01-01

    During the experiments with mice it is established, that exogenic hypoxia protective effect (8%O 2 ), evaluated according to survival rate, decreases at the change from single to fractionated irradiation. Dose change factor (DCF) is equal to 1.55 and 1.22-1.31, respectively. Skin protection using exogenic hypoxia at the local fractionated irradiation is expressed more, than at the fractionated one. DCF is equal to 1.56 and 1.28, respectively. Exogenic hypoxia protection effect in the tumor is expressed rather weakly. DCF at single and fractionated irradiation constitutes 1.03 and 1.07-1.13, respectively. Due to skin preferential protection the therapeutic gain factor at irradiation under the exogenic hypoxia conditions constitutes 1.24 and 1.38-1.46, respectively, at single and fractionated irradiation

  7. Hypoxia as a biomarker for radioresistant cancer stem cells.

    Science.gov (United States)

    Peitzsch, Claudia; Perrin, Rosalind; Hill, Richard P; Dubrovska, Anna; Kurth, Ina

    2014-08-01

    Tumor initiation, growth and relapse after therapy are thought to be driven by a population of cells with stem cell characteristics, named cancer stem cells (CSC). The regulation of their radiation resistance and their maintenance is poorly understood. CSC are believed to reside preferentially in special microenvironmental niches located within tumor tissues. The features of these niches are of crucial importance for CSC self-renewal, metastatic potential and therapy resistance. One of the characteristics of solid tumors is occurrence of less oxygenated (hypoxic regions), which are believed to serve as so-called hypoxic niches for CSC. The purpose of this review was the critical discussion of the supportive role of hypoxia and hypoxia-related pathways during cancer progression and radiotherapy resistance and the relevance for therapeutic implications in the clinic. It is generally known since decades that hypoxia inside solid tumors impedes chemo- and radiotherapy. However, there is limited evidence to date that targeting hypoxic regions during conventional therapy is effective. Nonetheless improved hypoxia-imaging technologies and image guided individualized hypoxia targeted therapy in conjunction with the development of novel molecular targets may be able to challenge the protective effect on the tumor provided by hypoxia.

  8. Radiation-induced hypoxia may perpetuate late normal tissue injury

    International Nuclear Information System (INIS)

    Vujaskovic, Zeljko; Anscher, Mitchell S.; Feng, Q.-F.; Rabbani, Zahid N.; Amin, Khalid; Samulski, Thaddeus S.; Dewhirst, Mark W.; Haroon, Zishan A.

    2001-01-01

    Purpose: The purpose of this study was to determine whether or not hypoxia develops in rat lung tissue after radiation. Methods and Materials: Fisher-344 rats were irradiated to the right hemithorax using a single dose of 28 Gy. Pulmonary function was assessed by measuring the changes in respiratory rate every 2 weeks, for 6 months after irradiation. The hypoxia marker was administered 3 h before euthanasia. The tissues were harvested at 6 weeks and 6 months after irradiation and processed for immunohistochemistry. Results: A moderate hypoxia was detected in the rat lungs at 6 weeks after irradiation, before the onset of functional or histopathologic changes. The more severe hypoxia, that developed at the later time points (6 months) after irradiation, was associated with a significant increase in macrophage activity, collagen deposition, lung fibrosis, and elevation in the respiratory rate. Immunohistochemistry studies revealed an increase in TGF-β, VEGF, and CD-31 endothelial cell marker, suggesting a hypoxia-mediated activation of the profibrinogenic and proangiogenic pathways. Conclusion: A new paradigm of radiation-induced lung injury should consider postradiation hypoxia to be an important contributing factor mediating a continuous production of a number of inflammatory and fibrogenic cytokines

  9. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Science.gov (United States)

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. © 2015 Wiley Periodicals, Inc.

  10. Caffeine reduces apnea frequency and enhances ventilatory long-term facilitation in rat pups raised in chronic intermittent hypoxia.

    Science.gov (United States)

    Julien, Cécile A; Joseph, Vincent; Bairam, Aida

    2010-08-01

    The mechanisms underlying the therapeutic function of caffeine on apneas in preterm neonates are not well determined. To better understand these effects, we exposed rat pups from postnatal d 3-12 to chronic intermittent hypoxia (5% O2/100 s every 10 min; 6 cycles/h followed by 1 h at 21% O2, 24 h/d), a model mimicking hypoxemic exposure in apneic neonates. Then, using whole-body plethysmography, we evaluated minute ventilation, apnea frequency, and duration after i.p injection of caffeine citrate (20 mg/kg) or saline under normoxia and in response to either sustained (FiO2 12%, 20 min) or brief (FiO2 5%, 60 s, total 10 episodes of 8 min each) hypoxia. These tests were used to assess peripheral and central components of hypoxic response. The latter also assessed the ventilatory long-term facilitation during recovery (2 h). Caffeine injection increased minute ventilation under baseline and during recovery. This effect was correlated with a decrease in apnea frequency (not duration). On the contrary, caffeine did not change the ventilatory response to sustained or brief hypoxic exposure. These results suggest that the effects of caffeine on apnea depend on increased central normoxic respiratory drive and enhancement of ventilatory long-term facilitation rather than on higher hypoxic ventilatory response.

  11. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region.

    Science.gov (United States)

    Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E

    2015-08-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.

  12. Distinct mechanisms of a phosphotyrosyl peptide binding to two SH2 domains.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2014-05-01

    Protein phosphorylation is very common post-translational modification, catalyzed by kinases, for signaling and regulation. Phosphotyrosines frequently target SH2 domains. The spleen tyrosine kinase (Syk) is critical for tyrosine phosphorylation of multiple proteins and for regulation of important pathways. Phosphorylation of both Y342 and Y346 in Syk linker B is required for optimal signaling. The SH2 domains of Vav1 and PLC-γ both bind this doubly phosphorylated motif. Here we used a recently developed method to calculate the effects of Y342 and Y346 phosphorylation on the rate constants of a peptide from Syk linker B binding to the SH2 domains of Vav1 and PLC-γ. The predicted effects agree well with experimental observations. Moreover, we found that the same doubly phosphorylated peptide binds the two SH2 domains via distinct mechanisms, with apparent rigid docking for Vav1 SH2 and dock-and-coalesce for PLC-γ SH2.

  13. Where is the happy Ending of Shāhnāma?

    OpenAIRE

    بهروز چمن آرا

    2015-01-01

    The renowned proverb “Shāhnāma axarash xoš ast” has implicit question which its answer may change our understanding of the nature and function of Shāhnāma. The end of Shāhnāma contains numerous tragic events in Sassanid age. Also it does not seem to be normal if the Iranians have deemed the bitter adventure of the Shahs and Pahlavāns as a happy ending like what Firdausi narrates at the end of his Shāhnāma. This article tries to reply the main question using an illustration on the story platfo...

  14. Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming

    Science.gov (United States)

    Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.

    2018-04-01

    Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.

  15. Design of potentially active ligands for SH2 domains by molecular modeling methods

    Directory of Open Access Journals (Sweden)

    Hurmach V. V.

    2014-07-01

    Full Text Available Search for new chemical structures possessing specific biological activity is a complex problem that needs the use of the latest achievements of molecular modeling technologies. It is well known that SH2 domains play a major role in ontogenesis as intermediaries of specific protein-protein interactions. Aim. Developing an algorithm to investigate the properties of SH2 domain binding, search for new potential active compounds for the whole SH2 domains class. Methods. In this paper, we utilize a complex of computer modeling methods to create a generic set of potentially active compounds targeting universally at the whole class of SH2 domains. A cluster analysis of all available three-dimensional structures of SH2 domains was performed and general pharmacophore models were formulated. The models were used for virtual screening of collection of drug-like compounds provided by Enamine Ltd. Results. The design technique for library of potentially active compounds for SH2 domains class was proposed. Conclusions. The original algorithm of SH2 domains research with molecular docking method was developed. Using our algorithm, the active compounds for SH2 domains were found.

  16. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The radiation response of cells recovering after chronic hypoxia

    International Nuclear Information System (INIS)

    Kwok, T.T.; Sutherland, R.M.

    1989-01-01

    Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment

  18. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    International Nuclear Information System (INIS)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M.; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume

    2015-01-01

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target

  19. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Quistgaard, Esben M. [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Nordlund, Par [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Thanabalu, Thirumaran [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Torres, Jaume, E-mail: jtorres@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore)

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  20. Quantitative analysis of ChIP-seq data uncovers dynamic and sustained H3K4me3 and H3K27me3 modulation in cancer cells under hypoxia.

    Science.gov (United States)

    Adriaens, Michiel E; Prickaerts, Peggy; Chan-Seng-Yue, Michelle; van den Beucken, Twan; Dahlmans, Vivian E H; Eijssen, Lars M; Beck, Timothy; Wouters, Bradly G; Voncken, Jan Willem; Evelo, Chris T A

    2016-01-01

    A comprehensive assessment of the epigenetic dynamics in cancer cells is the key to understanding the molecular mechanisms underlying cancer and to improving cancer diagnostics, prognostics and treatment. By combining genome-wide ChIP-seq epigenomics and microarray transcriptomics, we studied the effects of oxygen deprivation and subsequent reoxygenation on histone 3 trimethylation of lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in a breast cancer cell line, serving as a model for abnormal oxygenation in solid tumors. A priori, epigenetic markings and gene expression levels not only are expected to vary greatly between hypoxic and normoxic conditions, but also display a large degree of heterogeneity across the cell population. Where traditionally ChIP-seq data are often treated as dichotomous data, the model and experiment here necessitate a quantitative, data-driven analysis of both datasets. We first identified genomic regions with sustained epigenetic markings, which provided a sample-specific reference enabling quantitative ChIP-seq data analysis. Sustained H3K27me3 marking was located around centromeres and intergenic regions, while sustained H3K4me3 marking is associated with genes involved in RNA binding, translation and protein transport and localization. Dynamic marking with both H3K4me3 and H3K27me3 (hypoxia-induced bivalency) was found in CpG-rich regions at loci encoding factors that control developmental processes, congruent with observations in embryonic stem cells. In silico -identified epigenetically sustained and dynamic genomic regions were confirmed through ChIP-PCR in vitro, and obtained results are corroborated by published data and current insights regarding epigenetic regulation.

  1. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment.

    Science.gov (United States)

    Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I; Smithgall, Thomas E

    2014-10-10

    HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Interaction with the Src Homology (SH3-SH2) Region of the Src-family Kinase Hck Structures the HIV-1 Nef Dimer for Kinase Activation and Effector Recruitment*

    Science.gov (United States)

    Alvarado, John Jeff; Tarafdar, Sreya; Yeh, Joanne I.; Smithgall, Thomas E.

    2014-01-01

    HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners. PMID:25122770

  3. R-spondin3-LGR4 signaling protects hepatocytes against DMOG-induced hypoxia/reoxygenation injury through activating β-catenin.

    Science.gov (United States)

    Liu, Shiying; Yin, Yue; Yu, Ruili; Li, Yin; Zhang, Weizhen

    2018-04-30

    Leucine-rich repeat G-protein-coupled receptor 4 (LGR4) and its ligands R-spondin1-4 (Rspos) have been vastly investigated in embryonic development. The biological functions of Rspos-LGR4 system in liver remains largely unknown. Here, we explored whether it protects hepatocytes against hypoxia/reoxygenation (H/R) induced damage. H/R injury was induced by dimethyloxalylglycine (DMOG) in AML12 cells and the effects of Rspo3 on cell proliferation and apoptosis were assessed. Specific shRNAs were used to interfere LGR4 or β-catenin. DMOG caused hepatocytes damage evidenced by increase in HIF-1α, cell death and apoptosis genes p27 and Bax, with concurrent decrease of cell proliferation genes PCNA and CyclinD1. Of all the Rspos, Rspo3 is predominantly expressed in AML12 hepatocytes. Importantly, Rspo3 demonstrated an alteration in a manner similar to proliferation-related genes during H/R injury. Rspo3 pretreatment rendered hepatocytes less vulnerable to DMOG induced H/R injury. Ablation of LGR4 using shRNA attenuated the protective effects of Rspo3. Wnt3a also protected AML12 cells from damages caused by H/R, showing enhanced proliferation activity. Notably, knockdown of β-catenin in hepatocytes completely abolished the effect of Rspo3 pretreatment on the expression levels of PCNA and CyclinD1. Rspo3-LGR4 axis protects hepatocytes from H/R injury via activating β-catenin. Copyright © 2018. Published by Elsevier Inc.

  4. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  5. Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.

    Science.gov (United States)

    Salmone, R J; Van Lunteren, E

    1991-08-01

    Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.

  6. Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications.

    Directory of Open Access Journals (Sweden)

    Jose L Ortega Roldan

    Full Text Available SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.

  7. Hypoxia independent drivers of melanoma angiogenesis

    Directory of Open Access Journals (Sweden)

    Svenja eMeierjohann

    2015-05-01

    Full Text Available Tumor angiogenesis is a process which is traditionally regarded as the tumor`s response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a prerequisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia independent mechanisms of tumor angiogenesis in melanoma.

  8. Effects of natural and human-induced hypoxia on coastal benthos

    Science.gov (United States)

    Levin, L. A.; Ekau, W.; Gooday, A. J.; Jorissen, F.; Middelburg, J. J.; Naqvi, S. W. A.; Neira, C.; Rabalais, N. N.; Zhang, J.

    2009-10-01

    Coastal hypoxia (defined here as branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages. Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below 2 ml L-1, typically involve avoidance or mortality of large species and elevated abundances of enrichment opportunists, sometimes prior to population crashes. Areas of low oxygen persist seasonally or continuously beneath upwelling regions, associated with the upper parts of oxygen minimum zones (SE Pacific, W Africa, N Indian Ocean). These have a distribution largely distinct from eutrophic areas and support a resident fauna that is adapted to survive and reproduce at oxygen concentrations <0.5 ml L-1. Under both natural and eutrophication-caused hypoxia there is loss of diversity, through attrition of intolerant species and elevated dominance, as well as reductions in body size. These shifts in species composition and diversity yield altered trophic structure, energy flow pathways, and corresponding ecosystem services such as production, organic matter cycling and organic C burial. Increasingly the influences of nature and humans interact to generate or exacerbate hypoxia. A warmer ocean is more stratified, holds less oxygen, and may experience greater advection of oxygen-poor source

  9. Hypoxia-induced retinopathy model in adult zebrafish

    DEFF Research Database (Denmark)

    Cao, Ziquan; Jensen, Lasse D.; Rouhi, Pegah

    2010-01-01

    Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available....... In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1: EGFP zebrafish are placed in hypoxic water for 3-10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia......-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs....

  10. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement.

    Directory of Open Access Journals (Sweden)

    Jamie A Moroco

    Full Text Available Src-family kinases (SFKs are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12 to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.

  11. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes.

    Science.gov (United States)

    Ruchko, Mykhaylo V; Gorodnya, Olena M; Pastukh, Viktor M; Swiger, Brad M; Middleton, Natavia S; Wilson, Glenn L; Gillespie, Mark N

    2009-02-01

    Reactive oxygen species (ROS) generated in hypoxic pulmonary artery endothelial cells cause transient oxidative base modifications in the hypoxia-response element (HRE) of the VEGF gene that bear a conspicuous relationship to induction of VEGF mRNA expression (K.A. Ziel et al., FASEB J. 19, 387-394, 2005). If such base modifications are indeed linked to transcriptional regulation, then they should be detected in HRE sequences associated with transcriptionally active nucleosomes. Southern blot analysis of the VEGF HRE associated with nucleosome fractions prepared by micrococcal nuclease digestion indicated that hypoxia redistributed some HRE sequences from multinucleosomes to transcriptionally active mono- and dinucleosome fractions. A simple PCR method revealed that VEGF HRE sequences harboring oxidative base modifications were found exclusively in mononucleosomes. Inhibition of hypoxia-induced ROS generation with myxathiozol prevented formation of oxidative base modifications but not the redistribution of HRE sequences into mono- and dinucleosome fractions. The histone deacetylase inhibitor trichostatin A caused retention of HRE sequences in compacted nucleosome fractions and prevented formation of oxidative base modifications. These findings suggest that the hypoxia-induced oxidant stress directed at the VEGF HRE requires the sequence to be repositioned into mononucleosomes and support the prospect that oxidative modifications in this sequence are an important step in transcriptional activation.

  12. Rosette Assay: Highly Customizable Dot-Blot for SH2 Domain Screening.

    Science.gov (United States)

    Ng, Khong Y; Machida, Kazuya

    2017-01-01

    With a growing number of high-throughput studies, structural analyses, and availability of protein-protein interaction databases, it is now possible to apply web-based prediction tools to SH2 domain-interactions. However, in silico prediction is not always reliable and requires experimental validation. Rosette assay is a dot blot-based reverse-phase assay developed for the assessment of binding between SH2 domains and their ligands. It is conveniently customizable, allowing for low- to high-throughput analysis of interactions between various numbers of SH2 domains and their ligands, e.g., short peptides, purified proteins, and cell lysates. The binding assay is performed in a 96-well plate (MBA or MWA apparatus) in which a sample spotted membrane is incubated with up to 96 labeled SH2 domains. Bound domains are detected and quantified using a chemiluminescence or near-infrared fluorescence (IR) imaging system. In this chapter, we describe a practical protocol for rosette assay to assess interactions between synthesized tyrosine phosphorylated peptides and a library of GST-tagged SH2 domains. Since the methodology is not confined to assessment of SH2-pTyr interactions, rosette assay can be broadly utilized for ligand and drug screening using different protein interaction domains or antibodies.

  13. Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.

    Science.gov (United States)

    Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin

    2015-05-01

    Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.

  14. Conformational determinants of phosphotyrosine peptides complexed with the Src SH2 domain.

    Directory of Open Access Journals (Sweden)

    Joseph Nachman

    2010-06-01

    Full Text Available The inhibition of specific SH2 domain mediated protein-protein interactions as an effective chemotherapeutic approach in the treatment of diseases remains a challenge. That different conformations of peptide-ligands are preferred by different SH2 domains is an underappreciated observation from the structural analysis of phosphotyrosine peptide binding to SH2 domains that may aid in future drug design. To explore the nature of ligand binding, we use simulated annealing (SA to sample the conformational space of phosphotyrosine-containing peptides complexed with the Src SH2 domain. While in good agreement with the crystallographic and NMR studies of high-affinity phosphopeptide-SH2 domain complexes, the results suggest that the structural basis for phopsphopeptide- Src SH2 interactions is more complex than the "two-pronged plug two-hole socket" model. A systematic study of peptides of type pYEEX, where pY is phosphotyrosine and X is a hydrophobic residue, indicates that these peptides can assume two conformations, one extended and one helical, representing the balance between the interaction of residue X with the hydrophobic hole on the surface of the Src SH2 domain, and its contribution to the inherent tendency of the two glutamic acids to form an alpha-helix. In contrast, a beta-turn conformation, almost identical to that observed in the crystal structure of pYVNV bound to the Grb2 SH2 domain, predominates for pYXNX peptides, even in the presence of isoleucine at the third position. While peptide binding affinities, as measured by fluorescence polarization, correlate with the relative proportion of extended peptide conformation, these results suggest a model where all three residues C-terminal to the phosphotyrosine determine the conformation of the bound phosphopeptide. The information obtained in this work can be used in the design of specific SH2 domain inhibitors.

  15. Hypoxia regulates the expression of the neuromedin B receptor through a mechanism dependent on hypoxia-inducible factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyun-Joo Park

    Full Text Available The neuromedin B receptor (NMB-R, a member of the mammalian bombesin receptor family, is frequently overexpressed in various tumors. In the present study, we found that exposure to hypoxic conditions increases the levels of NMBR mRNA and protein in breast cancer cells, which are tightly regulated by hypoxia-inducible factor-1α (HIF-1α. We confirmed the effect of HIF-1α on NMBR transcription by performing an NMBR promoter-driven reporter assay and then identified a functional hypoxia-responsive element (HRE in the human NMBR promoter region. Further, the binding of HIF-1α to the NMBR promoter was corroborated by electrophoretic mobility shift and chromatin immunoprecipitation assays, which showed that HIF-1α specifically and directly bound to the NMBR promoter in response to hypoxia. Immunohistochemical analysis of a xenograft and a human breast cancer tissue array revealed a significant correlation between NMB-R and HIF-1α expression. Taken together, our findings indicate that hypoxia induces NMB-R expression through a novel mechanism to regulate HIF-1α expression in breast cancer cells.

  16. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    International Nuclear Information System (INIS)

    Rauen, Thomas; Frye, Bjoern C.; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R.

    2016-01-01

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.

  17. Shear horizontal wave excitation and reception with shear horizontal piezoelectric wafer active sensor (SH-PWAS)

    International Nuclear Information System (INIS)

    Kamal, A; Giurgiutiu, V

    2014-01-01

    This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient d 35 are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models. (paper)

  18. Cognition Effects of Low-Grade Hypoxia

    Science.gov (United States)

    2016-07-01

    human short-term memory . Br J Anaesth. 1971; 43(6):548–552. 3. Crow TJ, Kelman GR. Psychological effects of mild acute hypoxia. Br J Anaesth. 1973; 45...Journal Article 3. DATES COVERED (From – To) Jan 2003 – Sep 2005 4. TITLE AND SUBTITLE Cognition Effects of Low-Grade Hypoxia 5a. CONTRACT NUMBER... cognitive function are reported in this paper. The study compared cognitive function during short exposures at four different altitudes. Ninety-one

  19. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    Energy Technology Data Exchange (ETDEWEB)

    Scherbakov, Alexander M., E-mail: alex.scherbakov@gmail.com [Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Berstein, Lev M. [Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758 (Russian Federation); Krasil’nikov, Mikhail A. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation)

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  20. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    Science.gov (United States)

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  1. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia.

    Science.gov (United States)

    Wang, N; Kang, H S; Ahmmed, G; Khan, S A; Makarenko, V V; Prabhakar, N R; Nanduri, J

    2016-03-01

    Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH. Copyright © 2016 the American Physiological Society.

  2. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  3. Impact of Hypoxia on the Metastatic Potential of Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Dai Yao; Bae, Kyungmi; Siemann, Dietmar W.

    2011-01-01

    Purpose: Intratumoral hypoxia is known to be associated with radioresistance and metastasis. The present study examined the effect of acute and chronic hypoxia on the metastatic potential of prostate cancer PC-3, DU145, and LNCaP cells. Methods and Materials: Cell proliferation and clonogenicity were tested by MTT assay and colony formation assay, respectively. 'Wound-healing' and Matrigel-based chamber assays were used to monitor cell motility and invasion. Hypoxia-inducible factor 1 alpha (HIF-1α) expression was tested by Western blot, and HIF-1-target gene expression was detected by real-time polymerase chain reaction. Secretion of matrix metalloproteinases (MMPs) was determined by gelatin zymography. Results: When PC-3 cells were exposed to 1% oxygen (hypoxia) for various periods of time, chronic hypoxia (≥24 h) decreased cell proliferation and induced cell death. In contrast, prostate cancer cells exposed to acute hypoxia (≤6 h) displayed increased motility, clonogenic survival, and invasive capacity. At the molecular level, both hypoxia and anoxia transiently stabilized HIF-1α. Exposure to hypoxia also induced the early expression of MMP-2, an invasiveness-related gene. Treatment with the HIF-1 inhibitor YC-1 attenuated the acute hypoxia-induced migration, invasion, and MMP-2 activity. Conclusions: The length of oxygen deprivation strongly affected the functional behavior of all three prostate cancer cell lines. Acute hypoxia in particular was found to promote a more aggressive metastatic phenotype.

  4. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  5. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    International Nuclear Information System (INIS)

    Iyer, Soumya C; Kannan, Anbarasu; Gopal, Ashidha; Devaraj, Niranjali; Halagowder, Devaraj

    2015-01-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy

  6. Steering elastic SH waves in an anomalous way by metasurface

    Science.gov (United States)

    Cao, Liyun; Yang, Zhichun; Xu, Yanlong

    2018-03-01

    Metasurface, which does not exist in nature, has exhibited exotic essence on the manipulation of both electromagnetic and acoustic waves. In this paper, the concept of metasurface is extended to the field of elastic SH waves, and the anomalous refractions of SH waves across the designed elastic SH wave metasurfaces (SHWMs) are demonstrated numerically. Firstly, a SHWM is designed with supercells, each supercell is composed of four subunits. It is demonstrated that this configuration has the ability of deflecting the vertical and oblique incident waves in an arbitrary desired direction. Then, a unique SHWM with supercell composed of only two subunits is designed. Numerical simulation shows its ability of splitting the vertical and oblique incident waves into two tunable transmitted wave beams, respectively. In the process of steering SH waves, it is also found that two kinds of leakages of transmitted waves across the designed SHWM will occur in some particular situations, which will affect the desired transmitted wave. The mechanisms of the leakages, which are different from that of the common high-order diffraction mentioned in existing literatures, are revealed. The current study can offer theoretical guidance not only for designing devices of directional ultrasonic detection and splitting SH waves but also for steering other kinds of classical waves.

  7. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  8. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  9. Brain adaptation to hypoxia and hyperoxia in mice

    Directory of Open Access Journals (Sweden)

    Laura Terraneo

    2017-04-01

    Conclusion: Prolonged mild hyperoxia leads to persistent cerebral damage, comparable to that inferred by prolonged mild hypoxia. The underlying mechanism appears related to a model whereby the imbalance between ROS generation and anti-ROS defense is similar, but occurs at higher levels in hypoxia than in hyperoxia.

  10. [Effect of intermittent hypoxia of sleep apnea on embryonic rat cortical neurons in vitro].

    Science.gov (United States)

    Zhang, Chanjuan; Li, Yanzhong; Wang, Yan

    2015-05-01

    To investigate the effects of different pattens of intermittent hypoxia on the activity and apoptosis of primary cultured rat embryonic cortical neurons, and to evaluate the role of intermittent hypoxia in the mechanism of obstructive sleep syndrom induced cognitive function loss. The embryonic cerebral cortical neurons were cultured in vitro and were identified by immunofluorescence. Cultured neurons were randomly divided into intermittent hypoxia group, intermittent normal oxygen group, persistent hypoxia group and the control group, and intermittent hypoxia group was divided into five subgroups according to different frequency and time-bound. Neurons were exposed in different modes of hypoxia. MTT colorimetry was used to detect the viability of the neurons, and DAPI colorated measurement was used to calculate the percentages of neuron apoptosis. There were significantly different effects between all subgroups of intermittent hypoxia and the continued hypoxia group on neuronal activity and apoptosis (P Intermittent hypoxia groups with different frequency and time had no difference in neuronal activity and apoptosis (P > 0.05). The effect of intermittent hypoxia was more serious than that of continued hypoxia on neuronal activity and apoptosis; The impact of intermittent hypoxia on neuronal activity and apoptosis may be an important factor in obstructive sleep apnea related cognitive impairment.

  11. Air exposure behavior of the semiterrestrial crab Neohelice granulata allows tolerance to severe hypoxia but not prevent oxidative damage due to hypoxia-reoxygenation cycle.

    Science.gov (United States)

    de Lima, Tábata Martins; Geihs, Márcio Alberto; Nery, Luiz Eduardo Maia; Maciel, Fábio Everton

    2015-11-01

    The air exposure behavior of the semi-terrestrial crab Neohelice granulata during severe hypoxia was studied. This study also verified whether this behavior mitigates possible oxidative damage, namely lipoperoxidation, caused by hypoxia and reoxygenation cycles. The lethal time for 50% of the crabs subjected to severe hypoxia (0.5 mgO2 · L(-1)) with free access to air was compared to that of crabs subjected to severe hypoxia without access to air. Crabs were placed in aquaria divided into three zones: water (when the animal was fully submersed), land (when the animal was completely emerged) and intermediate (when the animal was in contact with both environments) zones. Then the crabs were held in this condition for 270 min, and the time spent in each zone was recorded. Lipid peroxidation (LPO) damage to the walking leg muscles was determined for the following four experimental conditions: a--normoxic water with free access to air; b--hypoxic water without access to air; c--hypoxic water followed by normoxic water without air access; and d--hypoxic water with free access to air. When exposed to hypoxic water, N. granulata spent significantly more time on land, 135.3 ± 17.7 min, whereas control animals (exposed to normoxic water) spent more time submerged, 187.4 ± 20.2 min. By this behavior, N. granulata was able to maintain a 100% survival rate when exposed to severe hypoxia. However, N. granulata must still return to water after periods of air exposure (~ 14 min), causing a sequence of hypoxia/reoxygenation events. Despite increasing the survival rate, hypoxia with air access does not decrease the lipid peroxidation damage caused by the hypoxia and reoxygenation cycle experienced by these crabs.

  12. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    Science.gov (United States)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  13. Vitamin E supplementation inhibits muscle damage and inflammation after moderate exercise in hypoxia.

    Science.gov (United States)

    Santos, S A; Silva, E T; Caris, A V; Lira, F S; Tufik, S; Dos Santos, R V T

    2016-08-01

    Exercise under hypoxic conditions represents an additional stress in relation to exercise in normoxia. Hypoxia induces oxidative stress and inflammation as mediated through tumour necrosis factor (TNF)-α release that might be exacerbated through exercise. In addition, vitamin E supplementation might attenuate oxidative stress and inflammation resulting from hypoxia during exercise. The present study aimed to evaluate the effects of vitamin E supplementation (250 mg) on inflammatory parameters and cellular damage after exercise under hypoxia simulating an altitude of 4200 m. Nine volunteers performed three sessions of 60 min of exercise (70% maximal oxygen uptake) interspersed for 1 week under normoxia, hypoxia and hypoxia after vitamin E supplementation 1 h before exercise. Blood was collected before, immediately after and at 1 h after exercise to measure inflammatory parameters and cell damage. Percentage oxygen saturation of haemoglobin decreased after exercise and recovered 1 h later in the hypoxia + vitamin condition (P exercise (P exercise in hypoxia increased interleukin (IL)-6, TNF-α, IL-1ra and IL-10 immediately after exercise (P exercise in hypoxia without supplementation (P exercise reduces cell damage markers after exercise in hypoxia and changes the concentration of cytokines, suggesting a possible protective effect against inflammation induced by hypoxia during exercise. © 2016 The British Dietetic Association Ltd.

  14. Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy?

    Science.gov (United States)

    Harrison, Louis; Blackwell, Kimberly

    2004-01-01

    Hypoxia is a common feature of solid tumors that occurs across a wide variety of malignancies. Hypoxia and anemia (which contributes to tumor hypoxia) can lead to ionizing radiation and chemotherapy resistance by depriving tumor cells of the oxygen essential for the cytotoxic activities of these agents. Hypoxia may also reduce tumor sensitivity to radiation therapy and chemotherapy through one or more indirect mechanisms that include proteomic and genomic changes. These effects, in turn, can lead to increased invasiveness and metastatic potential, loss of apoptosis, and chaotic angiogenesis, thereby further increasing treatment resistance. Investigations of the prognostic significance of pretreatment tumor oxygenation status have shown that hypoxia (oxygen tension [pO(2)] value effect of hypoxia on standard cancer treatment, a variety of hypoxia- and anemia-targeted therapies have been studied in an effort to improve therapeutic effectiveness and patient outcomes. Early evidence from experimental and clinical studies suggests the administration of recombinant human erythropoietin (rHuEPO) may enhance the effectiveness of radiation therapy and chemotherapy by increasing hemoglobin levels and ameliorating anemia in patients with disease- or treatment-related anemia. However, further research is needed in the area of hypoxia-related treatment resistance and its reversal.

  15. Deciphering Phosphotyrosine-Dependent Signaling Networks in Cancer by SH2 Profiling

    Science.gov (United States)

    Machida, Kazuya; Khenkhar, Malik

    2012-01-01

    It has been a decade since the introduction of SH2 profiling, a modular domain-based molecular diagnostics tool. This review covers the original concept of SH2 profiling, different analytical platforms, and their applications, from the detailed analysis of single proteins to broad screening in translational research. Illustrated by practical examples, we discuss the uniqueness and advantages of the approach as well as its limitations and challenges. We provide guidance for basic researchers and oncologists who may consider SH2 profiling in their respective cancer research, especially for those focusing on tyrosine phosphoproteomics. SH2 profiling can serve as an alternative phosphoproteomics tool to dissect aberrant tyrosine kinase pathways responsible for individual malignancies, with the goal of facilitating personalized diagnostics for the treatment of cancer. PMID:23226573

  16. NEAR-INFRARED IMAGING OF THE STAR-FORMING REGIONS SH2-157 AND SH2-152

    International Nuclear Information System (INIS)

    Chen Yafeng; Yang Ji; Zeng Qin; Yao Yongqiang; Sato, Shuji

    2009-01-01

    Near-infrared JHK' and H 2 v = 1-0 S (1) imaging observations of the star-forming regions Sh2-157 and Sh2-152 are presented. The data reveal a cluster of young stars associated with H 2 line emission in each region. Additionally, many IR point sources are found in the dense core of each molecular cloud. Most of these sources exhibit infrared color excesses typical of T Tauri stars, Herbig Ae/Be stars, and protostars. Several display the characteristics of massive stars. We calculate histograms of the K'-magnitude and [H - K'] color for all sources, as well as two-color and color-magnitude diagrams. The stellar populations inside and outside the clusters are similar, suggesting that these systems are rather evolved. Shock-driven H 2 emission knots are also detected, which may be related to evident subclusters in an earlier evolutionary stage.

  17. Human erythropoietin response to hypocapnic hypoxia, normocapnic hypoxia, and hypocapnic normoxia

    DEFF Research Database (Denmark)

    Klausen, T; Christensen, H; Hansen, J M

    1996-01-01

    This study investigated the human erythropoietin (EPO) response to short-term hypocapnic hypoxia, its relationship to a normoxic or hypoxic increase of the haemoglobin oxygen affinity, and its suppression by the addition of CO2 to the hypoxic gas. On separate days, eight healthy male subjects were...

  18. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ragnum, Harald Bull [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Røe, Kathrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Holm, Ruth; Vlatkovic, Ljiljana [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Nesland, Jahn Marthin [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Aarnes, Eva-Katrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Ree, Anne Hansen [Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Flatmark, Kjersti [Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Department of Gastrointestinal Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Seierstad, Therese [Department of Radiology and Nuclear Medicine, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Faculty of Health Sciences, Buskerud University College, Drammen (Norway); Lilleby, Wolfgang [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Lyng, Heidi, E-mail: heidi.lyng@rr-research.no [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  19. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-01-01

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  20. Hypoxia-inducible factors - regulation, role and comparative aspects in tumourigenesis

    DEFF Research Database (Denmark)

    Hansen, A E; Kristensen, A T; Law, I

    2011-01-01

    important prognostic information and may help identify potential hypoxia circumventing and targeting strategies. This review summarizes current knowledge on HIF regulation and function in tumour cells and discusses the aspects of using companion animals as comparative spontaneous cancer models. Spontaneous...... tumours in companion animals hold a great research potential for the evaluation and understanding of tumour hypoxia and in the development of hypoxia-targeting therapeutics....

  1. Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

    Science.gov (United States)

    Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian

    2012-01-01

    Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501

  2. Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains▿ †

    OpenAIRE

    Bellot, Grégory; Garcia-Medina, Raquel; Gounon, Pierre; Chiche, Johanna; Roux, Danièle; Pouysségur, Jacques; Mazure, Nathalie M.

    2009-01-01

    While hypoxia-inducible factor (HIF) is a major actor in the cell survival response to hypoxia, HIF also is associated with cell death. Several studies implicate the HIF-induced putative BH3-only proapoptotic genes bnip3 and bnip3l in hypoxia-mediated cell death. We, like others, do not support this assertion. Here, we clearly demonstrate that the hypoxic microenvironment contributes to survival rather than cell death by inducing autophagy. The ablation of Beclin1, a major actor of autophagy,...

  3. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Joanne L., E-mail: jlbanks@student.unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Ross, D. Jeff, E-mail: Jeff.Ross@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia); Keough, Michael J., E-mail: mjkeough@unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Eyre, Bradley D., E-mail: bradley.eyre@scu.edu.au [Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, PO Box 157, Lismore, NSW, 2480 Australia (Australia); Macleod, Catriona K., E-mail: Catriona.Macleod@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia)

    2012-03-15

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O{sub 2} levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O{sub 2} depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: Black-Right-Pointing-Pointer Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. Black-Right-Pointing-Pointer As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. Black

  4. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    International Nuclear Information System (INIS)

    Banks, Joanne L.; Ross, D. Jeff; Keough, Michael J.; Eyre, Bradley D.; Macleod, Catriona K.

    2012-01-01

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O 2 levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O 2 depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment–water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: ► Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. ► As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. ► Flux of these metals from 3 sites was not related to total sediment metal

  5. Palaeodemography of the Atapuerca-SH Middle Pleistocene hominid sample.

    Science.gov (United States)

    Bermúdez de Castro, J M; Nicolás, M E

    1997-01-01

    We report here on the palaeodemographic analysis of the hominid sample recovered to date from the Sima de los Huesos (SH) Middle Pleistocene cave site in the Sierra de Atapuerca (Burgos, Spain). The analysis of the mandibular, maxillary, and dental remains has made it possible to estimate that a minimum of 32 individuals, who probably belonged to the same biological population, are represented in the current SH human hypodigm. The remains of nine-individuals are assigned to males, and nine to females, suggesting that a 1:1 sex ratio characterizes this hominid sample. The survivorship curve shows a low representation of infants and children, a high mortality among the adolescents and prime-age adults, and a low older adult mortality. Longevity was probably no greater than 40 years. This mortality pattern (adolescents and adults); which in some aspects resembles that observed in Neandertals, is quite different from those reported for recent foraging human groups. The adult age-at-death distribution of the SH hominid sample appears to be neither the consequence of underaging the older adults, nor of differential preservation or of the recognition of skeletal remains. Thus if we accept that they had a life history pattern similar to that of modern humans there would appear to be a clear contradiction between the demographic distribution and the demographic viability of the population represented by the SH hominid fossils. The possible representational bias of the SH hominid sample, as well as some aspects of the reproductive biology of the Pleistocene populations are also discussed.

  6. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    Science.gov (United States)

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Beom Ju; Kim, Jong Woo; Jeong, Hoi Bin; Bok, Seo Yeon; Kim, Young Eun; Ahn, G One [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of ‘reoxygenation’ phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because ‘reoxygenation’ is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn’t it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy.

  8. Kinetic modeling in PET imaging of hypoxia

    Science.gov (United States)

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  9. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  10. Solution structure of tensin2 SH2 domain and its phosphotyrosine-independent interaction with DLC-1.

    Directory of Open Access Journals (Sweden)

    Kun Dai

    Full Text Available Src homology 2 (SH2 domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1 via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode.Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five β-strands flanked by two α-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1 as well as phosphorylated ligand.We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner.

  11. Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data.

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Huber, Michael; Reth, Michael; Backofen, Rolf

    2013-01-01

    Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2

  12. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

    Directory of Open Access Journals (Sweden)

    Richard J Kraus

    2017-06-01

    Full Text Available When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs. We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV. Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK and gingival epithelial (hGET cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for

  13. Selective Targeting of SH2 Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies

    Energy Technology Data Exchange (ETDEWEB)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-01

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.

  14. Is hypoxia training good for muscles and exercise performance?

    Science.gov (United States)

    Vogt, Michael; Hoppeler, Hans

    2010-01-01

    Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

  15. ExoMol molecular line lists - XXVI: spectra of SH and NS

    Science.gov (United States)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-07-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X2Π ground state for 32SH, 33SH, 34SH,36SH and, 32SD, and 14N32S, 14N33S, 14N34S, 14N36S, and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms-fitting error of 0.002 cm-1. Each NS-calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range up to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS data base. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  16. A simple and robust vector-based shRNA expression system used for RNA interference.

    Science.gov (United States)

    Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi

    2013-01-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  17. Effects of hypoxia on serum hepatic chemistries of Tibet chicken and ...

    African Journals Online (AJOL)

    Hypoxia is a major factor that affects the subsistence and development of multicellular organisms. Tibet chicken, as a unique native chicken breed in altiplano, shows genetic adaptation to hypoxia comparing with the breeds at the low altitude. In the present study, to explore effects of hypoxia on chicken fetal livers, eggs of ...

  18. Infrared Spectra and Band Strengths of CH3SH, an Interstellar Molecule

    Science.gov (United States)

    Hudson, R. L.

    2016-01-01

    Three solid phases of CH3SH (methanethiol or methyl mercaptan) have been prepared and their mid-infrared spectra recorded at 10-110 degrees Kelvin, with an emphasis on the 17-100 degrees Kelvin region. Refractive indices have been measured at two temperatures and used to estimate ice densities and infrared band strengths. Vapor pressures for the two crystalline phases of CH3SH at 110 degrees Kelvin are estimated. The behavior of amorphous CH3SH on warming is presented and discussed in terms of Ostwald's step rule. Comparisons to CH3OH under similar conditions are made, and some inconsistencies and ambiguities in the CH3SH literature are examined and corrected.

  19. Frequently asked questions in hypoxia research

    Directory of Open Access Journals (Sweden)

    Wenger RH

    2015-09-01

    Full Text Available Roland H Wenger,1,2 Vartan Kurtcuoglu,1,2 Carsten C Scholz,1,2 Hugo H Marti,3 David Hoogewijs1,2,4 1Institute of Physiology and Zurich Center for Human Physiology (ZIHP, University of Zurich, 2National Center of Competence in Research “Kidney.CH”, Zurich, Switzerland; 3Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, 4Institute of Physiology, University of Duisburg-Essen, Essen, Germany Abstract: “What is the O2 concentration in a normoxic cell culture incubator?” This and other frequently asked questions in hypoxia research will be answered in this review. Our intention is to give a simple introduction to the physics of gases that would be helpful for newcomers to the field of hypoxia research. We will provide background knowledge about questions often asked, but without straightforward answers. What is O2 concentration, and what is O2 partial pressure? What is normoxia, and what is hypoxia? How much O2 is experienced by a cell residing in a culture dish in vitro vs in a tissue in vivo? By the way, the O2 concentration in a normoxic incubator is 18.6%, rather than 20.9% or 20%, as commonly stated in research publications. And this is strictly only valid for incubators at sea level. Keywords: gas laws, hypoxia-inducible factor, Krogh tissue cylinder, oxygen diffusion, partial pressure, tissue oxygen levels

  20. Hypoxanthine as a measurement of hypoxia.

    Science.gov (United States)

    Saugstad, O D

    1975-04-01

    The hypoxanthine concentration in plasma was found to be a sensitive parameter of hypoxia of the fetus and the newborn infant. The plasma level of hypoxanthine in the umbilical cord in 29 newborn infants with normal delivery varied between 0 and 11.0 mumol/liter with a mean of 5.8 mumol/liter, SD 3.0 mumol/liter. Compared with this reference group the hypoxanthine concentration in plasma of the umbilical cord in 10 newborn infants with clinical signs of intrauterine hypoxia during labor was found to be significantly higher, with a range of 11.0-61.5 mumol/liter, with a mean of 25.0 mumol/liter, SD 18.0 mumol/liter. The plasma level of hypoxanthine in two premature babies developing an idiopathic respiratory distress syndrome was monitored. The metabolite was found to be considerably increased, in one of them more than 24 hr after a period of hypoxia necessitating artificial ventilation. The hypoxanthine level in plasma of umbilical arterial blood was followed about 2 hr postpartum in three newborn infants with clinical signs of intrauterine hypoxia. The decrease of the plasma concentration of the metabolite seemed to be with a constant velocity, as it was about 10 mumol/liter/hr in these cases. A new method was used for the determination of hypoxanthine in plasma, based on the principle that PO2 decreased when hypoxanthine is oxidized to uric acid.

  1. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effect of hypoxia on thallium kinetics in cultured chick myocardial cells

    International Nuclear Information System (INIS)

    Friedman, B.J.; Beihn, R.; Friedman, J.P.

    1987-01-01

    To assess the effect of hypoxia on cellular thallium-201 ( 201 Tl) uptake and washout independent of coronary flow, we studied thallium kinetics during normoxia and hypoxia in cultured chick ventricular cells. Monolayers of contracting ventricular cells grown on coverslips were placed in a chamber and perfused to asymptote with media containing 201 Tl. Perfusates were equilibrated with 5% CO 2 -95% air or 5% CO 2 -95% nitrogen for normoxia and hypoxia, respectively. Washout thallium kinetics were then observed during perfusion with unlabeled media. Twenty paired experiments were performed, randomly alternating the sequence of normoxia and hypoxia. Pharmacokinetics for thallium were determined by computer using standard formulae. Thallium uptake and washout were best described by assuming that intracellular thallium was contained within a single compartment. Cellular thallium uptake, as well as transfer rate constants for thallium uptake and for thallium washout during normoxia and hypoxia, were compared using paired t-tests. During normoxia and hypoxia, respectively, thallium uptake was 22 +/- 7% and 19 +/- 7% of asymptote (p less than 0.01); the compartmental rate constant for uptake by the cell was 0.16 +/- 0.07 min-1 and 0.15 +/- 0.06 min-1 (N.S.); and the transfer rate constant for washout from the cell was 0.26 +/- 0.06 min-1 and 0.23 +/- 0.05 min-1 (p less than 0.01). We conclude that there was a small (14%) decrease in thallium uptake during hypoxia. The rate of thallium uptake and washout was slightly less during hypoxia, although only the rate of washout was significantly less. These data show that cellular accumulation of thallium and the rate of washout of thallium were minimally decreased by hypoxia independent of blood flow

  3. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

    Directory of Open Access Journals (Sweden)

    Raffi Tonikian

    2009-10-01

    Full Text Available SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

  4. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    Science.gov (United States)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  5. Induction of Gastrin Expression in Gastrointestinal Cells by Hypoxia or Cobalt Is Independent of Hypoxia-Inducible Factor (HIF)

    OpenAIRE

    Xiao, Lin; Kovac, Suzana; Chang, Mike; Shulkes, Arthur; Baldwin, Graham S.; Patel, Oneel

    2012-01-01

    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporte...

  6. Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.

    Science.gov (United States)

    Basting, Tyler M; Burke, Peter G R; Kanbar, Roy; Viar, Kenneth E; Stornetta, Daniel S; Stornetta, Ruth L; Guyenet, Patrice G

    2015-01-14

    In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. We bilaterally transduced RTN and nearby C1 neurons with Arch (PRSx8-ArchT-EYFP-LVV) and measured the cardiorespiratory consequences of Arch activation (10 s) in conscious rats during normoxia, hypoxia, or hyperoxia. RTN photoinhibition reduced breathing equally during non-REM sleep and quiet wake. Compared with normoxia, the breathing frequency reduction (Δf(R)) was larger in hyperoxia (65% FiO2), smaller in 15% FiO2, and absent in 12% FiO2. Tidal volume changes (ΔV(T)) followed the same trend. The effect of hypoxia on Δf(R) was not arousal-dependent but was reversed by reacidifying the blood (acetazolamide; 3% FiCO2). Δf(R) was highly correlated with arterial pH up to arterial pH (pHa) 7.5 with no frequency inhibition occurring above pHa 7.53. Blood pressure was minimally reduced suggesting that C1 neurons were very modestly inhibited. In conclusion, RTN neurons regulate eupneic breathing about equally during both sleep and wake. RTN neurons are the first putative CRCs demonstrably silenced by hypocapnic hypoxia in conscious mammals. RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN. Copyright © 2015 the authors 0270-6474/15/350527-17$15.00/0.

  7. Hypoxia-induced dysfunction of rat diaphragm: role of peroxynitrite.

    NARCIS (Netherlands)

    Zhu, X.; Heunks, L.M.A.; Versteeg, E.M.M.; Heijden, E. van der; Ennen, L.; Kuppevelt, A.H.M.S.M. van; Vina, J.; Dekhuijzen, P.N.R.

    2005-01-01

    Oxidants may play a role in hypoxia-induced respiratory muscle dysfunction. In the present study we hypothesized that hypoxia-induced impairment in diaphragm contractility is associated with elevated peroxynitrite generation. In addition, we hypothesized that strenuous contractility of the diaphragm

  8. The SH2D2A gene and susceptibility to multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, A.R.; Smestad, C.; Lie, B.A.

    2008-01-01

    We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid...... that the SH2D2A gene may contribute to susceptibility to MS Udgivelsesdato: 2008/7/15...

  9. SH003 suppresses breast cancer growth by accumulating p62 in autolysosomes.

    Science.gov (United States)

    Choi, Youn Kyung; Cho, Sung-Gook; Choi, Yu-Jeong; Yun, Yee Jin; Lee, Kang Min; Lee, Kangwook; Yoo, Hye-Hyun; Shin, Yong Cheol; Ko, Seong-Gyu

    2017-10-24

    Drug markets revisits herbal medicines, as historical usages address their therapeutic efficacies with less adverse effects. Moreover, herbal medicines save both cost and time in development. SH003, a modified version of traditional herbal medicine extracted from Astragalus membranaceus (Am), Angelica gigas (Ag), and Trichosanthes Kirilowii Maximowicz (Tk) with 1:1:1 ratio (w/w) has been revealed to inhibit tumor growth and metastasis on highly metastatic breast cancer cells, both in vivo and in vitro with no toxicity. Meanwhile, autophagy is imperative for maintenance cellular homeostasis, thereby playing critical roles in cancer progression. Inhibition of autophagy by pharmacological agents induces apoptotic cell death in cancer cells, resulting in cancer treatment. In this study, we demonstrate that SH003-induced autophagy via inhibiting STAT3 and mTOR results in an induction of lysosomal p62/SQSTM1 accumulation-mediated reactive oxygen species (ROS) generation and attenuates tumor growth. SH003 induced autophagosome and autolysosome formation by inhibiting activation of STAT3- and mTOR-mediated signaling pathways. However, SH003 blocked autophagy-mediated p62/SQSTM1 degradation through reducing of lysosomal proteases, Cathepsins, resulting in accumulation of p62/SQSTM1 in the lysosome. The accumulation of p62/SQSTM1 caused the increase of ROS, which resulted in the induction of apoptotic cell death. Therefore, we conclude that SH003 suppresses breast cancer growth by inducing autophagy. In addition, SH003-induced p62/SQSTM1 could function as an important mediator for ROS generation-dependent cell death suggesting that SH003 may be useful for treating breast cancer.

  10. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.

    Science.gov (United States)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-05

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    Science.gov (United States)

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Effects of intermittent hypoxia on running economy.

    Science.gov (United States)

    Burtscher, M; Gatterer, H; Faulhaber, M; Gerstgrasser, W; Schenk, K

    2010-09-01

    We investigated the effects of two 5-wk periods of intermittent hypoxia on running economy (RE). 11 male and female middle-distance runners were randomly assigned to the intermittent hypoxia group (IHG) or to the control group (CG). All athletes trained for a 13-wk period starting at pre-season until the competition season. The IHG spent additionally 2 h at rest on 3 days/wk for the first and the last 5 weeks in normobaric hypoxia (15-11% FiO2). RE, haematological parameters and body composition were determined at low altitude (600 m) at baseline, after the 5 (th), the 8 (th) and the 13 (th) week of training. RE, determined by the relative oxygen consumption during submaximal running, (-2.3+/-1.2 vs. -0.3+/-0.7 ml/min/kg, Ptraining phase. Georg Thieme Verlag KG Stuttgart . New York.

  13. Functional diversity of Csk, Chk, and Src SH2 domains due to a single residue variation.

    Science.gov (United States)

    Ayrapetov, Marina K; Nam, Nguyen Hai; Ye, Guofeng; Kumar, Anil; Parang, Keykavous; Sun, Gongqin

    2005-07-08

    The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.

  14. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Kyoung [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Park, Sae-Gwang; Choi, Il-Whan [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Soo-Woong [Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Sang Min [Department of Internal Medicine, Division of Hematology/Oncology, Busan Paik Hospital, Inje University, Busan 614-735 (Korea, Republic of); Choi, Inhak, E-mail: miccih@inje.ac.kr [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of)

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  15. Susceptibility to hypoxia and breathing control changes after short-term cold exposures

    Directory of Open Access Journals (Sweden)

    Lyudmila T. Kovtun

    2013-08-01

    Full Text Available Background . Hypoxia is the reduction of oxygen availability due to external or internal causes. There is large individual variability of response to hypoxia. Objective . The aim of this study was to define individual and typological features in susceptibility to hypoxia, its interrelation with hypoxic and hypercapnic ventilatory responses (HVR and HCVR, respectively and their changes after cold acclimation. Design . Twenty-four healthy men were tested. HVR and HCVR were measured by the rebreathing method during hypoxic and hypercapnic tests, respectively. These tests were carried out in thermoneutral conditions before and after cold exposures (nude, at 13°C, 2 h daily, for 10 days. Susceptibility to hypoxia (sSaO2 was determined as haemoglobin saturation slope during hypoxic test. Results . It was found that HVR and HCVR significantly increased and susceptibility to hypoxia (sSaO2 tended to decrease after cold acclimation. According to sSaO2 results before cold exposures, the group was divided into 3: Group 1 – with high susceptibility to hypoxia, Group 2 – medium and Group 3 – low susceptibility. Analysis of variances (MANOVA shows the key role of susceptibility to hypoxia and cold exposures and their interrelation. Posterior analysis (Fisher LSD showed significant difference in susceptibility to hypoxia between the groups prior to cold acclimation, while HVR and HCVR did not differ between the groups. After cold acclimation, susceptibility to hypoxia was not significantly different between the groups, while HCVR significantly increased in Groups 1 and 3, HVR significantly increased in Group 3 and HCVR, HVR did not change in Group 2. Conclusions . Short-term cold exposures caused an increase in functional reserves and improved oxygen supply of tissues in Group 1. Cold exposure hypoxia has caused energy loss in Group 3. Group 2 showed the most appropriate energy conservation reaction mode to cold exposures. No relation was found between

  16. Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Kumar Anil

    2010-10-01

    Full Text Available Abstract Background The ability to respond to changes in the extra-intracellular environment is prerequisite for cell survival. Cellular responses to the environment include elevating defense systems, such as the antioxidant defense system. Hypoxia-evoked reactive oxygen species (ROS-driven oxidative stress is an underlying mechanism of retinal ganglion cell (RGC death that leads to blinding disorders. The protein peroxiredoxin 6 (PRDX6 plays a pleiotropic role in negatively regulating death signaling in response to stressors, and thereby stabilizes cellular homeostasis. Results We have shown that RGCs exposed to hypoxia (1% or hypoxia mimetic cobalt chloride display reduced expression of PRDX6 with higher ROS expression and activation of NF-κB. These cells undergo apoptosis, while cells with over-expression of PRDX6 demonstrate resistance against hypoxia-driven RGC death. The RGCs exposed to hypoxia either with 1% oxygen or cobalt chloride (0-400 μM, revealed ~30%-70% apoptotic cell death after 48 and 72 h of exposure. Western analysis and real-time PCR showed elevated expression of PRDX6 during hypoxia at 24 h, while PRDX6 protein and mRNA expression declined from 48 h onwards following hypoxia exposure. Concomitant with this, RGCs showed increased ROS expression and activation of NF-κB with IkB phosphorylation/degradation, as examined with H2DCF-DA and transactivation assays. These hypoxia-induced adverse reactions could be reversed by over-expression of PRDX6. Conclusion Because an abundance of PRDX6 in cells was able to attenuate hypoxia-induced RGC death, the protein could possibly be developed as a novel therapeutic agent acting to postpone RGC injury and delay the progression of glaucoma and other disorders caused by the increased-ROS-generated death signaling related to hypoxia.

  17. A simple and robust vector-based shRNA expression system used for RNA interference.

    Directory of Open Access Journals (Sweden)

    Xue-jun Wang

    Full Text Available BACKGROUND: RNA interference (RNAi mediated by small interfering RNAs (siRNAs or short hairpin RNAs (shRNAs has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. RESULTS: In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. CONCLUSION: This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  18. Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases.

    Science.gov (United States)

    Zhao, Bing; Tan, Pauline H; Li, Shawn S C; Pei, Dehua

    2013-04-09

    Cytoplasmic tyrosine kinases (CTK) generally contain a Src-homology 2 (SH2) domain, whose role in the CTK family is not fully understood. Here we report the determination of the specificity of 25 CTK SH2 domains by screening one-bead-one-compound (OBOC) peptide libraries. Based on the peptide sequences selected by the SH2 domains, we built Support Vector Machine (SVM) models for the prediction of binding ligands for the SH2 domains. These models yielded support for the progressive phosphorylation model for CTKs in which the overlapping specificity of the CTK SH2 and kinase domains has been proposed to facilitate targeting of the CTK substrates with at least two potential phosphotyrosine (pTyr) sites. We curated 93 CTK substrates with at least two pTyr sites catalyzed by the same CTK, and showed that 71% of these substrates had at least two pTyr sites predicted to bind a common CTK SH2 domain. More importantly, we found 34 instances where there was at least one pTyr site predicted to be recognized by the SH2 domain of the same CTK, suggesting that the SH2 and kinase domains of the CTKs may cooperate to achieve progressive phosphorylation of a protein substrate. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Elevation of hypoxia resistance with the use of gutimine

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V.M.; Pastushenkov, L.V.; Sumina, E.N.

    Experimental data demonstrating the protection from the adverse effects of hypoxia offered by the antioxidant gutimine and its analogs are presented. The experiments included preliminary studies of hypoxia resistance and recovery under simulated altitude, studies of circulatory hypoxia in the brain and in intrauterine fetuses, studies of myocardial ischemia during acute and chronic experiments and studies where cardiac, kidney and limb circulation is cut off. The compound was also found to be effective in cases of hemorrhagic hypotension, complex hypoxia in peritonitis, meningococcal meningitis, and the weakening of uterine muscle contractility during prolonged deliveries, and in cranial-cerebral trauma. Mechanisms of the antihypoxic action of gutimine and its analogs have been found to include the reduction of oxygen utilization, the activation of aerobic and anaerobic metabolism, the acceleration of lactate utilization, the inhibition of lipolysis in fat tissue, and stabilization of cell membranes. Clinical observations also support the experimental data.

  20. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae.

    Science.gov (United States)

    Musi, Valeria; Birdsall, Berry; Fernandez-Ballester, Gregorio; Guerrini, Remo; Salvatori, Severo; Serrano, Luis; Pastore, Annalisa

    2006-04-01

    SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.

  1. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis.

    Science.gov (United States)

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara

    2009-10-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.

  2. Midcervical neuronal discharge patterns during and following hypoxia

    Science.gov (United States)

    Sandhu, M. S.; Baekey, D. M.; Maling, N. G.; Sanchez, J. C.; Reier, P. J.

    2014-01-01

    Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3–C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3–C4 lamina I–IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3–C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia. PMID:25552641

  3. The effects of exercise under hypoxia on cognitive function.

    Directory of Open Access Journals (Sweden)

    Soichi Ando

    Full Text Available Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15. Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time and response accuracy. We monitored pulse oximetric saturation (SpO2 and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.

  4. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.

    Science.gov (United States)

    Aprelikova, Olga; Chandramouli, Gadisetti V R; Wood, Matthew; Vasselli, James R; Riss, Joseph; Maranchie, Jodi K; Linehan, W Marston; Barrett, J Carl

    2004-06-01

    Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation. Copyright 2004 Wiley-Liss, Inc.

  5. Comparing the effect of hypercapnia and hypoxia on the electroencephalogram during wakefulness.

    Science.gov (United States)

    Wang, David; Yee, Brendon J; Wong, Keith K; Kim, Jong Won; Dijk, Derk-Jan; Duffin, James; Grunstein, Ronald R

    2015-01-01

    Hypoxia has been postulated as a key mechanism for neurocognitive impairment in sleep-disordered breathing. However, the effect of hypoxia on the electroencephalogram (EEG) is not clear. We examined quantitative EEG recordings from 20 normal volunteers under three 5-min ventilatory control protocols: progressive hypercapnia with iso-hyperoxia (pO2=150mmHg) (Protocol 1), progressive hypercapnia with iso-hypoxia (pO2=50mmHg) (Protocol 2), and progressive hypoxia with a CO2 scrubber in the circuit (Protocol 3). Each protocol started with a 5-min session of breathing room air as baseline. In Protocol 1, compared to its baseline, iso-hyperoxia hypercapnia led to a lower Alpha% and higher Delta/Alpha (D/A) ratio. Similarly, in Protocol 2, the iso-hypoxia hypercapnia induced a higher Delta%, a lower Alpha% and higher D/A ratio. No difference was found in any EEG spectral band including the D/A ratio when Protocols 1 & 2 were compared. In Protocol 3, the Delta%, Alpha% and D/A ratio recorded during hypoxia were not significantly different from baseline. We found that hypercapnia, but not hypoxia, may play a key role in slowing of the EEG in healthy humans. Hypercapnia may be a greater influence than hypoxia on brain neuroelectrical activities. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    DEFF Research Database (Denmark)

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas

    2014-01-01

    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using...

  7. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    Science.gov (United States)

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  8. Short hairpin RNA interference therapy for ischemic heart disease

    Science.gov (United States)

    Huang, Mei; Chan, Denise; Jia, Fangjun; Xie, Xiaoyan; Li, Zongjin; Hoyt, Grant; Robbins, Robert C.; Chen, Xiaoyuan; Giaccia, Amato; Wu, Joseph C.

    2013-01-01

    Background During hypoxia, upregulation of hypoxia inducible factor-1 alpha (HIF-1α) transcriptional factor can activate several downstream angiogenic genes. However, HIF-1α is naturally degraded by prolyl hydroxylase-2 (PHD2) protein. Here we hypothesize that short hairpin RNA (shRNA) interference therapy targeting PHD2 can be used for treatment of myocardial ischemia and this process can be followed noninvasively by molecular imaging. Methods and Results PHD2 was cloned from mouse embryonic stem (ES) cells by comparing the homolog gene in human and rat. The best candidate shRNA sequence for inhibiting PHD2 was inserted into the pSuper vector driven by the H1 promoter, followed by a separate hypoxia response element (HRE)-incorporated promoter driving a firefly luciferase (Fluc) reporter gene. This construct was used to transfect mouse C2C12 myoblast cell line for in vitro confirmation. Compared to the control short hairpin scramble (shScramble) as control, inhibition of PHD2 increased levels of HIF-1α protein and several downstream angiogenic genes by >30% (P<0.01). Afterwards, shRNA targeting PHD2 (shPHD2) plasmid was injected intramyocardially following ligation of left anterior descending (LAD) artery in mice. Animals were randomized into shPHD2 group (n=20) versus shScramble sequence as control (n=20). Bioluminescence imaging detected transgene expression for 4–5 weeks. Echocardiographic study showed the shPHD2 group had improved fractional shortening compared with the shScramble group at week 4 (33.7%±1.9% vs. 28.4%±2.8%; P<0.05). Postmortem analysis showed increased presence of small capillaries and venules in the infarcted zones by CD31 staining. Finally, Western blot anlaysis of explanted hearts also confirm that animals treated with shPHD2 had significantly higher levels of HIF-1α protein. Conclusions This is the first study to image the biological role of shRNA therapy for improving cardiac function. Inhibition of PHD2 by shRNA led to

  9. Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway

    International Nuclear Information System (INIS)

    Luo, FengMing; Liu, XiaoJing; Yan, NaiHong; Li, ShuangQing; Cao, GuiQun; Cheng, QingYing; Xia, QingJie; Wang, HongJing

    2006-01-01

    Hypoxia-inducible transcription factor-1α (HIF-1α), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a 'master' gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1α on apoptosis by modulating HIF-1α gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1α siRNA plasmid or a HIF-1α expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1α inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1α accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1α on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1α over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1α promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis

  10. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  11. Application of a fiber Fabry-Perot interferometer sensor for receiving SH-EMAT signals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk; Kim, Dae Hyun; Park, Ik Keun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-04-15

    Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-Prot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

  12. An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2013-11-01

    Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage. Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and

  13. Hypoxic hypoxia as a means of modifying radiosensibility

    International Nuclear Information System (INIS)

    Neumeister, K.; Niemiec, C.; Bolck, M.; Jahns, J.; Kamprad, F.; Arnold, P.; Johannsen, U.; Koch, F.; Mehlhorn, G.

    1977-01-01

    Following an overview of the various possibilities of creating hypoxia in mammals, the problem of reducing radioresistance of hypoxic tumor cells is treated. Furthermore, the results of irradiation experiments with mice, rats and pigs breathing hypoxic mixtures of O 2 and N 2 are given and discussed with a view to applying hypoxic hypoxia in the radiotherapy of human tumors. (author)

  14. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dose prescription and treatment planning based on FMISO-PET hypoxia

    International Nuclear Information System (INIS)

    Toma-Dasu, Iuliana; Antonovic, Laura; Uhrdin, Johan; Dasu, Alexandru; Nuyts, Sandra; Dirix, Piet; Haustermans, Karin; Brahme, Anders

    2012-01-01

    Purpose. The study presents the implementation of a novel method for incorporating hypoxia information from PET-CT imaging into treatment planning and estimates the efficiency of various optimization approaches. Its focuses on the feasibility of optimizing treatment plans based on the non-linear conversion of PET hypoxia images into radiosensitivity maps from the uptake properties of the tracers used. Material and methods. PET hypoxia images of seven head-and-neck cancer patients were used to determine optimal dose distributions needed to counteract the radiation resistance associated with tumor hypoxia assuming various scenarios regarding the evolution of the hypoxic compartment during the treatment. A research planning system for advanced studies has been used to optimize IMRT plans based on hypoxia information from patient PET images. These resulting plans were compared in terms of target coverage for the same fulfilled constraints regarding the organs at risk. Results. The results of a planning study indicated the clinical feasibility of the proposed method for treatment planning based on PET hypoxia. Antihypoxic strategies would lead to small improvements in all the patients, but higher effects are expected for the fraction of patients with hypoxic tumors. For these, individualization of the treatment based on hypoxia PET imaging could lead to improved treatment outcome while creating the premises for limiting the irradiation of the surrounding normal tissues. Conclusions. The proposed approach offers the possibility of improved treatment results as it takes into consideration the heterogeneity and the dynamics of the hypoxic regions. It also provides early identification of the clinical cases that might benefit from dose escalation as well as the cases that could benefit from other counter-hypoxic measures

  16. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  17. Wind rotor power station BONI-ShHV

    International Nuclear Information System (INIS)

    Bolotov, A.V.

    1999-01-01

    Wind rotor power station (WRPS) BONI-ShHV has following advantages : the increase of installation stability by rise of wind velocity and rotation speed of rotor due to gyroscopic effect; the absence noise and vibration; the safety for birds and animals; ability of compact installation and creation of series of wind power dams with higher capacity; the simplicity and fast assembling and putting into operation. The price of 1 k W of installing capacity is lower about 2.5-3 times compare to usual WRPS due to simple kinematic scheme. WRPS has high specific output of electrical energy due to use of low and long existing wind velocity and due to short storms, giving greater power. It has ability to be replayed when average annual wind velocity is above 5.5 m/s in comparison with propeller WRPS, which are never repaying. WRPS BONI-ShHV are made on the plants of Republic of Kazakhstan, and tested in wind velocity range up 45 m/s, have experience of 3 years of operation, showing their reliability and effectiveness. The repayment period of individual WRPS BONI-0.5/6 ShHV is from 10 month to 1 year depending on average annual velocity

  18. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.

    Science.gov (United States)

    Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne

    2010-05-01

    Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.

  19. The MeSH model for hospital-physician joint ventures.

    Science.gov (United States)

    Anderson, J G

    1985-01-01

    The MeSH (Medical Staff-Hospital Joint Venture Company) concept has arisen to meet the perceived need for hospital-physician cooperation in a modern age of prospective payment systems, increased supply of health-care providers, cost conscious consumers, corporate health care organizations, and a general trend toward industrialization of health care. Supply and demand economics have created a situation which threatens the autonomy and financial integrity of both hospitals ans physicians, forcing cooperation or mutual destruction. MeSH seeks to preserve the autonomy and financial integrity of both parties through the creation of a free-standing business entity jointly owned by a hospital and those members of its medical staff who choose to participate. This article presents reasons for the need for cooperation, the objectives of MeSH, a description of its structure and operation, and a list of potential projects the program could include.

  20. Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults.

    Science.gov (United States)

    Newhouse, Lauren P; Joyner, Michael J; Curry, Timothy B; Laurenti, Marcello C; Man, Chiara Dalla; Cobelli, Claudio; Vella, Adrian; Limberg, Jacqueline K

    2017-01-01

    An independent association exists between sleep apnea and diabetes. Animal models suggest exposure to intermittent hypoxia, a consequence of sleep apnea, results in altered glucose metabolism and fasting hyperglycemia. However, it is unknown if acute exposure to intermittent hypoxia increases glucose concentrations in nondiabetic humans. We hypothesized plasma glucose would be increased from baseline following 3 h of intermittent hypoxia in healthy humans independent of any effect on insulin sensitivity. Eight (7M/1F, 21-34 years) healthy subjects completed two study visits randomized to 3 h of intermittent hypoxia or continuous normoxia, followed by an oral glucose tolerance test. Intermittent hypoxia consisted of 25 hypoxic events per hour where oxygen saturation (SpO 2 ) was significantly reduced (Normoxia: 97 ± 1%, Hypoxia: 90 ± 2%, P  0.05). In contrast, circulating glucose concentrations were increased after 3 h of intermittent hypoxia when compared to baseline (5.0 ± 0.2 vs. 5.3 ± 0.2 mmol/L, P = 0.01). There were no detectable changes in insulin sensitivity following intermittent hypoxia when compared to continuous normoxia, as assessed by the oral glucose tolerance test (P > 0.05). Circulating glucose is increased after 3 h of intermittent hypoxia in healthy humans, independent of any lasting changes in insulin sensitivity. These novel findings could explain, in part, the high prevalence of diabetes in patients with sleep apnea and warrant future studies to identify underlying mechanisms. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Flexibility of the myosin heavy chain: direct evidence that the region containing SH/sub 1/ and SH/sub 2/ can move 10 /Angstrom/ under the influence of nucleotide binding

    Energy Technology Data Exchange (ETDEWEB)

    Huston, E.E.; Grammer, J.C.; Yount, R.G.

    1988-12-13

    Previous experiments demonstrated that two thiols of skeletal myosin subfragment 1 (SF/sub 1/) could be oxidized to a disulfide bond by treatment with a 2-fold excess of 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) in the presence of MgADP. The resulting characteristic changes in the ATPase activities of SF/sub 1/ and the fact that MgADP was stably trapped at the active site, suggested that the two thiols cross-linked were SH/sub 1/ (Cys-707) and SH/sub 2/ (Cys-697) from the myosin heavy chain. To verify this suggestion, SF/sub 1/, after DTNB treatment as above, was treated with an excess of N-ethylmaleimide to block all accessible thiols. The single protein disulfide produced by DTNB oxidation was reduced with dithioerythritol and the modified SF/sub 1/ internally cross-linked with equimolar (/sup 14/C)p-phenylenedimaleimide (pPDM) in the presence of MgADP. After extensive trypsinization, the major /sup 14/C-labeled peptide was isolated, characterized, and shown to be Cys-Asn-Gly-Val-Leu-Gly-Ile-Arg-Ile-Cys-Arg, in which the two cysteines were cross-linked by pPDM. This peptide is known to contain SH/sub 2/ and SH/sub 1/ in this order and to come from residues 697-708 in the rabbit skeletal myosin heavy chain. Parallel experiments with (/sup 14/C)pPDM and unmodified SF/sub 1/ similar to those above gave an identical SH/sub 1/, SH/sub 2/ tryptic peptide, verifying earlier labeling results. These combined results demonstrate that SH/sub 1/ and SH/sub 2/ cross-linked by pPDM (12-13 /Angstrom/, S to S) or by oxidation with DTNB (2 /Angstrom/, S to S) can move a minimum of 10 /Angstrom/ under the influence of nucleotide binding. Because these residues are separated by only nine amino acids in the primary sequence, this small section of the heavy chain must possess extraordinary flexibility.

  2. Effects of natural and human-induced hypoxia on coastal benthos

    Directory of Open Access Journals (Sweden)

    L. A. Levin

    2009-10-01

    Full Text Available Coastal hypoxia (defined here as <1.42 ml L−1; 62.5 μM; 2 mg L−1, approx. 30% oxygen saturation develops seasonally in many estuaries, fjords, and along open coasts as a result of natural upwelling or from anthropogenic eutrophication induced by riverine nutrient inputs. Permanent hypoxia occurs naturally in some isolated seas and marine basins as well as in open slope oxygen minimum zones. Responses of benthos to hypoxia depend on the duration, predictability, and intensity of oxygen depletion and on whether H2S is formed. Under suboxic conditions, large mats of filamentous sulfide oxidizing bacteria cover the seabed and consume sulfide. They are hypothesized to provide a detoxified microhabitat for eukaryotic benthic communities. Calcareous foraminiferans and nematodes are particularly tolerant of low oxygen concentrations and may attain high densities and dominance, often in association with microbial mats. When oxygen is sufficient to support metazoans, small, soft-bodied invertebrates (typically annelids, often with short generation times and elaborate branchial structures, predominate. Large taxa are more sensitive than small taxa to hypoxia. Crustaceans and echinoderms are typically more sensitive to hypoxia, with lower oxygen thresholds, than annelids, sipunculans, molluscs and cnidarians. Mobile fish and shellfish will migrate away from low-oxygen areas. Within a species, early life stages may be more subject to oxygen stress than older life stages.

    Hypoxia alters both the structure and function of benthic communities, but effects may differ with regional hypoxia history. Human-caused hypoxia is generally linked to eutrophication, and occurs adjacent to watersheds with large populations or agricultural activities. Many occurrences are seasonal, within estuaries, fjords or enclosed seas of the North Atlantic and the NW Pacific Oceans. Benthic faunal responses, elicited at oxygen levels below

  3. Hypoxia and Angiogenesis in Endometrioid Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Nicole Horrée

    2007-01-01

    Full Text Available Background: Hypoxia-inducible factor 1α (HIF-1α plays an essential role in the adaptive response of cells to hypoxia, triggering biologic events associated with aggressive tumor behavior. Methods: Expression of HIF-1α and proteins in the HIF-1α pathway (Glut-1, CAIX, VEGF in paraffin-embedded specimens of normal (n = 17, premalignant (n = 17 and endometrioid endometrial carcinoma (n = 39 was explored by immunohistochemistry, in relation to microvessel density (MVD. Results: HIF-1α overexpression was absent in inactive endometrium but present in hyperplasia (61% and carcinoma (87%, with increasing expression in a perinecrotic fashion pointing to underlying hypoxia. No membranous expression of Glut-1 and CAIX was noticed in inactive endometrium, in contrast with expression in hyperplasia (Glut-1 0%, CAIX 61%, only focal and diffuse and carcinoma (Glut-1 94.6%, CAIX 92%, both mostly perinecrotically. Diffuse HIF-1α was accompanied by activation of downstream targets. VEGF was significantly higher expressed in hyperplasias and carcinomas compared to inactive endometrium. MVD was higher in hyperplasias and carcinomas than in normal endometrium (p < 0.001. Conclusion: HIF-1α and its downstream genes are increasingly expressed from normal through premalignant to endometrioid adenocarcinoma of the endometrium, paralleled by activation of its downstream genes and increased angiogenesis. This underlines the potential importance of hypoxia and its key regulator HIF-1α in endometrial carcinogenesis.

  4. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  5. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Willbold Dieter

    2003-05-01

    Full Text Available Abstract Background Protein tyrosine kinases are involved in signal transduction pathways that regulate cell growth, differentiation, activation and transformation. Human lymphocyte specific kinase (Lck is a 56 kDa protein involved in T-cell- and IL2-receptor signaling. Three-dimensional structures are known for SH3, SH2 and kinase domains of Lck as well as for other tyrosine kinases. No structure is known for the unique domain of any Src-type tyrosine kinase. Results Lck(1–120 comprising unique and SH3 domains was structurally investigated by nuclear magnetic resonance spectroscopy. We found the unique domain, in contrast to the SH3 part, to have basically no defined structural elements. The solution structure of the SH3 part could be determined with very high precision. It does not show significant differences to Lck SH3 in the absence of the unique domain. Minor differences were observed to the X-ray structure of Lck SH3. Conclusion The unique domain of Lck does not contain any defined structure elements in the absence of ligands and membranes. Presence of the unique domain is not relevant to the three-dimensional structure of the Lck SH3 domain.

  6. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Bethany L Peterson

    Full Text Available Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6 and older (postnatal day 20 age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.

  7. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus.

    Science.gov (United States)

    Peterson, Bethany L; Larson, John; Buffenstein, Rochelle; Park, Thomas J; Fall, Christopher P

    2012-01-01

    Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.

  8. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    Science.gov (United States)

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  10. In Vitro Evaluation of Beneficial Properties of Bacteriocinogenic Lactobacillus plantarum ST8Sh.

    Science.gov (United States)

    Todorov, Svetoslav Dimitrov; Holzapfel, Wilhelm; Nero, Luis Augusto

    2017-06-01

    Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami "shpek" and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.

  11. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain

    OpenAIRE

    Nelms, Keats; O'Neill, Thomas J.; Li, Shiqing; Hubbard, Stevan R.; Gustafson, Thomas A.; Paul, William E.

    1999-01-01

    . The SH2-B protein is an SH2-domain-containing molecule that interacts with a number of phosphorylated kinase and receptor molecules including the insulin receptor. Two isoforms of the SH2-B have been identified and have been proposed to arise through alternate splicing. Here we have identified a third isoform of the SH2-B protein, SH2-Bγ, that interacts specifically with the insulin receptor. This interaction required phosphorylation of residue Y1146 in the triple tyrosine motif within the ...

  12. Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2017-05-01

    Full Text Available Obesity is associated with numerous chronic ailments and represents one of the major health and economic issues in the modernized societies. Accordingly, there is an obvious need for novel treatment approaches. Recently, based on the reports of reduced appetite and subsequent weight loss following high-altitude sojourns, exposure to hypoxia has been proposed as a viable weight-reduction strategy. While altitude-related appetite modulation is complex and not entirely clear, hypoxia-induced alterations in hormonal appetite modulation might be among the key underlying mechanisms. The present paper summarizes the up-to-date research on hypoxia/altitude-induced changes in the gut and adipose tissue derived peptides related to appetite regulation. Orexigenic hormone ghrelin and anorexigenic peptides leptin, glucagon-like peptide-1, peptide YY, and cholecystokinin have to-date been investigated as potential modulators of hypoxia-driven appetite alterations. Current evidence suggests that hypoxia can, especially acutely, lead to decreased appetite, most probably via reduction of acylated ghrelin concentration. Hypoxia-related short and long-term changes in other hormonal markers are more unclear although hypoxia seems to importantly modulate leptin levels, especially following prolonged hypoxic exposures. Limited evidence also suggests that different activity levels during exposures to hypoxia do not additively affect hormonal appetite markers. Although very few studies have been performed in obese/overweight individuals, the available data indicate that hypoxia/altitude exposures do not seem to differentially affect appetite regulation via hormonal pathways in this cohort. Given the lack of experimental data, future well-controlled acute and prolonged studies are warranted to expand our understanding of hypoxia-induced hormonal appetite modulation and its kinetics in health and disease.

  13. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R; Capozzi, Megan E; McCollum, Gary W; Yang, Rong; Marnett, Lawrence J; Uddin, Md Jashim; Jayagopal, Ashwath; Penn, John S

    2016-08-05

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs.

  14. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    Science.gov (United States)

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  16. Examining transition metal hydrosulfides: The pure rotational spectrum of ZnSH (X̃2A').

    Science.gov (United States)

    Bucchino, M P; Adande, G R; Halfen, D T; Ziurys, L M

    2017-10-21

    The pure rotational spectrum of the ZnSH (X̃ 2 A') radical has been measured using millimeter-wave direct absorption and Fourier transform microwave (FTMW) methods across the frequency range 18-468 GHz. This work is the first gas-phase detection of ZnSH by any spectroscopic technique. Spectra of the 66 ZnSH, 68 ZnSH, and 64 ZnSD isotopologues were also recorded. In the mm-wave study, ZnSH was synthesized in a DC discharge by the reaction of zinc vapor, generated by a Broida-type oven, with H 2 S; for FTMW measurements, the radical was made in a supersonic jet expansion by the same reactants but utilizing a discharge-assisted laser ablation source. Between 7 and 9 rotational transitions were recorded for each isotopologue. Asymmetry components with K a = 0 through 6 were typically measured in the mm-wave region, each split into spin-rotation doublets. In the FTMW spectra, hyperfine interactions were also resolved, arising from the hydrogen or deuterium nuclear spins of I = 1/2 or I = 1, respectively. The data were analyzed using an asymmetric top Hamiltonian, and rotational, spin-rotation, and magnetic hyperfine parameters were determined for ZnSH, as well as the quadrupole coupling constant for ZnSD. The observed spectra clearly indicate that ZnSH has a bent geometry. The r m (1) structure was determined to be r Zn-S = 2.213(5) Å, r S-H = 1.351(3) Å, and θ Zn-S-H = 90.6(1)°, suggesting that the bonding occurs primarily through sulfur p orbitals, analogous to H 2 S. The hyperfine constants indicate that the unpaired electron in ZnSH primarily resides on the zinc nucleus.

  17. The clinical impact of hypoxia-regulated gene expression in loco-regional gastroesophageal cancer

    DEFF Research Database (Denmark)

    Winther, M.; Alsner, J.; Tramm, T.

    2015-01-01

    Purpose/Objective: In a former study (1), the hypoxia gene expression classifier, developed in head and neck squamous cell carcinomas, was applied in 89 patients with loco-regional gastroesophageal cancer (GC). Analysis of the 15 genes was indicative of hypoxia being more profound in esophagus...... and display greater heterogeneity compared to AC. However, previous indications that the hypoxia classifier might hold prognostic significance in ESCC patients could not be confirmed. Ongoing work includes in vitro studies of esophageal cancer cell lines in order to identify alternative hypoxia induced genes...... and to further explore the prognostic value of hypoxia in patients with loco-regional gastroesophageal cancer. (Figure Presented)....

  18. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    African Journals Online (AJOL)

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  19. Model SH intelligent instrument for thickness measuring

    International Nuclear Information System (INIS)

    Liu Juntao; Jia Weizhuang; Zhao Yunlong

    1995-01-01

    The authors introduce Model SH Intelligent Instrument for thickness measuring by using principle of beta back-scattering and its application range, features, principle of operation, system design, calibration and specifications

  20. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain.

    Science.gov (United States)

    Hofmann, Bianca T; Jücker, Manfred

    2012-10-01

    The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Improving MeSH classification of biomedical articles using citation contexts.

    Science.gov (United States)

    Aljaber, Bader; Martinez, David; Stokes, Nicola; Bailey, James

    2011-10-01

    Medical Subject Headings (MeSH) are used to index the majority of databases generated by the National Library of Medicine. Essentially, MeSH terms are designed to make information, such as scientific articles, more retrievable and assessable to users of systems such as PubMed. This paper proposes a novel method for automating the assignment of biomedical publications with MeSH terms that takes advantage of citation references to these publications. Our findings show that analysing the citation references that point to a document can provide a useful source of terms that are not present in the document. The use of these citation contexts, as they are known, can thus help to provide a richer document feature representation, which in turn can help improve text mining and information retrieval applications, in our case MeSH term classification. In this paper, we also explore new methods of selecting and utilising citation contexts. In particular, we assess the effect of weighting the importance of citation terms (found in the citation contexts) according to two aspects: (i) the section of the paper they appear in and (ii) their distance to the citation marker. We conduct intrinsic and extrinsic evaluations of citation term quality. For the intrinsic evaluation, we rely on the UMLS Metathesaurus conceptual database to explore the semantic characteristics of the mined citation terms. We also analyse the "informativeness" of these terms using a class-entropy measure. For the extrinsic evaluation, we run a series of automatic document classification experiments over MeSH terms. Our experimental evaluation shows that citation contexts contain terms that are related to the original document, and that the integration of this knowledge results in better classification performance compared to two state-of-the-art MeSH classification systems: MeSHUP and MTI. Our experiments also demonstrate that the consideration of Section and Distance factors can lead to statistically

  2. Crystal Structure of the FERM-SH2 Module of Human Jak2.

    Science.gov (United States)

    McNally, Randall; Toms, Angela V; Eck, Michael J

    2016-01-01

    Jak-family tyrosine kinases mediate signaling from diverse cytokine receptors. Binding of Jaks to their cognate receptors is mediated by their N-terminal region, which contains FERM and SH2 domains. Here we describe the crystal structure of the FERM-SH2 region of Jak2 at 3.0Å resolution. The structure reveals that these domains and their flanking linker segments interact intimately to form an integrated structural module. The Jak2 FERM-SH2 structure closely resembles that recently described for Tyk2, another member of the Jak family. While the overall architecture and interdomain orientations are preserved between Jak2 and Tyk2, we identify residues in the putative receptor-binding groove that differ between the two and may contribute to the specificity of receptor recognition. Analysis of Jak mutations that are reported to disrupt receptor binding reveals that they lie in the hydrophobic core of the FERM domain, and are thus expected to compromise the structural integrity of the FERM-SH2 unit. Similarly, analysis of mutations in Jak3 that are associated with severe combined immunodeficiency suggests that they compromise Jak3 function by destabilizing the FERM-SH2 structure.

  3. Intrauterine hypoxia: clinical consequences and therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Thompson LP

    2015-09-01

    Full Text Available Loren P Thompson,1 Sarah Crimmins,1 Bhanu P Telugu,2 Shifa Turan1 1Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; 2Department of Animal Sciences, University of Maryland, College Park, MD, USA Abstract: Intrauterine hypoxia is a significant clinical challenge in obstetrics that affects both the pregnant mother and fetus. Intrauterine hypoxia can occur in pregnant women living at high altitude and/or with cardiovascular disease. In addition, placental hypoxia can be generated by altered placental development and spiral artery remodeling leading to placental insufficiency and dysfunction. Both conditions can impact normal maternal cardiovascular homeostasis leading to preeclampsia and/or impair transfer of O2/nutrient supply resulting in fetal growth restriction. This review discusses the mechanisms underlying altered placental vessel remodeling, maternal and fetal consequences, patient management, and potential future therapies for improving these conditions. Keywords: fetal growth restriction, oxidative stress, extravillous trophoblast invasion, Doppler ultrasound, pulsatility index, preeclampsia 

  4. Nutritional status in chronic obstructive pulmonary disease: role of hypoxia.

    Science.gov (United States)

    Raguso, Comasia A; Luthy, Christophe

    2011-02-01

    In patients with chronic obstructive pulmonary disease (COPD), malnutrition and limited physical activity are very common and contribute to disease prognosis, whereas a balance between caloric intake and exercise allows body weight stability and muscle mass preservation. The goal of this review is to analyze the implications of chronic hypoxia on three key elements involved in energy homeostasis and its role in COPD cachexia. The first one is energy intake. Body weight loss, often observed in patients with COPD, is related to lack of appetite. Inflammatory cytokines are known to be involved in anorexia and to be correlated to arterial partial pressure of oxygen. Recent studies in animals have investigated the role of hypoxia in peptides involved in food consumption such as leptin, ghrelin, and adenosine monophosphate activated protein kinase. The second element is muscle function, which is strongly related to energy use. In COPD, muscle atrophy and muscle fiber shift to the glycolytic type might be an adaptation to chronic hypoxia to preserve the muscle from oxidative stress. Muscle atrophy could be the result of a marked activation of the ubiquitin-proteasome pathway as found in muscle of patients with COPD. Hypoxia, via hypoxia inducible factor-1, is implicated in mitochondrial biogenesis and autophagy. Third, hormonal control of energy balance seems to be affected in patients with COPD. Insulin resistance has been described in this group of patients as well as a sort of "growth hormone resistance." Hypoxia, by hypoxia inducible factor-1, accelerates the degradation of tri-iodothyronine and thyroxine, decreasing cellular oxygen consumption, suggesting an adaptive mechanism rather than a primary cause of COPD cachexia. COPD rehabilitation aimed at maintaining function and quality of life needs to address body weight stabilization and, in particular, muscle mass preservation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae.

    Directory of Open Access Journals (Sweden)

    Jeroen C H Leijten

    Full Text Available Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself.Fetal mouse tibiae (E17.5 explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively. Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion.The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. Additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation.Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression.

  6. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling.

    Directory of Open Access Journals (Sweden)

    Kazuya Machida

    2010-10-01

    Full Text Available Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods.We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition.This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.

  7. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  8. Hypoxia upregulates neutrophil degranulation and potential for tissue injury

    Science.gov (United States)

    Hoenderdos, Kim; Lodge, Katharine M; Hirst, Robert A; Chen, Cheng; Palazzo, Stefano G C; Emerenciana, Annette; Summers, Charlotte; Angyal, Adri; Porter, Linsey; Juss, Jatinder K; O'Callaghan, Christopher; Chilvers, Edwin R

    2016-01-01

    Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion. PMID:27581620

  9. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  10. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  11. A genetically encoded biosensor for visualising hypoxia responses in vivo

    Directory of Open Access Journals (Sweden)

    Tvisha Misra

    2017-02-01

    Full Text Available Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia rely on the conserved hypoxia-inducible factor 1 (HIF-1. Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.

  12. The role of hypoxia, p53, and apoptosis in human cervical carcinoma pathogenesis

    International Nuclear Information System (INIS)

    Kim, Charlotte Y.; Tsai, Mitchell H.; Osmanian, Cynthia; Calkins, Dennise P.; Graeber, Thomas G.; Greenspan, David L.; Kennedy, Andrew S.; Rinker, Lillian H.; Varia, Mahesh A.; DiPaolo, Joseph A.; Peehl, Donna M.; Raleigh, James A.; Giaccia, Amato J.

    1997-01-01

    Objective: Low oxygen tension in the tumor microenvironment may have an important role during tumor growth, and is of particular prognostic significance in human cervical carcinoma. Because some human papillomavirus (HPV) infections are associated with cervical neoplasia, the relationship between hypoxia and apoptosis in primary cervical epithelial cells containing HPV16 E6 and E7, intact HPV 16 genome, and HPV positive cervical carcinoma cell lines, was examined. In addition, the relationship between hypoxia and apoptosis in spontaneous human cervical carcinomas was determined in situ. Materials and Methods: Primary normal human cervical epithelial cells were infected with retroviral vectors containing HPV16 E6 and E7 or transfected with a plasmid containing the whole HPV 16 genome. Clones were selected in neomycin containing medium. Exponentially growing cells were incubated under aerobic conditions (20% O 2 ), anaerobic conditions (0.02% O 2 ), or irradiated with 6 Gy. Analysis of apoptotic cells was performed by staining with Hoechst dye and propidium iodide and viewing with a fluorescent microscope. To determine the level of expression of the apoptotic modulators p53 and Bax, immunoblots were performed on whole cell extracts from treated cells. A clinical tumor hypoxia study was conducted at the University of North Carolina utilizing pimonidazole, a 2-nitroimidazole compound which binds irreversibly to cellular macromolecules under low oxygen conditions. Nine patients were enrolled with biopsy proven squamous cell carcinoma of the cervix and no prior treatment. Biopsies of the gross tumor were obtained after pimonidazole infusion. Contiguous histological sections were analyzed for hypoxia using a immunohistochemical technique and for apoptosis using TUNEL. Results: In vitro, hypoxia uncoupled p53 from E6 mediated degradation, and stimulated both p53 induction and apoptosis in primary cervical epithelial cells infected with the HPV E6 and E7 genes. In contrast

  13. Annotating patents with Medline MeSH codes via citation mapping.

    Science.gov (United States)

    Griffin, Thomas D; Boyer, Stephen K; Councill, Isaac G

    2010-01-01

    Both patents and Medline are important document collections for discovering new relationships between chemicals and biology, searching for prior art for patent applications and retrieving background knowledge for current research activities. Finding relevance to a topic within patents is often made difficult by poor categorization, badly written descriptions, and even intentional obfuscation. Unlike patents, the Medline corpus has Medical Subject Heading (MeSH) keywords manually added to their articles, giving a medically relevant taxonomy to the 18 million article abstracts. Our work attempts to accurately recognize the citations made in patents to Medline-indexed articles, linking them to their corresponding PubMed ID and exploiting the associated MeSH to enhance patent search by annotating the referencing patents with their Medline citations' MeSH codes. The techniques, system features, and benefits are explained.

  14. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Directory of Open Access Journals (Sweden)

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  15. Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase

    OpenAIRE

    Nishimura, Ryo; Okuda, Kiyoshi

    2015-01-01

    There is increasing interest in the role of oxygen conditions in the microenvironment of organs because of the discovery of a hypoxia-specific transcription factor, namely hypoxia-inducible factor (HIF) 1. Ovarian function has several phases that change day by day, including ovulation, follicular growth and corpus luteum formation and regression. These phases are regulated by many factors, including pituitary hormones and local hormones, such as steroids, peptides and cytokines, as well as ox...

  16. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.

    Science.gov (United States)

    Bradshaw, J M; Mitaxov, V; Waksman, G

    1999-11-05

    The binding of tyrosine phosphorylated targets by SH2 domains is required for propagation of many cellular signals in higher eukaryotes; however, the determinants of phosphotyrosine (pTyr) recognition by SH2 domains are not well understood. In order to identify the attributes of pTyr required for high affinity interaction with SH2 domains, the binding of the SH2 domain of the Src kinase (Src SH2 domain) to a dephosphorylated peptide, a phosphoserine-containing peptide, and the amino acid pTyr was studied using titration calorimetry and compared with the binding of a high affinity tyrosyl phosphopeptide. The dephosphorylated peptide and the phosphoserine containing peptide both bind extremely weakly to the Src SH2 domain (DeltaGo (dephosphorylated)=-3.6 kcal/mol, DeltaGo (phosphoserine) >-3.7 kcal/mol); however, the DeltaGo value of pTyr binding is more favorable (-4.7 kcal/mol, or 50 % of the entire binding free energy of a high affinity tyrosyl phosphopeptide). These results indicate that both the phosphate and the tyrosine ring of the pTyr are critical determinants of high affinity binding. Alanine mutagenesis was also used to evaluate the energetic contribution to binding of ten residues located in the pTyr-binding site. Mutation of the strictly conserved Arg betaB5 resulted in a large increase in DeltaGo (DeltaDeltaGo=3.2 kcal/mol) while elimination of the other examined residues each resulted in a significantly smaller (DeltaDeltaGoSH2 domain, surprisingly increased affinity by eightfold (DeltaDeltaGo=-1.1 kcal/mol). Using a double mutant cycle analysis, it was revealed that residues of the pTyr-binding pocket are not coupled to the peptide residues C-terminal to the pTyr. In addition, comparison of each residue's DeltaDeltaGo value upon mutation with that residue's sequence conservation among SH2 domains revealed only a modest correlation between a residue's energetic contribution to pTyr recognition and its conservation throughout evolution. The results of

  17. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...... (noradrenaline and adrenaline) and day 7 (adrenaline), but not at sea level. 4. In conclusion, insulin action decreases markedly in response to two days of altitude hypoxia, but improves with more prolonged exposure. HGP is always unchanged. The changes in insulin action may in part be explained by the changes...

  18. Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lin, Wan-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Lii, Chong-Kuei; Chen, Haw-Wen

    2018-03-01

    Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2 . Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation. © 2017 Wiley Periodicals, Inc.

  19. Optical imaging of tumor hypoxia dynamics

    Science.gov (United States)

    Palmer, Gregory M.; Fontanella, Andrew N.; Zhang, Guoqing; Hanna, Gabi; Fraser, Cassandra L.; Dewhirst, Mark W.

    2010-11-01

    The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent/phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.

  20. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    Science.gov (United States)

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  1. Notch signaling mediates hypoxia-induced tumor cell migration and invasion

    NARCIS (Netherlands)

    Sahlgren, C.; Gustafsson, M.V.; Jin, S.; Poellinger, L.; Lendahl, U.

    2008-01-01

    Tumor hypoxia is linked to increased metastatic potential, but the molecular mechanisms coupling hypoxia to metastasis are poorly understood. Here, we show that Notch signaling is required to convert the hypoxic stimulus into epithelial-mesenchymal transition (EMT), increased motility, and

  2. Comparative aspects of hypoxia tolerance of the ectothermic vertebrate heart

    DEFF Research Database (Denmark)

    Gesser, Hans; Overgaard, Johannes

    2009-01-01

    This chapter reviews cardiac contractile performance and its regulation during hypoxia/anoxia with regard to cellular metabolism and energy state, in particular hypoxia-tolerant ectothermic vertebrates. Overall the contractile performance of the hypoxic isolated heart muscle varies in a way...

  3. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia.

    Science.gov (United States)

    Hou, Rui; Xu, Yanjun; Lu, Qijie; Zhang, Yang; Hu, Bing

    2017-10-01

    Angiogenesis plays an important role in tumor growth, invasiveness, and metastasis. It is well established that prostate cancer is exposed to fluctuating oxygen tensions and both acute and chronic hypoxia exist, and these conditions can upregulate angiogenesis-associated proteins such as hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A. Low-frequency low-intensity ultrasound with microbubbles can induce obvious microvessel damage in tumors, cause cell necrosis or apoptosis. However, there is no information about whether the blocking blood effect of low-frequency low-intensity ultrasound with microbubbles has an influence on hypoxia environment of prostate cancer. Therefore, we investigated the impact of different low-frequency low-intensity ultrasound with microbubbles radiation times on prostate tumors, observed the change in the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A protein levels, as well as cell proliferation, apoptosis, and tumor volume. The results indicated that as the radiation was repeated four times on each treatment day, the effects of interruption were durable, the cell proliferation was inhibited, and apoptosis was promoted, and the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were lower in the treatment group than in the control group. When the radiation was carried out once per treatment day, the hypoxia response was stimulated, the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were higher compared with the control group, and cell proliferation was promoted. In addition, the tumor volume increased obviously in the hypoxia-stimulated group, whereas tumors grew slowly in the hypoxia-suppressed group. The results of this work demonstrated that under the same conditions, different radiation times of low-frequency low-intensity ultrasound with microbubbles affect the hypoxia response differently, and the

  4. MeSH key terms for validation and annotation of gene expression clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rechtsteiner, A. (Andreas); Rocha, L. M. (Luis Mateus)

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  5. ExoMol molecular line lists - XXVI: spectra of SH and NS

    Science.gov (United States)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-04-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X 2Π ground state for 32SH, 33SH, 34SH and 32SD, and 14N32S, 14N33S, 14N34S, 14N36S and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X 2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2 300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms fitting error of 0.002 cm-1. Each NS calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS database. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  6. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy ...

    African Journals Online (AJOL)

    Purpose: This study was carried out to investigate the role of hypoxia-inducible factor (HIF) in diabetic cardiomyopathy in vitro. Methods: Hypoxia was induced chemically in H9C2 cells (cardiac hypertrophy model), and the cells were treated with phenylephrine (PE), deferoxamine (DFO), PE + DFO, and HIF-1α siRNA under ...

  7. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.

    Science.gov (United States)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-10-14

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effect of acadesine on breast cancer cells under hypoxia

    Directory of Open Access Journals (Sweden)

    A. M. Shcherbakov

    2017-01-01

    Full Text Available The riboside derivative acadesine (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside is currently being tested in clinical trials as a promising anti-tumor drug. Intracellular target of acadesine is adenosine monophosphate-activated protein kinase (АМРК, an important regulatory molecule of energy metabolism. It is expected that acadesine would be active in tumors under hypoxia conditions. In normoxia (cells incubated in 21 % oxygen, acadesine inhibited proliferation and induced cell death of breast adenocarcinoma, including the triple negative breast cancer line. When oxygen partial pressure was decreased to 1 % (experimental hypoxia, acadesine inhibited activation of reporter construct responsive to HIF-1α (hypoxia inducible factor 1 alpha transcription factor. This effect was observed for acadesine in concentrations close to cytotoxic. Acadesine retained cytotoxicity under hypoxia and decreased the survival of the MDA-MB-231 cell line when used in combination with cisplatin. These results considerably widen acadesine’s field of application and allow to assume its efficacy in chemotherapy combination regimens for breast cancer, including the tumors with low oxygenation.

  9. Effect of whole body X-irradiation on the NP-SH level of blood in rabbits

    International Nuclear Information System (INIS)

    Suh, Soo Jhi; Woo, Won Hyung

    1972-01-01

    In hope to elucidate possible changes in blood NP-SH levels when X-irradiation is made in single or fractionate dose, a whole body X-irradiation was done to rabbits either in single dose of 900 r or in fractionated dose of 300 r per day for three days. The NP-SH was measured at 1, 3, 5, 24 and 48 post-irradiation hours, and the results were compared with the normal value of the blood NP-SH. The results obtained are as follows: 1. The normal value of blood NP-SH in the rabbit was 2.11 ± 0.40 μmol/ml. 2. In the single X-irradiation group, the blood NP-SH decreased most prominently at five hours after-irradiation, and a tendency of recovery to the normal level was observed thereafter. 3. In the fractionated group, the blood NP-SH levels were higher, than in the single irradiation group throughout the experiment, and the levels were also higher than the normal in general

  10. “Girls are dancin’”: shōjo culture and feminism in contemporary Japanese art

    Directory of Open Access Journals (Sweden)

    Emily Jane Wakeling

    2011-12-01

    Full Text Available This article explores the gender-transgressive expressions found in shōjo culture in order to highlight the potential for feminist analysis in the prevalence of the shōjo motif in contemporary Japanese art. Shōjo culture is a fascinating cultural space, within contemporary Japanese culture, which fosters creative expressions of gender that negate or make complex hegemonic categories. Departing from stereotypes of Japanese girls, this article will pay particular interest to an emerging wave of figurative contemporary art practices in which the figure of the shōjo is utilised for a new generation of feminist critique. Aoshima Chiho, Kunikata Mahomi, Takano Aya, Sawada Tomoko and Yanagi Miwa are among the current artists who feature the shōjo motif in contexts that foreground female subjectivities found paralleled in shōjo culture. These works will then be contextualised in the greater picture of current trends and themes in global contemporary feminist art.

  11. Intramucosal–arterial PCO 2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia

    OpenAIRE

    Dubin, Arnaldo; Murias, Gastón; Estenssoro, Elisa; Canales, Héctor; Badie, Julio; Pozo, Mario; Sottile, Juan P; Barán, Marcelo; Pálizas, Fernando; Laporte, Mercedes

    2002-01-01

    Introduction An elevation in intramucosal–arterial PCO 2 gradient (ΔPCO 2) could be determined either by tissue hypoxia or by reduced blood flow. Our hypothesis was that in hypoxic hypoxia with preserved blood flow, ΔPCO 2 should not be altered. Methods In 17 anesthetized and mechanically ventilated sheep, oxygen delivery was reduced by decreasing flow (ischemic hypoxia, IH) or arterial oxygen saturation (hypoxic hypoxia, HH), or no intervention was made (sham). In the IH group (n = 6), blood...

  12. Comparative and Experimental Studies on the Genes Altered by Chronic Hypoxia in Human Brain Microendothelial Cells

    Directory of Open Access Journals (Sweden)

    Eugenia Mata-Greenwood

    2017-05-01

    Full Text Available Background : Hypoxia inducible factor 1 alpha (HIF1A is a master regulator of acute hypoxia; however, with chronic hypoxia, HIF1A levels return to the normoxic levels. Importantly, the genes that are involved in the cell survival and viability under chronic hypoxia are not known. Therefore, we tested the hypothesis that chronic hypoxia leads to the upregulation of a core group of genes with associated changes in the promoter DNA methylation that mediates the cell survival under hypoxia.Results : We examined the effect of chronic hypoxia (3 days; 0.5% oxygen on human brain micro endothelial cells (HBMEC viability and apoptosis. Hypoxia caused a significant reduction in cell viability and an increase in apoptosis. Next, we examined chronic hypoxia associated changes in transcriptome and genome-wide promoter methylation. The data obtained was compared with 16 other microarray studies on chronic hypoxia. Nine genes were altered in response to chronic hypoxia in all 17 studies. Interestingly, HIF1A was not altered with chronic hypoxia in any of the studies. Furthermore, we compared our data to three other studies that identified HIF-responsive genes by various approaches. Only two genes were found to be HIF dependent. We silenced each of these 9 genes using CRISPR/Cas9 system. Downregulation of EGLN3 significantly increased the cell death under chronic hypoxia, whereas downregulation of ERO1L, ENO2, adrenomedullin, and spag4 reduced the cell death under hypoxia.Conclusions : We provide a core group of genes that regulates cellular acclimatization under chronic hypoxic stress, and most of them are HIF independent.

  13. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature

    Science.gov (United States)

    Viollet, Coralie; Davis, David A.; Tekeste, Shewit S.; Reczko, Martin; Pezzella, Francesco; Ragoussis, Jiannis

    2017-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases. PMID:28046107

  14. Chronic Intermittent Hypoxia Induces Atherosclerosis

    OpenAIRE

    Savransky, Vladimir; Nanayakkara, Ashika; Li, Jianguo; Bevans, Shannon; Smith, Philip L.; Rodriguez, Annabelle; Polotsky, Vsevolod Y.

    2007-01-01

    Rationale: Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established.

  15. Screening of hypoxia-inducible genes in sporadic ALS.

    LENUS (Irish Health Repository)

    Cronin, Simon

    2008-10-01

    Genetic variations in two hypoxia-inducible angiogenic genes, VEGF and ANG, have been linked with sporadic amyotrophic lateral sclerosis (SALS). Common variations in these genes may reduce the levels or functioning of their products. VEGF and ANG belong to a larger group of angiogenic genes that are up-regulated under hypoxic conditions. We hypothesized that common genetic variation across other members of this group may also predispose to sporadic ALS. To screen other hypoxia-inducible angiogenic genes for association with SALS, we selected 112 tagging single nucleotide polymorphisms (tgSNPs) that captured the common genetic variation across 16 VEGF-like and eight ANG-like hypoxia-inducible genes. Screening for association was performed in 270 Irish individuals with typical SALS and 272 ethnically matched unrelated controls. SNPs showing association in the Irish phase were genotyped in a replication sample of 281 Swedish sporadic ALS patients and 286 Swedish controls. Seven markers showed association in the Irish. The one modest replication signal observed in the Swedish replication sample, at rs3801158 in the gene inhibin beta A, was for the opposite allele vs. the Irish cohort. We failed to detect association of common variation across 24 candidate hypoxia-inducible angiogenic genes with SALS.

  16. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  17. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  18. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods

    Science.gov (United States)

    Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.

    2008-02-01

    Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.

  19. Dynamics and distribution of natural and human-caused hypoxia

    Science.gov (United States)

    Rabalais, N. N.; Díaz, R. J.; Levin, L. A.; Turner, R. E.; Gilbert, D.; Zhang, J.

    2010-02-01

    Water masses can become undersaturated with oxygen when natural processes alone or in combination with anthropogenic processes produce enough organic carbon that is aerobically decomposed faster than the rate of oxygen re-aeration. The dominant natural processes usually involved are photosynthetic carbon production and microbial respiration. The re-supply rate is indirectly related to its isolation from the surface layer. Hypoxic water masses (hypoxic areas has been exacerbated by any combination of interactions that increase primary production and accumulation of organic carbon leading to increased respiratory demand for oxygen below a seasonal or permanent pycnocline. Nutrient loading is likely to increase further as population growth and resource intensification rises, especially with increased dependency on crops using fertilizers, burning of fossil fuels, urbanization, and waste water generation. It is likely that the occurrence and persistence of hypoxia will be even more widespread and have more impacts than presently observed. Global climate change will further complicate the causative factors in both natural and human-caused hypoxia. The likelihood of strengthened stratification alone, from increased surface water temperature as the global climate warms, is sufficient to worsen hypoxia where it currently exists and facilitate its formation in additional waters. Increased precipitation that increases freshwater discharge and flux of nutrients will result in increased primary production in the receiving waters up to a point. The interplay of increased nutrients and stratification where they occur will aggravate and accelerate hypoxia. Changes in wind fields may expand oxygen minimum zones onto more continental shelf areas. On the other hand, not all regions will experience increased precipitation, some oceanic water temperatures may decrease as currents shift, and frequency and severity of tropical storms may increase and temporarily disrupt hypoxia more

  20. Intermittent Hypoxia Alters Gene Expression in Peripheral Blood Mononuclear Cells of Healthy Volunteers.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Bevans-Fonti, Shannon; Grigoryev, Dmitry N; Punjabi, Naresh M

    2015-01-01

    Obstructive sleep apnea is associated with high cardiovascular morbidity and mortality. Intermittent hypoxia of obstructive sleep apnea is implicated in the development and progression of insulin resistance and atherosclerosis, which have been attributed to systemic inflammation. Intermittent hypoxia leads to pro-inflammatory gene up-regulation in cell culture, but the effects of intermittent hypoxia on gene expression in humans have not been elucidated. A cross-over study was performed exposing eight healthy men to intermittent hypoxia or control conditions for five hours with peripheral blood mononuclear cell isolation before and after exposures. Total RNA was isolated followed by gene microarrays and confirmatory real time reverse transcriptase PCR. Intermittent hypoxia led to greater than two fold up-regulation of the pro-inflammatory gene toll receptor 2 (TLR2), which was not increased in the control exposure. We hypothesize that up-regulation of TLR2 by intermittent hypoxia may lead to systemic inflammation, insulin resistance and atherosclerosis in patients with obstructive sleep apnea.

  1. The effect of hypobaric hypoxia on multichannel EEG signal complexity.

    Science.gov (United States)

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos

    2007-01-01

    The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.

  2. Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation.

    Science.gov (United States)

    Li, Qian; Qiu, Yanli; Mao, Min; Lv, Jinying; Zhang, Lixin; Li, Shuzhen; Li, Xia; Zheng, Xiaodong

    2014-11-18

    Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  3. Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-11-01

    Full Text Available Reactive oxygen species (ROS are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4 in pulmonary artery endothelial cells (PAECs. Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α. Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC, a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  4. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation.

    LENUS (Irish Health Repository)

    Garvey, J F

    2012-02-01

    There is increasing evidence that intermittent hypoxia plays a role in the development of cardiovascular risk in obstructive sleep apnoea syndrome (OSAS) through the activation of inflammatory pathways. The development of translational models of intermittent hypoxia has allowed investigation of its role in the activation of inflammatory mechanisms and promotion of cardiovascular disease in OSAS. There are noticeable differences in the response to intermittent hypoxia between body tissues but the hypoxia-sensitive transcription factors hypoxia-inducible factor-1 and nuclear factor-kappaB appear to play a key role in mediating the inflammatory and cardiovascular consequences of OSAS. Expanding our understanding of these pathways, the cross-talk between them and the activation of inflammatory mechanisms by intermittent hypoxia in OSAS will provide new avenues of therapeutic opportunity for the disease.

  5. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Science.gov (United States)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  6. Modulation of Radioprotective Effects of Respiratory Hypoxia by Changing the Duration of Hypoxia before Irradiation and by Combining Hypoxia and Administration of Hemopoiesis-Stimulating Agents

    Czech Academy of Sciences Publication Activity Database

    Vacek, Antonín; Tačev, T.; Hofer, Michal

    2001-01-01

    Roč. 177, č. 9 (2001), s. 474-481 ISSN 0179-7158 Institutional research plan: CEZ:AV0Z5004920 Keywords : radioprotection * mice * hypoxia Subject RIV: BO - Biophysics Impact factor: 3.005, year: 2001

  7. Structural and functional analysis of coral Hypoxia Inducible Factor.

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    Full Text Available Tissues of symbiotic Cnidarians are exposed to wide, rapid and daily variations of oxygen concentration. Indeed, during daytime, intracellular O2 concentration increases due to symbiont photosynthesis, while during night, respiration of both host cells and symbionts leads to intra-tissue hypoxia. The Hypoxia Inducible Factor 1 (HIF-1 is a heterodimeric transcription factor used for maintenance of oxygen homeostasis and adaptation to hypoxia. Here, we carried out a mechanistic study of the response to variations of O2 concentrations of the coral model Stylophora pistillata. In silico analysis showed that homologs of HIF-1 α (SpiHIF-1α and HIF-1β (SpiHIF-1β exist in coral. A specific SpiHIF-1 DNA binding on mammalian Hypoxia Response Element (HRE sequences was shown in extracts from coral exposed to dark conditions. Then, we cloned the coral HIF-1α and β genes and determined their expression and transcriptional activity. Although HIF-1α has an incomplete Oxygen-dependent Degradation Domain (ODD relative to its human homolog, its protein level is increased under hypoxia when tested in mammalian cells. Moreover, co-transfection of SpiHIF-1α and β in mammalian cells stimulated an artificial promoter containing HRE only in hypoxic conditions. This study shows the strong conservation of molecular mechanisms involved in adaptation to O2 concentration between Cnidarians and Mammals whose ancestors diverged about 1,200-1,500 million years ago.

  8. Structural and functional analysis of coral Hypoxia Inducible Factor.

    Science.gov (United States)

    Zoccola, Didier; Morain, Jonas; Pagès, Gilles; Caminiti-Segonds, Natacha; Giuliano, Sandy; Tambutté, Sylvie; Allemand, Denis

    2017-01-01

    Tissues of symbiotic Cnidarians are exposed to wide, rapid and daily variations of oxygen concentration. Indeed, during daytime, intracellular O2 concentration increases due to symbiont photosynthesis, while during night, respiration of both host cells and symbionts leads to intra-tissue hypoxia. The Hypoxia Inducible Factor 1 (HIF-1) is a heterodimeric transcription factor used for maintenance of oxygen homeostasis and adaptation to hypoxia. Here, we carried out a mechanistic study of the response to variations of O2 concentrations of the coral model Stylophora pistillata. In silico analysis showed that homologs of HIF-1 α (SpiHIF-1α) and HIF-1β (SpiHIF-1β) exist in coral. A specific SpiHIF-1 DNA binding on mammalian Hypoxia Response Element (HRE) sequences was shown in extracts from coral exposed to dark conditions. Then, we cloned the coral HIF-1α and β genes and determined their expression and transcriptional activity. Although HIF-1α has an incomplete Oxygen-dependent Degradation Domain (ODD) relative to its human homolog, its protein level is increased under hypoxia when tested in mammalian cells. Moreover, co-transfection of SpiHIF-1α and β in mammalian cells stimulated an artificial promoter containing HRE only in hypoxic conditions. This study shows the strong conservation of molecular mechanisms involved in adaptation to O2 concentration between Cnidarians and Mammals whose ancestors diverged about 1,200-1,500 million years ago.

  9. Rayleigh SAW-Assisted SH-SAW Immunosensor on X-Cut 148-Y LiTaO3.

    Science.gov (United States)

    Kogai, Takashi; Yatsuda, Hiromi; Kondoh, Jun

    2017-09-01

    In this paper, we describe a shear horizontal surface acoustic wave (SH-SAW) immunosensor that utilizes induce agitation by a Rayleigh SAW (R-SAW) on an X-cut 148-Y LiTaO 3 substrate. On this substrate, SH-SAWs and R-SAWs with different frequencies can be effectively generated at an interdigital transducer (IDT). First, to consider the power flow angles of SH-SAWs and R-SAWs on this substrate, the 360-MHz delay lines with six different tilt angles were designed and fabricated. From the experiments, an optimal power flow angle of 9° for the SH-SAW on this substrate is obtained. Second, in order to consider the immunoreactions of the SH-SAW immunosensors, a delay line with a tilt angle of 9° was designed and fabricated on this substrate. The delay line, which can generate two SAWs, namely, a 100-MHz SH-SAW and an 88.8-MHz R-SAW, has a propagation area covered with antigens of human serum albumin between transmitting and receiving IDTs. The immunoreactions caused by antigen-antibody binding events on the surface of the delay line were investigated on the basis of the velocity changes of the SH-SAWs for sensing with and without the assistance of an R-SAW. As a result, it was confirmed that the SH-SAW velocity changes due to antigen-antibody reactions can be markedly increased by the assistance of R-SAW agitation.

  10. Structural Characterization of Monomeric/Dimeric State of p59fyn SH2 Domain.

    Science.gov (United States)

    Huculeci, Radu; Kieken, Fabien; Garcia-Pino, Abel; Buts, Lieven; van Nuland, Nico; Lenaerts, Tom

    2017-01-01

    Src homology 2 (SH2) domains are key modulators in various signaling pathways allowing the recognition of phosphotyrosine sites of different proteins. Despite the fact that SH2 domains acquire their biological functions in a monomeric state, a multitude of reports have shown their tendency to dimerize. Here, we provide a technical description on how to isolate and characterize by gel filtration, circular dichroism (CD), and nuclear magnetic resonance (NMR) each conformational state of p59 fyn SH2 domain.

  11. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity.

    Science.gov (United States)

    Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F

    2015-03-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an ‘hypoxic to normoxic recovery’ approach

    Directory of Open Access Journals (Sweden)

    Olivier eGIRARD

    2015-09-01

    Full Text Available To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, thirteen active males performed eight 5-s sprints (recovery = 25 s on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%, moderate (MH; FiO2 = 16.8% or severe normobaric hypoxia (SH; FiO2 = 13.3% followed, 6 min later, by four 5-s sprints (recovery = 25 s in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (-8.2% compared to SL (-5.3% and MH (-7.2%; P<0.05], changes in contact time, step frequency and root mean square activity (surface electromyography of the quadriceps (rectus femoris muscle in SH exceeded those in SL and MH (P<0.05. During first sprint of the subsequent normoxic set, the distance covered (99.6%, 96.4% and 98.3% of sprint 1 in SL, MH and SH, respectively, the main kinetic (mean, horizontal and resultant forces and kinematic (contact time and step frequency variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1 to 8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure, sprint mechanical performance and neural alterations were largerly influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a

  13. Neuro-mechanical determinants of repeated treadmill sprints - Usefulness of an “hypoxic to normoxic recovery” approach

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P.

    2015-01-01

    To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (−8.2%) compared to SL (−5.3%) and MH (−7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1–8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level

  14. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes.

    Science.gov (United States)

    Mimura, Imari; Tanaka, Tetsuhiro; Wada, Youichiro; Kodama, Tatsuhiko; Nangaku, Masaomi

    2011-01-01

    The hypoxia response regulated primarily by hypoxia-inducible factor (HIF) influences metabolism, cell survival, and angiogenesis to maintain biological homeostasis. In addition to the traditional transcriptional regulation by HIF, recent studies have shown that epigenetic modulation such as histone methylation, acetylation, and DNA methylation could change the regulation of the response to hypoxia. Eukaryotic chromatin is known to be modified by multiple post-translational histone methylation and demethylation, which result in the chromatin conformation change to adapt to hypoxic stimuli. Interestingly, some of the histone demethylase enzymes, which have the Jumonji domain-containing family, require oxygen to function and are induced by hypoxia in an HIF-1-dependent manner. Recent studies have demonstrated that histone modifiers play important roles in the hypoxic environment such as that in cancer cells and that they may become new therapeutic targets for cancer patients. It may lead to finding a new therapy for cancer to clarify a new epigenetic mechanism by HIF and histone demethylase such as JMJD1A (KDM3A) under hypoxia.

  15. Dynamics and distribution of natural and human-caused hypoxia

    Directory of Open Access Journals (Sweden)

    N. N. Rabalais

    2010-02-01

    Full Text Available Water masses can become undersaturated with oxygen when natural processes alone or in combination with anthropogenic processes produce enough organic carbon that is aerobically decomposed faster than the rate of oxygen re-aeration. The dominant natural processes usually involved are photosynthetic carbon production and microbial respiration. The re-supply rate is indirectly related to its isolation from the surface layer. Hypoxic water masses (<2 mg L−1, or approximately 30% saturation can form, therefore, under "natural" conditions, and are more likely to occur in marine systems when the water residence time is extended, water exchange and ventilation are minimal, stratification occurs, and where carbon production and export to the bottom layer are relatively high. Hypoxia has occurred through geological time and naturally occurs in oxygen minimum zones, deep basins, eastern boundary upwelling systems, and fjords.

    Hypoxia development and continuation in many areas of the world's coastal ocean is accelerated by human activities, especially where nutrient loading increased in the Anthropocene. This higher loading set in motion a cascading set of events related to eutrophication. The formation of hypoxic areas has been exacerbated by any combination of interactions that increase primary production and accumulation of organic carbon leading to increased respiratory demand for oxygen below a seasonal or permanent pycnocline. Nutrient loading is likely to increase further as population growth and resource intensification rises, especially with increased dependency on crops using fertilizers, burning of fossil fuels, urbanization, and waste water generation. It is likely that the occurrence and persistence of hypoxia will be even more widespread and have more impacts than presently observed.

    Global climate change will further complicate the causative factors in both natural and human-caused hypoxia. The likelihood of

  16. Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis

    Science.gov (United States)

    Whitson, P. A.; Cintron, N. M.; Pietrzyk, R. A.; Scotto, P.; Loeppky, J. A.

    1994-01-01

    In an effort to understand the interaction between acute postural fluid shifts and hypoxia on hormonal regulation of fluid homeostasis, the authors measured the responses to head-down tilt with and without acute exposure to normobaric hypoxia. Plasma atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), plasma aldosterone (ALD), and plasma renin activity (PRA) were measured in six healthy male volunteers who were exposed to a head-down tilt protocol during normoxia and hypoxia. The tilt protocol consisted of a 17 degrees head-up phase (30 minutes), a 28 degrees head-down phase (1 hour), and a 17 degrees head-up recovery period (2 hours, with the last hour normoxic in both experiments). Altitude equivalent to 14,828 ft was simulated by having the subjects breathe an inspired gas mixture with 13.9% oxygen. The results indicate that the postural fluid redistribution associated with a 60-minute head-down tilt induces the release of ANP and cGMP during both hypoxia and normoxia. Hypoxia increased cGMP, cAMP, ALD, and PRA throughout the protocol and significantly potentiated the increase in cGMP during head-down tilt. Hypoxia had no overall effect on the release of ANP, but appeared to attenuate the increase with head-down tilt. This study describes the acute effects of hypoxia on the endocrine response during fluid redistribution and suggests that the magnitude, but not the direction, of these changes with posture is affected by hypoxia.

  17. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases.

    Science.gov (United States)

    Jadwin, Joshua A; Oh, Dongmyung; Curran, Timothy G; Ogiue-Ikeda, Mari; Jia, Lin; White, Forest M; Machida, Kazuya; Yu, Ji; Mayer, Bruce J

    2016-04-12

    While the affinities and specificities of SH2 domain-phosphotyrosine interactions have been well characterized, spatio-temporal changes in phosphosite availability in response to signals, and their impact on recruitment of SH2-containing proteins in vivo, are not well understood. To address this issue, we used three complementary experimental approaches to monitor phosphorylation and SH2 binding in human A431 cells stimulated with epidermal growth factor (EGF): 1) phospho-specific mass spectrometry; 2) far-Western blotting; and 3) live cell single-molecule imaging of SH2 membrane recruitment. Far-Western and MS analyses identified both well-established and previously undocumented EGF-dependent tyrosine phosphorylation and binding events, as well as dynamic changes in binding patterns over time. In comparing SH2 binding site phosphorylation with SH2 domain membrane recruitment in living cells, we found in vivo binding to be much slower. Delayed SH2 domain recruitment correlated with clustering of SH2 domain binding sites on the membrane, consistent with membrane retention via SH2 rebinding.

  18. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.

    Science.gov (United States)

    Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M

    2016-02-01

    ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may

  19. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

    Science.gov (United States)

    Gozal, Evelyne; Metz, Cynthia J; Dematteis, Maurice; Sachleben, Leroy R; Schurr, Avital; Rane, Madhavi J

    2017-09-05

    Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O 2 ). Hypoxia, at 24h 0.1% O 2 , induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Exercise performed at hypoxia influences mood state and anxiety symptoms

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Tavares de Souza

    2015-06-01

    Full Text Available During hypoxia conditions, psychological states can be worsened. However, little information is available regarding the effect of physical exercise performed in hypoxia conditions on mood state and anxiety symptoms. The aim of the present study was to elucidate the acute effect of moderate physical exercise performed at hypoxia on mood states and anxiety symptoms in healthy young subjects. Ten volunteers were subjected to the following conditions: a normoxic condition (NC and a hypoxic condition (HC. They performed 45 min of physical exercise. Their anxiety symptoms and mood states were evaluated at the initial time point as well as immediately following and 30 and 60 min after the exercise session. Our results showed a significant increase in post-exercise anxiety symptoms and a significant decrease in mood scores immediately after and 30 min after exercise performed in the HC. Moderate physical activity performed at hypoxia condition increased post-exercise anxiety and worsened mood state.

  1. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  2. The infectious hypoxia: occurrence and causes during Shigella infection.

    Science.gov (United States)

    Arena, Ellen T; Tinevez, Jean-Yves; Nigro, Giulia; Sansonetti, Philippe J; Marteyn, Benoit S

    2017-03-01

    Hypoxia is defined as a tissue oxygenation status below physiological needs. During Shigella infection, an infectious hypoxia is induced within foci of infection. In this review, we discuss how Shigella physiology and virulence are modulated and how the main recruited immune cells, the neutrophils, adapt to this environment. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Obstructive sleep apnea and cancer: effects of intermittent hypoxia?

    Science.gov (United States)

    Kukwa, Wojciech; Migacz, Ewa; Druc, Karolina; Grzesiuk, Elzbieta; Czarnecka, Anna M

    2015-01-01

    Obstructive sleep apnea (OSA) is a common disorder characterized by pauses in regular breathing. Apneic episodes lead to recurrent hypoxemia-reoxygenation cycles with concomitant cellular intermittent hypoxia. Studies suggest that intermittent hypoxia in OSA may influence tumorigenesis. This review presents recent articles on the potential role of OSA in cancer development. Relevant research has focused on: molecular pathways mediating the influence of intermittent hypoxia on tumor physiology, animal and epidemiological human studies linking OSA and cancer. Current data relating OSA to risk of neoplastic disease remain scarce, but recent studies reveal the potential for a strong relation. More work is, therefore, needed on the impact of OSA on many cancer-related aspects. Results may offer enlightenment for improved cancer diagnosis and treatment.

  4. Detection and characterization of partially unfolded oligomers of the SH3 domain of α-Spectrin

    NARCIS (Netherlands)

    Casares, S.; Sadqi, M.; López-Mayorga, O.; Conejero-Lara, F.; van Nuland, N.A.J.

    2004-01-01

    For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of α-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning

  5. [Effects of exogenous spermidine on Cucumis sativus L. seedlings photosynthesis under root zone hypoxia stress].

    Science.gov (United States)

    Wang, Tian; Wang, Suping; Guo, Shirong; Sun, Yanjun

    2006-09-01

    With water culture, this paper studied the effects of exogenous spermidine (Spd) on the net photosynthetic rate (Pn), intercellular CO2 concentrations (Ci), stomatal conductance (Gs), transpiration rate (Tr), apparent quantum yield (phi c), and carboxylation efficiency (CE) of cucumber seedlings tinder hypoxia stress. The results showed that the Pn decreased gradually under hypoxia stress, and reached the minimum 10 days after by 63. 33% of the control. Compared with that of hypoxia-stressed plants, the Pn after 10 days application of exogenous Spd increased 1.25 times. A negative correlation (R2 = 0.4730 - 0.7118) was found between Pn and Ci. Gs and Tr changed in wider ranges, which decreased under hypoxia-stress, but increased under hypoxia-stress plus exogenous Spd application. There was a significant positive correlation between Gs and Tr (R2 = 0.7821 - 0.9458), but these two parameters had no significant correlation with Pn; Hypoxia stress induced a decrease of phi c and CE by 63.01% and 72.33%, respectively, while hypoxia stress plus exogenous Spd application made phi c and CE increase by 23% and 14%, respectively. The photo-inhibition of cucumber seedlings under hypoxia stress was mainly caused by non-stomatal limitation, while exogenous Spd alleviated the hypoxia stress by repairing photosynthesis system.

  6. Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences

    DEFF Research Database (Denmark)

    Su, J; Yang, L T; Sap, J

    1996-01-01

    domain in Grb2 (, ). We show here that association of Grb2 with RPTPalpha also involves a critical function for the C-terminal SH3 domain of Grb2. Furthermore, Grb2 SH3 binding peptides interfere with RPTPalpha-Grb2 association in vitro, and the RPTPalpha protein can dissociate the Grb2-Sos complex...... in vivo. These observations constitute a novel mode of Grb2 association and suggest a model in which association with a tyrosine-phosphorylated protein restricts the repertoire of SH3 binding proteins with which Grb2 can simultaneously interact. The function of the Tyr798 tyrosine phosphorylation/Grb2...... binding site in RPTPalpha was studied further by expression of wild type or mutant RPTPalpha proteins in PC12 cells. In these cells, wild type RPTPalpha interferes with acidic fibroblast growth factor-induced neurite outgrowth; this effect requires both the catalytic activity and the Grb2 binding Tyr798...

  7. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    International Nuclear Information System (INIS)

    Helbig, Linda; Koi, Lydia; Brüchner, Kerstin; Gurtner, Kristin; Hess-Stumpp, Holger; Unterschemmann, Kerstin; Pruschy, Martin

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD 50 ) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P 50 , with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD 50 . Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of radiation response. Whether this mechanism contributes to the improved outcome of fractionated chemoradiation therapy warrants further investigation

  8. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  9. Lead intoxication under environmental hypoxia impairs oral health.

    Science.gov (United States)

    Terrizzi, Antonela R; Fernandez-Solari, Javier; Lee, Ching M; Martínez, María Pilar; Conti, María Ines

    2014-01-01

    We have reported that chronic lead intoxication under hypoxic environment induces alveolar bone loss that can lead to periodontal damage with the subsequent loss of teeth. The aim of the present study was to assess the modification of oral inflammatory parameters involved in the pathogenesis of periodontitis in the same experimental model. In gingival tissue, hypoxia increased inducible nitric oxid synthase (iNOS) activity (p lead decreased prostaglandin E2 (PGE2) content (p lead and PGE2 content was increased by both lead and hypoxia (p lead under hypoxic conditions. Results suggest a wide participation of inflammatory markers that mediate alveolar bone loss induced by these environmental conditions. The lack of information regarding oral health in lead-contaminated populations that coexist with hypoxia induced us to evaluate the alteration of inflammatory parameters in rat oral tissues to elucidate the link between periodontal damage and these environmental conditions.

  10. Quantification of cardiovascular and cardiorespiratory coupling during hypoxia with Joint Symbolic Dynamics.

    Science.gov (United States)

    Reulecke, S; Schulz, S; Bauer, R; Witte, H; Voss, A

    2011-01-01

    Newborn mammals suffering from moderate hypoxia during or after birth are able to compensate a transitory lack of oxygen by adaptation of their vital functions. However, limited information is available about bivariate couplings of the underlying complex processes controlled by the autonomic nervous system. In this study an animal model of seven newborn piglets (2-3 days old, 1.71 ± 0.15 kg) was used. The aim of this study was to analyze the cardiovascular and cardiorespiratory interactions of autonomous nervous system during sustained hypoxia and the interrelationship of these autonomic time series after induced reoxygenation. For this purpose we applied a new high resolution version of the nonlinear method of Joint Symbolic Dynamics (JSD) for analysis of couplings between heart rate and blood pressure and respiration rate time series, respectively. This new method is characterized by using three defined symbols (JSD3) instead of two and the application of thresholds for the symbol transformation. Our results demonstrate that in contrast to the traditional JSD the comparison of cardiovascular interactions reveals only significant differences between normoxic and hypoxic conditions using JSD3 whereas for cardiorespiratory interactions significant differences were revealed by indices from both JSD2 and JSD3 due to reoxygenation. These results suggest that the application of JSD3 reveals more detailed information about cardiovascular and cardiorespiratory interactions of autonomic regulation and might be useful for monitoring of critical human newborns.

  11. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Chien-Hung Shih

    Full Text Available Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  12. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B.

    Science.gov (United States)

    Lapinski, Philip E; Oliver, Jennifer A; Bodie, Jennifer N; Marti, Francesc; King, Philip D

    2009-11-01

    Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.

  13. Uncoupling protein-2 mRNA expression in mice subjected to intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Vieira

    2015-04-01

    Full Text Available Objective: To investigate the effect of intermittent hypoxia-a model of obstructive sleep apnea (OSA-on pancreatic expression of uncoupling protein-2 (UCP2, as well as on glycemic and lipid profiles, in C57BL mice. Methods: For 8 h/day over a 35-day period, male C57BL mice were exposed to intermittent hypoxia (hypoxia group or to a sham procedure (normoxia group. The intermittent hypoxia condition involved exposing mice to an atmosphere of 92% N and 8% CO2 for 30 s, progressively reducing the fraction of inspired oxygen to 8 ± 1%, after which they were exposed to room air for 30 s and the cycle was repeated (480 cycles over the 8-h experimental period. Pancreases were dissected to isolate the islets. Real-time PCR was performed with TaqMan assays. Results: Expression of UCP2 mRNA in pancreatic islets was 20% higher in the normoxia group than in the hypoxia group (p = 0.11. Fasting serum insulin was higher in the hypoxia group than in the normoxia group (p = 0.01. The homeostasis model assessment of insulin resistance indicated that, in comparison with the control mice, the mice exposed to intermittent hypoxia showed 15% lower insulin resistance (p = 0.09 and 21% higher pancreatic β-cell function (p = 0.01. Immunohistochemical staining of the islets showed no significant differences between the two groups in terms of the area or intensity of α- and β-cell staining for insulin and glucagon. Conclusions: To our knowledge, this is the first report of the effect of intermittent hypoxia on UCP2 expression. Our findings suggest that UCP2 regulates insulin production in OSA. Further study of the role that UCP2 plays in the glycemic control of OSA patients is warranted.

  14. Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1 in human gastric cancer

    International Nuclear Information System (INIS)

    Seo, Jin-Hee; Jeong, Eui-Suk; Choi, Yang-Kyu

    2014-01-01

    Gastric cancer is the second most common cause of cancer-related death in males and the fourth in females. Traditional treatment has poor prognosis because of recurrence and systemic side effects. Therefore, the development of new therapeutic strategies is an important issue. Lentivirus-mediated shRNA stably inhibits target genes and can efficiently transduce most cells. Since overexpressed cyclin D1 is closely related to human gastric cancer progression, inhibition of cyclin D1 using specific targeting could be an effective treatment method of human gastric cancer. The therapeutic effect of lentivirus-mediated shRNA targeting of cyclin D1 (ShCCND1) was analyzed both in vitro and in vivo experiments. In vitro, NCI-N87 cells with downregulation of cyclin D1 by ShCCND1 showed significant inhibition of cell proliferation, cell motility, and clonogenicity. Downregulation of cyclin D1 in NCI-N87 cells also resulted in significantly increased G1 arrest and apoptosis. In vivo, stable NCI-N87 cells expressing ShCCND1 were engrafted into nude mice. Then, the cancer-growth inhibition effect of lentivirus was confirmed. To assess lentivirus including ShCCND1 as a therapeutic agent, intratumoral injection was conducted. Tumor growth of the lentivirus-treated group was significantly inhibited compared to growth of the control group. These results are in accordance with the in vitro data and lend support to the mitotic figure count and apoptosis analysis of the tumor mass. The lentivirus-mediated ShCCND1 was constructed, which effectively inhibited growth of NCI-N87-derived cancer both in vitro and in vivo. The efficiency of shRNA knockdown and variation in the degree of inhibition is mediated by different shRNA sequences and cancer cell lines. These experimental results suggest the possibility of developing new gastric cancer therapies using lentivirus-mediated shRNA

  15. Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback, Gasterosteus aculeatus.

    Science.gov (United States)

    Regan, Matthew D; Gill, Ivan S; Richards, Jeffrey G

    2017-11-01

    Anthropogenic increases in global temperature and agricultural runoff are increasing the prevalence of aquatic hypoxia throughout the world. We investigated the potential for a relatively rapid evolution of hypoxia tolerance using two isolated (for less than 11 000 years) populations of threespine stickleback: one from a lake that experiences long-term hypoxia (Alta Lake, British Columbia) and one from a lake that does not (Trout Lake, British Columbia). Loss-of-equilibrium (LOE) experiments revealed that the Alta Lake stickleback were significantly more tolerant of hypoxia than the Trout Lake stickleback, and calorimetry experiments revealed that the enhanced tolerance of Alta Lake stickleback may be associated with their ability to depress metabolic rate (as indicated by metabolic heat production) by 33% in hypoxia. The two populations showed little variation in their capacities for O 2 extraction and anaerobic metabolism. These results reveal that intraspecific variation in hypoxia tolerance can develop over relatively short geological timescales, as can metabolic rate depression, a complex biochemical response that may be favoured in long-term hypoxic environments. © 2017 The Author(s).

  16. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  17. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.

    Science.gov (United States)

    Liu, Dongsheng; Cowburn, David

    2016-01-01

    The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.

  18. Overexpression of Dimethylarginine Dimethylaminohydrolase Enhances Tumor Hypoxia: An Insight into the Relationship of Hypoxia and Angiogenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Vassiliki Kostourou

    2004-07-01

    Full Text Available The oxygenation status of tumors derived from wild-type C6 glioma cells and clone D27 cells overexpressing dimethylarginine dimethylaminohydrolase (DDAH was assessed in vivo using a variety of direct and indirect assays of hypoxia. Clone D27 tumors exhibit a more aggressive and better-vascularized phenotype compared to wild-type C6 gliomas. Immunohistochemical analyses using the 2-nitroimidazole hypoxia marker pimonidazole, fiber optic OxyLite measurements of tumor pO2, and localized 31P magnetic resonance spectroscopy measurements of tumor bioenergetic status and pH clearly demonstrated that the D27 tumors were more hypoxic compared to C6 wild type. In the tumor extracts, only glucose concentrations were significantly lower in the D27 tumors. Elevated Glut-1 expression, a reliable functional marker for hypoxia-inducible factor-1-mediated metabolic adaptation, was observed in the D27 tumors. Together, the data show that overexpression of DDAH results in C6 gliomas that are more hypoxic compared to wild-type tumors, and point strongly to an inverse relationship of tumor oxygenation and angiogenesis in vivo-a concept now being supported by the enhanced understanding of oxygen sensing at the molecular level.

  19. Molecular imaging of hypoxia in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Yip, Connie; Blower, Philip J.; Goh, Vicky; Landau, David B.; Cook, Gary J.R.

    2015-01-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  20. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  1. Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies.

    Science.gov (United States)

    Liau, Nicholas P D; Laktyushin, Artem; Babon, Jeffrey J

    2017-01-01

    Src Homology 2 (SH2) domains are protein domains which have a high binding affinity for specific amino acid sequences containing a phosphorylated tyrosine residue. The Suppressors of Cytokine Signaling (SOCS) proteins use an SH2 domain to bind to components of certain cytokine signaling pathways to downregulate the signaling cascade. The recombinantly produced SH2 domains of various SOCS proteins have been used to undertake structural and functional studies elucidating the method of how such targeting occurs. Here, we describe the protocol for the recombinant production and purification of SOCS SH2 domains, with an emphasis on SOCS3.

  2. Normobaric Hypoxia and Submaximal Exercise Effects on Running Memory and Mood State in Women.

    Science.gov (United States)

    Seo, Yongsuk; Gerhart, Hayden D; Stavres, Jon; Fennell, Curtis; Draper, Shane; Glickman, Ellen L

    2017-07-01

    An acute bout of exercise can improve cognitive function in normoxic and hypoxic conditions. However, limited research supports the improvement of cognitive function and mood state in women. The purpose of this study was to examine the effects of hypoxia and exercise on working memory and mood state in women. There were 15 healthy women (age = 22 ± 2 yr) who completed the Automated Neuropsychological Assessment Metrics-4th Edition (ANAM), including the Running Memory Continuous Performance Task (RMCPT) and Total Mood Disturbance (TMD) in normoxia (21% O2), at rest in normoxia and hypoxia (12.5% O2), and during cycling exercise at 60% and 40% Vo2max in hypoxia. RMCPT was not significantly impaired at 30 (100.3 ± 17.2) and 60 (96.6 ± 17.3) min rest in hypoxia compared to baseline in normoxia (97.0 ± 17.0). However, RMCPT was significantly improved during exercise (106.7 ± 20.8) at 60% Vo2max compared to 60 min rest in hypoxia. Following 30 (-89.4 ± 48.3) and 60 min of exposure to hypoxia (-79.8 ± 55.9) at rest, TMD was impaired compared with baseline (-107.1 ± 46.2). TMD was significantly improved during exercise (-108.5 ± 42.7) at 40% Vo2max compared with 30 min rest in hypoxia. Also, RMCPT was significantly improved during exercise (104.0 ± 19.1) at 60% Vo2max compared to 60 min rest in hypoxia (96.6 ± 17.3). Hypoxia and an acute bout of exercise partially influence RMCPT and TMD. Furthermore, a moderate-intensity bout of exercise (60%) may be a more potent stimulant for improving cognitive function than low-intensity (40%) exercise. The present data should be considered by aeromedical personnel performing cognitive tasks in hypoxia.Seo Y, Gerhart HD, Stavres J, Fennell C, Draper S, Glickman EL. Normobaric hypoxia and submaximal exercise effects on running memory and mood state in women. Aerosp Med Hum Perform. 2017; 88(7):627-632.

  3. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α protein levels in endothelial cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Stefan K Alig

    Full Text Available The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin. SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132 returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.

  4. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism.

    Science.gov (United States)

    Zhang, Xuxiao; Vadas, Oscar; Perisic, Olga; Anderson, Karen E; Clark, Jonathan; Hawkins, Phillip T; Stephens, Len R; Williams, Roger L

    2011-03-04

    Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110β/p85β complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110β catalytic subunit, which is essential for lipid kinase activity. In vitro, p110β basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110β. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons.

    Science.gov (United States)

    Malthankar-Phatak, Gauri H; Patel, Anant B; Xia, Ying; Hong, Soonsun; Chowdhury, Golam M I; Behar, Kevin L; Orina, Isaac A; Lai, James C K

    2008-09-10

    Mechanisms underlying hypoxia-induced neuronal adaptation have not been fully elucidated. In the present study we investigated glucose metabolism and the activities of glycolytic and TCA cycle enzymes in cerebro-cortical neurons exposed to hypoxia (3 days in 1% of O2) or normoxia (room air). Hypoxia led to increased activities of LDH (194%), PK (90%), and HK (24%) and decreased activities of CS (15%) and GDH (34%). Neurons were incubated with [1-(13)C]glucose for 45 and 120 min under normoxic or hypoxic (120 min only) conditions and 13C enrichment determined in the medium and cell extract using 1H-{13C}-NMR. In hypoxia-treated neurons [3-(13)C]lactate release into the medium was 428% greater than in normoxia-treated controls (45-min normoxic incubation) and total flux through lactate was increased by 425%. In contrast glucose oxidation was reduced significantly in hypoxia-treated neurons, even when expressed relative to total cellular protein, which correlated with the reduced activities of the measured mitochondrial enzymes. The results suggest that surviving neurons adapt to prolonged hypoxia by up-regulation of glycolysis and down-regulation of oxidative energy metabolism, similar to certain other cell types. The factors leading to adaptation and survival for some neurons but not others remain to be determined.

  6. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Directory of Open Access Journals (Sweden)

    I. K. Hals

    2013-01-01

    Full Text Available Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2. Nonencapsulated islets released 37.7% (median more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001. Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.

  7. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2/Bcl-2 associated X protein (Bax in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.

  8. Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation.

    Directory of Open Access Journals (Sweden)

    Sulyman Barkho

    Full Text Available The Src family of tyrosine kinases (SFKs regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk. Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk's activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk.

  9. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  10. Management of renal dysfunction following term perinatal hypoxia-ischaemia.

    LENUS (Irish Health Repository)

    Sweetman, Deirdre U

    2013-03-01

    Acute kidney injury frequently develops following the term perinatal hypoxia-ischaemia. Quantifying the degree of acute kidney injury is difficult, however, as the methods currently in use are suboptimal. Acute kidney injury management is largely supportive with little evidence basis for many interventions. This review discusses management strategies and novel biomarkers that may improve diagnosis and management of renal injury following perinatal hypoxia-ischaemia.

  11. Hypoxia and the heart of poikilotherms

    Czech Academy of Sciences Publication Activity Database

    Ošťádal, Bohuslav

    2014-01-01

    Roč. 1, č. 1 (2014), s. 28-32 Institutional support: RVO:67985823 Keywords : blood supply heart * poikilotherms * tolerance to hypoxia Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  12. Changes in the fraction of total hypoxia and hypoxia subtypes in human squamous cell carcinomas upon fractionated irradiation: Evaluation using pattern recognition in microcirculatory supply units

    International Nuclear Information System (INIS)

    Maftei, Constantin-Alin; Bayer, Christine; Shi, Kuangyu; Astner, Sabrina T.; Vaupel, Peter

    2011-01-01

    Background and purpose: Evaluate changes in total hypoxia and hypoxia subtypes in vital tumor tissue of human head and neck squamous cell carcinomas (hHNSCC) upon fractionated irradiation. Materials and methods: Xenograft tumors were generated from 5 hHNSCC cell lines (UT-SCC-15, FaDu, SAS, UT-SCC-5 and UT-SCC-14). Hypoxia subtypes were quantified in cryosections based on (immuno-)fluorescent marker distribution patterns of Hoechst 33342 (perfusion), pimonidazole (hypoxia) and CD31 (endothelium) in microcirculatory supply units (MCSUs). Tumors were irradiated with 5 or 10 fractions of 2 Gy, 5×/week. Results: Upon irradiation with 10 fractions, the overall fraction of hypoxic MCSUs decreased in UT-SCC-15, FaDu and SAS, remained the same in UT-SCC-5 and increased in UT-SCC-14. Decreases were observed in the proportion of chronically hypoxic MCSUs in UT-SCC-15, in the fraction of acutely hypoxic MCSUs in UT-SCC-15 and SAS, and in the percentage of hypoxemically hypoxic MCSUs in SAS tumors. After irradiation with 5 fractions, there were no significant changes in hypoxia subtypes. Changes in the overall fraction of hypoxic MCSUs were comparable to corresponding alterations in the proportions of acutely hypoxic MCSUs. There was no correlation between radiation resistance (TCD 50 ) and any of the investigated hypoxic fractions upon fractionated irradiation. Conclusions: This study shows that there are large alterations in the fractions of hypoxia subtypes upon irradiation that can differ from changes in the overall fraction of hypoxic MCSUs.

  13. Abl N-terminal Cap stabilization of SH3 domain dynamics†

    OpenAIRE

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E.; Engen, John R.

    2008-01-01

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears important for locking the SH3/SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydro...

  14. A novel adjustable automated system for inducing chronic intermittent hypoxia in mice.

    Science.gov (United States)

    Polšek, Dora; Bago, Marcel; Živaljić, Marija; Rosenzweig, Ivana; Lacza, Zsombor; Gajović, Srećko

    2017-01-01

    Sleep apnea is a chronic, widely underdiagnosed condition characterized by disruption of sleep architecture and intermittent hypoxia due to short cessations of breathing. It is a major independent risk factor for myocardial infarction, congestive heart failure and stroke as well as one of the rare modifiable risk factors for Alzheimer's Dementia. Reliable animal disease models are needed to understand the link between sleep apnea and the various clinically linked disorders. An automated system for inducing hypoxia was developed, in which the major improvement was the possibility to efficiently adjust the length and intensity of hypoxia in two different periods. The chamber used a small volume of gas allowing for fast exchanges of different oxygen levels. The mice were kept in their cages adapted with the system on the cage lid. As a proof of principle, they were exposed to a three week period of intermittent hypoxia for 8 hours a day, with 90 s intervals of 5, 7% and 21% oxygen to validate the model. Treated (n = 8) and control mice (no hypoxia, n = 7) were handled in the same manner and their hippocampal brain regions compared by histology. The chamber provided a fast, reliable and precise intermittent hypoxia, without inducing noticeable side effects to the animals. The validation experiment showed that apoptotic neurons in the hippocampus were more numerous in the mice exposed to intermittent hypoxia than in the control group, in all tested hippocampal regions (cornu ammonis 1 (CA1) P apnea, which was validated by apoptosis of hippocampal neurons.

  15. Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia.

    Science.gov (United States)

    Hasegawa, K; Yoshioka, H; Sawada, T; Nishikawa, H

    1991-01-01

    To elucidate the role of free radicals in the pathogenesis of neonatal hypoxic encephalopathy, we determined the content of thiobarbituric acid reactants (TBARs), as an index of lipid peroxidation related with a free radical reaction, in the brains of newborn mice during hypoxia and recovery from hypoxia. Hypoxic stress was induced by 100% nitrogen gas breathing (N2 group) or 100% carbon dioxide gas breathing (CO2 group). TBARs increased with 20 minutes of hypoxia and returned to the control level during the recovery period in both groups. The increase in TBARs in the CO2 group was greater than that in the N2 group. These results may suggest that free radical reaction occurs during the hypoxic period and that CO2 hypoxia is more effective on free radical production in the newborn brain than N2 hypoxia.

  16. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    Science.gov (United States)

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  17. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mahendran Botlagunta

    2011-03-01

    Full Text Available DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.

  18. Envisioning the Shôjo Aesthetic in Illustrations of Miyazawa Kenji’s Literature.

    Directory of Open Access Journals (Sweden)

    Helen Claire Kilpatrick

    2013-01-01

    Full Text Available Despite an ever-growing body of scholarship on the shôjo (girl in manga and anime, little has been written about representations of the ‘girl’ in Japanese picture books. Shôjo literature and culture have grown exponentially in Japan since about the 1980s, but there has been a tendency in popular media to overemphasise the 'cute', disempowering aspects of the ‘girl’. By using Takahara Eiri's (1999 concept of “girl consciousness” and Honda Masuko's (1992 envisioning of the girl’s imagined freedom through a hirahira (fluttering aesthetic, notions of the powerless or mindlessly consuming shôjo can be dispelled. Such concepts help demonstrate that the girl ‘has her own creative, critical and cultural, if not social or political, power’ (Aoyama 2008: 286. This paper examines the shôjo tropes in contemporary illustrations that were produced to accompany two tales by the renowned author Miyazawa Kenji (1896-1933, Futago no Hoshi (Twin Stars and Ginga Tetsudô no Yoru (Night of the Milky Way Railway. Although Kenji (as he is known is not generally considered a shôjo author, some of his works incorporate gently transgressive shôjo themes reminiscent of, for example, Yoshiya Nobuko’s Hana Monogatari (Flower Tales from the 1920s. I argue that the current artwork of two award-winning artists, Makino Suzuko and Azuma Itsuko, reflects and enhances Kenji’s ‘girlish’ verbal images, bringing them to the fore in their accompanying imagery for Futago and Ginga by drawing on shôjo art, manga and literature. The artists thus bring into play intertextual references that occur not only across different historical temporalities but also through relations between the author, the artist, the text(s, the protagonists and the reading/viewing audience. The analysis of their striking artwork shows how they bring Kenji’s 1920s’ works firmly into the arena of the contemporary ‘girl’, expanding the abstract consciousness of the shôjo to

  19. Psychomotor skills learning under chronic hypoxia.

    Science.gov (United States)

    Bouquet, C A; Gardette, B; Gortan, C; Abraini, J H

    1999-09-29

    Psychomotor deficits are a prominent feature in subjects exposed to hypoxia. Eight subjects exposed to chronic hypoxia during a simulated climb to 8848 m (Everest-Comex 97) were investigated using both a simple psychomotor task (Purdue pegboard) and two complex psychomotor tasks including a recognition task of either a color stimulus (high semantic level) or an abstract sign (low semantic level). Exposure to hypoxic stress mainly produced psychomotor skills learning deficits compared to control study, with greater deficits in the complex psychomotor task. The pattern of results suggests disruptions of motor strategic process. Our data further suggest that the relative strength of implicit or automatic memory processes associated with semantic information processing may increase when disturbances occur in brain functions.

  20. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic