Sample records for sustained explosive eruptions

  1. Abrupt transitions during sustained explosive eruptions: Examples from the 1912 eruption of Novarupta, Alaska (United States)

    Adams, N.K.; Houghton, Bruce F.; Hildreth, W.


    Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and

  2. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse


    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  3. Jet noise recorded during discrete explosive eruptions (United States)

    Scarlato, P.; Sesterhenn, J.; Taddeucci, J.


    Most commonly, acoustic studies of explosive volcanic activity focus on the infrasonic range, as related to large volumetric changes mostly associated with the liberation of pressurized gas. However, there are multiple potential sources of sound that accompany explosive activity, expected to cover a broad range of frequencies. Among the audible range are several mechanisms, generating sound in high-velocity jets of gas or gas-particle mixture entering the atmosphere. This types of sound, well-documented and investigated in physics and engineering literature, has been so far mostly neglected in the study of explosive eruptions, due to the high energy content of the jet noise in the infrasonic regime, despite the potential it holds for parameterizing and understanding eruption processes. High-speed imaging of Strombolian and Vulcanian explosive eruptions at several volcanoes allowed the visualization of acoustic waves generated during the emission of the eruptive gas-pyroclast mixture. The waves, visible only when travelling within dilute gas/aerosol plumes, are thought to cause a temporary phase change in the travel medium. Image analysis allows direct measurement of the apparent (projected) trajectory, wavelength and travel velocity of the waves. Synchronized audio recording from the same eruptions include frequency contents in agreement with the observed waves. The general features of the observed waves are compatible with jet noise originated by the gas-pyroclast mixture entering the atmosphere, opening the way for future comparison with the results of numerical simulations of explosive eruptions, and possibly setting the basis for new acoustic monitoring tools for explosive eruptions.

  4. Stability of volcanic conduits during explosive eruptions (United States)

    Aravena, Álvaro; de'Michieli Vitturi, Mattia; Cioni, Raffaello; Neri, Augusto


    Geological evidences of volcanic conduit widening are common in most pyroclastic deposits (e.g. presence of lithic fragments from different depths), suggesting a continuous modification of the conduit geometry during volcanic eruptions. However, the controlling factors of the mechanisms driving conduit enlargement (e.g. erosion, local collapse) are still partially unclear, as well as the influence of conduit geometry on the eruptive dynamics. Although numerical models have been systematically employed to study volcanic conduits, their mechanical stability and the eruptive dynamics related to non-cylindrical conduits have been poorly addressed. We present here a 1D steady-state model which includes the main processes experimented by ascending magmas (i.e. crystallization, rheological changes, fragmentation, drag forces, outgassing and degassing), and the application of two mechanical stability criteria (Mohr-Coulomb and Mogi-Coulomb), in order to study the collapse conditions of volcanic conduits during a representative explosive rhyolitic eruption. It emerges that mechanical stability of volcanic conduits is mainly controlled by its radial dimension, and a minimum radius for reaching stable conditions can be computed, as a function of water content and inlet overpressure. Additionally, for a set of input parameters thought typical of explosive rhyolitic volcanism, we estimated a minimum magma flux for developing a mechanically stable conduit ( 7 • 107 - 3 • 108 kg/s). Results are consistent with the unsteady character usually observed in sub-Plinian eruptions, opposite to mainly stationary Plinian eruptions, commonly characterized by higher magma discharge rates. We suggest that cylindrical conduits represent a mechanically stable configuration only for large radii. Because the instability conditions are not uniform along the conduit, the widening processes probably lead to conduit geometries with depth-varying width. Consequently, as our model is able to

  5. The frequency of explosive volcanic eruptions in Southeast Asia. (United States)

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  6. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea (United States)

    Fee, D.; Carn, S. A.; Prata, F.


    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and

  7. Rapid laccolith intrusion driven by explosive volcanic eruption. (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves


    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  8. Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future? (United States)

    Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry


    Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.

  9. Ash aggregation in explosive volcanic eruptions (United States)

    Telling, J. W.; Dufek, J.


    We present the result of a recent experimental and numerical investigation of ash aggregation in volcanic plumes. Eruption dynamics are sensitive to microphysical processes, like ash aggregation, yet are difficult to parameterize based on dynamics simulations of whole eruption columns due to the lack of sufficient resolution. Here we present the results of experiments that develop a probabilistic relationship for ash aggregation based on particle size, collisional energy and atmospheric water vapor. These relationships can be integrated into large-scale simulations of eruption column behavior in conjunction with a reconstructed velocity distribution of the ash in the column. The physical experiment was carried out in a contained tank designed to allow for the control of atmospheric water vapor. Image data is recorded with a high speed camera and post-processed to determine the number of collisions, energy of collisions and probability of aggregation. We will present the results of aggregation probability and the effects of incorporating these results into a multiphase model of a three-dimensional eruption column, where the effects of ash aggregation are especially important in regions of high shear and high granular temperature.

  10. Aggregation of volcanic ash in explosive eruptions (United States)

    Telling, J. W.; Dufek, J.


    We present the result of a recent experimental and numerical investigation of ash aggregation in volcanic plumes. Eruption dynamics are sensitive to microphysical processes, like ash aggregation, yet are difficult to parameterize based on dynamics simulations of whole eruption columns due to the lack of sufficient resolution. Here we present the results of experiments that develop a probabilistic relationship for ash aggregation based on impact velocity and atmospheric conditions (water vapor and atmospheric pressure). The probabilistic relationship can be integrated, in conjunction with a reconstructed velocity distribution of the ash in the column, and then can be readily incorporated in large-scale simulations of eruption column behavior. We also conduct detailed Eulerian-Lagrangian simulations at the scale of our experiment as a test of the ash aggregation relationship. The physical experiment was carried out in a contained tank designed to allow for the control of ‘atmospheric’ conditions. The tank can be depressurized as needed, using the gas inlet and the attached vacuum pump, and the ambient humidity can be altered by adjusting the gas mixture at the inlet. Image data is recorded with a high speed camera and post-processed to determine the number of collisions, energy of collisions and probability of aggregation. We will present the results of aggregation probability and the effects of incorporating these results into a multiphase model of a three-dimensional eruption column, where the effects of ash aggregation are especially important in regions of high shear and high granular temperature.

  11. Kamchatkan Volcanoes Explosive Eruptions in 2014 and Danger to Aviation (United States)

    Girina, Olga; Manevich, Alexander; Melnikov, Dmitry; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena


    There are 30 active volcanoes in the Kamchatka, and several of them are continuously active. In 2014, three of the Kamchatkan volcanoes - Sheveluch, Karymsky and Zhupanovsky - had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Klyuchevskoy, Bezymianny, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch Volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2014: on January 08 and 12, May 12, September 24, October 02 and 28, November 16, 22 and 26, and December 05, 17, 26 and 29: ash plumes rose up to 9-12 km a.s.l. and extended more 900 km to the eastern and western directions of the volcano. Ashfalls occurred at Klyuchi Village (on January 12, June 11, and November 16). Activity of the volcano was dangerous to international and local aviation. Karymsky volcano has been in a state of explosive eruption since 1996. The moderate ash explosions of this volcano were noting during 2014: from March 24 till April 02; and from September 03 till December 10. Ash plumes rose up to 5 km a.s.l. and extended more 300 km mainly to the eastern directions of the volcano. Activity of the volcano was dangerous to local aviation. Explosive eruption of Zhupanovsky volcano began on June 06, 2014 and continues in January 2015 too. Ash explosions rose up to 8-10 km a.s.l. on June 19, September 05 and 07, October 11

  12. Impact of explosive eruption scenarios at Vesuvius (United States)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.


    In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2 a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837-845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634-647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15-30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final

  13. Probability of large explosive volcanic eruptions in the Cascades (United States)

    Nathenson, M.; Clynne, M. A.


    Estimating the probability of large explosive eruptions in the Cascades is problematic because they occur relatively infrequently. Although some volcanic centers have been more likely to have large eruptions than others, the calculation of the probability of large eruptions for individual volcanic centers is inappropriate. A center that has had a large eruption in the past will not necessarily have a large eruption in the future, and the occurrence for individual volcanic centers is too infrequent to have much confidence in a probability estimate. The sources of some large eruptions are ambiguous (e.g. Shevlin Park Tuff, Oregon) or unknown (Dibekulewe ash), but because the effects of large eruptions are quite widespread, the precise location of the source is less important in terms of hazards. Thus, we focus on the calculation of probability of large eruptions for the Cascade arc as a whole. To estimate the probability, we have chosen a time period for documenting eruptions of 1.15 Ma (the age of the eruption of Kulshan caldera) as a balance between the likelihood of there being good information but with a long enough time period to get a reasonable number of occurrences. We have compiled data from the literature on eruptions larger than 5 km3 in erupted volume to exclude the relatively frequent eruptions ~1-2 km3. The largest eruptions are clearly or likely to have been associated with caldera formation. For erupted volumes greater than 5 km3, 19 events have occurred in the last 1.15 Ma. A plot of event number versus age shows a high rate of occurrence since 13.5 ka and a much lower rate before then. Most of the events since 13.5 ka are 5-10 km3. Events 10 km3 and larger have occurred at a reasonably constant rate since 630 ka. The difference between the two data sets is probably the poor preservation of deposits for events between 5 and 10 km3 that occurred prior to the ending of the glaciation at about 15 ka. Before 630 ka, the only eruption > 10 km3 is Kulshan

  14. Light Echoes of Galactic Explosions and Eruptions (United States)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Clocchiatti, Alejandro; Foley, Ryan; James, David; Matheson, Thomas; Narayan, Gautham; Olsen, Knut; Points, Sean; Prieto, Jose Luis; Smith, Chris; Smith, Nathan; Suntzeff, Nick; Welch, Doug; Zenteno, Alfredo


    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to us DECam to continue our search for LEs from the the Crab supernova SN 1054. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. Our extension of LE techniques to LBV outbursts promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core- collapse supernova precursors.

  15. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins (United States)

    Pierson, Thomas C.; Major, Jon J.


    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  16. Phase Equilibria Impetus For Large-Volume Explosive Volcanic Eruptions (United States)

    Fowler, S. J.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.


    We have investigated the phase equilibria and associated variations in melt and magma thermodynamic and transport properties of seven large-volume silicic explosive volcanic systems through application of the MELTS (Ghiorso &Sack, 1995) algorithm. Each calculation is based on fractional crystallization along an oxygen buffer at low-pressure (0.1 - 0.3 GPa), starting from a mafic parental liquid. Site-specific geological constraints provide starting conditions for each system. We have performed calculations for seven tuffs; the Otowi (~400 km3) and Tshirege (~200 km3) members of the Bandelier Tuff, the ~600 km3 Bishop Tuff, and the 2500, 300, and 1000 km3 Yellowstone high-silica rhyolite tuffs. These represent the six largest eruptions within North America over the past ~2 million years. The seventh tuff, the 39.3 ka Campanian Ignimbrite, a 200 km3 trachytic to phonolitic ignimbrite located near Naples, Italy, is the largest explosive eruption in the Mediterranean area in the last 200 kyr. In all cases, MELTS faithfully tracks the liquid line of descent as well as the identity and composition of phenocrysts. The largest discrepancy between predicted and observed melt compositions is for CaO in all calculations. A key characteristic for each system is a pseudoinvariant temperature, Tinv, where abrupt shifts in crystallinity (1-fm, where fm is the fraction of melt), volume fraction of supercritical fluid (θ), magma compressibility, melt and magma density, and viscosity occur over a small temperature interval of order 1 - 10 K. In particular, the volume fraction of vapor increases from θ ~0.1 just below Tinv to θ >0.7 just above Tinv for each case. The rheological transition between melt-dominated (high viscosity) and bubble-dominated (low viscosity) magma occurs at θ ~0.6. We emphasize that this effect is observed under isobaric conditions and is distinct from the oft-studied phenomenon of volatile exsolution accompanying magma decompression and subsequent

  17. Multiphase flow modeling and simulation of explosive volcanic eruptions (United States)

    Neri, Augusto

    Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation

  18. Multiparametric Experiments and Multiparametric Setups for Metering Explosive Eruptions (United States)

    Taddeucci, J.; Scarlato, P.; Del Bello, E.


    Explosive eruptions are multifaceted processes best studied by integrating a variety of observational perspectives. This need marries well with the continuous stream of new means that technological progress provides to volcanologists to parameterize these eruptions. Since decades, new technologies have been tested and integrated approaches have been attempted during so-called multiparametric experiments, i.e., short field campaigns with many, different instruments (and scientists) targeting natural laboratory volcanoes. Recently, portable multiparametric setups have been developed, including a few, highly complementary instruments to be rapidly deployed at any erupting volcano. Multiparametric experiments and setups share most of their challenges, like technical issues, site logistics, and data processing and interpretation. Our FAMoUS (FAst MUltiparametric Setup) setup pivots around coupled, high-speed imaging (visible and thermal) and acoustic (infrasonic to audible) recording, plus occasional seismic recording and sample collection. FAMoUS provided new insights on pyroclasts ejection and settling and jet noise dynamics at volcanoes worldwide. In the last years we conducted a series of BAcIO (Broadband ACquisition and Imaging Operation) experiments at Stromboli (Italy). These hosted state-of-the-art and prototypal eruption-metering technologies, including: multiple high-speed high-definition cameras for 3-D imaging; combined visible-infrared-ultraviolet imaging; in-situ and remote gas measurements; UAV aerial surveys; Doppler radar, and microphone arrays. This combined approach provides new understandings of the fundamental controls of Strombolian-style activity, and allows for crucial cross-validation of instruments and techniques. Several documentary expeditions participated in the BAcIO, attesting its tremendous potential for public outreach. Finally, sharing field work promotes interdisciplinary discussions and cooperation like nothing in the world.

  19. Explosive dome eruptions modulated by periodic gas-driven inflation (United States)

    Johnson, Jeffrey B.; Lyons, John; Andrews, B. J.; Lees, J.M.


    Volcan Santiaguito (Guatemala) “breathes” with extraordinary regularity as the edifice's conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes.

  20. Investigating the explosivity of shallow sub-aqueous basaltic eruptions (United States)

    Murtagh, R.; White, J. D. L.


    Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The

  1. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii (United States)

    Mastin, L.G.


    In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.

  2. Explosive Eruptions of Kamchatkan Volcanoes in 2012 and Danger to Aviation (United States)

    Girina, Olga; Manevich, Alexander; Melnikov, Dmitry; Nuzhdaev, Anton; Demyanchuk, Yury; Petrova, Elena


    Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. There are 30 active volcanoes in the Kamchatka and 6 active volcanoes in the Northern Kuriles, and 4 of them continuously active. In 2012 seven strong explosive eruptions of the Kamchatkan and the Northern Kuriles volcanoes Sheveluch, Bezymianny, Kizimen, Tolbachik, Klyuchevskoy, and Karymsky took place. In addition, higher fumarolic activity of Gorely volcano was observed. The eruptive activity of Sheveluch Volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2012: on January 22-23; on March 16-17; March 25-30 - June 03; and on September 18: ash plumes rose up to 10 km a.s.l. and extended about 200-2000 km to the different directions of the volcano. The eruptive activity of Bezymianny volcano began since 1955, and is continuing at present as growth of the lava dome. Two paroxysmal explosive phases of the eruption occurred on March 08 and September 01: ash plumes rose up to 8-12 km a.s.l. and extended about 1500 km to the east-north-east of the volcano. Eruption of Kizimen volcano began on December 09, 2010, and continues. Strong explosive eruption began in mid-December, 2010, - ash plumes rose up to 10 km a.s.l. and extended > 800 km from the volcano. There are several stages of the eruption: explosive (from 09 December 2010 to mid-January 2011); explosive-effusive (mid-January to mid-June 2011); effusive (mid-January 2011 to September 2012). Extrusive-effusive phase of eruption

  3. Explosive Eruptions of Kamchatkan Volcanoes in 2013 and Danger to Aviation (United States)

    Girina, Olga; Manevich, Alexander; Melnikov, Dmitry; Demyanchuk, Yury; Petrova, Elena


    There are 30 active volcanoes in the Kamchatka, and three of them (Sheveluch, Klyuchevskoy, and Karymsky) continuously active. In 2013, five of the Kamchatkan volcanoes - Sheveluch, Klyuchevskoy, Karymsky, Zhupanovsky, and Mutnovsky - had strong and moderate explosive eruptions. Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch Volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2013: on June 26, on October 18, and on December 03: ash plumes rose up to 10 km a.s.l. and extended about 200-400 km, respectively, to the south-west, south-southeast, and north of the volcano. A form of pyroclastic flow deposits with run-out 12 km accompanied these explosive eruptions. Ashfalls occurred at Klyuchi Village (on June 26) and Ivashka Village (on December 03). Activity of the volcano was dangerous to international and local aviation. Klyuchevskoy volcano had two eruptions in 2013: moderate Strombolian explosive eruption from October 14, 2012, till January 15, 2013; and strong Strombolian-Vulcanian explosive and effusive eruption from August 15, 2013, till December 20, 2013. There were four lava flows to effuse on the north-west, west and south-western volcanic flanks. Probably a flank eruption began at the pass between Klyuchevskoy volcano and Kamen volcano on October 06. Culmination of strong Vulcanian explosive activity of the volcano occurred on October 15-20: ash column rose up to 10-12 km a.s.l. and


    Directory of Open Access Journals (Sweden)

    Galen Gisler


    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  5. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, Galen R.; Weaver, R. P. (Robert P.); Mader, Charles L.; Gittings, M. L. (Michael L.)


    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  6. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.


    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  7. Rise and Collapse of Volcanic Plumes Produced By Explosive Basaltic Fissure Eruptions (United States)

    Paillat, S.; Kaminski, E. C.


    Explosive basaltic fissure eruptions, which release large amounts of sulfur gases in the atmosphere, can have a big impact on climate. The effect on climate depends on the rate of gas injection above the tropopause. The key parameter is the height reached by the eruptive plume as a function of mass flux and entrainment rate. We propose a model of entrainment in 2D volcanic plumes based on lab scale experiments on turbulent jets and plumes. In this model, entrainment varies with the Richardson number and we predict that the height of the column critically depends on the source buoyancy flux determined by the eruptive temperature and the amount of gas in the volcanic mixture at the vent. We obtain that "hot" basaltic planar plumes form stable eruptive columns, even for large eruption rates. Only if fragmentation is not efficient enough, the column collapse will prevent the injection of gas in the stratosphere.

  8. Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano, Japan (United States)

    Biass, S.; Todde, A.; Cioni, R.; Pistolesi, M.; Geshi, N.; Bonadonna, C.


    We present an exposure analysis of infrastructure and lifeline to tephra fallout for a future large-scale explosive eruption of Sakurajima volcano. An eruption scenario is identified based on the field characterization of the last subplinian eruption at Sakurajima and a review of reports of the eruptions that occurred in the past six centuries. A scenario-based probabilistic hazard assessment is performed using the Tephra2 model, considering various eruption durations to reflect complex eruptive sequences of all considered reference eruptions. A quantitative exposure analysis of infrastructures and lifelines is presented primarily using open-access data. The post-event impact assessment of Magill et al. (Earth Planets Space 65:677-698, 2013) after the 2011 VEI 2 eruption of Shinmoedake is used to discuss the vulnerability and the resilience of infrastructures during a future large eruption of Sakurajima. Results indicate a main eastward dispersal, with longer eruption durations increasing the probability of tephra accumulation in proximal areas and reducing it in distal areas. The exposure analysis reveals that 2300 km of road network, 18 km2 of urban area, and 306 km2 of agricultural land have a 50% probability of being affected by an accumulation of tephra of 1 kg/m2. A simple qualitative exposure analysis suggests that the municipalities of Kagoshima, Kanoya, and Tarumizu are the most likely to suffer impacts. Finally, the 2011 VEI 2 eruption of Shinmoedake demonstrated that the already implemented mitigation strategies have increased resilience and improved recovery of affected infrastructures. Nevertheless, the extent to which these mitigation actions will perform during the VEI 4 eruption presented here is unclear and our hazard assessment points to possible damages on the Sakurajima peninsula and the neighboring municipality of Tarumizu.

  9. Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai‘i (United States)

    Swanson, Don; Rose, Timothy R.; Mucek, Adonara E; Garcia, Michael O.; Fiske, Richard S.; Mastin, Larry G.


    The subaerial eruptive activity at Kīlauea Volcano (Hawai‘i) for the past 2500 yr can be divided into 3 dominantly effusive and 2 dominantly explosive periods, each lasting several centuries. The prevailing style of eruption for 60% of this time was explosive, manifested by repeated phreatic and phreatomagmatic activity in a deep summit caldera. During dominantly explosive periods, the magma supply rate to the shallow storage volume beneath the summit dropped to only a few percent of that during mainly effusive periods. The frequency and duration of explosive activity are contrary to the popular impression that Kīlauea is almost unceasingly effusive. Explosive activity apparently correlates with the presence of a caldera intersecting the water table. The decrease in magma supply rate may result in caldera collapse, because erupted or intruded magma is not replaced. Glasses with unusually high MgO, TiO2, and K2O compositions occur only in explosive tephra (and one related lava flow) and are consistent with disruption of the shallow reservoir complex during caldera formation. Kīlauea is a complex, modulated system in which melting rate, supply rate, conduit stability (in both mantle and crust), reservoir geometry, water table, and many other factors interact with one another. The hazards associated with explosive activity at Kīlauea’s summit would have major impact on local society if a future dominantly explosive period were to last several centuries. The association of lowered magma supply, caldera formation, and explosive activity might characterize other basaltic volcanoes, but has not been recognized.

  10. Revision of the Post-Glacial Explosive Eruption History of Hudson Volcano (Chile) Using Tephrostratigraphy (United States)

    Lachowycz, S.; Fontijn, K.; Smith, V.; Pyle, D. M.; Mather, T. A.; Mee, K.; Rawson, H. L.; Naranjo, J. A.


    Hudson, a stratovolcano in the southern Andes, is recognised as the source of four large (>1 km3 of tephra) and tens of smaller explosive eruptions in the past 20 kyr, so is one of the most active volcanoes in the region. Analysis of its eruptive history is therefore particularly important for volcanic hazard assessment, investigating the tempo of volcanism, and tephrochronology in Patagonia. However, the characteristics and timing of all but the large eruptions of Hudson are currently poorly constrained. We present a revised post-glacial explosive eruption history of Hudson, from analysis of the matrix glass composition of tephra units in terrestrial sections and a thorough review of the tephrostratigraphy reported in ice, peat, soils, and lake and marine sediments. Most of the Hudson tephra units analysed have a similar glass composition to the others that they are closest to in age, but the narrow composition range we find for most units means that they are generally still distinguishable by careful glass composition analysis. We suggest that the wide composition range of tephra layers attributed to Hudson in a marine sediment core thus indicates that these layers are reworked deposits. Inconsistencies are found in the prior tephrostratigraphy from other sediment cores, emphasising the importance of detailed characterisation of tephra deposits to validate their correlation. From our compilation of published data, we refine eruption age estimates (using Bayesian analysis) and the isopachs and volume estimates for some of the large eruptions. The terrestrial sections analysed reveal previously unrecognised shifts in erupted magma composition, from silicic to mafic after the H2 eruption ( 3.9 cal ka BP), and then to intermediate compositions for the last 1 kyr. This temporal variation in eruptive behaviour is similar to that recently identified at other volcanoes in the southern Andes and suggested to be a response to deglaciation.

  11. The historical (218 ± 14 aBP) explosive eruption of Tutupaca volcano (Southern Peru) (United States)

    Samaniego, Pablo; Valderrama, Patricio; Mariño, Jersy; van Wyk de Vries, Benjamín; Roche, Olivier; Manrique, Nélida; Chédeville, Corentin; Liorzou, Céline; Fidel, Lionel; Malnati, Judicaëlle


    The little known Tutupaca volcano (17° 01' S, 70° 21' W), located at the southern end of the Peruvian arc, is a dacitic dome complex that experienced a large explosive eruption during historical times. Based on historic chronicles and our radiometric data, this eruption occurred 218 ± 14 aBP, probably between 1787 and 1802 AD. This eruption was characterised by a large sector collapse that triggered a small debris avalanche (<1 km3) and an associated pyroclastic eruption whose bulk volume was 6.5-7.5 × 107 m3. Both units were emplaced synchronously and spread onto the plain situated to the northeast of Tutupaca volcano. The spatial and temporal relationship between the debris avalanche and the pyroclastic density current deposits, coupled with the petrological similarity between the juvenile fragments in the debris avalanche, the pyroclastic density current deposits and the pre-avalanche domes, indicates that juvenile magma was involved in the sector collapse. Large amounts of hydrothermally altered material are also found in the avalanche deposit. Thus, the ascent of a dacitic magma, coupled with the fact that the Tutupaca dome complex was constructed on top of an older, altered volcanic sequence, probably induced the destabilisation of the hydrothermally active edifice, producing the debris avalanche and its related pyroclastic density currents. This eruption probably represents the youngest debris avalanche in the Andes and was accompanied by one of the larger explosive events to have occurred in Southern Peru during historical times.

  12. Tephra without borders: Far-reaching clues into past explosive eruptions

    Directory of Open Access Journals (Sweden)

    Vera ePonomareva


    Full Text Available This review is intended to highlight recent exciting advances in the study of distal (>100 km from the source tephra and cryptotephra deposits and their potential application for volcanology. Geochemical correlations of tephra between proximal and distal locations have extended the geographical distribution of tephra over tens of millions square kilometers. Such correlations embark on the potential to reappraise volume and magnitude estimates of known eruptions. Cryptotephra investigations in marine, lake and ice-core records also give rise to continuous chronicles of large explosive eruptions many of which were hitherto unknown. Tephra preservation within distal ice sheets and varved lake sediments permit precise dating of parent eruptions and provide new insight into the frequency of eruptions. Recent advances in analytical methods permit an examination of magmatic processes and the evolution of the whole volcanic belts at distances of hundreds and thousands of kilometers from source. Distal tephrochronology has much to offer volcanology and has the potential to significantly contribute to our understanding of sizes, recurrence intervals and geochemical make-up of the large explosive eruptions.

  13. The 2010 explosive eruption of Java's Merapi volcano—A ‘100-year’ event (United States)

    Surono,; Jousset, Philippe; Pallister, John S.; Boichu, Marie; Buongiorno, M. Fabrizia; Budisantoso, Agus; Costa, Fidel; Andreastuti, Supriyati; Prata, Fred; Schneider, David; Clarisse, Lieven; Humaida, Hanik; Sumarti, Sri; Bignami, Christian; Griswold, Julia P.; Carn, Simon A.; Oppenheimer, Clive; Lavigne, Franck


    Merapi volcano (Indonesia) is one of the most active and hazardous volcanoes in the world. It is known for frequent small to moderate eruptions, pyroclastic flows produced by lava dome collapse, and the large population settled on and around the flanks of the volcano that is at risk. Its usual behavior for the last decades abruptly changed in late October and early November 2010, when the volcano produced its largest and most explosive eruptions in more than a century, displacing at least a third of a million people, and claiming nearly 400 lives. Despite the challenges involved in forecasting this ‘hundred year eruption’, we show that the magnitude of precursory signals (seismicity, ground deformation, gas emissions) was proportional to the large size and intensity of the eruption. In addition and for the first time, near-real-time satellite radar imagery played an equal role with seismic, geodetic, and gas observations in monitoring eruptive activity during a major volcanic crisis. The Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) issued timely forecasts of the magnitude of the eruption phases, saving 10,000–20,000 lives. In addition to reporting on aspects of the crisis management, we report the first synthesis of scientific observations of the eruption. Our monitoring and petrologic data show that the 2010 eruption was fed by rapid ascent of magma from depths ranging from 5 to 30 km. Magma reached the surface with variable gas content resulting in alternating explosive and rapid effusive eruptions, and released a total of ~ 0.44 Tg of SO2. The eruptive behavior seems also related to the seismicity along a tectonic fault more than 40 km from the volcano, highlighting both the complex stress pattern of the Merapi region of Java and the role of magmatic pressurization in activating regional faults. We suggest a dynamic triggering of the main explosions on 3 and 4 November by the passing seismic waves generated by regional

  14. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. (United States)

    Khodri, Myriam; Izumo, Takeshi; Vialard, Jérôme; Janicot, Serge; Cassou, Christophe; Lengaigne, Matthieu; Mignot, Juliette; Gastineau, Guillaume; Guilyardi, Eric; Lebas, Nicolas; Robock, Alan; McPhaden, Michael J


    Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.

  15. 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications (United States)

    Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.


    Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much

  16. Analysis of concentration patterns in volcanic rocks: Insights into dynamics of highly explosive volcanic eruptions (United States)

    Perugini, D.; Petrelli, M.; Poli, G.


    In this contribution we present new data resulting from the analysis of concentration patterns of mixed juvenile fragments ejected by a highly explosive volcanic eruption that occurred on Salina Island (Aeolian Islands, Italy) and our aim is to identify the fluid-dynamic regime characterizing the magma mixing process. Concentration patterns are studied by calculating the power spectrum of concentration variability along transects crossing the magma mixing structures. Results indicate that the slope of power spectrum has an average value of about -5/3, according to Kolmogorov law of turbulence, and suggest that the magma mixing process, in the studied conditions, can be approximated by considering the passive scalar mixing hypothesis in homogeneous isotropic turbulent flow. These results represent a first step towards a better understanding of magma mixing processes associated to highly explosive volcanic eruptions and this first step is taken by studying concentration patterns in volcanic rocks by coupling petrological and non-linear dynamics methods.

  17. Pushing the Volcanic Explosivity Index to its limit and beyond: Constraints from exceptionally weak explosive eruptions at Kīlauea in 2008 (United States)

    Houghton, Bruce F.; Swanson, Don; Rausch, J.; Carey, R.J.; Fagents, S.A.; Orr, Tim R.


    Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema‘uma‘u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m3 (1 × 104 to 8 × 105 kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of “volcano tourists” visiting basaltic volcanoes.

  18. Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales

    Directory of Open Access Journals (Sweden)

    G. G. J. Ernst


    Full Text Available Volcanic eruptions are unsteady multiphase phenomena, which encompass many inter-related processes across the whole range of scales from molecular and microscopic to macroscopic, synoptic and global. We provide an overview of recent advances in numerical modelling of volcanic effects, from conduit and eruption column processes to those on the Earth s climate. Conduit flow models examine ascent dynamics and multiphase processes like fragmentation, chemical reactions and mass transfer below the Earth surface. Other models simulate atmospheric dispersal of the erupted gas-particle mixture, focusing on rapid processes occurring in the jet, the lower convective regions, and pyroclastic density currents. The ascending eruption column and intrusive gravity current generated by it, as well as sedimentation and ash dispersal from those flows in the immediate environment of the volcano are examined with modular and generic models. These apply simplifications to the equations describing the system depending on the specific focus of scrutiny. The atmospheric dispersion of volcanic clouds is simulated by ash tracking models. These are inadequate for the first hours of spreading in many cases but focus on long-range prediction of ash location to prevent hazardous aircraft - ash encounters. The climate impact is investigated with global models. All processes and effects of explosive eruptions cannot be simulated by a single model, due to the complexity and hugely contrasting spatial and temporal scales involved. There is now the opportunity to establish a closer integration between different models and to develop the first comprehensive description of explosive eruptions and of their effects on the ground, in the atmosphere, and on the global climate.

  19. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions (United States)

    Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.


    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals

  20. Evidence for Gradual External Reconnection Before Explosive Eruption of a Solar Filament (United States)

    Sterling, Alphonse C.; Moore, Ronald L.


    evolution is consistent with gradual breakout that led to (and perhaps caused) the fast eruption. Tether-cutting reconnection below the filament begins early in the rapid ejection. but our data are not complete enough to determine whether this reconnection began early enough to be the cause of the fast-phase onset. Thus, our observations are consistent with gradual breakout reconnection causing the long slow rise of the filament, but allow the cause of the sudden onset of the explosive fast phase to be either a jump in the breakout reconnection rate or the onset of runaway tether-cutting reconnection. or both.

  1. An analytical model for gas overpressure in slug-driven explosions: Insights into Strombolian volcanic eruptions (United States)

    Del Bello, Elisabetta; Llewellin, Edward W.; Taddeucci, Jacopo; Scarlato, Piergiorgio; Lane, Steve J.


    Strombolian eruptions, common at basaltic volcanoes, are mildly explosive events that are driven by a large bubble of magmatic gas (a slug) rising up the conduit and bursting at the surface. Gas overpressure within the bursting slug governs explosion dynamics and vigor and is the main factor controlling associated acoustic and seismic signals. We present a theoretical investigation of slug overpressure based on magma-static and geometric considerations and develop a set of equations that can be used to calculate the overpressure in a slug when it bursts, slug length at burst, and the depth at which the burst process begins. We find that burst overpressure is controlled by two dimensionless parameters: V', which represents the amount of gas in the slug, and A', which represents the thickness of the film of magma that falls around the rising slug. Burst overpressure increases nonlinearly as V' and A' increase. We consider two eruptive scenarios: (1) the "standard model," in which magma remains confined to the vent during slug expansion, and (2) the "overflow model," in which slug expansion is associated with lava effusion, as occasionally observed in the field. We find that slug overpressure is higher for the overflow model by a factor of 1.2-2.4. Applying our model to typical Strombolian eruptions at Stromboli, we find that the transition from passive degassing to explosive bursting occurs for slugs with volume >24-230 m3, depending on magma viscosity and conduit diameter, and that at burst, a typical Strombolian slug (with a volume of 100-1000 m3) has an internal gas pressure of 1-5 bars and a length of 13-120 m. We compare model predictions with field data from Stromboli for low-energy "puffers," mildly explosive Strombolian eruptions, and the violently explosive 5 April 2003 paroxysm. We find that model predictions are consistent with field observations across this broad spectrum of eruptive styles, suggesting a common slug-driven mechanism; we propose that

  2. Numerical modeling of the 1840s major eruption of η Carinae as an explosion (United States)

    González, Ricardo F.


    In this paper, new two-dimensional hydrodynamical simulations of η Car's nebulae are performed. In the 1840s, the massive star η Car suffered a major eruption that resulted in the formation of a bipolar structure, which is commonly known as the large Homunculus. During this event, η Car expelled into the circumstellar material a total mass of 10 M⊙ and released a total energy of Ek 1050 erg over a very short time (≤5 yr). These kinds of explosive events are frequently called supernova impostors due to their resemblance to a type II supernova, but the stars survive the explosion. In the case of η Car, a brief explosion scenario provides a potential explanation for the behavior of the historical light curve of η Car a few years ( 10 yr) after the nineteenth century outburst. Here, such an alternative scenario of an explosion is assumed (instead of a super-Eddington wind) in order to investigate whether an explosive event is also able to explain the shape and kinematics of the large Homunculus. I show that the numerical simulations presented here indeed resemble some of the observed features of the nebula, such as the present-day double-shell structure of the Homunculus, with a thin outer dense shell and a thicker inner layer, as well as thermal instabilities (Rayleigh-Taylor and Kelvin-Helmholtz) along the dense shell that may lead to the current mottled appearance of the large Homunculus. Nonetheless, the explosion model for the 1840s major eruption of η Car is not able to account for the estimated age of the large Homunculus.

  3. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation (United States)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena


    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  4. Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera (United States)

    Befus, Kenneth S.; Gardner, James E.


    Between 70 and 175 ka, over 350 km3 of high-silica rhyolite magma erupted both effusively and explosively from within the Yellowstone Caldera. Phenocrysts in all studied lavas and tuffs are remarkably homogenous at the crystal, eruption, and caldera-scale, and yield QUILF temperatures of 750 ± 25 °C. Phase equilibrium experiments replicate the observed phenocryst assemblage at those temperatures and suggest that the magmas were all stored in the upper crust. Quartz-hosted glass inclusions contain 1.0-2.5 % H2O and 50-600 ppm CO2, but some units are relatively rich in CO2 (300-600 ppm) and some are CO2-poor (50-200 ppm). The CO2-rich magmas were stored at 90-150 MPa and contained a fluid that was 60-75 mol% CO2. CO2-poor magmas were stored at 50-70 MPa, with a more H2O-rich fluid (X_{{{text{CO}}2 }} = 40-60 %). Storage pressures and volatiles do not correlate with eruption age, volume, or style. Trace-element contents in glass inclusions and host matrix glass preserve a systematic evolution produced by crystal fractionation, estimated to range from 36 ± 12 to 52 ± 12 wt%. Because the erupted products contain eruption. In the Tuffs of Bluff Point and Cold Mountain Creek, matrix glass is less evolved than most inclusions, which may indicate that more primitive rhyolite was injected into the reservoir just before those eruptions. The presence and dissolution of granophyre in one flow may record evidence for heating prior to eruption and also demonstrate that the Yellowstone magmatic system may undergo rapid changes. The variations in depth suggest the magmas were sourced from multiple chambers that follow similar evolutionary paths in the upper crust.

  5. Impact of explosive volcanic eruptions on the main climate variability modes (United States)

    Swingedouw, Didier; Mignot, Juliette; Ortega, Pablo; Khodri, Myriam; Menegoz, Martin; Cassou, Christophe; Hanquiez, Vincent


    Volcanic eruptions eject largeamounts of materials into the atmosphere, which can have an impact on climate. In particular, the sulphur dioxide gas released in the stratosphere leads to aerosol formation that reflects part of the incoming solar radiation, thereby affecting the climate energy balance. In this review paper, we analyse the regional climate imprints of large tropical volcanic explosive eruptions. For this purpose, we focus on the impact on three major climatic modes, located in the Atlantic (the North Atlantic Oscillation: NAO and the Atlantic Multidecadal Oscillation: AMO) and Pacific (the El Niño Southern Oscillation, ENSO) sectors. We present an overview of the chain of events that contributes to modifying the temporal variability of these modes. Our literature review is complemented by new analyses based on observations of the instrumental era as well as on available proxy records and climate model simulations that cover the last millennium. We show that the impact of volcanic eruptions of the same magnitude or weaker than 1991 Mt. Pinatubo eruption on the NAO and ENSO is hard to detect, due to the noise from natural climate variability. There is however a clear impact of the direct radiative forcing resulting from tropical eruptions on the AMO index both in reconstructions and climate model simulations of the last millennium, while the impact on the ocean circulation remains model-dependent. To increase the signal to noise ratio and better evaluate the climate response to volcanic eruptions, improved reconstructions of these climatic modes and of the radiative effect of volcanic eruptions are required on a longer time frame than the instrumental era. Finally, we evaluate climate models' capabilities to reproduce the observed and anticipated impacts and mechanisms associated with volcanic forcing, and assess their potential for seasonal to decadal prediction. We find a very large spread in the simulated responses across the different climate

  6. Phreatomagmatic explosive eruptions along fissures on the top of mafic stratovolcanoes with overlapping compound calderas (United States)

    Nemeth, Karoly; Geshi, Nobuo


    On near summit flank eruptions on stratovolcanoes it is commonly inferred that external water to have little or no influence on the course of the eruptions. Hence eruptions are typicaly "dry" that form spatter-dominated fissures and scoria cones. This assumption is based on that in elevated regions - especially on steep slopes - the hydrogeological conditions are not favourable to store large volume of ground water that can have effect on the eruptions. However there is some controversial trend of eruption progression from an early dry eruption below the summit that later turn to be phreatomagmatic as the eruption locus migrates toward the summit. The Suoana Ccrater on top of Miyakejima Island's mafic stratovolcano is a fine example to demonstrate such process. Suona Crater is the topmost crater of the 3 km long fissure aligned chain of small-volume volcanoes that formed in the 7th century flank of the summit region of the Miyakejima mafic stratovolcano. The oval shape crater of Suona (400 x 300 m) is surrounded by a tuff ring that developed over lava flows and epiclastic deposits accumulated in an older caldera forming about a tuff ring that is about 25 m in its thickest section with a basal consistent lava spatter dominated unit gradually transforming into a more scoria-dominated middle unit. A caldera-forming eruption in AD 2000 half-sectioned the Suona Crater exposing of its internal diatreme - crater in-fill - tephra rim succession providing a unique opportunity to understand the 3D architecture of the volcano. Toward the top of the preserved and exposed tuff ring section a clear gradual transition can be seen toward more abundance of chilled dark juvenile particles providing a matrix of a coarse ash that commonly hold cauliflower lapilli and bomb. This transition indicates that the eruption progressed from an early dry explosive phase such as lava fountaining to be a more Strombolian style explosive eruption that later on turned to be heavily influenced by

  7. Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption (United States)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel


    The MESSENGER mission revealed, for the first time, conclusive evidence of explosive volcanism on Mercury. Several previous works have cataloged the appearance and location of explosive volcanism on the planet using a variety of identifying characteristics, including vent presence and deposit color as seen in multispectral image mosaics. We present here a comprehensive catalog of vents of likely volcanic origin; our classification scheme emphasizes vent morphology. We have analyzed the morphologies of all vents in our catalog, and recognize three main morphologies: "simple vent", "pit vent", and "vent-with-mound". The majority of vents we identify are located within impact craters. The spatial distribution of vents does not correlate with the locations of volcanic smooth plains deposits, in contrast to the Moon, nor do vents correlate with the locations of large impact basins (except for the Caloris and Tolstoj basins). Using the degradation state of the vent host crater as a proxy for maximum age, we suggest that vent formation has been active through the Mansurian and into the Kuiperian periods, although the majority of vents were likely formed much earlier in mercurian history. The morphologies and locations of vents are used to investigate a set of plausible formation geometries. We find that the most likely and most prevalent formation geometry is that of a dike, stalled at depth, which then explosively vents to the surface. We compare the vent and deposit size of mercurian pyroclastic deposits with localized and regional lunar pyroclastic deposits, and find a range of possible eruption energies and corresponding variations in eruption style. Localized lunar pyroclastic deposits and the majority of mercurian pyroclastic deposits show evidence for eruption that is consistent with the magmatic foam at the top of a dike reaching a critical gas volume fraction. A subset of mercurian vents, including the prominent Copland-Rachmaninoff vent to the northeast of the

  8. Modelling expected physical impacts and human casualties from explosive volcanic eruptions

    Directory of Open Access Journals (Sweden)

    R. J. S. Spence


    Full Text Available A multi-hazard, multi-vulnerability impact model has been developed for application to European volcanoes that could significantly damage human settlements. This impact model is based on volcanological analyses of the potential hazards and hazard intensities coupled with engineering analyses of the vulnerability to these hazards of residential buildings in four European locations threatened by explosive volcanic eruptions. For a given case study site, inputs to the model are population data, building characteristics, volcano scenarios as a series of hazard intensities, and scenarios such as the time of eruption or the percentage of the population which has been evacuated. Outputs are the rates of fatalities, seriously injured casualties, and destroyed buildings for a given scenario. These results are displayed in a GIS, thereby presenting risk maps which are easy to use for presenting to public officials, the media, and the public. Technical limitations of the model are discussed and future planned developments are considered. This work contributes to the EU-funded project EXPLORIS (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047.  

  9. Characteristics of volcanic tremor accompanying the September 24th, 1986 explosive eruption of Mt. Etna (Italy

    Directory of Open Access Journals (Sweden)

    R. Cristofolini


    Full Text Available Features of the volcanic tremor recorded before, during and after the eruptive event which occurred at Mt. Etna on September 24th 1986, are described. The whole eruption was particularly short in time (about eight hours and characterized by an extremely violent explosive activity with lava fountains a few hundred meters high. As the complete record of the seismic signals generated during the whole eruptive episode was available, a detailed spectral analysis of the volcanic tremor recorded at four stations, located at increasing distance from the summit of the volcano, was carried out. Fourier analysis, that was performed using temporal windows of about 11 min in duration, pointed to some large fluctuations of the overall spectral amplitude, as well as some frequency variations of the dominant spectral peaks. The ratio of the overall spectral amplitude recorded at the highest station and at the peripheral ones, was calculated in the two spectral bands 1.0-2.5 and 2.6-6.0 Hz, respectively. The significant contribution of energy at low frequency values supports the hypothesis of a subvertical planar source, which was active during the paroxysmal stage of the eruption. Such results are also supported by the analysis of the attenuation function of the spectral amplitude.

  10. Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka (United States)

    Paris, Raphaël; Bravo, Juan J. Coello; González, María E. Martín; Kelfoun, Karim; Nauret, François


    Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario.

  11. Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka. (United States)

    Paris, Raphaël; Bravo, Juan J Coello; González, María E Martín; Kelfoun, Karim; Nauret, François


    Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario.

  12. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua) (United States)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.


    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P < 50-60 MPa), volatile-poor (H2O < 0.3-1.7 wt%; CO2 < 23-308 μg/g) magmatic conditions. These are manifested as andesitic magmas, recording

  13. Chlorine as a geobarometer tool: Application to the large explosive eruptions of Vesuvius (United States)

    Balcone-Boissard, Hélène; Boudon, Georges; Cioni, Raffaello; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia


    One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in alkaline silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (Somma-Vesuvius: We have analysed the products of 13 explosive eruptions of Monte Somma-Vesuvius, including four Plinian (Pomici di Base, Mercato, Avellino, Pompeii), five sub-Plinian (Verdoline, AP1, AP2, Pollena, 1631 AD) and four violent strombolian to ash emission events (AP3, 1822, 1906, 1944). We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, H2O-saturated portion of the reservoir. We highlighted two magma ponding zones, at ~170-200 MPa and ~105-115 MPa. We have also estimated maximum pre-eruptive H2O content for the different magma compositions, varying between 3.5 and 7 wt%. The results, in large agreement with literature, are very promising. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of outmost importance for the interpretation of the monitoring data and the identification of precursory signals.

  14. New proximal tephras at Somma-Vesuvius: evidences of a pre-caldera, large (?) explosive eruption (United States)

    Sparice, Domenico; Scarpati, Claudio; Mazzeo, Fabio Carmine; Petrosino, Paola; Arienzo, Ilenia; Gisbert, Guillem; Petrelli, Maurizio


    A 5 m thick pyroclastic and volcaniclastic sequence, never reported before, comprising a pumice fall deposit has been recognized in a disused quarry near Pollena Trocchia, on the NW slope of Somma-Vesuvius. It is composed of three stratigraphic units: a pumice fall deposit that underlies a pyroclastic density current deposit; they are overlain by a volcaniclastic unit emplaced during a quiescent period of the volcano. The pyroclastic deposits are separated by a horizon of reworked material indicating the emplacement from two distinct eruptive events. The pumice fall deposit has been subject of a detailed investigation. It consists of an ash bed overlaid by a roughly stratified pumice fall layer. The presence of ballistic clasts indicates the proximal nature of this deposit and its stratigraphic position below the Pomici di Base (22 ka) Plinian deposit allows constraining its age to the pre-caldera period (22-39 ky) of activity of Somma-Vesuvius. Samples have been collected in order to perform sedimentological (grain size and componentry), geochemical and isotopic analyses. Samples range from moderately to poorly sorted and show a trachytic composition. The comparison with literature data of compatible deposits vented from Somma-Vesuvius (Schiava, Taurano and Codola eruptions as well as borehole data) allows excluding any correlation with already known Vesuvian products suggesting that the analysed products are ascribable to a new, pre-caldera, explosive eruption. We name this new event ;Carcavone eruption;. Based on thickness, maximum lithic clasts and orientation of impact sags, showing a provenance from SE, we envisage the emplacement from a Plinian style eruption vented in the northern sector of the current caldera.

  15. Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions

    Directory of Open Access Journals (Sweden)

    C. C. Raible


    Full Text Available Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a

  16. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan (United States)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.


    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size

  17. Textures of Pyroclasts From Explosive Basaltic Eruptions at Soputan Volcano, Indonesia (United States)

    Wright, H. M. N.; Kunrat, S. L.; Pallister, J. S.


    Soputan volcano, Indonesia has produced relatively frequent explosive eruptions; over the past 35 years, the average repose interval is just two years. Eruptions over that interval have included effusion of basaltic lava domes and flows, production of high-altitude (up to 13 km) explosive ash columns, and production of pyroclastic flows with up to 5.5 km runout distances. The ascent history and degassing structure is explored here using textural observations of pyroclasts within pyroclastic flows, ash grains from tephra fall, and lava flow samples. Lava flows and pyroclastic flow deposits are highly crystalline, with 40-50% phenocrysts and up to 35% microlites, suggesting a highly viscous rheology of basaltic lava (50-51% SiO2). Vesicularities are exceptionally low; clasts in pyroclastic flow deposits have vesicularities ranging from 12-30%. Pyroclasts in pyroclastic flow deposits are highly spherical in shape across a broad grain size distribution. In cross section, these clasts display moderate alignment of phenocrysts parallel to the clast margins, suggesting relaxation of the melt after fragmentation into spherical shapes and not abrasion or milling of clasts during transport. This observation lies in apparent contrast to high inferred viscosities based on crystallinity and vesicularity measurements.

  18. The 1914 Taisho eruption of Sakurajima volcano: stratigraphy and dynamics of the largest explosive event in Japan during the twentieth century (United States)

    Todde, A.; Cioni, R.; Pistolesi, M.; Geshi, N.; Bonadonna, C.


    The 1914 Taisho eruption of Sakurijima volcano was Japan's highest intensity and magnitude eruption of the twentieth century. After a 35-year period of quiescence, the volcano suddenly rewoke a few days before the eruption, when earthquakes began to be felt on Sakurajima Island. The eruption began on January 12, 1914, from two fissures located on opposite sides of the volcano, and was characterized by a complex time evolution and changes in eruptive styles. The eruption began with a subPlinian explosive phase in which two convective columns rose from the two fissures. Both plumes were sustained for at least 2 days. This resulted in deposition of a widely dispersed tephra sequence. After this phase, the eruption evolved to a final, waning phase, shifting toward effusive activity that lasted until April 1914. During the first weeks, effusive activity was also accompanied by ash emission. The complex sequence of events, characterized by contemporaneous explosive and effusive activity, is typical of several recently observed mid-intensity eruptions, such as during the 2011 eruption of Cordón Caulle, Chile. The stratigraphic sequence of the eruptive deposits from the Taisho eruption comprises alternating coarse-to-fine lapilli beds with ash beds dispersed toward the ESE and SE. These deposits can be subdivided into three lapilli-bearing units (Units T1, T2 and T3, which correspond to the subPlinian phase) and one ash-bearing unit (Unit T4, which corresponds to the final ash venting, accompanying the first day/weeks of lava flow activity). Grain size analyses from each unit reveal a marked polymodal distribution generally described by the sum of two or three Gaussian subpopulations. Both the modes and the relative amounts of the coarse subpopulations vary with distance from vent, with those of the fine subpopulation remaining nearly constant. Within the vertical sequence, component analysis shows a progressive increase in lithic fragments, suggesting that conduit

  19. A-Train Satellite Observations of Recent Explosive Eruptions in Iceland and Chile (United States)

    Carn, S. A.; Yang, K.; Prata, A. J.


    The past few years have seen remarkable levels of explosive volcanic activity in Iceland and Chile, with four significant eruptions at Chaitén (May 2008), Eyjafjallajökull (April 2010), Grimsvötn (May 2011) and Cordón Caulle (June 2011 - ongoing). The tremendous disruption and economic impact of the Eyjafjallajökull eruption is well known, but each of these events had a significant impact on aviation, sometimes at great distances from the volcano. As of late 2011, volcanic ash from Cordón Caulle was still affecting airports in southern South America, highlighting the potential for extended disruption during long-lived eruptions. Serendipitously, this period of elevated volcanic activity has coincided with an era of unprecedented availability of satellite remote sensing data pertinent to volcanic cloud studies. In particular, NASA's A-Train satellite constellation (including the Aqua, CloudSat, CALIPSO, and Aura satellites) has been flying in formation since 2006, providing synergistic, multi- and hyper-spectral, passive and active observations. Measurements made by A-Train sensors include total column sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric

  20. Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna

    Directory of Open Access Journals (Sweden)

    D. Giordano


    Full Text Available In the period from January to June 2000 Mt. Etna exhibited an exceptional explosive activity characterized by a succession of 64 Strombolian and fire-fountaining episodes from the summit South-East Crater. Textural analysis of the eruptive products reveals that the magma associated with the Strombolian phases had a much larger crystal content (>55 vol% with respect to the magma discharged during the fire-fountain phases (~35 vol%. Rheological modelling shows that the crystal-rich magma falls in a region beyond a critical crystal content where small addition of solid particles causes an exponential increase of the effective magma viscosity. When implemented into the modeling of steady magma ascent dynamics (as assumed for the fire-fountain activity, a large crystal content as the one found for products of Strombolian eruption phases results in a one order of magnitude decrease of mass flow-rate, and in the onset of conditions where small heterogeneities in the solid fraction carried by the magma translate into highly unsteady eruption dynamics. We argue that crystallization on top of the magmatic column during the intermediate phases when magma was not discharged favoured conditions corresponding to Strombolian activity, with fire-fountain activity resuming after removal of the highly crystalline top. The numerical simulations also provide a consistent interpretation of the association between fire-fountain activity and emergence of lava flows from the crater flanks.

  1. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions (United States)

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.


    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  2. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes (United States)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.


    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting

  3. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star (United States)

    Arcavi, Iair; Howell, D. Andrew; Kasen, Daniel; Bildsten, Lars; Hosseinzadeh, Griffin; McCully, Curtis; Wong, Zheng Chuen; Katz, Sarah Rebekah; Gal-Yam, Avishay; Sollerman, Jesper; Taddia, Francesco; Leloudas, Giorgos; Fremling, Christoffer; Nugent, Peter E.; Horesh, Assaf; Mooley, Kunal; Rumsey, Clare; Cenko, S. Bradley; Graham, Melissa L.; Perley, Daniel A.; Nakar, Ehud; Shaviv, Nir J.; Bromberg, Omer; Shen, Ken J.; Ofek, Eran O.; Cao, Yi; Wang, Xiaofeng; Huang, Fang; Rui, Liming; Zhang, Tianmeng; Li, Wenxiong; Li, Zhitong; Zhang, Jujia; Valenti, Stefano; Guevel, David; Shappee, Benjamin; Kochanek, Christopher S.; Holoien, Thomas W.-S.; Filippenko, Alexei V.; Fender, Rob; Nyholm, Anders; Yaron, Ofer; Kasliwal, Mansi M.; Sullivan, Mark; Blagorodnova, Nadja; Walters, Richard S.; Lunnan, Ragnhild; Khazov, Danny; Andreoni, Igor; Laher, Russ R.; Konidaris, Nick; Wozniak, Przemek; Bue, Brian


    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

  4. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia


    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  5. Multiparametric Study of Wind and Atmosphere Effect on Explosive Eruptive Style (United States)

    Engwell, S. L.; Barsotti, S.; De'Michieli Vitturi, M.; Neri, A.


    The atmospheric environment interacts with volcanic plumes produced by explosive eruptions in a number of ways. The wind field can affect atmospheric air entrainment into the column favouring its buoyancy. Similarly, the structure of the atmosphere and its properties can significantly influence the dynamics of volcanic plumes. In recent years, several numerical simulation tools and observation systems have investigated the action of wind field and atmospheric properties on volcanic column height and bending, revealing an important influence of these variables on plume behavior. A less explored issue is the action of wind and atmospheric properties on the eruptive style, i.e. on the buoyant or collapsing regimes shown by the plume, and the factors controlling the shift from one regime to the other. In this study, we address these issues using a new numerical simulation tool for solving the plume theory equations. This tool, named PlumeMoM (de'Michieli Vitturi et al., in preparation), allows the continuous polydispersity of pyroclastic particles to be described using a quadrature-based moment method, an innovative approach in volcanology well-suited for the description of the multiphase nature of magmatic mixture. Several physical processes and real conditions were considered: loss of mass along the column, entrainment of atmospheric air, vertical profiles of atmospheric temperature and density, and atmospheric stability A global sensitivity analysis of the effects of these parameters on plume dynamics and stability was also performed by coupling the plume model with the DAKOTA statistics toolkit. Results provide a better understanding of the key processes affecting plume regime and identification of the main parameters controlling column behaviour.

  6. A parametric study of the January 2006 explosive eruptions of Augustine Volcano, using seismic, infrasonic, and lightning data: Chapter 4 in The 2006 eruption of Augustine Volcano, Alaska (United States)

    McNutt, Stephen R.; Tytgat, Guy; Estes, Steven A.; Stihler, Scott D.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.


    A series of 13 explosive eruptions occurred at Augustine Volcano, Alaska, from January 11–28, 2006. Each lasted 2.5 to 19 minutes and produced ash columns 3.8 to 13.5 km above mean sea level. We investigated various parameters to determine systematic trends, including durations, seismic amplitudes, frequency contents, signal characteristics, peak acoustic pressures, ash column heights, lightning occurrence, and lengths of pre-event and post-event quiescence. Individual tephra volumes are not known. There is no clear correlation between acoustic peak pressure and ash column height or between peak seismic amplitude and duration. However, several trends are evident. Two events, January 11 at 0444 AKST (1344 UTC) and January 27 at 2337 AKST (0837 UTC) are short (180 and 140 seconds) and have very impulsive onsets and high acoustic peak pressures of 93 and 105 Pa, as well as high peak seismic amplitudes. We interpret these to be mainly gas releases. Two of the largest events followed quiescent intervals of 3 days or longer: January 17 at 0758 AKST (1658 UTC), and January 27 at 2024 AKST (January 28 at 0524 UTC). These two events had reduced displacements (DR) of 11.4 and 7.5 cm2, respectively. Although these DR values are typical for eruptions with ash columns to 9 to 14 km, most other DR values of 1.6 to 3.6 cm2 are low for the 7.0 to 10.5 km ash column heights observed. The combination of short durations, small DR and high ash columns suggests that these events are highly explosive, in agreement with Vulcanian eruption type. Several events had long durations on individual seismic stations but not on others; we interpret these to represent pyroclastic or other flows passing near the affected stations so that tractions or momentum exchange from the cloud or flow adds energy to the ground only near those stations. The eruption on January 27 at 2024 AKST had more than 300 lightning flashes, whereas the following eruptions on January 28 at 0204 AKST and 0742 AKST had

  7. Explosive eruption records from Eastern Africa: filling in the gaps with tephra records from stratified lake sequences (United States)

    Lane, Christine; Asrat, Asfawossen; Cohen, Andy; Cullen, Victoria; Johnson, Thomas; Lamb, Henry; Martin-Jones, Catherine; Poppe, Sam; Schaebitz, Frank; Scholz, Christopher


    On-going research into the preservation of volcanic ash fall in stratified Holocene lake sediments in Eastern Africa reveals the level of incompleteness of our explosive eruption record. Only nine eruptions with VEI >4 are recorded in the LaMEVE database (Crosweller et al., 2012) and of the 188 Holocene eruptions listed for East African volcanoes in the Global Volcanism Programme database, only 24 are dated to > 2000 years ago (GVP, 2013). Tephrostratigraphic investigation of Holocene sediments from a number of lakes, including Lake Kivu (south of the Virunga volcanic field), Lake Victoria (west of the Kenyan Rift volcanism) and palaeolake Chew Bahir (southern Ethiopia), all reveal multiple tephra layers, which indicate vastly underestimated eruption histories. Whereas the tephra layers in Lake Kivu were all located macroscopically, no visible tephra layers were observed in the sediments from Lake Victoria and Chew Bahir. Instead, tephra are preserved as non-visible horizons (cryptotephra), revealed only after laboratory processing. These results indicate that even where we do have stratified visible tephra records, the number of past eruptions may still be a minimum. Cryptotephra studies therefore play a fundamental role in building comprehensive records of past volcanism. Challenges remain, in this understudied region, to identify the volcanic source of each of the tephra layers, which requires geochemical correlation to proximal volcanic deposits. Where correlations to source can be achieved, explosive eruption frequencies and recurrence rates may be assessed for individual volcanoes. Furthermore, if a tephra layer can be traced into multiple sedimentary sequences, the potential exists to evaluate eruption magnitude, providing a more useful criterion for risk assessment. Filling in the gaps in our understanding of East African Rift volcanism and the associated hazards is therefore critically dependent upon bringing together this important data from distal

  8. A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska (United States)

    Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.


    Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.

  9. Shift from magmatic to phreatomagmatic explosion controlled by the evolution of lateral fissure eruption in Suoana Crater, Miyakejima (United States)

    Geshi, Nobuo; Nemeth, Karoly; Noguchi, Rina; Oikawa, Teruki


    contributed to the general drop of magmatic pressure in the upper section of the fissure-fed conduit. The cross section of the Suoana diatreme indicates that the phreatomagmatic explosion occurred ~260 m below the original ground surface, corresponding to ~400 m above the present sea level. This elevation is clearly higher than that of the lower part of the eruption fissure which reached to the point ~ 200 m above sea level. The drop of magma flux and the general gravitational instability of the conduit resulted that ground water was able to access the still hot feeder dikes and initiate phreatomagmatic explosive eruptions (e.g., Geshi and Neri, 2014). The existence of buried summit caldera that can host large quantity of groundwater also contributes the limited distribution of phreatomagmatic activity in the summit area. We propose that this seemingly reversal trend from early magmatic to later phreatomagmatic explosive eruption style in top of large mafic caldera volcanoes in fissure fed volcanic islands is probably a far more common eruption mechanism and hence it needs to be considered in volcanic hazard scenario descriptions.

  10. Pumice rafting and faunal dispersion during 2001 2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga (United States)

    Bryan, S. E.; Cook, A.; Evans, J. P.; Colls, P. W.; Wells, M. G.; Lawrence, M. G.; Jell, J. S.; Greig, A.; Leslie, R.


    A new influx of sea-rafted pumice reached the eastern coast of Australia in October 2002, approximately 1 year after a felsic, shallow-marine explosive eruption at a previously unknown volcano (0403-091) along the Tofua volcanic arc (Tonga). The eruption produced floating pumice rafts that first became stranded in Fiji in November 2001, approximately 1 month after the eruption. Strandings of sea-rafted pumice along shorelines have been the only record of products from this submarine explosive eruption at the remote, submerged volcano. Computed drift trajectories of the sea-rafted pumice using numerical models of southwest Pacific surface wind fields and ocean currents indicate two cyclonic systems disturbed the drift of pumice to eastern Australia, as well as the importance of the combined wave and direct wind effect on pumice trajectory. Pumice became stranded along at least two-thirds (>2000 km) of the coastline of eastern Australia being deposited on beaches during a sustained period of fresh onshore winds. Typical amounts of pumice initially stranded on beaches were 500-4000 individual clasts per m 2, and a minimum volume estimate of pumice that arrived to eastern Australia is 1.25×10 5 m 3. Pumice was beached below maximum tidal/storm surge levels and was quickly reworked back into the ocean, such that the concentration of beached pumice rapidly dissipated within weeks of the initial stranding, and little record of this stranding event now exists. Most stranded pumice clasts ranged in size from 2 to 5 cm in diameter; the largest measured clasts were 10 cm in Australia and 20 cm in Fiji. The pumice has a low phenocryst content (taxa, coupled with the long dispersal trajectory (>3500 km) and period of pumice floatation (≥1 year), confirm the importance of sea-rafted pumice as a long-distance dispersal mechanism for marine organisms including marine pests and harmful invasive species. Billions of individual rafting pumice clasts can be generated in a single

  11. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry (United States)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.


    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and grey rounded clasts may be the result of recycling of the cone or vent-fill material. Alternatively, the differences among the populations may represent lateral variations in conduit flow conditions. In general, phases associated with large volumes and large dispersal areas tend to contain larger proportions of the glassy/iridescent clasts. Phase 1 has a large proportion of glassy clasts. Phase 2 has approximately half red and half grey clasts, as well as a small fraction of glassy material. Phase 3, which is the phase with the largest dispersal area, has a similar proportion of glassy clasts as phase 1. Phase 4, the largest by volume at ~0.11km3 DRE [Amos (1986)], has the highest proportion of glassy clasts. Phase 5 is comparable to phase 4 (similar fractions of each clast type), although the glassy surface changes from gold to black as clast size decreases. Each phase is well- to very well

  12. Probing the Source of Explosive Volcanic Eruptions (Sergey Soloviev Medal Lecture) (United States)

    Eichelberger, John C.


    International Continental Scientific Drilling Program (ICDP) would continuously core through the margin of the magma body, accompanied by state-of-the-art geophysics, geochemical analyses and 3-D mass/heat transport modeling. Coring of molten rock has been conducted with success in lava lakes. Gradients in phase assemblage and composition will provide definitive tests of models of mass/heat transfer and magma evolution. By knowing 'the answer', techniques for finding magma will likewise be tested, making Krafla an international magma laboratory. In fact, Krafla may resemble the state of neighboring Askja Caldera system prior its 1875 eruption, with hidden rhyolite being brewed in a basalt-fired caldera crucible. Additionally, the observed high permeability and sustained power output from the magma body's margin implies self-sustained thermal fracturing, i.e. an 'Enhanced Geothermal System' an order of magnitude more powerful than conventional geothermal. The cost should be balanced against the higher cost of ignorance. For tsunamis, Sergey Soloviev showed there is no substitute for direct measurements at depth, despite technical and economic obstacles. He also led the way in Russian - American cooperation on natural hazards, thereby mitigating the risk of the ultimate hazard, of humans to each other.

  13. Civil aviation management during explosive volcanic eruptions: A survey on the stakeholders' perspective on the use of tephra dispersal models (United States)

    Scaini, Chiara; Bolić, Tatjana; Folch, Arnau; Castelli, Lorenzo


    Impacts of explosive volcanic eruptions on civil aviation were reconsidered after the 2010 Eyjafjallajökull eruption in Iceland, which caused unprecedented disruptions of air traffic operations in Europe. During and after the aviation breakdown of April-May 2010, communication between the involved stakeholders was recognized as a major concern. Due to the complexity and multidisciplinary nature of the topic, a great number of actors are involved, which often have little interaction outside these exceptional events. In this work, we aim at identifying the relationships between the stakeholders involved in aviation management during eruptions, as well as their needs and priorities. We perform an anonymous on-line survey, focused mainly on the use of tephra dispersal models for civil aviation purposes. We collect feedback on recent developments including our current impact assessment research, which produced a GIS-based software tool to estimate impacts on aviation based on tephra dispersal forecasts. Answers allow identifying stakeholders' requirements on ash dispersal forecasts and their use for aviation management purposes. We underline the main differences between three homogeneous groups (aviation managers and employees, modellers and field scientists, other stakeholders) and identify main end-user requirements for developing tools similar to ours. This work provides useful insights for the development of tools to support aviation stakeholders during volcanic eruptions.

  14. Xenocrysts and antecrysts and their effect on the precision of 40Ar/39Ar dates of explosive volcanic eruption (United States)

    Smith, V.; Mark, D.; Blockley, S.; Weh, A.


    Evolved melts that fuel large explosive eruptions encounter, and are often generated through melting, crystal-rich parts of the magmatic system that fed previous eruptions. This results in many antecrysts being incorporated into the magma prior to eruption. In addition, many xenocrysts are entrained during eruption through conduit excavation. Combining all these crystal populations produces 40Ar/39Ar dates with wide-ranges, such as those that are often reported in the literature. In order to gain very precise dates of volcanic events it is thus necessary to assess whether antecrysts and xenocrysts effect the precision of the dates, and establish ways to reduce these components. Here we use the deposits of the ~11 ka Ulleung-Oki eruption from the alkaline volcanic island of Ulleung, situated 130 km east of the Korean peninsula. The eruption deposits are widely dispersed and found in the Suigetsu lake sequence from central Japan. A precise date of the tephra would help with construction of the terrestrial radiocarbon calibration curve that spans back to the limit of radiocarbon dating (~50 ka). The new calibration model is currently being constructed using varve chronology (annual layer counting) and >600 14C determinations of terrestrial macrofossils*. However, the annual layers stop shortly after the 2 cm-thick Ulleung-Oki tephra. Precise dates of this volcanic event using a method that is independent of radiocarbon dating, would help validate the chronology of the core, and test the validity of the radiocarbon calibration curve. The tephra in the core has been correlated to proximal deposits using major and trace element composition (determined using an electron microprobe and LA-ICPMS) of the glass shards that comprise the distal ash. The proximal Ulleung-Oki eruption deposits are sandine-rich with crystals that range from ~80 microns to a few millimetres in size. These are likely to be a mixture of phenocrysts, antecrysts and xenocrysts. In order to get a very

  15. Gas slug rise in open versus plugged basaltic conduits: the transition from Strombolian to sustained volcanic eruptions (United States)

    Llewellin, Ed; Mathias, Simon; Del Bello, Elisabetta; Lane, Steve; Taddeucci, Jacopo


    Strombolian eruptions are characterized by low-energy explosive activity, which may repeat, at fairly regular intervals, for long periods of time. Explosions at the vent are thought to result from the arrival of discrete slugs of magmatic gas that have risen through the magmatic plumbing system. We develop a one dimensional, analytical model of gas slug rise in a volcanic conduit which we use to investigate the controls on the dynamics of Strombolian eruptions. We consider a partially-filled, cylindrical conduit containing degassed magma, that is initially in magma-static equilibrium with a constant pressure magma reservoir at depth. We introduce a slug of gas at the base of the conduit and consider the temporal evolution of the pressure distribution in the conduit, and the motion of the magma above and below the slug, as the slug rises, decompresses, and expands isothermally. We validate our model against published data for gas slugs rising and decompressing in a vertical pipe [James et al., 2008, Geological Society of London, Special Publications 307, 147-167] by imposing the condition of zero magma-flux at the base of the conduit, and constant pressure at the top; we find excellent agreement. If we impose the more geologically-sound condition of constant pressure at the base of the conduit, we can consider two scenarios of volcanological relevance: 1) Vent plugged with cooler, more-viscous magma. In this case, as the slug rises and expands beneath the plug, it pushes the degassed magma below it down the conduit, consequently, magma re-enters the chamber from the base of the conduit. The slug reaches the viscous plug at the top of the conduit with a significant over-pressure; this may be sufficient to disrupt the plug, causing a Strombolian explosion, or the gas may percolate away. Fresh magma then moves up from the chamber, into the conduit to restore magma-static equilibrium. 2) Open vent. As the slug rises and expands, the volume of magma held in the falling

  16. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes (United States)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.


    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  17. Mass budget partitioning during explosive eruptions: insights from the 2006 paroxysm of Tungurahua volcano, Ecuador (United States)

    Bernard, Julien; Eychenne, Julia; Le Pennec, Jean-Luc; Narváez, Diego


    How and how much the mass of juvenile magma is split between vent-derived tephra, PDC deposits and lavas (i.e., mass partition) is related to eruption dynamics and style. Estimating such mass partitioning budgets may reveal important for hazard evaluation purposes. We calculated the volume of each product emplaced during the August 2006 paroxysmal eruption of Tungurahua volcano (Ecuador) and converted it into masses using high-resolution grainsize, componentry and density data. This data set is one of the first complete descriptions of mass partitioning associated with a VEI 3 andesitic event. The scoria fall deposit, near-vent agglutinate and lava flow include 28, 16 and 12 wt. % of the erupted juvenile mass, respectively. Much (44 wt. %) of the juvenile material fed Pyroclastic Density Currents (i.e., dense flows, dilute surges and co-PDC plumes), highlighting that tephra fall deposits do not depict adequately the size and fragmentation processes of moderate PDC-forming event. The main parameters controlling the mass partitioning are the type of magmatic fragmentation, conditions of magma ascent, and crater area topography. Comparisons of our data set with other PDC-forming eruptions of different style and magma composition suggest that moderate andesitic eruptions are more prone to produce PDCs, in proportions, than any other eruption type. This finding may be explained by the relatively low magmatic fragmentation efficiency of moderate andesitic eruptions. These mass partitioning data reveal important trends that may be critical for hazard assessment, notably at frequently active andesitic edifices.

  18. Complexities within the shallow conduit during Vulcanian explosions: Insights from Episode IV of the 1912 eruption of Novarupta, Alaska (United States)

    Weaver, S. J.; Houghton, B. F.; Gonnermann, H. M.; Arbaret, L.; Burgisser, A.


    Models for initiation of Vulcanian eruptions involve disruption of a conduit-sealing plug or dome and the downward propagation of decompression and fragmentation waves into the conduit. At this time, we have a limited understanding of the physical state of the magma prior to its disruption, including the range of viscosities and vesicularities and the extent to which brecciated, outgassed, degassed, and volatile-rich melt may be co-mingled. Current models propose that the dense, outgassed dome/plug overlies an orderly, predominantly horizontally layered conduit with pressure increasing with depth. The 1912 eruption of Novarupta, Alaska, U.S.A. provided a unique situation to study Vulcanian explosions because its proximal deposits are exceptionally well preserved. After 60 hours and three episodes of Plinian activity and caldera collapse 10 km from vent, a dacite dome was extruded and completely destroyed by a Vulcanian phase. The fifth and final episode comprised of extrusion of a rhyolite dome without explosive activity, thus allowing preservation of the Episode IV Vulcanian block apron. We have collected data on over 1,300 of the largest juvenile and lithic blocks within an ~2-3 km radius from vent, making Episode IV the best mapped Vulcanian deposit in the world to-date. Sectors rich in specific lithologies (pumice, dense dacite, flow-banded clasts or breccia, +/- breadcrusting) and/or of contrasting block size suggest multiple explosions. Vesicularities of breadcrust rinds preserve syn-eruptive vesicularities and volatile contents and suggest considerable heterogeneity on length scales down to mm. Their vesicularity range is between 0.5 and 55% whereas dense dacite blocks lie between 0 and 33%. On equally short length scales, similar broad ranges for porosity/permeability and contrasts in micro-textures indicate major physical and chemical heterogeneity reflecting very local variations in the extent to which the melt was degassed or outgassed. Our new data

  19. Source characterization for an explosion during the 2009 eruption of Redoubt Volcano from very-long-period seismic waves (United States)

    Haney, Matthew M.; Chouet, Bernard A.; Dawson, Phillip B.; Power, John A.


    The 2009 eruption of Redoubt produced several very-long-period (VLP) signals associated with explosions. We invert for the source location and mechanism of an explosion at Redoubt volcano using waveform methods applied to broadband recordings. Such characterization of the source carries information on the geometry of the conduit and the physics of the explosion process. Inversions are carried out assuming the volcanic source can be modeled as a point source, with mechanisms described by a) a set of 3 orthogonal forces, b) a moment tensor consisting of force couples, and c) both forces and moment tensor components. We find that the source of the VLP seismic waves during the explosion is well-described by either a combined moment/force source located northeast of the crater and at an elevation of 1.6 km ASL or a moment source at an elevation of 800 m to the southwest of the crater. The moment tensors for the solutions with moment and force and moment-only share similar characteristics. The source time functions for both moment tensors begin with inflation (pressurization) and execute two cycles of deflation-reinflation (depressurization–repressurization). Although the moment/force source provides a better fit to the data, we find that owing to the limited coverage of the broadband stations at Redoubt the moment-only source is the more robust and reliable solution. Based on the moment-only solution, we estimate a volume change of 19,000 m3 and a pressure change of 7 MPa in a dominant sill and an out-of-phase volume change of 5000 m3 and pressure change of 1.8 MPa in a subdominant dike at the source location. These results shed new light on the magmatic plumbing system beneath Redoubt and complement previous studies on Vulcanian explosions at other volcanoes.

  20. Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes (United States)

    Kite, Edwin S.; Rubin, Allan M.


    Spacecraft observations suggest that the plumes of Saturn’s moon Enceladus draw water from a subsurface ocean, but the sustainability of conduits linking ocean and surface is not understood. Observations show eruptions from “tiger stripe” fissures that are sustained (although tidally modulated) throughout each orbit, and since the 2005 discovery of the plumes. Peak plume flux lags peak tidal extension by ˜1 rad, suggestive of resonance. Here, we show that a model of the tiger stripes as tidally flexed slots that puncture the ice shell can simultaneously explain the persistence of the eruptions through the tidal cycle, the phase lag, and the total power output of the tiger stripe terrain, while suggesting that eruptions are maintained over geological timescales. The delay associated with flushing and refilling of O(1)-m-wide slots with ocean water causes erupted flux to lag tidal forcing and helps to buttress slots against closure, while tidally pumped in-slot flow leads to heating and mechanical disruption that staves off slot freezeout. Much narrower and much wider slots cannot be sustained. In the presence of long-lived slots, the 106-y average power output of the tiger stripes is buffered by a feedback between ice melt-back and subsidence to O(1010) W, which is similar to observed power output, suggesting long-term stability. Turbulent dissipation makes testable predictions for the final flybys of Enceladus by Cassini. Our model shows how open connections to an ocean can be reconciled with, and sustain, long-lived eruptions. Turbulent dissipation in long-lived slots helps maintain the ocean against freezing, maintains access by future Enceladus missions to ocean materials, and is plausibly the major energy source for tiger stripe activity.

  1. Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. (United States)

    Kite, Edwin S; Rubin, Allan M


    Spacecraft observations suggest that the plumes of Saturn's moon Enceladus draw water from a subsurface ocean, but the sustainability of conduits linking ocean and surface is not understood. Observations show eruptions from "tiger stripe" fissures that are sustained (although tidally modulated) throughout each orbit, and since the 2005 discovery of the plumes. Peak plume flux lags peak tidal extension by ∼1 rad, suggestive of resonance. Here, we show that a model of the tiger stripes as tidally flexed slots that puncture the ice shell can simultaneously explain the persistence of the eruptions through the tidal cycle, the phase lag, and the total power output of the tiger stripe terrain, while suggesting that eruptions are maintained over geological timescales. The delay associated with flushing and refilling of O(1)-m-wide slots with ocean water causes erupted flux to lag tidal forcing and helps to buttress slots against closure, while tidally pumped in-slot flow leads to heating and mechanical disruption that staves off slot freezeout. Much narrower and much wider slots cannot be sustained. In the presence of long-lived slots, the 10(6)-y average power output of the tiger stripes is buffered by a feedback between ice melt-back and subsidence to O(10(10)) W, which is similar to observed power output, suggesting long-term stability. Turbulent dissipation makes testable predictions for the final flybys of Enceladus by Cassini Our model shows how open connections to an ocean can be reconciled with, and sustain, long-lived eruptions. Turbulent dissipation in long-lived slots helps maintain the ocean against freezing, maintains access by future Enceladus missions to ocean materials, and is plausibly the major energy source for tiger stripe activity.

  2. Ascent Rates of Rhyolitic Magma During the Opening Stages of Explosive Caldera-Forming Eruptions (United States)

    Myers, M.; Wallace, P. J.; Wilson, C. J. N.; Watkins, J. M.; Liu, Y.; Morgan, D. J.


    We investigate the timescales of rhyolitic magma ascent for three supereruptions that show contrasting eruptive behavior at eruption onset: (1) the Bishop Tuff, CA where early fallout graded directly into climactic eruption, (2) the Oruanui eruption, Taupo NZ, which experienced a significant time break between the initial fallout and subsequent activity and (3) the Huckleberry Ridge, Yellowstone where initial activity was episodic, with eruptive pauses totaling days to weeks. During ascent, decompression causes volatile exsolution from the host melt, creating H2O and CO2 gradients in reentrants (REs; unsealed inclusions) that can be modeled to estimate ascent timescales1,2,3. Using a code1 refined to include an error minimization function, we present modeled ascent rates for REs from Huckleberry Ridge (n=10), Bishop (n=14), and Oruanui (n=4), measured using FTIR (20 μm resolution, 4-15 points per RE). Best-fit profiles for the Bishop REs give ascent rates of 0.6-30 m/s, which overlap with those of the Huckleberry (0.3-5.5 m/s), but extend to higher values. Although ascent rate and initial eruptive behavior are somewhat decoupled, there is an increase in the number of faster ascent rates and greater starting depths with higher stratigraphic height in the Huckleberry Ridge and Bishop fall deposits. Preliminary work on Oruanui REs indicates rates of 0.15-2.0 m/s, which overlie the lower end of the Bishop and Huckleberry REs, in agreement with previous data1. Overall, there is significant overlap between the three datasets (average 4±7 m/s). Our calculated ascent rates fall towards the lower end of ascent rates that have been estimated (5-40 m/s4) using theoretical and numerical modeling of conduit flow for Plinian rhyolitic eruptions below the fragmentation depth. 1 Liu Y et al. 2007: J Geophys Res 112, B06204; 2 Humphreys MCS et al. 2008: Earth Planet Sci Lett 270, 25; 3 Lloyd et al., 2014: J Volcanol Geotherm Res 283, 1; 4Rutherford MJ 2008: Rev Mineral Geochem 69

  3. The 2009 paroxysmal explosions at Stromboli (Italy): magma mixing and eruption dynamics (United States)

    La Felice, Sonia; Landi, Patrizia


    Three small-scale paroxysmal explosions (also called major explosions) interrupted ordinary mild Strombolian activity at Stromboli on May 3, November 8 and 24, 2009. Products were largely confined to the summit area, except in the November 24 event, during which coarse pumiceous lapilli reached the coast. Emission of crystal-poor pumice closely mingled with crystal-rich products characterized the three events. The textural and chemical study of minerals and glassy matrices revealed that the two end-members are mingled together physically in the May 3 and November 24 pumice, whereas November 8 products contain heterogeneous glass with intermediate compositions derived from chemical mixing between crystal-rich and crystal-poor magmas. We here discuss the different degrees of interaction between the two magmas in the three explosions in terms of magma dynamics during small-scale paroxysms.

  4. Contrasting styles of explosive eruption at Sete Cidades, São Miguel, Azores, in the last 5000 years: Hazard implications from modelling (United States)

    Cole, P. D.; Pacheco, J. M.; Gunasekera, R.; Queiroz, G.; Gonçalves, P.; Gaspar, J. L.


    The deposits of three eruptions in the last 5000 years are described in detail in order to constrain eruptive parameters and allow a quantitative assessment of the hazard from a range of explosive eruption types at Sete Cidades volcano, São Miguel, Azores. These deposits include: the Caldeira Seca eruption (P17) which occurred around 600 yr BP, which was the last explosive event from inside the Sete Cidades caldera, the P11 eruption, dated at 2220 ± 70 yr BP, and the undated P8 eruption (deposits were chosen to represent the range of likely explosive activity from the caldera. Our studies reveal that the Caldeira Seca eruption (P17) produced ash-rich deposits, probably as the result of hydromagmatic eruptions, and several lapilli fall layers dispersed in different directions. The lapilli fall layers were derived from eruption columns up to10 km high. Evidence indicates pyroclastic density currents (PDCs) only moved outside of the caldera on to the western flank. The P11 deposit represents one of the largest eruptions at Sete Cidades in the last 5000 years. The deposits are composed of two units, the main lower one is a lapilli fall deposit inferred to be derived from an eruption column 18 km high. Evidence for PDCs outside of the caldera occurs to the southeast and northwest. The P8 deposits are composed of numerous alternating lapilli and ash layers representing a highly pulsatory eruption almost all of which are of a fallout origin. The lapilli are inferred to be derived from eruption columns up to 8 km in height. Using the eruptive parameters derived from these deposits we use HAZMAP ([Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard, Comput. Geosci. 31, 837-845]) to constrain the probability of fallout of different loads and thicknesses. Two end-member scenarios were used with HAZMAP one representing a P17 eruption and another representing a P11 eruption. Both scenarios use wind profile

  5. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006 (United States)

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.


    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  6. Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE (United States)

    Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.


    The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanak

  7. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation (United States)

    Ko, Bokyun; Yun, Sung-Hyo


    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  8. Chlorine as a geobarometer tool: Application to the explosive eruptions of the Volcanic Campanian District (Mount Somma-Vesuvius, Phlegrean Fields, Ischia) (United States)

    Balcone-Boissard, Hélène; Boudon, Georges; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia; Webster, Jim D.; Cioni, Raffaello; D'Antonio, Massimo


    One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (Somma-Vesuvius, Phlegrean Fields and Ischia. We have analysed the products of the representative explosive eruptions of each volcano, including Plinian, sub-Plinian and strombolian events. We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, fluid-saturated portion of the reservoir. As the studied eruptions cover the entire eruptive history of each volcanic system, the results allow better constraining the evolution through time of the shallow plumbing system. We highlighted for Mount Somma - Vesuvius two magma ponding zones, at ~170-200 MPa and ~105-115 MPa, alternatively active in time. For Phlegrean Fields, we evidence a progressive deepening of the shallow reservoirs, from the Campanian Ignimbrite (30-50 MPa) to the Monte Nuovo eruption (115 MPa). Only one eruption was studied for Ischia, the Cretaio eruption, that shows a reservoir at 140 MPa. The results on pressure are in large agreement with literature. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of utmost importance for the interpretation of the monitoring data and the identification of precursory signals.

  9. Age and whole rock glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy (United States)

    Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis


    A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping

  10. SEM-based methods for the analysis of basaltic ash from weak explosive activity at Etna in 2006 and the 2007 eruptive crisis at Stromboli (United States)

    Lautze, Nicole C.; Taddeucci, Jacopo; Andronico, Daniele; Cannata, Chiara; Tornetta, Lauretta; Scarlato, Piergiorgio; Houghton, Bruce; Lo Castro, Maria Deborah


    We present results from a semi-automated field-emission scanning electron microscope investigation of basaltic ash from a variety of eruptive processes that occurred at Mount Etna volcano in 2006 and at Stromboli volcano in 2007. From a methodological perspective, the proposed techniques provide relatively fast (about 4 h per sample) information on the size distribution, morphology, and surface chemistry of several hundred ash particles. Particle morphology is characterized by compactness and elongation parameters, and surface chemistry data are shown using ternary plots of the relative abundance of several key elements. The obtained size distributions match well those obtained by an independent technique. The surface chemistry data efficiently characterize the chemical composition, type and abundance of crystals, and dominant alteration phases in the ash samples. From a volcanological perspective, the analyzed samples cover a wide spectrum of relatively minor ash-forming eruptive activity, including weak Hawaiian fountaining at Etna, and lava-sea water interaction, weak Strombolian explosions, vent clearing activity, and a paroxysm during the 2007 eruptive crisis at Stromboli. This study outlines subtle chemical and morphological differences in the ash deposited at different locations during the Etna event, and variable alteration patterns in the surface chemistry of the Stromboli samples specific to each eruptive activity. Overall, we show this method to be effective in quantifying the main features of volcanic ash particles from the relatively weak - and yet frequent - explosive activity occurring at basaltic volcanoes.

  11. Stronger or longer: Discriminating between Hawaiian and Strombolian eruption styles (United States)

    Houghton, Bruce F.; Taddeucci, Jacopo; Andronico, D.; Gonnerman, H; Pistolesi, M; Patrick, Matthew R.; Orr, Tim; Swanson, Don; Edmonds, M; Carey, Rebecca J.; Scarlato, P.


    The weakest explosive volcanic eruptions globally, Strombolian explosions and Hawaiian fountaining, are also the most common. Yet, despite over a hundred years of observations, no classifications have offered a convincing, quantitative way of demarcating these two styles. New observations show that the two styles are distinct in their eruptive timescale, with the duration of Hawaiian fountaining exceeding Strombolian explosions by about 300 to 10,000 seconds. This reflects the underlying process of whether shallow-exsolved gas remains trapped in the erupting magma or whether it is decoupled from it. We propose here a classification scheme based on the duration of events (brief explosions versus prolonged fountains) with a cutoff at 300 seconds that separates transient Strombolian explosions from sustained Hawaiian fountains.

  12. Modelling the dynamics and hazards of explosive eruptions: Where we are now, and confronting the next challenges (Sergey Soloviev Medal Lecture) (United States)

    Neri, Augusto


    Understanding of explosive eruption dynamics and assessment of their hazards continue to represent challenging issues to the present-day volcanology community. This is largely due to the complex and diverse nature of the phenomena, and the variability and unpredictability of volcanic processes. Nevertheless, important and continuing progress has been made in the last few decades in understanding fundamental processes and in forecasting the occurrences of these phenomena, thanks to significant advances in field, experimental and theoretical modeling investigations. For over four decades, for example, volcanologists have made major progress in the description of the nature of explosive eruptions, considerably aided by the development, improvement, and application of physical-mathematical models. Integral steady-state homogeneous flow models were first used to investigate the different controlling mechanisms and to infer the genesis and evolution of the phenomena. Through continuous improvements and quantum-leap developments, a variety of transient, 3D, multiphase flow models of volcanic phenomena now can implement state-of-the-art formulations of the underlying physics, new-generation analytical and experimental data, as well as high-performance computational techniques. These numerical models have proved to be able to provide key insights in the understanding of the dynamics of explosive eruptions (e.g. convective plumes, collapsing columns, pyroclastic density currents, short-lived explosions, etc.), as well as to represent a valuable tool in the quantification of potential eruptive scenarios and associated hazards. Simplified models based on a reduction of the system complexity have been also proved useful, combined with Monte Carlo and statistical methods, to generate quantitative probabilistic hazard maps at different space and time scales, some including the quantification of important sources of uncertainty. Nevertheless, the development of physical models

  13. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations) (United States)

    Head, James W.; Wilson, Lionel


    We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional

  14. Assessing eruption column height in ancient flood basalt eruptions (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.


    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  15. The 2007 and 2014 eruptions of Stromboli at match: monitoring the potential occurrence of effusion-driven basaltic paroxysmal explosions from a volcanic CO2 flux perspective (United States)

    Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni


    The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep

  16. Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties (United States)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio; De Carolis, Ernesto; Patricelli, Giovanni; Ciarallo, Annamaria


    Detailed descriptions of the effects of explosive eruptions on urban settlements available to volcanologists are relatively rare. Apart from disease and starvation, the largest number of human deaths caused by explosive eruptions in the twentieth century are due to pyroclastic flows. The relationship between the number of victims related to a specific hazard and the presence of urban settlements in the area covered by the eruption has been shown. However, pyroclastic falls are also extremely dangerous under certain conditions. These conclusions are based on archaeological and volcanological studies carried out on the victims of the well-known AD 79 eruption of Vesuvius that destroyed and buried the Roman city of Pompeii. The stratigraphic level in the pyroclastic deposit and the location of all the casualties found are described and discussed. The total number of victims recovered during the archaeological excavations amounts to 1150. Of these, 1044 well recognisable bodies plus an additional group of 100 individuals were identified based on the analysis of several groups of scattered bones. Of the former, 394 were found in the lower pumice lapilli fall deposit and 650 in the upper stratified ash and pumice lapilli pyroclastic density currents (PDCs) deposits. In addition, a tentative evaluation suggests that 464 corpses may still be buried in the unexcavated part of the city. According to the reconstruction presented in this paper, during the first phase of the eruption (August 24, AD 79) a huge quantity of pumice lapilli fell on Pompeii burying the city under 3 m of pyroclastic material. During this eruptive phase, most of the inhabitants managed to leave the city. However, 38% of the known victims were killed during this phase mainly as a consequence of roofs and walls collapsing under the increasing weight of the pumice lapilli deposit. During the second phase of the eruption (August 25, AD 79) 49% of the total victims were on the roadways and 51% inside

  17. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory) (United States)

    Wilson, Lionel; Head, James W.


    We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma

  18. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. (United States)

    Balshaw, Thomas G; Massey, Garry J; Maden-Wilkinson, Thomas M; Tillin, Neale A; Folland, Jonathan P


    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function. Copyright © 2016 the American Physiological Society.

  19. Explosive eruption of El Chichon volcano (Mexico) disrupted 6th century Maya civilization and contributed to global cooling

    NARCIS (Netherlands)

    Nooren, Kees|info:eu-repo/dai/nl/33761430X; Hoek, Wim Z.|info:eu-repo/dai/nl/163819394; van der Plicht, Hans; Sigl, Michael; van Bergen, Manfred J.|info:eu-repo/dai/nl/07009277X; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans|info:eu-repo/dai/nl/152500693

    A remarkably long period of Northern Hemispheric cooling in the 6th century CE, which disrupted human societies across large parts of the globe, has been attributed to volcanic forcing of climate. A major tropical eruption in 540 CE is thought to have played a key role, but there is no consensus

  20. Explosive eruption of El Chichón volcano (Mexico) disrupted 6thcentury Maya civilization and contributed to global cooling

    NARCIS (Netherlands)

    Nooren, Kees; Hoek, Wim Z.; van der Plicht, Hans; Sigl, Michael; van Bergen, Manfred J.; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans

    A remarkably long period of Northern Hemispheric cooling in the 6th century CE, which disrupted human societies across large parts of the globe, has been attributed to volcanic forcing of climate. A major tropical eruption in 540 CE is thought to have played a key role, but there is no consensus

  1. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA: record of mid-Miocene rhyolitic explosive eruptions and associated crustal subsidence along the Yellowstone hotspot track (United States)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.; Finn, David R.; Coe, Robert S.; Storey, Michael; Bonnichsen, Bill


    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions, emplacing extensive ashfall and rheomorphic ignimbrite sheets. Yet, each member has subtly distinct field, chemical and palaeomagnetic characteristics. New regional correlations reveal that the Brown's View ignimbrite covers ≥3300 km2, and the Wooden Shoe ignimbrite covers ≥4400 km2 and extends into Nevada. Between 11.9 and ˜8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed by a trend towards less-evolved rhyolites that may record melting and hybridisation of a mid-crustal source region. Contemporaneous magmatism-induced crustal subsidence of the central Snake River Basin is recorded by successive ignimbrites offlapping and thinning up the N-facing limb of a regional basin-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed by initiation of the Shoshone Fault and an E-sloping half-graben (˜10.3-10.1 Ma). The graben asymmetry then reversed with initiation of the Brown's Bench Fault (≥8 Ma), which remained intermittently active until the Pliocene.

  2. Wendo Koshe Pumice: The latest Holocene silicic explosive eruption product of the Corbetti Volcanic System (Southern Ethiopia) (United States)

    Rapprich, Vladislav; Žáček, Vladimír; Verner, Kryštof; Erban, Vojtěch; Goslar, Tomasz; Bekele, Yewubinesh; Legesa, Firdawok; Hroch, Tomáš; Hejtmánková, Petra


    The Plinian eruption of the Wendo Koshe crater within the Corbetti Caldera occurred around 396 BC. The pumice lapilli deposit, with a thickness exceeding 10 cm, dispersed over an area of over 1000 km2 around the towns of Hawasa and Shashemene. Most of the pumice was deposited by fall-out; however, minor local pyroclastic density currents also occurred. The calculated volume of preserved pumice fall deposit (approximately 1.2 km3), combined with the estimated volume of dispersed fine ash distributed further from the volcano, corresponds to an estimated volume of 0.4 km3 (dense rock equivalent) of erupted magma. The age of the pumice eruption (396 ± 38 BC) was determined by 14C radiometric dating of a paleosoil that developed on previous pyroclastic deposits buried by the pumice. The majority of the post-caldera volcanic products are characterized by a relatively uniform chemical composition (TiO2 = 0.24-0.27 wt.%, Zr = 1300-1600 ppm, ƩREE = 920-1150 ppm) without any significant development in composition. Despite the negligible variations in composition of the magmas that erupted during the last 2500 years within the Corbetti Volcanic System, a significant change in composition was documented prior to the 396 BC Wendo Koshe younger pumice eruption. The caldera stage ignimbrite of Corbetti (TiO2 = 0.34 wt.%, Zr = 500 ppm, ƩREE = 370 ppm) and the early post-caldera obsidians are (TiO2 = 0.34 wt.%, Zr = 800 ppm, ƩREE = 410 ppm) characterized by a commenditic composition, and the character of the rhyolitic magmas shifted towards pantellerites in the post-caldera stage. The compositional contrast is confirmed also by Sr isotope ratios. The Corbetti ignimbrite is characterized by being more radiogenic (87Sr/86Sr = 0.70678) than the post-caldera obsidians (87Sr/86Sr = 0.7046-0.7047). In contrast to the trace-element concentrations, the early Chabi obsidian does not differ from younger obsidians in isotope composition. Similarly to other silicic volcanic systems of the

  3. Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: Periodic (Nemrut) vs. episodic (Süphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka (United States)

    Schmincke, Hans-Ulrich; Sumita, Mari


    Fifteen Lateglacial to Holocene rhyolitic, dominantly primary tephra layers piston-cored and drilled (ICDP Paleovan drilling project) in western Lake Van (eastern Anatolia, Turkey) were precisely correlated to either of the two adjacent and active large volcanoes Nemrut and Süphan based on shard textures, mineralogy and mineral and glass compositions. The young peralkaline (comenditic to pantelleritic) primary rhyolitic Nemrut tephras are characterized by anorthoclase, hedenbergitic to augitic clinopyroxene, fayalitic olivine, minor quartz, and rare accessory chevkinite and zircon. Phenocrysts in subalkaline primary rhyolitic Süphan tephras are chiefly oligoclase-labradorite, with minor K-rich sanidine in some, biotite, amphibole, hypersthene, rare augitic clinopyroxene, relatively common allanite and rare zircon. Two contrasting explosive eruptive modes are distinguished from each other: episodic (Süphan) and periodic (Nemrut). The Lateglacial Süphan tephra swarm covers a short time interval of ca. 338 years between ca. 13,078 vy BP and 12,740 vy BP, eruptions having occurred statistically every ca. 42 years with especially short intervals between V-11 (reworked) and V-14. Causes for the strongly episodic Süphan explosive behavior might include seismic triggering of a volcano-magma system unable to erupt explosively without the benefit of external triggering, as reflected in pervasive faulting preceding the Süphan tephra swarm. Seismic triggering may have caused the rise of more mafic ("trachyandesitic") parent magma, heating near-surface pockets of highly evolved magma - that might have formed silicic domes during this stage of volcano evolution - resulting in ascent and finally explosive fragmentation of magma essentially by external factors, probably significantly enhanced by magma-water/ice interaction. Explosive eruptions of the Nemrut volcano system, interpreted to be underlain by a large fractionating magma reservoir, follow a more periodic mode of (a

  4. Acute sedimentation response to rainfall following the explosive phase of the 2008-2009 eruption of Chaitén volcano, Chile (United States)

    Pierson, Thomas C.; Major, Jon J.; Amigo, Álvaro; Moreno, Hugo


    The 10-day explosive phase at the start of the 2008–2009 eruption of Chaitén volcano in southern Chile (42.83°S, 72.65°W) blanketed the steep, rain-forest-cloaked, 77-km2 Chaitén River drainage basin with 3 to >100 cm of tephra; predominantly fine to extremely fine rhyolitic ash fell during the latter half of the explosive phase. Rain falling on this ash blanket within days of cessation of major explosive activity generated a hyperconcentrated-flow lahar, followed closely by a complex, multi-day, muddy flood (streamflow bordering on dilute hyperconcentrated flow). Sediment mobilized in this lahar-flood event filled the Chaitén River channel with up to 7 m of sediment, buried the town of Chaitén (10 km downstream of the volcano) in up to 3 m of sediment, and caused the lower 3 km of the channel to avulse through the town. Although neither the nature nor rate of the sedimentation response is unprecedented, they are unusual in several ways: (1) Nearly 70 percent of the aggradation (almost 5 m) in the 50–70-m-wide Chaitén River channel was caused by a lahar, triggered by an estimated 20 mm of rainfall over a span of about 24 h. An additional 2 m of aggradation occurred in the next 24–36 h. (2) Direct damage to the town was accomplished by the sediment-laden water-flood phase of the lahar-flood event, not the lahar phase. (3) The volume of sediment eroded from hillslopes and delivered to the Chaitén River channel was at least 3–8 × 106 m3—roughly 15–40 % of the minimum tephra volume that mantled the Chaitén River drainage basin. (4) The acute sedimentation response to rainfall appears to have been due to the thickness and fineness of the ash blanket (inhibiting infiltration of rain) and the steepness of the basin’s hillslopes. Other possible factors such as the prior formation of an ash crust, development of a hydrophobic surface layer, or large-scale destruction of rain-intercepting vegetation did not play a role.

  5. 6 ka anoxic condition in the Sibuyan Sea Basin, Philippines - possible link with an explosive eruption event? (United States)

    Catane, S. G.; Fernando, A.; Peleo-Alampay, A.; Tejada, M. G.


    Marine tephra layers in Philippine inland seas were studied to evaluate the history of explosive volcanism in the region and their impact on the marine environment. Two discrete andesitic (SiO*blc*2*elc* = 55-63 wt%) tephra layers were found at depths 446.5-448.4 cm and 454.9-455.8 cm in the gravity core MD 3057 recovered during the Marion Dufresne Marco Polo 2 cruise in 2006. The 7m-long core was retrieved from the northern portion of the Sibuyan Sea Basin at 1660 m below sea level. A C-14 age of 6 ka was obtained for the lower tephra using benthic foraminifera collected immediately below the tephra layer. The tephra layers have similar major element compositions and follow the same fractionation trend on the basis of glass geochemistry. Compositions are distinct from the nearby active andesitic volcanoes, Taal and Mayon. Microprobe imaging showed the occurrence of authigenic pyrite within the lower andesitic tephra layer. Pyrite occurs as euhedral crystals or granular masses (framboids), which are isolated particles or foraminiferal infillings. Framboidal pyrite is associated with anoxic environments where anaerobic bacteria reduces SO*blc*4*elc* dissolved in sea water, initiating the formation of H*blc*2*elc*S. H2S reacts with iron in sediments to form pyrite. Anoxic conditions occur in ocean basins with restricted water exchange due to a physical barrier (sill), density stratification or where input of organic material is high. Alternatively, anoxic conditions may have been caused by the death of benthic organisms due to tephra deposition by depriving the organisms of their food supply. The effect of this apparent anoxic event on benthic foraminifera will be analyzed in detail. It is postulated that these anoxic conditions may cause a decline in the benthic foraminifera occurrence. The extent and duration of anoxic condition of the northern part of the Sibuyan Sea Basin 6 ka needs to be clarified because present-day water condition in the basin is normal. If

  6. The location and timing of magma degassing during Plinian eruptions (United States)

    Giachetti, T.; Gonnermann, H. M.


    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  7. Ash production and dispersal from sustained low-intensity Mono-Inyo eruptions (United States)

    Black, Benjamin A.; Manga, Michael; Andrews, Benjamin


    Recent rhyolitic volcanism has demonstrated that prolonged low-intensity ash venting may accompany effusive dome formation. We examine the possibility and some consequences of episodes of extended, weak ash venting at the rhyolitic Mono-Inyo chain in Eastern California. We describe ash-filled cracks within one of the youngest domes, Panum Crater, which provide a textural record of ash venting during dome effusion. We use synchrotron-based X-ray computed tomography to characterize the particles in these tuffisites. Particle sizes in well-sorted tuffisite layers agree well with grain size distributions observed during weak ash venting at Soufrière Hills Volcano, Montserrat, and yield approximate upper and lower bounds on gas velocity and mass flux during the formation of those layers. We simulate ash dispersal with Ash3d to assess the consequences of long-lived Mono-Inyo ash venting for ash deposition and the accompanying volcanic hazards. Our results highlight the sensitivity of large-scale outcomes of volcanic eruptions to small-scale processes.

  8. Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea (United States)

    Fee, David; Matoza, Robin S.; Gee, Kent L.; Neilsen, Tracianne B.; Ogden, Darcy E.


    The lowermost portion of an explosive volcanic eruption column is considered a momentum-driven jet. Understanding volcanic jets is critical for determining eruption column dynamics and mitigating volcanic hazards; however, volcanic jets are inherently difficult to observe due to their violence and opacity. Infrasound from the 2011 eruption of Nabro Volcano, Eritrea has waveform features highly similar to the "crackle" phenomenon uniquely produced by man-made supersonic jet engines and rockets and is characterized by repeated asymmetric compressions followed by weaker, gradual rarefactions. This infrasonic crackle indicates that infrasound source mechanisms in sustained volcanic eruptions are strikingly similar to jet noise sources from heated, supersonic jet engines and rockets, suggesting that volcanologists can utilize the modeling and physical understandings of man-made jets to understand volcanic jets. The unique, distinctive infrasonic crackle from Nabro highlights the use of infrasound to remotely detect and characterize hazardous eruptions and its potential to determine volcanic jet parameters.

  9. Calderas produced by hydromagmatic eruptions through permafrost in northwest Alaska (United States)

    Beget, J. E.


    Most hydromagmatic eruptions on Earth are generated by interactions of lava and ground or surface water. This eruptive process typically produces craters 0.1-1 km in diameter, although a few as large as 1-2 km were described. In contrast, a series of Pleistocene hydromagmatic eruptions through 80-100-m-thick permafrost on the Seward Peninsula of Alaska produced four craters 3-8 km in diameter. These craters, called the Espenberg maars, are the four largest maars known on Earth. The thermodynamic properties of ground ice influence the rate and amount of water melted during the course of the eruption. Large quantities of water are present, but only small amounts can be melted at any time to interact with magma. This would tend to produce sustained and highly explosive low water/magma (fuel-coolant) ratios during the eruptions. An area of 400 km(sub 2) around the Alaskan maars shows strong reductions in the density of thaw lakes, ground ice, and other surface manifestations of permafrost because of deep burial by coeval tephra falls. The unusually large Espenberg maars are the first examples of calderas produced by hydromagmatic eruptions. These distinctive landforms can apparently be used as an indicator of the presence of permafrost at the time of eruption.

  10. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand. (United States)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.


    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  11. Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma-Vesuvius (Italy). Comparison with the Pompeii eruption (United States)

    Balcone-Boissard, H.; Boudon, G.; Ucciani, G.; Villemant, B.; Cioni, R.; Civetta, L.; Orsi, G.


    The eruptive history of Mt. Somma-Vesuvius is characterised by large explosive events: Pomici di Base eruption (22,030 ± 175 yr cal BP), Mercato (8890 ± 90 yr cal BP), Avellino (3945 ± 10 yr cal BP) and Pompeii (79 AD). Pre-eruptive conditions and sin-eruptive degassing processes of the Avellino eruption, the highest-magnitude Plinian event, have been investigated, using volatile contents (F, Cl, H2O) in melt inclusions and residual glass, and textural characteristics of pumice clasts of the 9 fallout layers sampled in detail in a representative sequence. The sequence displays an up-section sharp colour change from white to grey, corresponding to variations in both magma composition and textural characteristics. The pre-eruptive conditions have been constrained by systematic measurements of Cl content in both melt inclusions and matrix glass of pumice clasts. The pumice glass composition varies from Na-rich phonolite (white pumice) to K-rich phonolite (grey pumice). The measured Cl values constantly cluster at 5200 ± 400 ppm (buffer value), whatever the composition of the melt, suggesting that the entire magma body was saturated with sub-critical fluids. This Cl saturation constrains the pre-eruptive pressures and maximum H2O contents at 200 ± 10 MPa and 6.3 ± 0.2 wt.% H2O for the white pumice melt and 195 ± 15 MPa and 5.2 ± 0.2 wt.% H2O for the grey pumice melt. The fluid phase, mainly composed of a H2O-rich vapour phase and brine, probably accumulated at the top of the reservoir and generated an overpressure able to trigger the onset of the eruption. Magma degassing was rather homogeneous for the white and grey eruptive units, mostly occurring through closed-system processes, leading to a typical Plinian eruptive style. A steady-state withdrawal of an H2O-saturated magma may explain the establishment of a sustained Plinian column. Variation from white to grey pumice is accompanied by decrease of mean vesicularity and increase of mean microcrystallinity

  12. The plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes (United States)

    Mothes, Patricia A.; Hall, Minard L.


    Large volcanic eruptions at dacitic or rhyolitic volcanoes often generate exceptional volumes of fine ash that mantles an area up to a million km 2. These eruptions are characterized by extreme fragmentation of the magma and hence extraordinary dispersal of ash and are categorized as plinian, ultraplinian, or phreatoplinian events. Large-volume co-ignimbrites or co-plinian ashes are often produced by such eruptions. High fragmentation indices of > 90% are attributed to the violent eruption of silicic magma, especially if augmented by fuel-coolant reactions produced when abundant external water interacts with the magma. The present study documents a case where the fine ash (≤ 1 mm diameter) fall deposit related to the plinian phase of the eruption comprises the overwhelming bulk - about 87 wt.% of the eruptive products. This is another example demonstrating the predominance of a widespread, fine-grained, co-plinian ash which follows the initial coarser lapilli fall. Historical eruptions at two other Andean volcanoes Quizapu, (Chile) and Huaynaputina, (Peru), and at Santa Maria, (Guatemala) and Novarupta, (Alaska) produced similar ash fall sequences. Quilotoa's 800 yr BP eruption, in the Ecuadorian Andes, is an example of a powerful plinian eruption at a small dacitic volcano. It produced a crystal-rich, fine-grained ash layer which mantled an extrapolated ˜ 810,000 km 2 with ≥ 1 mm thickness and has a bulk magma volume of about 18.3 km 3. Stratigraphic and petrographic studies, as well as granulometric and density analyses were employed to investigate these eruptive products, particularly the distal co-plinian fall deposits. The eruptive cycle consisted of a phreatomagmatic triggering, the establishment of a powerful sustained plinian column and subsequently partial column collapses, leading to widespread surge and ash flow activity. Quilotoa's 800 yr BP eruption has a (VEI) Volcano Explosivity Index = 6, and generated a maximum column height of about 35 km and

  13. Requirements for Initiation and Sustained Propagation of Fuel-Air Explosives (United States)


    the decay of the transverse pressure vibrations (i.e. equilibration of the transverse shocks) in oxyhydrogen and oxyacetylene mixtures. Their results...plates with d = 37.5 mm, BR = 0.44, and 5 cm mit the estimation of pressure development in plate separation ; (iii) circular orifice plates with...explosions, run-up distances, and critical condi- d = 31.6 mm, BR = 0.6, and also 5 cm plate tions for transition to detonation is of importance separation

  14. About the Mechanism of Volcanic Eruptions

    CERN Document Server

    Nechayev, Andrei


    A new approach to the volcanic eruption theory is proposed. It is based on a simple physical mechanism of the imbalance in the system "magma-crust-fluid". This mechanism helps to explain from unified positions the different types of volcanic eruptions. A criterion of imbalance and magma eruption is derived. Stratovolcano and caldera formation is analyzed. High explosive eruptions of the silicic magma is discussed

  15. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events (United States)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio


    A quantitative and qualitative evaluation of the damage caused by the products of explosive eruptions to buildings provides an excellent contribution to the understanding of the various eruptive processes during such dramatic events. To this end, the impact of the products of the two main phases (pumice fallout and pyroclastic density currents) of the Vesuvius AD 79 explosive eruption onto the Pompeii buildings has been evaluated. Based on different sources of data, such as photographs and documents referring to the archaeological excavations of Pompeii, the stratigraphy of the pyroclastic deposits, and in situ inspection of the damage suffered by the buildings, the present study has enabled the reconstruction of the events that occurred inside the city when the eruption was in progress. In particular, we present new data related to the C.J. Polibius' house, a large building located inside Pompeii. From a comparison of all of the above data sets, it has been possible to reconstruct, in considerable detail, the stratigraphy of the pyroclastic deposits accumulated in the city, to understand the direction of collapse of the destroyed walls, and to evaluate the stratigraphic level at which the walls collapsed. Finally, the distribution and style of the damage allow us to discuss how the emplacement mechanisms of the pyroclastic currents are influenced by their interaction with the urban centre. All the data suggest that both structure and shape of the town buildings affected the transport and deposition of the erupted products. For instance, sloping roofs 'drained' a huge amount of fall pumice into the 'impluvia' (a rectangular basin in the centre of the hall with the function to collect the rain water coming from a hole in the centre of the roof), thus producing anomalous deposit thicknesses. On the other hand, flat and low-sloping roofs collapsed under the weight of the pyroclastic material produced during the first phase of the eruption (pumice fall). In addition


    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis


    Full Text Available The paroxysmal phases of Krakatau's volcanic activity on August 26-27, 1883, included numerous submarine Surtsean (phreatomagmatic eruptions, three sub air Plinian eruptions from the three main craters of Krakatau on Rakata island, followed by a fourth gigantic, sub air, Ultra-Plinian explosion. Landslides, flank failures, subsidences and a multiphase massive caldera collapse of the volcano - beginning near the Perbowetan crater on the northern portion of Rakata and followed by a collapse of the Danan crater - occurred over a period of at least 10 hours. The first of the three violent explosions occurred at 17: 07 Greenwich time (GMT on August 26.The second and third eruptions occurred at 05:30 GMT and at 06:44 GMT on August 27. Each of these events, as well as expanding gases from the submarine phreatomagmatic eruptions, lifted the water surrounding the island into domes or truncated cones that must have been about 100 meters or more in height. The height of the resulting waves attenuated rapidly away from the source because of their short periods and wavelengths. It was the fourth colossal explosion (VEI=6 and the subsequent massive f lank failure and caldera collapse of two thirds of Rakata Island, at 10:02 a.m., on August 27 that generated the most formidable of the destructive tsunami waves. A smaller fifth explosion, which occurred at 10:52 a.m., must have generated another large water cone and sizable waves. The final collapse of a still standing wall of Krakatau - which occurred several hours later at 16:38, generated additional waves.The near field effects of the main tsunami along the Sunda Strait in Western Java and Southern Sumatra, were devastating. Within an hour after the fourth explosion/caldera collapse, waves reaching heights of up to 37 m (120 feet destroyed 295 towns and villages and drowned a total of 36,417 people. Because of their short period and wavelength, the wave heights attenuated rapidly with distance away from the

  17. Gas segregation and two-phase flow in basaltic explosive activity (United States)

    Pioli, L.; Cashman, K.; Wallace, P.


    Basaltic explosive activity is highly variable in intensity, ranging from less energetic fire fountaining and intermittent strombolian explosions, to more energetic ash-forming violent strombolian, subplinian and plinian activity. Moreover, unlike silicic volcanism, there is no direct relationship between explosivity and magma flux, due to the complex interplay between gas segregation and initial gas content of the magma, ascent rate, and gas segregation. Highly explosive activity is particularly common in mafic arc volcanoes, where magmas contain abundant water and higher gas fluxes are expected. Gas segregation and two-phase flow processes play a fundamental role in the explosive dynamics of basaltic magma. Passive degassing and bubble bursts are common in lava lakes or lava-filled vents, that is, in nearly static lava ponds. This style of activity indicates the rise of discrete bubbles through the low viscosity liquid. With an increase in the magma supply rate and initial water content, activity changes to that of contemporaneous lava emission and explosive activity, as is typical in many cinder cone eruptions. This paired activity illustrates preferential segregation of gas into the vertical conduit with respect to a lateral dyke system; the result is eruptive activity that is referred to as either transitional or violent strombolian. When magma rise rate exceeds values of the order of 104-5 kg/s, gas segregation is no longer possible and eruptive activity takes the form of sustained columns (subplinian to plinian activity). This summary illustrates the role of liquid and gas fluxes on the development of two-phase flow patterns in the conduit, which, in turn affects the eruption dynamics. For example, discrete explosions are generated when the pattern is periodic (characterized by regular temporal and spatial fluctuations), due to formation of gas slugs or void fraction waves, whereas strong fluctuations in the eruptive dynamics may be related to flow

  18. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken


    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  19. Kulanaokuaiki Tephra (ca, A.D. 400-1000): Newly recognized evidence for highly explosive eruptions at Kilauea Volcano, Hawai'i (United States)

    Fiske, R.S.; Rose, T.R.; Swanson, D.A.; Champion, D.E.; McGeehin, J.P.


    K??lauea may be one of the world's most intensively monitored volcanoes, but its eruptive history over the past several thousand years remains rather poorly known. Our study has revealed the vestiges of thin basaltic tephra deposits, overlooked by previous workers, that originally blanketed wide, near-summit areas and extended more than 17 km to the south coast of Hawai'i. These deposits, correlative with parts of tephra units at the summit and at sites farther north and northwest, show that K??lauea, commonly regarded as a gentle volcano, was the site of energetic pyroclastic eruptions and indicate the volcano is significantly more hazardous than previously realized. Seventeen new calibrated accelerator mass spectrometry (AMS) radiocarbon ages suggest these deposits, here named the Kulanaokuaiki Tephra, were emplaced ca. A.D. 400-1000, a time of no previously known pyroclastic activity at the volcano. Tephra correlations are based chiefly on a marker unit that contains unusually high values of TiO2 and K2O and on paleomagnetic signatures of associated lava flows, which show that the Kulanaokuaiki deposits are the time-stratigraphic equivalent of the upper part of a newly exhumed section of the Uw??kahuna Ash in the volcano's northwest caldera wall. This section, thought to have been permanently buried by rockfalls in 1983, is thicker and more complete than the previously accepted type Uw??kahuna at the base of the caldera wall. Collectively, these findings justify the elevation of the Uw??kahuna Ash to formation status; the newly recognized Kulanaokuaiki Tephra to the south, the chief focus of this study, is defined as a member of the Uw??kahuna Ash. The Kulanaokuaiki Tephra is the product of energetic pyroclastic falls; no surge- or pyroclastic-flow deposits were identified with certainty, despite recent interpretations that Uw??kahuna surges extended 10-20 km from K??lauea's summit. ?? 2009 Geological Society of America.

  20. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives (United States)

    Hildreth, Wes; Fierstein, Judy


    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  1. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions (United States)

    Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.


    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  2. Forecasting volcanic explosions based on seismic quiescence (United States)

    Roman, D.; La Femina, P.; Rodgers, M.; Geirsson, H.; Tenorio, V.


    Volcanic eruptions are generally forecast based on strong increases in monitoring parameters such as seismicity or gas emissions above a relatively low background level. Because of this, forecasting individual explosions during an ongoing eruption, or at persistently restless volcanoes, is difficult as seismicity, gas emissions, and other indicators of unrest are already in a heightened state. Therefore, identification of short-term precursors to individual explosions at volcanoes already in heightened states of unrest, and an understanding of explosion trigger mechanisms, is important for the reduction of volcanic risk worldwide. Seismic and visual observations at Telica Volcano, Nicaragua, demonstrate that a) episodes of seismic quiescence reliably preceded explosions during an eruption in May 2011 and b) the duration of precursory quiescence and the energy released in the ensuing explosion were strongly correlated. Precursory seismic quiescence is interpreted as the result of sealing of shallow gas pathways, leading to pressure accumulation and eventual catastrophic failure of the system, culminating in an explosion. Longer periods of sealing and pressurization lead to greater energy release in the ensuing explosion. Near-real-time observations of seismic quiescence at restless or erupting volcanoes can thus be useful for both timely eruption warnings and for forecasting the energy of impending explosions.

  3. Ozone depletion following future volcanic eruptions (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.


    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  4. Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions (United States)

    Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.


    The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates

  5. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network (United States)

    Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars


    We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.

  6. The physics of large eruptions (United States)

    Gudmundsson, Agust


    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  7. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions (United States)

    Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie G.; Dunham, Eric M.


    Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5–5 Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5–1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession—up to 30 events per second—that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.

  8. Pyroxene thermometry of rhyolite lavas of the Bruneau-Jarbidge eruptive center, Central Snake River Plain (United States)

    Cathey, Henrietta E.; Nash, Barbara P.


    The Bruneau-Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe-Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental

  9. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations (United States)

    Ward, P. L.


    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway ( Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 ( Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during

  10. Interdisciplinary studies of eruption at Chaiten Volcano, Chile (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli


    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  11. Explosives tester (United States)

    Haas, Jeffrey S [San Ramon, CA; Howard, Douglas E [Livermore, CA; Eckels, Joel D [Livermore, CA; Nunes, Peter J [Danville, CA


    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  12. Volatile Release and Eruption Dynamics of a Basaltic Plinian Eruption From Masaya Caldera, Nicaragua (United States)

    Wehrmann, H.; Freundt, A.; Kutterolf, S.; Schmincke, H.; Strauch, W.


    Our project is part of SFB 574 "Volatiles and Fluids in subduction zones", and focusses on degassing dynamics of highly-explosive arc volcanoes. Masaya Caldera in west-central Nicaragua is part of the Central American volcanic arc at the convergent boundary of the Cocos and Carribean plates. A basaltic plinian eruption of VEI 6 occurred at Masaya Caldera in the Late-Pleistocene, depositing a widespread fan of scoria lapilli, named Fontana Tephra. We have constrained parameters of the Fontana eruption by extensive isopach and isopleth mapping. Total erupted tephra volume is >0.83 km3 (about 1012 kg DRE). The eruption columns reached 30 to 35 km height at an average discharge rate of 1.3*108 kg/s. This violent eruption was not continuous but proceeded in distinct pulses evident by the well-bedded deposit. An initial sequence of numerous highly explosive but short pulses formed a well-bedded layer of very highly vesicular, hawaiian-type lapilli, possibly representing a gas-enriched top zone of the magma reservoir. The following series of longer-duration plinian events, interupted by weak phases of ash emission, formed beds of highly vesicular scoria lapilli. The eruption ceased with abundant short-lived pulses of lower-energy subplinian activity. We estimate volatile emissions during the eruption from the differences in volatile concentration between matrix glass and glass inclusions in minerals, considered to represent degassed and undegassed melt, respectively. Concentrations of fluorine of about 7000 ppm are about equal in matrix glass and glass inclusions, indicating little degassing of fluorine during eruption. Chlorine contents amount to 1200 ppm in the inclusions, and to about 1000 ppm in matrix glass. The concentration difference, multiplied by erupted magma mass, suggests a total chlorine emission of 16 Mt. Apparently only little chlorine exsolved in the initial eruption phase, but degassing strongly increased during the plinian phase. Sulphur concentrations

  13. Multiple coincident eruptive seismic tremor sources during the 2014-2015 eruption at Holuhraun, Iceland (United States)

    Eibl, Eva P. S.; Bean, Christopher J.; Jónsdóttir, Ingibjörg; Höskuldsson, Armann; Thordarson, Thorvaldur; Coppola, Diego; Witt, Tanja; Walter, Thomas R.


    We analyze eruptive tremor during one of the largest effusive eruptions in historical times in Iceland (2014/2015 Holuhraun eruption). Seismic array recordings are compared with effusion rates deduced from Moderate Resolution Imaging Spectroradiometer recordings and ground video monitoring data and lead to the identification of three coexisting eruptive tremor sources. This contrasts other tremor studies that generally link eruptive tremor to only one source usually associated with the vent. The three sources are (i) a source that is stable in back azimuth and shows bursts with ramp-like decrease in amplitude at the beginning of the eruption: we link it to a process below the open vents where the bursts correlate with the opening of new vents and temporary increases in the lava fountaining height; (ii) a source moving by a few degrees per month while the tremor amplitude suddenly increases and decreases: back azimuth and slowness correlate with the growing margins of the lava flow field, whilst new contact with a river led to fast increases of the tremor amplitude; and (iii) a source moving by up to 25° southward in 4 days that cannot be related to any observed surface activity and might be linked to intrusions. We therefore suggest that eruptive tremor amplitudes/energies are used with caution when estimating eruptive volumes, effusion rates, or the eruption explosivity as multiple sources can coexist during the eruption phase. Our results suggest that arrays can monitor both the growth of a lava flow field and the activity in the vents.

  14. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology


    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  15. Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius (United States)

    Balcone-Boissard, Hélène; Boudon, Georges; Villemant, Benoît.


    The 79AD eruption of Vesuvius, also known as the "Pompeii eruption", is the reference for one of the explosive eruptive styles, the plinian-type eruption. The eruption involved H2O-rich phonolitic magmas and is commonly divided into three phases: an initial phreatomagmatic phase, followed by a plinian event which produced a thick pumice fallout deposit and a final phase that was dominated by numerous column-collapse events. During the plinian phase, a first white pumice fallout was produced from a high steady eruptive column, followed by a grey pumice fallout originated by an oscillatory eruptive column with several partial column collapse events. This study focuses on the pumice fallout deposits, sampled in a proximal thick section, at the Terzigno quarry, 6 km southeast of the present crater. In order to constrain the degassing processes and the eruptive dynamics, major element compositions, residual volatile contents (H2O, Cl) and textural characteristics (vesicularity and microcrystallinity) were studied. A previous study that we performed on the pre-eruptive Cl content has shown that Cl may be used as an indicator of magma saturation with Cl-rich fluids and of pre-eruptive pressures. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior eruption. Large variations in residual volatile contents exist between the different eruptive units and textural features strongly differ between white and grey pumice clasts but also within the grey pumice clasts. The degassing processes were thus highly heterogeneous: the white pumice eruptive units represent a typical closed-system degassing evolution whereas the first grey pumice one, stored in the same pre-eruptive saturation conditions, follows a particular open-system degassing evolution. Here we propose a new model of the 79AD eruption where pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical

  16. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy (United States)

    Massaro, S.; Costa, A.; Sulpizio, R.


    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and

  17. Are Avellino (4365 cal BP) and Pompeii twin plinian eruptions? Pre-eruptive constraints and degassing history (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît.; Ucciani, Guillaume; Cioni, Raffaello


    Somma-Vesuvius activity started 35 ky ago and is characterized by numerous eruptions of variable composition and eruptive style, sometimes interrupted by long periods of unrest. The main explosive eruptions are represented by four plinian eruptions: Pomici di Base eruption (22 cal ky), Mercato (~8900 cal BP), Avellino (4365 cal BP) and Pompeii (79 AD). The 79 AD eruption embodies the most famous eruption since it's responsible of the destruction of Pompeii and Herculanum and it's the first described eruption. The Avellino eruption represents the last plinian event that preceded the Pompeii eruption. The eruptive sequence is similar to the 79 AD plinian eruption, with an opening phase preceding a main plinian fallout activity which ended by a phreatomagmatic phase. The fallout deposit displays a sharp colour contrast from white to grey pumice, corresponding to a magma composition evolution. We focus our study on the main fallout deposit that we sampled in detail in the Traianello quarry, 9 km North-North East of the crater, to investigate the degassing processes during the eruption, using volatile content and textural observations. Density and vesicularity measurements were obtained on a minimum of 100 pumice clasts sampled in 10 stratigraphic levels in the fallout deposit. On the basis of the density distribution, bulk geochemical data, point analytical measurements on glasses (melt inclusions and residual glass) and textural observations were obtained simultaneously on a minimum of 5 pumice clasts per eruptive unit. The glass composition, in particular the Na/K ratio, evolves from Na-rich phonolite for white pumices to a more K-rich phonolite for grey pumices. The pre-eruptive conditions are constrained by systematic Cl measurements in melt inclusions and matrix glass of pumice clasts. The entire magma was saturated relative to sub-critical fluids (a Cl-rich H2O vapour phase and a brine), with a Cl melt content buffered at ~6000 ppm, and a mean pre-eruptive H2O

  18. The submarine eruption of La Restinga (El Hierro, Canary Islands): October 2011-March 2012; La erupcion submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011-Marzo 2012

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Torrado, F. J.; Carracedo, J. C.; Rodriguez-Gonzalez, A.; Soler, V.; Troll, V. R.; Wiesmaier, S.


    The first signs of renewed volcanic activity at El Hierro began in July 2011 with the occurrence of abundant, low-magnitude earthquakes. The increasing seismicity culminated on October 10, 2011, with the onset of a submarine eruption about 2 km offshore from La Restinga, the southernmost village on El Hierro. The analysis of seismic and deformation records prior to, and throughout, the eruption allowed the reconstruction of its main phases: 1) ascent of magma and migration of hypo centres from beneath the northern coast (El Golfo) towards the south rift zone, close to La Restinga, probably marking the hydraulic fracturing and the opening of the eruptive conduit; and 2) onset and development of a volcanic eruption indicated by sustained and prolonged harmonic tremor whose intensity varied with time. The features monitored during the eruption include location, depth and morphological evolution of the eruptive source and emission of floating volcanic bombs. These bombs initially showed white, vesiculated cores (originated by partial melting of underlying pre-volcanic sediments upon which the island of El Hierro was constructed) and black basanite rims, and later exclusively hollow basanitic lava balloons. The eruptive products have been matched with a fissural submarine eruption without ever having attained surtseyan explosiveness. The eruption has been active for about five months and ended in March 2012, thus becoming the second longest reported historical eruption in the Canary Islands after the Timanfaya eruption in Lanzarote (1730-1736). This eruption provided the first opportunity in 40 years to manage a volcanic crisis in the Canary Islands and to assess the interpretations and decisions taken, thereby gaining experience for improved management of future volcanic activity. Seismicity and deformation during the eruption were recorded and analysed by the Instituto Geografico Nacional (IGN). Unfortunately, a lack of systematic sampling of erupted pyroclasts and

  19. What factors control superficial lava dome explosivity? (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J


    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  20. Determining volcanic eruption styles on Earth and Mars from crystallinity measurements. (United States)

    Wall, Kellie T; Rowe, Michael C; Ellis, Ben S; Schmidt, Mariek E; Eccles, Jennifer D


    Both Earth and Mars possess different styles of explosive basaltic volcanism. Distinguishing phreatomagmatic eruptions, driven by magma-water interaction, from 'magmatic' explosive eruptions (that is, strombolian and plinian eruptions) is important for determining the presence of near-surface water or ice at the time of volcanism. Here we show that eruption styles can be broadly identified by relative variations in groundmass or bulk crystallinity determined by X-ray diffraction. Terrestrial analogue results indicate that rapidly quenched phreatomagmatic ejecta display lower groundmass crystallinity (eruptions (>40%). Numerical modelling suggests Martian plinian eruptive plumes moderate cooling, allowing 20-30% syn-eruptive crystallization, and thus reduce the distinction between eruption styles on Mars. Analysis of Mars Curiosity rover CheMin X-ray diffraction results from Gale crater indicate that the crystallinity of Martian sediment (52-54%) is similar to pyroclastic rocks from Gusev crater, Mars, and consistent with widespread distribution of basaltic strombolian or plinian volcanic ejecta.

  1. Observations of tephra fall impacts from the 2011 Shinmoedake eruption, Japan (United States)

    Magill, Christina; Wilson, Thomas; Okada, Tetsuya


    The 2011 eruption of Shinmoedake, Japan, deposited tephra across Miyazaki prefecture impacting both urban and rural environments. We provide an overview of the impacts, management and recovery of a modern city, infrastructure networks and a diverse agricultural region following this moderate sized explosive eruption, focusing on four key sectors. Cleanup of tephra was time consuming, physically demanding and costly for residents, businesses and municipal authorities. The agricultural sector sustained large initial impacts with smothering, loading and abrasion of crops, soils and greenhouses. However, extreme concerns at the time of the eruption were not realised, with farming operations experiencing limited long-term effects. There were few disruptions to electrical networks due to resilient insulator design, a successful cleaning program, relatively coarse tephra and dry conditions. Cancellations and delays occurred on three rail lines resulting primarily from mechanical failure of track switches and loss of electrical contact between train wheels and tracks. Both residents and organisations exhibited high levels of adaptive capacity in response to the event and utilised regional and national networks to obtain information on past events and recovery strategies. The combination of relatively short eruption duration, well resourced and coordinated organisations and resilient infrastructure networks contributed to a strong recovery.

  2. Numerical Model for Hydrovolcanic Explosions. (United States)

    Mader, Charles; Gittings, Michael


    A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becomes water gas at constant volume and generates pressures of about 3GPa. The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMR Eulerian compressible hydrodynamic code called SAGE [1] which includes the high pressure physics of explosions. The water in the hydrovolcanic explosion was described as liquid water heated by magma to 1100 K. The high temperature water is treated as an explosive with the hot liquid water going to water gas. The BKW [2] steady state detonation state has a peak pressure of 8.9 GPa, a propagation velocity of 5900 meters/sec and the water is compressed to 1.33 g/cc. [1] Numerical Modeling of Water Waves, Second Edition, Charles L. Mader, CRC Press 2004. [2] Numerical Modeling of Explosions and Propellants, Charles L. Mader, CRC Press 1998.

  3. Gas-driven eruptions at Mount Ruapehu, New Zealand: towards a coherent model of eruption (United States)

    Kilgour, G. N.; Mader, H. M.; Mangan, M.; Blundy, J.


    Mt. Ruapehu is an andesitic cone volcano situated at the southern end of the Taupo Volcanic Zone. The summit plateau at Ruapehu consists of three craters (South, Central and North). Historical activity has consisted of frequent small phreatic and phreatomagmatic eruptions from South Crater. The active vents of South Crater are submerged beneath Crater Lake - a warm, acidic lake. The most recent eruption at Ruapehu occurred on 25th September, 2007 that generated a moderate steam column to about 4.5 km above Crater Lake, and a directed ballistic and surge deposit of coarse blocks and ash to the north of Crater Lake. It also initiated lahars in two catchments. The eruption occurred during the ski season and it resulted in the temporary closure of the three ski fields. Seismicity for the main eruption lasted for about 4 minutes and included an explosive phase which lasted for less than 1 minute and a post-explosion phase which probably indicated resonance in the conduit together with signals generated from lahars and vent stabilisation. Preceding seismicity occurred ~ 10 min before the eruption. The 2007 eruption appears strikingly similar to phreatic/phreatomagmatic eruptions of 1969 and 1975. In those eruptions, limited precursory seismicity was recorded, the bulk of the erupted deposits were accidental lithics, including lake sediments and older lavas, and only a small amount of juvenile material was erupted (~ 5%). It is likely that all three eruptions were driven by magmatic gases, either stored and pressurised beneath a hydrothermal seal, or rapidly exsolved during a gas release event. This poster outlines the plan that we will use to model this common type of eruption at Ruapehu. We will analyse the volatile content of phenocryst-hosted melt inclusions to determine the degassing depth of historic eruptions. This will allow us to identify where the magmas have been or are degassing beneath Crater Lake. Analogue modelling of gas and fluid flow through a visco

  4. The 2014 eruptions of Pavlof Volcano, Alaska (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.


    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  5. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption


    Major, Jon J.; Lara, Luis E.


    Chaitén Volcano erupted unexpectedly in May 2008 in one of the largest eruptions globally since the 1990s. It was the largest rhyolite eruption since the great eruption of Katmai Volcano in 1912, and the first rhyolite eruption to have at least some of its aspects monitored. The eruption consisted of an approximately 2-week-long explosive phase that generated as much as 1 km³ bulk volume tephra (~0.3 km³ dense rock equivalent) followed by an approximately 20-month-long effusive phase that eru...

  6. Interdisciplinary studies of eruption at Chaitén volcano, Chile (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie


    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  7. Kīlauea - An explosive volcano in Hawai‘i (United States)

    Swanson, Donald A.; Fiske, Dick; Rose, Tim; Houghton, Bruce F.; Mastin, Larry


    Kīlauea Volcano on the Island of Hawai‘i, though best known for its frequent quiet eruptions of lava flows, has erupted explosively many times in its history - most recently in 2011. At least six such eruptions in the past 1,500 years sent ash into the jet stream, at the cruising altitudes for today's aircraft. The eruption of 1790 remains the most lethal eruption known from a U.S. volcano. However, the tendency of Kīlauea's 2 million annual visitors is to forget this dangerous potential. Cooperative research by scientists of the U.S. Geological Survey, Smithsonian Institution, and University of Hawai‘i is improving our understanding of Kīlauea's explosive past and its potential for future violent eruptions.

  8. Infrasound characterization of some Yellowstone geysers' eruptions (United States)

    Quezada-Reyes, A.; Johnson, J.


    Geysers are springs that intermittently erupt hot water and steam. As with volcanoes, infrasonic airwaves produced by different geysers provide information about the processes that occur near the nozzle, such as the amount of fluid released during eruptive episodes. The aim of this study was to investigate acoustic sources from different geyser behaviors observed at Lone Star, Sawmill and Great Fountain geysers, Yellowstone National Park, Wyoming. Acoustic signal were measured by arrays of microphones deployed around Lone Star and Great Fountain geysers between August 9th to 14th, 2011, and during one hour on August 16th, 2011 at Sawmill Geyser. Infrasound was analyzed with coincident video recordings to quantify and compare the pressure fields generated during explosive phases at the three geysers. We propose that the periodic infrasound recorded at Sawmill, and dominated by energy at 1 to 40 Hz, is generated by: 1) steam-filled bubble oscillations, and 2) subsequent bursting at the free surface resulting in a violent steam and water discharge. At Lone Star geyser, where ~18 m/s eruption jets endure for about 30 minutes, sound is dominated by higher frequency infrasound and audio-band signal evolving from 20 - 60 Hz to 40 - 85 Hz. We suggest that the infrasound tremor amplitudes are related to the transition of the erupted two-phase mixture from mostly water (low acoustic radiation) to steam (high acoustic radiation). At Great Fountain we observed three explosive bursts of water and steam during the last stage on the August 11 eruption with bi-modal infrasound pulses of up to 0.7 Pa-m. We model these pulses as volumetric sound sources and infer up to 32 m3 of fluid ejection. The variety of recordings reflect the variety of eruption mechanisms at the different geyser systems. Better understanding of the mechanisms of geyser infrasound radiation may help us to understand infrasound analogues at erupting silicic volcanoes, which are considerably more difficult to

  9. Determining volcanic eruption styles on Earth and Mars from crystallinity measurements (United States)

    Wall, Kellie T.; Rowe, Michael C.; Ellis, Ben S.; Schmidt, Mariek E.; Eccles, Jennifer D.


    Both Earth and Mars possess different styles of explosive basaltic volcanism. Distinguishing phreatomagmatic eruptions, driven by magma-water interaction, from ‘magmatic’ explosive eruptions (that is, strombolian and plinian eruptions) is important for determining the presence of near-surface water or ice at the time of volcanism. Here we show that eruption styles can be broadly identified by relative variations in groundmass or bulk crystallinity determined by X-ray diffraction. Terrestrial analogue results indicate that rapidly quenched phreatomagmatic ejecta display lower groundmass crystallinity (40%). Numerical modelling suggests Martian plinian eruptive plumes moderate cooling, allowing 20-30% syn-eruptive crystallization, and thus reduce the distinction between eruption styles on Mars. Analysis of Mars Curiosity rover CheMin X-ray diffraction results from Gale crater indicate that the crystallinity of Martian sediment (52-54%) is similar to pyroclastic rocks from Gusev crater, Mars, and consistent with widespread distribution of basaltic strombolian or plinian volcanic ejecta.

  10. A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917 (United States)

    Clynne, Michael A.; Christiansen, Robert L.; Stauffer, Peter H.; Hendley, James W.; Bleick, Heather A.


    On May 22, 1915, a large explosive eruption at the summit of Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 280 miles to the east. This explosion was the most powerful in a series of eruptions during 1914–17 that were the last to occur in the Cascade Range before the 1980 eruption of Mount St. Helens, Washington. A century after the Lassen eruptions, work by U.S. Geological Survey (USGS) scientists in cooperation with the National Park Service is shedding new light on these events.

  11. Liquid explosives

    CERN Document Server

    Liu, Jiping


    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  12. Stress field control during large caldera-forming eruptions

    Directory of Open Access Journals (Sweden)

    Antonio Costa


    Full Text Available Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  13. 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations (United States)

    Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya


    The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.

  14. Opal-A in Glassy Pumice, Acid Alteration, and the 1817 Phreatomagmatic Eruption at Kawah Ijen (Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Jacob B. Lowenstern


    Full Text Available At Kawah Ijen (Indonesia, vigorous SO2 and HCl degassing sustains a hyperacid lake (pH ~0 and intensely alters the subsurface, producing widespread residual silica and advanced argillic alteration products. In 1817, a VEI 2 phreatomagmatic eruption evacuated the lake, depositing a widespread layer of muddy ash fall, and sending lahars down river drainages. We discovered multiple types of opaline silica in juvenile low-silica dacite pumice and in particles within co-erupted laharic sediments. Most spectacular are opal-replaced phenocrysts of plagioclase and pyroxene adjacent to pristine matrix glass and melt inclusions. Opal-bearing pumice has been found at numerous sites, including where post-eruption infiltration of acid water is unlikely. Through detailed analyses of an initial sampling of 1817 eruption products, we find evidence for multiple origins of opaline materials in pumice and laharic sediments. Evidently, magma encountered acid-altered materials in the subsurface and triggered phreatomagmatic eruptions. Syn-eruptive incorporation of opal-alunite clasts, layered opal, and fragment-filled vesicles of opal and glass, all suggest magma-rock interactions in concert with vesiculation, followed by cooling within minutes. Our experiments at magmatic temperature confirm that the opaline materials would show noticeable degradation in time periods longer than a few tens of minutes. Some glassy laharic sedimentary grains are more andesitic than the main pumice type and may represent older volcanic materials that were altered beneath the lake bottom and were forcefully ejected during the 1817 eruption. A post-eruptive origin remains likely for most of the opal-replaced phenocrysts in pumice. Experiments at 25°C and 100°C reveal that when fresh pumice is bathed in Kawah Ijen hyperacid fluid for 6 weeks, plagioclase is replaced without altering either matrix glass or melt inclusions. Moreover, lack of evidence for high-temperature annealing of the

  15. Opal-A in glassy pumice, acid alteration, and the 1817 phreatomagmatic eruption at Kawah Ijen (Java), Indonesia (United States)

    Lowenstern, Jacob B.; van Hinsberg, Vincent; Berlo, Kim; Liesegang, Moritz; Iacovino, Kayla D.; Bindeman, Ilya N.; Wright, Heather M.


    At Kawah Ijen (Indonesia), vigorous SO2 and HCl degassing sustains a hyperacid lake (pH ~0) and intensely alters the subsurface, producing widespread residual silica and advanced argillic alteration products. In 1817, a VEI 2 phreatomagmatic eruption evacuated the lake, depositing a widespread layer of muddy ash fall, and sending lahars down river drainages. We discovered multiple types of opaline silica in juvenile low-silica dacite pumice and in particles within co-erupted laharic sediments. Most spectacular are opal-replaced phenocrysts of plagioclase and pyroxene adjacent to pristine matrix glass and melt inclusions. Opal-bearing pumice has been found at numerous sites, including where post-eruption infiltration of acid water is unlikely. Through detailed analyses of an initial sampling of 1817 eruption products, we find evidence for multiple origins of opaline materials in pumice and laharic sediments. Evidently, magma encountered acid-altered materials in the subsurface and triggered phreatomagmatic eruptions. Syn-eruptive incorporation of opal-alunite clasts, layered opal, and fragment-filled vesicles of opal and glass, all suggest magma-rock interactions in concert with vesiculation, followed by cooling within minutes. Our experiments at magmatic temperature confirm that the opaline materials would show noticeable degradation in time periods longer than a few tens of minutes. Some glassy laharic sedimentary grains are more andesitic than the main pumice type and may represent older volcanic materials that were altered beneath the lake bottom and were forcefully ejected during the 1817 eruption. A post-eruptive origin remains likely for most of the opal-replaced phenocrysts in pumice. Experiments at 25°C and 100°C reveal that when fresh pumice is bathed in Kawah Ijen hyperacid fluid for 6 weeks, plagioclase is replaced without altering either matrix glass or melt inclusions. Moreover, lack of evidence for high-temperature annealing of the opal suggests

  16. Three distinct regimes of volcanic tremor associated with the eruption of Shishaldin Volcano, Alaska 1999 (United States)

    Thompson, Glenn; McNutt, Stephen; Tytgat, Guy


    Tremor signals associated with the eruption of Shishaldin Volcano on 19 and 23 April 1999 were the strongest recorded anywhere in the Aleutian Arc by the Alaska Volcano Observatory (AVO) in its 10-year history. Reduced displacements (DR) reached 23 cm2 on 19 April and 43 cm2 on 23 April. During the activity, DR and spectral data with a frequency resolution of 0.1 Hz were computed and put on the World Wide Web every 10 min. These data are analyzed here. The general temporal patterns of seismicity of these eruption events were similar, but the eruptions and their effects quite different. The 19 April event is known to have culminated in a sub-Plinian phase, which ejected ash to an altitude of 16 km. Despite higher amplitudes and the largest hotspot from satellite data, the 23 April event produced little ash reaching only 6 km altitude. For several hours prior to the sub-Plinian phase on 19 April, tremor with a peak frequency of 1.3 Hz intensified. During the sub-Plinian phase the peak frequency increased to 4-8 Hz. However, in 15 h after the eruption, three episodes of stronger tremor occurred with a lower 1.0-Hz peak, alternating with weaker tremor with a 1.3-Hz peak. These transitions correspond to DR= 8 cm2. Although these strong tremor episodes produced higher DR levels than the sub-Plinian phase, data from a pressure sensor show that only strong Strombolian explosions occurred. The suite of observations suggests three distinct tremor regimes that may correspond to slug flow, bubbly flow, and sustained strong eruptions, or a cyclic change in source parameters (e.g., geometry, sound speed, or ascent rate). This behavior occurred at Shishaldin only during the April 1999 sequence, and we are not aware of similar behavior at other volcanoes.

  17. Eruption of Shiveluch Volcano, Kamchatka Peninsula (United States)


    On March 29, 2007, the Shiveluch Volcano on the Russian Federation's Kamchatka Peninsula erupted. According to the Alaska Volcano Observatory the volcano underwent an explosive eruption between 01:50 and 2:30 UTC, sending an ash cloud skyward roughly 9,750 meters (32,000 feet), based on visual estimates. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA's Aqua satellite took this picture at 02:00 UTC on March 29. The top image shows the volcano and its surroundings. The bottom image shows a close-up view of the volcano at 250 meters per pixel. Satellites often capture images of volcanic ash plumes, but usually as the plumes are blowing away. Plumes have been observed blowing away from Shiveluch before. This image, however, is different. At the time the Aqua satellite passed overhead, the eruption was recent enough (and the air was apparently still enough) that the ash cloud still hovered above the summit. In this image, the bulbous cloud casts its shadow northward over the icy landscape. Volcanic ash eruptions inject particles into Earth's atmosphere. Substantial eruptions of light-reflecting particles can reduce temperatures and even affect atmospheric circulation. Large eruptions impact climate patterns for years. A massive eruption of the Tambora Volcano in Indonesia in 1815, for instance, earned 1816 the nickname 'the year without a summer.' Shiveluch is a stratovolcano--a steep-sloped volcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. One of Kamchatka's largest volcanoes, it sports a summit reaching 3,283 meters (10,771 feet). Shiveluch is also one of the peninsula's most active volcanoes, with an estimated 60 substantial eruptions in the past 10,000 years.

  18. Tooth Eruption without Roots


    Wang, X.-P.


    Root development and tooth eruption are very important topics in dentistry. However, they remain among the less-studied and -understood subjects. Root development accompanies rapid tooth eruption, but roots are required for the movement of teeth into the oral cavity. It has been shown that the dental follicle and bone remodeling are essential for tooth eruption. So far, only limited genes have been associated with root formation and tooth eruption. This may be due to the diffic...

  19. Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014

    National Research Council Canada - National Science Library

    Boris M Shevtsov; Pavel P Firstov; Nina V Cherneva; Robert H Holzworth; Renat R Akbashev


      According to World Wide Lightning Location Network (WWLLN) data, a sequence of lightning discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka...

  20. August 2008 eruption of Kasatochi volcano, Aleutian Islands, Alaska-resetting an Island Landscape (United States)

    Scott, W.E.; Nye, C.J.; Waythomas, C.F.; Neal, C.A.


    Kasatochi Island, the subaerial portion of a small volcano in the western Aleutian volcanic arc, erupted on 7-8 August 2008. Pyroclastic flows and surges swept the island repeatedly and buried most of it and the near-shore zone in decimeters to tens of meters of deposits. Several key seabird rookeries in taluses were rendered useless. The eruption lasted for about 24 hours and included two initial explosive pulses and pauses over a 6-hr period that produced ash-poor eruption clouds, a 10-hr period of continuous ash-rich emissions initiated by an explosive pulse and punctuated by two others, and a final 8-hr period of waning ash emissions. The deposits of the eruption include a basal muddy tephra that probably reflects initial eruptions through the shallow crater lake, a sequence of pumiceous and lithic-rich pyroclastic deposits produced by flow, surge, and fall processes during a period of energetic explosive eruption, and a fine-grained upper mantle of pyroclastic-fall and -surge deposits that probably reflects the waning eruptive stage as lake and ground water again gained access to the erupting magma. An eruption with similar impact on the island's environment had not occurred for at least several centuries. Since the 2008 eruption, the volcano has remained quiet other than emission of volcanic gases. Erosion and deposition are rapidly altering slopes and beaches. ?? 2010 Regents of the University of Colorado.

  1. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft (United States)

    Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.


    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  2. The November 2009 paroxysmal explosions at Stromboli (United States)

    Andronico, Daniele; Pistolesi, Marco


    Two paroxysmal explosions occurred at Stromboli volcano (Italy) on 8 and 24 November 2009. Analysis of recordings (from video-camera surveillance) indicates that each paroxysm consisted of multiple bursts from different vents. Field surveys, carried out within a few days after the two paroxysmal events, allowed us to gather crucial data on eruptive deposits and document morphological variations occurring at the source vents. Integration of video-analysis and field observations allowed making inferences on the eruptive dynamics of each explosive paroxysm. The 24 November event, in particular, erupted a larger volume and coarser products dispersed further from the summit area, resulting in a more hazardous event compared to the 8 November event that was largely confined to the upper part of the volcano.


    Corsaro, R.; Miraglia, L.


    Geophysical, volcanological, geochemical and petrologic studies performed during last decades, greatly improved the knowledge of Mt. Etna’s plumbing system. In particular the petrologic data have shown that Etnean magmas differentiate for the interplay of complex processes such as crystal fractionation, mixing, interaction with crustal and mantle-derived fluids. Here we investigate the dynamics of magma residing during the last years in the shallow portion of Mt. Etna plumbing system (less than 5 km b.s.l.), which has been erupted by the summit South East Crater (SEC) in 2007 and 2008 and during the flank eruption from 13 May 2008 to 6 July 2009. The volcanic activity in the selected period showed different eruptive styles such as lava effusion, Strombolian explosions and/or fire-fountains. Petrography, mineral chemistry, major, trace elements, Sr/Nd isotopes have been acquired for products erupted from 2007 to 2009, allowing to identify the main magmatic processes modifying magma composition during its storage in the shallow plumbing system and controlling the eruptive styles. Our results highlight that the variable composition of magma erupted by SEC during the several fire fountains from 2007 to 2008, can be mainly explained with a crystal fractionation in the shallow plumbing system. This process is sporadically associated with the input of a more primitive magma from depth that mixes with the one already stored and is erupted during the fire fountains of 29 March and 4 September 2007. The other SEC paroxysms which are not strictly associated with the arrival of a more primitive magma, seem to be driven by the dynamic of a bubble-melt mixture in the SEC reservoir. The flank eruption starting on 13 May 2008 from a fissure at about 2800 m a.s.l, occurs just a few days after the SEC fire fountain of 10 May 2008. The products erupted during the first days of the flank eruption are very similar to tephra of 10 May SEC paroxysm, suggesting that the eruption

  4. What controls the explosivity of subglacial rhyolite in Iceland? (United States)

    Owen, J.; Tuffen, H.; McGarvie, D. W.


    The eruption controls of subglacial rhyolite are poorly understood but this is of key importance in mitigating hazards. In subaerial rhyolite eruptions the pre-eruptive volatile content and degassing path are considered to be the primary controls of explosivity, but is this also the case when rhyolitic eruptions occur under ice? We present the first pre-eruptive volatile content and degassing path data for subglacial rhyolite eruptions, comparing three edifices of contrasting eruption style from the Torfajökull complex in South Iceland[1]. Volatile concentrations were measured using infra-red spectroscopy (FTIR) and Secondary Ion Mass Spectroscopy (SIMS). SE Rauðfossafjöll is a large volume (~1 km3) explosively erupted tuya, Dalakvísl (~0.2 km3) is an entirely subglacial edifice that has both explosive and effusive deposits and Bláhnúkur is a small volume (Bull Vol. [3] Tuffen et al. (2007) Ann Glac, 45(1): 87-94

  5. Explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Craig, J.F.M.; Falconer, E.L.


    A thickening agent for an aqueous slurry explosive composition consists of the combination of a cross-linked galactomannan with psyllium flour in specific proportions. This thickener provides good fluidity and reduced tackiness. (7 claims)

  6. Russian eruption warning systems for aviation (United States)

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.


    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  7. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini

    NARCIS (Netherlands)

    Bruins, Hendrik J.; MacGillivray, J. Alexander; Synolakis, Costas E.; Benjamini, Chaim; Keller, Joerg; Kisch, Hanan J.; Kleugel, Andreas; van der Plicht, Johannes; Klügel, Andreas

    The explosive eruption at Santorini in the Aegean Sea during the second millennium BCE was the largest Holocene volcanic upheaval in the Eastern Mediterranean region. The eruption was disastrous for the Minoan settlements at Santorini, but the effect on human society in the neighbouring islands and

  8. The timescales of magmatic processes prior to a caldera-forming eruption


    Fabbro, Gareth Nicholas


    Large, explosive, caldera-forming eruptions are amongst the most destructive phenomena on the planet, but the processes that allow the large bodies of crystal-poor silicic magma that feed them to assemble in the shallow crust are still poorly understood. Of particular interest is the timescales over which these reservoirs exist prior to eruption. Long storage times—up to 105 y—have previously been estimated using the repose times between eruptions and radiometric dating of crystals found with...

  9. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine


    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  10. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya


    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been inconclusive and have varied in magnitude and even sign. In this study, we test how this spread of responses depends on the initial phase of El Niño-Southern Oscillation (ENSO) in the eruption year and on the eruption\\'s seasonal timing. We employ the Geophysical Fluid Dynamics Laboratory CM2.1 global coupled general circulation model to investigate the impact of the Pinatubo 1991 eruption, assuming that in 1991 ENSO would otherwise be in central or eastern Pacific El Niño, La Niña, or neutral phases. We obtain statistically significant El Niño responses in a year after the eruption for all cases except La Niña, which shows no response in the eastern equatorial Pacific. The eruption has a weaker impact on eastern Pacific El Niños than on central Pacific El Niños. We find that the ocean dynamical thermostat and (to a lesser extent) wind changes due to land-ocean temperature gradients are the main feedbacks affecting El Niño development after the eruption. The El Niño responses to eruptions occurring in summer are more pronounced than for winter and spring eruptions. That the climate response depends on eruption season and initial ENSO phase may help to reconcile apparent inconsistencies among previous studies.

  11. Failed magmatic eruptions: Late-stage cessation of magma ascent (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.


    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  12. Sulfur budget and global climate impact of the A.D. 1835 eruption of Cosigüina volcano, Nicaragua (United States)

    Longpré, Marc-Antoine; Stix, John; Burkert, Cosima; Hansteen, Thor; Kutterolf, Steffen


    Large explosive volcanic eruptions can inject massive amounts of sulfuric gases into the Earth's atmosphere and, in so doing, affect global climate. The January 1835 eruption of Cosigüina volcano, Nicaragua, ranks among the Americas' largest and most explosive historical eruptions, but whether it had effects on global climate remains ambiguous. New petrologic analyses of the Cosigüina deposits reveal that the eruption released enough sulfur to explain a prominent circa A.D. 1835 sulfate anomaly in ice cores from both the Arctic and Antarctic. A compilation of temperature-sensitive tree ring chronologies indicates appreciable cooling of the Earth's surface in response to the eruption, consistent with instrumental temperature records. We conclude that this eruption represents one of the most important sulfur-producing events of the last few centuries and had a sizable climate impact rivaling that of the 1991 eruption of Mount Pinatubo.

  13. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption (United States)

    Major, Jon J.; Lara, Luis E.


    Chaitén Volcano erupted unexpectedly in May 2008 in one of the largest eruptions globally since the 1990s. It was the largest rhyolite eruption since the great eruption of Katmai Volcano in 1912, and the first rhyolite eruption to have at least some of its aspects monitored. The eruption consisted of an approximately 2-week-long explosive phase that generated as much as 1 km3 bulk volume tephra (~0.3 km3 dense rock equivalent) followed by an approximately 20-month-long effusive phase that erupted about 0.8 km3 of high-silica rhyolite lava that formed a new dome within the volcano’s caldera. Prior to its eruption, little was known about the eruptive history of the volcano or the hazards it posed to society. This edition of Andean Geology contains a selection of papers that discuss new insights on the eruptive history of Chaitén Volcano, and the broad impacts of and new insights obtained from analyses of the 2008-2009 eruption. Here, we summarize the geographic, tectonic, and climatic setting of Chaitén Volcano and the pre-2008 state of knowledge of its eruptive history to provide context for the papers in this edition, and we provide a revised chronology of the 2008-2009 eruption.

  14. Tooth Eruption without Roots (United States)


    Root development and tooth eruption are very important topics in dentistry. However, they remain among the less-studied and -understood subjects. Root development accompanies rapid tooth eruption, but roots are required for the movement of teeth into the oral cavity. It has been shown that the dental follicle and bone remodeling are essential for tooth eruption. So far, only limited genes have been associated with root formation and tooth eruption. This may be due to the difficulties in studying late stages of tooth development and tooth movement and the lack of good model systems. Transgenic mice with eruption problems and short or no roots can be used as a powerful model for further deciphering of the cellular, molecular, and genetic mechanisms underlying root formation and tooth eruption. Better understanding of these processes can provide hints on delivering more efficient dental therapies in the future. PMID:23345536

  15. Mechanism of human tooth eruption

    DEFF Research Database (Denmark)

    Kjær, Inger


    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly......, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption...... keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses....

  16. Effects of scoria-cone eruptions upon nearby human communities (United States)

    Ort, M.H.; Elson, M.D.; Anderson, K.C.; Duffield, W.A.; Hooten, J.A.; Champion, D.E.; Waring, G.


    Scoria-cone eruptions are typically low in volume and explosivity compared with eruptions from stratovolcanoes, but they can affect local populations profoundly. Scoria-cone eruption effects vary dramatically due to eruption style, tephra blanket extent, climate, types of land use, the culture and complexity of the affected group, and resulting governmental action. A comparison of a historic eruption (Pari??cutin, Me??xico) with prehistoric eruptions (herein we primarily focus on Sunset Crater in northern Arizona, USA) elucidates the controls on and effects of these variables. Long-term effects of lava flows extend little beyond the flow edges. These flows, however, can be used for defensive purposes, providing refuges from invasion for those who know them well. In arid lands, tephra blankets serve as mulches, decreasing runoff and evaporation, increasing infiltration, and regulating soil temperature. Management and retention of these scoria mulches, which can open new areas for agriculture, become a priority for farming communities. In humid areas, though, the tephra blanket may impede plant growth and increase erosion. Cultural responses to eruptions vary, from cultural collapse, through fragmentation of society, dramatic changes, and development of new technologies, to little apparent change. Eruptions may also be viewed as retribution for poor behavior, and attempts are made to mollify angry gods. ?? 2008 Geological Society of America.

  17. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson


    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  18. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc


    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  19. Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: A case study of the 1969 Mauna Ulu eruption (United States)

    Parcheta, Carolyn E.; Houghton, Bruce F.; Swanson, Donald A.


    Hawaiian-style eruptions, or Hawaiian fountains, typically occur at basaltic volcanoes and are sustained, weakly explosive jets of gas and dominantly coarse, juvenile ejecta (dense spatter to delicate reticulite). Almost the entire range of styles and mass eruption rates within Hawaiian fountaining occurred during twelve fountaining episodes recorded at Mauna Ulu, Kīlauea between May and December 1969. Such diversity in intensity and style is controlled during magma ascent by many processes that can be constrained by the size and shape of vesicles in the 1969 pyroclasts. This paper describes pyroclast vesicularity from high, intermediate, and low fountaining episodes with eruption rates from 0.05 to 1.3 × 106 m3 h− 1. As each eruptive episode progressed, magma ascent slowed in and around the vent system, offering extended time for bubbles to grow and coalesce. Late ejected pyroclasts are thus characterized by populations of fewer and larger vesicles with relaxed shapes. This progression continued in the intervals between episodes after termination of fountain activity. The time scale for this process of shallow growth, coalescence and relaxation of bubbles is typically tens of hours. Rims and cores of pumiceous pyroclasts from moderate to high fountaining episodes record a second post-fragmentation form of vesicle maturation. Partially thermally insulated pyroclasts can have internal bubble populations evolve more dynamically with continued growth and coalescence, on a time scale of only minutes, during transport in the fountains. Reticulite, which formed in a short-lived fountain 540 m in height, underwent late, short-lived bubble nucleation followed by rapid growth of a uniform bubble population in a thermally insulated fountain, and quenched at the onset of permeability before significant coalescence. These contrasting patterns of shallow degassing and outgassing were the dominant controls in determining both the form and duration of fountaining

  20. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves


    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony


    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore...

  1. Nuclear collapse observed during the eruption of Mt. Usu

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Taka-aki [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo, Hokkaido (Japan)


    Mt. Usu which was located about 70 km southwest from Sapporo in Hokkaido (the north island of Japan) began to erupt on March 31 in 2000. A nuclear emulsion was placed on a foot of Mt. Usu to catch small atomic clusters which were expected to be emitted during the eruption. Curious atomic clusters and their reaction products were successfully observed on surfaces of the nuclear emulsion. By comparing them with similar products which were obtained in previous experiments of discharge and electrolysis, it was concluded that micro Ball Lightning was really emitted during the eruption of Mt. Usu and that explosive reactions by nuclear collapse could have been involved to contribute to energy of the eruption. (author)

  2. Nuclear collapse observed during the eruption of Mt. Usu

    CERN Document Server

    Matsumoto, T A


    Mt. Usu which was located about 70 km southwest from Sapporo in Hokkaido (the north island of Japan) began to erupt on March 31 in 2000. A nuclear emulsion was placed on a foot of Mt. Usu to catch small atomic clusters which were expected to be emitted during the eruption. Curious atomic clusters and their reaction products were successfully observed on surfaces of the nuclear emulsion. By comparing them with similar products which were obtained in previous experiments of discharge and electrolysis, it was concluded that micro Ball Lightning was really emitted during the eruption of Mt. Usu and that explosive reactions by nuclear collapse could have been involved to contribute to energy of the eruption. (author)

  3. Eruption precursors: Manifestations and strategies for detection (United States)

    Poland, Michael; Pritchard, Matthew


    an easy question to answer. From the limited record, it appears that at least a few volcanoes follow the model. For example, deep inflation, long-period earthquakes, and CO2 emissions were detected months before the 2009 eruption of Redoubt (Alaska). In the weeks to days before the eruption onset, fumarole temperatures and SO2 emissions increased, tremor was noted, and phreatic explosions presaged the extrusion of magma at the surface. Other volcanoes buck this idealized trend. Calbuco (Chile), for instance, showed no indication of inflation or seismicity in the days to years prior to the sudden onset of a magmatic eruption in 2015, despite InSAR and seismic monitoring that should have detected such unrest. Most volcanoes seem to fall between these two extremes, providing some indication of their eruptive potential via gas, thermal, seismic, or geodetic anomalies over timescales ranging from hours to years. Given limited resources and the challenges in terrestrial monitoring of all potential long- and intermediate-term eruption precursors, strategies for exploiting the wealth of remote sensing data and integrating derived insights into models of volcanic unrest are an important investment. Short-term eruption precursors, however, are best detected by ground-based monitoring—especially seismic and geodetic instruments.

  4. Stratigraphy and eruptive dynamics of a pulsating Plinian eruption of Somma-Vesuvius: the Pomici di Mercato (8900 years B.P.) (United States)

    Mele, Daniela; Sulpizio, Roberto; Dellino, Pierfrancesco; La Volpe, Luigi


    New volcanological studies allow reconstruction of the eruption dynamics of the Pomici di Mercato eruption (ca 8,900 cal. yr B.P.) of Somma-Vesuvius. Three main Eruptive Phases are distinguished based on two distinct erosion surfaces that interrupt stratigraphic continuity of the deposits, indicating that time breaks occurred during the eruption. Absence of reworked volcaniclastic deposits on top of the erosion surfaces suggests that quiescent periods between eruptive phases were short perhaps lasting only days to weeks. Each of the Eruptive Phases was characterised by deposition of alternating fall and pyroclastic density current (PDC) deposits. The fallout deposits blanketed a wide area toward the east, while the more restricted PDC deposits inundated the volcano slopes. Eruptive dynamics were driven by brittle magmatic fragmentation of a phonolitic magma, which, because of its mechanical fragility, produced a significant amount of fine ash. External water did not significantly contribute either to fragmentation dynamics or to mechanical energy release during the eruption. Column heights were between 18 and 22 km, corresponding to mass discharge rates between 1.4 and 6 × 107 kg s-1. The estimated on land volume of fall deposits ranges from a minimum of 2.3 km3 to a maximum of 7.4 km3. Calculation of physical parameters of the dilute pyroclastic density currents indicates speeds of a few tens of m s-1 and densities of a few kg m-3 (average of the lowermost 10 m of the currents), resulting in dynamic pressures lower than 3 kPa. These data suggest that the potential impact of pyroclastic density currents of the Pomici di Mercato eruption was smaller than those of other Plinian and sub-Plinian eruptions of Somma-Vesuvius, especially those of 1631 AD and 472 AD (4-14 kPa), which represent reference values for the Vesuvian emergency plan. The pulsating and long-lasting behaviour of the Pomici di Mercato eruption is unique in the history of large explosive eruptions of

  5. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes (United States)

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong


    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  6. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Jasdeep K Sharma


    Full Text Available The objective of the present paper is to describe the clinical and computed tomography features of 'explosive pleuritis', an entity first named by Braman and Donat in 1986, and to propose a case definition. A case report of a previously healthy, 45-year-old man admitted to hospital with acute onset pleuritic chest pain is presented. The patient arrived at the emergency room at 15:00 in mild respiratory distress; the initial chest x-ray revealed a small right lower lobe effusion. The subsequent clinical course in hospital was dramatic. Within 18 h of admission, he developed severe respiratory distress with oxygen desaturation to 83% on room air and dullness of the right lung field. A repeat chest x-ray, taken the morning after admission, revealed complete opacification of the right hemithorax. A computed tomography scan of the thorax demonstrated a massive pleural effusion with compression of pulmonary tissue and mediastinal shift. Pleural fluid biochemical analysis revealed the following concentrations: glucose 3.5 mmol/L, lactate dehydrogenase 1550 U/L, protein 56.98 g/L, amylase 68 U/L and white blood cell count 600 cells/mL. The pleural fluid cultures demonstrated light growth of coagulase-negative staphylococcus and viridans streptococcus, and very light growth of Candida albicans. Cytology was negative for malignant cells. Thoracotomy was performed, which demonstrated a loculated parapneumonic effusion that required decortication. The patient responded favourably to the empirical administration of intravenous levofloxacin and ceftriaxone, and conservative surgical methods in the management of the empyema. This report also discusses the patient's rapidly progressing pleural effusion and offers a potential case definition for explosive pleuritis. Explosive pleuritis is a medical emergency defined by the rapid development of a pleural effusion involving more than 90% of the hemithorax over 24 h, which causes compression of pulmonary tissue and

  7. U-Th zircon dating of the great Millennium eruption of Changbaishan volcano: Evidence for rapid development of a catastrophic eruption (United States)

    Zou, H.; Fan, Q.; Zhang, H.


    The Changbaishan volcano extending across the border of northeast China and North Korea erupted about 100 km3 peralkaline rhyolites around 1000 AD. This Millennium eruption is one of the two largest explosive eruptions in the past 2000 years. We conducted uranium-thorium dating of zircons from the Changbaishan volcanic rocks. Zircon isochron ages are 9.2±1.2 ka. The rhyolitic magma chamber beneath Changbaishan was formed at 9.2 ka BP (before present) by closed-system fractionation of parental trachytic magmas, and explosively erupted at 1 ka BP. The magma storage time is about 8 ka, which is significantly short compared with typical residence times of large volume explosive eruptions (50-135 ka). This work demonstrates that peralkaline rhyolitic magmas from the Changbaishan volcano can develop into a catastrophic eruptive phase quite quickly. Based on titanium-in-zircon geothermometer and alkali feldspar-glass geothermometer, the rhyolitic magmas were formed at a relatively low temperature (~ 740±40 °C). The short magma storage time and low magma temperature may have helped the Changbaishan large volume rhyolitic magma escape crustal contamination. Changbaishan volcano is still an active volcano. There is a low seismic velocity zone below Changbaishan volcano extending from 10 to over 65 km depth. An electrical conductivity anomaly exists at 20 km depth below the volcano. Numerous hot springs and fumaroles are present on the volcano. Although short storage time of 8000 years does not necessarily mean that the next eruption is imminent, our present study does indicate that the still dangerous Changbaishan volcano is capable of rapidly producing catastrophic, explosive eruptions in the foreseeable future.

  8. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep


    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  9. Identifying the volcanic eruption depicted in a neolithic painting at Çatalhöyük, Central Anatolia, Turkey. (United States)

    Schmitt, Axel K; Danišík, Martin; Aydar, Erkan; Şen, Erdal; Ulusoy, İnan; Lovera, Oscar M


    A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with (14)C ages for cultural strata at Çatalhöyük, including level VII containing the "map" mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard.

  10. Identifying the volcanic eruption depicted in a neolithic painting at Çatalhöyük, Central Anatolia, Turkey.

    Directory of Open Access Journals (Sweden)

    Axel K Schmitt

    Full Text Available A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th/He zircon geochronology. The (U-Th/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ overlaps closely with (14C ages for cultural strata at Çatalhöyük, including level VII containing the "map" mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka. Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard.

  11. Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards (United States)

    Pedrazzi, Dario; Németh, Károly; Geyer, Adelina; Álvarez-Valero, Antonio M.; Aguirre-Díaz, Gerardo; Bartolini, Stefania


    Deception Island (Antarctica) is the southernmost island of the South Shetland Archipelago in the South Atlantic. Volcanic activity since the eighteenth century, along with the latest volcanic unrest episodes in the twentieth and twenty-first centuries, demonstrates that the volcanic system is still active and that future eruptions are likely. Despite its remote location, the South Shetland Islands are an important touristic destination during the austral summer. In addition, they host several research stations and three summer field camps. Deception Island is characterised by a Quaternary caldera system with a post-caldera succession and is considered to be part of an active, dispersed (monogenetic), volcanic field. Historical post-caldera volcanism on Deception Island involves monogenetic small-volume (VEI 2-3) eruptions such forming cones and various types of hydrovolcanic edifices. The scientific stations on the island were destroyed, or severely damaged, during the eruptions in 1967, 1969, and 1970 mainly due to explosive activity triggered by the interaction of rising (or erupting) magma with surface water, shallow groundwater, and ice. We conducted a detailed revision (field petrology and geochemistry) of the historical hydrovolcanic post-caldera eruptions of Deception Island with the aim to understand the dynamics of magma-water interaction, as well as characterise the most likely eruptive scenarios from future eruptions. We specifically focused on the Crimson Hill (estimated age between 1825 and 1829), and Kroner Lake (estimated age between 1829 and 1912) eruptions and 1967, 1969, and 1970 events by describing the eruption mechanisms related to the island's hydrovolcanic activity. Data suggest that the main hazards posed by volcanism on the island are due to fallout, ballistic blocks and bombs, and subordinate, dilute PDCs. In addition, Deception Island can be divided into five areas of expected activity due to magma-water interaction, providing additional

  12. Shallow vent architecture of Puyehue Cordón-Caulle, as revealed by direct observation of explosive activity (United States)

    Schipper, C. I.; Tuffen, H.; Castro, J. M.


    On June 4, 2011, an explosive eruption of rhyodacitic magma began at the Puyehue Cordón-Caulle volcanic complex (PCCVC), southern Chile. Initial Plinian phases of the eruption produced tephra plumes reaching > 14 km high, the ash from which quickly circumnavigated the globe to cause widespread disruption to air traffic in the Southern Hemisphere. Within two weeks, the continuing explosive eruption was joined by synchronous effusion of lava. We present observations of complex vent activity made 7 months after the eruption onset, on January 4th and 10th, 2012, when explosive activity from PCCVC continued at a lower level of intensity. Fortuitous climatic conditions permitted direct, ground-based observation and video recording of transient vent dynamics within the asymmetrical tephra cone around the main eruptive vent complex and site of lava effusion, as well as real-time collection of juvenile ash as it rained out directly from the active plume. On Jan. 4, explosive activity was semi-continuous ash jetting punctuated by Vulcanian-like blasts. In the ~50m-diameter sub-circular base of the ~400 m-wide, asymmetrical tephra cone, near-continuous ash jetting was observed from two primary point sources. The northerly source was clearly visible, with time-averaged diameter of ~10 m, and the apparently larger southerly source was mostly obscured from view by the ash plume. Activity was at all times somewhat erratic, but followed a rough cyclicity on 30-45 s timescales, consisting of: (1) restriction of the point source into a focused ash jet up to ~50 m high, producing coarse ash dominated by tube pumice (with minor free pyroxene crystals); followed by (2) Vulcanian-like failure of the region around the point source, producing incandescent ballistic bombs thrown up to 100-200 m from the vent. Jetting from the two main point sources combined in the crater to produce a low gas-thrust region and sustained buoyant plume. Directed ash plumes that climbed and breached the inner

  13. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. (United States)

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B


    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  14. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma (United States)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.


    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  15. Active Eruptions in the NE Lau Basin (United States)

    Resing, J. A.; Embley, R. W.


    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH shrimp similar to those found at several other submarine volcanoes

  16. Explosive Formulation Pilot Plant (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  17. Underground Explosions (United States)


    is viewed as a result of the propulsion of broken rock mass by explosion gas by-products. The physical model used to recreate the second and the third...period seismographs. Seismologists of the                                                              5  Edinaya  Sistema   Seismicheskih  Nablyudenii...d’explosifs chiniques dans le sable: Programme Dynasol, Centre d’etudes Nucl. De Grenoble Lab. D’applications Speciales de la Physique, Grenoble. 9

  18. Volcan Baru: Eruptive History and Volcano-Hazards Assessment (United States)

    Sherrod, David R.; Vallance, James W.; Tapia Espinosa, Arkin; McGeehin, John P.


    Volcan Baru is a potentially active volcano in western Panama, about 35 km east of the Costa Rican border. The volcano has had four eruptive episodes during the past 1,600 years, including its most recent eruption about 400?500 years ago. Several other eruptions occurred in the prior 10,000 years. Several seismic swarms in the 20th century and a recent swarm in 2006 serve as reminders of a restless tectonic terrane. Given this history, Volcan Baru likely will erupt again in the near or distant future, following some premonitory period of seismic activity and subtle ground deformation that may last for days or months. Future eruptions will likely be similar to past eruptions?explosive and dangerous to those living on the volcano?s flanks. Outlying towns and cities could endure several years of disruption in the wake of renewed volcanic activity. Described in this open-file report are reconnaissance mapping and stratigraphic studies, radiocarbon dating, lahar-inundation modeling, and hazard-analysis maps. Existing data have been compiled and included to make this report as comprehensive as possible. The report is prepared in coooperation with National Secretariat for Science, Technology and Innovation (SENACYT) of the Republic of Panama and the U.S. Agency for International Development (USAID).

  19. Volcanic eruptions on Io (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Cook, A. F.; Hansen, C.


    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  20. What factors control the size of an eruption? (United States)

    Gudmundsson, Agust


    For human society, eruption sizes (eruptive volumes or masses) are of the greatest concern. In particular, the largest eruptions, producing volumes of the order of hundreds or thousands of cubic kilometres, provide, together with meteoritic impacts, the greatest natural threats to mankind. Eruptive volumes tend to follow power laws so that most eruptions are comparatively small whereas a few are very large. It follows that a while during most ruptures of the source chambers a small fraction of the magma leaves the chamber, in some ruptures a very large fraction of the magma leaves the chamber. Most explosive eruptions larger than about 25 km3 are associated with caldera collapse. In the standard 'underpressure' ('lack of magmatic support') model, however, the collapse is the consequence, not the cause, of the large eruption. For poroelastic models, typically less than 4% of the magma in a felsic chamber and less than 0.1% of the magma in a mafic chamber leaves the chamber during rupture (and eventual eruption). In some caldera models, however, 20-70% of the magma is supposed to leave the chamber before the ring-fault forms and the caldera block begins to subside. In these models any amount of magma can flow out of the chamber following its rupture and there is apparently no way to forecast either the volume of magma injected from the chamber (hence the potential size of an eventual eruption) or the conditions for caldera collapse. An alternative model is proposed here. In this model normal (small) eruptions are controlled by standard poroelastity behaviour of the chamber, whereas large eruptions are controlled by chamber-volume reduction or shrinkage primarily through caldera/graben block subsidence into the chamber. Volcanotectonic stresses are then a major cause of ring-fault/graben boundary-fault formation. When large slips occur on these faults, the subsiding crustal block reduces the volume of the underlying chamber/reservoir, thereby maintaining its excess

  1. Controls on long-term low explosivity at andesitic arc volcanoes: Insights from Mount Hood, Oregon (United States)

    Koleszar, Alison M.; Kent, Adam J. R.; Wallace, Paul J.; Scott, William E.


    The factors that control the explosivity of silicic volcanoes are critical for hazard assessment, but are often poorly constrained for specific volcanic systems. Mount Hood, Oregon, is a somewhat atypical arc volcano in that it is characterized by a lack of large explosive eruptions over the entire lifetime of the current edifice (~ 500,000 years). Erupted Mount Hood lavas are also compositionally homogeneous, with ~ 95% having SiO2 contents between 58 and 66 wt.%. The last three eruptive periods in particular have produced compositionally homogeneous andesite-dacite lava domes and flows. In this paper we report major element and volatile (H2O, CO2, Cl, S, F) contents of melt inclusions and selected phenocrysts from these three most recent eruptive phases, and use these and other data to consider possible origins for the low explosivity of Mount Hood. Measured volatile concentrations of melt inclusions in plagioclase, pyroxene, and amphibole from pumice indicate that the volatile contents of Mount Hood magmas are comparable to those in more explosive silicic arc volcanoes, including Mount St. Helens, Mount Mazama, and others, suggesting that the lack of explosive activity is unlikely to result solely from low intrinsic volatile concentrations or from substantial degassing prior to magma ascent and eruption. We instead argue that an important control over explosivity is the increased temperature and decreased magma viscosity that results from mafic recharge and magma mixing prior to eruption, similar to a model recently proposed by Ruprecht and Bachmann (2010). Erupted Mount Hood magmas show extensive evidence for mixing between magmas of broadly basaltic and dacitic-rhyolitic compositions, and mineral zoning studies show that mixing occurred immediately prior to eruption. Amphibole chemistry and thermobarometry also reveal the presence of multiple amphibole populations and indicate that the mixed andesites and dacites are at least 100 °C hotter than the high-SiO2

  2. Rheology of the 2006 Eruption at Tungurahua Volcano, Ecuador (United States)

    Hanson, J. B.; Goldstein, F.; Lavallee, Y.; Kueppers, U.; von Aulock, F. W.; Mothes, P. A.; Bustillos, J.; Douillet, G.; Hess, K.; Dingwell, D. B.


    The current eruptive activity at Tungurahua commenced in 1999 and has seen several episodes of explosive volcanism during the intervening years. Important eruptions generating pyroclastic flows occurred in July 2006, August 2006 and February 2008. The August 2006 eruption climaxed in a VEI 3 explosion with 10s of pyroclastic flows and notably terminated with the extrusion of a 3-km long lava flow. This variability of eruptive scenarios represents an excellent opportunity to study the occurrence of multiple pulses of pyroclastic activity associated with near contemporaneous extrusion of lava flow from a single, central vent. Here we present results from an extensive field campaign in August 2009 and ongoing parameterization of the rheology of the cogenetic magmas involved during this most recent eruptive cycle at Tungurahua. We observe that in the July deposits, the pyroclastic flows were rich in dense exotic lithics and contained approximately ca. 50 % lapili to bomb size juvenile pyroclasts. In contrast, the August deposits are richer in porous, juvenile material (ca. 90%) and often host pancake-shaped bread-crust bombs. Evidence of pre-eruption magma mingling textures is found occasionally within the August activity. The August a’a lava flow is characterized by dense flow-banded blocks. Magma rheology is considered a chief determinant of eruptive style. While the rheology of single-phase silicate melts is well understood, the description of magma such as that at Tungurahua (i.e., bearing 30-50 % crystals and 10-35% bubbles) is relatively unknown. During sub-Plinian-type eruptions, the transition from ductile to brittle behaviour is largely strain rate, and temperature, dependent. Using a dilatometer, we measure softening temperatures (at a heating rate of 10 °C/min) of ca. 976 °C for the dense clasts and 1060 °C for the bread-crust bombs (with 35 % pores). Complementary deformation experiments in a uniaxial press reveal a variable strain rate

  3. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions (United States)

    White, Randall A.; McCausland, Wendy


    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from:

  4. Chemical profiling of explosives

    NARCIS (Netherlands)

    Brust, G.M.H.


    The primary goal of this thesis is to develop analytical methods for the chemical profiling of explosives. Current methodologies for the forensic analysis of explosives focus on identification of the explosive material. However, chemical profiling of explosives becomes increasingly important, as

  5. Recurrent patterns in fluid geochemistry data prior to phreatic eruptions (United States)

    Rouwet, Dmitri; Sandri, Laura; Todesco, Micol; Tonini, Roberto; Pecoraino, Giovannella; Diliberto, Iole Serena


    Not all volcanic eruptions are magma-driven: the sudden evaporation and expansion of heated groundwater may cause phreatic eruptions, where the magma involvement is absent or negligible. Active crater lakes top some of the volcanoes prone to phreatic activity. This kind of eruption may occur suddenly, and without clear warning: on September 27, 2014 a phreatic eruption of Ontake, Japan, occurred without timely precursors, killing 57 tourists near the volcano summit. Phreatic eruptions can thus be as fatal as higher VEI events, due to the lack of recognised precursory signals, and because of their explosive and violent nature. In this study, we tackle the challenge of recognising precursors to phreatic eruptions, by analysing the records of two "phreatically" active volcanoes in Costa Rica, i.e. Poás and Turrialba, respectively with and without a crater lake. These volcanoes cover a wide range of time scales in eruptive behaviour, possibly culminating into magmatic activity, and have a long-term multi-parameter dataset mostly describing fluid geochemistry. Such dataset is suitable for being analysed by objective pattern recognition techniques, in search for recurrent schemes. The aim is to verify the existence and nature of potential precursory patterns, which will improve our understanding of phreatic events, and allow the assessment of the associated hazard at other volcanoes, such as Campi Flegrei or Vulcano, in Italy. Quantitative forecast of phreatic activity will be performed with BET_UNREST, a Bayesian Event Tree tool recently developed within the framework of FP7 EU VUELCO project. The study will combine the analysis of fluid geochemistry data with pattern recognition and phreatic eruption forecast on medium and short-term. The study will also provide interesting hints on the features that promote or hinder phreatic activity in volcanoes that host well-developed hydrothermal circulation.

  6. Supernova explosions

    CERN Document Server

    Branch, David


    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  7. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition (United States)

    Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.


    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

  8. Global and regional volcanic infrasound from the April 2015 eruption of Calbuco, Chile (United States)

    Matoza, R. S.; Fee, D.; Vergoz, J.; Green, D. N.; LE Pichon, A.; Haney, M. M.; Kelley, M. R.; McKee, K. F.


    Explosive volcanic eruptions are among the most powerful sources of infrasound, with signals from large eruptions often recorded out to distances of thousands of kilometers from the source. We are developing methodologies for automated remote detection, location, and source characterization of volcanic infrasound. The April 2015 eruption of Calbuco, Chile produced powerful infrasound recorded globally by the International Monitoring System (IMS) infrasound network and regionally by seismo-acoustic stations in Chile. This VEI 4 eruption produced plumes extending to altitudes of about 15 km and led to the evacuation of nearby communities. The event provides a unique dataset for testing and evaluating new methodologies for automated detection and location of infrasound from explosive volcanic eruptions. We compare automated detection and location methods using multiple IMS infrasound arrays with alternative methods utilizing the regional network of seismo-acoustic stations. This project continues our efforts to build a quantitative catalog of global explosive volcanic activity using the IMS infrasound network. This work represents a step toward the goal of integrating IMS data products with additional regional seismo-acoustic datasets into global volcanic eruption early warning and notification systems.

  9. Volcaniclastic stratigraphy of Gede Volcano, West Java, Indonesia: How it erupted and when (United States)

    Belousov, A.; Belousova, M.; Krimer, D.; Costa, F.; Prambada, O.; Zaennudin, A.


    Gede Volcano, West Java (Indonesia), is located 60 km south of Jakarta within one of the regions with highest population density in the world. Therefore, knowledge of its eruption history is necessary for hazard evaluation, because even a small eruption would have major societal and economic consequences. Here we report the results of the investigation of the stratigraphy of Gede (with the focus on its volcaniclastic deposits of Holocene age) and include 23 new radiocarbon dates. We have found that a major part of the volcanic edifice was formed in the Pleistocene when effusions of lavas of high-silica basalt dominated. During this period the volcano experienced large-scale lateral gravitational failure followed by complete reconstruction of the edifice, formation of the summit subsidence caldera and its partial refilling. After a repose period of > 30,000 years the volcanic activity resumed at the Pleistocene/Holocene boundary. In the Holocene the eruptions were dominantly explosive with magma compositions ranging from basaltic andesite to rhyodacite; many deposits show heterogeneity at the macroscopic hand specimen scale and also in the minerals, which indicates interactions between mafic (basaltic andesite) and silicic (rhyodacite) magmas. Significant eruptions of the volcano were relatively rare and of moderate violence (the highest VEI was 3-4; the largest volume of erupted pyroclasts 0.15 km3). There were 4 major Holocene eruptive episodes ca. 10,000, 4000, 1200, and 1000 yr BP. The volcanic plumes of these eruptions were not buoyant and most of the erupted products were transported in the form of highly concentrated valley-channelized pyroclastic flows. Voluminous lahars were common in the periods between the eruptions. The recent eruptive period of the volcano started approximately 800 years ago. It is characterized by frequent and weak VEI 1-2 explosive eruptions of Vulcanian type and rare small-volume extrusions of viscous lava. We estimate that during

  10. The 1817 Eruption of Okmok Caldera, Umnak Island, Alaska: New Insights Into a Complex Historical Eruption in the Eastern Aleutians (United States)

    Neal, C. A.; Beget, J.; Grey, D.; Wolfe, B.


    Okmok is a 10-km-diameter, late-Holocene caldera on Umnak Island in the eastern Aleutians, 1400 km southwest of Anchorage. The most recent eruption in 1997 was strombolian in character, producing a basaltic-andesite lava flow within the caldera and localized ash fall. Since caldera-formation approximately 2050 14C yrs BP, however, more violent eruptions from vents within the caldera have impacted all flanks of the volcano with tephra fall, ballistics, pyroclastic surges and flows, and lahars. An example of these more violent intracaldera events is the 1817 eruption. Reevaluation of historical accounts of activity at Okmok combined with new geologic mapping and tephra studies suggest that an 1817 eruption included (1) early, largely hydrovolcanic, explosive activity and the production of significant pyroclastic fall and surge deposits extending down the north and east flanks of the volcano; (2) generation of a flood that reached the Bering Sea; (3) late-stage strombolian fountaining and lava flow production. Vents from the 1817 eruption form a 4-km-long arc that parallels the base of the north caldera wall and include a 50-70-m-deep, elongate maar crater erupted through pre-existing tuff cone deposits. Terrace morphology and flood deposits less than 200 14C yrs BP indicate a flooding event down Crater Creek consistent with historical accounts of Aleut village inundation at the coastline in 1817. The later part of the eruption produced a 120-m high cinder and spatter cone and a blocky a'a lava flow field that fills a shallow basin near the outlet of Crater Creek. These preliminary results indicate that Okmok is capable of eruptions far more violent than the largely effusive events of the last century.

  11. Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics (United States)

    Corsaro, R. A.; Andronico, D.; Behncke, B.; Branca, S.; Caltabiano, T.; Ciancitto, F.; Cristaldi, A.; De Beni, E.; La Spina, A.; Lodato, L.; Miraglia, L.; Neri, M.; Salerno, G.; Scollo, S.; Spata, G.


    A lengthy period of eruptive activity from the summit craters of Mt. Etna started in January 2011. It culminated in early December 2015 with a spectacular sequence of intense eruptive events involving all four summit craters (Voragine, Bocca Nuova, New Southeast Crater, and Northeast Crater). The activity consisted of high eruption columns, Strombolian explosions, lava flows and widespread ash falls that repeatedly interfered with air traffic. The most powerful episode occurred on 3 December 2015 from the Voragine. After three further potent episodes from the Voragine, activity shifted to the New Southeast Crater on 6 December 2015, where Strombolian activity and lava flow emission lasted for two days and were fed by the most primitive magma of the study period. Activity once more shifted to the Northeast Crater, where ash emission and weak Strombolian activity took place for several days. Sporadic ash emissions from all craters continued until 18 December, when all activity ceased. Although resembling the summit eruptions of 1998-1999, which also involved all four summit craters, this multifaceted eruptive sequence occurred in an exceptionally short time window of less than three days, unprecedented in the recent activity of Mt. Etna. It also produced important morphostructural changes of the summit area with the coalescence of Voragine and Bocca Nuova in a single large crater, the ;Central Crater;, reproducing the morphological setting of the summit cone before the formation of Bocca Nuova in 1968. The December 2015 volcanic crisis was followed closely by the staff of the Etna Observatory to monitor the on-going activity and forecast its evolution, in accordance with protocols agreed with the Italian Civil Protection Department.

  12. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. (United States)

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett


    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift. Copyright © 2016, American Association for the Advancement of Science.

  13. The relationship between volatile content and the eruptive style of basaltic magma: the Etna case

    Directory of Open Access Journals (Sweden)

    M. Pompilio


    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic analyses of melt inclusions from four explosive eruptions of Etna (Italy were conducted to determine pre-eruptive dissolved volatile concentrations. The studied eruptions include the 3930 BP subplinian, the 122 B.C. plinian, and the 4 January 1990 and the 23 December 1995 fountain fire eruptions. Preliminary results indicate that H2O varies between 3.13 and 1.02 wt% and CO2 between 1404 and 200 ppm. The most basic products (3930 BP tephra contain the highest concentrations of CO2 (1404 ppm, whereas fire fountain hawaiitic tephra present the lowest values (< 200 ppm indicating a continuous degassing process during the differentiation and rising of the magma. Generally, similar behavior has been found for water, characterized by a decreasing content during the differentiation that is mainly found in the 3930 BP eruption, 1990 and 1995 fire fountain products. Considering the relevance of volatile content and behaviour in determining the eruptive style, we made some inferences on the eruptive mechanisms based on the initial high volatile content and the degassing dynamics inside the plumbing system. These two factors suggest the cause of the high explosive activity in this basaltic volcano.

  14. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption (United States)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.


    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  15. Kaposi′s varicelliform eruption

    Directory of Open Access Journals (Sweden)

    Shenoy Manjunath


    Full Text Available Kaposi′s varicelliform eruption (eczema herpeticum is the name given to a distinct cutaneous eruption caused by herpes simplex and certain other viruses that infect persons with preexisting dermatosis. Most commonly it is associated with atopic dermatitis. We report a case of a three-year-old atopic child who presented with extensive vesicular eruption suggestive of Kaposi′s varicelliform eruption. There was history of fever, malaise and extensive vesicular eruptions. Diagnosis was made based on clinical features and Tzanck smear examination. Patient responded adequately to oral acyclovir therapy.

  16. Combining experimental petrology with InSAR deformation constraints on the magmatic system prior to recent eruptions at Kelud volcano, Indonesia (United States)

    Cassidy, Mike; Castro, Jonathan; Helo, Christoph; Ebmeier, Susanna; Watt, Sebastian


    The parameters that govern the eruptive style at volcanoes are critical to understand, since the volcanic hazards posed to the nearby populations are directly related on whether an eruption is explosive or effusive. Eruptions from Kelud volcano located in East Java, Indonesia are difficult to forecast in that sense, because the eruptive style varies considerably, from effusive eruptions e.g. 1920 & 2007 to explosive eruptions in 1990 and 2014. Experiments were undertaken to constrain the magma storage conditions such as pressure, temperature and volatile contents prior to both explosive and effusive eruptions at Kelud. A gas-pressurized TZM cold-seal pressure vessel was used, whereby the sample (coarsely-crushed aliquots of the 2014 Kelud pumice contained in a AgPd capsule) were held at upper crustal conditions for several days to equilibrate, and then rapidly quenched using a water-cooled coupling system to prevent further crystallisation. The experiments were held near the NNO oxygen buffer using a double-capsule method. A range of pressures (25-200 MPa), temperatures (950-1100 °C), H2O-saturated and mixed H2O-CO2 conditions were explored in this study. Experimental matrix glass and mineral rim compositions, as well as crystal contents were measured and compared to the natural mineral and groundmass characteristics erupted in explosive (1990, 2014) and effusive (2007) eruptions. The experiments were conducted on crystal-rich basaltic andesite pumice from the 2014 eruption, as this has a near identical bulk composition to the other effusively and explosively erupted products. The 2014 pumice therefore represents an ideal experimental starting material which can be applied to other Kelud eruption types investigated. This presentation will discuss the results from these experiments, which are the first to be conducted on Kelud volcanics, with the aim of elucidating magma storage conditions that precede Kelud's different eruption styles. These constraints will be

  17. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems


    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  18. Changes in long-term eruption dynamics at Santiaguito, Guatemala: Observations from seismic data (United States)

    Lamb, O. D.; Lavallée, Y.; De Angelis, S.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Kendrick, J. E.; Chigna, G.; Rietbrock, A.


    Santiaguito (Guatemala) is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. Here we present seismic observations of ash-and-gas explosions recorded between November 2014 and June 2016 during a multi-disciplinary experiment by the University of Liverpool. The instruments, deployed around the active dome complex between 0.5 to 7 km from the vent, included 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. The geophysical data is complemented by thermal images, optical images from a UAV, and geochemical measurements of erupted material. Regular, small-to-moderate sized explosions from the El Caliente dome at Santiaguito have been common since at least the early 1970s. However, in 2015, a shift in character took place in terms of the regularity and magnitude of the explosions. Explosions became larger and less regular, and often accompanied by pyroclastic density currents. The larger explosions have caused a major morphological change at the vent, as a rubble-filled vent was replaced by a crater of 150 m depth. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath the Caliente vent, possibly triggered by processes at a greater depth in the volcanic system. This experiment represents a unique opportunity to use multi-disciplinary research to help understand the long-term eruptive dynamics of lava dome eruptions. Our observations may have implications for hazard assessment not only at Santiaguito, but at many other volcanic systems worldwide.

  19. High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records

    NARCIS (Netherlands)

    Engels, S.; van Geel, B.; Buddelmeijer, N.; Brauer, A.


    The Laacher See eruption (LSE) was one of the larger Plinian eruptions of the late Quaternary in Europe. Distal tephra deposits of the LSE are found in three major directions and have been encountered over an area of at least 230,000 km2. Large volcanic explosions such as the LSE can have direct as

  20. Using Infrasound and Machine Learning for Monitoring Plinian Volcanic Eruptions (United States)

    Ham, F. M.; Iyengar, I.; Hambebo, B. M.; Garces, M. A.; Deaton, J.; Perttu, A.; Williams, B.


    Large plinian volcanic eruptions can inject a substantial amount of volcanic gas and ash into the stratosphere. This can present a severe hazard to commercial air traffic. A hazardous Icelandic volcanic ash-eruption was reported on April 14, 2010. This resulted in London's aviation authority to issue an alert that an ash plume was moving from an eruption in Iceland towards northwestern Europe. This eruption resulted in the closure of large areas of European airspace. Large plinian volcanic eruptions radiate infrasonic signals that can be detected by a global infrasound array network. To reduce potential hazards for commercial aviation from volcanic ash, these infrasound sensor arrays have been used to detect infrasonic signals released by sustained volcanic eruptions that can inject ash into the stratosphere at aircraft's cruising altitudes, typically in the order of 10km. A system that is capable of near, real-time eruption detection and discrimination of plinian eruptions from other natural phenomena that can produce infrasound with overlapping spectral content (0.01 to 0.1 Hz) is highly desirable to provide ash-monitoring for commercial aviation. In the initial study, cepstral features were extracted from plinian volcanic eruptions and mountain associated wave infrasound signals. These feature vectors were then used to train and test a two-module neural network classifier (radial basis function neural networks were used for each module). One module is dedicated to classifying plinian volcanic eruptions, the other mountain associated waves. Using an independent validation dataset, the classifier's correct classification rate was 91.5%. Then a different two-module neural network classifier was designed to discriminate between plinian volcanic eruptions and a collection of infrasound signals that are not-of-interest but have spectral content that overlaps with the volcano signals. One module is again dedicated to classifying plinian volcanic eruptions, however, in

  1. Drugs Causing Skin Eruptions

    Directory of Open Access Journals (Sweden)

    Ramji Gupta


    Full Text Available Twenty one patients having drug eruptions are reported. The causative drugs were confirmed by provocation Tests. Eleven patients had exanthematous eruptions. The causative drugs were thiacetazone (3, para aminosalicylic acid (3, i-sonicotine acid hydrazide (1, Stereptomycin (1, ethambutol (1 , carbamazepine (1 and phenytoin sodium (1. In 4 patients having toxic epidermal necrolysis, the causative drugs were para aminosalicylic acid (2 isonicotinic acid hydrazide (1, streptomycin (1, tetracycline (1 and phenobarbitone (1. Two of these patients reacted to two drugs each, namely, streptomycin and para aminosalicysclic acid; and tetracycline and phenobarbitone respectively. In 3 patients with ex o ative dermatitis , the causative drugs were isonicotinic acid hydrazide (1, streptomycin (1, thiacetazone (1, and chloroquine (1.One patient reacted to both thiacetazone and chloroquine. In 3 patients who presented as urticaria, the causative drugs were analgin (1, phenylbutazone (1, and dilantin sodium (1.

  2. Large erupted complex odontoma

    Directory of Open Access Journals (Sweden)

    Vijeev Vasudevan


    Full Text Available Odontomas are a heterogeneous group of jaw bone lesions, classified as odontogenic tumors which usually include well-diversified dental tissues. Odontoma is a term introduced to the literature by Broca in 1867. Trauma, infection and hereditary factors are the possible causes of forming this kind of lesions. Among odontogenic tumors, they constitute about 2/3 of cases. These lesions usually develop slowly and asymptomatically, and in most cases they do not cross the bone borders. Two types of odontoma are recognized: compound and complex. Complex odontomas are less common than the compound variety in the ratio 1:2.3. Eruption of an odontoma in the oral cavity is rare. We present a case of complex odontoma, in which apparent eruption has occurred in the area of the right maxillary second molar region.

  3. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.


    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  4. First recorded eruption of Nabro volcano, Eritrea, 2011. (United States)

    Goitom, Berhe; Oppenheimer, Clive; Hammond, James O S; Grandin, Raphaël; Barnie, Talfan; Donovan, Amy; Ogubazghi, Ghebrebrhan; Yohannes, Ermias; Kibrom, Goitom; Kendall, J-Michael; Carn, Simon A; Fee, David; Sealing, Christine; Keir, Derek; Ayele, Atalay; Blundy, Jon; Hamlyn, Joanna; Wright, Tim; Berhe, Seife

    We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO 2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic significance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shallow, NW-SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response mitigated the human costs of the eruption.

  5. First recorded eruption of Nabro volcano, Eritrea, 2011 (United States)

    Goitom, Berhe; Oppenheimer, Clive; Hammond, James O. S.; Grandin, Raphaël; Barnie, Talfan; Donovan, Amy; Ogubazghi, Ghebrebrhan; Yohannes, Ermias; Kibrom, Goitom; Kendall, J.-Michael; Carn, Simon A.; Fee, David; Sealing, Christine; Keir, Derek; Ayele, Atalay; Blundy, Jon; Hamlyn, Joanna; Wright, Tim; Berhe, Seife


    We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic significance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shallow, NW-SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response mitigated the human costs of the eruption.

  6. Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages (United States)

    Smithka, I. N.; Walters, R. L.; Harpp, K. S.


    Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air ( Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These

  7. Eruptive history of South Sister, Oregon Cascades (United States)

    Fierstein, J.; Hildreth, W.; Calvert, A.T.


    South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50ka to 2ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~50ka. By ~37ka, rhyolitic lava flows and domes (72-74% SiO2) began alternating with radially emplaced dacite (63-68% SiO2) and andesite (59-63% SiO2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO2) culminated ~30ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200m thick. This was followed at ~27ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO2) and formation of a summit crater ~800m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by >150m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~22ka. A 20kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO2) and (2) the Devils Chain of ~20 domes and short coulees (72.3-72.8% SiO2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the

  8. The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. (United States)

    Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob


    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  9. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer


    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  10. Inspection tester for explosives (United States)

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.


    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  11. Small volcanic eruptions and the stratospheric sulfate aerosol burden (United States)

    Pyle, David M.


    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  12. 75 FR 5545 - Explosives (United States)


    ... for classifying, labeling, and providing safety data sheets for explosives. By withdrawing this.... OSHA-S031-2006-0665 and OSHA-S-031)] RIN 1218-AC09 Explosives AGENCY: Occupational Safety and Health... the rulemaking to amend its Explosives and Blasting Agents Standard at 29 CFR 1910.109. OSHA is taking...

  13. the eruption of vesuvius in ad 79 and the death of gaius plinius ...

    African Journals Online (AJOL)

    Due to its inactivity the past 60 years, this volcano is at present the primary geological worry of Europe because of its potential explosivity: c. 1,5 million people live in the vicinity of the mountain. The eruption of AD 79 is described vividly by an eye-witness,. Pliny the Younger, in two letters to the historian Tacitus (Epistulae.

  14. The ash-fall hazard from a Plinian eruption at Colima Volcano, Mexico

    Directory of Open Access Journals (Sweden)

    Rita Fonseca


    Full Text Available The historical eruptive activity at Colima Volcano has been characterized by Strombolian and Merapi type eruptions and Vulcanian explosions associated with dome growth, which have ended in a Plinian eruption about every 100 years. The situation now prevailing at Colima Volcano is similar to that which preceded these explosive eruptions, when a dome fills the crater. This study proposes seven scenarios for the ash-fall from a Plinian eruption, based on historical eruptive activity, isopach thickness from the 1913 Plinian eruption, land use, socioeconomic data, and a 15-year statistical wind study realized with daily radiosonde data grouped according to four altitudinal levels: 4,000-9,000 (I; 9,000-14,000 (II; 14,000-17,000 (III and 17,000-28,000 (IV m a.s.l., based on common wind speeds and directions. We have integrated the wind distribution at level IV and estimated the ash dispersion for a Plinian eruption. From January to March, the main impact would be towards the northeast, in April and in October, towards the east, in May, towards the north-northeast or north-northwest, from June to August, towards the northwest, in September, towards the west, and in November and December, towards the west-southwest. The fallout would damage the coniferous forests of the Colima National Park, two lagoons and three lakes. More than 30 million people living in Guadalajara, Mexico City, Leon and Colima would suffer eye, respiratory and skin problems. The proximal areas, such as Ciudad Guzman, would be subject to roof collapsing and communication problems. The agricultural and livestock sectors would suffer severe financial losses. The Queseria sugar mill, the Atenquique paper mill, and the cement plants in Zapotiltic would halt work due to chimney obstruction and machinery abrasion. Four thermoelectric plants, twenty airports and four commercial ports would be affected if the eruption occurs in summer.

  15. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    KAUST Repository

    Predybaylo, Evgeniya


    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth\\'s radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  16. Some observations regarding the thermal flux from Earth's erupting volcanoes for the period 2000 to 2014 (United States)

    Wright, R.; Blackett, M.; Hill-Butler, C.


    This presentation will describe 15 years of MODIS observations of the thermal flux from Earth's sub-aerially erupting volcanoes. The MODVOLC algorithm has been providing data regarding volcanic eruptions on Earth to the volcanological community since the launch of Terra MODIS, via the internet, in near-real-time ( During this time, eruptions at 102 volcanoes have been observed, including activity associated with mafic lava flows, lava lakes, vent-based explosive activity and felsic lava domes. This presentation will present an overview of how MODIS has documented every eruption to occur on Earth since 2000, and will describe some of the more interesting result that have been obtained from the analysis of this archive. The total amount of energy radiated into the atmosphere can be divided into two parts: a baseline level of emission which has increased gradually over this 15 period, superimposed on which are large "spikes" attributable to large, lava-flow-forming eruptions. The most intense eruption during this period of time was the 2004 eruption of Nyamuragira, in the Democratic Republic of Congo, whilst the largest magnitude event was the 2012-2013 eruption of Tolbachik, Russia. Spatio-temporal patterns in thermal output will be addressed. Time-series analysis of heat flux from these 102 volcanoes has revealed while some volcanoes exhibit statistically significant periodicity in the magnitude of their heat output, many do not.

  17. Early eruption of permanent canines

    Directory of Open Access Journals (Sweden)

    S Madhu


    Full Text Available Systemic and local factors can modify the eruption time of teeth. Generalized eruption time changes could be due to some systemic diseases like hyperthyroidism, hypophosphatasia, precocious puberty, Proteus syndrome, etc. Localized early eruption of permanent teeth could be due to early extraction of deciduous teeth. Presented here is an extremely rare case of early eruption of permanent canines in a 7-year old female child. Though the number of such cases is very limited, the clinician should poses adequate knowledge and keeps an open eye to identify such cases.

  18. Dust Eruptions on Mars by Temperature Gradient Induced Forces (United States)

    Kelling, Thorben; Wurm, G.; Reiss, D.; Kocifaj, M.; Klacka, J.; Teiser, J.


    Dust lifting processes on Mars are an active field of investigation. Explanations for dust phenomena even on high elevations on Mars have to be found. In general, wind stress is supposed to be the main lifting process but on average wind velocities are too low. We found, that temperature induced forces are capable of procuring dust ejections and even massive dust eruptions from a dust bed. A Mars soil simulant (JSC Mars 1A) was placed within a vacuum chamber which was evacuated to typical martian pressures of some mbar and particle ejections and eruptions were observed. Several different temperature gradient dependend lifting processes are at work. While e.g. photophoretic and thermophoretic forces only result in minor particle ejections, Knudsen Compressor effects cause continuous and major eruptions. These eruptions are even enhanced if a transition from illumination to no illumination occurs. We argue that the massive transition eruptions may be the dominant dust lifting process for e.g. dust devils. Moving dust devils, which are optically thick, induce a fast transition from light to shadow for the underlying dust bed. Even for lower initial radiation intensities, this will result in particle eruptions. As long as the wind eddy exists, dust devils on Mars may be self sustained even at low pressures or high altitudes. This work recieved support by the DFG and DAAD.

  19. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era (United States)

    Vidal, Céline M.; Métrich, Nicole; Komorowski, Jean-Christophe; Pratomo, Indyo; Michel, Agnès; Kartadinata, Nugraha; Robert, Vincent; Lavigne, Franck


    Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth’s surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that the great 1257 eruption of Samalas (Lombok, Indonesia) released enough sulphur and halogen gases into the stratosphere to produce the reported global cooling during the second half of the 13th century, as well as potential substantial ozone destruction. Major, trace and volatile element compositions of eruptive products recording the magmatic differentiation processes leading to the 1257 eruption indicate that Mt Samalas released 158 ± 12 Tg of sulphur dioxide, 227 ± 18 Tg of chlorine and a maximum of 1.3 ± 0.3 Tg of bromine. These emissions stand as the greatest volcanogenic gas injection of the Common Era. Our findings not only provide robust constraints for the modelling of the combined impact of sulphur and halogens on stratosphere chemistry of the largest eruption of the last millennium, but also develop a methodology to better quantify the degassing budgets of explosive eruptions of all magnitudes.

  20. Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements. (United States)

    Angelis, S De; Lamb, O D; Lamur, A; Hornby, A J; von Aulock, F W; Chigna, G; Lavallée, Y; Rietbrock, A


    The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.

  1. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data (United States)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.


    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  2. Magma fluxes and recurreance rate of eruptions at Nevado de Toluca volcano (Mexico) (United States)

    Weber, Gregor; Probst, Line; Arce, José L.; Caricchi, Luca


    Forecasting the frequency and size of volcanic eruptions is a long-term goal for hazard mitigation. The frequency at which a given crustal magmatic system is driven towards a critical state and the magnitude of the resulting volcanic events are linked to the supply rate of fresh magma, crustal properties, and tectonic setting. Our ability to forecast the recurrence rate of eruptions is hampered by the lack of data on key variables such as the average magma flux locally and globally. The aim of this project is to identify the average magma supply rate and injection frequency for eruptions of different magnitude and eruptive style. We centred our study at Nevado de Toluca in Mexico, a subduction-related volcano with an eruptive history spanning about 1.5 million years of comparatively well documented effusive and explosive eruptions dominantly of dacitic composition. We carry out in-situ high precision zircon geochronology for a sequence of eruptions of different magnitude to obtain a distribution of crystal ages from which average crustal magma fluxes can be calculated. Eruptive fluxes will be constrained by extracting lava flow volumes from a digital elevation model. A combination of whole rock and mineral chemistry will provide quantitative insights on petrogenetic processes and on the frequency at which intensive parameters changed within the magma reservoir before the eruptions. Our results will be integrated in a global database including other volcanic systems and literature data to attempt to identify similarities and differences between magmatic reservoirs feeding volcanic eruptions of different magnitude. The final target of this project is to identify the physical factors controlling the recurrence rate of volcanic eruptions at regional and global scale.

  3. Eruptive Dynamics Inferred from Textural Analysis of Ash Time Series: The 2015 Reawakening of Cotopaxi Volcano (United States)

    Gaunt, H. E.; Bernard, B.; Hidalgo, S.; Proaño, A.; Wright, H. M. N.; Mothes, P. A.; Criollo, E.


    Analysis of the composition and texture of ash ejected during eruptive episodes can provide valuable information about magma storage and ascent conditions. After 73 years of repose, Cotopaxi volcano erupted after approximately four months of precursory activity that included an increase in seismicity, gas emissions, and minor ground deformation. High frequency ash sampling was realized throughout the new eruptive period and near real-time petrological monitoring of ash samples was used to infer eruption dynamics at Cotopaxi volcano. We collected twenty ash samples between August 14 and November 23, 2015 from a seismic monitoring site on the west flank of the volcano. We classified the different components of the ash into four groups: hydrothermal/altered grains, lithic fragments, potentially juvenile material, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of potentially juvenile material and a decrease in hydrothermally altered material through time. Potentially juvenile grains from the initial explosion are microlite-poor and contain hydrothermal minerals (opal and alunite) in contact with fresh glass. The interaction of juvenile magma with the hydrothermal system may have provided the energy to trigger phreatomagmatic explosions at Cotopaxi. However, only the initial explosions preserve textural evidence for this process. Completely aphyric, glassy fragments are absent; likewise, the absence of highly vesiculated pumice or scoria indicates that fragmentation was not the result of bubble wall breakage due to rapid exsolution and expansion of gas in the melt. Furthermore, the crystallinity of juvenile particles increased through time, indicating slowing integrated ascent rates. Nevertheless, continued high SO2 emission rates indicate that the system was open to gas loss, which inhibited the pressurization of the conduit through gas accumulation, reducing the short term possibility of a large

  4. Characterization of tephra from the northwest rift zone eruption, Newberry Volcano, Oregon (United States)

    McKay, D.; Cashman, K. V.; Wallace, P. J.


    The northwest rift zone (NWRZ) eruption was the most recent episode of mafic activity to occur at Newberry Volcano, Oregon, USA. Vents of the NWRZ are aligned along a series of northwest trends extending ~32 km across the northwest and southwest flanks of the volcano. The total volume (DRE) of erupted material is 862 x 106 m3, with individual vents erupting volumes ranging from 0.1 x 106 to 381.9 x 106 m3. Eruption duration is not constrained, but tephra from NWRZ vents was deposited directly on top of 7700 ybp Mazama ash, leading to the interpretation that vents were active simultaneously and the eruptive period represents a large input of mafic magma into the Newberry system. Paleomagnetic work has suggested the eruption spanned a period of decades to a century. Individual vents produced a range of deposits, including large and small scoria cones, spatter cones and ramparts, tephra blankets, and extensive lava flows. These eruptive products suggest that individual eruptive episodes were characterized by eruption styles ranging from the passive effusion of lava to explosive activity. Compositional data for both tephra and lava show considerable variation (ranging from 51.3 to 58.4 wt. % SiO2). If the NWRZ eruption represents input of a single magma batch, some combination of fractionation, assimilation, and/or mixing must have occurred to produce the observed range in compositions. Here we present detailed analysis of tephra clasts collected from NWRZ vents, including whole rock, microphenocryst and glass compositions, and water contents derived from the plagioclase-liquid hygrometer described by Lange et al., 2009. We use these data to constrain the pre-eruptive storage conditions (pressure, temperature, and water content) of magma batches erupted at individual vents. Thermodynamic modeling of geochemical data is used to determine the genetic relationship between these magmas. In addition to petrological and geochemical constraints, we use spatial relationships

  5. Darwin's triggering mechanism of volcano eruptions (United States)

    Galiev, Shamil


    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  6. Solar eruptions: The CME-flare relationship (United States)

    Vršnak, B.


    Coronal mass ejections (CMEs), caused by large-scale eruptions of the coronal magnetic field, often are accompanied by a more localized energy release in the form of flares, as a result of dissipative magnetic-field reconfiguration. Morphology and evolution of such flares, also denoted as dynamical flares are often explained as a consequence of reconnection of the arcade magnetic field, taking place below the erupting magnetic flux rope. A close relationship of the CME acceleration and the flare energy release is evidenced by various statistical correlations between parameters describing CMEs and flares, as well as by the synchronization of the CME acceleration phase with the impulsive phase of the associated flare. Such behavior implies that there must be a feedback relation between the dynamics of the CME and the flare-associated reconnection process. From the theoretical standpoint, magnetic reconnection affects the CME dynamics in several ways. First, it reduces the tension of the overlying arcade magnetic field and increases the magnetic pressure below the flux rope, and in this way enhances the CME acceleration. Furthermore, it supplies the poloidal magnetic flux to the flux rope, which helps sustaining the electric current in the rope and prolonging the action of the driving Lorentz force to large distances. The role of these processes, directly relating solar flares and CMEs, is illustrated by employing a simple model, where the erupting structure is represented by a curved flux rope anchored at both sides in the dense/inert photosphere, being subject to the kink and torus instability. It is shown that in most strongly accelerated ejections, where values on the order of 10 km s-2 are attained, the poloidal flux supplied to the erupting rope has to be several times larger than was the initial flux.

  7. Petrological insights on the effusive-explosive transitions of the Nisyros-Yali Volcanic Center, South Aegean Sea (United States)

    Popa, Razvan-Gabriel; Bachmann, Olivier; Ellis, Ben; Degruyter, Wim; Kyriakopoulos, Konstantinos


    Volcanoes erupting silicic, volatile-rich magmas can exhibit both effusive and explosive eruptions, even during closely spaced eruptive episodes. Understanding the effusive-explosive transition is fundamental in order to assess the hazards involved. Magma properties strongly influence the processes during magma ascent that determine the eruptive style. Here, we investigate the link between changing conditions in the magma reservoir and the eruptive style. The Quaternary Nisyros-Yali volcanic center, from the South Aegean Sea, provides an excellent natural laboratory to study this process. Over the last 60-100 kyrs, it produced a series of dacitic to rhyolitic eruptions that emplaced alternating effusive and explosive deposits (with explosive eruptions likely shortly following effusive ones). For this study, nine fresh and well-preserved units (five effusive and four explosive) were sampled and analyzed for whole-rock, groundmass glass and mineral compositions, in order to draw insights into the magma chamber processes and thermodynamic conditions that preceded both types of eruptions. Silicic magmas in Nisyros-Yali record a complex, open-system evolution, dominated by fractionation in mushy reservoirs at mid to upper crustal depths, frequently recharged by warmer input from below. Storage temperatures recorded by the amphibole-plagioclase thermometer span a wide range, and they are always cooler than the pre-eruptive temperatures yielded by Fe-Ti oxide thermometry for the same unit, whether it is effusive or explosive. However, magmas feeding effusive eruptions typically reached cooler conditions (expressed by the presence of low-Al, low-Ti amphiboles) than in the explosive cases. The difference between the pre-eruptive and the lowest storing temperatures in the Nisyros series are in the order of 10-30°C for explosive units, while the difference is of about 40-110°C for the effusive units. The Yali series does not perfectly fit this pattern, where explosive units

  8. Evidence of the 2011 Puyehue-Córdon Caulle Eruption in West Antarctica (United States)

    Dowd, E.; Koffman, B. G.; Ferris, D. G.; Osterberg, E. C.; Wong, G. J.; Kreutz, K. J.


    Gases and aerosols emitted during volcanic eruptions can have widespread impacts, including global climate cooling, disruption to air travel, and a reduction in air quality. Ice core records offer highly temporally resolved archives of past volcanic eruptions, allowing for precise tephrostratigraphy as well as estimates of past volcanic impacts on Earth's radiative balance. Previous work in West Antarctica has shown that the latitude and/or magnitude of past eruptions can be inferred on the basis of changes in particle size distributions (PSDs) relative to background dust, as well as phasing between ash particle and sulfate aerosol deposition. Specifically, explosive tropical eruptions show finer-than-background PSDs and clear phasing between (earlier) ash and (later) sulfate deposition, while high-latitude eruptions exhibit coarser-than-background PSDs. In order to assess the depositional characteristics of a mid-latitude eruption for comparison with these earlier observations, we evaluated the June 4-6, 2011 VEI 5 eruption of Puyehue-Córdon Caulle, Chile (40.59°S). Satellite imagery shows the ash cloud from the eruption passing directly over central West Antarctica, suggesting that ash particle deposition may have occurred. We collected surface snow samples from the West Antarctic Ice Sheet (WAIS) Divide field camp in January 2012 and analyzed them for major ion concentrations and particle concentration and size distribution using ion chromatographs and a Coulter-Counter, respectively. The annually resolved snowpit record, which extends to June 2009, does not have elevated sulfate concentrations linked with the Puyehue eruption. However, particle analyses indicate that ash deposition did occur, with ash particles coarser than background dust (>12 μm diameter vs. modal diameter of 5 μm). The coarseness of ash particles, similar to those from high-latitude eruptions, is consistent with tropospheric transport. On the basis of these results, we suggest that mid

  9. New Mix Explosives for Explosive Welding (United States)

    Andreevskikh, Leonid


    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  10. Determining the physical processes behind four large eruptions in rapid sequence in the San Juan caldera cluster (Colorado, USA) (United States)

    Curry, Adam; Caricchi, Luca; Lipman, Peter


    Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.

  11. Eruptions in space and time: durations, intervals, and comparison of world's active volcanic belts

    Energy Technology Data Exchange (ETDEWEB)

    Simkin, T.; McClelland, L.


    A computerized data bank, compiled over the last 12 years at the Smithsonian Institution, allows summaries to be made of Holocene volcanism. The Scientific Event Alert Network tracks current volcanic activity. However, the record of most volcanoes is poor before the last 100 years, and some eruptions still pass unreported. The time interval since the previous eruption can be calculated for 4835 of the 5564 compiled eruptions. The median interval is 5.0 years, but much longer intervals commonly precede unusually violent eruptions. For the 25 most violent eruptions in the file (with known preceding interval), the medium interval is 865 years. Of the historic eruptions in this group, 50% resulted in fatalities. The interval between an eruption's start and its most violent paroxysm may be measured in months or years, but it is usually short. Of the 205 larger eruptions for which data are available, 92 had the paroxysmal event within the first day of the eruption, allowing little time for emergency preparations after the eruption's opening phase. To compare the recent vigor of different volcanic belts, they calculated the number of years in which each volcano was active in the last 100 years, summed these for each belt, and divided by belt length. Another index of recent vigor is the number of recognized Holocene volcanoes divided by belt length. A third index is the number of large explosive eruptions (volcanic explosive index greater than or equal to 3) of the last 100 years, again normalized by belt length. These three measures correlate reasonably well, serving to contrast vigorous belts such as Kamchatka, Central America, and Java with relatively quiet belts such as the Cascades, South Sandwich Islands, Greece, and southern Chile.

  12. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska (United States)

    Schneider, David J.; Hoblitt, Richard P.


    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  13. Impact of the 1815 Tambora Eruption to global climate change (United States)

    Djumarma Wirakusumah, Achmad; Rachmat, Heryadi


    Tambora volcano is located at Sumbawa island, Indonesia. Geological study shows a successive of geomorphological development of Tambora Volcano. During 190 to 86 K-Years BP, shield-like or effusive volcano were formed; During 86 to 4 K-Years BP, a strato or explosive-volcano was formed; However, during 80 to 4 K-Years BP flank eruptions occurred intermittently and cinders were formed; In April 1815, a paroxysmal destructive eruption occurred which were followed by caldera forming; Since 1815, lava domes and solphataric fields were formed. The 1815 Tambora eruption emitted 60 to 80 megatons of SO2 to the stratosphere (44 km high). The SO2 spread the tropics, circled the world and it was oxidized to form H2SO4 so called sulphate aerosols protecting the sunlight to reach the earth surface causing global change effects. The Year of 1816 as the year without summer in Europe, the depressed situation in Europe, the epidemic disease of Benggal were three of examples of the impacts of the 1815 Tambora paroxysmal eruption. Therefore, characteristics of Tambora activity before paroxysmal should be learned for mitigation purposes.

  14. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska (United States)

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick


    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  15. Grain size distribution and characteristics of the tephra from the Vatnaöldur AD 871±2 eruption, Iceland. (United States)

    Jónsdóttir, Tinna; Larsen, Guðrún; Guðmundsson, Magnús


    Basaltic explosive eruptions in Iceland are frequent and often occur from vents in regions of surface lakes, large groundwater reservoirs or within glaciers. The recent Eyjafjallajökull eruption in 2010 and Grímsvötn eruption 2011 highlighted the vulnerability of passenger jet aircraft to ash in the atmosphere. Iceland's volcanoes are the most potent producers of tephra in Europe, and the frequent occurrence of basaltic explosive eruptions is a major factor in causing this. As a step in increasing the knowledge on the tephra erupted in basaltic explosive eruptions, we study the grain size distribution of a large (~5 km3) explosive basaltic eruption that occurred in AD 871±2. The source is the 25 km long Vatnaöldur crater row in south-central Iceland. The crater row lies within the Bárðarbunga-Veiðivötn volcanic system, one of the most productive volcanic systems in Iceland in recent times. Samples for grain size analysis were collected at six different locations along the broad northwest-trending dispersal axis. Sampling sites ranged in 1.5 km to 120 km distance from the largest vent Skyggnir, near the southern end of the crater row. The Vatnaöldur eruption has been classified as phreatomagmatic, erupting through fractured bedrock composed of recent lavas, hyaloclastites and pillow lava in an area characterized by a high groundwater level and surface lakes. Explosive activity dominanted the ~ 25 km long discontinuous fissure, as tuff cones were formed and conduits reached under groundwater table. During the eruption the tephra layer was dispersed in all directions. The area within the 0.5 cm isopach is 50,000 km2 and this tephra has also been identified in Greenland ice cores. The grain size analysis indicates that one dominant characteristic of the tephra is the scarcity of pyroclasts over 1 mm in diameter. In the ash sampled more than 4 km from source larger grain sizes are absent. The dispersion in the more distal parts, at distances of 60 - 120 km is


    Directory of Open Access Journals (Sweden)

    Charles L. Mader


    Full Text Available Krakatoa exploded August 27, 1883 obliterating 5 square miles of land and leaving a crater 3.5 miles across and 200-300 meters deep. Thirty three feet high tsunami waves hit Anjer and Merak demolishing the towns and killing over 10,000 people. In Merak the wave rose to 135 feet above sea level and moved 100 ton coral blocks up on the shore.Tsunami waves swept over 300 coastal towns and villages killing 40,000 people. The sea withdrew at Bombay, India and killed one person in Sri Lanka.The tsunami was produced by a hydrovolcanic explosion and the associated shock wave and pyroclastic flows.A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becoming water gas at constant volume generates a pressure of 30,000 atmospheres.The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMREulerian compressible hydrodynamic code called SAGE which includes the high pressure physics of explosions.The water in the hydrovolcanic explosion was described as liquid water heated by the magma to 1100 degree Kelvin or 19 kcal/mole. The high temperature water is an explosive with the hot liquid water going to a water gas. The BKW steady state detonation state has a peak pressure of 89 kilobars, a propagation velocity of 5900 meters/second and the water is compressed to 1.33 grams/cc.The observed Krakatoa tsunami had a period of less than 5 minutes and wavelength of less than 7 kilometers and thus rapidly decayed. The far field tsunami wave was negligible. The air shock generated by the hydrovolcanic explosion propagated around the world and coupled to the ocean resulting in the explosion being recorded on tide gauges around the world.

  17. Eruptive history of Sundoro volcano, Central Java, Indonesia since 34 ka (United States)

    Prambada, Oktory; Arakawa, Yoji; Ikehata, Kei; Furukawa, Ryuta; Takada, Akira; Wibowo, Haryo Edi; Nakagawa, Mitsuhiro; Kartadinata, M. Nugraha


    increased with time, such that explosive eruptions are more likely in the future and that they may be larger than the most recent small eruptions.

  18. Explosives tester with heater (United States)

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA


    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  19. Explosive Technology Group (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  20. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan (United States)

    Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato


    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of



    Darnley, M. J.; Henze, M.; Bode, M. F.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Ness, J. U.; Osborne, J. P.; Page, K. L.; Ribeiro, V. A R M; Rodríguez-Gil, P.; Shafter, A. W.; Shara, M. M.


    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of Prec = 351 ± 13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to...

  2. Characterizing the first historic eruption of Nabro, Eritrea: Insights from thermal and UV remote sensing (United States)

    Sealing, Christine R.

    June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ˜17 km long lava flow, and a volume of ˜22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  3. Analysis of GOSAT XCO2 in explosive volcanic plumes (United States)

    Popp, Christoph; Andrews, Benjamin J.; Carn, Simon A.; Chance, Kelly; Cottrell, Elizabeth; Schwandner, Florian M.


    In this study, we analyze columnar averaged dry air mole fraction of CO2 (XCO2) in volcanic gas plumes after major eruptions using space-borne near-infrared measurements from the Japanese Greenhouse gas Observing SATellite (GOSAT). Volcanic emissions are assumed to dominate the flux from the deep Earth to the surface but those global emissions as well as the partitioning between eruptive and non-eruptive emissions are to date highly uncertain. Satellite measurements are an indispensable complement to ground-based measurements of volcanic CO2 emissions because they are performed globally and regularly and they therefore have the potential to significantly broaden our knowledge of volcanic CO2 releases. However, the remote sensing of volcanic CO2 is challenging for various reasons, including the increasingly high atmospheric background, relatively coarse spatial resolution and/or sampling, and scattering effects of aerosols and clouds. We mined existing standard product level 2 GOSAT XCO2 data sets for a volcanic CO2 signal in the gas plumes of the largest volcanic eruptions since GOSAT's launch in 2009. These eruptions include the Volcanic Explosivity Index (VEI) 4 events of Sarychev Peak (Kuril Islands, Russia) in June 2009, Nabro (Ethiopia) in June 2011, and Puyehue-Cordon Caulle (Chile) in June 2011. GOSAT background and plume soundings are distinguished using corresponding Ozone Monitoring Instrument (OMI) SO2 retrievals taking advantage of the usually low atmospheric SO2 background abundance. A volcanic CO2 signal in the GOSAT products can subsequently be found by comparing GOSAT XCO2 for the plume and background soundings. Possible XCO2 enhancements in the volcanic plumes are converted to an estimated CO2 release of the investigated eruptions. Based on this analysis, the current capabilities and added value of GOSAT TANSO-FTS to detect and quantify CO2 emissions from explosive volcanism are outlined.

  4. Bromine release during Plinian eruptions along the Central American Volcanic Arc (United States)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.


    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75

  5. Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB (United States)

    Bani, Philipson; Tamburello, Giancarlo; Rose-Koga, Estelle F.; Liuzzo, Marco; Aiuppa, Alessandro; Cluzel, Nicolas; Amat, Iwan; Syahbana, Devy Kamil; Gunawan, Hendra; Bitetto, Marcello


    Located on Halmahera island, Dukono is among the least known volcanoes in Indonesia. A compilation of the rare available reports indicates that this remote and hardly accessible volcano has been regularly in eruption since 1933, and has undergone nearly continuous eruptive manifestation over the last decade. The first study of its gas emissions, presented in this work, highlights a huge magmatic volatile contribution into the atmosphere, with an estimated annual output of about 290 kt of SO2, 5000 kt of H2O, 88 kt of CO2, 5 kt of H2S and 7 kt of H2. Assuming these figures are representative of the long-term continuous eruptive activity, then Dukono is the current most prominent volcanic gas discharge point in Indonesia and ranks among the top-ten volcanic SO2 sources on earth. Combining our findings with other recent volcanic SO2 flux results, obtained during periodic campaigns at a number of volcanoes with DOAS and UV-Cameras, the SO2 emission budget for Indonesia is estimated at 540 kt year-1, representing 2-3% of the global volcanic SO2 contribution into the atmosphere. This figure should be considered as minimum as gas emissions from numerous other active volcanoes in Indonesia are yet to be evaluated. This voluminous degassing output from Dukono is sustained by a depleted Indian-MORB (I-MORB) mantle source. This latter is currently undergoing lateral pressure from the steepening of the subducted slab, the downward force from the Philippine Sea plate and the westward motion of a continental fragments along the Sorong fault, leading to high fluid fluxes to the surface. Over the course of Dukono eruptive activity, the magma reservoir has changed from a less differentiated source that fed the past voluminous lava flows to a more evolved melt that sustained the current ongoing explosive activity.

  6. 2006-2008 Eruptions and Volcano Hazards Of Soputan Volcano, North Sulawesi, Indonesia (United States)

    Hendratno, K.; Pallister, J. S.; McCausland, W. A.; Kristianto, M.; Bina, F. R.; Carn, S. A.; Haerani, N.; Griswold, J.; Keeler, R.


    Soputan is a basalt volcano located in North Sulawesi near the southern margin of the Quaternary Tondano Caldera. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions, as well as voluminous basaltic tephra deposits and lava flows. Soputan erupted five times during 2006-2008: on 14 December, 2006, 12-15 August, 2007, 25-26 October, 2007, 5-6 June, 2008, and 5-6 October, 2008. The 2006-2007 eruptions destroyed a lava dome at the volcano’s summit and exposed the conduit, resulting in Vulcanian eruptions and St. Vincent type pyroclastic flows from an open vent structure. We used high-resolution satellite images and digital elevation models to make photo-geologic maps of the deposits from the 2006, 2007 and 2008 eruptions, to estimate volumes of deposits using GIS and to model potential flow hazards. In March, 2008 and in March 2009 we conducted reconnaissance geologic field investigations at Soputan. This work was done to field-check our photo-geologic mapping, to reconstruct the sequence of eruptive events in 2006-2008 and to collect samples for geochemical and petrographic analysis. We also analyzed seismic records and SO2 emission data from the eruptions and we interpreted these data in the context of our geologic and geochemical data to provide insights into the ascent and degassing of magmas. On the basis of the eruptive history and modeling of potential lahar inundation areas we present an updated assessment of volcano hazards and a forecast for future eruptions at Soputan. Our analysis of field and petrologic data indicates that Soputan is an open-system volcano, which taps basalt magma from great depth, apparently with little shallow storage of this magma. Degassing of the magma as it rises within the conduit results in growth of micro-phenocrysts, evolution of the matrix melt and a commensurate increase in the viscosity of the magma. This, in turn, results in growth of lava domes and more explosive eruptions than are

  7. Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units (United States)

    Williams, Matthew; Bursik, M. I.; Cortes, G. P.; Garcia, A. M.


    The eruptive history and morphology of Azufral Volcano, Colombia, is explored and analyzed to provide a more complete picture of past eruptions, as well as to infer what eruption styles may occur in the future. Through the use of principal component analysis on Fe-Ti oxides, domes can be correlated to the pyroclastic deposits, enabling the identification of a full eruptive sequence. The findings suggest that eruptive activity at Azufral Volcano is largely explosive, experiencing long periods of quiescence, punctuated by short periods of pyroclastic activity and volcanic debris avalanches. Geomorphology of the dome complex is reinterpreted to better understand the sequence of dome growth. This reinterpretation, along with geochemical analysis and comparison via PCA, allows for reclassification of a major deposit, originally thought to be a juvenile block-and-ash flow, as a volcanic debris avalanche.

  8. Active explosion barrier performance against methane and coal dust explosions

    National Research Council Canada - National Science Library

    J. J. L. du Plessis


    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines...

  9. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves. (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E


    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  10. Multiwavelength modeling the SED of supersoft X-ray sources. II. RS Ophiuchi: From the explosion to the SSS phase (United States)

    Skopal, A.


    RS Oph is a recurrent symbiotic nova that undergoes nova-like outbursts on a time scale of 20 yr. Its two last eruptions (1985 and 2006) were subject of intensive multiwavelengths observational campaign from the X-rays to the radio. This contribution aims to determine physical parameters and the ionization structure of the nova from its explosion to the first emergence of the supersoft X-rays (day 26) by using the method of multiwavelength modeling the SED. From the very beginning of the eruption, the model SED revealed the presence of both a strong stellar and nebular component of radiation in the spectrum. During the first 4 days, the nova evinced a biconical ionization structure. The ∼8200 K warm and 160-200 R⊙ extended pseudophotosphere encompassed the white dwarf (WD) around its equator to the latitude > 40 ° . The remaining space around the WD's poles was ionized, producing a strong nebular continuum with the emission measure EM ∼ 2.3 ×1062 cm-3 via the fast wind from the WD. The luminosity of the burning WD was highly super-Eddington for the whole investigated period. The wind mass loss at rates of 10-4-10-5M⊙yr-1 and the presence of jets suggest an accretion throughout a disk at a high rate, which can help to sustain the super-Eddington luminosity of the accretor for a long time.

  11. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M


    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  12. Cell phone explosion. (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj


    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  13. Steam explosion studies review

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Kim, Hee Dong


    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  14. Geochemical evaluation of observed changes in volcanic activity during the 2007 eruption at Stromboli (Italy) (United States)

    Rizzo, A.; Grassa, F.; Inguaggiato, S.; Liotta, M.; Longo, M.; Madonia, P.; Brusca, L.; Capasso, G.; Morici, S.; Rouwet, D.; Vita, F.


    On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO 2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m - 2 d - 1 ) a few days before the paroxysm. Almost contemporarily, the δ13C CO 2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion ( δ13C CO 2 ~ - 1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO 2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/ 4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002-2003 eruption indicated that the 2007 eruption was less energetic.

  15. Observations of eruption clouds from Sakura-zima volcano, Kyushu, Japan, from Skylab 4

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, J.D.; Heiken, G.; Randerson, D.; McKay, D.S.


    Hasselblad and Nikon stereographic photographs taken from Skylab between 9 June 1973 and 1 February 1974 give synoptic plan views of several entire eruption clouds emanating from Sakura-zima volcano in Kagoshima Bay, Kyushu, Japan. Analytical plots of these stereographic pairs, studied in combination with meteorological data, indicate that the eruption clouds did not penetrate the tropopause and thus did not create a stratospheric dust veil of long residence time. A horizontal eddy diffusivity of the order of 10/sup 6/ cm/sup 2/ s/sup -1/ and a vertical eddy diffusivity of the order of 10/sup 5/ cm/sup 2/ s/sup -1/ were calculated from the observed plume dimensions and from available meteorological data. These observations are the first, direct evidence that explosive eruption at an estimated energy level of about 10/sup 18/ ergs per paroxysm may be too small under atmospheric conditions similar to those prevailing over Sakura-zima for volcanic effluents to penetrate low-level tropospheric temperature inversions and, consequently, the tropopause over northern middle latitudes. Maximum elevation of the volcanic clouds was determined to be 3.4 km. The cumulative thermal energy release in the rise of volcanic plumes for 385 observed explosive eruptions was estimated to be 10/sup 20/ to 10/sup 21/ ergs (10/sup 13/ to 10/sup 14/ J), but the entire thermal energy release associated with pyroclastic activity may be of the order of 2.5 x 10/sup 22/ ergs (2.5 x 10/sup 15/ J). Estimation of the kinetic energy component of explosive eruptions via satellite observation and meteorological consideration of eruption clouds is thus useful in volcanology as an alternative technique to confirm the kinetic energy estimates made by ground-based geological and geophysical methods, and to aid in construction of physical models of potential and historical tephra-fallout sectors with implications for volcano-hazard prediction.

  16. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło


    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  17. Historical Significant Volcanic Eruption Locations (United States)

    Department of Homeland Security — A significant eruption is classified as one that meets at least one of the following criteriacaused fatalities, caused moderate damage (approximately $1 million or...

  18. Effects of magma and conduit conditions on transitions between effusive and explosive activity: a numerical modeling approach (United States)

    Carr, B. B.; De'Michieli Vitturi, M.; Clarke, A. B.; Voight, B.


    Transitions between effusive and explosive eruptions, common at silicic volcanoes, can occur between distinct eruptive episodes or can occur as changes between effusive and explosive phases within a single episode. The precise causes of these transitions are difficult to determine due to the multitude of mechanisms and variables that can influence fragmentation thresholds. Numerical modeling of magma ascent within a volcanic conduit allows the influence of key variables to be extensively tested. We study the effect of different variables on the mass eruption rate at the vent using a conservative, 1-D, two-phase, steady-state model that allows for lateral gas loss at shallow depths. Several fragmentation criteria are also tested. We are able to generate a number of regime diagrams for a variety of magma and conduit conditions that constrain transitions from effusive to explosive episodes. We show that a transition to explosive activity can occur without changes in the bulk chemistry, crystal volume fraction, or gas mass fraction of the magma. Eruptive style can be controlled by the pressure gradient within the conduit caused by either overpressure in the chamber or varying lava dome size at the vent. Specific results are sensitive to both magma temperature and conduit geometry. It is important that these variables are well constrained when applying this model to different volcanic systems. We apply our model to the recent activity at Merapi Volcano in Indonesia. We constrain model input and output parameters using current petrologic, seismic, and geodetic studies of the Merapi system, and vary critical parameters over reasonable ranges as documented in the literature. Our model is able to reproduce eruption rates observed during both the 2006 effusive and 2010 explosive/effusive eruptions. Our modeling suggests that a combination of chamber overpressure, increased volatile content, and decreased crystal content due to the voluminous injection of new magma into the

  19. M31N 2008-12a - The Remarkable Recurrent Nova in M31: Panchromatic Observations of the 2015 Eruption. (United States)

    Darnley, M. J.; Henze, M.; Bode, M. F.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Ness, J.-U.; Osborne, J. P.; Page, K. L.; Ribeiro, V. A. R. M.; Rodríguez-Gil, P.; Shafter, A. W.; Shara, M. M.; Steele, I. A.; Williams, S. C.; Arai, A.; Arcavi, I.; Barsukova, E. A.; Boumis, P.; Chen, T.; Fabrika, S.; Figueira, J.; Gao, X.; Gehrels, N.; Godon, P.; Goranskij, V. P.; Harman, D. J.; Hartmann, D. H.; Hosseinzadeh, G.; Horst, J. Chuck; Itagaki, K.; José, J.; Kabashima, F.; Kaur, A.; Kawai, N.; Kennea, J. A.; Kiyota, S.; Kučáková, H.; Lau, K. M.; Maehara, H.; Naito, H.; Nakajima, K.; Nishiyama, K.; O'Brien, T. J.; Quimby, R.; Sala, G.; Sano, Y.; Sion, E. M.; Valeev, A. F.; Watanabe, F.; Watanabe, M.; Williams, B. F.; Xu, Z.


    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of {P}{rec}=351+/- 13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground- and space-based follow-up programs. In this paper we present the 2015 detection, visible to near-infrared photometry and visible spectroscopy, and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2 m (Hawaii) discovered the 2015 eruption, estimated to have commenced at August 28.28 ± 0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities ˜13,000 km s-1, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early supersoft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is {P}{rec}=174+/- 10 days, and we expect the next eruption of M31N 2008-12a to occur around 2016 mid-September.

  20. Eruption dynamics of the 22-23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits (United States)

    Romero, J. E.; Morgavi, D.; Arzilli, F.; Daga, R.; Caselli, A.; Reckziegel, F.; Viramonte, J.; Díaz-Alvarado, J.; Polacci, M.; Burton, M.; Perugini, D.


    After 54 years since its last major eruption in 1961, Calbuco Volcano (Ensenada, Southern Chile) reawakened with few hours of warning on 22 April 2015 at 18:05 local time. The main explosive eruption consisted of two eruption pulses (lasting 1.5 and 6 h each one) on 22 and 23 April, producing stratospheric (> 15 km height) eruption columns. The erupted materials correspond to porphyritic basaltic andesite ( 55 wt.% of SiO2). The tephra fall affected mainly the area northeast of the volcano and the finest ash was deposited over Southern Chile and Patagonia Argentina. We studied the tephra fall deposits of both pulses in terms of stratigraphy, distribution, volume, emplacement dynamics and eruption source parameters. Here, we show field observations that have been made 5-470 km downwind and distinguish five layers (Layers A, B, B1, C and D) representing different stages of the eruption evolution: eruption onset (Layer A; pulse 1), followed by the first paroxysmal event (Layer B; pulse 1), in some places interbedded by layer B1, tentatively representing the sedimentation of a secondary plume during the end of pulse 1. We recognized a second paroxysm (Layer C; pulse 2) followed by the waning of the eruption (Layer D; pulse 2). The total calculated bulk tephra fall deposit volume is 0.27 ± 0.007 km3 (0.11-0.13 km3 dense rock equivalent), 38% of which was erupted during the first phase and 62% during the second pulse. This eruption was a magnitude 4.45 event (VEI 4 eruption) of subPlinian type.

  1. Petrologic characteristics of the 1982 and pre-1982 eruptive products of El Chichon volcano, Chiapas, Mexico. (United States)

    McGee, J.J.; Tilling, R.I.; Duffield, W.A.


    Studies on a suite of rocks from this volcano indicate that the juvenile materials of the 1982 and pre-1982 eruptions of the volcano have essentially the same mineralogy and chemistry. Data suggest that chemical composition changed little over the 0.3 m.y. sample period. Modally, plagioclase is the dominant phenocryst, followed by amphibole, clinopyroxene and minor phases including anhydrite. Plagioclase phenocrysts show complex zoning: the anorthite-rich zones are probably the result of changing volatile P on the magma and may reflect the changes in the volcano's magma reservoir in response to repetitive, explosive eruptive activity.-R.E.S.

  2. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.


    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  3. Premature dental eruption: report of case.

    LENUS (Irish Health Repository)

    McNamara, C M


    This case report reviews the variability of dental eruption and the possible sequelae. Dental eruption of the permanent teeth in cleft palate children may be variable, with delayed eruption the most common phenomenon. A case of premature dental eruption of a maxillary left first premolar is demonstrated, however, in a five-year-old male. This localized premature dental eruption anomaly was attributed to early extraction of the primary dentition, due to caries.

  4. Rapid development of the great Millennium eruption of Changbaishan (Tianchi) Volcano, China/North Korea: Evidence from U-Th zircon dating (United States)

    Zou, Haibo; Fan, Qicheng; Zhang, Hongfu


    The Changbaishan (Tianchi) volcano extending across the border of northeast China and North Korea erupted ~ 100 km 3 peralkaline rhyolites around 1000 AD. This Millennium eruption of the Changbaishan volcano is one of the two largest explosive eruptions in the past 2000 years. Here we report the results of uranium-thorium dating of zircons from the Changbaishan volcanic rocks. Our data indicate that the rhyolitic magmas were stored in the crust for only 8.2 ± 1.2 ka prior to eruption. Based on titanium-in-zircon geothermometer and alkali feldspar-glass geothermometer, the rhyolitic magmas were formed at a relatively low temperature (~ 740 ± 40 °C). This storage time is very short compared with other large volume catastrophic silicic eruptions. This work demonstrates that peralkaline rhyolitic magmas from the Changbaishan volcano can develop into a catastrophic eruptive phase quite quickly.

  5. The impacts of the Öræfajökull eruption in AD 1362 and climate change on cultural landscape dynamics in the province of Öræfi south of Vatnajökull glacier, Iceland (United States)

    Sigurmundsson, F.; Gísladóttir, G.; Erlendsson, E.


    Environmental changes can be attributed to both natural processes and human influences. The aim of this study is to examine the effects of volcanism and climate change on the development of land quality and cultural landscapes in the province of Öræfi in the Austur-Skaftafellssýsla district, south of Vatnajökull glacier, over the last 1100 years. Few areas in Iceland are as vulnerable to climate changes and volcanic eruptions as the region south of Vatnajökull glacier. The region has been repeatedly affected by tephra fallout from explosive eruptions, most notably the Öræfajökull eruption in AD 1362. This research employs historical written sources to investigate changes in the cultural and natural landscape. Historical and palaeoenvironmental data will be accumulated and stored in a database designed for the research, allowing data to be analyzed and presented on maps. Preliminary results show that from the onset of the settlement in the late 9th century until AD 1362 Öræfi was a wealthy, densely populated farming society, with many large farm estates and large number of livestock (cattle and sheep) sustained by the natural vegetation. The farm estates were 40 by the mid 14th century and the churches were four. The first records of land ownership show that the Church had accumulated the most valuable holdings in Öræfi shortly before the Öræfajökull volcanic eruption in AD 1362. Out of the 40 farm estates 12 belonged to the Church and on a national scale the churches in Öræfi were richer in livestock, sacramentals and missals compared to churches in other parts of Iceland. The Öræfajökull volcanic eruption in AD 1362 had devastating long term impact on the settlement and terrestrial ecosystem in Öræfi. The area was abandoned following the eruption and in the early 15th century only eight out of the 40 farm estates prior to the eruption were settled. The values of the estates shrunk dramatically as did the arable land. The number of churches

  6. Conduit dynamics for Vulcanian explosions at Soufriere Hills Volcano, Montserrat, from strainmeter data (United States)

    Chardot, L.; Voight, B.; Stewart, R.; Linde, A. T.; Sacks, S. I.; Hidayat, D.; Fournier, N.


    The Soufrière Hills Volcano (SHV), Montserrat, has been erupting for over 14 years, with three semi-continuous periods of extrusion (~1-2 yr) separated by three long pauses. The third pause ended in late July 2008 but subsequent activity was discontinuous and comprised two short periods of extrusion with explosive activity. Vulcanian explosions at SHV in July and December 2008 and on 3 January 2009 were recorded on the CALIPSO array with Sacks-Evertson dilatometers. (The CALIPSO array contains specialized instruments in four strategically located ~200m-deep-boreholes installed to investigate the dynamics of the SHV magmatic system). The explosions resulted in clear, coherent strain-steps (amplitude range ca. ~2-140 nanostrain). We report here on observations of strainmeter and microbarometer data, which allow us to describe the evolution of conduit dynamics in the explosions. The strain data are corrected for air pressure effects, and compared to seismic observations, plume heights to >12 km, and mass erupted, in order to constrain conduit pressure, and the dynamics of the events. The explosions share many similarities and strain data for these explosions are (mainly) characterized by contractive dilatation offset at all sites, from 5.4 to 9.6 km from the crater. Barometer data show the influence of atmospheric pressure changes on the dilatometer strains and yield further information on eruption dynamics. The strain steps are correlated with explosion plume height and mass erupted and may be useful for rapid assessment of aviation hazards from airborne ash. The CALIPSO instrument network is supported by NSF.

  7. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement (United States)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald


    Galileo data and numerical modeling were used to investigate the summer 1977 eruption at Pillan Patera on Io. This event, now defined as "Pillanian" eruption style, included a high-temperature (greater than 1600 C), possible ultrabasic , 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52 - 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a wide-spread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that this surface may have resulted from: 1. A fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement. 2. Disruption of the lava flow by explosive interaction with a volatile-rich substrate. or 3. A combination of 1 and 2 with or without accumulation of pyroclastic material on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distant part of the flow field.Shadow measurements at flow margins indicate a thickness of-8 - 10 m. We have modeled the emplacement of putative ultrabasic flow from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50 - 150 km on a flat, unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 4.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2 - 7 x 10(exp 3)cu m/s, which is greater

  8. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    Directory of Open Access Journals (Sweden)

    Yan eLavallée


    Full Text Available Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1 fragment during ascent, 2 liquefy and relax during deposition, agglutination and welding (sintering, and 3 quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.

  9. Erratum: Correction to: Magnitude-frequency distribution of volcanic explosion earthquakes (United States)

    Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Mohammad; Aoyama, Hiroshi; Yamada, Taishi; Ripepe, Maurizio; Genco, Riccardo


    Magnitude-frequency distributions of volcanic explosion earthquakes that are associated with occurrences of vulcanian and strombolian eruptions, or gas burst activity, are examined at six active volcanoes. The magnitude-frequency distribution at Suwanosejima volcano, Japan, shows a power-law distribution

  10. Chemical explosive stimulation

    Energy Technology Data Exchange (ETDEWEB)

    LaRocca, S.J.; McLamore, R.T.; Spencer, A.M. Jr.


    A safe, reliable chemical explosive fracturing process has been demonstrated and prototype equipment for its use has been successfully field tested.Called the Astro-Flow II process, it utilizes a highly energetic, hydrazine-based family of liquid explosives known as Astrolite. A unique property of these explosives is that they can be divided into 2 nonexplosive pumpable components that can be handled safely. The 2 components are pumped independently and simultaneously into the well and blended together downhole to form the explosive which is circulated in place or displaced into formation fractures. Explosive hazards to surface equipment and personnel are eliminated. Extensive testing of the physical and chemical stability of the mixed explosive indicates that the material can be reliable and safely used at elevated temperatures, pressures, and in the adverse chemical environment often found in deep oil and gas wells. These tests of prototype equipment proved that the 2 components could be independently pumped with precision and blended together to form the desired explosive formulation. How the process works is described.

  11. Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics

    NARCIS (Netherlands)

    Fontijn, K.; Elburg, M.A.; Nikogosian, I.K.|info:eu-repo/dai/nl/323258255; van Bergen, M.J.|info:eu-repo/dai/nl/07009277X; Ernst, G.G.J.


    Rungwe in southern Tanzania is an active volcanic centre in the East African Rift System, characterised by Plinian-style explosive eruptions of metaluminous to slightly peralkaline trachytic silica-undersaturated magmas during its late Holocene history. Variations in whole-rock major and trace



    KOYUNCU, Hülya


    Explosives are used on a large scale byboth the military and by various civilian industries (e.g. mining, high-energymetalwork, and civil engineering). Explosives utilization contributes to the high environmentalcontamination. TNT(2,4,6-trinitrotoluene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are found mainly in soils and surface waters; there havealso been cases of groundwater contamination. Most explosives are stable du...

  13. Dental eruption in afrotherian mammals

    Directory of Open Access Journals (Sweden)

    Lehmann Thomas


    Full Text Available Abstract Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy recall the phenotype of a human genetic pathology (cleidocranial dysplasia, correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles or two-thirds (tenrecs, hyraxes of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs, elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption

  14. Exploring the explosive-effusive transition using permanent ultraviolet cameras (United States)

    Delle Donne, D.; Tamburello, G.; Aiuppa, A.; Bitetto, M.; Lacanna, G.; D'Aleo, R.; Ripepe, M.


    Understanding the mechanisms that cause effusive eruptions is the key to mitigating their associated hazard. Here we combine results from permanent ultraviolet (UV) cameras, and from other geophysical observations (seismic very long period, thermal, and infrasonic activity), to characterize volcanic SO2 flux regime in the period prior, during, and after Stromboli's August-November 2014 effusive eruption. We show that, in the 2 months prior to effusion onset, the SO2 flux levels are 2 times average level. We explain this anomalously high SO2 regime as primarily determined by venting of rapidly rising, pressurized SO2-rich gas pockets produced by strombolian explosions being more frequent and intense than usual. We develop a procedure to track (and count), in the UV camera record, the SO2 flux pulses produced by individual explosions and puffing activity (active degassing). We find that these SO2 pulses are far more numerous (67 ± 47 events per hour) before the effusion onset than during normal activity (20 ± 15 events per hour). This observation, combined with geophysical evidence, demonstrates an elevated gas bubble supply to the shallow conduits, causing elevated explosive and puffing activity. This increase (≥0.1 m3 s-1) in magma transport rate in the north-east feeding conduits finally triggers effusion onset. Active degassing remains elevated also during the effusive phase, supporting the persistence of explosive and puffing activity during the effusive eruption, deep in the volcanic conduit. Our results demonstrate that permanent UV cameras can valuably contribute to monitoring at high-sampling frequency gas dynamics and fluxes, thus opening the way to direct comparison with more established geophysical observations.

  15. Selective environmental stress from sulphur emitted by continental flood basalt eruptions (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken


    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  16. Aging of civil explosives (Poster)

    NARCIS (Netherlands)

    Krabbendam-La Haye, E.L.M.; Klerk, W.P.C. de; Hoen, C. 't; Krämer, R.E.


    For the Dutch MoD and police, TNO composed sets with different kinds of civil explosives to train their detection dogs. The manufacturer of these explosives guarantees several years of stability of these explosives. These sets of explosives are used under different conditions, like temperature and

  17. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala (United States)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.


    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  18. Shock waves & explosions

    CERN Document Server

    Sachdev, PL


    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  19. Explosive Components Facility (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  20. Intermittent Explosive Disorder (United States)

    ... Headache Intermittent explosive disorder Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  1. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R


    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  2. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka


    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  3. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam


    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  4. Modeling nuclear explosion (United States)

    Redd, Jeremy; Panin, Alexander


    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  5. Explosion suppression system (United States)

    Sapko, Michael J.; Cortese, Robert A.


    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  6. Polymeric binder for explosives (United States)

    Bissell, E. R.


    Chemical reaction for producing a polymer which can be mixed with explosives to produce a rigid material is discussed. Physical and chemical properties of polymers are described and chemical structure of the polymer is illustrated.

  7. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014 (United States)

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup


    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  8. Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Directory of Open Access Journals (Sweden)

    Feifei Qu


    Full Text Available Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July–August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48–130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the six years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  9. A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska (United States)

    Moran, S. C.; Stihler, S. D.; Power, J. A.


    On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of 0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock, indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.

  10. Satellite thermal monitoring of the 2010 - 2013 eruption of Kizimen volcano (Kamchatka) using MIROVA hot-spot detection system (United States)

    Massimetti, Francesco; Coppola, Diego; Laiolo, Marco; Cigolini, Corrado


    After 81 years of rest, the Holocenic stratovolcano of Kizimen (Kamchatka, Russia) began a new eruptive phase on December 2010. The eruption was preceded by a year-long seismic unrest and fumarole activity, and persisted for 3 years showing a transition from explosive to effusive style. The initial explosive phase caused the partial disruption of the volcano summit and was followed by the effusion of andesitic lava flow along the eastern side of the edifice. Here we used an automatic hot-spot detection system named MIROVA (Middle InfraRed Observation of Volcanic Activity), in order to track the thermal evolution of the eruption and to understand the eruptive dynamic. MIROVA is based on the analysis IR images acquired by the MODIS sensor (Moderate Resolution Imaging Spectroradiometer) and is able to provide thermal maps (1 km resolution) and Volcanic Radiative Power (VRP, in Watt) time series in near real time (1-4 hours from satellite overpass). Each image with a thermal alert has been classified, distinguishing different quality level of the data based on cloud cover, viewing geometry and coherence with the VRP trend. The analysis of VRP variation show different thermal phases that have been correlated with independent observations of KVERT (Kamchatka Volcanic Eruption Response Team). Finally, we show that the relation between total thermal energy radiated (VRE, in Joule) and erupted lava volume is consistent with the typical radiant density of an intermediate-silicic lava flow (Coppola et al., 2013).

  11. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes (United States)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter


    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  12. Automated detection of solar eruptions

    Directory of Open Access Journals (Sweden)

    Hurlburt N.


    Full Text Available Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs. Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP: a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA. We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.

  13. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano (United States)

    Hotovec, Alicia J.; Prejean, Stephanie G.; Vidale, John E.; Gomberg, Joan S.


    During the 2009 eruption of Redoubt Volcano, Alaska, gliding harmonic tremor occurred prominently before six nearly consecutive explosions during the second half of the eruptive sequence. The fundamental frequency repeatedly glided upward from harmonic tremor is not uncommon at volcanoes, tremor at such high frequencies is a rare observation. These frequencies approach or exceed the plausible upper limits of many models that have been suggested for volcanic tremor. We also analyzed the behavior of a swarm of repeating earthquakes that immediately preceded the first instance of pre-explosion gliding harmonic tremor. We find that these earthquakes share several traits with upward gliding harmonic tremor, and favor the explanation that the gliding harmonic tremor at Redoubt Volcano is created by the superposition of increasingly frequent and regular, repeating stick–slip earthquakes through the Dirac comb effect.

  14. Bromo volcano area as human-environment system: interaction of volcanic eruption, local knowledge, risk perception and adaptation strategy (United States)

    Bachri, Syamsul; Stötter, Johann; Sartohadi, Junun


    People in the Bromo area (located within Tengger Caldera) have learn to live with the threat of volcanic hazard since this volcano is categorized as an active volcano in Indonesia. During 2010, the eruption intensity increased yielding heavy ash fall and glowing rock fragments. A significant risk is also presented by mass movement which reaches areas up to 25 km from the crater. As a result of the 2010 eruption, 12 houses were destroyed, 25 houses collapsed and there were severe also effects on agriculture and the livestock sector. This paper focuses on understanding the interaction of Bromo volcanic eruption processes and their social responses. The specific aims are to 1) identify the 2010 eruption of Bromo 2) examine the human-volcano relationship within Bromo area in general, and 3) investigate the local knowledge related to hazard, risk perception and their adaptation strategies in specific. In-depth interviews with 33 informants from four districts nearest to the crater included local people and authorities were carried out. The survey focused on farmers, key persons (dukun), students and teachers in order to understand how people respond to Bromo eruption. The results show that the eruption in 2010 was unusual as it took continued for nine months, the longest period in Bromo history. The type of eruption was phreatomagmatic producing material dominated by ash to fine sand. This kind of sediment typically belongs to Tengger mountain eruptions which had produced vast explosions in the past. Furthermore, two years after the eruption, the interviewed people explained that local knowledge and their experiences with volcanic activity do not influence their risk perception. Dealing with this eruption, people in the Bromo area applied 'lumbung desa' (traditional saving systems) and mutual aid activity for surviving the volcanic eruption. Keywords: Human-environment system, local knowledge, risk perception, adaptation strategies, Bromo Volcano Indonesia

  15. Eruption dynamics and tephra dispersal from the 24 November 2006 paroxysm at South-East Crater, Mt Etna, Italy (United States)

    Andronico, Daniele; Scollo, Simona; Lo Castro, Maria Deborah; Cristaldi, Antonio; Lodato, Luigi; Taddeucci, Jacopo


    Between 30 August and 15 December 2006, Mt Etna, Italy, underwent both effusive and explosive activity which took place from the South-East Crater, one of its summit craters. Several paroxysmal episodes followed in succession, separated by a few days of minor activity and characterised by dissimilar explosive style and intensity. Here, we report one of the most studied and powerful episodes, which started early in the morning on 24 November 2006 and lasted about 13 h. Excellent weather conditions enabled reconstructing in detail the onset and evolution of the eruptive phenomena both by live-camera recordings and direct observations. The explosive activity consisted of powerful Strombolian activity alternating with short periods of lava fountains. A weak volcanic plume rose up to ~ 2 km above the volcanic vent, followed by tephra fallout which covered the SE and S flanks of Etna. Campaigns allowed collecting about 40 tephra samples and mapping the fallout deposit. The clockwise shifting of the volcanic plume during the eruption caused the different timing of the fallout on the ground, thus widening the dispersal area. Voronoi's method was used to evaluate: i) the total grain-size distribution, indicating that the fallout deposit peaked at 1 ϕ, and, for the first time at Etna, ii) the total componentry distribution, finding that most of the particles were lithics, with a low proportion of juvenile vs. lithics (34:65). The total erupted mass was estimated ~ 1.9 × 108 kg, corresponding to a mass eruption rate of ~ 5 × 103 kg s- 1. Physical parameters and textural features of the erupted products suggest that the 24 November 2006 explosive event may be classified as small-sized in the recent history of Etna, and that the eruptive dynamic was mainly governed by magma/gas decoupling, which produced relatively fine-grained fallout deposits containing unusual elongated sideromelane ash particles.

  16. Postglacial eruptive history of Laguna del Maule volcanic field in Chile, from fallout stratigraphy in Argentina (United States)

    Fierstein, J.; Sruoga, P.; Amigo, A.; Elissondo, M.; Rosas, M.


    The Laguna del Maule (LdM) volcanic field, which surrounds the 54-km2 lake of that name, covers ~500 km2 of rugged glaciated terrain with Quaternary lavas and tuffs that extend for 40 km westward from the Argentine frontier and 30 km N-S from the Rio Campanario to Laguna Fea in the Southern Volcanic Zone of Chile. Geologic mapping (Hildreth et al., 2010) shows that at least 130 separate vents are part of the LdM field, from which >350 km3 of products have erupted since 1.5 Ma. These include a ring of 36 postglacial rhyolite and rhyodacite coulees and domes that erupted from 24 separate vents and encircle the lake, suggesting a continued large magma reservoir. Because the units are young, glassy, and do not overlap, only a few ages had been determined and the sequence of most of the postglacial eruptions had not previously been established. However, most of these postglacial silicic eruptions were accompanied by explosive eruptions of pumice and ash. Recent investigations downwind in Argentina are combining stratigraphy, grain-size analysis, chemistry, and radiocarbon dating to correlate the tephra with eruptive units mapped in Chile, assess fallout distribution, and establish a time-stratigraphic framework for the postglacial eruptions at Laguna del Maule. Two austral summer field seasons with a tri-country collaboration among the geological surveys of the U.S., Chile, and Argentina, have now established that a wide area east of the volcanic field was blanketed by at least 3 large explosive eruptions from LdM sources, and by at least 3 more modest, but still significant, eruptions. In addition, an ignimbrite from the LdM Barrancas vent complex on the border in the SE corner of the lake traveled at least 15 km from source and now makes up a pyroclastic mesa that is at least 40 m thick. This ignimbrite (72-75% SiO2) preceded a series of fall deposits that are correlated with eruption of several lava flows that built the Barrancas complex. Recent 14C dates suggest

  17. Generalized Eruptive Syringoma: Case Report

    Directory of Open Access Journals (Sweden)

    Bengü Çevirgen Cemil


    Full Text Available Syringomas are benign adnexal tumors of eccrine sweat glands. Clinically, they present as small skin-colored or slightly pigmented papules. Depending of the location, eyelid syringoma is the most frequent and those localized on the other areas, such as the genital region, scalp, and acral areas. Onset of the syringomas is usually before or during the peripubertal period. From Kaposi’s description in the nineteenth century the eruptive form is very rare. Friedman and Butler reported a classification, based on the clinical features. These are a localized form, a familial form, a form associated with Down’s syndrome, and a generalized form that encompasses multiple and eruptive syringoma. The lesions are benign and may spontaneously resolve, or, more commonly, remain stable. Benign disease is generally treated cosmetically. In the present case, we have described a rare form of syringoma which is generalized eruptive syringoma.

  18. A numerical code of explosive conduit flows constrained by large-scale experiments (United States)

    Dioguardi, Fabio; de Lorenzo, Salvatore; Dellino, Pierfrancesco


    Conduit exit conditions during explosive eruptions play a major role in determining the rate and style of the eruptive column. The main parameter characterizing the eruptive mixture at conduit exit is mass eruption rate (MER), which is the product of velocity, density and conduit section area. This was perceived by the first researchers, who constructed theoretical model on the dynamics of explosive eruptions (Wilson et al., 1980; Woods, 1988; Bursik and Woods, 1991). Numerical modelling also helped scientists in the understanding of the complex dynamics of this kind of eruptions (Macedonio et al., 2005; Neri et al., 1998; Papale, 2001; Papale et al., 1998). Finally, the first large scale experiments on the mechanics of eruptive columns and pyroclastic flows (Dellino et al., 2007) allowed the development of an empirical model for the prediction of exit velocity of eruptive mixtures and the conditions of existence of the main eruptive styles (Dellino et al., 2009). Since the experiments were successfully scaled to real eruptions, we implemented a numerical model that reproduces the main quantities measured in the experiments, with the aim of eventually extending the model to the natural case. This would be the first time that a numerical model on the mechanics of explosive eruptions is validated against large-scale experiments. A steady 1-D two phase numerical model of the conduit flow is presented here. In this model the equations of conservation of mass and momentum for gas and volcanic particles are solved via a Runge-Kutta method with an adaptive stepsize. The numerical model is implemented in a code written in Fortran 77 language. The use of an adaptive stepsize control over the Runge-Kutta method allows the achievement of a predetermined accuracy (in this case of the order of 10-5) with minimum computational effort. All the conditions of the experimental runs are implemented and the velocity field is initialized using the empirical model for mixture velocity

  19. Satellite observations of a surtseyan eruption: Hunga Ha'apai, Tonga (United States)

    Vaughan, R.G.; Webley, P.W.


    On March 17, 2009, a surtseyan eruption occurred around Hunga Ha'apai Island, Tonga. A series of observations from the high-spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and the high-temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS), was used to estimate the magnitude, location, start time, and duration of the eruption, and measure the evolving characteristics of the new Hunga Ha'apai Island. The eruption start time was estimated to be between 01:50 and 11:10 local time, on March 17, 2009 (i.e., between 12:50 and 22:10UTC, March 16). The initial explosive phase lasted 3-5days and consisted of multiple steam and tephra explosions from two distinct vent sources, one on the northwest side, and another about 100m off the south shore of the pre-existing island. The eruption plume reached 4.0 to 7.6km altitude above sea level, and tephra added new land around each of the vents, initially tripling the area of the pre-existing island. The next phase of steaming from newly formed crater lakes around the vents lasted a few days. Three warm crater lakes formed initially, but disappeared with time as the shoreline eroded. After ~2months, vegetation that was initially buried by tephra was recovering; after ~10months, the size of the island had eroded down to ~twice that of the pre-existing island, and the one remaining crater lake had a temperature of ~68??17??C. The volume of erupted material was estimated to be ~0.0176km3 and the volcanic explosivity index (VEI) was estimated to be VEI=2. ?? 2010.

  20. Failed Filament Eruption Inside a Coronal Mass Ejection in Active Region 11121 (Postprint) (United States)


    2003, ApJ, 592, 597 Moore, R. L., & LaBonte, B. J. 1980, in Solar and Interplanetary Dynamics, eds. M. Dryer , & E. Tandberg-Hanssen (Dordrecht...Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 3 Air Force Research Laboratory, Solar and Solar Disturbances, Sunspot...prominences – Sun: coronal mass ejections (CMEs) 1. Introduction Solar eruptions are explosive ejections of large amounts of plasma from the lower

  1. the eruption of vesuvius in ad 79 and the death of gaius plinius ...

    African Journals Online (AJOL)

    geological worry of Europe because of its potential explosivity: c. 1,5 million people live in the vicinity of the mountain. ... Bisel compares the eruption of Vesuvius in AD 79 with that of Mt. St. Helens, a similar but smaller volcano in the U.S.A. ... 6.20.16, own translation). The younger Pliny who did not accompany his uncle but ...

  2. The eruption of the Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics (United States)

    Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Adabbo, Mariarosaria


    The Breccia Museo Member (BMM) was formed by an explosive eruption that occurred in the SW sector of Campi Flegrei about 20 ka ago. The eruptive sequence consists of the Lower Pumice Flow Unit and the overlying Upper Pumice Flow Unit with its associated lithic Breccia Unit. Interlayered with the Breccia Unit is a welded deposit that mainly consists of spatter clasts (Spatter Unit). The products of this eruption range in composition from trachytic to trachyphonolitic with K 2O decreasing from 9.5 to 7 wt.%; Na 2O correspondingly increases from 2.6 to 7.2 wt.% with increasing differentiation (Nb from 23 to 122 ppm). The phenocrysts are mostly sanidine (Or 88-63) with subordinate plagioclase (An 33-27), clinopyroxene (Ca 47Mg 44Fe 9 to Ca 46Mg 35Fe 19), biotite, titanomagnetite, and apatite. The observed major- and trace-element variations are fully consistent with about 80% fractional crystallization of a sanidine-dominated assemblage starting from the least differentiated trachytes. The compositions of the erupted products are compatible with the progressive tapping of a shallow magma chamber that was thermally and chemically zoned. The incompatible trace elements indicate a slightly different magma composition with respect to trachytes of the Campi Flegrei mainland. The geochemical stratigraphy suggests that after an early eruptive phase during which the upper, most differentiated level of the magma chamber was tapped, the sudden collapse of the roof of the reservoir triggered drainage of the remaining magma, which ranged in composition from trachyte to trachyphonolite, and formed the Breccia Unit and the Upper Pumice Flow Unit. The strongly differentiated trachyphonolite composition of the spatter clasts also suggests that they likely originated from the uppermost part of the reservoir soon after the eruption of Lower Pumice Flow Unit and the collapse of the chamber roof. This is in agreement with the eruptive model proposed by Perrotta and Scarpati (1994).

  3. Widespread bullous fixed drug eruption. (United States)

    Patell, Rushad D; Dosi, Rupal V; Shah, Purav C; Joshi, Harshal S


    A 53-year-old man developed a widespread erythematous eruption which rapidly evolved into fluid-filled bulla mostly involving the distal areas of all four limbs and erosions on the oral as well as anogenital mucosa. Based on clinical presentation, chronology of drug exposure, past events and histopathology as diagnosis of widespread bullous fixed drug eruption was made over Steven Johnson-toxic epidermal necrolysis syndrome. Steroids were deferred and the lesions healed with minimal pigmentation within a week. Differentiating between the two entities has been historically difficult, and yet can have significant therapeutic and prognostic implications.

  4. El Chichón's "surprise" eruption in 1982: lessons for reducing volcano risk (United States)

    Tilling, R.I.


    During one week (28 March–4 April 1982), three powerful explosive eruptions (VEI 5) of El Chichón Volcano caused the worst volcanic disaster in Mexico's recorded history. Pyroclastic flows and surges obliterated nine villages, killing about 2,000 people, and ashfalls downwind posed socio–economic hardships for many thousands of inhabitants of the States of Chiapas and Tabasco. The unexpected and vigorous eruption of 28 caused a hasty, confused evacuation of most villagers in the area. Activity was greatly diminished the next five days, and then the most powerful and lethal eruptions occurred 3–4 April—tragically, after many evacuees were allowed by authorities to return home.

  5. Post-200-ka Pyroclastic Eruptions of the Yellowstone Plateau (United States)

    Morgan, L. A.; Shanks, W. C.


    deposits provide additional evidence that multiple pyroclastic flow events may be involved in the evolution of the West Thumb caldera. The tuff of Bluff Point and similar post-Yellowstone pyroclastic deposits represent a type of potential hazard associated with small-scale rhyolitic volcanism in Yellowstone. As noted by Christiansen and others (2007) [Preliminary Assessment of Volcanic and Hydrothermal Hazards in Yellowstone National Park and Vicinity, U.S. Geological Survey Open-File Report 2007-1071], a future rhyolitic eruption in Yellowstone next to or within a large body of water, such as Yellowstone Lake, increases the potential to produce an explosive pyroclastic eruption and a small caldera. Whereas the younger pyroclastic eruptions are much smaller than the major caldera-forming event that produced the Yellowstone Caldera, knowing the details of the youngest pyroclastic stratigraphy is critical in assessing the potential hazard of these smaller yet significant events.

  6. Reconstructing the Lethal Part of the 1790 Eruption at Kilauea (United States)

    Swanson, D.; Weaver, S. J.; Houghton, B. F.


    The most lethal known eruption from a volcano in the United States took place in November 1790 at Kilauea, killing perhaps 400-800 people (estimates range widely) who were crossing the summit on their way to a distant battle site. The eruption culminated ca. 300 years of sporadic explosive activity after the formation of Kilauea Caldera in about 1500. No contemporary account exists of the 1790 activity, but an eruption plume was observed from Kawaihae, 100 km NW of Kilauea, that probably was 10 km or higher. We are attempting to piece together the lethal event from a study of the 1790 and enclosing deposits and by using published accounts, written several decades later, based on interviews with survivors or others with knowledge of the tragedy. Determining what deposits actually formed in November 1790 is crucial. The best tie to that date is a deposit of phreatomagmatic lithic lapilli and ash that occurs SE of the caldera and must have been advected by high-level (>~10 km) westerly winds rather than low-level NE trade winds. It is the only contender for deposits from the high column observed in 1790. Small lapilli from the high column fell onto, and sank deeply into, a 3-5-cm-thick accretionary lapilli layer that was wet and likely no more than a few hours old. The wet ash occurs south of the caldera, where the lithic lapilli fell into it, and is also found west of the caldera in the saddle between Kilauea and Mauna Loa, where the victims were probably walking along a main foot trail still visible today. A lithic pyroclastic surge swept across the saddle, locally scouring away the wet accretionary lapilli layer but generally leaving a deposit think we have identified the lethal surge of the eruption, and it is sobering to realize that it overwhelmed the place where this abstract is being written 221 years later.

  7. Our Explosive Sun (United States)

    Brown, D. S.


    The Sun's atmosphere is a highly structured but dynamic place, dominated by the solar magnetic field. Hot charged gas (plasma) is trapped on lines of magnetic force that can snap like an elastic band, propelling giant clouds of material out into space. A range of ground-based and space-based solar telescopes observe these eruptions, particularly…

  8. The first five years of Kīlauea’s summit eruption in Halema‘uma‘u Crater, 2008–2013 (United States)

    Patrick, Matthew R.; Orr, Tim R.; Sutton, A.J.; Elias, Tamar; Swanson, Donald A.


    The eruption in Halema‘uma‘u Crater that began in March 2008 is the longest summit eruption of Kīlauea Volcano, on the Island of Hawai‘i, since 1924. From the time the eruption began, the new "Overlook crater" inside Halema‘uma‘u has exhibited fluctuating lava lake activity, occasional small explosive events, and a persistent gas plume. The beautiful nighttime glow impresses and thrills visitors in Hawai‘i Volcanoes National Park, but the continuous emission of sulfur dioxide gas produces "vog" (volcanic smog) that can severely affect communities and local agriculture downwind. U.S. Geological Survey scientists continue to closely monitor the eruption and assess ongoing hazards.

  9. New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria (United States)

    Lowenstern, Jacob B.; Mahood, Gail A.


    Infrared spectroscopic analyses of melt inclusions in quartz phenocrysts from pantellerites erupted at Pantelleria, Italy, show that the magmas contained moderate pre-eruptive H2O contents, ranging from 1.4 to 2.1 wt.%. Melt H2O concentrations increase linearly with incompatible elements, demonstrating that H2O contents were not buffered significantly during fractionation by any crystalline or vapor phase. The relatively low H2O contents of pantellerites are consistent with an origin by partial melting of alkali gabbros rather than fractional crystallization of basalt. Preeruptive H2O concentrations do not correlate with the volume or explosivity of pantellerite eruptions; decompression history is critical in determining the style of pantellerite (and other) eruptions.

  10. On the use of remote infrasound and seismic stations to constrain eruptive sequences (United States)

    Caudron, C.; Taisne, B.; Garces, M. A.


    The Kelud eruption was one of the strongest volcanic eruption of the decade. The eruption occurred on the 13th of February 2014 and ejected volcanic ash up to 20 km of altitude. The eruption also destroyed most of the instruments deployed in the near field. Therefore, not much information could be unraveled from the local volcano monitoring system. An explosion was clearly captured at many infrasound stations of the IMS network (and in Singapore), making it one of the biggest volcanic events recorded by the network. The high intensity, deep frequency, and infrasonic detection range of >10,000 km is characteristic of an eruptive column that injects ash into aircraft cruising altitudes and is an evident threat to aviation. The explosion signal was particularly rich in very long periods (~ 200s) and could be resolved as two distinct pulses at some sites. Interestingly, many broadband seismic instruments also recorded this event as far as 5000 kilometers. By inspecting the seismic data of the instruments located closer to the edifice (~ 150 km), we could clearly distinguish two different pulses separated by 17 minutes, followed by the arrival of very low frequencies (thanks to the coupling between ground and atmosphere). One pulse vs two pulses might have strong implications for the subsequent ash modelling. Due to the violence of the events, 4 stations out of 5 were destructed and the remaining one was saturated. This illustrates that data streams from broadband seismometers and infrasound sensors located at safe distances are extremely useful for deciphering the dynamic of the eruption and its implication in term of local, regional and global impact.

  11. Multiple Eruptive Phases and Deposits of a Monogenetic Volcano: Tabernacle Hill Volcano, Utah, USA (United States)

    Hintz, A.; Connor, C. B.


    Tabernacle Hill volcano, located near the eastern edge of North America's great basin, is one of a group of monogenetic small-volume (0.47 km3) basaltic volcanoes forming a long-lived (~ 1 Ma) north-south trending alignment in Utah's Black Rock Desert. Initial phreatomagmatic eruptions at Tabernacle Hill are reported to have begun 14,320 ± 90 years ago. The initial eruptive phase produced a tuff cone approximately 80 m high (1,511 m a.s.l.) and 1.5 km in diameter with distinct bedding layers. Recent mapping and sampling of Tabernacle Hill's lava and tuff cone deposits has been aimed at better constraining the sequence of events, physical volcanology, rheology, and geochemistry of this eruption. Blocks located on the rim of the tuff cone of mid-crustal and near-surface origin were mapped and analyzed to yield preliminary minimum muzzle velocities of 70-100 m/s. After the initial phreatomagmatic explosions, the eruption style transitioned to a more effusive phase that partially filled the tuff cone with a semi-steady state lava lake 200 m wide and 15 m deep. Eventually, the tuff cone was breached by the impinging lava resulting in large portions of the cone rafting on top of the lava flows away from the vent. Eruption onto the Lake Bonneville lake bed allowed the Tabernacle Hill lava flows to flow radially from the tuff cone and cover an area of 18.1 km2, producing a very uniform high aspect ratio (100:1) flow field. Tabernacle Hill lava flows are pâhoehoe flows with many large phenocrysts of olivine and plagioclase (>1 cm) and have an average thickness of 26.3 m. Subsequent eruptive phases cycled several times between effusive and explosive, producing scoria cones and more lava flows, culminating in an almost complete drainage of the lava lake through large lava tubes and drainback.

  12. Explosive Activity at Tungurahua Volcano: Analysis of Seismic and Infrasonic Data from 2006 - 2011 (United States)

    Steele, A. L.; Ruiz, M. C.; Lyons, J. J.


    Tungurahua is an active, steep-sided andesitic stratovolcano, located in central Ecuador. Historic eruptions are characterized by strong explosions, lava and pyroclastic flows, lahars and tephra fallout. After 75 years of quiescence, a renewed phase of explosive activity began in October 1999. Since, Tungurahua has experienced a series of eruptive cycles, with almost continuous activity separated by only short periods (months) of repose. We apply several statistical techniques to a continuous catalog of over 4500 volcanic explosions, recorded between July 2006 and May 2011. Reduced amplitudes and energies are calculated for each event using four collocated broadband seismic and infrasound sensors. An initial time series analysis isolates 8 phases of activity: Jul-Aug 2006, Feb-Apr 2007, Jul 2007-Feb 2008, Mar 2008-Jun 2009, Jan-Mar 2010, May-Jul 2010, Nov-Dec 2010 and Apr-May 2011. Small temporal changes in the volcanic eruption mechanism across successive episodes are identified by a lack of dependency in event rate auto-correlation and a continuous fluctuation in the proxy b-value of moving-window, frequency-amplitude distributions. We highlight the May-July 2010 episode because it is statistically distinct from the other periods of explosive activity. Peak explosion event rate during this time is approximately six times that of any other episode across the observation period (max ~ 242 events; 31 May 2010), while cumulative daily seismo-acoustic explosion energies are at least an order of magnitude greater. The coefficient of variation (Cv = σ/μ, where; σ is the standard deviation; and μ is the mean repose time of explosions) is used to show a strong clustering of events with time (episodes 1-5 & 7-8 = Cv ~ 2-5) and not representative of a Poisson controlled process. A Cv ~ 13.7 in May-July 2010 (episode 6) further highlights the anomalous nature of activity during this period. The volcano acoustic-seismic ratio (VASR, or η), the ratio of elastic energy

  13. Merapi 2010 eruption—Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting (United States)

    Pallister, John S.; Schneider, David; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius


    Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October–7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October–1 November, then by a period of rapid dome growth on 1–4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4–5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4–5 November and high rates of dome growth (> 25 m3 s− 1). An event tree

  14. Burial of Emperor Augustus' villa at Somma Vesuviana (Italy) by post-79 AD Vesuvius eruptions and reworked (lahars and stream flow) deposits (United States)

    Perrotta, Annamaria; Scarpati, Claudio; Luongo, Giuseppe; Aoyagi, Masanori


    A new archaeological site of Roman Age has been recently found engulfed in the products of Vesuvius activity at Somma Vesuviana, on the northern flank of the Somma-Vesuvius, 5 km from the vent. A 9 m deep, 30 by 35 m trench has revealed a monumental edifice tentatively attributed to the Emperor Augustus. Different than Pompeii and Herculaneum sites which were completely buried in the catastrophic eruption of 79 AD, this huge roman villa survived the effects of the 79 AD plinian eruption as suggested by stratigraphic and geochronologic data. It was later completely engulfed in the products of numerous explosive volcanic eruptions ranging from 472 AD to 1631 AD, which were separated by reworked material and paleosols. The exposed burial sequence is comprised of seven stratigraphic units. Four units are composed exclusively of pyroclastic products each emplaced during a unique explosive event. Two units are composed of volcaniclastic material (stream flow and lahars) emplaced during quiescent periods of the volcano. Finally, one unit is composed of both pyroclastic and volcaniclastic deposits. One of the more relevant volcanological results of this study is the detailed reconstruction of the destructive events that buried the Emperor Augustus' villa. Stratigraphic evidence shows the absence of any deposit associated with the 79 AD eruption at this site and that the building was extensively damaged (sacked) before it was engulfed by the products of subsequent volcanic eruptions and lahars. The products of the 472 AD eruption lie directly on the roman structures. They consist of scoria fall layers intercalated with massive and stratified pyroclastic density current deposits that caused limited damage to the structure. The impact on the building of penecontemporaneous lahars was more important; these caused the collapse of some structures. The remaining part of the building was subsequently entombed by the products of explosive eruptions (e.g. 512/536 eruption, 1631

  15. Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador) in February 2014: pyroclastic deposits and hazard considerations (United States)

    Romero, Jorge Eduardo; Douillet, Guilhem Amin; Vallejo Vargas, Silvia; Bustillos, Jorge; Troncoso, Liliana; Díaz Alvarado, Juan; Ramón, Patricio


    The ongoing eruptive cycle of Tungurahua volcano (Ecuador) since 1999 has been characterised by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included one Subplinian as well as several Strombolian and Vulcanian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs) and lava flows. The 1 February 2014 eruption occurred after 75 days of quiescence and only 2 days of pre-eruptive seismic crisis. Two short-lived Vulcanian explosions marked the onset of the paroxysmal phase, characterised by a 13.4 km eruptive column and the trigger of PDCs. After 40 min of paroxysm, the activity evolved into sporadic Strombolian explosions with discrete ash emissions and continued for several weeks. Both tephra fall and PDCs were studied for their dispersal, sedimentology, volume and eruption source parameters. At large scale, the tephra cloud dispersed toward the SSW. Based on the field data, two dispersal scenarios were developed forming either elliptical isopachs or proximally PDC-influenced isopachs. The minimum bulk tephra volumes are estimated to 4.55 × 106 m3, for an eruption size estimated at volcanic explosivity index (VEI) 2-3. PDCs, although of small volume, descended by nine ravines of the NNW flanks down to the base of the edifice. The 1 February 2014 eruptions show a similar size to the late 1999 and August 2001 events, but with a higher intensity (I 9-10) and shorter duration. The Vulcanian eruptive mechanism is interpreted to be related to a steady magma ascent and the rise in over-pressure in a blocked conduit (plug) and/or a depressurised solidification front. The transition to Strombolian style is well documented from the tephra fall componentry. In any of the interpretative scenarios, the short-lived precursors for such a major event as well as the unusual tephra dispersion pattern urge for renewed hazard considerations at Tungurahua.

  16. Explosion containment device (United States)

    Benedick, William B.; Daniel, Charles J.


    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  17. Surface explosion cavities

    CERN Document Server

    Benusiglio, Adrien; Clanet, Christophe


    We present a fluid dynamics video on cavities created by explosions of firecrackers at the water free surface. We use three types of firecrackers containing 1, 1.3 and 5 g of flash powder. The firecrackers are held with their center at the surface of water in a cubic meter pool. The movies are recorded from the side with a high-speed video camera. Without confinement the explosion produces an hemispherical cavity. Right after the explosion this cavity grows isotropically, the bottom then stops while the sides continue to expand. In the next phase the bottom of the cavity accelerates backwards to the surface. During this phase the convergence of the flow creates a central jet that rises above the free surface. In the last part of the video the explosion is confined in a vertical open tube made of glass and of centimetric diameter. The explosion creates a cylindrical cavity that develops towards the free end of the tube. Depending on the charge, the cavity can either stop inside the tube or at its exit, but nev...

  18. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption (United States)

    Jolly, A.D.; Jousset, P.; Lyons, J.J.; Carniel, R.; Fournier, R.; Fry, B.; Miller, C.


    The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250–1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the

  19. Impact of Big Tambora Eruption on ENSO, Ocean Heat Uptake, and Sea Level (United States)

    Stenchikov, G.; Ramaswamy, V.; Delworth, T.


    Strong explosive volcanic eruptions could produce global stratospheric aerosol clouds that last for 2-3 years reflecting solar radiation and cooling the earth's surface. The climate response to volcanic impact forms as a result of interaction of associated thermal and dynamic perturbations with the major modes of climate variability. The paleo proxy data even suggest that strong tropical eruptions could increase the likelihood of El Niño. E.g., the strongest explosive events of 19th and 20th centuries, Tambora eruption in 1815 and the Mt. Pinatubo eruption in 1991, occurred in El Niño years. After volcanic impacts surface air temperature relaxes typically for 7 years but cooling accumulated in the ocean can be seen for about a century in the sub-thermocline waters. Decrease of deep ocean temperature is associated with negative anomalies of sea level. This provides a mechanism of how short-term volcanic radiative impacts could produce perturbations in climate system that last for centuries producing a cumulative cooling effect. In this study we have employed a coupled climate model (GFDL CM2.1) for calculating impacts of the Big Tambora, and Pinatubo eruptions. The aerosol cloud of Tambora eruption was about 3 times of that from the Pinatubo eruption therefore it produced much stronger climate effect. Here we consider Tambora climate effect in context of a well observed Pinatubo impact because this adds in confidence of simulation results. To synchronize volcanic eruptions and ENSO we have chosen initial conditions from those years of a control run that exhibited, specific ENSO phase and conducted ten 20-year ensemble runs with El Niño, La Niña, and Neutral initial conditions, for each volcano. We found that maximum cooling for El Niño cases tends to shift to the second year after an eruption therefore notorious Tambora's year without a summer was simulated in 1816 as observed. In La Niña cases maximum cooling appears in the year when eruption occurred. In the

  20. Textural study of the Puy Chopine trachytic eruption, Chaîne des Puys, France (United States)

    Lit, Catherine; Gurioli, Lucia; van Wyk de Vries, Benjamin


    The Puy Chopine volcano (Quaternary Chaîne des Puys of the French Massif Central) has a trachytic spine, 160 m high and 500 m wide, in a crater formed by collapse of a scoria cone (Puy de Gouttes), during an explosive eruption with the same petrographic features as the spine. The proximal and distal pyroclastic deposits contain an array of fragments, both juvenile (vesiculated rhyolite pumice, fresh dense rhyolite fragments) and non juvenile (altered dense rhyolite, black scoria, granite, schist). Its complexity has perplexed early workers such as Scrope (1858). One explanation for the Chopine volcano eruption is (Boivin in 1983) that the intrusion of a trachyte magma underneath the Gouttes created a pheatomagmatic eruption, leaving a large crater or maar. A final spine was protruded. However, Boudon et al (2015) suggested that the Chopine could have formed from superficial dome explosions, formed at the onset of lava dome formation, where the impermeable carapace of an extruding magma built up significant overpressure to produce lateral explosions. In addition, van Wyk de Vries et al (2015) suggested that the Chopine first developed as a cryptodome, deforming the Gouttes as a 'crater of elevation', which collapsed to trigger shallow explosions from the exposed intrusion. We describe the textures of the Chopine dome and its explosive facies. Observations of a sequence deposited one km from the eruptive vent have identified at least six units linked to the Chopine eruptive sequence. The lowest gray layer is ~1 m thick, and is composed of accidental lithics and fresh dome materials. This layer is interpreted as a pyroclastic density current deposit with ballistics from the initial explosion. Juveniles vary from very dense to pumice-like, and can be tuff-like breccias. Most clasts are angular, except the non-juvenile and the breccia facies. Notable textural features are color-banding/lenses in some juvenile dense and vesicular samples. Inclusions of fluidal basalt

  1. Hazard assessment of explosive volcanism at Somma-Vesuvius (United States)

    Mastrolorenzo, G.; Pappalardo, L.


    A probabilistic approach based on the available volcanological data on past Somma-Vesuvius eruptions has been developed to produce hazard-zone maps for fallout, pyroclastic density currents (PDCs), and secondary mass flows by using numerical simulations. The hazard maps have been incorporated in a GIS, making them accessible to casual and expert users for risk mitigation and education management. The results allowed us to explore the hazard related to different scenarios from all possible eruptions, ranked according to volcanic explosivity index (VEI) class, in the Vesuvius area and its surroundings including Naples. Particularly, eruptions with VEI ≤ 3 would produce a fallout hazard within about 10 km mostly east of the volcano and a PDC hazard within about 2 km from the crater. Large-scale events (4 ≤ VEI ≤ 5) would produce a fallout hazard up to 80 km from the vent and a PDC hazard at distances exceeding 15 km. Particularly, the territory northwest of Vesuvius, including metropolitan Naples, featuring a low hazard level for fallout accumulation, is exposed to PDCs also consistent with field evidence and archeological findings. Both volcano flanks and surrounding plains, hills, and mountains are exposed to a moderate-high level of hazard for the passage of secondary mass flows. With the present level of uncertainty in forecasting future eruption type and size on the basis of statistical analysis as well as precursory activity, our results indicate that the reference scenario in the emergency plan should carefully match the worst-case VEI 5 probabilistic scenario.

  2. Numerical investigation of permeability models for low viscosity magmas: Application to the 2007 Stromboli effusive eruption (United States)

    La Spina, G.; Polacci, M.; Burton, M.; de'Michieli Vitturi, M.


    Magma permeability is the most important factor controlling the transition between effusive and explosive styles during magma ascent at active volcanoes. When magma permeability is low, gas bubbles in the melt expand as the pressure decreases; above a critical gas volume fraction threshold, magma fragments, generating an explosive eruption. On the contrary, if magma is sufficiently permeable, gas ascends through the conduit towards the surface faster than the magma ascent speed, producing decoupling of gas and magma and reducing the maximum vesicularity. This decoupled flow inhibits fragmentation and leads to either an effusive eruption or quiescent degassing. Accurate modelling of permeability behaviour is therefore fundamental when simulating magma ascent processes. In this work, we compare different permeability models for low viscosity magmas using a 1D steady-state model. We use, as a test case, the 2007 effusive eruption at Stromboli volcano, Italy. We compare the numerical solutions computed using the linear Darcy's law with those obtained using the non-linear Forchheimer relation. Our numerical results show that, using Darcy's law and appropriate permeability models, it is possible to obtain an effusive eruption in agreement with observations. However, we found that, in the shallow conduit, the limit of applicability of Darcy's law (that is the modified Reynolds number Rem gas flow rates. Furthermore, we show that using Forchheimer's law and some parametric expressions for viscous and inertial permeabilities, results can be compatible with an effusive eruption, once appropriate values are chosen. However, one of the parameters required to obtain an effusive eruption, the friction coefficient between gas and melt, is several orders of magnitude lower than that determined from measurements of solid erupted samples. This result requires further experimental verification. We propose that our novel permeability modelling regime is suitable for basaltic volcanism

  3. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials (United States)


    ... hydrocarbons. Explosive organic nitrate mixtures. Explosive powders. F Flash powder. ] Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G... fulminate. Mercury oxalate. Mercury tartrate. Metriol trinitrate. Minol-2 . MMAN ; methylamine nitrate...

  4. The extimated presence of differentiated higly explosive magmas beneath Vesuvius and Campi Flegrei: evidence from geochemical and textural studies. (United States)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe


    Highly catastrophic explosive eruptions are supplied by Si-rich magmas, generated at shallower level in crust by the evolution of mantle liquids. The timescale of these evolution processes is a crucial factor, because of its control on the length of volcano repose interval leading to high explosive events. Campi Flegrei and Somma-Vesuvius alkaline volcanic systems, located respectively at few kilometers west and east of Neapolitan metropolitan area, produced a variety of eruptions ranging from not explosive lava flows and domes to highly destructive eruptions. Both these high risk volcanoes are in repose time since the last eruption occurred in the 1538 and 1944 BP, respectively. Since that time, the volcanoes experienced fumarolic activity, low level of seismicity with rare earthquakes swarms, as well as two bradyseismic crisis (1969-1972 and 1982-1984) localized in the center of Campi Flegrei caldera, that generated a net uplift of 3.5 m around the town of Pozzuoli. A wide low velocity layer interpreted as an extended magmatic body has been detected at 8-10 km depth beneath these volcanoes by seismic data. The capability of this reservoir to erupt explosively again strongly depends on magma differentiation degree, therefore the knowledge of the time lapse necessary at not explosive mafic liquids to differentiate toward explosive magmas is very crucial to predict the size of a possible short-term future eruption in Campanian area. Our petrologic data indicate that a multi-depth supply system was active under the Campanian Plain since 39 ka. Fractional crystallization during magma cooling associated with upward migration of less dense evolved liquids appears to be the prevalent differentiation process. Our results indicate that huge steam exolution occurred during the late stage of trachyte and phonolite crystallization thus accounting for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover our CSD data on phenocrysts reveal

  5. Human responses to the 1906 eruption of Vesuvius, southern Italy (United States)

    Chester, David; Duncan, Angus; Kilburn, Christopher; Sangster, Heather; Solana, Carmen


    Cultural and political contexts are important in determining the ways in which communities respond to volcanic eruptions. Understanding the manner in which communities and the State apparatus have coped with historic eruptions can provide insights into how responses have influenced vulnerability and resilience. The 1906 eruption of Vesuvius is well suited for such a study as it was one of the first major eruptions in which there was a significant element of State control, and this worked alongside more traditional pre-industrial responses. This eruption was extensively reported in the regional, national and international press and in archives which include still photography. One feature is the rich archive of material published in English language newspapers of record which are analysed fully in the paper for the first time. Many of these data sources are now accessible on-line. The eruption started on April 4th with mild explosive activity and the eruption of lava from 5th to 7th April. On the night of the 7th/8th, activity intensified when a vigorous lava fountain inclined obliquely to the north east, deposited a thick layer of tephra on the towns of Ottaviano and San Giuseppe. This led to roof collapse and a large number of fatalities. There was increased lava emission and a flow progressed south through the outskirts of Boscotrecase cutting the Circumvesuviana railway line and almost reaching Torre Annunziata. Following April 8th the eruption declined and ended on April 21st. In the initial responses to the eruption pre-industrial features were prominent, with the local communities showing social cohesion, self-reliance and little panic. A more negative aspect was the traditional religious response that involved the use of liturgies of divine appeasement and which included the use of saintly relics and images. There is interesting evidence, however, that this coping strategy was driven by the populace rather than by the clergy. The inhabitants of San Giuseppe

  6. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken


    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% cell-membrane damage. ConclusionsThe primary particle-specific concern is the potential for future eruptions of Iceland’s volcanoes to generate fine, respirable material and, thus, to increase ambient PM concentrations. This particularly applies to highly explosive silicic eruptions, but can also hold true for explosive basaltic eruptions or discrete events associated with basaltic fissure eruptions.

  7. Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines (United States)

    Hammer, J.E.; Cashman, K.V.; Hoblitt, R.P.; Newman, S.


    Dacite tephras produced by the 1991 pre-climactic eruptive sequence at Mt. Pinatubo display extreme heterogeneity in vesicularity, ranging in clast density from 700 to 2580 kg m-3. Observations of the 13 surge-producing blasts that preceded the climactic plinian event include radar-defined estimates of column heights and seismically defined eruptive and intra-eruptive durations. A comparison of the characteristics of erupted material, including microlite textures, chemical compositions, and H2O contents, with eruptive parameters suggests that devolatilization-induced crystallization of the magma occurred to a varying extent prior to at least nine of the explosive events. Although volatile loss progressed to the same approximate level in all of the clasts analyzed (weight percent H2O=1.26-1.73), microlite crystallization was extremely variable (0-22%). We infer that syn-eruptive volatile exsolution from magma in the conduit and intra-eruptive separation of the gas phase was facilitated by the development of permeability within magma residing in the conduit. Correlation of maximum microlite crystallinity with repose interval duration (28-262 min) suggests that crystallization occurred primarily intra-eruptively, in response to the reduction in dissolved H2O content that occurred during the preceding event. Detailed textural characterization, including determination of three-dimensional shapes and crystal size distributions (CSD), was conducted on a subset of clasts in order to determine rates of crystal nucleation and growth using repose interval as the time available for crystallization. Shape and size analysis suggests that crystallization proceeded in response to lessening degrees of feldspar supersaturation as repose interval durations increased. We thus propose that during repose intervals, a plug of highly viscous magma formed due to the collapse of vesicular magma that had exsolved volatiles during the previous explosive event. If plug thickness grew

  8. Tree-ring width reveals the preparation of the 1974 Mt. Etna eruption. (United States)

    Seiler, Ruedi; Houlié, Nicolas; Cherubini, Paolo


    Reduced near-infrared reflectance observed in September 1973 in Skylab images of the western flank of Mt. Etna has been interpreted as an eruption precursor of the January 1974 eruption. Until now, it has been unclear when this signal started, whether it was sustained and which process(es) could have caused it. By analyzing tree-ring width time-series, we show that the reduced near-infrared precursory signal cannot be linked to a reduction in annual tree growth in the area. However, comparing the tree-ring width time-series with both remote sensing observations and volcano-seismic activity enables us to discuss the starting date of the pre-eruptive period of the 1974 eruption.

  9. The Longevity of Lava Dome Eruptions

    CERN Document Server

    Wolpert, Robert L; Calder, Eliza S


    Understanding the duration of past, on-going and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of on-going and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding we show that probability distributions for dome eruption durations are both heavy-tailed and composition-dependent. We construct Objective Bayes statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and on-going eruptions that depend on both eruption duration-to-date and composition. Our Bayesian predictive distributions reflect both uncertainty about mode...

  10. The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics (United States)

    Jenkins, S.; Komorowski, J.-C.; Baxter, P. J.; Spence, R.; Picquout, A.; Lavigne, F.; Surono


    The large explosive eruption of Merapi volcano, Indonesia, in 2010 presented a key, and rare, opportunity to study the impacts of a major explosive eruption in a densely populated area. Pyroclastic density currents (PDCs) produced throughout the 2010 eruption were unusually destructive, causing near complete devastation across a 22 km2 swath of the densely populated southern flanks and casualties to the end of their runout at 15.5 km from the volcano. The majority (> 120) of the more than 200 fatalities occurred more than 12 km from the volcano, where many people were caught in PDCs as they were evacuating. The 2010 eruption (VEI 4) exhibited a range of PDC behaviour in a complex multi-stage event that marked a change in eruption behaviour at Merapi, being the first eruption of this magnitude and style since 1872. This shift in style may mark a change in regime, and so understanding the potential impact of such large explosive eruptions is essential for future risk-assessment at Merapi. We describe a new impact assessment methodology that allowed us to collect important empirical geological, damage and casualty information and reconstruct impact dynamics associated with the PDCs. In contrast to previous PDC impact studies, we combined remote, field, laboratory and GIS assessments and were able to enter the affected areas safely and before their disturbance by rains or human activity. By integrating the results of our geological, damage and medical studies, we could reconstruct the spatial and temporal dynamics of the PDCs and their main hazard characteristics. Our interdisciplinary methods and preliminary findings are discussed here. In the areas damaged by PDCs, we used empirical damage data and calculations of material and structural resistance to lateral force to estimate approximate dynamic pressures. Dynamic pressures associated with the 5 November paroxysm exceeded 15 kPa more than 6 km from source and rapidly attenuated over a distance of less than 1 km at

  11. Nyiragongo Volcano before the Eruption (United States)


    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  12. The 15 March 2007 paroxysm of Stromboli: video-image analysis, and textural and compositional features of the erupted deposit (United States)

    Andronico, Daniele; Taddeucci, Jacopo; Cristaldi, Antonio; Miraglia, Lucia; Scarlato, Piergiorgio; Gaeta, Mario


    On 15 March 2007, a paroxysmal event occurred within the crater terrace of Stromboli, in the Aeolian Islands (Italy). Infrared and visible video recordings from the monitoring network reveal that there was a succession of highly explosive pulses, lasting about 5 min, from at least four eruptive vents. Initially, brief jets with low apparent temperature were simultaneously erupted from the three main vent regions, becoming hotter and transitioning to bomb-rich fountaining that lasted for 14 s. Field surveys estimate the corresponding fallout deposit to have a mass of ˜1.9 × 107 kg that, coupled with the video information on eruption duration, provides a mean mass eruption rate of ˜5.4 × 105 kg/s. Textural and chemical analyses of the erupted tephra reveal unexpected complexity, with grain-size bimodality in the samples associated with the different percentages of ash types (juvenile, lithics, and crystals) that reflects almost simultaneous deposition from multiple and evolving plumes. Juvenile glass chemistry ranges from a gas-rich, low porphyricity end member (typical of other paroxysmal events) to a gas-poor high porphyricity one usually associated with low-intensity Strombolian explosions. Integration of our diverse data sets reveals that (1) the 2007 event was a paroxysmal explosion driven by a magma sharing common features with large-scale paroxysms as well as with "ordinary" Strombolian explosions; (2) initial vent opening by the release of a pressurized gas slug and subsequent rapid magma vesiculation and ejection, which were recorded both by the infrared camera and in the texture of fallout products; and (3) lesser paroxysmal events can be highly dynamic and produce surprisingly complex fallout deposits, which would be difficult to interpret from the geological record alone.

  13. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption (United States)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi


    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  14. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA (United States)

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.


    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  15. The Tarawera eruption, Lake Rotomahana, and the origin of the Pink and White Terraces (United States)

    Keam, Ronald F.


    This chapter introduces the historical and geographical background for the scientific studies at Tarawera and Lake Rotomahana in the Taupo Volcanic Zone of New Zealand as detailed in this Special Issue of the Journal of Volcanology and Geothermal Research. It also presents the results of some original investigations. These are based partly on the large body of historical information that exists about the 1886 Tarawera eruption and the geothermal system at Rotomahana, and partly on the results of dedicated geological studies by other researchers within the Okataina Volcanic Centre where the historical events took place. Specifically, the new material here presented includes a detailed analysis of a previously almost neglected narrative by the only observer to witness the 1886 eruption from the southeast of the erupting craters and leave an account of his observations. The importance of a co-operative interplay between pre-existing tectonic deformation and its responses to strong seismic activity induced by magmatic intrusion is emphasised as being a major determinant in the course of the eruption, and as the main trigger of the eruption explosions that were audible throughout half of the land area of New Zealand. The chapter then concentrates on showing how the recent geological studies, in conjunction with ideas on the architecture of geysers, permit an explanation to be given as to how the unique Pink and White Terraces came to be formed.

  16. Lake sediments provide the first eruptive history for Corbetti, a high-risk Main Ethiopian Rift volcano (United States)

    Martin-Jones, Catherine M.; Lane, Christine S.; Pearce, Nicholas J. G.; Smith, Victoria C.; Lamb, Henry F.; Schaebitz, Frank; Viehberg, Finn; Brown, Maxwell C.; Frank, Ute; Asrat, Asfawossen


    A recent World Bank report found that 49 of Ethiopia's 65 known Holocene volcanoes pose a high-risk to the surrounding population. One of these volcanoes, Corbetti, located in the densely populated Main Ethiopian Rift (MER), has only one documented Holocene eruption. Any risk assessment for Corbetti is therefore highly uncertain. Reliable hazard forecasting is dependent on the completeness of volcanic records. In the case of Ethiopian Rift volcanoes complete records are hindered by frequently poorly exposed, buried and inaccessible proximal outcrops. Lake sediments can yield comprehensive, stratigraphically-resolved dossiers of past volcanism. Here we use volcanic ash (tephra) layers preserved in sediments from three MER lakes to provide the first record of Holocene volcanism for Corbetti. It shows that Corbetti has erupted explosively throughout the Holocene at an average return period of 800 years. Based on the thickness and dispersal of the tephras, at least six eruptions were of a large magnitude, and there were four eruptions in the past 2000 years. Future explosive eruptions are likely and these could have significant societal impacts, they could blanket nearby Awassa and Shashamene, home to 260,000 people, with pumice deposits. Our data indicate that the threat posed by Corbetti has been significantly underestimated. These data can be used to refine regional volcano monitoring and develop evacuation plans. This lake sediment-tephrostratigraphic approach shows significant potential for application throughout the East African Rift system, and is essential to understanding volcanic hazards in this rapidly developing region.

  17. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3-5 December 2015 activity at Etna volcano (United States)

    Bonaccorso, A.; Calvari, S.


    Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future

  18. XIT Commercial Explosives Identification Tool (United States)


    Explosives Identification Tool (XIT) was supported by the Canadian Safety and Security Program ( CSSP ) which is led by Defence Research and Development...Explosives Training Unit, and Toronto Police Service, Explosives Disposal Unit. CSSP is a federally-funded program to strengthen Canada’s ability to

  19. Corneoscleral Laceration and Ocular Burns Caused by Electronic Cigarette Explosions. (United States)

    Paley, Grace L; Echalier, Elizabeth; Eck, Thomas W; Hong, Augustine R; Farooq, Asim V; Gregory, Darren G; Lubniewski, Anthony J


    To report cases of acute globe rupture and bilateral corneal burns from electronic cigarette (EC) explosions. Case series. We describe a series of patients with corneal injury caused by EC explosions. Both patients suffered bilateral corneal burns and decreased visual acuity, and one patient sustained a unilateral corneoscleral laceration with prolapsed iris tissue and hyphema. A review of the scientific literature revealed no prior reported cases of ocular injury secondary to EC explosions; however, multiple media and government agency articles describe fires and explosions involving ECs, including at least 4 with ocular injuries. Given these cases and the number of recent media reports, ECs pose a significant public health risk. Users should be warned regarding the possibility of severe injury, including sight-threatening ocular injuries ranging from corneal burns to full-thickness corneoscleral laceration.

  20. The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka bp). Part I: stratigraphy, compositional variability and eruptive dynamics (United States)

    Sulpizio, R.; Cioni, R.; di Vito, M. A.; Mele, D.; Bonasia, R.; Dellino, P.


    The stratigraphic succession of the Pomici di Avellino Plinian eruption from Somma-Vesuvius has been studied through field and laboratory data in order to reconstruct the eruption dynamics. This eruption is particularly important in the Somma-Vesuvius eruptive history because (1) its vent was offset with respect to the present day Vesuvius cone; (2) it was characterised by a distinct opening phase; (3) breccia-like very proximal fall deposits are preserved close to the vent and (4) the pyroclastic density currents generated during the final phreatomagmatic phase are among the most widespread and voluminous in the entire history of the volcano. The stratigraphic succession is, here, divided into deposits of three main eruptive phases (opening, magmatic Plinian and phreatomagmatic), which contain five eruption units. Short-lived sustained columns occurred twice during the opening phase (Ht of 13 and 21.5 km, respectively) and dispersed thin fall deposits and small pyroclastic density currents onto the volcano slopes. The magmatic Plinian phase produced the main volume of erupted deposits, emplacing white and grey fall deposits which were dispersed to the northeast. Peak column heights reached 23 and 31 km during the withdrawal of the white and the grey magmas, respectively. Only one small pyroclastic density current was emplaced during the main Plinian phase. In contrast, the final phreatomagmatic phase was characterised by extensive generation of pyroclastic density currents, with fallout deposits very subordinate and limited to the volcano slopes. Assessed bulk erupted volumes are 21 × 106 m3 for the opening phase, 1.3-1.5 km3 for the main Plinian phase and about 1 km3 for the final phreatomagmatic phase, yielding a total volume of about 2.5 km3. Pumice fragments are porphyritic with sanidine and clinopyroxene as the main mineral phases but also contain peculiar mineral phases like scapolite, nepheline and garnet. Bulk composition varies from phonolite (white

  1. Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes (United States)

    Valentine, Greg A.; Graettinger, Alison H.; Macorps, Élodie; Ross, Pierre-Simon; White, James D. L.; Döhring, Erika; Sonder, Ingo


    We present results of experiments that use small chemical explosive charges buried in layered aggregates to simulate the effects of subsurface hydrothermal and phreatomagmatic explosions at varying depths and lateral locations, extending earlier experimental results that changed explosion locations only along a vertical axis. The focus is on the resulting crater size and shape and subcrater structures. Final crater shapes tend to be roughly circular if subsurface explosion epicenters occur within each other's footprints (defined as the plan view area of reference crater produced by a single explosion of a given energy, as predicted by an empirical relationship). Craters are elongate if an epicenter lies somewhat beyond the footprint of the previous explosion, such that their footprints overlap, but if epicenters are too far apart, the footprints do not overlap and separate craters result. Explosions beneath crater walls formed by previous blasts tend to produce inclined (laterally directed) ejecta jets, while those beneath crater centers are vertically focused. Lateral shifting of explosion sites results in mixing of subcrater materials by development of multiple subvertical domains of otherwise pure materials, which progressively break down with repeated blasts, and by ejection and fallback of deeper-seated material that had experienced net upward displacement to very shallow levels by previous explosions. A variably developed collar of material that experienced net downward displacement surrounds the subvertical domains. The results demonstrate key processes related to mixing and ejection of materials from different depths during an eruptive episode at a maar-diatreme volcano as well as at other phreatomagmatic and hydrothermal explosion sites.

  2. Explosive detection technology (United States)

    Doremus, Steven; Crownover, Robin


    The continuing proliferation of improvised explosive devices is an omnipresent threat to civilians and members of military and law enforcement around the world. The ability to accurately and quickly detect explosive materials from a distance would be an extremely valuable tool for mitigating the risk posed by these devices. A variety of techniques exist that are capable of accurately identifying explosive compounds, but an effective standoff technique is still yet to be realized. Most of the methods being investigated to fill this gap in capabilities are laser based. Raman spectroscopy is one such technique that has been demonstrated to be effective at a distance. Spatially Offset Raman Spectroscopy (SORS) is a technique capable of identifying chemical compounds inside of containers, which could be used to detect hidden explosive devices. Coherent Anti-Stokes Raman Spectroscopy (CARS) utilized a coherent pair of lasers to excite a sample, greatly increasing the response of sample while decreasing the strength of the lasers being used, which significantly improves the eye safety issue that typically hinders laser-based detection methods. Time-gating techniques are also being developed to improve the data collection from Raman techniques, which are often hindered fluorescence of the test sample in addition to atmospheric, substrate, and contaminant responses. Ultraviolet based techniques have also shown significant promise by greatly improved signal strength from excitation of resonance in many explosive compounds. Raman spectroscopy, which identifies compounds based on their molecular response, can be coupled with Laser Induced Breakdown Spectroscopy (LIBS) capable of characterizing the sample's atomic composition using a single laser.

  3. Prevention of Catastrophic Volcanic Eruptions


    Fujii, Yoshiaki; Kodama, Jun-ichi; Fukuda, Daisuke; Dassanayake, Abn


    Giant volcanic eruptions emit sulphate aerosols as well as volcanic ash. Needless to say that volcanic ash causes significant damage to the environment and human at large. However, the aerosols are even worse. They reach the Stratosphere and stay there for months to years reflecting insolation. As a result, air temperature at the Earth's surfaces drops. Even a slight temperature drop may cause severe food shortage. Yellowstone supervolcano, for example, can even make human in the Northern Hem...

  4. Source locations of continuous tremor by combined analyses of array and network seismometers : A case study for the 2011 eruption of Shinmoe-dake, Japan (United States)

    Ichihara, Mie; Matsumoto, Satoshi


    The 2011 eruption of Shinmoe-dake, Japan, was one of the common cases in that geophysical monitoring system was improved after eruption became very active. We used tremor recorded after the main eruption phases by a dense seismic array and many network stations to calibrate the site effects and regional attenuation factor. The calibration was used in estimating the source locations of volcanic tremor before and during the eruption from the amplitude distribution at the limited available seismic stations. The stability of the algorithm was improved by the careful selection of time windows in which signal from a single source dominated. The result was compared with multi-parametric data including infrasound, tilt, and video records. The tremor source depth beneath the crater varied for one week before the onset of the eruption. Upward motion of the source from a depth to the shallow water table was found on three separate occasions, each of which occurred following shallow inflation sometimes with a minor eruption. This change in depth is interpreted as a result of fluid movement, which transported sufficient heat to trigger a larger eruption. In contrast to the upward motion of the source after the precursory events, the source tends to move downward after explosive eruptions. Such upward/downward movements could be used as indicators of how an eruption proceeds. Although seismic array processing methods are powerful tools for locating tremor, a dense array with a sufficient performance requires considerable effort to maintain and is rarely available, especially before a noticeable eruption occurs. This study demonstrates that even a seismic array deployed after an eruption is useful in assessing processes preceding the eruption.

  5. Eruptions of Hawaiian volcanoes - Past, present, and future (United States)

    Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.


    are nonexplosive; and composite volcanoes, such as Mount St. Helens in the Cascade Range, which are renowned for their explosive eruptions.

  6. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala


    Lauren N Schaefer; Zhong Lu; Thomas Oommen


    Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3) eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, I...

  7. Medical effects of volcanic eruptions (United States)

    Baxter, Peter J.


    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  8. Repeating LP events and increases in high-frequency seismic energy preceding the December 1999 eruption of the quiescently active Telica Volcano, Nicaragua (United States)

    Rodgers, M.; Roman, D. C.; Geirsson, H.; Lafemina, P.; Muñoz, A.; Guzman, C.; Tenorio, V.


    and remarkably similar waveforms. In periods 4 to 6 (after the explosions) events are again poorly correlated. We suggest that these two documented changes in seismicity reflect a change in Telica’s magmatic system in the month immediately preceding volcanic activity, and that the identification of strongly correlating families coincident with a strong increase in high-frequency seismic energy could signify a change in the volcanic system preceding future episodes of eruptive activity at Telica and similar volcanic systems worldwide. Incandescence observed on the crater floor in March 2010 and a continuing high rate of LP seismicity suggest that Telica remains in a state of sustained unrest. A recently installed network of broadband seismometers and high rate continuous GPS stations at Telica will enable further investigation of ongoing geophysical unrest.

  9. Palaeomagnetic refinement of the eruption ages of Holocene lava flows, and implications for the eruptive history of the Tongariro Volcanic Centre, New Zealand (United States)

    Greve, Annika; Turner, Gillian M.; Conway, Chris E.; Townsend, Dougal B.; Gamble, John A.; Leonard, Graham S.


    We present a detailed palaeomagnetic study from 35 sites on Holocene lava flows of the Tongariro Volcanic Centre, central North Island, New Zealand. Prior to the study the eruption ages of these flows were constrained to within a few thousand years by recently published high-precision 40Ar/39Ar geochronological data and tephrostratigraphic controls. Correlation of flow mean palaeomagnetic directions with a recently published continuous sediment record from Lake Mavora, Fiordland, allows us to reduce the age uncertainty to 300-500 yr in some cases. Our refined ages significantly improve the chronology of Holocene effusive eruptions of the volcanoes of the Tongariro Volcanic Centre. For instance, differences in the palaeomagnetic directions recorded by lavas from the voluminous Iwikau and Rangataua members suggest that individual effusive periods lasted up to thousands of years and that these bursts have been irregularly spaced over time. While over the last few millennia the effusive eruptive activity from Mt Ruapehu has been relatively quiet, the very young age (200-500 BP) of a Red Crater sourced flow suggests that effusive activity around Mt Tongariro lasted into the past few centuries. This adds an important hazard context to the historical record, which has otherwise comprised frequent relatively small, tephra producing, explosive eruptions without the production of lava flows.

  10. Contrasting styles of deep-marine pyroclastic eruptions revealed from Axial Seamount push core records (United States)

    Portner, Ryan A.; Clague, David A.; Helo, Christoph; Dreyer, Brian M.; Paduan, Jennifer B.


    A comprehensive understanding of explosive basaltic eruption processes in the deep-sea relies upon detailed analysis and comparison of the variety of volcaniclastic lithologies on the seafloor, which has been challenged by insufficient sample recovery. A dedicated ROV-based sampling approach using long push cores offers an unparalleled opportunity to fully characterize the diversity of unconsolidated volcaniclastic lithofacies on a recently active seamount. Lithofacies from Axial Seamount record two styles of pyroclastic eruptions, strombolian and phreatomagmatic, at 1.5 km water depth. Strombolian eruptions are represented by abundant fluidal and highly vesicular (up to 50%) vitriclasts within limu o Pele lapilli tuff and tuffaceous mud lithofacies. Lapilli-ash grain size, normal grading, good sorting, rip-up clasts and homogeneous glass geochemistry characterize individual limu o Pele lapilli tuff beds, and imply proximal deposition from a turbidity flow associated with a single eruption (i.e. event bed). Limu o Pele lapilli tuff beds are interbedded with poorly sorted, chemically heterogeneous and bioturbated tuffaceous mud units that preserve reworking and biologic habitation of more distal pyroclastic fallout and dilute turbidity flows. The phreatomagmatic eruption style is preserved by hydrothermal mineral-bearing muddy tuff that exhibits characteristics distinct from lapilli ash and tuffaceous mud lithofacies. Hydrothermal muddy tuff lithofacies are well-sorted and fine-grained with notable components of non-fluidal basaltic ash (∼45%), fluidal ash (∼30%) and accessory lithics (∼25%). Heterogeneous geochemistry of ash shards implies that juvenile components are minimal. The abundance, mineralogy and texture of lithic components (Fe-Mg clays, pyrite, epidote, actinolite, altered glass, basalt/diabase, hydrothermal breccia and agglutinate), and very fine-grain size of basaltic ash, are consistent with phreatomagmatic eruption deposits. A lack of

  11. Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768-1998 (United States)

    Voight, B.; Constantine, E.K.; Siswowidjoyo, S.; Torley, R.


    Information on Merapi eruptive activity is scattered and much is remotely located. A concise and well-documented summary of this activity has been long needed to assist researchers and hazard-mitigation efforts, and the aim of this paper is to synthesize information from the mid-1700s to the present. A descriptive chronology is given, with an abbreviated chronology in a table that summarizes events by year, assigns preliminary Volcanic Explosivity Index (VEI) ratings and Hartmann classifications, and provides key references. The history of volcano monitoring is also outlined. The study reveals that a major difference in eruption style exists between the twentieth and nineteenth centuries, although the periodicity between larger events seems about the same. During the twentieth century, activity has comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of oversteepened domes to produce the nue??es ardentes - commonly defined as "Merapi-type". In the 1800s, however, explosive eruptions of relatively large size occurred (to VEI 4), and some associated "fountain-collapse" nue??es ardentes were larger and farther reaching than any produced in the twentieth century. These events may also be regarded as typical eruptions for Merapi. The nineteenth century activity is consistent with the long-term pattern of one relatively large event every one or two centuries, based on the long-term eruptive record deduced by others from volcanic stratigraphy. It is uncertain whether or not a "recurrence-time" model continues to apply to Merapi, but if so, Merapi could soon be due for another large event and its occurrence with only modest (or inadequately appreciated) precursors could lead to a disaster unprecedented in Merapi's history because the area around the volcano is now much more densely populated. ?? 2000 Elsevier Science B.V. All rights reserved.

  12. Development of ammonium nitrate based explosives to optimize explosive properties and explosive welding parameters used during explosion cladding (United States)

    Hurley, Christoph

    The ability to accurately measure and predict the velocity of explosively driven flyer plates has been a subject of significant work by the explosives community for some time. The majority of this work has focused on the use of high-energy, ideal explosives that are of interest for defense applications. Several attempts have been made to modify the experimental methods developed for these ideal explosives for use in testing low-energy, non-ideal explosive compounds (including industrially useful mixtures of ammonium nitrate, fuels, and additives) with varying degrees of success. The detonation properties of non-ideal explosives are difficult to measure precisely due to the effect of physical, environmental, and geometric factors on the detonation of these materials. The work presented in this document attempts to mitigate the variability inherent in measurements of non-ideal, ammonium nitrate-based explosives by performing testing using charge geometry similar to that used in the industrial process of explosion welding. A method to measure flyer plate velocity with optical high-speed imaging using commercially available equipment is described. Flyer plate velocity data from both experimental measurements and numerical modeling is presented. A new formula for predicting explosive energy based on the detonation velocity of an ammonium nitrate based explosive in a planar geometry is proposed and applied to a theoretical explosive cladding scenario.

  13. Biodegradation of nitro-explosives. (United States)

    Kanekar, Pradnya; Dautpure, Premlata; Sarnaik, Seema


    Environmental contamination by nitro compounds is associated principally with the explosives industry. However, global production and use of explosives is unavoidable. The presently widely used nitro-explosives are TNT (Trinitrotoluene), RDX (Royal Demolition Explosive) and HMX (High Melting Explosive). Nevertheless, the problems of these nitro-explosives are almost parallel due to their similarities of production processes, abundance of nitro-explosives and resembling chemical structures. The nitro-explosives per se as well as their environmental transformation products are toxic, showing symptoms as methaemoglobinaemia, kidney trouble, jaundice etc. Hence their removal/degradation from soil/water is essential. Aerobic and anaerobic degradation of TNT and RDX have been reported, while for HMX anaerobic or anoxic degradation have been described in many studies. A multisystem involvement using plants in remediation is gaining importance. Thus the information about degradation of nitro-explosives is available in jigsaw pieces which needs to be arranged and lacunae filled to get concrete degradative schemes so that environmental pollution from nitro-explosives can be dealt with more successfully at a macroscale. An overview of the reports on nitro-explosives degradation, future outlook and studies done by us are presented in this review.

  14. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions (United States)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.


    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five

  15. Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica (United States)

    de Moor, Maarten; Aiuppa, Alessandro; Pacheco, Javier; Avard, Geoffroy; Kern, Christoph; Liuzzo, Marco; Martinez, Maria; Giudice, Gaetano; Fischer, Tobias P.


    Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO2 1–6 days prior to eruption. The SO2 flux derived from magmatic degassing through the lake is measureable by differential optical absorption spectrometry (sporadic campaign measurements), which allows us to constrain lake gas output and input for the major gas species during eruptive and non-eruptive periods. We can further calculate power supply to the hydrothermal system using volatile mass balance and thermodynamics, which indicates that the magmatic heat flux into the shallow hydrothermal system increases from ∼27 MW during quiescence to ∼59 MW during periods of phreatic events. These transient pulses of gas and heat from the deeper magmatic system generate both phreatic eruptions and the observed short-term changes in gas composition, because at high gas flux scrubbing of sulfur by the hydrothermal system is both kinetically and thermodynamically inhibited whereas CO2gas is always essentially inert in hyperacid conditions. Thus, the SO2/CO2 of lake emissions approaches magmatic values as gas and power supply to the sub-limnic hydrothermal system increase, vaporizing fluids and priming the hydrothermal system for eruption. Our results suggest that high-frequency real-time gas monitoring could provide useful short-term eruptive precursors at volcanoes prone to phreatic explosions.

  16. Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica (United States)

    de Moor, J. M.; Aiuppa, A.; Pacheco, J.; Avard, G.; Kern, C.; Liuzzo, M.; Martínez, M.; Giudice, G.; Fischer, T. P.


    Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO2 1-6 days prior to eruption. The SO2 flux derived from magmatic degassing through the lake is measureable by differential optical absorption spectrometry (sporadic campaign measurements), which allows us to constrain lake gas output and input for the major gas species during eruptive and non-eruptive periods. We can further calculate power supply to the hydrothermal system using volatile mass balance and thermodynamics, which indicates that the magmatic heat flux into the shallow hydrothermal system increases from ∼27 MW during quiescence to ∼59 MW during periods of phreatic events. These transient pulses of gas and heat from the deeper magmatic system generate both phreatic eruptions and the observed short-term changes in gas composition, because at high gas flux scrubbing of sulfur by the hydrothermal system is both kinetically and thermodynamically inhibited whereas CO2 gas is always essentially inert in hyperacid conditions. Thus, the SO2/CO2 of lake emissions approaches magmatic values as gas and power supply to the sub-limnic hydrothermal system increase, vaporizing fluids and priming the hydrothermal system for eruption. Our results suggest that high-frequency real-time gas monitoring could provide useful short-term eruptive precursors at volcanoes prone to phreatic explosions.

  17. Eruption column height: a comparison between ground and satellite measurements (United States)

    Scollo, Simona; Prestifilippo, Michele; Pecora, Emilio; Corradini, Stefano; Merucci, Luca; Spata, Gaetano; Coltelli, Mauro


    The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 μm brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.

  18. Corrigendum: Small volcanic eruptions and the stratospheric sulfate aerosol burden (United States)

    Pyle, David M.


    In my original perspective piece (Pyle 2012), I mistakenly suggested that both Sawamura et al (2012) and Bourassa et al (2012) had attributed the lofting of the Nabro plume into the stratosphere to the strong Asian summer monsoon. In fact, while the ash clouds that accompanied the most explosive phases of the Nabro eruption were reported by the Toulouse VAAC to have reached 9-14 km on 13-14 June (Smithsonian Institution 2011), the Micro Pulse Lidar profile from Sede Boker, Israel, for the same date (14 June) shows a strong peak in the scattering ratio at around 17 km elevation. This was interpreted by Sawamura et al (2012) as being potentially due to ash and sulfate particles, and would suggest that the initial phase of the eruption injected material to this altitude. Sawamura et al (2012) also showed that the transport of the volcanic plume to Sede Boker was consistent with forward air-trajectory models, which for that time period showed a strong anticyclonic vortex due to the Asian summer monsoon, but they did not suggest that the monsoonal circulation was responsible for lofting of the plume. Bourassa et al (2012) identified a stratospheric enhancement of aerosol optical depth across eastern Asia beginning in early July 2011, which they attributed to the vertical transport of volcanic SO2 from the eruption plume into the lower stratosphere. Further work, using other techniques that can resolve altitude, is required to fully understand the time-history of the volcanic ash and gas plumes, and the sulfate aerosol that subsequently developed.

  19. Services Textbook of Explosives (United States)


    and shock effects is obtained by the use of ’primary’ (also known as ’initiatory’) explosives, among the most important of which are mercury fulminate ...Brown had discovered that compressed dry guncotton could be detonated by a mercury fulminate detonator, and a little later they found that compressed wet...of his powder (a mixture of mercury fulminate and potassium chlorate) enclosed in thin copper caps. This idea did not at once meet with the approval

  20. Explosives signatures and analysis (United States)

    Fountain, Augustus Way, III; Oyler, Jonathan M.; Ostazeski, Stanley A.


    The challenge of sampling explosive materials for various high threat military and civilian operational scenarios requires the community to identify and exploit other chemical compounds within the mixtures that may be available to support stand-off detection techniques. While limited surface and vapor phase characterization of IEDs exist, they are insufficient to guide the future development and evaluation of field deployable explosives detection (proximity and standoff) capabilities. ECBC has conducted a limited investigation of three artillery ammunition types to determine what chemical vapors, if any, are available for sensing; the relative composition of the vapors which includes the more volatile compounds in munitions, i.e., plastersizers and binders; and the sensitivity needed detect these vapors at stand-off. Also in partnership with MIT-Lincoln Laboratory, we performed a background measurement campaign at the National Training Center to determine the baseline ambient amounts and variability of nitrates and nitro-ester compounds as vapors, particulates, and on surfaces; as well as other chemical compounds related to non-energetic explosive additives. Environmental persistence studies in contexts relevant to counter-IED sensing operations, such as surface residues, are still necessary.

  1. Explosive Welding of Pipes (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga


    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  2. How and Why Do Geysers Erupt? (United States)

    Manga, M.


    Geysers are features that produce episodic eruptions of water, steam and sometimes non-condensable gases. Natural geysers are rare, with fewer than 1,000 worldwide. They are more than curiosities and popular tourist attractions: they offer a direct window into geothermal processes, and may serve as a natural small-scale laboratory to study larger-scale eruptive process such as those at volcanoes, and other self-organized, intermittent processes that result from phase separation and localized input of energy and mass. Despite > 200 years of scientific study, basic questions remain: Do eruptions begin from the bottom or top of the geyser? What controls eruption duration? Why do eruptions end? What are the required special subsurface geometries? Why are some geysers periodic, and others irregular? How and why do they respond to external influences such as weather, tides, and earthquakes? This presentation will review new insights from field studies at Lone Star geyser, Yellowstone National Park, geysers in the El Tatio geyser field, Chile, and laboratory models. At Lone Star we infer that dynamics are controlled by thermal and mechanical coupling between the conduit and a deeper, laterally-offset reservoir (called a "bubble trap" in previous studies). At El Tatio, we measured pressure and temperature within geysers over multiple eruption cycles: this data document the heating of liquid water by steam delivered from below. The laboratory experiments reveal how episodic release of steam from a bubble trap prepares a conduit for eruption and can generate a range of eruption intensities. In all cases, the eruption initiation, duration and termination are controlled by the interaction between the accumulation and transport of steam and liquid, and modulated by the geometry of the geyser's plumbing. Time series of thousands of eruptions confirm that internal processes control eruptions, with only pool geysers showing a sensitivity to air temperature; only very large stress

  3. Ground-based and satellite remote sensing of paroxysmal eruptions at Etna volcano, 2011-2012 (United States)

    Bonny, Estelle

    Mt Etna's activity has increased during the last decade with a tendency towards more explosive eruptions that produce paroxysmal lava fountains. From January 2011 to April 2012, 25 lava fountaining episodes took place at Etna's New South-East Crater (NSEC). Improved understanding of the mechanism driving these explosive basaltic eruptions is needed to reduce volcanic hazards. This type of activity produces high sulfur dioxide (SO2) emissions, associated with lava flows and ash fall-out, but to date the SO2 emissions associated with Etna's lava fountains have been poorly constrained. The Ultraviolet (UV) Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua were used to measure the SO2 loadings. Ground-based data from the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) L-band Doppler radar, VOLDORAD 2B, used in collaboration with the Italian National Institute of Geophysics and Volcanology in Catania (INGV-CT), also detected the associated ash plumes, giving precise timing and duration for the lava fountains. This study resulted in the first detailed analysis of the OMI and AIRS SO2 data for Etna's lava fountains during the 2011-2012 eruptive cycle. The HYSPLIT trajectory model is used to constrain the altitude of the observed SO2 clouds, and results show that the SO2 emission usually coincided with the lava fountain peak intensity as detected by VOLDORAD. The UV OMI and IR AIRS SO2 retrievals permit quantification of the SO2 loss rate in the volcanic SO2 clouds, many of which were tracked for several days after emission. A first attempt to quantitatively validate AIRS SO2 retrievals with OMI data revealed a good correlation for high altitude SO2 clouds. Using estimates of the emitted SO2 at the time each paroxysm, we observe a correlation with the inter-paroxysm repose time. We therefore suggest that our data set supports the collapsing foam (CF) model [1] as driving mechanism for the paroxysmal

  4. Dapsone-associated fixed drug eruption. (United States)

    Garcia, Daniel; Cohen, Philip R


    Dapsone is a sulfone drug used to treat infectious conditions and also numerous dermatologic diseases. Fixed drug eruption is a distinctive adverse cutaneous reaction associated with the initial administration and subsequent delivery of a specific agent. Areas covered: The authors preformed a literature search using the following keywords: dapsone, fixed drug eruption, and adverse cutaneous drug reaction. Bibliographies were also reviewed for pertinent articles. The results were combed for relevant papers and reviewed. Articles pertaining to dapsone-associated fixed drug eruption were included. Expert commentary: The majority of cases of dapsone-associated fixed drug eruption in the literature come from Africa or India where there is a high prevalence of patients treated for leprosy. Characteristics of these cases are similar to fixed drug eruption described in the western literature, with differences in frequency of multiple versus solitary lesions. Dapsone-associated fixed drug eruption should be considered when reviewing the drug history of a patient with fixed drug eruption. In the case of darker pigmented individuals, multiple fixed drug eruption lesions may be more common. Multiple lesions may mimic Kaposi's sarcoma in human immunodeficiency virus positive patients. Dapsone-associated fixed drug eruption should be considered in the differential diagnosis of multiple hyperpigmented lesions.

  5. Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    C. E. Sioris


    Full Text Available The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation and the Fourier Transform Spectrometer (ACE-FTS. The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue–Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12 % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of  ∼  1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue–Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.

  6. Latest Pleistocene crustal cannibalization at Baekdusan (Changbaishan) as traced by oxygen isotopes of zircon from the Millennium Eruption (United States)

    Cheong, Albert Chang-sik; Sohn, Young Kwan; Jeong, Youn-Joong; Jo, Hui Je; Park, Kye-Hun; Lee, Youn Soo; Li, Xian-Hua


    The silicic volcanism of Baekdusan (Changbaishan), which is on the border between North Korea and China, was initiated in the Late Pleistocene and culminated in the 10th century with a powerful (volcanic explosivity index = 7) commendite-trachyte eruption commonly referred to as the ;Millennium Eruption.; This study presents oxygen isotope data of zircon in trachydacitic pumices ejected during the Millennium Eruption, together with whole-rock geochemical and Sr-Nd-Pb isotopic data that manifest once again the A-type and EM1 affinities of the Millennium Eruption magma. The zircon crystals, dated by previous studies at ca. 12-9 ka, show a moderate inter-grain variation in δ18O from 3.69‰ to 5.03‰. These values are consistently lower than the normal mantle range, and interpreted to have resulted from the digestion of meteoric-hydrothermally altered intracaldera rocks in the shallow magma chamber beneath Baekdusan just prior to the crystallization of the zircons, rather than from derivation from low-δ18O sources deep in the mantle. The whole-rock geochemical/isotopic considerations suggest that the magma mainly self-cannibalized the earlier erupted volcanic carapace around the magma chamber. This study highlights the usefulness of zircon oxygen isotopes for characterizing past volcanic activity that has now been commonly eroded away and implies that the generation of Yellowstone-type low-δ18O magma is not a rare phenomenon in large-volume silicic eruptions.

  7. The palaeogeographic setting and the local environmental impact of the 130 ka Falconiera tuff-cone eruption (Ustica island, Italy) (United States)

    de Vita, Sandro; Foresta Martin, Franco


    This research focuses on the effects of the last eruption at Ustica (Suthern Tyrrhenian Sea, Italy), which formed the Falconiera tuff-cone at around 130 ka BP in the north-eastern tip of the island. This eruption was mainly explosive and phreatomagmatic, and emplaced a series of pyroclastic surge beds that formed an asymmetric tuff cone. This is the most easily recognizable volcanic edifice on Ustica, although its north-eastern sector has been partially eroded. A section of the feeding conduit is exposed northward, and is composed of lavas that fed the last stages of the eruption characterized by an intracrateric lava lake and a Strombolian scoria-fallout deposit. The eruption occurred during Upper Pleistocene Marine Isotopic Substage 5.5, a warm period characterized by a high sea-level stand (6±3 m above the present sea level in stable areas) and the diffusion of subtropical flora and fauna across the Mediterranean sea. This eruption slightly modified the morphology of Ustica, but impacted both marine and terrestrial environments, burying beach deposits rich in mollusk shells (i.e. Strombus bubonius, Conus testudinarius, Brachidontes puniceus), colonies of corals (Cladocora caespitosa) and subaerial plants (Chamaerops humilis). These organisms, found in some cases in their life position, along with other lines of evidence, provide information on the palaeogeography of this sector of the island at the time of the eruption, and on the local impact of this event on the environment.

  8. Tracking the hidden growth of a lava flow field: the 2014-15 eruption of Fogo volcano (Cape Verde) (United States)

    Silva, Sonia; Calvari, Sonia; Hernandez, Pedro; Perez, Nemesio; Ganci, Gaetana; Alfama, Vera; Barrancos, José; Cabral, Jeremias; Cardoso, Nadir; Dionis, Samara; Fernandes, Paulo; Melian, Gladys; Pereira, José; Semedo, Hélio; Padilla, German; Rodriguez, Fatima


    Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountaining, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows, spreading S (Flow 1), N-NW (Flow 2) and W (Flow 3). By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along Flow 2. When Flow 2 front stopped against the N caldera cliff, the whole flow field behind it inflated, and eventually its partial drainage produced a short tube that fed Flow 3, but no lava tube formed within Flow 1. Here we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field and through satellite image, in order to unravel the key factors leading to the development of lava tubes. These tubes were responsible for the rapid expansion of lava for the 7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for risk mitigation at this and other volcanoes.

  9. Time-series analysis of fissure-fed multi-vent activity: a snapshot from the July 2014 eruption of Etna volcano (Italy) (United States)

    Spina, L.; Taddeucci, J.; Cannata, A.; Sciotto, M.; Del Bello, E.; Scarlato, P.; Kueppers, U.; Andronico, D.; Privitera, E.; Ricci, T.; Pena-Fernandez, J.; Sesterhenn, J.; Dingwell, D. B.


    On 5 July 2014, an eruptive fissure opened on the eastern flank of Etna volcano (Italy) at 3.000 m a.s.l. Strombolian activity and lava effusion occurred simultaneously at two neighbouring vents. In the following weeks, eruptive activity led to the build-up of two cones, tens of meters high, here named Crater N and Crater S. To characterize the short-term (days) dynamics of this multi-vent system, we performed a multi-parametric investigation by means of a dense instrumental network. The experimental setup, deployed on July 15-16th at ca. 300 m from the eruption site, comprised two broadband seismometers and three microphones as well as high speed video and thermal cameras. Thermal analyses enabled us to characterize the style of eruptive activity at each vent. In particular, explosive activity at Crater N featured higher thermal amplitudes and a lower explosion frequency than at Crater S. Several episodes of switching between puffing and Strombolian activity were noted at Crater S through both visual observation and thermal data; oppositely, Crater N exhibited a quasi-periodic activity. The quantification of the eruptive style of each vent enabled us to infer the geometry of the eruptive system: a branched conduit, prone to rapid changes of gas flux accommodated at the most inclined conduit (i.e. Crater S). Accordingly, we were able to correctly interpret acoustic data and thereby extend the characterization of this two-vent system.

  10. Terror explosive injuries: a comparison of children, adolescents, and adults. (United States)

    Jaffe, Dena H; Peleg, Kobi


    We sought to characterize injuries and outcomes from terror explosions with specific attention to children (0-10 years) and adolescents (11-15 years) compared to adults (16-45 years). Terror explosions target vulnerable populations and result in multidimensional injuries that may vary according to age group. The relative dearth of information regarding terror-related injuries among children inhibits proper preparedness and optimum management during such an event. A retrospective study was performed using data from the national Israel Trauma Registry (October 2000 to December 2005). Included were civilians and nonactive military personnel hospitalized as a result of a terror explosion. During the 5.3-year study period, 49 children (0-10 years), 65 adolescents (11-15 years), and 723 adults (16-45 years) were hospitalized from terror explosions. Children were more likely than adults to sustain severe injuries (27% vs. 12%) and traumatic brain injury (35% vs. 20%) and less likely to sustain injuries to their extremities (35% vs. 57%) or open wounds (39% vs. 59%) (P terror explosions present with different injuries and hospital utilization and outcomes. These results further confirm that preparedness of a pediatric healthcare system is essential for effective management in the event of a future mass casualty incident.

  11. Chandra Finds Ghosts Of Eruption In Galaxy Cluster (United States)


    "Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot


    DEFF Research Database (Denmark)

    Friedrich, Walter L.; Sørensen, Annette Højen; Katsipis, Samson


    Conclusions Several detailed geological observations in the landscape of Santorini enable us to claim that the two harbour towns were located on the inner side of the caldera wall on the island of Thera prior to the Minoan Eruption. This hypothesis is in agreement with the excavation sites of Balos...... and Raos. The painted landscape in the fresco is highly comparable to what is seen in the two harbour sites discussed above. The water-filled caldera gave the inhabitants additional advantages: several natural harbours, good fishing grounds, and mineral resources. This new interpretation enables us to claim...

  13. Impact of volcanic eruptions on the marine carbon cycle (United States)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck


    the upper ocean and hence the atmosphere. Large-magnitude eruptions such as of Mount Pinatubo in 1991 were in fact followed by a slowing-down in the increase of atmospheric CO2 for several years, entailing a weakening of the global warming trend. For Mount Pinatubo it has been argued that the estimated CO2 uptake (1.6 x 1015 g C) could have been caused by rapid iron fertilization of the Southern Ocean with about 6.3 x 1015 g of ash. However, this would approximate the overall amount of the ash generated by the eruption, of which about 80% fell out over the South China Sea (~4.9 x 1015 g). This suggests additional avenues for the removal of CO2, among which the 1991 explosive eruption of Cerro Hudson could have played an important role as more than 2 km3 of the aerosols released by the volcano fell out directly over the Southern Ocean.

  14. The use of luminescence for dating young volcanic eruptions (United States)

    Schmidt, Christoph; Schaarschmidt, Maria; Kolb, Thomas; Richter, Daniel; Tchouankoue, Jean Pierre; Zöller, Ludwig


    Reliable chronologies of volcanic eruptions are vital for hazard analysis, but dating of Holocene and Late Pleistocene volcanism poses a major challenge. Established techniques such as 40Ar/39Ar are often problematic due to the long half-life of 40K or the absence of datable materials. In this context, luminescence dating methods are an alternative since they are applicable to Earth's most common minerals and to a range of different datable events. Luminescence signal resetting during volcanic activity can be caused by heat (lava, contact to lava), light (disintegration of ejecta) or (temperature-assisted) pressure in the course of phreatomagmatic explosions. While volcanogenic minerals assembling basalt or other volcanic rocks are less suitable for luminescence dating due to so-called anomalous fading, the signal of volcanogenically heated or fragmented country rock actually relates to the time of eruption as well and further provides reproducible results. This contribution aims to illustrate the potential of this latter approach by presenting two case studies. The first refers to two Late Pleistocene scoria cones in the Westeifel Volcanic Field (WEVF), Germany, of which the Wartgesberg locality was dated by 40Ar/39Ar and 14C, while the closeby Facher Höhe is chronologically poorly constrained (Mertz et al. 2015; pers comm. Luise Eichhorn, 2016). The former locality allows testing the accuracy of various luminescence techniques (thermoluminescence, TL, optically stimulated luminescence, OSL, infrared stimulated luminescence, IRSL) applied to quartz and feldspar against independent age control. The other study site is the monogenetic Lake Nyos Maar as part of the Cameroon Volcanic Line, having killed 1,700 people in 1986 following the release of large amounts of CO2. Previous dating efforts of the last explosive activity are inconsistent and yielded age estimates ranging from 400 a (14C) to >350 ka (K-Ar) (Aka et al. 2008). Our results demonstrate that multiple

  15. El Cobreloa: A geyser with two distinct eruption styles (United States)

    Namiki, Atsuko; Muñoz-Saez, Carolina; Manga, Michael


    We performed field measurements at a geyser nicknamed "El Cobreloa," located in the El Tatio Geyser Field, Northern Andes, Chile. The El Cobreloa geyser has two distinct eruption styles: minor eruptions and more energetic and long-lived major eruptions. Minor eruptions splash hot water intermittently over an approximately 4 min time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous liquid water-dominated eruption, and finally end with energetic steam discharge that continues for approximately 1 h. We calculated eruption intervals by visual observations, acoustic measurements, and ground temperature measurements and found that each eruption style has a regular interval: 4 h and 40 min for major eruptions and ˜14 min for minor eruptions. Eruptions of El Cobreloa and geochemical measurements suggest interaction of three water sources. The geyser reservoir, connected to the surface by a conduit, is recharged by a deep, hot aquifer. More deeply derived magmatic fluids heat the reservoir. Boiling in the reservoir releases steam and hot liquid water to the overlying conduit, causing minor eruptions, and heating the water in the conduit. Eventually the water in the conduit becomes warm enough to boil, leading to a steam-dominated eruption that empties the conduit. The conduit is then recharged by a shallow, colder aquifer, and the eruption cycle begins anew. We develop a model for minor eruptions which heat the water in the conduit. El Cobreloa provides insight into how small eruptions prepare the geyser system for large eruptions.

  16. Re-awakening of a Volcano: The 3. November 2002 eruption of El Reventador, NE Ecuador (United States)

    Reischmann, T.; Toulkeridis, T.; Aguillera, E.


    At 3 Nov 2002, 7.15 after a repose of 26 years "El Reventador" exploded unexpectedly forming a vulcanian type eruption with a volcanic explosivity index (VEI) of 4. Ecuador's easternmost and second most active continental volcano covered with a few million tons of ash a huge area of Ecuador, parts of Colombia, Peru and Brazil reaching even the islands of Galapagos. Reventador belongs to the few stratovolcanoes on the western edge of the Amazonian platform well east of the principal volcanic axis of the North Andean Volcanic Zone. The ca. 20.000 year old andesitic steep-sloping cone of the active volcano Reventador III is situated within the western end of an older steep-walled horse-shoe shaped caldera, which is open to the ESE. This caldera was formed by the previous volcanoes Reventador I and II, which reached an estimated height of ca. 600 m high above the actual edifice before their activities terminated in a sector collapse and lateral blast to the ESE. Lavas, pyroclastic flows, debris flows and lahars of Reventador III then filled the ca. 4 km wide caldera. In the morning of 3 Nov, unpredicted and within seconds, the volcano's WNW flank slided away in a large landslide against the western caldera wall, triggering a destructive, lateral blast of hot gas, steam, ash and rock debris that swept across the landscape. More than a third of the actual cone disappeared in Ecuador's biggest explosion of the last 120 years. Ongoing decompression of the magma caused the continuing eruption and the formation of an eruption column reaching 16 km height. A few hours later another ca. 12 km high eruption followed. Further minor eruptions generated lavas and pyroclasitic flows until the end of November while the emission of ash and gases (mainly H_2O and SO_2) continued until January. The porphyric volcanic rocks contain plag (An 40--70%), cpx, opx, occasionally amphibole and Fe-Ti oxides. Ash and rock fragments of the pyroclasitic flows have almost identical andesitic

  17. Sequential Assimilation of Volcanic Monitoring Data to Quantify Eruption Potential: Application to Kerinci Volcano, Sumatra

    Directory of Open Access Journals (Sweden)

    Yan Zhan


    Full Text Available Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the host rock around the shallow magma reservoir is trending toward tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.

  18. New Perspectives on the Climatic Impact of the 1600 Eruption of Huaynaputina Volcano, Peru (United States)

    Verosub, K. L.; Lippman, J.


    A critical test of the new understanding of volcanic aerosols developed since 1982 is to determine if it can predict the effects of larger eruptions than those that have occurred since El Chichon. To do that, requires detailed information about the effects of specific large eruptions. We have been investigating the human and climatic impacts of the 1600 eruption of Huaynaputina volcano in Peru. The estimated Volcanic Explosivity Index for this eruption is 6, which is comparable to that of the 1815 eruption of Tambora volcano in Indonesia, which produced global cooling and led to crop failures, famine and social unrest. On the basis of tree-ring data, Briffa et al. (1998) suggested that the most severe short-term Northern Hemisphere cooling event of the past 600 years occurred in 1601, the year following the Huaynaputina eruption. In order gain a better understanding of the nature and extent of this cooling, we have been collecting annual time series that provide information about climatic conditions during time intervals that bracket the Huaynaputina eruption. Among the time series that we have examined (or plan to examine) are ice conditions in the harbors of Tallinn, Estonia, and Riga, Latvia and in Lake Suwa in Japan: cherry blossom blooming (sakura) dates from Kyoto, Japan; records of agricultural production from China and Russia; tithe records from the Spanish colonial empire; dates of the beginning of the wine harvest in France and the rye harvest in Sweden; prices of agricultural commodities in Europe; and river flows from the Nile and the Colorado. Often, in the records we have examined, 1601 shows up as one of the coldest years, if not the coldest year. In addition, the worst famines in Russian history took place between 1601 and 1603, which eventually led to the overthrow of Tsar Boris Gudonov. Thus, there is considerable evidence that the climatic impacts of the Huaynaputina eruption were comparable to those from the Tambora eruption. This result is

  19. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981 (United States)

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.


    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  20. Global Significant Volcanic Eruptions Database, 4360 BC to present (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  1. Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala (United States)

    Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo


    Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We

  2. Photoacoustic Sensing of Explosives (United States)


    weight (6 kg), and its power require- ments (24 W) allow for the high portability of the system. Laser vibrometer measurement, 2 meters from target...2515 P ar tic le v el oc ity (× 1 0 μ m /s ) −1 −2 2 0 1 −1 −2 2 0 1 −1 −2 2 0 1 The laser vibrometer and processing algorithms clearly...technique is depicted for a moving system. Note that the laser vibrometer measures the vibrations caused by the explosive vaporization process. At the same

  3. Volcanic Eruptions, Landscape Disturbance, and Potential Impacts to Marine and Terrestrial Ecosystems in Alaska: An Example from the August 2008 Eruption of Kasatochi Volcano (United States)

    Waythomas, C. F.; Drew, G. S.


    The magnitude, style, and sometimes-prolonged nature of volcanic activity in Alaska has had significant impact on ecological habitat. The accumulation of volcaniclastic deposits during eruptions have destroyed or altered areas important to the success of various species and it may take years to decades for landforms and surfaces to recover and become habitable again. Kasatochi volcano, in the Aleutian Islands of Alaska, erupted explosively on August 7-8, 2008 and the rich nesting habitat for several species of seabirds on the island was completely destroyed. The eruption produced thick pyroclastic fall and flow deposits and several SO2 rich ash-gas plumes that reached 14 to 18 km above sea level. Pyroclastic deposits are several tens of meters thick, blanket the entire island, and initially extended seaward to increase the diameter of the island by about 800 m. Wave and gully erosion have modified these deposits and have exhumed some pre-eruption surfaces. Analysis of surface erosional features observed in satellite and time-lapse camera images and field studies have shown that by September 2009, gully erosion removed 300,000-600,000 m3 of mostly fine-grained volcanic sediment from the volcano flanks and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins are about 104 m3km-2yr-1 and are comparable to sediment yields at other active volcanoes outside of Alaska. Coastal erosion rates at Kasatochi are as high as 80-140 myr-1 and parts of the northern coastline have already been eroded back to pre-eruption positions. As of March, 2011 about 72% of the material emplaced beyond the pre-eruption coastline on the northern sector of the island has been removed by wave erosion. Parts of the southern coastline have prograded beyond the post-eruption shoreline as a result of long-shore transport of sediment from north to south. As of March 2011, the total volume of material eroded by wave action was about 107 m3. The preferred

  4. Mechanism of Human Tooth Eruption: Review Article Including a New Theory for Future Studies on the Eruption Process

    Directory of Open Access Journals (Sweden)

    Inger Kjær


    Full Text Available Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly discussed in the introduction. Human studies, mainly clinical and radiological, have focused on normal eruption and gender differences. Why a tooth begins eruption and what enables it to move eruptively and later to end these eruptive movements is not known. Pathological eruption courses contribute to insight into the aetiology behind eruption. A new theory on the eruption mechanism is presented. Accordingly, the mechanism of eruption depends on the correlation between space in the eruption course, created by the crown follicle, eruption pressure triggered by innervation in the apical root membrane, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses.

  5. Sacrificial fragmentation and superheated foaming trigger of explosive volcanism (United States)

    Lavallée, Yan; Cimarelli, Corrado; Hornby, Adrian; Johnson, Jeffrey; Kendrick, Jackie; von Aulock, Felix; Wadsworth, Fabian; Rhodes, Emma; Kennedy, Ben; Andrews, Benjamin; Chigna, Gustavo; Dingwell, Donald


    The most common occurrence of volcanic activity is at lava domes. Active domes tend to experience near sudden episodes of gas-and-ash explosion on a daily basis and sometimes several times per day. This unpredictable behaviour is an expression of magma forced to undergo fragmentation due to gas overpressure. Here, Examination of dome activity reveals that gas-and-ash explosions are concordant with inflation/deflation cycles that are faster than during simple outgassing episodes. Although frequent, these gas-and-ash explosions usually leave the dome intact as strain is almost entirely accommodated along repeatedly activated marginal faults, as seen at Santiaguito, Guatemala. We present petrological evidence that gas-and-ash eruptions are the product of fragmentation due to "superheated foaming" along fault zones. Textural analysis reveals chemically heterogeneous melt filaments emerging from crystals in the ash generated by fragmentation in these events. The same texture is observed in high-velocity, rotary-shear experiments on Santiaguito dome lava. The frictional melting is experimentally generated after mere centimetres of slip of these lavas, and yields foaming of the interstitial melt adjacent to the slip zone. Rapid and intense local frictional heating can explain both the foaming and the fragmentation cycles of these magmas. Gas-and-ash explosions exhibited in the dome at Santiaguito are hence controlled by the inevitable frictional heating which results from tenacious strain localisation, whereby lava is "sacrificially" fragmented along faults in order to preserve the bulk of the dome. We discuss how this new fragmentation trigger may underline the most common type of explosive activity.

  6. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring. (United States)

    de Moor, J Maarten; Aiuppa, A; Avard, G; Wehrmann, H; Dunbar, N; Muller, C; Tamburello, G; Giudice, G; Liuzzo, M; Moretti, R; Conde, V; Galle, B


    Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO 2 -rich gas (CO 2 /S total  > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10 km deep, whereas the shallow magmatic gas source is at ~3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H 2 S/SO 2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO 2 and H 2 S/SO 2  > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H 2 S/SO 2  < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.

  7. The eruptive history and magmatic evolution of Aluto volcano: new insights into silicic peralkaline volcanism in the Ethiopian rift (United States)

    Hutchison, William; Pyle, David M.; Mather, Tamsin A.; Yirgu, Gezahegn; Biggs, Juliet; Cohen, Benjamin E.; Barfod, Dan N.; Lewi, Elias


    The silicic peralkaline volcanoes of the East African Rift are some of the least studied volcanoes on Earth. Here we bring together new constraints from fieldwork, remote sensing, geochronology and geochemistry to present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in a densely populated section of the Main Ethiopian Rift. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at 316 ± 19 ka and 306 ± 12 ka developing a 42 km2 collapse structure. After a hiatus of 250 ka, a phase of post-caldera volcanism initiated at 55 ± 19 ka and the most recent eruption of Aluto has a radiocarbon age of 0.40 ± 0.05 cal. ka BP. During this post-caldera phase highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (> 80%) of basalt that is compositionally similar to rift-related basalts found east of the complex. Based on the style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes in the range 1-100 × 106 m3.

  8. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. (United States)

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard


    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century "mystery eruption." Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km(3) (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257.

  9. The Sulfur Dioxide Plume from the February 26, 2000 Eruption of Mt. Hekla, Iceland (United States)

    Krueger, Arlin J.; Krotkov, N. A.; Einaudi, Franco (Technical Monitor)


    The February 2000 fissure eruption of Mt. Hekla, Iceland was captured in sulfur dioxide data from the Earth Probe TOMS. A special algorithm is used to discriminate sulfur dioxide from ozone. The eruption began at 18:19 GMT on February 26, 2000 and was first viewed by TOMS at 09:55 GMT on February 27. The volcanic cloud at that time appeared as a very long and narrow arc extending west from the volcano in southern Iceland, then north across Greenland, and finally east towards Norway. The cloud altitude was reported from aircraft sightings and data to be above 10 km. The circulation of a ridge located north of Iceland produced the large arc shaped cloud. As the eruption is non-explosive the high altitude cloud contains little ash. Almost all the ash from the eruption fell out locally across Iceland. By February 29, the sulfur dioxide cloud had drifted eastward in a band along the Barents Sea coast of Norway and Russia. The analysis includes an assessment of the initial sulfur dioxide content and its rate of conversion to sulfate.

  10. Petrological and seismic precursors of the paroxysmal phase of the last Vesuvius eruption on March 1944. (United States)

    Pappalardo, Lucia; D'Auria, Luca; Cavallo, Andrea; Fiore, Stefano


    Abrupt transitions in style and intensity are common during volcanic eruptions, with an immediate impact on the surrounding territory and its population. Defining the factors trigger such sudden shifts in the eruptive behavior as well as developing methods to predict such changes during volcanic crises are crucial goals in volcanology. In our research, the combined investigation of both petrological and seismic indicators has been applied for the first time to a Vesuvius eruption, that of March 1944 that caused the present dormant state of the volcano. Our results contribute to elucidate the evolution of the conduit dynamics that generated a drastic increase in the Volcanic Explosivity Index, associated to the ejection of huge amount of volcanic ash. Remarkably, our study shows that the main paroxysm was announced by robust changes in petrology consistent with seismology, thus suggesting that the development of monitoring methods to assess the nature of ejected juvenile material combined with conventional geophysical techniques can represent a powerful tool for forecasting the evolution of an eruption towards violent behavior. This in turn is a major goal in volcanology because this evidence can help decision-makers to implement an efficient safety strategy during the emergency (scale and pace of evacuation).

  11. Petrological and seismic precursors of the paroxysmal phase of the last Vesuvius eruption on March 1944 (United States)

    Pappalardo, Lucia; D'Auria, Luca; Cavallo, Andrea; Fiore, Stefano


    Abrupt transitions in style and intensity are common during volcanic eruptions, with an immediate impact on the surrounding territory and its population. Defining the factors trigger such sudden shifts in the eruptive behavior as well as developing methods to predict such changes during volcanic crises are crucial goals in volcanology. In our research, the combined investigation of both petrological and seismic indicators has been applied for the first time to a Vesuvius eruption, that of March 1944 that caused the present dormant state of the volcano. Our results contribute to elucidate the evolution of the conduit dynamics that generated a drastic increase in the Volcanic Explosivity Index, associated to the ejection of huge amount of volcanic ash. Remarkably, our study shows that the main paroxysm was announced by robust changes in petrology consistent with seismology, thus suggesting that the development of monitoring methods to assess the nature of ejected juvenile material combined with conventional geophysical techniques can represent a powerful tool for forecasting the evolution of an eruption towards violent behavior. This in turn is a major goal in volcanology because this evidence can help decision-makers to implement an efficient safety strategy during the emergency (scale and pace of evacuation).

  12. Conduit speed limit promotes formation of explosive `super slugs' (United States)

    Llewellin, E. W.; Burton, M. R.; Mader, H. M.; Polacci, M.


    Strombolian activity - characterized by discrete, impulsive explosions - is common at basaltic volcanoes. The explosions are caused by the arrival, at the volcanic vent, of over-pressured `slugs' of magmatic gas, which have ascended the volcanic conduit. We present data from large-scale analogue experiments which reveal a previously-undescribed process which promotes the formation of large, highly over-pressured `super slugs'. We propose that these large slugs may drive the most violent Strombolian eruptions. Experiments were performed at the Large Analogue Volcano Apparatus at Durham University, UK, which comprises a 13m tall, 24cm diameter transparent conduit, surmounting a reservoir of analogue magma held at constant pressure. We simulate a vesiculation event deep in the sub-volcanic plumbing system by fluxing gas into the reservoir. Magma analogues with a range of viscosities are used, giving slug Reynolds numbers in the range 16 to 140,000. At moderate-to-high Reynolds number, we find that the gas rapidly self-organizes to form a conduit-filling lead slug; this slug ascends the column slowly, at a velocity limited by the flux of the falling film of liquid around it. Trailing bubbles, which ascend through the wake of the lead slug, rise much more rapidly. As they catch and coalesce with the lead slug, it grows and becomes increasingly over-pressured. This mechanism causes large slugs to form rapidly and we propose that it underpins the formation of the very large slugs that are responsible for the most explosive strombolian eruptions.

  13. Laser machining of explosives (United States)

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.


    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  14. Forecasting eruptions using pre-eruptive seismic patterns at Sinabung Volcano, Indonesia (United States)

    McCausland, W. A.; White, R. A.; Hendrasto, M.; Gunawan, H.; Indrastuti, N.; Triastuti, H.; Suparman, Y.; Putra, A.


    Forecasting the size, timing and style of volcanic eruptions is of primary interest to observatories and civil authorities world-wide, yet most observatories only have access to long-term data at a very limited number of volcanoes under their jurisdiction. When extensive long-term data sets are available to responsible agencies, volcanic eruptive size, timing and style can usually be successfully forecast using current monitoring data and knowledge of precursory eruptive patterns, enabling the communication of timely forecasts to civil authorities. Experienced agencies, such as Indonesia's Center for Volcanology and Geologic Hazards Mitigation and the USAID-USGS Volcano Disaster Assistance Program, utilize extensive collective experiences with multiple monitoring streams over multiple eruption cycles and across volcano types to successfully forecast eruption size, style and onset, as well as changes in eruptive style and size within ongoing eruptions. The longest-term real-time monitoring parameter commonly available at volcanoes worldwide is seismic data. Seismic data is a direct measure of rate-dependent strain changes in the magmatic system from the deep magmatic input to shallow eruptive processes. Patterns of pre-eruptive earthquakes coupled with other available monitoring data and conceptual models of magma ascent enable short-term forecasting of eruption size, style, and onset. First order event locations, characterization of background seismicity, and changes in earthquake types and energy release are most important to successful eruption forecasting. This study demonstrates how this approach has been used to successfully forecast eruption onsets, changes in eruptive style, and to change alert levels and extend or contract evacuation zones during the ongoing eruption of Sinabung Volcano, Indonesia.

  15. Flux Cancelation: The Key to Solar Eruptions (United States)

    Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv


    Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDOAIA and SDOHIM data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs. We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.

  16. Satellite observations of lightning-generated NOx in volcanic eruption clouds (United States)

    Carn, Simon; Krotkov, Nickolay; Pickering, Ken; Allen, Dale; Bucsela, Eric


    The generation of NO2 by lightning flashes is known to be an important source of NOx in the free troposphere, particularly in the tropics, with implications for ozone production. Although UV-visible satellite observations of lightning-generated NOx (LNOx) in thunderstorms have been previously reported, here we present the first satellite observations of LNOx generated by lightning in explosive volcanic eruption clouds (vLNOx) from the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. To date we have identified vLNOx in operational OMI NO2 measurements (OMNO2) during the high-latitude eruptions of Okmok (Aleutian Is; July 2008), Kasatochi (Aleutian Is; August 2008), Redoubt (Alaska; March 2009) and Grimsvötn (Iceland; May 2011), although analysis of OMNO2 data for other eruptions is underway. We use World Wide Lightning Location Network (WWLLN) observations to verify the occurrence and location of lightning flashes in the volcanic eruption clouds. All the vLNOx anomalies are associated with strong UV Aerosol Index (UVAI) signals due to volcanic ash. Preliminary analysis shows that the maximum vLNOx column detected by OMI decreases linearly with time since eruption, and suggests that the vLNOx signal is transient and can be detected up to ~5-6 hours after an eruption. Detection of vLNOx is hence only possible for eruptions occurring a few hours before the daytime OMI overpass. Based on the number of lightning flashes detected by WWLLN in each eruption cloud, we also estimate the vLNOx production efficiency (moles vLNOx per flash). Preliminary estimates for the 2008 Kasatochi eruption suggest that this is significantly higher than the production efficiency in thunderstorms, but may be biased high due to the low detection efficiency of WWLLN (tropospheric NO2 background and applies an appropriate air mass factor to convert the slant column LNO2 to a vertical column of LNOx. However, OMI measurements of LNOx in thunderstorms suggest that any NOx below the

  17. Post 19 ka B.P. eruptive history of Ulleung Island, Korea, inferred from an intra-caldera pyroclastic sequence (United States)

    Kim, G. B.; Cronin, S. J.; Yoon, W. S.; Sohn, Y. K.


    Ulleung Island is a Quaternary volcanic island located in the mid-western part of the East Sea (Sea of Japan) back-arc basin, which has erupted from the Pliocene until the late Holocene. This study focuses on reconstructing the latest eruptive history of the island by describing the sedimentological and stratigraphic characteristics of the most recent, trachytic/phonolitic pyroclastic sequence, named the Nari Tephra Formation. This formation is preserved as a succession of unwelded pyroclastic and epiclastic deposits within an embayed margin of the Nari Caldera. The embayment acted as a topographic trap for proximal pyroclastic deposits, and contains a complete record of the past 19,000 years of eruption history. The formation includes evidence for five separate eruptive episodes (Member N-1 to N-5), with intervening weathered and/or soil horizons indicating hundreds to thousands of years of repose between each eruption. Eruption styles and depositional mechanisms varied between and during individual episodes, reflecting changing dynamics of the magma plumbing system, magmatic gas coupling, and a variable role of external water. Extra-caldera sequences show that only a few of these eruptions generated sustained eruption columns or pyroclastic density currents (PDCs) large enough to overtop the caldera wall. Thus tephra sequences outside the caldera provide an underestimate of eruption frequency, and care needs to be taken in the interpretation and correlation to distal tephra sequences recognized in marine and terrestrial records. In addition, topographic effects of caldera structures should be considered for the assessment of PDC-related hazards in such moderately sized pyroclastic eruptions.

  18. Explosives detection for aviation security. (United States)

    Fainberg, A


    The threat of terrorism against commercial aviation has received much attention in the past few years. In response, new ways to detect explosives and to combine techniques based on different phenomena into integrated security systems are being developed to improve aviation security. Several leading methods for explosives and weapons detection are presented.

  19. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  20. 'Home Plate' Evidence for an Explosive Past (United States)


    This view of layers around the edge of a low plateau called 'Home Plate' inside Mars' Gusev Crater includes a feature that may be what geologists call a 'bomb sag' and interpret as evidence of an explosive event, such as a volcanic eruption. The layers seen here are generally straight and parallel except in the lower right, where they dip around a greyish rock that is about 4 centimeters (about 1.5 inches) in diameter. When layered deposits are struck by a falling rock while the layers are still soft, this type of pattern can be created. The rock might have been lofted by a volcanic burst or as part of the material ejected by the crater-forming impact of a meteorite. The panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit acquired the exposures for this image on Spirit's 754th Martian day (Feb. 15, 2006). This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.

  1. Public and Media Communication of Volcanic Hazard Before and During the 2010 Eruption in Eyjafjallajökull, Iceland (United States)

    Gylfason, A. G.; Gudmundsson, M. T.; Jakobsdottir, S.; Reynisson, V.


    The 39 day long explosive eruption in Eyjafjallajökull was the largest natural hazard event in Iceland for decades. It began with a small flank eruption in March, but the main event was the explosive summit eruption. The flooding that resulted from melting of ice at the eruption site posed considerable danger for the local population, fallout of ash made conditions south of the volcano difficult for several weeks, threatening the future of farming in this rural area, and lead to unprecedented disruption to air traffic in Europe and the North Atlantic. About 800 people were evacuated in a hurry three times during these events because of imminent flood hazard, but fortunately no dwellings were damaged and people could usually return to their homes the same day. These events called for extensive media coverage, both locally and internationally. Some staff at research institutes had for several days to devote their time exclusively to giving interviews to the international media. Scientific communication with the local population was mainly conducted through four channels: (1) the web pages of institutions, (2) the national media; (3) indirectly at meetings on the status of the eruption with local and national officials, and (4) public meetings in the affected areas. In addition the scientific community issued daily status reports to the Department of Civil Protection and Emergency Management, these reports served both national and local Civil Protection officials when preparing their statements on the eruption and answer basic questions from the media. During media communication, it is important to stick to facts, avoid speculation and use plain language without scientific jargon. However, the most critical part of the communication occurred in the years before the eruption through meetings with the local inhabitants. At these meetings the results of a detailed hazard assessment on eruptions in Eyjafjallajökull and the neighboring ice-filled Katla caldera where

  2. Eyjafjallajökull2010 - The activity of the eruption plume during the first 2 weeks (United States)

    Sigurősson, Árni; Pálmason, Bolli; Hlíőar Jensen, Esther; Petersen, Gudrun Nina; Björnsson, Halldór; Şorsteinsson, Hróbjartur; Arason, Şórőur


    On 14 April 2010 an eruption started in Eyjafjallajökull, in southern Iceland. This was an explosive eruption in the caldera, beneath the glacier. During the first two weeks the eruption went through two phases, an explosive phase with much tephra and ash production and a calmer phase with less productivity and some lava production. During the explosive phase 14-17 April, the plume altititude was about 5-7 km but occasionally increased up to 8 km height, there was lightning activity in the plume and the material produced was mainly ash and tephra. It is estimated that the production was peaked at about 750 tons/s. The local ash fall on 17 April was the worst by far for the local community to the south of the volcano as about a 1 km thick ash cloud flowed almost continuously from the volcano and over the region. During this phase the upper level winds over Iceland were strong, northwesterly 40-50 m/s, and the emitted ash was advected southeastward toward northwestern Europe. This caused major disruption in air traffic. During the second phase 18-29 April there was a reduced net output form the volcano, lava production was estimated as 10-30 tons/s and tephra and ash production of less than 10 tons/s. The height of the plume was estimated as 3-5 km. Local ash fall predictions were made for the areas within a 500 km radius from the eruption site and prediction maps published on the website of the Icelandic Met Office. Information on local ash fall were collected from synoptic weather stations but also from the general public and the media. An internet web registration form was made public and advertised. In 6 days 95 reports of ash fall were made. This information together with other ground observations and remote sense observations are important for validations of ash fall prediction, near field and far field, as well as ensuring that the impact of the volcanic eruption is well understood, in a geological, geophysical and biological sense but also the societal

  3. Microbial bioreporters of trace explosives. (United States)

    Shemer, Benjamin; Koshet, Ori; Yagur-Kroll, Sharon; Belkin, Shimshon


    Since its introduction as an explosive in the late 19th century, 2,4,6-trinitrotoluene (TNT), along with other explosive compounds, has left numerous environmental marks. One of these is widespread soil and water pollution by trace explosives in military proving grounds, manufacturing facilities, or actual battlefields. Another dramatic impact is that exerted by the millions of landmines and other explosive devices buried in large parts of the world, causing extensive loss of life, injuries, and economical damage. In this review we highlight recent advances in the design and construction of microbial bioreporters, molecularly engineered to generate a quantifiable dose-dependent signal in the presence of trace amounts of explosives. Such sensor strains may be employed for monitoring environmental pollution as well as for the remote detection of buried landmines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The role of turbulence in explosive magma-water mixing (United States)

    Mastin, L. G.; Walder, J. S.; Stern, L. A.


    Juvenile tephra from explosive hydromagmatic eruptions differs from that of dry magmatic eruptions by its fine average grain size and highly variable vesicularity. These characteristics are generally interpreted to indicate that fragmentation, which occurs in dry magmas by bubble growth, is supplemented in hydromagmatic eruptions by quench-fracturing. Quench fragmentation is thought to accelerate heat transfer to water, driving violent steam expansion and increasing eruptive violence. Although some observed hydromagmatic events (e.g. at Surtsey) are indeed violent, others (e.g. quiescent entry of lava into the ocean at Kilauea) are not. We suggest that the violence of magma-water mixing and the grain size and dispersal of hydromagmatic tephras are controlled largely by the turbulence of magma-water mixing. At Surtsey, fine-grained, widely dispersed hydromagmatic tephras were produced primarily during continuous uprush events in which turbulent jets of magma and gas passed through shallow water (Thorarinsson, 1967). During Kilauea's current eruption, videos show generation of fine-grained tephras when turbulent jets of magma, steam, and seawater exited through skylights at the coastline. Turbulence intensity, or the fraction of total jet kinetic energy contained in fine-scale turbulent velocity oscillations, has long been known to control the scale of atomization in spray nozzles and the rate of heat transfer and chemical reaction in fuel injectors. We hypothesize that turbulence intensity also influences grain size and heat transfer rate in magma-water mixing, though such processes are complicated by boiling (in water) and quench fracturing (in magma). We are testing this hypothesis in experiments involving turbulent injection of water (a magma analog) into liquid nitrogen (a water analog). We also suggest that turbulent mixing influences relative proportions of magma and water in hydromagmatic eruptions. Empirical studies indicate that pressure-neutral turbulent

  5. Understanding Vulcanian Explosions at Soufriere Hills Volcano, Montserrat, using Dilatometer Data (United States)

    Hidayat, D.; Sacks, S.; Linde, A.; Voight, B.; Widiwijayanti, C.; Elsworth, D.; Mattioli, G.; Malin, P.; Shalev, E.


    The collapse of the Soufriere Hills Volcano lava dome on Montserrat in July 2003, the largest such event worldwide in the historical record, was followed by several vulcanian explosions. Here we report on dilatometer data recording pressurisation the magma conduit for three of these explosions. Strain data for these explosions are characterized by contractive dilatation offset at all dilatometer sites, from 5.4 to 9.3 km from the crater. The data suggest an idealized vertical ellipsoidal source centered at about 2 km depth below the crater conduit. Contraction is indicated with overpressure ~10 MPa estimated for a source with semi- major and semi-minor length of 2000 m and 15 m, respectively. Barometer data show the influence of atmospheric pressure changes on the dilatometer strains, and give further information on eruption dynamics.

  6. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004 (United States)

    Petersen, T.


    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  7. Caribbean AIDS explosion examined. (United States)


    Homophobia, sex tourism, infidelity, and poverty are major factors causing a rapid explosion of AIDS and increasingly infecting women in the Caribbean. The region has the second largest incidence of AIDS in the world after Africa. The number of people with the HIV virus is likely greater than 500,000 and could be as high as 700,000, about twice the previously reported figures. Societal norms encourage homosexuals to have heterosexual relationships, and married men to have extramarital affairs, while poverty forces men and women to prostitution, often with tourists. In addition, a survey of 8100 school children in 4 English-speaking Caribbean islands revealed that 42% of the children had experienced sex before the age of 10 years; 62% had experienced it by age 12. This finding may reflect a high rate of child molestation in the region.

  8. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.


    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  9. Mixing in explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L.


    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulatio