WorldWideScience

Sample records for sustainable water infrastructure

  1. Sustainable Water Infrastructure

    Science.gov (United States)

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  2. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  3. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    Science.gov (United States)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  4. Sustainable Water Infrastructure Asset Management: A Gap Analysis of Customer and Service Provider Perspectives

    Directory of Open Access Journals (Sweden)

    Sangjong Han

    2015-09-01

    Full Text Available The ultimate goal of urban water infrastructure asset management may be sustainable water supply with satisfaction for customers. In this work, we attempted to evaluate the gaps between the perspectives of customers and service providers in Korea’s water infrastructure asset management. To evaluate the customers’ perspective, a hierarchical questionnaire survey was conducted to estimate the weights of influence for six customer values and their attributes on Korean water utility management. To evaluate the service providers’ perspective, an AHP (Analytic Hierarchy Process analysis was performed to estimate the weights of influence for the customer values and their PIs (performance indicators. The gap analysis results show that customers place higher value on customer service satisfaction (emotion and information than do the service providers (managers, whereas the managers place more value on affordability than do the customers. The findings from this work imply that improving customer service is effective in satisfying the desirable water LOS (level of service for customers. Recommendations have also been provided for administrators and engineers to develop integrated decision-making systems that can reflect customer needs regarding the improvement of their water infrastructure asset management. The findings from this work may be helpful for the Korean government and water supply utilities in improving the sustainability of their water infrastructure asset management.

  5. When good practices by water committees are not relevant: Sustainability of small water infrastructures in semi-arid mozambique

    Science.gov (United States)

    Ducrot, Raphaëlle

    2017-12-01

    This paper explores the contradiction between the need for large scale interventions in rural water supplies and the need for flexibility when providing support for community institutions, by investigating the implementation of the Mozambique - National Rural Water Supply and Sanitation Program in a semi-arid district of the Limpopo Basin. Our results showed that coordinated leadership by key committee members, and the level of village governance was more important for borehole sustainability than the normative functioning of the committee. In a context in which the centrality of leadership prevails over collective action the sustainability of rural water infrastructure derives from the ability of leaders to motivate the community to provide supplementary funding. This, in turn, depends on the added value to the community of the water points and on village politics. Any interventions that increased community conflicts, for example because of lack of transparency or unequitable access to the benefit of the intervention, weakened the coordination and the collective action capacity of the community and hence the sustainability of the infrastructures even if the intervention was not directly related to water access. These results stress the importance of the project/program implementation pathway.

  6. First National Expert and Stakeholder Workshop on Water Infrastructure Sustainability and Adaptation to Climate Change

    Science.gov (United States)

    EPA Office of Research and Development (ORD) and EPA Office of Water (OW) joinined efforts to assess and evaluate programmatic, research & development (R&D) needs for sustainable water infrastructure development and effective adaptation to climate changes. The purpose of this pr...

  7. AGING WATER INFRASTRUCTURE RESEARCH PROGRAM: ADDRESSING THE CHALLENGE THROUGH INNOVATION

    Science.gov (United States)

    A driving force behind the Sustainable Water Infrastructure (SI) initiative and the Aging Water Infrastructure (AWI) research program is the Clean Water and Drinking Water Infrastructure Gap Analysis. In this report, EPA estimated that if operation, maintenance, and capital inves...

  8. Possibilities of information infrastructure in evaluation of environmental pollution and water quality by implementing the solutions of sustainable development

    OpenAIRE

    Ramutė Naujikienė; Dalė Dzemydienė

    2014-01-01

    The purpose – of the article is attached to the examination of information infrastructure for the assessment of water resource planning and water treatment activities, to provide data warehouse (DW) analysis measuring environmental and water pollution and indicators for the evaluation based on the requirements of sustainable development.Methodology – the analysis is performed by revealing the factors affecting sustainable development decisions. The insights of scientists are demonstrated by a...

  9. Adapting Water Infrastructure to Non-stationary Climate Changes

    Science.gov (United States)

    Water supply and sanitation are carried out by three major types of water infrastructure: drinking water treatment and distribution, wastewater collection and treatment, and storm water collection and management. Their sustainability is measured by resilience against and adapta...

  10. A Framework for Discussing e-Research Infrastructure Sustainability

    Directory of Open Access Journals (Sweden)

    Daniel S Katz

    2014-07-01

    Full Text Available e-Research infrastructure is increasingly important in the conduct of science and engineering research, and in many disciplines has become an essential part of the research infrastructure. However, this e-Research infrastructure does not appear from a vacuum; it needs both intent and effort first to be created and then to be sustained over time. Research cultures and practices in many disciplines have not adapted to this new paradigm, due in part to the absence of a deep understanding of the elements of e-Research infrastructure and the characteristics that influence their sustainability. This paper outlines a set of contexts in which e-Research infrastructure can be discussed, proposes characteristics that must be considered to sustain infrastructure elements, and highlights models that may be used to create and sustain e-Research infrastructure. We invite feedback on the proposed characteristics and models presented herein.

  11. Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure

    Science.gov (United States)

    Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...

  12. The post-2015 delivery of universal and sustainable access to infrastructure services. Working Paper

    Energy Technology Data Exchange (ETDEWEB)

    Doczi, Julian, Dorr, Tobias; Mason, Nathaniel; Scott, Andrew

    2013-06-15

    In this new working paper, the authors focus specifically on what would be necessary to achieve High Level Panel-style goals and targets for water, energy and transport, if these were to be eventually adopted by world leaders. In all three cases, much of the advocacy - and the proposed High Level Panel goals - have emphasized the need to strive for universal and sustainable access to at least basic levels of services from these sectors. Many of the proposals for post-2015 goals and targets appear ambitious, but what would it take to achieve them? This paper assesses what is needed to achieve goals for universal and sustainable access to infrastructure, specifically water, energy and transport. Using illustrative goals and targets, the paper reviews the development challenges in each sector, and what will be necessary to overcome the barriers to universal and sustainable access to water, energy and transport infrastructure services, in the areas of governance, finance, capacity development and environmental protection. The paper ends with general conclusions about infrastructure in the post-2015 development agenda.

  13. Green Infrastructure, Groundwater and the Sustainable City

    Science.gov (United States)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  14. Using Envision to Assess the Sustainability of Groundwater Infrastructure: A Case Study of the Twin Oaks Aquifer Storage and Recovery Project

    Directory of Open Access Journals (Sweden)

    Cody R. Saville

    2016-05-01

    Full Text Available The ISI (Institute for Sustainable Infrastructure Envision rating system is designed to be a comprehensive sustainability assessment that can be applied to a wide range of infrastructure projects, including water supply. With water supply resiliency, a prominent concern in many arid and semi-arid regions, the implementation of a water sustainability metric would be beneficial to both regulators and planners. This review seeks to assess the merit of applying Envision to water infrastructure projects specifically designed to enhance supply resiliency by retroactively rating the San Antonio Water System (SAWS Twin Oaks Aquifer Storage and Recovery (ASR project. In this review, we find that the novelty and innovation inherent in ASR is largely overlooked by Envision, which often does not evaluate sector-specific concepts. Furthermore, the project-oriented focus of Envision does not analyze water supply systems, or any infrastructure system, as a whole. This paper proposes that a water specific sustainability index be used in conjunction with Envision, to more specifically address concerns for water supply.

  15. Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure - abstract

    Science.gov (United States)

    Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...

  16. Water Resources Sustainability in Northwest Mexico: Analysis of Regional Infrastructure Plans under Historical and Climate Change Scenarios

    Science.gov (United States)

    Che, D.; Robles-Morua, A.; Mayer, A. S.; Vivoni, E. R.

    2012-12-01

    management. Our results are presented in the form of flow duration, reliability and exceedence frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate to build confidence among regional stakeholders in utilizing hydrological models in the development of water infrastructure plans and to foster conversations that address water sustainability issues.

  17. Sustainability considerations for health research and analytic data infrastructures.

    Science.gov (United States)

    Wilcox, Adam; Randhawa, Gurvaneet; Embi, Peter; Cao, Hui; Kuperman, Gilad J

    2014-01-01

    The United States has made recent large investments in creating data infrastructures to support the important goals of patient-centered outcomes research (PCOR) and comparative effectiveness research (CER), with still more investment planned. These initial investments, while critical to the creation of the infrastructures, are not expected to sustain them much beyond the initial development. To provide the maximum benefit, the infrastructures need to be sustained through innovative financing models while providing value to PCOR and CER researchers. Based on our experience with creating flexible sustainability strategies (i.e., strategies that are adaptive to the different characteristics and opportunities of a resource or infrastructure), we define specific factors that are important considerations in developing a sustainability strategy. These factors include assets, expansion, complexity, and stakeholders. Each factor is described, with examples of how it is applied. These factors are dimensions of variation in different resources, to which a sustainability strategy should adapt. We also identify specific important considerations for maintaining an infrastructure, so that the long-term intended benefits can be realized. These observations are presented as lessons learned, to be applied to other sustainability efforts. We define the lessons learned, relating them to the defined sustainability factors as interactions between factors. Using perspectives and experiences from a diverse group of experts, we define broad characteristics of sustainability strategies and important observations, which can vary for different projects. Other descriptions of adaptive, flexible, and successful models of collaboration between stakeholders and data infrastructures can expand this framework by identifying other factors for sustainability, and give more concrete directions on how sustainability can be best achieved.

  18. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  19. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  20. Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus

    Directory of Open Access Journals (Sweden)

    Weiwei Mo

    2018-06-01

    Full Text Available A modeling framework was conceptualized for capturing the complexities in resilience and sustainability associated with integration of centralized and decentralized water and energy systems under future demographic, climate, and technology scenarios. This framework integrates survey instruments for characterizing individual preferences (utility functions related to decentralization of water and energy infrastructure systems. It also includes a spatial agent-based model to develop spatially explicit adoption trajectories and patterns in accordance with utility functions and characteristics of the major metropolitan case study locations as well as a system dynamics model that considers interactions among infrastructure systems, characterizes measures of resilience and sustainability, and feeds these back to the agent-based model. A cross-scale spatial optimization model for understanding and characterizing the possible best case outcomes and for informing the design of policies and incentive/disincentive programs is also included. This framework is able to provide a robust capacity for considering the ways in which future development of energy and water resources can be assessed.

  1. Water Infrastructure Asset Management Primer (WERF Report INFR9SG09b)

    Science.gov (United States)

    Abstract: Water infrastructure systems are essential for sustaining societal quality of life. However, they face a variety of challenges and potential threats to sustained performance, including aging, deterioration, underfunding, disruptive events, and population growth, among ...

  2. Possibilities of information infrastructure in evaluation of environmental pollution and water quality by implementing the solutions of sustainable development

    Directory of Open Access Journals (Sweden)

    Ramutė Naujikienė

    2014-10-01

    Full Text Available The purpose – of the article is attached to the examination of information infrastructure for the assessment of water resource planning and water treatment activities, to provide data warehouse (DW analysis measuring environmental and water pollution and indicators for the evaluation based on the requirements of sustainable development.Methodology – the analysis is performed by revealing the factors affecting sustainable development decisions. The insights of scientists are demonstrated by assessing the situation of environmental pollution, the appropriate search parameters, which allow revealing environmental and water contamination by waste water. Secondary data analysis was performed in order to reveal surface water contamination assessment districts in Lithuania and the Baltic Sea region and to summarise the results.It is very important for business activities to implement methods and tools based on a sense of responsibility for environmental pollution through the use of methods for increasing corporate responsibility, supporting measures to promote stimulation resulting in emission reduction, and efficiency of techniques. The paper presents the results of surface water pollution obtained according to the monitoring data and benchmarking analysis in the districts of Lithuania and the Baltic Sea. It can be concluded that the economic factors of enterprise functioning on the occasion of pollution also impacts the pollution of the Baltic Sea.More and more attention in the sustainable development of the implementation process should be given to decreasing population and increasing responsibility of economic operators for measures of environmental management levels: strategic and tactical planning, operational control, evaluation of economic, social and ecological balance. The regulatory importance in determining the impact on the environment should also be kept in mind.The results – were based on the obtained wastewater monitoring and

  3. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  4. Smart and multifunctional concrete toward sustainable infrastructures

    CERN Document Server

    Han, Baoguo; Ou, Jinping

    2017-01-01

    This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.

  5. Harmonizing Settlement, Infrastructure, and Population Data to Support Sustainable Development

    Science.gov (United States)

    Chen, R. S.; de Sherbinin, A. M.; Yetman, G.

    2016-12-01

    The geospatial data community has been developing global-scale georeferenced population, human settlements, and infrastructure data for more than two decades, pushing available technologies to process ever growing amounts of data and increase the resolution of the outputs. These population, settlement, and infrastructure data products have seen wide use in varied aspects of sustainable development, including agriculture, energy, water, health, land use, transportation, risk management, and climate impact assessment. However, in most cases, data development has been driven by the availability of specific data sources (e.g., census data, night-time lights, radar data, or moderate- to high-resolution imagery), rather than by an integrated view of how best to characterize human settlement patterns over time and space on multiple dimensions using diverse data sources. Such an integrated view would enhance our ability to observe, model, and predict where on the planet people live and work—in the past, present, and future—and under what conditions, i.e., in relationship not only to environmental systems, resources, extremes, and changes, but also to the human settlements and built infrastructure that mediate impacts on both people and the environment. We report here on a new international effort to improve understanding of the strengths and weaknesses of existing and planned georeferenced data products, and to create a collaborative community across the natural, social, health, engineering, and data sciences and the public and private sectors supporting data integration and coordination to meet sustainable development data needs. Opportunities exist to share data and expertise, coordinate activities, pool computing resources, reduce duplication, improve data quality and harmonization, and facilitate effective data use for sustainable development monitoring and decision making, especially with respect to the 17 Sustainable Development Goals adopted by the international

  6. Optimal infrastructure selection to boost regional sustainable economy

    OpenAIRE

    Martín Utrillas, Manuel Guzmán; Juan-Garcia, F.; Cantó Perelló, Julián; Curiel Esparza, Jorge

    2015-01-01

    The role of infrastructures in boosting the economic growth of the regions is widely recognized. In many cases, an infrastructure is selected by subjective reasons. Selection of the optimal infrastructure for sustainable economic development of a region should be based on objective and founded reasons, not only economical, but also environmental and social. In this paper is developed such selection through a hybrid method based on Delphi, analytical hierarchy process (AHP), and VIKOR (from Se...

  7. Sustainable support for WLCG through the EGI distributed infrastructure

    International Nuclear Information System (INIS)

    Antoni, Torsten; Bozic, Stefan; Reisser, Sabine

    2011-01-01

    Grid computing is now in a transition phase from development in research projects to routine usage in a sustainable infrastructure. This is mirrored in Europe by the transition from the series of EGEE projects to the European Grid Initiative (EGI). EGI aims at establishing a self-sustained grid infrastructure across Europe. The main building blocks of EGI are the national grid initiatives in the participating countries and a central coordinating institution (EGI.eu). The middleware used is provided by consortia outside of EGI. Also the user communities are organized separately from EGI. The transition to a self-sustained grid infrastructure is aided by the EGI-InSPIRE project, aiming at reducing the project-funding needed to run EGI over the course of its four year duration. Providing user support in this framework poses new technical and organisational challenges as it has to cross the boundaries of various projects and infrastructures. The EGI user support infrastructure is built around the Gobal Grid User Support system (GGUS) that was also the basis of user support in EGEE. Utmost care was taken that during the transition from EGEE to EGI support services which are already used in production were not perturbed. A year into the EGI-InSPIRE project, in this paper we would like to present the current status of the user support infrastructure provided by EGI for WLCG, new features that were needed to match the new infrastructure, issues and challenges that occurred during the transition and give an outlook on future plans and developments.

  8. Sustainable Bridge Infrastructure Procurement

    DEFF Research Database (Denmark)

    Safi, Mohammed; Du, Guangli; Simonsson, Peter

    2016-01-01

    The lack of a flexible but systematic approach for integrating lifecycle aspects into bridge investment decisions is a major obstacle hindering the procurement of sustainable bridge infrastructures. This paper addresses this obstacle by introducing a holistic approach that agencies could use...... to procure the most “sustainable” (lifecycle-efficient) bridge through a fair design-build (D-B) tendering process, considering all the main aspects: life-cycle cost (LCC), service life-span, aesthetic demands and environmental impacts (LCA)....

  9. Sustainable infrastructure: A review and a research agenda.

    Science.gov (United States)

    Thomé, Antônio Márcio Tavares; Ceryno, Paula Santos; Scavarda, Annibal; Remmen, Arne

    2016-12-15

    This paper proposes a taxonomy of themes and a research agenda on sustainable infrastructure, with a focus on sustainable buildings (SB) and green infrastructure (GI). The citation databases of Web of Science formed the basis for a novel strategic thematic analysis of co-citation and co-occurrence of keywords with a longitudinal identification of themes during the last two decades (from 1995 to 2015) of an emerging and ever growing research area. SI is a multidisciplinary endeavour, including a diversified array of disciplines as general engineering, environmental ecology, construction, architecture, urban planning, and geography. This paper traces that the number of publications in SI is growing exponentially since 2003. Over 80% of total citations are concentrated in less than 10% of papers spread over a large number of journals. Most publications originate from the United States, Europe, Australia, and Asia. The main research streams in SI are green infrastructure, sustainable buildings, and assessment methods. Emerging and prevailing research themes include methodological issues of cost-effectiveness, project management and assessment tools. Substantive issues complement the research agenda of emerging themes in the areas of integration of human, economic and corporate social responsibility values in environmental sustainability, urban landscape and sustainable drainage systems, interdisciplinary research in green material, integrated policy research in urbanization, agriculture and nature conservation, and extensions of Green Building (GB) and GI to cities of developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analyzing water/wastewater infrastructure interdependencies

    International Nuclear Information System (INIS)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-01-01

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed

  11. Infrastructure development, income inequality, and urban sustainability in the People's Republic of China

    OpenAIRE

    Mendoza, Octasiano M. Valerio

    2017-01-01

    This paper examines the relationship between infrastructure development and income inequality in urban People's Republic of China. Recent policies target reductions in income inequality while increasing sustainable urban development. Infrastructure investment plays a key role in achieving both goals, yet the effects of different infrastructures on income disparities at the city level remain undetermined. Using 10 city-level infrastructure indicators relating to sustainable urban development a...

  12. A Strategic Project Appraisal framework for ecologically sustainable urban infrastructure

    International Nuclear Information System (INIS)

    Morrissey, John; Iyer-Raniga, Usha; McLaughlin, Patricia; Mills, Anthony

    2012-01-01

    Actors in the built environment are progressively considering environmental and social issues alongside functional and economic aspects of development projects. Infrastructure projects represent major investment and construction initiatives with attendant environmental, economic and societal impacts across multiple scales. To date, while sustainability strategies and frameworks have focused on wider national aspirations and strategic objectives, they are noticeably weak in addressing micro-level integrated decision making in the built environment, particularly for infrastructure projects. The proposed approach of this paper is based on the principal that early intervention is the most cost-effective and efficient means of mitigating the environmental effects of development projects, particularly macro infrastructure developments. A strategic overview of the various project alternatives, taking account for stakeholder and expert input, could effectively reduce project impacts/risks at low cost to the project developers but provide significant benefit to wider communities, including communities of future stakeholders. This paper is the first exploratory step in developing a more systematic framework for evaluating strategic alternatives for major metropolitan infrastructure projects, based on key sustainability principles. The developed Strategic Project Appraisal (SPA) framework, grounded in the theory of Strategic Environmental Assessment (SEA), provides a means of practically appraising project impacts and alternatives in terms of quantified ecological limits; addresses the neglected topic of metropolitan infrastructure as a means of delivering sustainability outcomes in the urban context and more broadly, seeks to open a debate on the potential for SEA methodology to be more extensively applied to address sustainability challenges in the built environment. Practically applied and timed appropriately, the SPA framework can enable better decision-making and more

  13. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  14. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  15. Sustainable infrastructure system modeling under uncertainties and dynamics

    Science.gov (United States)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  16. Improving water, sanitation, and hygiene in schools in Indonesia: A cross-sectional assessment on sustaining infrastructural and behavioral interventions.

    Science.gov (United States)

    Karon, Andrew J; Cronin, Aidan A; Cronk, Ryan; Hendrawan, Reza

    2017-05-01

    Water, sanitation, and hygiene (WASH) in schools are important for child health, development, and educational performance; yet coverage in Indonesian schools remains low. To address this deficiency, UNICEF and partners conducted a WASH intervention in 450 schools across three provinces in Indonesia. A survey evaluating the sustainability of infrastructure and behavioral interventions in comparison to control districts was conducted one year after completion of the intervention. The survey data were also compared with national government data to assess the suitability of government data to report progress on the Sustainable Development Goals (SDGs). Logistic regression was used to explore associations between WASH conditions and behaviors. Intervention schools were more likely to have handwashing stations with soap and water. In multivariable analyses, schools with a toilet operation and maintenance fund were more likely to have functional toilets. Students who learn hygiene skills from their teachers were less likely to defecate openly, more likely to share hygiene knowledge with their parents, and more likely to wash their hands. Survey data were comparable with government data, suggesting that Indonesian government monitoring may be a reliable source of data to measure progress on the SDGs. This research generates important policy and practice findings for scaling up and sustaining WASH in schools and may help improve WASH in schools programs in other low-resource contexts. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. A technological infrastructure to sustain Internetworked Enterprises

    Science.gov (United States)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  18. Toward A Science of Sustainable Water Management

    Science.gov (United States)

    Brown, C.

    2016-12-01

    Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. The related challenges of resolving the competition for freshwater among competing uses (so called "nexus" issues) and adapting water resources systems to climate change are prominent examples of the of sustainable water management challenges. In addition, largely untested concepts such as "integrated water resources management" have surfaced as Sustainable Development Goals. In this presentation, we argue that for research to improve water management, and for practice to inspire better research, a new focus is required, one that bridges disciplinary barriers between the water resources research focus on infrastructure planning and management, and the role of human actors, and geophysical sciences community focus on physical processes in the absence of dynamical human response. Examples drawn from climate change adaptation for water resource systems and groundwater management policy provide evidence of initial progress towards a science of sustainable water management that links improved physical understanding of the hydrological cycle with the socioeconomic and ecological understanding of water and societal interactions.

  19. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    Science.gov (United States)

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate

  20. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructureSustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  1. Sustainability as the key to prioritize investments in public infrastructures

    International Nuclear Information System (INIS)

    Pardo-Bosch, Francesc; Aguado, Antonio

    2016-01-01

    Infrastructure construction, one of the biggest driving forces of the economy nowadays, requires a huge analysis and clear transparency to decide what projects have to be executed with the few resources available. With the aim to provide the public administrations a tool with which they can make their decisions easier, the Sustainability Index of Infrastructure Projects (SIIP) has been defined, with a multi-criteria decision system called MIVES, in order to classify non-uniform investments. This index evaluates, in two inseparable stages, the contribution to the sustainable development of each infrastructure project, analyzing its social, environmental and economic impact. The result of the SIIP allows to decide the order with which projects will be prioritized. The case of study developed proves the adaptability and utility of this tool for the ordinary budget management.

  2. Sustainability as the key to prioritize investments in public infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Pardo-Bosch, Francesc, E-mail: francesc.pardo@upc.edu [Departament d' Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya - Barcelona Tech. (Spain); Political Science Department, University of California - Berkeley (United States); Aguado, Antonio, E-mail: antonio.aguado@upc.edu [Departament d' Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya - Barcelona Tech. (Spain)

    2016-09-15

    Infrastructure construction, one of the biggest driving forces of the economy nowadays, requires a huge analysis and clear transparency to decide what projects have to be executed with the few resources available. With the aim to provide the public administrations a tool with which they can make their decisions easier, the Sustainability Index of Infrastructure Projects (SIIP) has been defined, with a multi-criteria decision system called MIVES, in order to classify non-uniform investments. This index evaluates, in two inseparable stages, the contribution to the sustainable development of each infrastructure project, analyzing its social, environmental and economic impact. The result of the SIIP allows to decide the order with which projects will be prioritized. The case of study developed proves the adaptability and utility of this tool for the ordinary budget management.

  3. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    Science.gov (United States)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  4. Towards sustainable infrastructure development through integrated contracts : Experiences with inclusiveness in Dutch infrastructure projects

    NARCIS (Netherlands)

    Lenferink, Sander; Tillema, Taede; Arts, Jos

    Current complex society necessitates finding inclusive arrangements for delivering sustainable road infrastructure integrating design, construction and maintenance stages of the project lifecycle. In this article we investigate whether linking stages by integrated contracts can lead to more

  5. Analysis on Transportation Infrastructure Availability to Achieve Environmental and Social Sustainability in Karawang

    Science.gov (United States)

    Rarasati, A. D.; Octoria, N. B.

    2018-03-01

    Sustainable infrastructure is the key to development success. At the same time, transportation infrastructure development will involve social and environmental conditions of the local surroundings. Assessment of the availability of such transport infrastructure is one of the solutions adapted from social and environmental impacts. By conducting a correlation test, the presence of transportation infrastructure and the social conditions of the environment can be identified. The results obtained show that the accessibility, the level of security, and the level of equality are correlated to social and environmental sustainability in Karawang. In terms of environment, the availability of transportation infrastructure is not directly related to the impact of environmental sustainability. The impact of the perceived environment also has no effect on the journey. Correlation results indicate that the length of travel time and congestion level do not make the perceived impact greater. The impact of the perceived environment is merely due to the high utilization of private vehicles in Karawang which subsequently leads to higher energy consumption.

  6. WATER INFRASTRUCTURE IN THE 21ST CENTURY: U.S. EPA’S RESEARCH PLANS FOR GRAVITY SEWERS

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has long recognized the need for research and development in the area of drinking water and wastewater infrastructure. Most recently in support of the Agency’s Sustainable Water Infrastruct...

  7. Probabilistic design framework for sustainable repari and rehabilitation of civil infrastructure

    DEFF Research Database (Denmark)

    Lepech, Michael; Geiker, Mette Rica; Stang, Henrik

    2011-01-01

    This paper presents a probabilistic-based framework for the design of civil infrastructure repair and rehabilitation to achieve targeted improvements in sustainability indicators. The framework consists of two types of models: (i) service life prediction models combining one or several deteriorat......This paper presents a probabilistic-based framework for the design of civil infrastructure repair and rehabilitation to achieve targeted improvements in sustainability indicators. The framework consists of two types of models: (i) service life prediction models combining one or several...

  8. Enhancing Sustainable Communities With Green Infrastructure

    Science.gov (United States)

    This publication aims to help local governments, water utilities, nonprofit organizations, neighborhood groups, and other stakeholders integrate green infrastructure strategies into plans that can transform their communities.

  9. The potential water buffering capacity of urban green infrastructure in an arid environment

    Science.gov (United States)

    Wang, Z.; Yang, J.

    2017-12-01

    Urban green infrastructure offers arid cities an attractive means of mitigation/adaptation to environmental challenges of elevated thermal stress, but imposes the requirement of outdoor irrigation that aggravates the stress of water resource management. Future development of cities is inevitably constrained by the limited availability of water resources, under challenges of emergent climate change and continuous population growth. This study used the Weather Research and Forecasting model with urban dynamics to assess the potential water buffering capacity of urban green infrastructure in arid environments and its implications for sustainable urban planning. The Phoenix metropolitan area, Arizona, United States, is adopted as a testbed with two hypothetical cases, viz. the water-saving and the fully-greening scenarios investigated. Modifications of the existing green infrastructure and irrigation practices are found to significantly influence the thermal environment of Phoenix. In addition, water saving by xeriscaping (0.77 ± 0.05 × 10^8 m^3) allows the region to support 19.8% of the annual water consumption by the projected 2.62 million population growth by 2050, at a cost of an increase in urban ambient temperature of about 1 o^C.

  10. Flowscapes : Designing infrastructure as landscape

    NARCIS (Netherlands)

    Nijhuis, S.; Jauslin, D.T.; Van der Hoeven, F.D.

    2015-01-01

    Social, cultural and technological developments of our society are demanding a fundamental review of the planning and design of its landscapes and infrastructures, in particular in relation to environmental issues and sustainability. Transportation, green and water infrastructures are important

  11. Beyond the Certification Badge—How Infrastructure Sustainability Rating Tools Impact on Individual, Organizational, and Industry Practice

    Directory of Open Access Journals (Sweden)

    Kerry Griffiths

    2018-03-01

    Full Text Available Sustainability consideration in designing, constructing, and operating civil infrastructure requires substantive action and yet progress is slow. This research examines the impact third-party infrastructure sustainability rating tools—specifically CEEQUAL, Envision, Greenroads, and Infrastructure Sustainability—have beyond individual project certification and considers their role in driving wider industry change. In this empirical study, engineering and sustainability professionals (n = 63 assess and describe their experience in using rating tools outside of formal certification and also the impact of tool use on their own practice and the practices of their home organizations. The study found that 77% of experienced users and 59% of infrastructure owners used the tools for purposes other than formal project certification. The research attests that rating tool use and indeed their very existence has a strong influence on sustainability awareness and practice within the infrastructure industry, providing interpretation of sustainability matters in ways that resonate with industry norms. The rating tools impact on individuals and their professional and personal practice, on the policies and practices of infrastructure-related organizations, and more widely on other industry stakeholders. The findings can be used to increase the value gained from sustainability rating tool use and to better understand the role such tools play in creating cultural change within the industry.

  12. Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty

    International Nuclear Information System (INIS)

    Sierra, Leonardo A.; Yepes, Víctor; Pellicer, Eugenio

    2017-01-01

    Assessing the viability of a public infrastructure includes economic, technical and environmental aspects; however, on many occasions, the social aspects are not always adequately considered. This article proposes a procedure to estimate the social sustainability of infrastructure projects under conditions of uncertainty, based on a multicriteria deterministic method. The variability of the method inputs is contributed by the decision-makers. Uncertain inputs are treated through uniform and beta PERT distributions. The Monte Carlo method is used to propagate uncertainty in the method. A case study of a road infrastructure improvement in El Salvador is used to illustrate this treatment. The main results determine the variability of the short and long-term social improvement indices by infrastructure and the probability of the position in the prioritization of the alternatives. The proposed mechanism improves the reliability of the decision making early in infrastructure projects, taking their social contribution into account. The results can complement environmental and economic sustainability assessments. - Highlights: •Estimate the social sustainability of infrastructure projects under conditions of uncertainty •The method uses multicriteria and Monte Carlo techniques and beta PERT distributions •Determines variability of the short and long term social improvement •Determines probability in the prioritization of alternatives •Improves reliability of decision making considering the social contribution

  13. Cost Optimization of Water Resources in Pernambuco, Brazil: Valuing Future Infrastructure and Climate Forecasts

    Science.gov (United States)

    Kumar, Ipsita; Josset, Laureline; Lall, Upmanu; Cavalcanti e Silva, Erik; Cordeiro Possas, José Marcelo; Cauás Asfora, Marcelo

    2017-04-01

    Optimal management of water resources is paramount in semi-arid regions to limit strains on the society and economy due to limited water availability. This problem is likely to become even more recurrent as droughts are projected to intensify in the coming years, causing increasing stresses to the water supply in the concerned areas. The state of Pernambuco, in the Northeast Brazil is one such case, where one of the largest reservoir, Jucazinho, has been at approximately 1% capacity throughout 2016, making infrastructural challenges in the region very real. To ease some of the infrastructural stresses and reduce vulnerabilities of the water system, a new source of water from Rio São Francisco is currently under development. Till its development, water trucks have been regularly mandated to cover water deficits, but at a much higher cost, thus endangering the financial sustainability of the region. In this paper, we propose to evaluate the sustainability of the considered water system by formulating an optimization problem and determine the optimal operations to be conducted. We start with a comparative study of the current and future infrastructures capabilities to face various climate. We show that while the Rio Sao Francisco project mitigates the problems, both implementations do not prevent failure and require the reliance on water trucks during prolonged droughts. We also study the cost associated with the provision of water to the municipalities for several streamflow forecasts. In particular, we investigate the value of climate predictions to adapt operational decisions by comparing the results with a fixed policy derived from historical data. We show that the use of climate information permits the reduction of the water deficit and reduces overall operational costs. We conclude with a discussion on the potential of the approach to evaluate future infrastructure developments. This study is funded by the Inter-American Development Bank (IADB), and in

  14. EPA Research Highlights: EPA Studies Aging Water Infrastructure

    Science.gov (United States)

    The nation's extensive water infrastructure has the capacity to treat, store, and transport trillions of gallons of water and wastewater per day through millions of miles of pipelines. However, some infrastructure components are more than 100 years old, and as the infrastructure ...

  15. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  16. Greenlandic water and sanitation-a context oriented analysis of system challenges towards local sustainable development.

    Science.gov (United States)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-08-28

    Today, as Greenland focuses on more economic and cultural autonomy, the continued development of societal infrastructure systems is vital. At the same time, pressure is put on the systems by a lack of financial resources and locally based professional competences as well as new market-based forms of organization. Against this background, the article discusses the challenges facing Greenland's self-rule in relation to further develop the existing water and wastewater systems so that they can contribute to the sustainable development of Greenland. The article reviews the historical development of the water supply and wastewater system. This leads to an analysis of the sectorisation, which in recent decades has reorganized the Greenlandic infrastructures, and of how this process is influencing local sustainable development. The article discusses the socio-economic and human impacts and points to the need for developing the water and sanitation system to support not only hygiene and health, but also local sustainable development.

  17. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE IN THE 21ST CENTURY: U.S. EPA'S RESEARCH PLAN FOR GRAVITY SEWERS

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has long recognized the need for research and development in the area of drinking water and wastewater infrastructure. Most recently in support of the Agency’s Sustainable Water Infrastructu...

  18. Flowscapes: Designing infrastructure as landscape

    OpenAIRE

    Nijhuis, S.; Jauslin, D.T.; Van der Hoeven, F.D.

    2015-01-01

    Social, cultural and technological developments of our society are demanding a fundamental review of the planning and design of its landscapes and infrastructures, in particular in relation to environmental issues and sustainability. Transportation, green and water infrastructures are important agents that facilitate processes that shape the built environment and its contemporary landscapes. With movement and flows at the core, these landscape infrastructures facilitate aesthetic, functional,...

  19. Sustaining Participatory Design in the organization - Infrastructuring with Participatory Design

    DEFF Research Database (Denmark)

    Bolmsten, Johan

    Modern organizations need to be able to change to seize opportunities and meet challenges, which are ever more rapidly presenting themselves. In doing so, they need to make use of the creativity and innovations of their employees. At the same time Information Technology applications today...... are likely to take the form of complex, integrated infrastructures, supporting collaboration within and across organizations. This places requirements on the development of IT infrastructures. As the work practices within an organization change, the supporting infrastructure also needs to evolve. This Ph......D thesis is about sustaining Participatory Design in the organization to enable users to influence the development of the IT infrastructure that supports their work practices. The empirical research is based on a long-term action research study, where this researcher works as an embedded researcher...

  20. Capacity factor analysis for evaluating water and sanitation infrastructure choices for developing communities.

    Science.gov (United States)

    Bouabid, Ali; Louis, Garrick E

    2015-09-15

    40% of the world's population lacks access to adequate supplies of water and sanitation services to sustain human health. In fact, more than 780 million people lack access to safe water supplies and about 2.5 billion people lack access to basic sanitation. Appropriate technology for water supply and sanitation (Watsan) systems is critical for sustained access to these services. Current approaches for the selection of Watsan technologies in developing communities have a high failure rate. It is estimated that 30%-60% of Watsan installed infrastructures in developing countries are not operating. Inappropriate technology is a common explanation for the high rate of failure of Watsan infrastructure, particularly in lower-income communities (Palaniappan et al., 2008). This paper presents the capacity factor analysis (CFA) model, for the assessment of a community's capacity to manage and sustain access to water supply and sanitation services. The CFA model is used for the assessment of a community's capacity to operate, and maintain a municipal sanitation service (MSS) such as, drinking water supply, wastewater and sewage treatment, and management of solid waste. The assessment of the community's capacity is based on seven capacity factors that have been identified as playing a key role in the sustainability of municipal sanitation services in developing communities (Louis, 2002). These capacity factors and their constituents are defined for each municipal sanitation service. Benchmarks and international standards for the constituents of the CFs are used to assess the capacity factors. The assessment of the community's capacity factors leads to determine the overall community capacity level (CCL) to manage a MSS. The CCL can then be used to assist the community in the selection of appropriate Watsan technologies for their MSS needs. The selection is done from Watsan technologies that require a capacity level to operate them that matches the assessed CCL of the

  1. Pathways to a more sustainable transport infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Dravitzki, V., Email: Vince.Dravitzki@Opus.co.nz; Lester, T.; Cenek, P. [Opus International Consultants, Lower Hutt (New Zealand)

    2010-07-01

    The two phenomena of Peak Oil and Human-induced Climate Change both together and individually create an imperative for early action, with the need to address Climate Change limiting the range of options that can be used to address peak oil. Peak oil is often portrayed as a market phenomenon, as a period when demand will exceed supply. The imperative to respond to the issues resulting from Peak Oil and Climate Change requires that New Zealand must move from its current high energy use, high resource use, high cost, petroleum dependent, transport infrastructure, to a sustainable one. Because a country's energy profile will increasingly define its economic success, New Zealand needs also to move to a lower energy society to remain competitive with other countries. What will be New Zealand's successful transport energy of the future and how it may be best used are key considerations of our future sustainable transport system. Low energy, low material use and consequently low cost, will be the main criteria. This paper first identifies our current transport energy usage, and some of the risks of being slow to respond to change. The paper then questions the central tenants of the current New Zealand Land Transport Strategy (2008) that we move to bio-fuels and electric cars because this is not a low energy, low cost pathway. We advocate that instead of just coping with change, New Zealand uses the necessity to change as an opportunity to recast our transport infrastructure to greatly improve the economic success and liveability of our settlements to New Zealand's benefit. The second part of the paper outlines a transport infrastructure based around electricity, with a heavy emphasis on public transport use, but also with freight much more dependent on electrified rail. This second part discusses: the advantages that NZ has that will facilitate this transition, such as favourable urban forms; the energy needs and energy availability; the benefits and

  2. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE IN THE 21ST CENTURY: U.S. EPA’S RESEARCH PLANS FOR GRAVITY SEWERS

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has long recognized the need for research and development in the area of drinking water and wastewater infrastructure. Most recently in support of the Agency’s Sustainable Water ...

  3. Arid Green Infrastructure for Water Control and Conservation ...

    Science.gov (United States)

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  4. System Architecture Development for Energy and Water Infrastructure Data Management and Geovisual Analytics

    Science.gov (United States)

    Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.

    2017-12-01

    Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).

  5. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  6. Probabilistic Design and Management of Sustainable Concrete Infrastructure Using Multi-Physics Service Life Models

    DEFF Research Database (Denmark)

    Lepech, Michael; Geiker, Mette; Michel, Alexander

    This paper looks to address the grand challenge of integrating construction materials engineering research within a multi-scale, inter-disciplinary research and management framework for sustainable concrete infrastructure. The ultimate goal is to drive sustainability-focused innovation and adoption...... cycles in the broader architecture, engineering, construction (AEC) industry. Specifically, a probabilistic design framework for sustainable concrete infrastructure and a multi-physics service life model for reinforced concrete are presented as important points of integration for innovation between...... design, consists of concrete service life models and life cycle assessment (LCA) models. Both types of models (service life and LCA) are formulated stochastically so that the service life and time(s) to repair, as well as total sustainability impact, are described by a probability distribution. A central...

  7. Sustainability of evidence-based healthcare: research agenda, methodological advances, and infrastructure support.

    Science.gov (United States)

    Proctor, Enola; Luke, Douglas; Calhoun, Annaliese; McMillen, Curtis; Brownson, Ross; McCrary, Stacey; Padek, Margaret

    2015-06-11

    Little is known about how well or under what conditions health innovations are sustained and their gains maintained once they are put into practice. Implementation science typically focuses on uptake by early adopters of one healthcare innovation at a time. The later-stage challenges of scaling up and sustaining evidence-supported interventions receive too little attention. This project identifies the challenges associated with sustainability research and generates recommendations for accelerating and strengthening this work. A multi-method, multi-stage approach, was used: (1) identifying and recruiting experts in sustainability as participants, (2) conducting research on sustainability using concept mapping, (3) action planning during an intensive working conference of sustainability experts to expand the concept mapping quantitative results, and (4) consolidating results into a set of recommendations for research, methodological advances, and infrastructure building to advance understanding of sustainability. Participants comprised researchers, funders, and leaders in health, mental health, and public health with shared interest in the sustainability of evidence-based health care. Prompted to identify important issues for sustainability research, participants generated 91 distinct statements, for which a concept mapping process produced 11 conceptually distinct clusters. During the conference, participants built upon the concept mapping clusters to generate recommendations for sustainability research. The recommendations fell into three domains: (1) pursue high priority research questions as a unified agenda on sustainability; (2) advance methods for sustainability research; (3) advance infrastructure to support sustainability research. Implementation science needs to pursue later-stage translation research questions required for population impact. Priorities include conceptual consistency and operational clarity for measuring sustainability, developing evidence

  8. How Exposure to ”Role Model” Projects Can Lead to Decisions for More Sustainable Infrastructure

    Directory of Open Access Journals (Sweden)

    Nora Harris

    2016-01-01

    Full Text Available A role model, whether an individual or a project, can inspire similar performance in others. This research examines such a phenomenon during the design process for more sustainable physical infrastructure. In this empirical study, engineering professionals (n = 54 were randomly assigned either a modified version of the Envision rating system for sustainable infrastructure, which was changed to include details from an exemplary role model project, or the current version of Envision, with no role model. Professionals given the role model version of Envision achieved on average 34% more points (SD = 27 than the control group (p = 0.001. A positive role model project appears to lead engineering professionals to higher goals for sustainability performance in their design decisions. This finding, and the corresponding line of interdisciplinary research, can be used in decision-structuring interventions, which are a relatively low-cost approach to support greater sustainability in physical infrastructure development.

  9. Megacity Green Infrastructure Converts Water into Billions of Dollars in Ecosystem Services

    Science.gov (United States)

    Endreny, T. A.; Ulgiati, S.; Santagata, R.

    2016-12-01

    Cities can invest in green infrastructure to purposefully couple water with urban tree growth, thereby generating ecosystem services and supporting human wellbeing as advocated by United Nations sustainable development initiatives. This research estimates the value of tree-based ecosystem services in order to help megacities assess the benefits relative to the costs of such investments. We inventoried tree cover across the metropolitan area of 10 megacities, in 5 continents and biomes, and developed biophysical scaling equations using i-Tree tools to estimate the tree cover value to reductions in air pollution, stormwater, building energy, and carbon emissions. Metropolitan areas ranged from 1173 to 18,720 sq km (median value 2530 sq km), with median tree cover 21%, and potential additional tree cover 19%, of this area. Median tree cover density was 39 m2/capita (compared with global value of 7800 m2/capita), with lower density in desert and tropical biomes, and higher density in temperate biomes. Using water to support trees led to median benefits of 1.2 billion/yr from reductions in CO, NO2, SO2, PM10, and PM2.5, 27 million/yr in avoided stormwater processing by wastewater facilities, 1.2 million/yr in building energy heating and cooling savings, and 20 million/yr in CO2 sequestration. These ecosystem service benefits contributed between 0.1% and 1% of megacity GDP, with a median contribution of 0.3%. Adjustment of benefit value between different city economies considered factors such as purchasing power parity and emergy to money ratio conversions. Green infrastructure costs billions of dollars less than grey infrastructure, and stormwater based grey infrastructure provides fewer benefits. This analysis suggests megacities should invest in tree-based green infrastructure to maintain and increase ecosystem service benefits, manage their water resources, and improve human wellbeing.

  10. Sustainability Transitions in the Developing World

    DEFF Research Database (Denmark)

    Mguni, Patience

    management sector is turning towards decentralised green infrastructure-based approaches such as Sustainable Urban Drainage Systems (SUDS). This PhD thesis explores the potential for sustainability transitions towards more sustainable urban water management (SUWM) through the integration of SUDS mainly from......With the progression of climate change, urban stormwater management infrastructure will come under pressure. There is doubt about the ability of conventional centralised stormwater management systems to adequately manage projected increases in precipitation and attention in the urban water...... and moving towards SUWM differs according to context. For developing cities with infrastructure deficits like Addis Ababa and Dar es Salaam, most opportunities for socio-technical change lie in more bottom-up emergent change as urban water management regimes may not have adequate capacity. For cities like...

  11. The method and index of sustainability assessment of infrastructure projects based on system dynamics in China

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2015-05-01

    Full Text Available Purpose: As one of the most important overhead capital of urban economics and social development, the sustainable development of urban infrastructure is becoming a key issue of prosperous society growing. The purpose of this paper is to establish a basic model to analysis certain infrastructure project’s sustainable construction and operation. Design/methodology/approach: System dynamics is an effective stimulation method and tool to deal with such complex, dynamics, nonlinear systems, which could be used in analyzing and evaluating all aspects of infrastructure sustainability internally and externally. In this paper, the system is divided into four subsystems and 12 main impact indicators. Through setting the boundary and other basic hypothesis, this paper designs the basic causal loop diagrams and stock & flow diagrams to describe the relationship between variables and establish a quantifiable structure for the system. Findings: Adopting a sewerage treatment in China as a case to test our model, we could conclude that the model of internal sustainable subsystem is reasonable. However, this model is a basic model, and it need to be specific designed for the certain project due to the diversity of infrastructure types and the unique conditions of each projects. Originality/value: System Dynamics (SD is widely used in the study of sustainable development and has plentiful research achievements from macro perspective but few studies in the microcosmic project systems. This paper focuses on the unique characteristics of urban infrastructure in China and selects infrastructure project which is based on micro-system discussion. The model we designed has certain practical significance in policy setting, operation monitoring and adjustment of the urban projects with high rationality and accuracy.

  12. Protection of Urban Water body Infrastructure - Policy Requirements

    Science.gov (United States)

    Neelakantan, T. R.; Ramakrishnan, K.

    2017-07-01

    Water body is an important infrastructure of urban landscape. Water bodies like tanks and ponds are constructed to harvest rainwater for local use. Such water bodies serve many environmental functions including flood and soil erosion control and are useful for irrigation, drinking water supply and groundwater recharge. A large number of water bodies recently have been lost due to anthropogenic activities and the remaining water bodies are under stress due to risk of degradation. There are many phases to solve or control the problem; starting from stopping the abuse, to restoration to monitoring and maintenance. In this situation, the existing urban and peri-urban water bodies are to be preserved and rehabilitated. In this study, policy requirements for the protection (preservation and rehabilitation) of water bodies are analyzed with special reference to Thanjavur city. Thanjavur city has many water bodies and moat around the Big-Temple and the palace, and stands as an evidence for water management in ancient days. These water bodies are to be protected and used properly for sustainable growth of the city. This paper envisages the following three: (a) need for evaluation of hydraulic and hydrologic properties of the water bodies for conserving rainwater and controlling flood water in the existing urban water bodies; (b) need for evaluation of potential of socio-environmental services by the water bodies, and (c) need for developing a relative importance index for protection of water bodies to prioritize the remedial actions.

  13. Water Infrastructure and Resiliency Finance Center

    Science.gov (United States)

    The Water Infrastructure and Resiliency Finance Center serves as a resource to communities to improve their wastewater, drinking water and stormwater systems, particularly through innovative financing and increased resiliency to climate change.

  14. STATE OF WATER SUPPLY INFRASTRUCTURE IN THE SUBCARPATHIAN CITIES

    Directory of Open Access Journals (Sweden)

    Katarzyna PIETRUCHA-URBANIK

    Full Text Available The characteristics of equipping the Subcarpathian province cities with water supply infrastructure was made on the basis of data collected from the Provincial Office, Statistical Office, reports submitted by water companies regarding the functioning of water supply infrastructure and literature data. The indicators characterizing water supply infrastructure were determined for the years 1995-2014. In the paper the indicators of equipping cities with water supply systems were presented. Also water consumption and changes in the length of the water supply network in the cities of the Subcarpathian Province were examined. The analysis shows that the water consumption for the years 1995-2014 decreased by almost 6 m3∙year-1 per capita. The reason for such situation was the increasing price of water and the ecological awareness of the inhabitants of the Subcarpathian region. In the last year of the analysis the water supply system in urban areas of the Subcarpathian province was used by 95% of the population and, for comparison, in rural areas by 77% of the population. In the paper also changes in prices for water in the Subcarpathian region were shown, on the basis of data from the water tariffs in individual water companies. The important element of urban development is the technical infrastructure which reduces the investment costs. The determined indicators of equipping cities with water supply systems show an upward trend in the development of technical infrastructure. Based on the operational data from the water companies the failure rates in selected water supply networks were determined.

  15. Robust Water Supply Infrastructure Development Pathways: What, When and Where Matters the Most? (INVITED)

    Science.gov (United States)

    Reed, Patrick; Zeff, Harrison; Characklis, Gregory

    2017-04-01

    Water supply adaptation frameworks that seek robustness must adaptively trigger actions that are contextually appropriate to emerging system observations and avoid long term high regret lock-ins. As an example, emerging water scarcity concerns in southeastern United States are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify regionally coordinated, scarcity-mitigating infrastructure development pathways that trigger time appropriate actions. Mistakes can lead to water shortages, overbuilt stranded assets and possibly financial failures. This presentation uses the Research Triangle area of North Carolina to illustrate the key concerns and challenges that emerged when helping Raleigh, Durham, Cary and Chapel Hill develop their long term water supply infrastructure pathways through 2060. This example shows how the region's water utilities' long term infrastructure pathways are strongly shaped by their short term conservation policies (i.e., reacting to evolving demands) and their ability to consider regional water transfers (i.e., reacting to supply imbalances). Cooperatively developed, shared investments across the four municipalities expand their capacity to use short term transfers to better manage severe droughts with fewer investments in irreversible infrastructure options. Cooperative pathways are also important for avoiding regional robustness conflicts, where one party benefits strongly at the expense of one or more the others. A significant innovation of this work is the exploitation of weekly and annual dynamic risk-of-failure action triggers that exploit evolving feedbacks between co-evolving human demands and regional supplies. These dynamic action triggers provide high levels of adaptivity, tailor actions to their specific context

  16. Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov

    2018-01-01

    Full Text Available The design, development, and operation of current and future urban water infrastructure in many parts of the world increasingly rely on and apply the principles of sustainable development. However, this approach suffers from a lack of the necessary knowledge, skills, and practice of how sustainable development can be attained and promoted in a given city. This paper presents the framework of an integrated systems approach analysis that deals with the abovementioned issues. The “Water and Urban Initiative” project, which was implemented by the United Nations University’s Institute for the Advanced Study of Sustainability, focused on urban water and wastewater systems, floods, and their related health risk assessment, and the economics of water quality improvements. A team of researchers has investigated issues confronting cities in the developing countries of Southeast Asia, in relation to sustainable urban water management in the face of such ongoing changes as rapid population growth, economic development, and climate change; they have also run future scenarios and proposed policy recommendations for decision-makers in selected countries in Southeast Asia. The results, lessons, and practical recommendations of this project could contribute to the ongoing policy debates and decision-making processes in these countries.

  17. Unreliable Sustainable Infrastructure: Three Transformations to Guide Cities towards Becoming Healthy 'Smart Cities'

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fisher, Stephen [Tetra Tech; Reiner, Mark B. [Non Sequitur, LLC

    2017-10-26

    The term 'leapfrogging' has been applied to cities and nations that have adopted a new form of infrastructure by bypassing the traditional progression of development, e.g., from no phones to cell phones - bypassing landlines all together. However, leapfrogging from unreliable infrastructure systems to 'smart' cities is too large a jump resulting in unsustainable and unhealthy infrastructure systems. In the Global South, a baseline of unreliable infrastructure is a prevalent problem. The push for sustainable and 'smart' [re]development tends to ignore many of those already living with failing, unreliable infrastructure. Without awareness of baseline conditions, uninformed projects run the risk of returning conditions to the status quo, keeping many urban populations below targets of the United Nations' Sustainable Development Goals. A key part of understanding the baseline is to identify how citizens have long learned to adjust their expectations of basic services. To compensate for poor infrastructure, most residents in the Global South invest in remedial secondary infrastructure (RSI) at the household and business levels. The authors explore three key 'smart' city transformations that address RSI within a hierarchical planning pyramid known as the comprehensive resilient and reliable infrastructure systems (CRISP) planning framework.

  18. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  19. Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta

    Science.gov (United States)

    Rezagama, Arya; Purwono; Damayanti, Verika

    2018-02-01

    Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.

  20. Towards the integration of sustainable infrastructure into the existing built environment

    Directory of Open Access Journals (Sweden)

    Dimitrijević Branka

    2013-01-01

    Full Text Available The construction sector in the United Kingdom is dominated by small and medium size enterprises (SMEs which have less than 250 employees and usually do not have research capacities to develop a range of low carbon innovations applicable in the construction sector. Various European and national funding programmes have addressed this problem by providing funding for research collaboration between universities and SMEs. The paper provides a selection of the outputs of academic/industry research, undertaken by seven Scottish universities through the project CIC Start Online from September 2009 until February 2013, related to low carbon planning, building design, technologies, construction, refurbishment and performance. The studies either contributed to the further development of existing products or processes, or tested new products or processes, often developed for a specific project with a potential for application in future projects. Online dissemination of the project outcomes has assisted in attracting membership across Scotland, the United Kingdom and internationally. Along with the low carbon building products and technologies, new low carbon infrastructure is being planned and developed in order to provide connections and services for energy generation from renewables, energy storage and decentralised distribution, water management (harvesting, saving and reuse, waste management (reduction, reuse and to-energy, transport (electric vehicles, cycling and walking and information communication technology (ICT for monitoring and managing infrastructure systems. The second part of the paper outlines how innovations for integration of sustainable infrastructure into the existing built environment will be supported through the follow-on joint project of nine Scottish universities, named Mainstreaming Innovation.

  1. A modified eco-efficiency framework and methodology for advancing the state of practice of sustainability analysis as applied to green infrastructure.

    Science.gov (United States)

    Ghimire, Santosh R; Johnston, John M

    2017-09-01

    We propose a modified eco-efficiency (EE) framework and novel sustainability analysis methodology for green infrastructure (GI) practices used in water resource management. Green infrastructure practices such as rainwater harvesting (RWH), rain gardens, porous pavements, and green roofs are emerging as viable strategies for climate change adaptation. The modified framework includes 4 economic, 11 environmental, and 3 social indicators. Using 6 indicators from the framework, at least 1 from each dimension of sustainability, we demonstrate the methodology to analyze RWH designs. We use life cycle assessment and life cycle cost assessment to calculate the sustainability indicators of 20 design configurations as Decision Management Objectives (DMOs). Five DMOs emerged as relatively more sustainable along the EE analysis Tradeoff Line, and we used Data Envelopment Analysis (DEA), a widely applied statistical approach, to quantify the modified EE measures as DMO sustainability scores. We also addressed the subjectivity and sensitivity analysis requirements of sustainability analysis, and we evaluated the performance of 10 weighting schemes that included classical DEA, equal weights, National Institute of Standards and Technology's stakeholder panel, Eco-Indicator 99, Sustainable Society Foundation's Sustainable Society Index, and 5 derived schemes. We improved upon classical DEA by applying the weighting schemes to identify sustainability scores that ranged from 0.18 to 1.0, avoiding the nonuniqueness problem and revealing the least to most sustainable DMOs. Our methodology provides a more comprehensive view of water resource management and is generally applicable to GI and industrial, environmental, and engineered systems to explore the sustainability space of alternative design configurations. Integr Environ Assess Manag 2017;13:821-831. Published 2017. This article is a US Government work and is in the public domain in the USA. Integrated Environmental Assessment and

  2. Choice Architecture as a Way to Encourage a Whole Systems Design Perspective for More Sustainable Infrastructure

    Directory of Open Access Journals (Sweden)

    Nora Harris

    2016-12-01

    Full Text Available Across fields, more sustainable and resilient outcomes are being realized through a whole systems design perspective, which guides decision-makers to consider the entire system affected including interdependent physical and social networks. Although infrastructure is extremely interdependent, consisting of diverse stakeholders and networks, the infrastructure design and construction process is often fragmented. This fragmentation can result in unnecessary tradeoffs, leading to poor outcomes for certain stakeholders and the surrounding environment. A whole systems design perspective would help connect this fragmented industry and lead to more sustainable outcomes. For example, a whole systems design approach to relieve traffic on a highway might see beyond the obvious, but often ineffective, response of adding a new vehicle lane to encourage a solution such as repurposing existing road lanes from automobiles to above-ground “subway” systems. This paper discusses influences to whole systems design and how intentional choice architecture, meaning the way decisions are posed, can nudge decision-makers to employ whole systems design and result in more sustainable infrastructure. By uncovering these influences and organizing them by the social, organizational, and individual levels of the infrastructure design process, this paper provides the needed foundation for interdisciplinary research to help harness these influences through choice architecture and whole systems design for the infrastructure industry.

  3. Urban Plan and Water Infrastructures Planning: A Methodology Based on Spatial ANP

    Directory of Open Access Journals (Sweden)

    Michele Grimaldi

    2017-05-01

    Full Text Available Cities are exploding, occupying rural territory in dispersed and fragmented ways. A consequence of this phenomenon is that the demand for utilities includes more and more extensive territories. Among them, fulfilling the demand for services related to integrated water service presents many difficulties. The economic costs needed to meet service demand and the environmental costs associated with its non-fulfilment are inversely proportional to the population needing service in rural areas, since that population is distributed across a low-density gradient. Infrastructure planning, within the area of competence, generally follows a policy of economic sustainability, fixing a service coverage threshold in terms of a “sufficient” concentration of population and economic activity (91/271/CEE. This threshold, homogenous within the territorial limits of a water infrastructure plan, creates uncertainty in the planning of investments, which are not sized on the actual, appropriately spatialized, demand for service. Careful prediction of the location of infrastructure investments would guarantee not only economic savings but also reduce the environmental costs generated by the lack of utilities. Therefore, is necessary to create a link between water infrastructure planning and urban planning, which is responsible for the future spatial distribution of service demand. In this study, the relationships between the instruments of regulation and planning are compared by a multi-criteria spatial analysis network (analytic network process (ANP. This method, tested on a sample of a city in southern Italy, allows us to optimize the design and location of the investment needed to meet the service criteria, looking at the actual efficiency of the networks. The result of this application is a suitability map that allows us to validate the criteria for defining urban transformations.

  4. Transport and environmental sustainability: An adapted SPE approach for modelling interactions between transport, infrastructure, economy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, Erik; Van den Bergh, Jeroen [Department of Spatial Economics, Faculty of Economics and Econometrics, Free University Amsterdam, Amsterdam (Netherlands)

    1994-05-01

    The present paper aims at shedding some light on the concept of `sustainable transport`. Within the context of a sustainable development, the consequences of interdependencies between transport, infrastructure, economy and environment for the formulation of optimal regulatory policies are investigated. The Spatial Price Equilibrium approach is adapted for the analysis of sustainable spatio-economic development, and for the evaluation of first-best and second-best regulatory policies on the issues at hand. The analysis demonstrates the need for integration of elements concerning economic structure, infrastructure, transportation, environment and space in one single analytical framework when considering questions on sustainability in relation to transport. 2 figs., 1 appendix, 10 refs.

  5. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    OpenAIRE

    Yawson, David O.; Armah, Frederick A.; Pappoe, Alex N. M.

    2009-01-01

    The paper presents thoughts on Sustainable Data Infrastructure (SDI) development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental) that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing ...

  6. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Xin (Cissy Ma

    2015-09-01

    Full Text Available Urban water systems are an example of complex, dynamic human–environment coupled systems which exhibit emergent behaviors that transcend individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and stormwater have led to great improvements in public health protection, sustainable solutions for a growing global population facing increased resource constraints demand a paradigm shift based on holistic management to maximize the use and recovery of water, energy, nutrients, and materials. The objective of this review paper is to highlight the issues in traditional water systems including water demand and use, centralized configuration, sewer collection systems, characteristics of mixed wastewater, and to explore alternative solutions such as decentralized water systems, fit for purpose and water reuse, natural/green infrastructure, vacuum sewer collection systems, and nutrient/energy recovery. This review also emphasizes a system thinking approach for evaluating alternatives that should include sustainability indicators and metrics such as emergy to assess global system efficiency. An example paradigm shift design for urban water system is presented, not as the recommended solution for all environments, but to emphasize the framework of system-level analysis and the need to visualize water services as an organic whole. When water systems are designed to maximize the resources and optimum efficiency, they are more prevailing and sustainable than siloed management because a system is more than the sum of its parts.

  7. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  8. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  9. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    Science.gov (United States)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  10. The technopolitics of big infrastructure and the Chinese water machine

    Directory of Open Access Journals (Sweden)

    Britt Crow-Miller

    2017-06-01

    Full Text Available Despite widespread recognition of the problems caused by relying on engineering approaches to water management issues, since 2000 China has raised its commitment to a concrete-heavy approach to water management. While, historically, China’s embrace of modernist water management could be understood as part of a broader set of ideas about controlling nature, in the post-reform era this philosophical view has merged with a technocratic vision of national development. In the past two decades, a Chinese Water Machine has coalesced: the institutional embodiment of China’s commitment to large infrastructure. The technocratic vision of the political and economic elite at the helm of this Machine has been manifest in the form of some of the world’s largest water infrastructure projects, including the Three Gorges Dam and the South-North Water Transfer Project, and in the exporting of China’s vision of concrete-heavy development beyond its own borders. This paper argues that China’s approach to water management is best described as a techno-political regime that extends well beyond infrastructure, and is fundamentally shaped by both past choices and current political-economic conditions. Emerging from this regime, the Chinese Water Machine is one of the forces driving the (return to big water infrastructure globally.

  11. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  12. FOSS Tools for Research Infrastructures - A Success Story?

    Science.gov (United States)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a

  13. Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development

    Directory of Open Access Journals (Sweden)

    Hua-peng Qin

    2014-10-01

    Full Text Available Surface water quality deterioration is a serious problem in many rapidly urbanizing catchments in developing countries. There is currently a lack of studies that quantify water quality variation (deterioration or otherwise due to both socio-economic and infrastructure development in a catchment. This paper investigates the causes of water quality changes over the rapid urbanization period of 1985–2009 in the Shenzhen River catchment, China and examines the changes in relation to infrastructure development and socio-economic policies. The results indicate that the water quality deteriorated rapidly during the earlier urbanization stages before gradually improving over recent years, and that rapid increases in domestic discharge were the major causes of water quality deterioration. Although construction of additional wastewater infrastructure can significantly improve water quality, it was unable to dispose all of the wastewater in the catchment. However, it was found that socio-economic measures can significantly improve water quality by decreasing pollutant load per gross regional production (GRP or increasing labor productivity. Our findings suggest that sustainable development during urbanization is possible, provided that: (1 the wastewater infrastructure should be constructed timely and revitalized regularly in line with urbanization, and wastewater treatment facilities should be upgraded to improve their nitrogen and phosphorus removal efficiencies; (2 administrative regulation policies, economic incentives and financial policies should be implemented to encourage industries to prevent or reduce the pollution at the source; (3 the environmental awareness and education level of local population should be increased; (4 planners from various sectors should consult each other and adapt an integrated planning approach for socio-economic and wastewater infrastructure development.

  14. Water Matters: Assessing the Impacts of Water and Sanitation Infrastructure in the U.S./Mexico Border Region

    Science.gov (United States)

    Hargrove, W. L.; Del Rio, M.; Korc, M.

    2017-12-01

    Using Health Impact Assessment methods, we determined: 1) the impact of water and sanitation infrastructure installed about 15 years ago in two Texas border communities; 2) the impact of failing septic tanks in a neighborhood where septic systems are more than 20 years old and failing; and 3) the impacts of hauled water as the main household water source in a colonia. We obtained a total of 147 household surveys related to water and sanitation in four communities. Households who had obtained water and sanitation infrastructure had less skin problems, neuropathy, gastrointestinal illness, and stomach infections compared to an earlier time when they relied on local domestic wells or hauled water and septic tanks. Hepatitis A incidence in El Paso County, TX dropped precipitously after the implementation of water and sanitation infrastructure. Hauling water contributed to mental stress and anxiety and was risky in terms of road safety. We also assessed the economic and community development impacts of water and sanitation infrastructure. Communities benefitted from higher property values, expanded health care services, more parks and recreation, more local businesses, and improved fire safety. We argue that though water and sanitation infrastructure is a significant contributor to addressing inequities in the border region, much remains to be done to achieve water justice in this challenging region.

  15. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Science and Space Commerce

    Science.gov (United States)

    Zuniga, Allison; Turner, Mark; Rasky, Dan

    2017-01-01

    A new concept study was initiated to examine the framework needed to gradually develop an economical and sustainable lunar infrastructure using a public private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop cis-lunar and surface capabilities for mutual benefit while sharing cost and risk in the development phase and then allowing for transfer of operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, energy storage devices, communication relay satellites, local communication towers, and surface mobility operations.

  16. International conference on national infrastructures for radiation safety: Towards effective and sustainable systems. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The International Atomic Energy Agency (IAEA), in co-operation with the World Health Organization (WHO), the International Labour Office (ILO), the European Commission (EC), and the OECD Nuclear Energy Agency (NEA), organized the International Conference on National Infrastructures for Radiation Safety: Towards Effective and Sustainable Systems. This book contains contributed papers submitted on pertinent issues, including stakeholder involvement, IAEA Model Projects on Upgrading Radiation Protection Infrastructure, Quality Assurance, education and training, regulatory activities, performance evaluation, source security, and emergency preparedness. The material in this book has not been edited by the IAEA. These contributed papers will be published on a CD ROM as part of the Proceedings of the Conference, along with the invited papers and discussions. The papers are grouped by topical sessions: Stakeholder Involvement in Building and Maintaining National Radiation Safety Infrastructure (National and International); Implementation Experience with The Model Projects (Views From The Countries, Positive and Negative Experiences); Resources and Services (Systematic Approach), Quality Assurance, International Support Of Services; Sustainable Education And Training: Developing Skills (National Systems And Regional Solutions); Needs for Education And Training at The International Level (Including IAEA Programmes Assisting in Establishing Adequate Infrastructures); Authorization, Inspection and Enforcement (Effectiveness and Efficiency Of The Activities Of The Regulatory Bodies), Independence of Regulatory Authorities; Performance Evaluation; Source Security and Emergency Preparedness (Infrastructure Requirements at the International, National And User's Level)

  17. International conference on national infrastructures for radiation safety: Towards effective and sustainable systems. Contributed papers

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA), in co-operation with the World Health Organization (WHO), the International Labour Office (ILO), the European Commission (EC), and the OECD Nuclear Energy Agency (NEA), organized the International Conference on National Infrastructures for Radiation Safety: Towards Effective and Sustainable Systems. This book contains contributed papers submitted on pertinent issues, including stakeholder involvement, IAEA Model Projects on Upgrading Radiation Protection Infrastructure, Quality Assurance, education and training, regulatory activities, performance evaluation, source security, and emergency preparedness. The material in this book has not been edited by the IAEA. These contributed papers will be published on a CD ROM as part of the Proceedings of the Conference, along with the invited papers and discussions. The papers are grouped by topical sessions: Stakeholder Involvement in Building and Maintaining National Radiation Safety Infrastructure (National and International); Implementation Experience with The Model Projects (Views From The Countries, Positive and Negative Experiences); Resources and Services (Systematic Approach), Quality Assurance, International Support Of Services; Sustainable Education And Training: Developing Skills (National Systems And Regional Solutions); Needs for Education And Training at The International Level (Including IAEA Programmes Assisting in Establishing Adequate Infrastructures); Authorization, Inspection and Enforcement (Effectiveness and Efficiency Of The Activities Of The Regulatory Bodies), Independence of Regulatory Authorities; Performance Evaluation; Source Security and Emergency Preparedness (Infrastructure Requirements at the International, National And User's Level)

  18. Principles and practices of sustainable water management

    Institute of Scientific and Technical Information of China (English)

    Bixia Xu

    2010-01-01

    Literature related to sustainable water management is reviewed to illustrate the relationship among water management, sustainability (sustainable development), and sustainable water management. This review begins with the explanation on the definition of sustainable water management, followed by a discussion of sustainable water management principles and practices.

  19. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    Science.gov (United States)

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed. Published by Elsevier Ltd.

  20. Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities

    International Nuclear Information System (INIS)

    Wolsink, Maarten

    2010-01-01

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are

  1. Sustainability in urban water resources management - some notes from the field

    Science.gov (United States)

    Shuster, W.; Garmestani, A.; Green, O. O.

    2014-12-01

    Urban development has radically transformed landscapes, and along with it, how our cities and suburbs cycle energy and water. One unfortunate outcome of urbanization is the production of massive volumes of uncontrolled runoff volume. Our civic infrastructure is sometimes marginally capable of handling even dry-weather fluxes without wastewater system overflows, much less the challenges of wet-weather events. The predominance of runoff volume in urban water balance has had serious ramifications for regulatory activity, municipal financial matters, and public health. In the interest of protecting human health and the environment, my group's research has primarily addressed the integration of social equity, economic stabilization, and environmental management to underpin the development of sustainable urban water cycles. In this talk, I will present on: 1) the Shepherd Creek Stormwater Management project wherein an economic incentive was used to recruit citizen stormwater managers and distribute parcel-level, green infrastructure-based stormwater control measures; and 2) our urban soil pedologic-hydrologic assessment protocol that we use as a way of understanding the capacity for urban soils to provide ecosystem services, and in cities representing each of the major soil orders.

  2. Exploring Citizen Infrastructure and Environmental Priorities in Mumbai, India

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Joshua; Romero-Lankao, Patricia; Beig, Gufran

    2016-06-01

    Many cities worldwide seek to understand local policy priorities among their general populations. This study explores how differences in local conditions and among citizens within and across Mumbai, India shape local infrastructure (e.g. energy, water, transport) and environmental (e.g. managing pollution, climate-related extreme weather events) policy priorities for change that may or may not be aligned with local government action or global environmental sustainability concerns such as low-carbon development. In this rapidly urbanizing city, multiple issues compete for prominence, ranging from improved management of pollution and extreme weather to energy and other infrastructure services. To inform a broader perspective of policy priorities for urban development and risk mitigation, a survey was conducted among over 1200 citizens. The survey explored the state of local conditions, the challenges citizens face, and the ways in which differences in local conditions (socio-institutional, infrastructure, and health-related) demonstrate inequities and influence how citizens perceive risks and rank priorities for the future design and implementation of local planning, policy, and community-based efforts. With growing discussion and tensions surrounding the new urban sustainable development goal, announced by the UN in late September 2015, and a new global urban agenda document to be agreed upon at 'Habitat III', issues on whether sustainable urbanization priorities should be set at the international, national or local level remain controversial. As such, this study aims to first understand determinants of and variations in local priorities across one city, with implications discussed for local-to-global urban sustainability. Findings from survey results indicate the determinants and variation in conditions such as age, assets, levels of participation in residential action groups, the health outcome of chronic asthma, and the infrastructure service of piped

  3. DRIVER: Building a Sustainable Infrastructure of European Scientific Repositories

    Directory of Open Access Journals (Sweden)

    Norbert Lossau

    2008-11-01

    Full Text Available DRIVER has a clear vision: All research institutions in Europe and worldwide make all their research publications openly accessible through institutional repositories. The vision follows the Berlin Declaration, which called in October 2003 for ‘free and unrestricted access to sciences and human knowledge representation worldwide’. Initiated by the internationally renowned German research organisation the Max-Planck-Society, and signed by many international research organisations and institutes, the Berlin Declaration has set a political statement. In building a sustainable infrastructure for scientific repositories, DRIVER brings to this statement the reality of scholarly communication in the future.

  4. SMART Infrastructure & Mobility : Exploring Water, Mobility & Infrastructure in São Paulo

    NARCIS (Netherlands)

    Piccinini, D.; Rocco, R.; Bacchin, T.

    2015-01-01

    This booklet presents the outcomes of the 2014 eligible course ‘Smart Infrastructure and Mobility’ (SIM), of the Delft University of Technology, Faculty of Architecture and the Built Environment Urbanism MSc. The course builds on the theme of the São Paulo Water Ring, locally known as ‘Hidro-Anel’ –

  5. Collaborative Engagement Approaches For Delivering Sustainable Infrastructure Projects In The AEC Sector

    Directory of Open Access Journals (Sweden)

    Adetola, Alaba

    2011-12-01

    Full Text Available The public sector has traditionally financed and operated infrastructure projects using resources from taxes and various levies (e.g. fuel taxes, road user charges. However, the rapid increase in human population growth coupled with extended globalisation complexities and associated social/political/economic challenges have placed new demands on the purveyors and operators of infrastructure projects. The importance of delivering quality infrastructure has been underlined by the United Nations declaration of the Millennium Development Goals; as has the provision of ‘adequate’ basic structures and facilities necessary for the well-being of urban populations in developing countries. Thus, in an effort to finance developing countries’ infrastructure needs, most countries have adopted some form of public-private collaboration strategy. This paper critically reviews these collaborative engagement approaches, identifies and highlights 10 critical themes that need to be appropriately captured and aligned to existing business models in order to successfully deliver sustainable infrastructure projects. Research findings show that infrastructure services can be delivered in many ways, and through various routes. For example, a purely public approach can cause problems such as slow and ineffective decision-making, inefficient organisational and institutional augmentation, and lack of competition and inefficiency (collectively known as government failure. On the other hand, adopting a purely private approach can cause problems such as inequalities in the distribution of infrastructure services (known as market failure. Thus, to overcome both government and market failures, a collaborative approach is advocated which incorporates the strengths of both of these polarised positions.

  6. Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE.

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-03-01

      Urban water systems (UWSs) are challenged by the sustainability perspective. Certain limitations of the sustainability of centralized UWSs and decentralized household level wastewater treatments can be overcome by managing UWSs at an intermediate scale, referred to as small to medium sized UWSs (SMUWSs). SMUWSs are different from large UWSs, mainly in terms of smaller infrastructure, data limitation, smaller service area, and institutional limitations. Moreover, sustainability assessment systems to evaluate the sustainability of an entire UWS are very limited and confined only to large UWSs. This research addressed the gap and has developed a set of 38 applied sustainability performance indicators (SPIs) by using fuzzy-Elimination and Choice Translating Reality (ELECTRE) I outranking method to assess the sustainability of SMUWSs. The developed set of SPIs can be applied to existing and new SMUWSs and also provides a flexibility to include additional SPIs in the future based on the same selection criteria.

  7. Sustainability issues in civil engineering

    CERN Document Server

    Saride, Sireesh; Basha, B

    2017-01-01

    This compilation on sustainability issues in civil engineering comprises contributions from international experts who have been working in the area of sustainability in civil engineering. Many of the contributions have been presented as keynote lectures at the International Conference on Sustainable Civil Infrastructure (ICSCI) held in Hyderabad, India. The book has been divided into core themes of Sustainable Transportation Systems, Sustainable Geosystems, Sustainable Environmental and Water Resources and Sustainable Structural Systems. Use of sustainability principles in engineering has become an important component of the process of design and in this context, design and analysis approaches in civil engineering are being reexamined to incorporate the principles of sustainable designs and construction in practice. Developing economies are on the threshold of rapid infrastructure growth and there is a need to compile the developments in various branches of civil engineering and highlight the issues. It is th...

  8. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    quality, flow back rates and the associated economics. A significant contributor to the economics can be offsite transportation costs from hauling water to and from the drill site. While economics often drive decisions on technology and reuse, available water and infrastructure (water pipelines, injection wells, etc.) are also important contributors. In some regions effluent water (i.e., treated or untreated waste water) is playing an increasing role to reduce impacting 'fresh' water supplies for communities in regions where supply is limited and demand continues to increase. In many communities effluent water provides additional revenue to support infrastructure needs arising from accelerated population growth and economic expansion. The development strategy for shale reservoirs can be optimized to assure a sustainable future for water resources. A systems-based sustainable water strategy should be integrated into the regional reservoir development approach at the earliest possible stage with full consideration of the nature of regional water issues and reservoir development strategies impacting water demand and supply, available technology and potential social and economic impacts.

  9. Terrorism and Security Issues Facing the Water Infrastructure Sector

    National Research Council Canada - National Science Library

    Copeland, Claudia; Cody, Betsy

    2005-01-01

    Damage to or destruction of the nation's water supply and water quality infrastructure by terrorist attack could disrupt the delivery of vital human services in this country, threatening public health...

  10. Water Footprints and Sustainable Water Allocation

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2015-12-01

    Full Text Available Water Footprint Assessment (WFA is a quickly growing research field. This Special Issue contains a selection of papers advancing the field or showing innovative applications. The first seven papers are geographic WFA studies, from an urban to a continental scale; the next five papers have a global scope; the final five papers focus on water sustainability from the business point of view. The collection of papers shows that the historical picture of a town relying on its hinterland for its supply of water and food is no longer true: the water footprint of urban consumers is global. It has become clear that wise water governance is no longer the exclusive domain of government, even though water is and will remain a public resource with government in a primary role. With most water being used for producing our food and other consumer goods, and with product supply chains becoming increasingly complex and global, there is a growing awareness that consumers, companies and investors also have a key role. The interest in sustainable water use grows quickly, in both civil society and business communities, but the poor state of transparency of companies regarding their direct and indirect water use implies that there is still a long way to go before we can expect that companies effectively contribute to making water footprints more sustainable at a relevant scale.

  11. Terrorism and Security Issues Facing the Water Infrastructure Sector

    National Research Council Canada - National Science Library

    Copeland, Claudia; Cody, Betsy A

    2006-01-01

    Damage to or destruction of the nation's water supply and water quality infrastructure by a terrorist attack could disrupt the delivery of vital human services in this country, threaten public health...

  12. Life Cycle Assessment and Cost Analysis of Water and Wastewater Treatment Options for Sustainability: Influence of Scale on Membrane Bioreactor Systems

    Science.gov (United States)

    changes in drinking and wastewater infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated wastewa...

  13. Research on the municipal responsibility to sustainably manage services infrastructure assets

    CSIR Research Space (South Africa)

    Wall, K

    2005-07-01

    Full Text Available . Furthermore, a significant proportion of the South African population does not enjoy basic services (for example safe water and/or acceptable sanitation), and it is the stated intention of national government to fund the rolling out of the engineering... designed life. Depending on the infrastructure concerned, it could be that the riding quality of roads deteriorates and wear and tear on vehicles increases, water pressures drop, water supplies are interrupted, treated water that has been purchased...

  14. Water institutions and governance models for the funding, financing and management of water infrastructure in South Africa

    CSIR Research Space (South Africa)

    Ruiters, Cornelius

    2015-10-01

    Full Text Available for the funding, financing and development of water infrastructure projects in South Africa, i.e. Model 1: direct fiscal (NRF) funding, Model 2: ring-fenced special purpose vehicle (SPV), Model 3: SPV housing dedicated water infrastructure cash-flows, Model 4...

  15. Libraries as an infrastructure for a sustainable public sphere in a digital age

    DEFF Research Database (Denmark)

    Audunson, Ragnar; Svandhild, Aabø,; Rasmussen, Casper Hvenegaard

    2017-01-01

    This session will focus upon challenges to upholding a sustainable public sphere in a digital age and the potential of libraries to contribute to an infrastructure that might help us cope with these challenges. The workshop can be seen as a continuationof last years worshop themed: Partnership...... with society: A social and cultural approach to Ischool research....

  16. Decontamination of radiological agents from drinking water infrastructure: a literature review and summary.

    Science.gov (United States)

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of radiological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some important radiological agents (cesium, strontium and cobalt), but important data gaps remain. Although some targeted experiments have been published on cesium, strontium and cobalt persistence on drinking water infrastructure, most of the data comes from nuclear clean-up sites. Furthermore, the studies focused on drinking water systems use non-radioactive surrogates. Non-radioactive cobalt was shown to be persistent on iron due to oxidation with free chlorine in drinking water and precipitation on the iron surface. Decontamination with acidification was an effective removal method. Strontium persistence on iron was transient in tap water, but adherence to cement-mortar has been demonstrated and should be further explored. Cesium persistence on iron water infrastructure was observed when flow was stagnant, but not with water flow present. Future research suggestions focus on expanding the available cesium, strontium and cobalt persistence data to other common infrastructure materials, specifically cement-mortar. Further exploration chelating agents and low pH treatment is recommended for future decontamination studies. Published by Elsevier Ltd.

  17. Towards a more sustainable transport infrastructure: how spatial geological data can be utilized to improve early stage Life cycle assessment of road infrastructure

    Science.gov (United States)

    Karlsson, Caroline; Miliutenko, Sofiia; Björklund, Anna; Mörtberg, Ulla; Olofsson, Bo; Toller, Susanna

    2017-04-01

    Environmental impacts during the life cycle stages of transport infrastructure are substantial, including among other greenhouse gas (GHG) emissions, as well as resource and energy use. For transport infrastructure to be sustainable, such issues need to be integrated in the planning process. Environmental Impact Assessment (EIA) is required by the European Union (EU) in order to ensure that all environmental aspects are considered during planning of road infrastructure projects. As a part of this process, the European Commission has suggested the use of the tool life cycle assessment (LCA) for assessing life cycle energy use and GHG emissions. When analyzing life cycle impacts of the road infrastructure itself, it was shown that earthworks and materials used for the road construction have a big share in the total energy use and GHG emissions. Those aspects are largely determined by the geological conditions at the site of construction: parameters such as soil thickness, slope, bedrock quality and soil type. The geological parameters determine the amounts of earthworks (i.e. volumes of soil and rock that will be excavated and blasted), transportation need for excavated materials as well as the availability of building materials. The study presents a new geographic information system (GIS)-based approach for utilizing spatial geological data in three dimensions (i.e. length, width and depth) in order to improve estimates on earthworks during the early stages of road infrastructure planning. Three main methodological steps were undertaken: mass balance calculation, life cycle inventory analysis and spatial mapping of greenhouse gas (GHG) emissions and energy use. The proposed GIS-based approach was later evaluated by comparing with the actual values of extracted material of a real road construction project. The results showed that the estimate of filling material was the most accurate, while the estimate for excavated soil and blasted rock had a wide variation from

  18. Making green infrastructure healthier infrastructure.

    Science.gov (United States)

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  19. Green Infrastructure in Context: Public Health and Ecosystem Services

    Science.gov (United States)

    Using interdisciplinary approaches to urban water management strategies can yield benefits for sustainability. While green infrastructure (GI) has primarily been used to increase infiltration/redistribution and reduce runoff in urban areas, the physical siting of GI can provide o...

  20. Demographic dynamics and sustainable social infrastructure: a case study of Dehradun city by using remote sensing and GIS techniques

    International Nuclear Information System (INIS)

    Gill, G.S.; Singh, A.

    2005-01-01

    A perusal of the demographic and socio-economic structure of cities population reflects the sustainable development and quality of social infrastructure of the city. Urban activities and growth are constantly putting pressure on an already burdened environment and infrastructure. Sustainable development is an approach economic planning that attempts to foster economic growth while preserving the quality of the environment future generations. The application of Spatial technology and combining the Socio Economic Indicators provide the dynamic Cities Environment. The analysis of indicators by these tools provides the insight into things which the city is facing in the present scenario, which areas require immediate attention and where the focus Sustainable development should. The analysis provides the Sustainability of the City in the term of local environment and Cities Sustain. Development in context of Global Environment. The Spatial technology provide the Synoptic overview of city thus giving the three dimensional aspect of study. The Satellite Imagery provides current status of city which otherwise take very long by conventional methods and combining it with latest socio-economic data provides updated picture of infrastructure. The use of Geographic Information System (GIS) in creating a tabular database and linking it with a geographic, database and converting the data into spatial form by which maps can be generated, proves the advantage and usefulness of GIS in this kind of studies. (author)

  1. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  2. Assessing the full costs of water, liquid waste, energy and solid waste infrastructure in the Fraser Valley Regional District (FVRD)

    International Nuclear Information System (INIS)

    Pollard, D.

    2001-01-01

    This document presents a newly drafted growth strategy developed by the Fraser Valley Regional District (FVRD) in British Columbia. It guides the sustainable growth, change and development of the region for the next 25 years and deals with air pollution, water quality, traffic congestion, affordable housing, employment, energy use, parks and green space. In particular, this case study develops a method to apply full cost accounting (FCA) to a growth strategy. FCA is the most appropriate way to approach a sustainable strategy because it considers economic, social and environmental issues. The study also includes the development of a software tool consisting of an ACCESS database and an ARCVIEW GIS file for compiling and analyzing detailed infrastructure profiles which can be used to assess the full costs of different growth scenarios. The following four issue categories of environmental and economic indicators of FVRD performance were addressed: solid waste, water and wastewater, energy, and infrastructure costs. Each issue category was then used to establish a set of 5 performance indicators that can be measured and assessed over time. These included solid waste, water consumption, wastewater, energy consumption and air emissions. The database and methodology developed for this project is suitable for other regions. The software can be viewed by contacting the Sheltair Group Resource Consultants Inc. in Vancouver

  3. Water Quality and Sustainable Environmental Health

    Science.gov (United States)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  4. National infrastructure maintenance strategy for South Africa

    CSIR Research Space (South Africa)

    Wall, K

    2009-05-01

    Full Text Available Conference, Addis Ababa, Ethiopia, 2009 WATER, SANITATION AND HYGIENE: SUSTAINABLE DEVELOPMENT AND MULTISECTORAL APPROACHES A National Infrastructure Maintenance Strategy for South Africa Kevin Wall, South Africa [OFFICE USE ONLY: REVIEWED...; − effects on human health and economic growth; − lack of effective countermeasures in the event of failure of the service; and − the risk generally to government's growth objectives. Wastewater treatment works are often problematic, as are water...

  5. Growing the Blockchain information infrastructure

    DEFF Research Database (Denmark)

    Jabbar, Karim; Bjørn, Pernille

    2017-01-01

    In this paper, we present ethnographic data that unpacks the everyday work of some of the many infrastructuring agents who contribute to creating, sustaining and growing the Blockchain information infrastructure. We argue that this infrastructuring work takes the form of entrepreneurial actions......, which are self-initiated and primarily directed at sustaining or increasing the initiator’s stake in the emerging information infrastructure. These entrepreneurial actions wrestle against the affordances of the installed base of the Blockchain infrastructure, and take the shape of engaging...... or circumventing activities. These activities purposefully aim at either influencing or working around the enablers and constraints afforded by the Blockchain information infrastructure, as its installed base is gaining inertia. This study contributes to our understanding of the purpose of infrastructuring, seen...

  6. Incorporating green infrastructure into water resources management plans to address water quality impairments

    Science.gov (United States)

    Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the waters...

  7. On the need for system alignment in large water infrastructure. Understanding infrastructure dynamics in Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Pär Blomkvist

    2017-06-01

    Full Text Available In this article we contribute to the discussion of infrastructural change in Africa, and explore how a new theoretical perspective may offer a different, more comprehensive and historically informed understanding of the trend towards large water infrastructure in Africa. We examine the socio-technical dynamics of large water infrastructures in Nairobi, Kenya, in a longer historical perspective using two concepts that we call intra-systemic alignment and inter-level alignment. Our theoretical perspective is inspired by Large Technical Systems (LTS and Multi-Level Perspective (MLP. While inter-level alignment focuses on the process of aligning the technological system at the three levels of niche, regime and landscape, intra-systemic alignment deals with how components within the regime are harmonised and standardised to fit with each other. We pay special attention to intrasystemic alignment between the supply side and the demand side, or as we put it, upstream and downstream components of a system. In narrating the history of water supply in Nairobi, we look at both the upstream (largescale supply and downstream activities (distribution and payment, and compare the Nairobi case with European history of large infrastructures. We emphasise that regime actors in Nairobi have dealt with the issues of alignment mainly to facilitate and expand upstream activities, while concerning downstream activities they have remained incapable of expanding service and thus integrating the large segment of low-income consumers. We conclude that the present surge of large-scale water investment in Nairobi is the result of sector reforms that enabled the return to a long tradition – a 'Nairobi style' – of upstream investment mainly benefitting the highincome earners. Our proposition is that much more attention needs to be directed at inter-level alignment at the downstream end of the system, to allow the creation of niches aligned to the regime.

  8. Making green infrastructure healthier infrastructure

    Directory of Open Access Journals (Sweden)

    Mare Lõhmus

    2015-11-01

    Full Text Available Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  9. Momentum in Transformation of Technical Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....

  10. Water supply infrastructure planning under multiple uncertainties: A differentiated approach

    Science.gov (United States)

    Fletcher, S.; Strzepek, K.

    2017-12-01

    Many water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply. Supply uncertainty arises from short-term climate variability and long-term climate change as well as uncertainty in groundwater availability. Social and economic uncertainties - such as sectoral competition for water, food and energy security, urbanization, and environmental protection - compound physical uncertainty. Further, the varying risk aversion of stakeholders and water managers makes it difficult to assess the necessity of expensive infrastructure investments to reduce risk. We categorize these uncertainties on two dimensions: whether they can be updated over time by collecting additional information, and whether the uncertainties can be described probabilistically or are "deep" uncertainties whose likelihood is unknown. Based on this, we apply a decision framework that combines simulation for probabilistic uncertainty, scenario analysis for deep uncertainty, and multi-stage decision analysis for uncertainties that are reduced over time with additional information. In light of these uncertainties and the investment costs of large infrastructure, we propose the assessment of staged, modular infrastructure and information updating as a hedge against risk. We apply this framework to cases in Melbourne, Australia and Riyadh, Saudi Arabia. Melbourne is a surface water system facing uncertain population growth and variable rainfall and runoff. A severe drought from 1997 to 2009 prompted investment in a 150 MCM/y reverse osmosis desalination plan with a capital cost of 3.5 billion. Our analysis shows that flexible design in which a smaller portion of capacity is developed initially with the option to add modular capacity in the future can mitigate uncertainty and reduce the expected lifetime costs by up to 1 billion. In Riyadh, urban water use relies on fossil groundwater aquifers and

  11. Urban water supply infrastructure planning under predictive groundwater uncertainty: Bayesian updating and flexible design

    Science.gov (United States)

    Fletcher, S.; Strzepek, K.

    2017-12-01

    Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for

  12. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    Science.gov (United States)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

  13. Urban Cholera and Water Sustainability Challenges under Climatic and Anthropogenic Change

    Science.gov (United States)

    Akanda, A. S.; Jutla, A.; Huq, A.; Faruque, A. G.; Colwell, R. R.

    2013-12-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city of the world - Dhaka, Bangladesh. Emerging megacities in the developing world, especially those located in coastal regions of the tropics remain vulnerable to similar. However, there has not been any systematic study on linking the long-term disease trends with changes in related climatic, environmental, or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or societal factors: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns. An interesting change is observed in the seasonal trends of cholera incidence; while an endemic upward trend is seen in the dry season, the post-monsoon trend seem to be more epidemic in nature. Evidence points to growing urbanization and rising population in unplanned settlements that have negligible to poor water and sanitation systems compounded by increasing frequency of record flood events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of spring outbreaks, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate water sustainability challenges in the context of climatic and anthropogenic changes in the region.

  14. A Case Study on Sustainable Reuse of Abandoned Infrastructure at Seoul Station Overpass as Urban Park for the Design Strategies in Korea

    Science.gov (United States)

    Boo, Yeeun; Kwon, Young-Sang

    2018-04-01

    As the 21st century, known for knowledge information era, many industrial infrastructures built as part of the 20th century urban development have been devastated functionally and new alternatives for them have been demanded nowadays. This study aims to discuss the strategies used in the design proposals of the International Competition for ‘Seoullo 7017 Project’, which was recently completed in May 2017, based on the sustainability of the deteriorate infrastructure as urban park. Through the competition brief, each proposal is analysed against the competition brief and the more generic approaches on the adaptive reuse of infrastructure are proposed. By examining the case in Korea, it is expected to explore the possibilities for the sustainability of abandoned infrastructure through adapting reuse as urban park in Korea, to propose design strategies that can be applied to the future adaptive use of deteriorated infrastructure in Korea, and to provide broader academic base to related works.

  15. Future Investment in Drinking Water and Wastewater Infrastructure

    National Research Council Canada - National Science Library

    Beider, Perry

    2002-01-01

    ... in maintaining and replacing their pipes, treatment plants, and other infrastructure. But there is neither consensus on the size and timing of future investment costs nor agreement on the impact of those costs on households and other water ratepayers...

  16. A Framework and Metric for resilience concept in water infrastructure

    Science.gov (United States)

    Karamouz, M.; Olyaei, M.

    2017-12-01

    The collaborators of water industries are looking for ways and means to bring resilience into our water infrastructure systems. The key to this conviction is to develop a shared vision among the engineers, builders and decision makers of our water executive branch and policy makers, utilities, community leaders, players, end users and other stakeholders of our urban environment. Among water infrastructures, wastewater treatment plants (WWTP) have a significant role on urban systems' serviceability. These facilities, especially when located in coastal regions, are vulnerable to heavy rain, surface runoff, storm surges and coastal flooding. Flooding can cause overflows from treatment facilities into the natural water bodies and result in environmental predicament of significant proportions. In order to minimize vulnerability to flood, a better understanding of flood risk must be realized. Vulnerability to floods frequency and intensity is increasing by external forcing such as climate change, as well as increased interdependencies in urban systems. Therefore, to quantify the extent of efforts for flood risk management, a unified index is needed for evaluating resiliency of infrastructure. Resiliency is a key concept in understanding vulnerability in dealing with flood. New York City based on its geographic location, its urbanized nature, densely populated area, interconnected water bodies and history of the past flooding events is extremely vulnerable to flood and was selected as the case study. In this study, a framework is developed to evaluate resiliency of WWTPs. An analysis of the current understanding of vulnerability is performed and a new perspective utilizing different components of resiliency including resourcefulness, robustness, rapidity and redundancy is presented. To quantify resiliency and rank the wastewater treatment plants in terms of how resilient they are, an index is developed using Multi Criteria Decision Making (MCDM) technique. Moreover

  17. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    Science.gov (United States)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  18. Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts

    Directory of Open Access Journals (Sweden)

    Ariana E. Sutton-Grier

    2018-02-01

    Full Text Available Much of the United States’ critical infrastructure is either aging or requires significant repair, leaving U.S. communities and the economy vulnerable. Outdated and dilapidated infrastructure places coastal communities, in particular, at risk from the increasingly frequent and intense coastal storm events and rising sea levels. Therefore, investments in coastal infrastructure are urgently needed to ensure community safety and prosperity; however, these investments should not jeopardize the ecosystems and natural resources that underlie economic wealth and human well-being. Over the past 50 years, efforts have been made to integrate built infrastructure with natural landscape features, often termed “green” infrastructure, in order to sustain and restore valuable ecosystem functions and services. For example, significant advances have been made in implementing green infrastructure approaches for stormwater management, wastewater treatment, and drinking water conservation and delivery. However, the implementation of natural and nature-based infrastructure (NNBI aimed at flood prevention and coastal erosion protection is lagging. There is an opportunity now, as the U.S. government reacts to the recent, unprecedented flooding and hurricane damage and considers greater infrastructure investments, to incorporate NNBI into coastal infrastructure projects. Doing so will increase resilience and provide critical services to local communities in a cost-effective manner and thereby help to sustain a growing economy.

  19. Acquiring underground infrastructure's as-built information for cities' sustainability

    International Nuclear Information System (INIS)

    Jaw, S W

    2014-01-01

    The rapid progress of urbanization around the world has lead to an issue of urban land shortage. As such, the urban infrastructure, especially the utilities infrastructure, were buried underground for space saving and better design of urban landscape. However, this has created difficulties in locating these infrastructures from ground surface since they are invisible to the naked eye. Therefore, this paper offers a method to secure as-built information of the underground utility feature without excavation. This is done by utilizing digital image processing, a series of experiments conducted on preferred test site and real model simulation. By securing these underground utilities as-built information, it can contribute to the sustainability of cities through better urban planning. Moreover, the significant findings achieved in this study also eligible to pinpoint that ground penetrating radar (GPR) backscatter with appropritate treatment can yield unique backscatter signature which functional for identification of the types of underground utility without proving excavation. Thereby, good agreement between the backscatter reflections of GPR with respective underground utility not only serves as input which can channelled into a city's planning, but also uncovers the immense potential of GPR backscatter in reporting the ''feature information'' of the objects

  20. Coexistence and conflict: IWRM and large-scale water infrastructure development in Piura, Peru

    Directory of Open Access Journals (Sweden)

    Megan Mills-Novoa

    2017-06-01

    Full Text Available Despite the emphasis of Integrated Water Resources Management (IWRM on 'soft' demand-side management, large-scale water infrastructure is increasingly being constructed in basins managed under an IWRM framework. While there has been substantial research on IWRM, few scholars have unpacked how IWRM and large-scale water infrastructure development coexist and conflict. Piura, Peru is an important site for understanding how IWRM and capital-intensive, concrete-heavy water infrastructure development articulate in practice. After 70 years of proposals and planning, the Regional Government of Piura began construction of the mega-irrigation project, Proyecto Especial de Irrigación e Hidroeléctrico del Alto Piura (PEIHAP in 2013. PEIHAP, which will irrigate an additional 19,000 hectares (ha, is being realised in the wake of major reforms in the ChiraPiura River Basin, a pilot basin for the IWRM-inspired 2009 Water Resources Law. We first map the historical trajectory of PEIHAP as it mirrors the shifting political priorities of the Peruvian state. We then draw on interviews with the newly formed River Basin Council, regional government, PEIHAP, and civil society actors to understand why and how these differing water management paradigms coexist. We find that while the 2009 Water Resources Law labels large-scale irrigation infrastructure as an 'exceptional measure', this development continues to eclipse IWRM provisions of the new law. This uneasy coexistence reflects the parallel desires of the state to imbue water policy reform with international credibility via IWRM while also furthering economic development goals via largescale water infrastructure. While the participatory mechanisms and expertise of IWRM-inspired river basin councils have not been brought to bear on the approval and construction of PEIHAP, these institutions will play a crucial role in managing the myriad resource and social conflicts that are likely to result.

  1. Conflict between Water Policy and Sustainability

    Science.gov (United States)

    Barros, A. F.

    2001-05-01

    Recent developments in the area of water policy have focussed around the concepts of Integrated Water Resources Management (IWRM). The goal of this activity has been to improve the efficiency of the potential worldwide investment of \\$80 billion per year into the water sector, and to lobby for more expenditure to meet the rapidly expanding demands placed upon water resources worldwide. Unfortunately, there is no definitive and widely accepted definition of IWRM and this fuels the long-standing feeling amongst the scientific community that water policy studies and institutions shortchange sustainability considerations, including those dealing scientific understanding of hydrology and aquatic ecosystems. This is made more difficult because the concepts used in describing sustainability are themselves diffuse and can be contradictory. The nature of understanding of the essential elements of sustainable development and those of the policy community are basically different. Policy has to be general, descriptive, and immediate-sustainability is just the opposite; it must be specific, analytical, and take a long perspective. No one on either side of the divide would claim that the other activities are not important, but bridging the divide is extremely difficult and rare. Typically, policy studies try to incorporate the bureaucratic concepts of water management and institutional reforms without considering the analytical work associated with long-term sustainability of water resources. Furthermore, water resource problems are characterized by high levels of complexity and require a strong interdisciplinary mix of approaches. Unfortunately, what is known and what is likely in the near future are subject to wide interpretation by different observers. This paper examines the conflict between the demands of water policy, which is essentially short-term and narrowly focused with the demands of sustainability, which are long-term and broadly based.

  2. The Effects of Water Insecurity and Emotional Distress on Civic Action for Improved Water Infrastructure in Rural South Africa

    Science.gov (United States)

    Bulled, Nicola

    2015-01-01

    The South African constitution ratifies water as a human right. Yet millions of citizens remain disconnected from the national water infrastructure. Drawing on data collected in 2013–2014 from women in northern South Africa, this study explores “water citizenship”—individual civic engagement related to improving water service provision. Literature indicates that water insecurity is associated with emotional distress and that water-related emotional distress influences citizen engagement. I extend these lines of research by assessing the connection that water insecurity and emotional distress may collectively have with civic engagement to improve access to water infrastructure. PMID:26698378

  3. Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand.

    Science.gov (United States)

    Chang, Ni-Bin; Qi, Cheng; Yang, Y Jeffrey

    2012-11-15

    Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries

    Directory of Open Access Journals (Sweden)

    David O. Yawson

    2009-11-01

    Full Text Available The paper presents thoughts on Sustainable Data Infrastructure (SDI development, and its user requirements bases. It brings Maslow's motivational theory to the fore, and proposes it as a rationalization mechanism for entities (mostly governmental that aim at realizing SDI. Maslow's theory, though well-known, is somewhat new in geospatial circles; this is where the novelty of the paper resides. SDI has been shown to enable and aid development in diverse ways. However, stimulating developing countries to appreciate the utility of SDI, implement, and use SDI in achieving sustainable development has proven to be an imposing challenge. One of the key reasons for this could be the absence of a widely accepted psychological theory to drive needs assessment and intervention design for the purpose of SDI development. As a result, it is reasonable to explore Maslow’s theory of human motivation as a psychological theory for promoting SDI in developing countries. In this article, we review and adapt Maslow’s hierarchy of needs as a framework for the assessment of the needs of developing nations. The paper concludes with the implications of this framework for policy with the view to stimulating the implementation of SDI in developing nations.

  5. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    Science.gov (United States)

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  6. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  7. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems

    Directory of Open Access Journals (Sweden)

    Sangmin Shin

    2018-02-01

    Full Text Available Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measures addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.

  8. Funding models for financing water infrastructure in South Africa: framework and critical analysis of alternatives

    CSIR Research Space (South Africa)

    Ruiters, C

    2013-04-01

    Full Text Available by putting in place new institutional structures and funding models for effective strategies leading to prompt water infrastructure provision. The research identified several funding models for financing water infrastructure development projects. The existing...

  9. Enabling Water-Energy–Food Nexus: A New Approach for Sustainable Agriculture and Food Security in Mountainous Landlocked Countries

    Directory of Open Access Journals (Sweden)

    Tek Bahadur Gurung

    2016-12-01

    Full Text Available Majority of landlocked mountainous countries are poorly ranked in Human Development Index (HDI, mostly due to poor per capita agriculture production, increasing population, unemployment, expensive and delayed transportation including several other factors. Generally, economy of such countries substantially relies on subsistence agriculture, tourism, hydropower and largely on remittance etc. Recently, it has been argued that to utilize scarce suitable land efficiently for food production, poor inland transport, hydropower, irrigation, drinking water in integration with other developmental infrastructures, an overarching policy linking water - energy – food nexus within a country for combating water, energy and food security would be most relevant. Thus, in present paper it has been opined that promotion of such linkage via nexus approach is the key to sustainable development of landlocked mountainous countries. Major land mass in mountainous countries like Nepal remains unsuitable for agriculture, road and other infrastructure profoundly imposing food, nutrition and energy security. However, large pristine snowy mountains function as wildlife sanctuaries, pastures, watershed, recharge areas for regional and global water, food and energy security. In return, landlocked mountainous countries are offered certain international leverages. For more judicious trade off, it is recommended that specific countries aerial coverage of mountains would be more appropriate basis for such leverages. Moreover, for sustainability of mountainous countries an integrated approach enabling water - energy – food nexus via watershed-hydropower-irrigation-aquaculture-agriculture-integrated linking policy model is proposed. This model would enable protection of watershed for pico, micro, and mega hydro power plants and tail waters to be used for aquaculture or irrigation or drinking water purposes for food and nutrition security.

  10. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  11. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  12. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management.

    Science.gov (United States)

    Fratini, C F; Elle, M; Jensen, M B; Mikkelsen, P S

    2012-01-01

    To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a 'more sustainable and integrated urban water management cycle'. But Danish municipalities and utility companies are struggling to bring such solutions into practice. 'Green infrastructure', for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.

  13. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  14. Education and training: Key to sustainable infrastructures

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: Standards, legislation, regulations, policies and procedures may comprise the infrastructure of a radiation protection programme. But even the most carefully designed building remains a hollow shell until people take up residence and begin to marry form and function. Similarly, it takes people to put words into action. The availability of qualified personnel is vital to developing and sustaining a radiation protection infrastructure. For this reason, the IAEA makes it a top priority to develop the skills, knowledge and expertise of individuals across many disciplines: scientists, legislators and regulators, politicians and administrators, employees in facilities that use radioactive sources and materials, emergency response personnel, etc. Over the course of the Model Project, the IAEA applied various approaches to help strengthen personal capabilities - and thereby enable national capacities. Building on a long-standing programme developed in Argentina (and delivered in Spanish), the IAEA now offers post-graduate education courses (PGEC) on Radiation Protection and the Safety of Radiation Sources on a regular basis. This PGEC is available in Arabic (Syrian Arab Republic), English (South Africa and Greece), French (Morocco) and Russian (Belarus). Between 1999 and 2004, more than 370 individuals participated in post-graduate courses. In addition, some 7000 national specialists received radiation protection training through regional and interregional specialized training courses, fellowships, on-the-job training, and scientific visits. By adopting a 'train-the-trainer' approach, the IAEA helps to ensure that Member States become self-sufficient in this area as well. Many individuals who participate in training opportunities provided by the technical cooperation programme subsequently pass their new knowledge and expertise on to co-workers and other peers at the national level. One of the most practical ways the IAEA supports training and education is

  15. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application.

    Science.gov (United States)

    Dhakal, Krishna P; Chevalier, Lizette R

    2017-12-01

    Green infrastructure (GI) revitalizes vegetation and soil, restores hydro-ecological processes destroyed by traditional urbanization, and naturally manages stormwater on-site, offering numerous sustainability benefits. However, despite being sustainable and despite being the object of unrelenting expert advocacy for more than two decades, GI implementation remains slow. On the other hand, the practice of traditional gray infrastructure, which is known to have significant adverse impacts on the environment, is still ubiquitous in urban areas throughout the world. This relationship between knowledge and practice seems unaccountable, which has not yet received adequate attention from academia, policy makers, or research communities. We deal with this problem in this paper. The specific objective of the paper is to explore the barriers to GI, and suggest policies that can both overcome these barriers and expedite implementation. By surveying the status of implementation in 10 US cities and assessing the relevant city, state and federal policies, we identified 29 barriers and grouped them into 5 categories. The findings show that most of the barriers stem from cognitive limitations and socio-institutional arrangements. Accordingly, we suggest 33 policies, also grouped into 5 categories, which span from conducting public education and awareness programs to changing policies and governance structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sustainable Waste Water Treatment in Developing Countries: A Case Study of IIT Kharagpur Campus

    Science.gov (United States)

    Das, Sutapa; Bokshi, Sanjit

    2017-06-01

    Treatment of wastewater and its reuse in irrigation and agriculture can mitigate the inevitable scarcity of safe drinking water in coming decades. For developing countries like India and especially in its under-privileged regions, it is high time to focus on sustainable wastewater treatment which will be economical and easy to construct, operate and maintain by unskilled users without much dependency on electricity. Addressing this issue, various sustainable methods of wastewater treatment was critically analyzed and the Waste Stabilization Pond system was selected. A facility was designed for 20,000 residents of Indian Institute of Technology Kharagpur campus based on its geo-climatic and wastewater characteristics. Detailed calculations were carried out to demonstrate the effluent quality with reduced BOD and E-coli is suitable for unrestricted irrigation. This project with minor customisation can act as a prototype for adjacent vast rural areas where land is available but water, electricity and skilled technicians are not. If implemented, this project will bear social benefits beyond campus such as water supply to drought prone areas, better harvest and rural employment. Moreover, it underpins government' several initiatives to develop rural infrastructure and inclusive growth of the country.

  17. Green infrastructure practices – strategies how to sustain life in metropolitan areas

    Directory of Open Access Journals (Sweden)

    Zaręba Anna

    2016-01-01

    Full Text Available Green Infrastructure is ‘an interconnected network of green space that conserves natural ecosystem values and functions and provides associated benefits to human populations’ [1, p. 12]. It contributes to long term strategic development goals for data and information management. The research paper was introduced with the aim to protect green areas in urban environment by improving biodiversity, leisure and recreation, tidal and fluvial flood risk management, grey water treatment and quality of life. Planning and design of green system should provide appropriate responses to the distinctive local circumstances. Green spaces encourage social interactions, form new places to practise sport and contribute to public health and fitness, as well as have indirect benefits for a range of environmental services. The research hypothesis is that Green Infrastructure is a framework for conservation and development and we need to design Green Infrastructure systems strategically to connect across urban, suburban, rural and wilderness landscapes and incorporate green space elements and functions at the state, regional, community, neighbourhood and site scales [2]. Analysis and design of emerging Green Infrastructure system take a holistic view which links related physical, environmental, economic, social and cultural aspects of local communities.

  18. Health Care Infrastructure for Financially Sustainable Clinical Genomics.

    Science.gov (United States)

    Lennerz, Jochen K; McLaughlin, Heather M; Baron, Jason M; Rasmussen, David; Sumbada Shin, Meini; Berners-Lee, Nancy; Miller Batten, Julie; Swoboda, Kathryn J; Gala, Manish K; Winter, Harland S; Schmahmann, Jeremy D; Sweetser, David A; Boswell, Marianne; Pacula, Maciej; Stenzinger, Albrecht; Le, Long P; Hynes, William; Rehm, Heidi L; Klibanski, Anne; Black-Schaffer, Stephen W; Golden, Jeffrey A; Louis, David N; Weiss, Scott T; Iafrate, A John

    2016-09-01

    Next-generation sequencing has evolved technically and economically into the method of choice for interrogating the genome in cancer and inherited disorders. The introduction of procedural code sets for whole-exome and genome sequencing is a milestone toward financially sustainable clinical implementation; however, achieving reimbursement is currently a major challenge. As part of a prospective quality-improvement initiative to implement the new code sets, we adopted Agile, a development methodology originally devised in software development. We implemented eight functionally distinct modules (request review, cost estimation, preauthorization, accessioning, prebilling, testing, reporting, and reimbursement consultation) and obtained feedback via an anonymous survey. We managed 50 clinical requests (January to June 2015). The fraction of pursued-to-requested cases (n = 15/50; utilization management fraction, 0.3) aimed for a high rate of preauthorizations. In 13 of 15 patients the insurance plan required preauthorization, which we obtained in 70% and ultimately achieved reimbursement in 50%. Interoperability enabled assessment of 12 different combinations of modules that underline the importance of an adaptive workflow and policy tailoring to achieve higher yields of reimbursement. The survey confirmed a positive attitude toward self-organizing teams. We acknowledge the individuals and their interactions and termed the infrastructure: human pipeline. Nontechnical barriers currently are limiting the scope and availability of clinical genomic sequencing. The presented human pipeline is one approach toward long-term financial sustainability of clinical genomics. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Sustainability of agricultural water use worldwide

    Science.gov (United States)

    Tuninetti, M.; Tamea, S.; Dalin, C.

    2017-12-01

    Water is a renewable but limited resource. Most human use of freshwater resources is for agriculture, and global water demand for agriculture is increasing because of the growth in food demand, driven by increasing population and changing diets. Hence, measuring the pressure exerted by agriculture on freshwater sources is a key issue. The sustainability of water use depends on the water source renewability rate: the water use is not sustainable (depleting the water storage) where/when it exceeds the renewable freshwater availability. In this study, we explore the sustainability of rain and irrigation water use for the production of nine major crops, globally at a 5'x5' spatial resolution. We split the crop water use into soil moisture (from rainfall) and irrigation, with, for the first time, separating ground- and surface-water sources, which is a key distinction because the renewability of these two water sources can be very different. In order to physically quantify the extent to which crop water use is sustainable, we measure the severity of the source depletion as the number of years required for the hydrological cycle to replenish the water resource used by the annual crop production, namely the Water Debt. This newly developed indicator allows one to compare the depletion level of the three water sources at a certain location for a specific crop. Hence, we mapped, for each crop, the number of years required to replenish the water withdrawn from soil-, surface- and ground-water resources. Each map identifies the hotspots for each water source, highlighting regions and crops that threaten most the water resource. We found that the water debt with soil moisture is heterogeneous in space but always lower than one year indicating a non-surprising sustainability of rain-fed agriculture. Rice and sugarcane make the largest contribution to global soil moisture depletion. Water debt in surface water is particularly high in areas of intense wheat and cotton production

  20. The Water, Energy and Food Nexus: Finding the Balance in Infrastructure Investment

    Science.gov (United States)

    Huber-lee, A. T.; Wickel, B.; Kemp-Benedict, E.; Purkey, D. R.; Hoff, H.; Heaps, C.

    2013-12-01

    There is increasing evidence that single-sector infrastructure planning is leading to severely stressed human and ecological systems. There are a number of cross-sectoral impacts in these highly inter-linked systems. Examples include: - Promotion of biofuels that leads to conversion from food crops, reducing both food and water security. - Promotion of dams solely built for hydropower rather than multi-purpose uses, that deplete fisheries and affect saltwater intrusion dynamics in downstream deltas - Historical use of water for cooling thermal power plants, with increasing pressure from other water uses, as well as problems of increased water temperatures that affect the ability to cool plants efficiently. This list can easily be expanded, as these inter-linkages are increasing over time. As developing countries see a need to invest in new infrastructure to improve the livelihoods of the poor, developed countries face conditions of deteriorating infrastructure with an opportunity for new investment. It is crucial, especially in the face of uncertainty of climate change and socio-political realities, that infrastructure planning factors in the influence of multiple sectors and the potential impacts from the perspectives of different stakeholders. There is a need for stronger linkages between science and policy as well. The Stockholm Environment Institute is developing and implementing practical and innovative nexus planning approaches in Latin America, Africa and Asia that brings together stakeholders and ways of integrating uncertainty in a cross-sectoral quantitative framework using the tools WEAP (Water Evaluation and Planning) and LEAP (Long-range Energy Alternatives Planning). The steps used include: 1. Identify key actors and stakeholders via social network analysis 2. Work with these actors to scope out priority issues and decision criteria in both the short and long term 3. Develop quantitative models to clarify options and balances between the needs and

  1. The effects of sewer infrastructure on water quality: implications for land use studies.

    Science.gov (United States)

    Vrebos, Dirk; Staes, Jan; Meire, Patrick

    2010-05-01

    The European Water Framework Directive requires a good ecological status of the European water bodies and the necessary measures to obtain this have to be implemented. The water quality of a river is the result of complex anthropogenic systems (buildings, waste water treatment infrastructure, regulations, etc.) and biogeochemical and eco-hydrological interactions. It is therefore essential to obtain more insight in the factors that determine the water quality in a river. Research into the relation between land use and water quality is necessary. Human activities have a huge impact on the flow regimes and associated water quality of river systems. Effects of land use bound activities on water quality are often investigated, but these studies generally ignore the hydrological complexity of a human influenced catchment. Infrastructure like sewer systems and wastewater treatment plants (WWTP) can displace huge quantities of polluted water. The transfers change flow paths, displace water between catchments and change the residence time of the system. If we want to correctly understand the effect of land use distribution on water quality we have to take these sewer systems into account. In this study we analyse the relation between land use and water quality in the Nete catchment (Belgium) and investigate the impact of the sewage infrastructure on this relation. The Nete catchment (1.673 km²) is a mosaic of semi natural, agricultural and urbanized areas and the land use is very fragmented. For the moment 74% of the households within the catchment are connected to a WWTP. The discharges from these WWTP's compose 15% of the total discharge of the Nete. Based on a runoff model the surface of upstream land use was calculated for 378 points. These data were then corrected for the impact of WWTP's. Using sewage infrastructure plans, urban areas connected to a WWTP were added to the upstream land use of the WWTP's water receiving stream. In order to understand the effect of

  2. A Holistic Concept to Design Optimal Water Supply Infrastructures for Informal Settlements Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Lea Rausch

    2018-02-01

    Full Text Available Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time and describe how the result of the optimization depends on the entered remote sensing data.

  3. Comprehensive scenario management of sustainable spatial planning and urban water services.

    Science.gov (United States)

    Baron, Silja; Hoek, Jannis; Kaufmann Alves, Inka; Herz, Sabine

    2016-01-01

    Adaptations of existing central water supply and wastewater disposal systems to demographic, climatic and socioeconomic changes require a profound knowledge about changing influencing factors. The paper presents a scenario management approach for the identification of future developments of drivers influencing water infrastructures. This method is designed within a research project with the objective of developing an innovative software-based optimisation and decision support system for long-term transformations of existing infrastructures of water supply, wastewater and energy in rural areas. Drivers of water infrastructures comprise engineering and spatial factors and these are predicted by different methods and techniques. The calculated developments of the drivers are illustrated for a model municipality. The developed scenario-manager enables the generation of comprehensive scenarios by combining different drivers. The scenarios are integrated into the optimisation model as input parameters. Furthermore, the result of the optimisation process - an optimal transformation strategy for water infrastructures - can have impacts on the existing fee system. General adaptation possibilities of the present fee system are presented.

  4. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  5. Maximizing Green Infrastructure in a Philadelphia Neighborhood

    OpenAIRE

    Kate Zidar; Timothy A. Bartrand; Charles H. Loomis; Chariss A. McAfee; Juliet M. Geldi; Gavin J. Rigall; Franco Montalto

    2017-01-01

    While the Philadelphia Water Department (PWD) is counting on Green Stormwater Infrastructure (GI) as a key component of its long-term plan for reducing combined sewer overflows, many community stakeholders are also hoping that investment in greening can help meet other ancillary goals, collectively referred to as sustainable redevelopment. This study investigates the challenges associated with implementation of GI in Point Breeze, a residential neighborhood of South Philadelphia. The project ...

  6. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş

    2015-08-01

    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  7. Water Pricing and Implementation Strategies for the Sustainability of an Irrigation System: A Case Study within the Command Area of the Rakh Branch Canal

    Directory of Open Access Journals (Sweden)

    Muhammad Uzair Qamar

    2018-04-01

    Full Text Available The command area of the Rakh branch canal grows wheat, sugarcane, and rice crops in abundance. The canal water, which is trivial for irrigating these crops, is conveyed to the farms through the network of canals and distributaries. For the maintenance of this vast infrastructure; the end users are charged on a seasonal basis. The present water charges are severely criticized for not being adequate to properly manage the entire infrastructure. We use the residual value to determine the value of the irrigation water and then based on the quantity of irrigation water supplied to farm land coupled with the infrastructure maintenance cost, full cost recovery figures are executed for the study area, and policy recommendations are made for the implementation of the full cost recovery system. The approach is unique in the sense that the pricings are based on the actual quantity of water conveyed to the field for irrigating crops. The results of our analysis showed that the canal water is severely under charged in the culturable command area of selected distributaries, thus negating the plan of having a self-sustainable irrigation system.

  8. Factors affecting sustainability of rural water schemes in Swaziland

    Science.gov (United States)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  9. A pathway to a more sustainable water sector: sustainability-based asset management.

    Science.gov (United States)

    Marlow, D R; Beale, D J; Burn, S

    2010-01-01

    The water sectors of many countries are faced with the need to address simultaneously two overarching challenges; the need to undertake effective asset management coupled with the broader need to evolve business processes so as to embrace sustainability principles. Research has thus been undertaken into the role sustainability principles play in asset management. As part of this research, a series of 25 in-depth interviews were undertaken with water sector professionals from around Australia. Drawing on the results of these interviews, this paper outlines the conceptual relationship between asset management and sustainability along with a synthesis of the relevant opinions voiced in the interviews. The interviews indicated that the participating water authorities have made a strong commitment to sustainability, but there is a need to facilitate change processes to embed sustainability principles into business as usual practices. Interviewees also noted that asset management and sustainability are interlinked from a number of perspectives, especially in the way decision making is undertaken with respect to assets and service provision. The interviews also provided insights into the research needed to develop a holistic sustainability-based asset management framework.

  10. Sustainable Energy Development: The Key to a Stable Nigeria

    Directory of Open Access Journals (Sweden)

    Kalu Uduma

    2010-06-01

    Full Text Available This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well.

  11. Virtual water trade and time scales for loss of water sustainability: a comparative regional analysis.

    Science.gov (United States)

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-20

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  12. The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability

    Directory of Open Access Journals (Sweden)

    Christopher M. Chini

    2017-01-01

    Full Text Available Green infrastructure is a unique combination of economic, social, and environmental goals and benefits that requires an adaptable framework for planning, implementing, and evaluating. In this study, we propose an experimental framework for policy, implementation, and subsequent evaluation of green stormwater infrastructure within the context of sociotechnical systems and urban experimentation. Sociotechnical systems describe the interaction of complex systems with quantitative and qualitative impacts. Urban experimentation—traditionally referencing climate change programs and their impacts—is a process of evaluating city programs as if in a laboratory setting with hypotheses and evaluated results. We combine these two concepts into a singular framework creating a policy feedback cycle (PFC for green infrastructure to evaluate municipal green infrastructure plans as an experimental process within the context of a sociotechnical system. After proposing and discussing the PFC, we utilize the tool to research and evaluate the green infrastructure programs of 27 municipalities across the United States. Results indicate that green infrastructure plans should incorporate community involvement and communication, evaluation based on project motivation, and an iterative process for knowledge production. We suggest knowledge brokers as a key resource in connecting the evaluation stage of the feedback cycle to the policy phase. We identify three important needs for green infrastructure experimentation: (i a fluid definition of green infrastructure in policy; (ii maintenance and evaluation components of a green infrastructure plan; and (iii communication of the plan to the community.

  13. Conflicting strategies towards sustainable heating at an urban junction of heat infrastructure and building standards

    International Nuclear Information System (INIS)

    Späth, Philipp; Rohracher, Harald

    2015-01-01

    Approaches to ‘sustainability transitions’ stress the possibility of aligning actors around a shared vision of the future, e.g. at the scale of a city. Empirical accounts reveal how difficult such coordination often is due to contradictory views involved. How can we better understand related processes of searching and negotiation? What does this mean for the organization of decision making processes regarding long-term infrastructural change? We analyze a conflict which erupted in Freiburg, Germany when two strategies of reducing environmental impacts of space heating were to be applied in the Vauban ‘model district’: A) Efficient co-generation of heat and power (CHP) combined with district heating systems (DHS), and B) Reducing heat demand by low-energy designs and ambitious energy standards (‘passive house standard’). In order to understand the politics of infrastructure development, we unravel 1) enabling factors and driving forces of the conflict, 2) normative content of opposing viewpoints, 3) resources tapped into for settling the disagreement, and 4) the institutional setup of such decision making about energy policy priorities in the municipality. We reflect on implications of such a perspective on how policies and how governance arrangements should ideally be shaped and take a brief outlook on further research needed. - Highlights: • Foregrounds likeliness of conflicts over strategies within sustainability transitions. • District heating systems can be incommensurate with low energy building standards. • Studies one such conflict in an urban context (Freiburg, Germany) in depth. • Processes of urban planning can reveal frictions within and between infrastructures. • Can such junctions as opportunities for re-negotiation of strategies be anticipated?

  14. Decontamination of B. globigii spores from drinking water infrastructure using disinfectants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and...

  15. Why infrastructure still matters: unravelling water reform processes in an uneven waterscape in rural Kenya

    Directory of Open Access Journals (Sweden)

    Jeltsje Sanne Kemerink

    2016-08-01

    Full Text Available Since the 1980s, a major change took place in public policies for water resources management. Whereas before governments primarily invested in the development, operation and maintenance of water infrastructure and were mainly concerned with the distribution of water, in the new approach they mainly focus on managing water resources systems by stipulating general frameworks for water allocation. This paper studies the rationales used to justify the water reform process in Kenya and discusses how and to what extent these rationales apply to different groups of water users within Likii catchment in the central part of the country. Adopting a critical institutionalist's perspective, this paper shows how the water resource configurations in the catchment are constituted by the interplay between a normative policy model introduced in a plural institutional context and the disparate infrastructural options available to water users as result of historically produced uneven social relations. We argue that, to progressively redress the colonial legacy, direct investments in infrastructure for marginalized water users and targeting the actual (redistribution of water to the users might be more effective than focusing exclusively on institutional reforms.

  16. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    Science.gov (United States)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  17. Mapping the Human Planet: Integrating Settlement, Infrastructure, and Population Data to Support Sustainable Development, Climate, and Disaster Data Needs

    Science.gov (United States)

    Chen, R. S.; de Sherbinin, A. M.; Yetman, G.; Downs, R. R.

    2017-12-01

    A central issue in international efforts to address climate change, large-scale disaster risk, and overall sustainable development is the exposure of human settlements and population to changing climate patterns and a range of geological, climatological, technological, and other hazards. The present and future location of human activities is also important in mitigation and adaptation to climate change, and to ensuring that we "leave no one behind" in achieving the Sustainable Development Goals adopted by the international community in September 2015. The extent and quality of built infrastructure are key factors in the mortality, morbidity, and economic impacts of disasters, and are simultaneously essential to sustainable development. Earth observations have great potential to improve the coverage, consistency, timeliness, and richness of data on settlements, infrastructure, and population, in ways that complement existing and emerging forms of socioeconomic data collection such as censuses, surveys, and cell phone and Internet traffic. Night-time lights from the Suomi-NPP satellite may be able to provide near real-time data on occupance and economic activity. New "big data" capabilities make it possible to rapidly process high-resolution (50-cm) imagery to detect structures and changes in structures, especially in rural areas where other data are limited. A key challenge is to ensure that these types of data can be translated into forms useful in a range of applications and for diverse user communities, including national statistical offices, local government planners, development and humanitarian organizations, community groups, and the private sector. We report here on efforts, in coordination with the GEO Human Planet Initiative, to develop new data on settlements, infrastructure, and population, together with open data services and tools, to support disaster risk assessment, climate vulnerability analysis, and sustainable development decision making.

  18. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    Science.gov (United States)

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Compendium of best practice and innovation in asset management of water services infrastructure

    CSIR Research Space (South Africa)

    Bhagwan, J

    2008-05-01

    Full Text Available As part of a water services infrastructure asset management best practice and innovation initiative of the Global Water Research Coalition (GWRC), the Water Research Commission (WRC) agreed to contribute a selection of ten South African best...

  20. Sustainable Drainage, Green Infrastructure or Natural Flood Management - which should you choose?

    Science.gov (United States)

    Wingfield, Thea; Potter, Karen; Jones, Gareth; Spees, Jack; Macdonald, Neil

    2016-04-01

    River catchments as management units are more effective than administrative boundaries to integrate and coordinate efforts of organisations that utilise and manage water, soil and habitat quality. The UK government announced a pilot integrated water management initiative called, 'The Catchment Based Approach', on World Water Day 2011. After successful trials the scheme was extended to all river catchments in England during the summer of 2013. This policy has been designed to improve the collaboration, partnership and coordination of organisations involved in water and land management through locally led partnership groups. The lead organisations are all charitable bodies with significantly varying levels of experience of stormwater management; a key component of integrated water management and of great concern to communities at risk. These partnerships have implemented a number of Nature Based Solutions, but these have been presented in different ways by the different groups. In the UK there are three terms commonly used to describe Nature Based Solutions for managing the drainage of stormwater: Sustainable Drainage (SuDS), Green Infrastructure (GI) and Natural Flood Management (NFM). The definitions of each refers to the replication of natural hydrological processes in order to slow the flow of water through the landscape. But, there has been some concerns as to which of these nature based terms should be applied and why they appear to be used interchangeably. This study demonstrates that, despite the definitions of these three terms being almost identical, in practice they are not the same and should not be used interchangeably. The terms were developed by different professional groups in response to their own objectives and histories. The hydrological processes used to manage storm-water may be the same and the suggested interventions may show a degree of convergence. Yet, they operate at different scales, both geographically and organisationally. The different

  1. Sustainable Water Distribution Strategy with Smart Water Grid

    Directory of Open Access Journals (Sweden)

    Seongjoon Byeon

    2015-04-01

    Full Text Available Many problems that are encountered in regards to water balance and resources management are related to challenges of economic development under limited resources and tough competition among various water uses. The development of major infrastructure like airports in remote areas that have limited water resources is becoming a common problem. In order to overcome these difficulties, water management has to articulate and combine several resources in order to respond to various demands while preserving the ecological quality of the environment. The paper discusses the interest in implementing the Smart Water Grid concept on Yeongjongdo Island, which is the location of Korea’s main airport. This new concept is based on the connection of various water resources and their optimized management with new information technology solutions. The proposed system integrates water generated through rainfall, external water resources (i.e., metropolitan water distribution system, gray water and other types of alternative water resources. The paper analyses the feasibility of this approach and explores interest in the Smart Water Grid concept.

  2. Sustainable evolution of product line infrastructure code

    OpenAIRE

    Patzke, T.

    2011-01-01

    A major goal in many software development organizations today is to reduce development effort and cost, while improving their products' quality and diversity by developing reusable software. An organization takes advantage of its products' similarities, exploits what they have in common and manages what varies among them by building a product line infrastructure. A product line infrastructure is a reuse repository that contains exactly those common and variable artifacts, such as requirements...

  3. The Italian Cloud-based brokering Infrastructure to sustain Interoperability for Operative Hydrology

    Science.gov (United States)

    Boldrini, E.; Pecora, S.; Bussettini, M.; Bordini, F.; Nativi, S.

    2015-12-01

    This work presents the informatics platform carried out to implement the National Hydrological Operative Information System of Italy. In particular, the presentation will focus on the governing aspects of the cloud infrastructure and brokering software that make possible to sustain the hydrology data flow between heterogeneous user clients and data providers.The Institute for Environmental Protection and Research, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) in collaboration with the Regional Agency for Environmental Protection in the Emilia-Romagna region, ARPA-ER (Agenzia Regionale per la Prevenzione e l´Ambiente dell´Emilia-Romagna) and CNR-IIA (National Research Council of Italy) designed and developed an innovative platform for the discovery and access of hydrological data coming from 19 Italian administrative regions and 2 Italian autonomous provinces, in near real time. ISPRA has deployed and governs such a system. The presentation will introduce and discuss the technological barriers for interoperability as well as social and policy ones. The adopted solutions will be described outlining the sustainability challenges and benefits.

  4. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  5. Sustainability of State-Level Substance Abuse Prevention Infrastructure After the Completion of the SPF SIG.

    Science.gov (United States)

    Edwards, Jessica M; Stein-Seroussi, Al; Flewelling, Robert L; Orwin, Robert G; Zhang, Lei

    2015-06-01

    Recent national substance abuse prevention efforts that have been disseminated at the state level have provided fertile ground for addressing the dearth of systematic research on state-level substance abuse prevention infrastructure. The Strategic Prevention Framework State Incentive Grant Program (SPF SIG), a national public health initiative sponsored by the US Substance Abuse and Mental Health Services Administration and its Center for Substance Abuse Prevention, is one such effort, providing an opportunity to examine state-level substance abuse prevention infrastructure across the country. The aims of the SPF SIG initiative include reducing substance abuse and its related problems, as well as enhancing state and local prevention infrastructure and capacity. In this article, we describe the status of state-level substance abuse prevention infrastructure and capacity 1 year after the first 26 funded states ended their projects, based on follow-up interviews with state prevention decision-makers. We found that, in five of the six prevention domains we measured, prevention infrastructure capacity increased during the 12-month period after the grants ended. The evidence for further SPF capacity development even after the conclusion of the grants suggests that states recognized the benefits of using the SPF and took deliberate steps to sustain and enhance the integration of this framework into their state prevention systems. In addition, the findings suggest that state agencies and organizations can benefit from time-limited resources aimed at increasing their capacity and that such efforts can have a lasting impact on measures of state prevention system capacity.

  6. Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints

    Science.gov (United States)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.

    2017-12-01

    highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.

  7. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib; Ghaffour, NorEddine; Naceur, Mohamed Wahib; Lounici, Hakim; Drouiche, Madani

    2012-01-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing

  8. Urban water sustainability: framework and application

    Directory of Open Access Journals (Sweden)

    Wu Yang

    2016-12-01

    Full Text Available Urban areas such as megacities (those with populations greater than 10 million are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems. The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water

  9. Research Proposal: Methodology for Assessment Frameworks in Large-scale Infrastructural Water Projects

    NARCIS (Netherlands)

    Hommes, Saskia

    2005-01-01

    Water management is a central and ongoing issue in the Netherlands. Large infrastructural projects are being carried out and planned in a number of water systems. These initiatives operate within a complex web of interactions, between short- and long-term, economic costs and benefits, technical

  10. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    Science.gov (United States)

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  11. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    Science.gov (United States)

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  12. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  13. Contextual-Analysis for Infrastructure Awareness Systems

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurelien; Alt, Florian

    Infrastructures are persistent socio-technical systems used to deliver different kinds of services. Researchers have looked into how awareness of infrastructures in the areas of sustainability [6, 10] and software appropriation [11] can be provided. However, designing infrastructure-aware systems...... has specific requirements, which are often ignored. In this paper we explore the challenges when developing infrastructure awareness systems based on contextual analysis, and propose guidelines for enhancing the design process....

  14. Urban water infrastructure asset management - a structured approach in four water utilities.

    Science.gov (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  15. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  16. Assessment of Sustainable Use of Coastal Resources of Regional Waters Conservation Area Biak Numfor Regency, Papua Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sutaman Sutaman

    2017-06-01

    Full Text Available Efforts to exploit fish resources optimally, continuous and sustainable is an urgent demand for the greatest prosperity of the people, especially to improve the welfare of fishermen and fish farmers. The level of sustainable use of coastal resources in water conservation is very important, so that the utilization does not exceed the carrying capacity of the environment. The purpose of this study was to determine the level of sustainable use of coastal resources Biak Numfor, associated with the utilization of fisheries, aquaculture and tourism. The study was conducted in June to December 2015 and October to November 2016. The primary data obtained by interview and direct discussion through Focus Group Disscution (FGD with fishermen community, tourist and tourist entrepreneurs as well as related officials in the Office of Fisheries and Marine Affairs, and Tourism Office of Biak Numfor Regency. Methods of data analysis approach sustainability analysis conducted by the method of MDS (Multi-Dimensional Scaling with the help of software Rapfish. Based on the survey results revealed that the value of fisheries ordinated to achieve 57.66%, 44.80% aquaculture, and tourism 46.25%. With these achievements ordinated value, it can be concluded that the use of sustainable capture fisheries are still classified by the lever sustainability attributes include; the type of fishing gear, vessel types used and the catch per unit effort (CPUE. Meanwhile the relatively less sustainable aquaculture with the sustainability lever attributes include; cultivation technology, the number of business units with different types and species of fish. For tourism utilization is still considered less sustainable with levers sustainability attributes include the number of tourists, the type and number of amenities and facilities and infrastructure   Keywords: Sustainability, utilization, waters conservation area (KKPD, MDS-Rapfish

  17. Sustainable agricultural water management across climates

    Science.gov (United States)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  18. Evaluating Water Management Practice for Sustainable Mining

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zhang

    2014-02-01

    Full Text Available To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has provided a solution to aid the identification of more sustainable mine water management practices. The solution includes a conceptual framework for forming a decision hierarchy; an evaluation method for assessing mine water management practices; and a sensitivity analysis in view of different preferences of stakeholders or managers. The solution is applied to a case study of the evaluation of sustainable water management practices in 16 mines located in the Bowen Basin in Queensland, Australia. The evaluation results illustrate the usefulness of the proposed solution. A sensitivity analysis is performed according to preference weights of stakeholders or managers. Some measures are provided for assessing sensitivity of strategy ranking outcomes if the weight of an indicator changes. Finally, some advice is given to improve the mine water management in some mines.

  19. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    Science.gov (United States)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  20. Canada's looming infrastructure crisis and gas tax agreements : are strategic connections being made?

    International Nuclear Information System (INIS)

    Kennedy, E.; Roseland, M.; Connelly, S.; Markey, S.

    2008-03-01

    Canada's municipalities face multiple challenges in relation to the maintenance and development of services and infrastructure. This paper examined the growing infrastructure crisis in relation to sustainable community planning policies, gas tax agreements (GTA) and integrated community sustainability plans (ICSP). The study assessed the degree to which the GTA and ICSP may help to resolve the crisis and move towards the development of more sustainable infrastructure systems. The current need to upgrade or add to the infrastructure inventory represents an opportunity to adopt infrastructure technologies that are sustainable and more environmentally-friendly into municipal systems. The study demonstrated that the GTA and ICSP are financially insufficient. Jurisdictions with an existing capacity to plan and implement sustainability planning are the most successful at engaging with the ICSP process. However, there is no method of ensuring the transfer of innovative greener technologies. There is no overarching national strategy to eliminate or reduce the national infrastructure crisis. A serious national commitment is needed to address Canada's future infrastructure needs. 12 refs., 1 tab.

  1. “Rejecting the inevitability of poverty”: Empower women for sustainable rural livelihoods through community-based employment intensive rural infrastructure maintenance projects

    CSIR Research Space (South Africa)

    Mashiri, M

    2008-11-01

    Full Text Available This paper discuses the extent to which employment-intensive rural infrastructure maintenance projects can be used as a tool to empower women to achieve sustainable rural livelihoods using Siyatentela rural road maintenance program in Mpumalanga...

  2. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    Science.gov (United States)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  3. Case studies of scenario analysis for adaptive management of natural resource and infrastructure systems

    DEFF Research Database (Denmark)

    Hamilton, M.C.; Thekdi, S.A.; Jenicek, E.M.

    2013-01-01

    Management of natural resources and infrastructure systems for sustainability is complicated by uncertainties in the human and natural environment. Moreover, decisions are further complicated by contradictory views, values, and concerns that are rarely made explicit. Scenario analysis can play...... of emergent conditions and help to avoid regret and belated action. The purpose of this paper is to present several case studies in natural resources and infrastructure systems management where scenario analysis has been used to aide decision making under uncertainty. The case studies include several resource...... and infrastructure systems: (1) water resources (2) land-use corridors (3) energy infrastructure, and (4) coastal climate change adaptation. The case studies emphasize a participatory approach, where scenario analysis becomes a means of incorporating diverse stakeholder concerns and experience. This approach...

  4. International Civil and Infrastructure Engineering Conference 2013

    CERN Document Server

    Yusoff, Marina; Ismail, Zulhabri; Amin, Norliyati; Fadzil, Mohd

    2014-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  5. International Civil and Infrastructure Engineering Conference 2014

    CERN Document Server

    Yusoff, Marina; Alisibramulisi, Anizahyati; Amin, Norliyati; Ismail, Zulhabri

    2015-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  6. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  7. Applying the Msharpp Method in Risk Assessment for the Water Supply Critical Infrastructure Sector

    Directory of Open Access Journals (Sweden)

    Badea Dorel

    2015-06-01

    Full Text Available The paper highlights a manner to assess risks for an important sector of critical infrastructure, that of water supply, frequently regulated in international legal systems. We took into consideration the fact that risk is a problem related to the processes of decision making under conditions of uncertainty in most cases, so that by this approach we bring to the attention of critical infrastructure managers, drawing on their experience, a simple method that can be considered in a preliminary stage of risk assessment specific to water supply.

  8. Clemson University Science Master's Program in Sustainable and Resilient Infrastructure: A program evaluation

    Science.gov (United States)

    O'Sell, Elizabeth Eberhart

    The Clemson University Science Master's Program (SMP) in Sustainable and Resilient Infrastructure is a program which aims to link engineering, materials, construction, environment, architecture, business, and public policy to produce graduates with unique holistic perspective and expertise to immediately contribute to the workforce in the area of sustainable and resilient infrastructure. A program evaluation of the SMP has been performed to study the effectiveness of the SMP and identify areas where the goals and vision of the SMP are achieved and areas where improvements can be made. This was completed by analysis of trends within survey responses, review of Master's thesis reports, and review of courses taken. It was found that the SMP has facilitated new interdisciplinary research collaborations of faculty in different concentration areas within the Glenn Department of Civil Engineering, as well as collaboration with faculty in other departments. It is recommended that a course which provides instruction in all eight competency areas be required for all SMP students to provide a comprehensive overview and ensure all students are exposed to concepts of all competency areas. While all stakeholders are satisfied with the program and believe it has been successful thus far, efforts do need to be made as the program moves forward to address and improve some items that have been mentioned as needing improvement. The concerns about concentration courses, internship planning, and advising should be addressed. This evaluation provides benefits to prospective students, current SMP participants, and outside program supporters. The goal of this evaluation is to provide support that the SMP is an effective and worthwhile program for participating students, while attempting to identify any necessary program improvements and provide recommendations for achieving these improvements. This goal has been accomplished.

  9. Greening infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available The development and maintenance of infrastructure is crucial to improving economic growth and quality of life (WEF 2013). Urban infrastructure typically includes bulk services such as water, sanitation and energy (typically electricity and gas...

  10. Towards sustainability: An interoperability outline for a Regional ARC based infrastructure in the WLCG and EGEE infrastructures

    International Nuclear Information System (INIS)

    Field, L; Gronager, M; Johansson, D; Kleist, J

    2010-01-01

    Interoperability of grid infrastructures is becoming increasingly important in the emergence of large scale grid infrastructures based on national and regional initiatives. To achieve interoperability of grid infrastructures adaptions and bridging of many different systems and services needs to be tackled. A grid infrastructure offers services for authentication, authorization, accounting, monitoring, operation besides from the services for handling and data and computations. This paper presents an outline of the work done to integrate the Nordic Tier-1 and 2s, which for the compute part is based on the ARC middleware, into the WLCG grid infrastructure co-operated by the EGEE project. Especially, a throughout description of integration of the compute services is presented.

  11. Following the Water Cycle to Sustainability

    Science.gov (United States)

    Lutz, T. M.

    2012-12-01

    For scientists, modeling the connections among the parts of complex, dynamic systems is crucial. Doing so lets us understand emergent phenomena such as ecosystem behavior and climate patterns that could not otherwise be predicted. Emergent phenomena can typically only be understood or appreciated when we stand "outside" the system. When scientists take such an outsiders view of earth's systems they can propose many ways that human activities modify the climate system (e.g., increasing or reducing GHG emissions). But what should we do to achieve a sustainable future? Sustainability is an emergent property that arises at the level of the planetary management system, of which the scientific establishment is just a part. We are "insiders" and it is impossible to completely envision the conditions for sustainability or to plan for it. The crises in our atmosphere, biosphere, oceans, and in the natural and energy resource sectors are based in science and do call for urgent changes in science education. But education that focuses solely on science to meet the challenges of sustainability may be as likely to harm humanity's long-term prospects as to improve them. I present activities and teaching strategies that I use in general education classes at West Chester University, a comprehensive institution of roughly 14,000 undergraduates. The overarching concept is to extend "modeling the connections" to the sustainability level and to train students to think outside the system. To make the ideas more accessible, I have the students become sensors at their particular point in the web of connections that constitute the planetary management system. I ask them to evaluate their connection in three domains proposed by John Ehrenfeld (Sustainability by Design, Yale University Press, 2008): sense of place in the natural world; sense of responsibility for our actions, and sense of what it is to be a human being. I have them analyze their sense of connection with reference to a

  12. Synergizing green and gray infrastructures to increase water supply resilience in the Brazos River basin in Texas

    Science.gov (United States)

    Gao, H.; Yamazaki, D.; Finley, T.; Bohn, T. J.; Low, G.; Sabo, J. L.

    2017-12-01

    Water infrastructure lies at the heart of the challenges and opportunities of Integrated Water Resource Management (IWRM). Green infrastructure (e.g., wetlands restoration) presents an alternative to its hard-path counterpart - gray infrastructure, which often has external, economic and unmeasured ecological costs. But the science framework to prioritize green infrastructure buildout is nascent. In this study, we addressed this gap in Brazos River basin in Texas, in the context of corporate decisions to secure water supplies for various water stewardship objectives. We developed a physically-based tool to quantify the potential for wetland restoration to restore desired flows (hydrology), and a financial framework for comparing its cost-benefit with heightening an existing dam (conservation finance). Our framework has three components. First, we harnessed a topographic index (HAND) to identify the potential wetlands sites. Second, we coupled a land surface model (VIC) with a hydrodynamic model (CaMa-Flood) to investigate the effects of wetland size, location, and vegetation on hydrology. Finally, we estimated the net present value, indirect rate of return and payback period for green (wetlands) vs. gray (reservoir expansion) infrastructure. We found wetlands have more substantial impact on peak flow than baseflow. Interestingly, wetlands can improve baseflow reliability but not directly except with the largest (>400 km2) projects. Peak flow reduction volumes of wetlands if used as credits towards reservoir flood-control storage provide adequate conservation storage to deliver guaranteed reliability of baseflow. Hence, the synergy of existing dams with newly created wetlands offers a promising natural solution to increase water supply resilience, while green projects also generate revenue compared to their gray counterparts. This study demonstrates the possibility of using innovative engineering design to synergize green and gray infrastructures to convert water

  13. Flowscapes : Infrastructure as landscape, landscape as infrastructure. Graduation Lab Landscape Architecture 2012/2013

    NARCIS (Netherlands)

    Nijhuis, S.; Jauslin, D.; De Vries, C.

    2012-01-01

    Flowscapes explores infrastructure as a type of landscape and landscape as a type of infrastructure, and is focused on landscape architectonic design of transportation-, green- and water infrastructures. These landscape infrastructures are considered armatures for urban and rural development. With

  14. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  15. On Decision Support for Sustainability and Resilience of Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Michael Havbro Faber; Qin, J.; Miragliaa, S.

    2017-01-01

    in Bayesian decision analysis and probabilistic systems performance modelling. A principal example for decision support at regulatory level is presented for a coupled system comprised of infrastructure, social, hazard and environmental subsystems. The infrastructure systems is modelled as multi...

  16. Water Intelligence and the Cyber-Infrastructure Revolution

    Science.gov (United States)

    Cline, D. W.

    2015-12-01

    As an intrinsic factor in national security, the global economy, food and energy production, and human and ecological health, fresh water resources are increasingly being considered by an ever-widening array of stakeholders. The U.S. intelligence community has identified water as a key factor in the Nation's security risk profile. Water industries are growing rapidly, and seek to revolutionize the role of water in the global economy, making water an economic value rather than a limitation on operations. Recent increased focus on the complex interrelationships and interdependencies between water, food, and energy signal a renewed effort to move towards integrated water resource management. Throughout all of this, hydrologic extremes continue to wreak havoc on communities and regions around the world, in some cases threatening long-term economic stability. This increased attention on water coincides with the "second IT revolution" of cyber-infrastructure (CI). The CI concept is a convergence of technology, data, applications and human resources, all coalescing into a tightly integrated global grid of computing, information, networking and sensor resources, and ultimately serving as an engine of change for collaboration, education and scientific discovery and innovation. In the water arena, we have unprecedented opportunities to apply the CI concept to help address complex water challenges and shape the future world of water resources - on both science and socio-economic application fronts. Providing actionable local "water intelligence" nationally or globally is now becoming feasible through high-performance computing, data technologies, and advanced hydrologic modeling. Further development on all of these fronts appears likely and will help advance this much-needed capability. Lagging behind are water observation systems, especially in situ networks, which need significant innovation to keep pace with and help fuel rapid advancements in water intelligence.

  17. Water sector fund (CT-hi dro) and wastewater reuse activities: initiatives to promote environment ally sustainable development in Brazil

    International Nuclear Information System (INIS)

    Leitao, S.A.M.

    2005-01-01

    The Brazilian Water Sector Fund (CT-Hidro) is presented as an innovative mechanism to foster the scientific and technological sector of the country as well as a model instrument to promote environmentally sustainable development in Brazil and in other developing countries. CT-Hidro is shown as an instrument that provides support for scientific and technological development research activities in the following areas: experimental technological development, scientific and technological research projects, development of basic industrial technology and implantation of research infrastructure. CT-Hidro is presented as a key mechanism to finance wastewater reuse projects as an imperative action to fight poverty and promote social inclusion in Brazil. The concept of wastewater reuse for beneficial purposes is presented. Its growing importance as an essential part of the planning of the integrated and sustainable water resources management is also evidenced. In this perspective, the need for sanitation, wastewater treatment and its reuse in agriculture for food production are presented as imperative measures that must be taken in Brazil in order to promote sustainable development, fight poverty, improve public health conditions and enhance environmental quality in the country. (author)

  18. 3rd International Civil and Infrastructure Engineering Conference

    CERN Document Server

    Hamid, Nor; Arshad, Mohd; Arshad, Ahmad; Ridzuan, Ahmad; Awang, Haryati

    2016-01-01

    The special focus of these proceedings is on the areas of infrastructure engineering and sustainability management. They provide detailed information on innovative research developments in construction materials and structures, in addition to a compilation of interdisciplinary findings combining nano-materials and engineering. The coverage of cutting-edge infrastructure and sustainability issues in engineering includes earthquakes, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems.

  19. Progress with the national infrastructure maintenance strategy

    CSIR Research Space (South Africa)

    Wall, K

    2008-07-01

    Full Text Available infrastructure investment and maintenance that will result from this strategy will not only improve infrastructure performance and underpin services sustainability, but will also contribute significantly towards national and local economic growth and will add...

  20. Mechano-Magnetic Telemetry for Underground Water Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Orfeo

    2018-06-01

    Full Text Available This study reports on the theory of operation, design principles, and results from laboratory and field tests of a magnetic telemetry system for communication with underground infrastructure sensors using rotating permanent magnets as the sources and compact magnetometers as the receivers. Many cities seek ways to monitor underground water pipes with centrally managed Internet of Things (IoT systems. This requires the development of numerous reliable low-cost wireless sensors, such as moisture sensors and flow meters, which can transmit information from subterranean pipes to surface-mounted receivers. Traditional megahertz radio communication systems are often unable to penetrate through multiple feet of earthen and manmade materials and have impractically large energy requirements which preclude the use of long-life batteries, require complex (and expensive built-in energy harvesting systems, or long leads that run antennas near to the surface. Low-power magnetic signaling systems do not suffer from this drawback: low-frequency electromagnetic waves readily penetrate through several feet of earth and water. Traditional magnetic telemetry systems that use energy-inefficient large induction coils and antennas as sources and receivers are not practical for underground IoT-type sensing applications. However, rotating a permanent magnet creates a completely reversing oscillating magnetic field. The recent proliferation of strong rare-earth permanent magnets and high-sensitivity magnetometers enables alternative magnetic telemetry system concepts with significantly more compact formats and lower energy consumption. The system used in this study represents a novel combination of megahertz radio and magnetic signaling techniques for the purposes of underground infrastructure monitoring. In this study, two subterranean infrastructure sensors exploit this phenomenon to transmit information to an aboveground radio-networked magnetometer receiver. A flow

  1. ISSUES ON THE ROLE OF EFFICIENT WATER PRICING FOR SUSTAINABLE WATER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Simona FRONE

    2012-06-01

    Full Text Available This paper aims to highlight some of the main issues raised by developing and implementing the most appropriate approach to water pricing, and to induce a sustainable water management. Therefore, we define the concept and utility of water demand management as one objective of efficient water pricing. Next we analyse the basic economics and some important theoretical insights of water pricing. We further with state the main four inter-correlated principles of sustainable water pricing (full-cost recovery, economic efficiency,equity and administrative feasability and the trends and challenges of their actual implementing in the water pricing policy of Romania and other EU countries. We end with a review of opinions, personal conclusions and recommendations on the actual opportunity, effectiveness and role of efficient water pricing in fulfilling the goals of sustainabilty.

  2. Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.; Wade, David C.

    2011-01-01

    This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.

  3. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  4. Ideas towards sustainable water security

    Science.gov (United States)

    Dalin, Carole

    2016-04-01

    With growing global demands and a changing climate, ensuring water security - the access to sufficient, quality water resources for health and livelihoods and an acceptable level of water related risk - is increasingly challenging. While a billion people still lack access to water, over-exploitation of this resource increases in many developed and developing parts of the world. While some solutions to water stress have been known for a long time, financial, cultural and political barriers often prevent their implementations. This talk will highlight three crucial areas that need to be addressed to progress towards sustainable water security. The first point is on scale, the second on the agricultural sector and irrigation, and the third on food trade and policy.

  5. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  6. Developing a systems framework for sustainable infrastructure technologies (SIT) in the built environment focussing on health facilities: A case for Cape Town

    CSIR Research Space (South Africa)

    Saidi, M

    2007-05-01

    Full Text Available The objective of the study is to develop a systems framework for the implementation and management of sustainable infrastructure technologies in the built environment with specific focus on health facilities. It look at the global trends and drivers...

  7. Data Updating Methods for Spatial Data Infrastructure that Maintain Infrastructure Quality and Enable its Sustainable Operation

    Science.gov (United States)

    Murakami, S.; Takemoto, T.; Ito, Y.

    2012-07-01

    The Japanese government, local governments and businesses are working closely together to establish spatial data infrastructures in accordance with the Basic Act on the Advancement of Utilizing Geospatial Information (NSDI Act established in August 2007). Spatial data infrastructures are urgently required not only to accelerate computerization of the public administration, but also to help restoration and reconstruction of the areas struck by the East Japan Great Earthquake and future disaster prevention and reduction. For construction of a spatial data infrastructure, various guidelines have been formulated. But after an infrastructure is constructed, there is a problem of maintaining it. In one case, an organization updates its spatial data only once every several years because of budget problems. Departments and sections update the data on their own without careful consideration. That upsets the quality control of the entire data system and the system loses integrity, which is crucial to a spatial data infrastructure. To ensure quality, ideally, it is desirable to update data of the entire area every year. But, that is virtually impossible, considering the recent budget crunch. The method we suggest is to update spatial data items of higher importance only in order to maintain quality, not updating all the items across the board. We have explored a method of partially updating the data of these two geographical features while ensuring the accuracy of locations. Using this method, data on roads and buildings that greatly change with time can be updated almost in real time or at least within a year. The method will help increase the availability of a spatial data infrastructure. We have conducted an experiment on the spatial data infrastructure of a municipality using those data. As a result, we have found that it is possible to update data of both features almost in real time.

  8. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  9. A New Framework for Assessing the Sustainability Reporting Disclosure of Water Utilities

    Directory of Open Access Journals (Sweden)

    Silvia Cantele

    2018-02-01

    Full Text Available Sustainability reporting is becoming more and more widespread among companies aiming at disclosing their contribution to sustainable development and gaining legitimacy from stakeholders. This is more significant for firms operating in a public services’ context and mainly when supplying a fundamental public resource, like water utilities. While the literature on sustainability reporting in the water sector is scant, there is an increasing need to study the usefulness and quality of its sustainability disclosures to adequately inform the stakeholders about the activities of water utilities to protect this fundamental resource and general sustainable development. This article presents a novel assessment framework based on a scoring technique and an empirical analysis on the sustainability reports of Italian water utilities carried out through it. The results highlight a low level of disclosure on the sustainability indicators suggested by the main sustainability reporting guidelines (Global Reporting Initiative, (GRI, and Sustainability Accounting Standard Board, (SASB; most companies tend to disclose only qualitative information and fail to inform about some material aspects of water management, such as water recycled, network resilience, water sources, and effluent quality. These findings indicate that sustainability reporting is mainly considered as a communication tool, rather than a performance measurement and an accountability tool, but also suggest the need for a new and international industry-specific sustainability reporting standard.

  10. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  11. Sustainability study of domestic communal wastewater treatment plant in Surabaya City

    Science.gov (United States)

    Bahar, E.; Sudarno; Zaman, B.

    2017-06-01

    Sanitation is one of the critical infrastructure sectors in order to improve community health status. The Ministry of Public Works of the Republic of Indonesia to define that word sanitation include: domestic waste water management, solid waste management, rain water management (drainage management) as well as the provision of clean water. Surabaya city as the capital of East Java province and Indonesia’s second largest city with a population of 2,853,661 inhabitants in 2014 (the second largest after Jakarta), but the people who have been served by the sanitation infrastructure systems were expected at 176,105 families or about 26.95 % of the population of the city is already using sanitation facilities. In the White Book Sanitation of Surabaya City in 2010, Surabaya City sanitation development mission is to realize the wastewater management of settlements in a sustainable and affordable by the community. This study aims to assess the sustainability of the wastewater treatment plant (WWTP) domestic communal in the city of Surabaya. The method in this research is quantitative method through observation, structured interviews and laboratory testing of the variables analyzed. Analyses were performed using a technique Multidisciplinary rapid appraisal (Rap-fish) to determine the level of sustainability of the management of communal WWTP based on a number of attributes that easy scored. Attributes of each dimension includes the technical, environmental quality, institutional, economic, and social. The results of this study are sustainability index of environmental quality dimension at 84.32 with highly sustainable status, technical dimension at 62.61 with fairly sustainable status, social dimension at 57.98 with fairly sustainable status, economic dimension at 43.24 with less sustainable status, and institutional dimension at 39.67 with less sustainable status.

  12. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  13. Water infrastructure protection against intentional attacks:An experience in Italy

    Institute of Scientific and Technical Information of China (English)

    Cristiana Di Cristo; Angelo Leopardi; Giovanni de Marinis

    2011-01-01

    In the last years many interesting studies were devoted to the development of technologies and methodologies for the protection of water supply systems against intentional attacks.However the application to real systems is still limited for different economical and technical reasons.The Water Engineering Laboratory (L.I.A.) of University of Cassino (Italy) was involved in two research projects financed by the European Commission in the framework of the European Programme for Critical Infrastructure Protection (E.P.C.I.P.).Both projects,developed in partnership with a large Italian Water Company,have the common objective of providing guidelines for enhancing security in water supply systems respect to the intentional contamination risk.The fmal product is represented by the arrangement of a general procedure for protection systems design of water networks.In the paper the procedure is described through the application to two real water systems,characterized by different size and behavior.

  14. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016

  15. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  16. Sustainable Hydraulic Barrier Design Technologies for Effective Infrastructure Engineering

    Directory of Open Access Journals (Sweden)

    Chitral Wijeyesekera Devapriya

    2017-01-01

    Full Text Available Migration of liquids lead to embarrassing post construction scenarios such as that of leaks from roofs, potable water leaking from water tanks/ reservoirs, rising damp in walls with groundwater seeping into basement structures, leakage of water from ornamental lakes and ponds or leachate leakage into the environment from MSW landfill sites. Such failures demand immediate and expensive maintenance. A stringent control on structural and waterproof stability is deemed necessary for long term service life of structures and in particular underground and near surface structures. On a micro scale and over a longer time scale, the phenomenon of rising dampness occurs in older buildings with the groundwater rising up through walls, floors and masonry via capillary action. Even slower rates of contaminant fluid migration occur through landfill base liners. In this paper a variety of hydraulic barrier technologies is critically discussed against a backdrop of relevant case studies. The choice of an appropriate hydraulic barrier technology for a given scenario will depend also on the sustainability, financial affordability and subjective aesthetics.

  17. Integrating operation design into infrastructure planning to foster robustness of planned water systems

    Science.gov (United States)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of

  18. Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2014-11-01

    Full Text Available Terra Preta Sanitation (TPS plays a key role in sustainable sanitation (SuSan and in the sustainable management of resources such as water, energy, soil (agriculture, liquid and solid organic waste streams as well as in the development of sustainable urban environment and infrastructure systems. This paper discusses the advantages of, and requirements for, SuSan systems, focusing on TPS. Case studies showing the stepwise extension and re-development of conventional sanitation systems (CSS using TPS technologies and system approaches are presented and discussed. Decentralized TPS systems integrated in sustainable urban resource management were implemented in the German cities of Hamburg and Berlin. The compilation of best practice examples and findings using the newest TPS systems illustrates the immense potential of this approach for the transformation from conventional to SuSan systems. For this purpose, the potential savings of drinking water resources and the recycling potential of nutrient components are quantified. The results strongly suggest the need to encourage the development and application of innovative decentralized sanitation technologies, urban infrastructures, and resource management systems that have TP as a key component.

  19. Contribution of nuclear techniques towards a sustainable agriculture

    International Nuclear Information System (INIS)

    Muniz Ugarte, O.

    1997-01-01

    The papers mentions the main nuclear techniques applied in order to achieve a sustainable agriculture, the technical support given to Cuba by the IAEA mainly in training and in the creation of a infrastructure (Laboratories) to enable the application of nuclear techniques to agricultural research related to soil fertility, plant nutrition and water usage

  20. Sustainable management of infrastructures using risks

    International Nuclear Information System (INIS)

    Gerard, B.

    2005-01-01

    Today, maintenance costs of industrial infrastructures are growing up continuously. It is thus necessary to have a general and systematic method allowing to hierarchize the investment priorities in order to optimize the benefits. Taking into account the diversity of infrastructures, components and stakes, such a task is far to be easy. However, methods are implementing in the civil engineering world in order to give help to engineers and decision-makers to jointly develop strategies answering their technical, financial or environmental problems. Oxand, a counsel company of the Electricite de France (EdF) group, has developed and implemented a decisive decision-help tool. By combining the notion of risk with social, financial or environmental impacts, it becomes possible to estimate and compare different activities submitted to exploitation, safety and budget constraints. Moreover, it is possible to introduce the time dimension in the analysis by the integration of the most recent knowledge on materials aging, still with the aim of an optimized technical and financial management. This article presents the concepts of this methodology and its applications in particular in the domain of nuclear industry. (J.S.)

  1. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  2. The inventions technology on water resources to support environmental engineering based infrastructure

    Science.gov (United States)

    Sunjoto, S.

    2017-03-01

    Since the Stockholm Declaration, declared on the United Nation Conference on the Human Environment in Sweden on 5-16 June 1972 and attended the 113 country delegations, all the infrastructure construction should comply the sustainable development. As a consequence, almost research and studies were directing to the environmental aspect of construction including on water resources engineering. This paper will present the inventions which are very useful for the design of infrastructure, especially on the Groundwater engineering. This field has been rapidly developed since the publication of the well known law of flow through porous materials by Henri Darcy in 1856 on his book "Les fontaine publiques de la ville de Dijon". This law states that the discharge through porous media is proportional to the product of the hydraulic gradient, the cross-sectional area normal to the flow and the coefficient of permeability of the material. Forchheimer in 1930 developed a breakthrough formula by simplifying solution in a steady state flow condition especially in the case of radial flow to compute the permeability coefficient of casing hole or tube test with zero inflow discharge. The outflow discharge on the holes is equal to shape factor of tip of casing (F) multiplied by coefficient of permeability of soils (K) and multiplied by hydraulic head (H). In 1988, Sunjoto derived an equation in unsteady state flow condition based on this formula. In 2002, Sunjoto developed several formulas of shape factor as the parameters of the equation. In the beginning this formula is implemented to compute for the dimension of recharge well as the best method of water conservation for the urban area. After a long research this formula can be implemented to compute the drawdown on pumping or coefficient of permeability of soil by pumping test. This method can substitute the former methods like Theis (1935), Cooper-Jacob (1946), Chow (1952), Glover (1966), Papadopulos-Cooper (1967), Todd (1980

  3. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    Science.gov (United States)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  4. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  5. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  6. The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability

    OpenAIRE

    Christopher M. Chini; James F. Canning; Kelsey L. Schreiber; Joshua M. Peschel; Ashlynn S. Stillwell

    2017-01-01

    Green infrastructure is a unique combination of economic, social, and environmental goals and benefits that requires an adaptable framework for planning, implementing, and evaluating. In this study, we propose an experimental framework for policy, implementation, and subsequent evaluation of green stormwater infrastructure within the context of sociotechnical systems and urban experimentation. Sociotechnical systems describe the interaction of complex systems with quantitative and qualitative...

  7. Productivity-based approach to valuation of transportation infrastructure.

    Science.gov (United States)

    2014-10-01

    Transportation infrastructure, a vital component to sustain economic prosperity, represents the largest public-owned : infrastructure asset in the U.S. With over a trillion invested dollars invested into long-lived physical assets such as : roads and...

  8. Perspective: The challenge of ecologically sustainable water management

    CSIR Research Space (South Africa)

    Bernhardt, E

    2006-10-01

    Full Text Available Sustainable water resource management is constrained by three pervasive myths; that societal and environmental water demands always compete with one another; that technological solutions can solve all water resource management problems...

  9. Map of Water Infrastructure and Homes Without Access to Safe Drinking Water and Basic Sanitation on the Navajo Nation - October 2010

    Science.gov (United States)

    This document presents the results of completed work using existing geographic information system (GIS) data to map existing water and sewer infrastructure and homes without access to safe drinking water and basic sanitation on the Navajo Nation.

  10. Water demand management in Mediterranean regions

    OpenAIRE

    Giulio Querini; Salvo Creaco

    2005-01-01

    Water sustainability needs a balance between demand and availability: 1) Water demand management: demand may be managed by suppliers and regulations responsible persons, using measures like invoicing, consumptions measurement and users education in water conservation measures; 2) Augmentation of water supply: availibility may be augmented by infrastructural measures, waste water reuse, non-conventional resources and losses reduction. Water Demand Management is about achieving a reduction in t...

  11. Sustainability of portable water services in the Philippines

    Science.gov (United States)

    Bohm, Robert A.; Essenburg, Timothy J.; Fox, William F.

    1993-07-01

    Financial sustainability of rural water systems in the Philippines is evaluated based on a comparison of willingness to pay for improved water and the costs of service delivery. Willingness to pay estimates indicate that user fees are unlikely to be sufficient to cover the full cost of service and subsidies are necessary, at least for a major portion of capital costs, or the water systems will become unsustainable because of insufficient resources. Sustainability is more probable when care is exercised in selecting villages for improved water services. Economies of scale lead to lower unit costs in larger villages. Willingness to pay is greater for household connections than for public faucets. Willingness to pay increases with income and wealth, family size, education, and dissatisfaction with traditional water sources.

  12. Engendering Change within a Water Infrastructure Client Organisation: A Participatory Action Research Approach

    Directory of Open Access Journals (Sweden)

    Michael Potts

    2015-07-01

    Full Text Available Continuing demands by stakeholders for improved service delivery has caused Infrastructure Client Organisations (ICO in the UK to embark upon organisational restructuring. It is expected that such restructuring would enhance cost-effectiveness and quality in asset management and service delivery. However, this change, if not properly managed and sustained, could result in the inability of the ICO to achieve these targets. This study outlines the use of systemic thinking and Participatory Action Research (PAR in driving and managing such change within a UK-based Water and Wastewater ICO (UK WASC. Besides highlighting the context for change in response to policy, austerity and regulatory pressures, this study portrays how the PAR approach can assist in the management of change within ICOs. Furthermore, it provides an insight into the evolution of an external researcher, from novice to expert within the ICO, imbued with the required knowledge to encourage other stakeholders to participate in driving the change management process. Preliminary findings indicate the usefulness of this phased approach toward PAR. This study provides a platform for researchers wishing to engage with ICOs to improve service delivery, identifying the value of engagement, change and systemic thinking.

  13. The urban forest cultivating green infrastructure for people and the environment

    CERN Document Server

    Calfapietra, Carlo; Samson, Roeland; O'Brien, Liz; Ostoić, Silvija; Sanesi, Giovanni; Amo, Rocío

    2017-01-01

    This book focuses on urban "green infrastructure" – the interconnected web of vegetated spaces like street trees, parks and peri-urban forests that provide essential ecosystem services in cities. The green infrastructure approach embodies the idea that these services, such as storm-water runoff control, pollutant filtration and amenities for outdoor recreation, are just as vital for a modern city as those provided by any other type of infrastructure. Ensuring that these ecosystem services are indeed delivered in an equitable and sustainable way requires knowledge of the physical attributes of trees and urban green spaces, tools for coping with the complex social and cultural dynamics, and an understanding of how these factors can be integrated in better governance practices. By conveying the findings and recommendations of COST Action FP1204 GreenInUrbs, this volume summarizes the collaborative efforts of researchers and practitioners from across Europe to address these challenges. .

  14. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  15. Comprehending the multiple 'values' of green infrastructure - Valuing nature-based solutions for urban water management from multiple perspectives.

    Science.gov (United States)

    Wild, T C; Henneberry, J; Gill, L

    2017-10-01

    The valuation of urban water management practices and associated nature-based solutions (NBS) is highly contested, and is becoming increasingly important to cities seeking to increase their resilience to climate change whilst at the same time facing budgetary pressures. Different conceptions of 'values' exist, each being accompanied by a set of potential measures ranging from calculative practices (closely linked to established market valuation techniques) - through to holistic assessments that seek to address wider concerns of sustainability. Each has the potential to offer important insights that often go well beyond questions of balancing the costs and benefits of the schemes concerned. However, the need to address - and go beyond - economic considerations presents policy-makers, practitioners and researchers with difficult methodological, ethical and practical challenges, especially when considered without the benefit of a broader theoretical framework or in the absence of well-established tools (as might apply within more traditional infrastructural planning contexts, such as the analysis of transport interventions). Drawing on empirical studies undertaken in Sheffield over a period of 10 years, and delivered in partnership with several other European cities and regions, we compare and examine different attempts to evaluate the benefits of urban greening options and future development scenarios. Comparing these different approaches to the valuation of nature-based solutions alongside other, more conventional forms of infrastructure - and indeed integrating both 'green and grey' interventions within a broader framework of infrastructures - throws up some surprising results and conclusions, as well as providing important sign-posts for future research in this rapidly emerging field. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. About opportunities of the sharing of city infrastructure centralized warmly - and water supply

    Science.gov (United States)

    Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.

    2017-11-01

    It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.

  17. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib

    2012-12-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing to improve its water sector performance. The water strategy focuses on desalination for the coastal cities, medium-sized dams to irrigate the inland mountains and high plateau, and ambitious water transfer projects interconnecting Algeria\\'s 65 dams to bring water to water scarce parts of the country. Waste water treatment and water reclamation technologies are also highly sought after. The main objective of the country\\'s water policy consists on providing sufficient potable water for the population supply. This objective is undertaken by increasing the water resources and availability. © 2012 Desalination Publications. All rights reserved.

  18. Moving Towards Sustainable and Resilient Smart Water Grids

    Directory of Open Access Journals (Sweden)

    Michele Mutchek

    2014-03-01

    Full Text Available Urban water systems face sustainability and resiliency challenges including water leaks, over-use, quality issues, and response to drought and natural disasters. Information and communications technology (ICT could help address these challenges through the development of smart water grids that network and automate monitoring and control devices. While progress is being made on technology elements, as a system, the smart water grid has received scant attention. This article aims to raise awareness of the systems-level idea of smart water grids by reviewing the technology elements and their integration into smart water systems, discussing potential sustainability and resiliency benefits, and challenges relating to the adoption of smart water grids. Water losses and inefficient use stand out as promising areas for applications of smart water grids. Potential barriers to the adoption of smart water grids include lack of funding for research and development, economic disincentives as well as institutional and political structures that favor the current system. It is our hope that future work can clarify the benefits of smart water grids and address challenges to their further development.

  19. Infrastructural relations: Water, political power and the rise of a new 'despotic regime'

    Directory of Open Access Journals (Sweden)

    Veronica Strang

    2016-06-01

    Full Text Available It is 60 years since Karl Wittfogel highlighted a key relationship between political power and the ownership and control of water. Subsequent studies have suggested, commensurately, that exclusion from the ownership of essential resources represents a fundamental form of disenfranchisement – a loss of democratic involvement in societal direction. Several areas of theoretical development have illuminated these issues. Anthropologists have explored the recursive relationship between political arrangements and cosmological belief systems. Narrow legal definitions of property have been challenged through the consideration of more diverse ways of owning and controlling resources. Analyses of material culture have shown how it extends human agency, as well as having agentive capacities itself; and explorations of infrastructures have highlighted their role in composing socio-technical and political relations. Such approaches are readily applied to water and the material culture through which it is controlled and used. Drawing on historical and ethnographic research on water in Australia and the UK, this paper traces changing relationships between cosmological beliefs, infrastructure and political arrangements over time. It suggests that a current trend towards privatised, transnational water ownership potentially opens the door to the emergence of new 'despotic regimes'.

  20. Optimal Expansion of a Drinking Water Infrastructure System with Respect to Carbon Footprint, Cost Effectiveness and Water Demand

    Science.gov (United States)

    Urban water infrastructure requires careful long-term expansion planning to reduce the risk from climate change during both the periods of economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternativ...

  1. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    Science.gov (United States)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  2. Evaluating Water Management Practice for Sustainable Mining

    OpenAIRE

    Xiangfeng Zhang; Lei Gao; Damian Barrett; Yun Chen

    2014-01-01

    To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has pr...

  3. From safe yield to sustainable development of water resources - The Kansas experience

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  4. Sustaining U.S. Nuclear Submarine Design Capabilities

    Science.gov (United States)

    2007-01-01

    million annually in the NSWC’s Card- erock Division submarine design workforce in excess of reimburs - able demand to sustain skills that might...large testing infrastructure. Conse- quently, the Navy retains management and operation of these facili- ties under direct reimbursement from private...the water. 4 These facilities are maintained within the naval warfare centers, which, as working capi- tal organizations, require reimbursement from

  5. Measuring global water security towards sustainable development goals

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819; Gain, A.K.; Giupponi, C.

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals(SDGs). Many international river basins are likely to experience ‘low water

  6. The financing of hydropower, irrigation and water supply infrastructure in developing countries

    International Nuclear Information System (INIS)

    Briscoe, J.

    1999-01-01

    A companion paper in the previous issue of this journal (Briscoe, 1999) describes the changing face of infrastructure financing in developing countries. This paper deals with the financing of major infrastructure in the water-related sectors - hydropower, water supply, and sanitation, irrigation, and overall water resources management (including the environment). The overall level of investment in water-related infrastructure in developing countries is estimated to be of the order of $65 billion annually, with the respective shares about $15 billion for hydro, $25 billion for water and sanitation and $25 billion for irrigation and drainage. About 90% of this investment comes from domestic sources, primarily from the public sector. Water-related infrastructure accounts for a large chunk - about 15% - of all government spending. This heavy dependence on the public sector means that the 'winds of change' in the respective roles of government and the private sector have major implications for the financing and structure of the water economy. The paper describes how each of the 'subsectors' is adapting to these winds of change. First, in recent years, competition and private sector provision have emerged as the characteristics of the new electricity industry. This change poses a fundamental challenge to hydro which, to a much greater degree than thermal, has risks (hydrological, geological, social and environmental) which are better assumed by the public than the private sector. The future of private hydro, and thus of hydo itself, depends heavily on the ability of the public sector to both share risks with the private sector, and to provide predictable social and environmental rules of the game. Second, the urban water supply sector is in the early stages of equally profound change. In recent years, there has been a dramatic shift towards the private sector, in developed and developing countries alike. An outline of the future shape of the a competitive urban water

  7. Seasonal and Interannual Trends in Largest Cholera Endemic Megacity: Water Sustainability - Climate - Health Challenges in Dhaka, Bangladesh

    Science.gov (United States)

    Akanda, Ali S.; Jutla, Antarpreet; Faruque, Abu S. G.; Huq, Anwar; Colwell, Rita R.

    2014-05-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. Emerging megacities in the region, especially those located in coastal areas also remain vulnerable to large scale drivers of cholera outbreaks. However, there has not been any systematic study on linking long-term disease trends with related changes in natural or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns and frequency of natural disasters. An interesting change is observed in the seasonal trends of cholera prevalence; while an endemic upward trend is seen in the dry season, the post-monsoon trend is epidemic in nature. In addition, the trend in the pre-monsoon dry season is significantly stronger than the post-monsoon wet season; and thus spring is becoming the dominant cholera season of the year. Evidence points to growing urbanization and rising population in unplanned settlements along the city peripheries. The rapid pressure of growth has led to an unsustainable and potentially disastrous situation with negligible-to-poor water and sanitation systems compounded by changing climatic patterns and increasing number of extreme weather events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of cholera outbreaks in spring, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate large scale water sustainability challenges in the context of climatic and anthropogenic changes in the

  8. Heavy water technology and its contribution to energy sustainability

    International Nuclear Information System (INIS)

    MacDiarmid, H.; Alizadeh, A.; Hopwood, J.; Duffey, R.

    2009-01-01

    Full text: As the global nuclear industry expands several markets are exploring avenues and technologies to underpin energy security. Heavy water reactors are the most versatile power reactors in the world. They have the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first commercial heavy water reactor in 1962. With the maturation of the industry, the unique design features of the now-familiar product-on-power refuelling, high neutron economy, and simple fuel design-make possible the realization of its potential fuel-cycle versatility. As resource constrains apply pressure on world markets, the feasibility of these options have become more attractive and closer to entering widespread commercial application

  9. Spatial planning, infrastructure and implementation: Implications for ...

    African Journals Online (AJOL)

    Infrastructure plays key roles in shaping the spatial form of the city at a macro- and a more local scale, and it influences the sustainability, efficiency and inclusiveness of cities and local areas. Linking infrastructure and spatial planning is therefore critical. Wide-ranging sets of knowledge and skills are required to enable ...

  10. The consequences of tourism for sustainable water use on a tropical island: Zanzibar, Tanzania.

    Science.gov (United States)

    Gössling, S

    2001-02-01

    Many developing countries in the tropics have focused on tourism to generate additional income sources and to diversity the economy. Coastlines in particular have been on the forefront of tourist infrastructure development. Here, the presence of a large number of tourists has often had negative consequences for the sustainable use of the available resources, which in turn has had an effect on the integrity of the ecosystems. In this paper, the situation is described for the use of freshwater resources on the east coast of Zanzibar, Tanzania. This region is water poor, relying on freshwater derived from seasonal rains and stored in less efficient aquifers, which consist of freshwater lenses floating on the underlying seawater. Tourism in the area has grown rapidly in recent years and is expected to further increase in the future. This development is expected to put additional pressure on the freshwater resources of the east coast, which show already signs of over-use. The consequences of overexploitation can include the lowering of the groundwater table, land subsidence, deteriorating groundwater quality, and saltwater intrusion. These, in turn, determine the living conditions in coastal areas and the effects will be felt both by the local populations and the tourist industry. An investigation is made into the causes and consequences of water abstraction by the tourist industry. The results show that present levels of withdrawal are not sustainable, and parts of the local populations are already experiencing water deficits on a daily basis. In the future, if the expected increase in tourist numbers occurs, the pressure on the aquifers will correspondingly increase. The results could be that the tourism in the area becomes unsustainable, which could have an adverse effect on the national economy and also on the local population and environment. Therefore, a precautionary water-management approach is suggested.

  11. Economic sustainability, water security and multi-level governance of local water schemes in Nepal

    Directory of Open Access Journals (Sweden)

    Emma Hakala

    2017-07-01

    Full Text Available This article explores the role of multi-level governance and power structures in local water security through a case study of the Nawalparasi district in Nepal. It focuses on economic sustainability as a measure to address water security, placing this thematic in the context of a complicated power structure consisting of local, district and national administration as well as external development cooperation actors. The study aims to find out whether efforts to improve the economic sustainability of water schemes have contributed to water security at the local level. In addition, it will consider the interactions between water security, power structures and local equality and justice. The research builds upon survey data from the Nepalese districts of Nawalparasi and Palpa, and a case study based on interviews and observation in Nawalparasi. The survey was performed in water schemes built within a Finnish development cooperation programme spanning from 1990 to 2004, allowing a consideration of the long-term sustainability of water management projects. This adds a crucial external influence into the intra-state power structures shaping water management in Nepal. The article thus provides an alternative perspective to cross-regional water security through a discussion combining transnational involvement with national and local points of view.

  12. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  13. Urban Green Infrastructure: German Experience

    Directory of Open Access Journals (Sweden)

    Diana Olegovna Dushkova

    2016-06-01

    Full Text Available The paper presents a concept of urban green infrastructure and analyzes the features of its implementation in the urban development programmes of German cities. We analyzed the most shared articles devoted to the urban green infrastructure to see different approaches to definition of this term. It is based on materials of field research in the cities of Berlin and Leipzig in 2014-2015, international and national scientific publications. During the process of preparing the paper, consultations have been held with experts from scientific institutions and Administrations of Berlin and Leipzig as well as local experts from environmental organizations of both cities. Using the German cities of Berlin and Leipzig as examples, this paper identifies how the concept can be implemented in the program of urban development. It presents the main elements of green city model, which include mitigation of negative anthropogenic impact on the environment under the framework of urban sustainable development. Essential part of it is a complex ecological policy as a major necessary tool for the implementation of the green urban infrastructure concept. This ecological policy should embody not only some ecological measurements, but also a greening of all urban infrastructure elements as well as implementation of sustainable living with a greater awareness of the resources, which are used in everyday life, and development of environmental thinking among urban citizens. Urban green infrastructure is a unity of four main components: green building, green transportation, eco-friendly waste management, green transport routes and ecological corridors. Experience in the development of urban green infrastructure in Germany can be useful to improve the environmental situation in Russian cities.

  14. Public private partnerships - risk management in engineering infrastructure projects

    OpenAIRE

    2012-01-01

    M.Phil. Economic growth and the provision of adequate infrastructure are highly interrelated. Infrastructure- plays a critical role in promoting economic growth through enhancing productivity, improving competitiveness, reducing poverty, linking people and organisations together through telecommunications and contributing to environmental sustainability. Population growth and rapid urbanisation have placed enormous pressure on existing infrastructure, thus presenting a daunting challenge t...

  15. Case Study of Urban Water Distribution Networks Districting Management Based on Water Leakage Control

    OpenAIRE

    Wu, S.; Li, Xiaohong; Tang, S.; Zhou, Y.; Diao, K.

    2009-01-01

    Globally, water demand is rising and resources are diminishing. Most of the world's water systems have been highly successful in delivering high-quality water to large populations. However, most of these systems also incur a notable amount of loss in their operations. Water loss from the water supply system has long been a feature of operations management, even in the countries with a well-developed infrastructure and good operating practices. There is no doubt that the sustainable management...

  16. Water, sanitation and hygiene infrastructure and quality in rural healthcare facilities in Rwanda.

    Science.gov (United States)

    Huttinger, Alexandra; Dreibelbis, Robert; Kayigamba, Felix; Ngabo, Fidel; Mfura, Leodomir; Merryweather, Brittney; Cardon, Amelie; Moe, Christine

    2017-08-03

    WHO and UNICEF have proposed an action plan to achieve universal water, sanitation and hygiene (WASH) coverage in healthcare facilities (HCFs) by 2030. The WASH targets and indicators for HCFs include: an improved water source on the premises accessible to all users, basic sanitation facilities, a hand washing facility with soap and water at all sanitation facilities and patient care areas. To establish viable targets for WASH in HCFs, investigation beyond 'access' is needed to address the state of WASH infrastructure and service provision. Patient and caregiver use of WASH services is largely unaddressed in previous studies despite being critical for infection control. The state of WASH services used by staff, patients and caregivers was assessed in 17 rural HCFs in Rwanda. Site selection was non-random and predicated upon piped water and power supply. Direct observation and semi-structured interviews assessed drinking water treatment, presence and condition of sanitation facilities, provision of soap and water, and WASH-related maintenance and record keeping. Samples were collected from water sources and treated drinking water containers and analyzed for total coliforms, E. coli, and chlorine residual. Drinking water treatment was reported at 15 of 17 sites. Three of 18 drinking water samples collected met the WHO guideline for free chlorine residual of >0.2 mg/l, 6 of 16 drinking water samples analyzed for total coliforms met the WHO guideline of hygienic condition and accessible to patients. Regular maintenance of WASH infrastructure consisted of cleaning; no HCF had on-site capacity for performing repairs. Quarterly evaluations of HCFs for Rwanda's Performance Based Financing system included WASH indicators. All HCFs met national policies for water access, but WHO guidelines for environmental standards including water quality were not fully satisfied. Access to WASH services at the HCFs differed between staff and patients and caregivers.

  17. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE FOR THE 21ST CENTURY RESEARCH PLAN

    Science.gov (United States)

    This plan has been developed to provide the Office of Research and Development (ORD) with a guide for implementing a research program that addresses high priority needs of the Nation relating to its drinking water and wastewater infrastructure. By identifying these critical need...

  18. Footprints of air pollution and changing environment on the sustainability of built infrastructure.

    Science.gov (United States)

    Kumar, Prashant; Imam, Boulent

    2013-02-01

    Over 150 research articles relating three multi-disciplinary topics (air pollution, climate change and civil engineering structures) are reviewed to examine the footprints of air pollution and changing environment on the sustainability of building and transport structures (referred as built infrastructure). The aim of this review is to synthesize the existing knowledge on this topic, highlight recent advances in our understanding and discuss research priorities. The article begins with the background information on sources and emission trends of global warming (CO(2), CH(4), N(2)O, CFCs, SF(6)) and corrosive (SO(2), O(3), NO(X)) gases and their role in deterioration of building materials (e.g. steel, stone, concrete, brick and wood) exposed in outdoor environments. Further section covers the impacts of climate- and pollution-derived chemical pathways, generally represented by dose-response functions (DRFs), and changing environmental conditions on built infrastructure. The article concludes with the discussions on the topic areas covered and research challenges. A comprehensive inventory of DRFs is compiled. The case study carried out for analysing the inter-comparability of various DRFs on four different materials (carbon steel, limestone, zinc and copper) produced comparable results. Results of another case study revealed that future projected changes in temperature and/or relatively humidity are expected to have a modest effect on the material deterioration rate whereas changes in precipitation were found to show a more dominant impact. Evidences suggest that both changing and extreme environmental conditions are expected to affect the integrity of built infrastructure both in terms of direct structural damage and indirect losses of transport network functionality. Unlike stone and metals, substantially limited information is available on the deterioration of brick, concrete and wooden structures. Further research is warranted to develop more robust and

  19. Conceptual framework for public-private partnerships model for water services infrastructure assets: case studies from municipalities in the Limpopo and Gauteng provinces

    CSIR Research Space (South Africa)

    Matji, MP

    2015-05-01

    Full Text Available This paper presents a framework for public-private partnerships PPP) in local government water services infrastructure. Water services infrastructure assets are key to the provision of basic services. Data were collected from various stakeholders, i...

  20. Infrastructure for China’s Ecologically Balanced Civilization†

    Directory of Open Access Journals (Sweden)

    Chris Kennedy

    2016-12-01

    Full Text Available China’s green investment needs up to 2020 are ¥1.7 trillion–2.9 trillion CNY ($274 billion–468 billion USD per year. Estimates of financing requirements are provided for multiple sectors, including sustainable energy, infrastructure (including for environmental protection, environmental remediation, industrial pollution control, energy and water efficiency, and green products. The context to China’s green financing is discussed, covering urbanization, climate change, interactions between infrastructure sectors, and the transformation of industry. Much of the infrastructure financing will occur in cities, with a focus on equity, environmental protection, and quality of life under the National New-Type Urbanization Plan (2014–2020. China has implemented many successful policies in the building sector, but there is still considerable scope for improvement in the energy efficiency of Chinese buildings. China is currently pursuing low-carbon growth strategies that are consistent with its overall environmental and quality-of-life objectives. Beyond 2020, China’s future as an ecologically balanced civilization will rest on the implementation of a central infrastructure policy: China 2050 High Renewable Energy Penetration Scenario and Roadmap Study. As exemplified by the Circular Economy Development Strategy and Near-Term Action Plan, an essential part of China’s green industrial transformation involves engineering systems that conserve materials, thereby reducing or even eliminating wastes. To better understand changes to China’s economy under its green transformation and to unlock large potential sources of finance, it is necessary to undertake a fuller examination of all of China’s infrastructure sectors, particularly freight rail infrastructure and ports. Large investments are required to clean up a legacy of environmental contamination of soil and groundwater and to reduce industrial pollution. Transformation of the power sector

  1. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  2. Sustainable Telemedicine: Designing and Building Infrastructure to Support a Comprehensive Telemedicine Practice.

    Science.gov (United States)

    Kreofsky, Beth L H; Blegen, R Nicole; Lokken, Troy G; Kapraun, Susan M; Bushman, Matthew S; Demaerschalk, Bart M

    2018-04-16

    Telemedicine services in medical institutions are often developed in isolation of one another and not as part of a comprehensive telemedicine program. The Center for Connected Care is the administrative home for a broad range of telehealth services at Mayo Clinic. This article speaks of real-time video services, referenced as telemedicine throughout. This article discusses how a large healthcare system designed and built the infrastructure to support a comprehensive telemedicine practice. Based on analysis of existing services, Mayo Clinic developed a multifaceted operational plan that addressed high-priority areas and outlined clear roles and responsibilities of the Center for Connected Care and that of the clinical departments. The plan set priorities and a direction that would lead to long-term success. The plan articulated the governing and operational infrastructure necessary to support telemedicine by defining the role of the Center for Connected Care as the owner of core administrative operations and the role of the clinical departments as the owners of clinical telemedicine services. Additional opportunities were identified to develop product selection processes, implementation services, and staffing models that would be applied to ensure successful telemedicine deployment. The telemedicine team within the Center for Connected Care completed 45 business cases resulting in 54 implementations. The standardization of core products along with key operational offerings around implementation services, and the establishment of a 24/7 support model resulted in improved provider satisfaction and fewer reported technical issues. The foundation for long-term scalability and growth was developed by centralizing operations of telemedicine services, implementing sustainable processes, employing dedicated qualified personnel, and deploying robust products.

  3. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  4. Factors influencing sustainability of communally-managed water facilities in rural areas of Zimbabwe

    Science.gov (United States)

    Kativhu, T.; Mazvimavi, D.; Tevera, D.; Nhapi, I.

    2017-08-01

    Sustainability of point water facilities is a major development challenge in many rural settings of developing countries not sparing those in the Sub-Saharan Africa region. This study was done in Zimbabwe to investigate the factors influencing sustainability of rural water supply systems. A total of 399 water points were studied in Nyanga, Chivi and Gwanda districts. Data was collected using a questionnaire, observation checklist and key informant interview guide. Multi-Criteria analysis was used to assess the sustainability of water points and inferential statistical analysis such as Chi square tests and Analysis of Variance (ANOVA) were used to determine if there were significant differences on selected variables across districts and types of lifting devices used in the study area. The thematic approach was used to analyze qualitative data. Results show that most water points were not functional and only 17% across the districts were found to be sustainable. A fusion of social, technical, financial, environmental and institutional factors was found to be influencing sustainability. On technical factors the ANOVA results show that the type of lifting device fitted at a water point significantly influences sustainability (F = 37.4, p planning stage of water projects was also found to be critical for sustainability although field results showed passive participation by communities at this critical project stage. Financial factors of adequacy of financial contributions and establishment of operation and maintenance funds were also found to be of great importance in sustaining water supply systems. It is recommended that all factors should be considered when assessing sustainability since they are interrelated.

  5. Municipal Wastewater: A Rediscovered Resource for Sustainable Water Reuse

    Science.gov (United States)

    Both population growth and movement puts forth the need for increased regional water supplies across the globe. While significant progress has been made in the area of building new infrastructure to capture freshwater and divert it to urban and rural areas, there exists a consid...

  6. Environmental impacts and sustainability of degraded water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, D.L.; Bradford, S.A. [USDA ARS, Riverside, CA (United States). US Salin Laboratory

    2008-09-15

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  7. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Directory of Open Access Journals (Sweden)

    Sadia Rahman

    2014-01-01

    Full Text Available Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  8. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  9. Climate extremes and challenges to infrastructure development in coastal cities in Bangladesh

    Directory of Open Access Journals (Sweden)

    Sowmen Rahman

    2015-03-01

    Full Text Available Most of the coastal cities in Bangladesh are situated on the riverbanks of low-lying tidal zones at an average elevation of 1.0–1.5 m from the sea level. Construction and management of buildings, roads, power and telecommunication transmission lines, drainage and sewerage and waste management are very difficult and vulnerable to climate change disasters. Cyclonic storms associated with tidal floods impact seriously the infrastructures and thus the livelihoods. Although coastal cities are the ultimate shelters of the coastal people during the extremes events, the coastal cities are not safe and cannot support them due to poor infrastructure. This study analyses the challenges coastal urbanization faces under different situations like cyclones, floods and water-logging, salinity, land-sliding and erosion etc. during the disasters and their effects on city lives for water supply and sanitation, power and electricity and waste management etc., and puts forward recommendations towards sustainable planning of coastal cities.

  10. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  11. Managing Sustainable Data Infrastructures: The Gestalt of EOSDIS

    Science.gov (United States)

    Behnke, Jeanne; Lowe, Dawn; Lindsay, Francis; Lynnes, Chris; Mitchell, Andrew

    2016-01-01

    EOSDIS epitomizes a System of Systems, whose many varied and distributed parts are integrated into a single, highly functional organized science data system. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple scientific instruments. The EOSDIS is composed of system elements such as geographically distributed archive centers used to manage the stewardship of data. The infrastructure consists of underlying capabilities connections that enable the primary system elements to function together. For example, one key infrastructure component is the common metadata repository, which enables discovery of all data within the EOSDIS system. EOSDIS employs processes and standards to ensure partners can work together effectively, and provide coherent services to users.

  12. International Conference of Applied Science and Technology for Infrastructure Engineering

    Science.gov (United States)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  13. Improving water, sanitation and hygiene in health-care facilities, Liberia.

    Science.gov (United States)

    Abrampah, Nana Mensah; Montgomery, Maggie; Baller, April; Ndivo, Francis; Gasasira, Alex; Cooper, Catherine; Frescas, Ruben; Gordon, Bruce; Syed, Shamsuzzoha Babar

    2017-07-01

    The lack of proper water and sanitation infrastructures and poor hygiene practices in health-care facilities reduces facilities' preparedness and response to disease outbreaks and decreases the communities' trust in the health services provided. To improve water and sanitation infrastructures and hygiene practices, the Liberian health ministry held multistakeholder meetings to develop a national water, sanitation and hygiene and environmental health package. A national train-the-trainer course was held for county environmental health technicians, which included infection prevention and control focal persons; the focal persons acted as change agents. In Liberia, only 45% of 701 surveyed health-care facilities had an improved water source in 2015, and only 27% of these health-care facilities had proper disposal for infectious waste. Local ownership, through engagement of local health workers, was introduced to ensure development and refinement of the package. In-county collaborations between health-care facilities, along with multisectoral collaboration, informed national level direction, which led to increased focus on water and sanitation infrastructures and uptake of hygiene practices to improve the overall quality of service delivery. National level leadership was important to identify a vision and create an enabling environment for changing the perception of water, sanitation and hygiene in health-care provision. The involvement of health workers was central to address basic infrastructure and hygiene practices in health-care facilities and they also worked as stimulators for sustainable change. Further, developing a long-term implementation plan for national level initiatives is important to ensure sustainability.

  14. Public-Private Partnerships for Transport Infrastructure

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina; Greve, Carsten

    The provision of transport infrastructure and services creates fundamental value to society. With traditional sources of transport public funding running short, governments around the world are increasingly turning to public-private finance (PPPs) as a promising tool of public infrastructure...... of the public but of the private actor as well, to act perhaps motivated by corporate social responsibility, committing to bringing innovation and transparency in their efforts for advancing sustainability....

  15. Decision support toolkit for integrated analysis and design of reclaimed water infrastructure.

    Science.gov (United States)

    Lee, Eun Jung; Criddle, Craig S; Geza, Mengistu; Cath, Tzahi Y; Freyberg, David L

    2018-05-01

    Planning of water reuse systems is a complex endeavor. We have developed a software toolkit, IRIPT (Integrated Urban Reclaimed Water Infrastructure Planning Toolkit) that facilitates planning and design of reclaimed water infrastructure for both centralized and hybrid configurations that incorporate satellite treatment plants (STPs). The toolkit includes a Pipeline Designer (PRODOT) that optimizes routing and sizing of pipelines for wastewater capture and reclaimed water distribution, a Selector (SelWTP) that assembles and optimizes wastewater treatment trains, and a Calculator (CalcBenefit) that estimates fees, revenues, and subsidies of alternative designs. For hybrid configurations, a Locator (LocSTP) optimizes siting of STPs and associated wastewater diversions by identifying manhole locations where the flowrates are sufficient to ensure that wastewater extracted and treated at an adjacent STP can generate the revenue needed to pay for treatment and delivery to customers. Practical local constraints are also applied to screen and identify STP locations. Once suitable sites are selected, System Integrator (ToolIntegrator) identifies a set of centralized and hybrid configurations that: (1) maximize reclaimed water supply, (2) maximize reclaimed water supply while also ensuring a financial benefit for the system, and (3) maximize the net financial benefit for the system. The resulting configurations are then evaluated by an Analyst (SANNA) that uses monetary and non-monetary criteria, with weights assigned to appropriate metrics by a decision-maker, to identify a preferred configuration. To illustrate the structure, assumptions, and use of IRIPT, we apply it to a case study for the city of Golden, CO. The criteria weightings provided by a local decision-maker lead to a preference for a centralized configuration in this case. The Golden case study demonstrates that IRIPT can efficiently analyze centralized and hybrid water reuse configurations and rank them

  16. Franchising O&M water services infrastructure in the Eastern Cape province of South Africa

    CSIR Research Space (South Africa)

    Wall, K

    2010-09-01

    Full Text Available South African research has found that franchising partnerships could alleviate and address many challenges in the operation and maintenance of water services infrastructure. Franchising brings appropriate training to those on-site, and also offers...

  17. Water for Survival, Water for Pleasure – A Biopolitical Perspective on the Social Sustainability of the Basic Water Agenda

    Directory of Open Access Journals (Sweden)

    Sofie Hellberg

    2017-02-01

    Full Text Available This article explores the social sustainability of the basic water agenda. It does so through a biopolitical analysis of water narratives from eThekwini municipality, South Africa, where a policy of Free Basic Water (FBW has been implemented. The article addresses the question of what water 'is' and 'does' and shows that water and water governance are productive of lifestyles, people’s self-understanding and how they view their place in the social hierarchy. The analysis brings to light that a differentiated management system, that provides different levels of water services to different populations and individuals, becomes part of (reproducing social hierarchies and deepens divisions between communities. Based on these findings, the article argues that while the basic water agenda has brought successful results globally and remains important in terms of guaranteeing health and survival for the most vulnerable, it should not be confused with efforts of social sustainability. Social sustainability would not only involve a situation where basic needs are met but would also have to address effects of water systems on the relationships between individuals and populations in society.

  18. Sustainable development and climate change: Lessons from country studies

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Shukla, P.; Garg, A.

    2008-01-01

    Sustainable development has been suggested as a framework for integrating development and climate change policies in developing countries. Mainstreaming climate change into sustainable development policies would allow these countries to achieve their development goals while addressing climate...... change. A number of research programmes have investigated how potential synergies could be achieved at national level and what kind of trade-offs between the various aspects of sustainable development have to be faced. An overview of these studies is provided, focusing on national case studies....... The energy and transportation sectors are covered in many studies, but some attention is also given to the infrastructure sector and water supply. Most existing development policies will not lead to a sustainable development pattern, since they insufficiently address climate change. However, good...

  19. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this

  20. Composting toilets as a sustainable alternative to urban sanitation--a review.

    Science.gov (United States)

    Anand, Chirjiv K; Apul, Defne S

    2014-02-01

    In today's flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50-60%), temperature (40-65°C), carbon to nitrogen ratio (25-35), pH (5.5-8.0), and porosity (35-50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature-time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and experience in composting toilet design and operation and program operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. From Indicators to Policies: Open Sustainability Assessment in the Water and Sanitation Sector

    Directory of Open Access Journals (Sweden)

    Martín Alejandro Iribarnegaray

    2015-10-01

    Full Text Available A water and sanitation sustainability index (WASSI was developed and estimated in four cities of the province of Salta, in northern Argentina. The index was built with nine descriptors and fifteen indicators that covered all essential aspects of the sustainability of local water and sanitation management systems. Only one of the cities studied obtained a sustainability value above the acceptability threshold adopted (50 of 100 points. Results indicate that the water company needs to address some environmental and social issues to enhance the sustainability of the systems studied. The WASSI was conceptually robust and operationally simple, and could be easily adapted to the case studies. The index can be followed and updated online on a web site specially developed for this project. This website could be useful to promote participatory processes, assist decision makers, and facilitate academic research. According to local stakeholders, a more open sustainability assessment based on sustainability indices and supported by virtual tools would be relevant and highly feasible. It would help decision makers improve the sustainability and transparency of water and sanitation management systems, and promote more sustainable water policies in the region and beyond.

  2. Sustainable development of energy, water and environment systems

    International Nuclear Information System (INIS)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav; Klemeš, Jiří Jaromír; Mathiessen, Brian vad; Yan, Jinyue

    2013-01-01

    Highlights: ► This special issue of contributions presented at the 6th SDEWES Conference. ► Buildings are becoming energy neutral. ► Process integration enables significant improvements of energy efficiency. ► The electrification of transport and measures to increase its efficiency are needed. ► Renewable energy is becoming more viable while being complicated to integrate. -- Abstract: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations.

  3. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  4. Delivery through innovation: CSIR research on water services infrastructure operation through franchising

    CSIR Research Space (South Africa)

    Wall, K

    2006-02-01

    Full Text Available There is a great need for institutional innovations aimed at improving access to basic water services in South Africa, and sustaining that improvement. In support of effective delivery, the CSIR, with the support of the Water Research Commission...

  5. Multi Criteria Decision Support for Conceptual Integral Design of Flex(eble)(en)ergy Infrastructure

    NARCIS (Netherlands)

    Zeiler, W.; Savanovic, P.; Houten, van M.A.; Boxem, G.; Ehrgott, M; Naujoks, B; Stewart, T.J.; Wallenius, J

    2009-01-01

    The use of sustainable energy will soon be the major guiding principle for building and spatial planning practice. This asks for new sustainable energy infrastructures which need new design approaches. Design tools for the energy infrastructure of the built environment in the conceptual phase of

  6. Impacts of Embankment System on Natural Wetlands and Sustainable Water Resources Development in the Northwest Region of Bangladesh

    Science.gov (United States)

    Pervin, M.; Rahman, M. A.

    2012-12-01

    production has been decreased over time and some species such as Gongsha, Khailsha, Chandina etc., are in threatened condition. Though agricultural production has been increased after construction of the Polder C, wetland status on the basis of wildlife and natural vegetation has been decreased significantly. This study clearly indicates that water resources infrastructure development should consider a wide range of components of integrated water resources management (IWRM). Non-sustainable planning and management of infrastructure may lead to economic benefit but causes harm to the natural ecosystem. Based on the study out come the following suggestions have been derived: (1) Integrated water resources management plan should be prepared based on the conjunctive use of surface water and ground water, (2) in some potential places low height dam may be constructed to store water for Aman crop in monsoon season, (3) proper training and credit support are needed for project beneficiaries for fishery, agriculture and others sectors in the polder, (4) The polder C was implemented using top down approach giving less importance to the beneficiaries but for the sustainability of the projects, stakeholders opinion should be in consideration which is termed as bottom up approach.

  7. Water and Energy Sustainability: A Balance of Government Action and Industry Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald

    2009-12-31

    By completing the tasks and subtasks of the project, the Ground Water Protection Council (GWPC) through its state regulatory agency members and oil and gas industry partners, will bring attention to water quality and quantity issues and make progress toward water and energy sustainability though enhanced water protection and conservation thus enhancing the viability of the domestic fossil fuel industry. The project contains 4 major independent Tasks. Task 1 - Work Plan: Water-Energy Sustainability: A Symposium on Resource Viability. Task 2 - Work Plan: A Regional Assessment of Water and Energy Sustainability. Task 3 - Work Plan: Risk Based Data Management System-Water Water and Energy Module. Task 4 - Work Plan: Identification and Assessment of States Regulatory Programs Regarding Geothermal Heating and Cooling Systems. Each task has a specific scope (details given).

  8. Sustainable development strategy 2001-2003

    International Nuclear Information System (INIS)

    2001-01-01

    This report defines what Transport Canada can do to incorporate environmental considerations into its mandate. While governments are faced with more pressures to finance and expand transportation infrastructure to meet the growth in transportation, environmental pressures are also increasing to make efficient use of land and natural resources, preserve vital habitats and maintain biodiversity. A greater use of non-renewable resources and new technologies such as fuel cells for automobiles will play an important role in addressing these environmental challenges related to the transportation sector. In addition, the transportation infrastructure will have to evolve to promote less polluting modes of travel and to better integrate different modes to make the system more efficient. This report presented the following 7 strategic challenges facing the transportation sector in Canada: (1) improving education and awareness of sustainable transportation, (2) developing tools for better decision-making, (3) promoting the adoption of sustainable transportation technology, (4) improving environmental management for Transport Canada operations and lands, (5) reducing air emissions, (6) reducing water pollution, and (7) promoting efficient transportation. For each challenge, the department has defined specific commitments for action, with a total of 29 commitments. tabs., figs

  9. Role of EPA in Asset Management Research – The Aging Water Infrastructure Research Program

    Science.gov (United States)

    This slide presentation provides an overview of the EPA Office of Research and Development’s Aging Water infrastructure Research Program (AWIRP). The research program origins, goals, products, and plans are described. The research program focuses on four areas: condition asses...

  10. Improving Sustainability Performance for Public-Private-Partnership (PPP Projects

    Directory of Open Access Journals (Sweden)

    Liyin Shen

    2016-03-01

    Full Text Available Improving sustainability performance in developing infrastructure projects is an important strategy for pursuing the mission of sustainable development. In recent years, the business model of public-private-partnership (PPP is promoted as an effective approach in developing infrastructure projects. It is considered that the distribution of the contribution on project investment between private and public sectors is one of the key variables affecting sustainability performance of PPP-type projects. This paper examines the impacts of the contribution distribution between public and private sectors on project sustainability performance. A model named the sustainability performance-based evaluation model (SPbEM is developed for assisting the assessment of the level of sustainability performance of PPP projects. The study examines the possibility of achieving better sustainability through proper arrangement of the investment distribution between the two primary sectors in developing PPP-type infrastructure projects.

  11. Application of a sustainability index for integrated urban water ...

    African Journals Online (AJOL)

    guide appropriate action and policy-making towards better service delivery and improved resource management. ... surface water, groundwater and rainwater, as well as methods of ... systems in order to define how the objective of sustainability can ..... the relevant decision-makers towards more sustainable prac- tices.

  12. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  13. WATER AND ARCHAEOLOGY FOR SUSTAINABLE TOURISM

    Directory of Open Access Journals (Sweden)

    NICHOLAS KATHIJOTES

    2016-03-01

    Full Text Available Water is undoubtedly the most precious resource of the planet and the accessibility to water resources marked the history of mankind since the dawn of times. Water has been indeed very central to archaeology and anthropology, that studied the ways in which water was provisioned, tanked, distributed, worshipped, exploited for agricultural irrigation or to power machines like water-mills, used for leisure, hygiene and healing, or abused to confer power on particular groups ,and how it played a central role in political and economic strategies. More than any other factor, waterways marked cultural and economic developments in history. This paper outlines examples of water resources management throughout the ages, in Cyprus and the Hellenic Civilization on different aspects of the use and management of water, investigates technical issues and gives suggestions, thus promoting a new approach to archaeological heritage and sustainable tourism.

  14. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  15. Economic performance of water storage capacity expansion for food security

    Science.gov (United States)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  16. Advances and challenges in sustainable tourism toward a green economy.

    Science.gov (United States)

    Pan, Shu-Yuan; Gao, Mengyao; Kim, Hyunook; Shah, Kinjal J; Pei, Si-Lu; Chiang, Pen-Chi

    2018-09-01

    This paper provides an overview of the interrelationships between tourism and sustainability from a cross-disciplinary perspective. The current challenges and barriers in the tourism sustainability, such as high energy use, extensive water consumption and habitat destruction, are first reviewed. Then the key cross-disciplinary elements in sustainable tourism, including green energy, green transportation, green buildings, green infrastructure, green agriculture and smart technologies, are discussed. To overcome the challenges and barriers, a few implementation strategies on achieving sustainable tourism from the aspects of policy/regulation, institution, finance, technology and culture are proposed, along with the framework and details of a key performance indicator system. Finally, prospects of the potential for tourism to contribute to the transformative changes, e.g., a green economy system, are illustrated. This paper shine a light on issues of importance within sustainable tourism and encourage researchers from different disciplines in investigating the inter-relationships among community/culture, environment/ecology, and energy/water/food more broadly. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Thermal-hydraulic R and D infrastructure for water cooled reactors of the Indian nuclear power program

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Jain, V.; Saha, D.; Sinha, R.K.

    2009-01-01

    R and D has been the critical ingredient of Indian Nuclear Power Program from the very inception. Approach to R and D infrastructure has been closely associated with the three-stage nuclear power program that was crafted on the basis of available resources and technology in the short-term and energy security in the long-term. Early R and D efforts were directed at technologies relevant to Pressurized Heavy Water Reactors (PHWRs) which are currently the mainstay of Indian nuclear power program. Lately, the R and D program has been steered towards the design and development of advanced and innovative reactors with the twin objective of utilization of abundant thorium and to meet the future challenges to nuclear power such as enhanced safety and reliability, better economy, proliferation resistance etc. Advanced Heavy Water Reactor (AHWR) is an Indian innovative reactor currently being developed to realize the above objectives. Extensive R and D infrastructure has been created to validate the system design and various passive concepts being incorporated in the AHWR. This paper provides a brief review of R and D infrastructure that has been developed at Bhabha Atomic Research Centre for thermal-hydraulic investigations for water-cooled reactors of Indian nuclear power program. (author)

  18. Sustainability innovation foundry - FY13: Merging research and operations

    Energy Technology Data Exchange (ETDEWEB)

    Mizner, Jack Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McNeish, Jerry A. [Sandia National Laboratories, Livermore, CA (United States); Sullivan, Kristina [Sandia National Laboratories, Livermore, CA (United States)

    2013-12-01

    Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutions to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.

  19. Barriers to sustainable water resources management : Case study in Omnogovi province, Mongolia

    OpenAIRE

    Enkhtsetseg, Mandukhai

    2017-01-01

    This study examines the barriers to sustainable water resources management in water vulnerable, yet a mining booming area. The case study is conducted in Omnogovi province of Mongolia in Nov-Dec 2016. This study presents how the Omnogovi province manages its water with increased mining and examines what hinders the province from practicing sustainable water resources management and examines the involvement of residents in the water resources management of Omnogovi province. Qualitative approa...

  20. Closing of water circuits - a global benchmark on sustainable water management

    Science.gov (United States)

    Fröhlich, Siegmund

    2017-11-01

    Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: "The wars of the 21st century will be fought not over oil, they will be fought over water." [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  1. Managing water resources infrastructure in the face of different values

    Science.gov (United States)

    Mostert, Erik

    Water resources infrastructure (WRI) plays a key role in water management. It can serve or negatively affect some seven to ten different and sometimes conflicting values. WRI management is therefore not a purely technical issue. Economic analyses can help to some extent, but only for values related to current human use. Multi-criteria analysis can cover all values, but in the end WRI management is not an analytical issue, but a governance issue. Different governance paradigms exist: markets, hierarchies and “third alternatives”, such as common pool resources management and network management. This article presents social learning as the most promising paradigm. Positive experiences with social learning have been described and guidance on putting social learning into practice exists. Nonetheless, there are no magic solutions for managing WRI in the face of different values.

  2. Planning Green Infrastructure as a Source of Urban and Regional Resilience – Towards Institutional Challenges

    OpenAIRE

    Paulina SCHIAPPACASSE; Bernhard MÜLLER

    2015-01-01

    Green infrastructure programmes and strategies are regarded as planning opportunities to promote sustainable and resilient urban development. However, the discourse about green infrastructure policy and its effectiveness has pointed to the limited success in practical implementation. Since the green infrastructure has no planning status in its own right, it depends on being embedded in comprehensive urban and regional planning approaches if it is to have an impact on sustainable and resilient...

  3. Environmental and natural resource implications of sustainable urban infrastructure systems

    Science.gov (United States)

    Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Kaviti Musango, Josephine

    2017-12-01

    As cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%-116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of

  4. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  5. Strengthening Radiation Protection Infrastructures in Africa: Towards Establishing Effective and Sustainable Co-operations and Networks

    International Nuclear Information System (INIS)

    2010-09-01

    The third African IRPA 2010 conference on Strengthening Radiation Protection Infrastructures in Africa: Towards Establishing Effective and Sustainable Co-operations and Networks. IAEA's role in radiation protection with focus in Africa. The controlling of exposure to indoor Radon. And Measure of activities and calculation of effective dose of indoor 222 Rn in some dwelling and enclosed areas in Africa - capacity building for radiation protection. It had also address Patient Radiation Protection in Radiotherapy, challenges for advancing medical physic globally, Heath effects and medical applications of non-ionizing radiation, nuclear safety and radiation protection consideration in the design of research and development. The International radiation protection association (IRPA) 2010-2011 strategic plan that address among other issues educations and training activities (2000-2020) and the current UNSCLEAR activities

  6. Toward Knowledge Systems for Sustainability Science

    Science.gov (United States)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated

  7. Virtual Water and Water Footprints: Overreaching Into the Discourse on Sustainability, Efficiency, and Equity

    Directory of Open Access Journals (Sweden)

    Dennis Wichelns

    2015-10-01

    Full Text Available The notions of virtual water and water footprints were introduced originally to bring attention to the large amounts of water required to produce crops and livestock. Recently, several authors have begun applying those notions in efforts to describe efficiency, equity, and the sustainability of resources and production activities. In this paper, I describe why the notions of virtual water and water footprints are not appropriate for analysing issues pertaining to those topics. Both notions lack a supporting conceptual framework and they contain too little information to enhance understanding of important policy issues. Neither notion accounts for the opportunity cost or scarcity value of water in any setting, or the impacts of water availability and use on livelihoods. In addition, countries trade in goods and services – not in crop and livestock water requirements. Thus, the notions of virtual water and water footprints cannot provide helpful insight regarding the sustainability of water use, economic efficiency, or social equity. Gaining such insight requires the application of legitimate conceptual frameworks, representing a broad range of perspectives from the physical and social sciences, with due consideration of dynamics, uncertainty, and the impacts of policy choices on livelihoods and natural resources.

  8. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  9. Sustainable Buildings in Interaction

    DEFF Research Database (Denmark)

    Elle, Morten

    2007-01-01

    The first attempts to build sustainable buildings in Denmark were typically located on the countryside. The basic idea was to create buildings that were independent of the technical infrastructure. District heating has, however, been the dominating solution to heating in buildings in Denmark......, and the focus on sustainable building have gradually turned from special houses on the countryside to normally looking houses in the urban fabric, integrated in the technical infrastructure. Some new built urban areas in Denmark will, however, not have to be supplied with district heating – these developments...... are going to consist of passive houses. The first sustainable buildings were built by their users, and the user – building interaction still play a decisive role for the performance of the present sustainable buildings. The users have to understand how the building functions. Urban design is essential...

  10. Arid Green Infrastructure for Water Control and Conservation State of the Science and Research Needs for Arid/Semi-Arid Regions

    Science.gov (United States)

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure pract...

  11. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  12. Sustainability of Water Safety Plans Developed in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Luca Rondi

    2015-08-01

    Full Text Available In developing countries, the drinking water supply is still an open issue. In sub-Saharan Africa, only 68% of the population has access to improved sources of drinking water. Moreover, some regions are affected by geogenic contaminants (e.g., fluoride and arsenic and the lack of access to sanitation facilities and hygiene practices causes high microbiological contamination of drinking water in the supply chain. The Water Safety Plan (WSP approach introduced by the World Health Organisation (WHO in 2004 is now under development in several developing countries in order to face up to these issues. The WSP approach was elaborated within two cooperation projects implemented in rural areas of Burkina Faso and Senegal by two Italian NGOs (Non-Governmental Organisations. In order to evaluate its sustainability, a questionnaire based on five different sustainability elements and a cost and time consumption evaluation were carried out and applied in both the case studies. Results demonstrated that the questionnaire can provide a useful and interesting overview regarding the sustainability of the WSP; however, further surveys in the field are recommended for gathering more information. Time and costs related to the WSP elaboration, implementation, and management were demonstrated not to be negligible and above all strongly dependent on water quality and the water supply system complexity.

  13. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Science.gov (United States)

    2011-03-17

    ... makes it unlikely that a small business could afford to sustain the infrastructure required to perform...-AG73 Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and... facilities, infrastructure, and equipment that are intended for use by military or civilian personnel of the...

  14. Water Hyacinth in China: A Sustainability Science-Based Management Framework

    Science.gov (United States)

    Lu, Jianbo; Wu, Jianguo; Fu, Zhihui; Zhu, Lei

    2007-12-01

    The invasion of water hyacinth ( Eichhornia crassipes) has resulted in enormous ecological and economic consequences worldwide. Although the spread of this weed in Africa, Australia, and North America has been well documented, its invasion in China is yet to be fully documented. Here we report that since its introduction about seven decades ago, water hyacinth has infested many water bodies across almost half of China’s territory, causing a decline of native biodiversity, alteration of ecosystem services, deterioration of aquatic environments, and spread of diseases affecting human health. Water hyacinth infestations have also led to enormous economic losses in China by impeding water flows, paralyzing navigation, and damaging irrigation and hydroelectricity facilities. To effectively control the rampage of water hyacinth in China, we propose a sustainability science-based management framework that explicitly incorporates principles from landscape ecology and Integrated Pest Management. This framework emphasizes multiple-scale long-term monitoring and research, integration among different control techniques, combination of control with utilization, and landscape-level adaptive management. Sustainability science represents a new, transdisciplinary paradigm that integrates scientific research, technological innovation, and socioeconomic development of particular regions. Our proposed management framework is aimed to broaden the currently dominant biological control-centered view in China and to illustrate how sustainability science can be used to guide the research and management of water hyacinth.

  15. Implications of Frugal Innovations on Sustainable Development: Evaluating Water and Energy Innovations

    Directory of Open Access Journals (Sweden)

    Jarkko Levänen

    2015-12-01

    Full Text Available Frugal innovations are often associated with sustainable development. These connections, however, are based on anecdotal assumptions rather than empirical evidence. This article evaluates the sustainability of four frugal innovations from water and energy sectors. For the purposes of the evaluation, a set of indicators was developed. Indicators are drawn from sustainable development goals by the United Nations and they encompass central dimensions of sustainability: ecological, social and economic. In this article, frugal innovations are compared to solutions that are currently used in similar low-income contexts. Studied frugal innovations were found more sustainable in terms of energy production and water purification capacity than the existing solutions. In terms of social sustainability, larger differences between innovations were found. For example, business models of frugal energy solutions focus on capacity building and the inclusion of marginalized low-income people, whereas business models of water purification solutions focus on more traditional corporate social responsibility activities, such as marketing awareness campaigns and cooperation with non-governmental organizations. Three major sustainability challenges for frugal innovators were identified: (1 the proper integration of material efficiency into product or service systems; (2 the patient promotion of inclusive employment; and (3 the promotion of inclusive and sustainable local industrialization. The article concludes that despite indisputable similarities between frugality and sustainability, it is problematic to equate the two conceptually.

  16. Situating Green Infrastructure in Context: Adaptive Socio-Hydrology for Sustainable Cities - poster

    Science.gov (United States)

    The benefits of green infrastructure (GI) in controlling urban hydrologic processes have largely focused on practical matters like stormwater management, which drives the planning stage. Green Infrastructure design and implementation usually takes into account physical site chara...

  17. Maximizing Green Infrastructure in a Philadelphia Neighborhood

    Directory of Open Access Journals (Sweden)

    Kate Zidar

    2017-10-01

    Full Text Available While the Philadelphia Water Department (PWD is counting on Green Stormwater Infrastructure (GI as a key component of its long-term plan for reducing combined sewer overflows, many community stakeholders are also hoping that investment in greening can help meet other ancillary goals, collectively referred to as sustainable redevelopment. This study investigates the challenges associated with implementation of GI in Point Breeze, a residential neighborhood of South Philadelphia. The project team performed a detailed study of physical, social, legal, and economic conditions in the pilot neighborhood over the course of several years, culminating in the development of an agent-based model simulation of GI implementation. The model evaluates a whether PWD’s GI goals can be met in a timely manner, b what kinds of assumptions regarding participation would be needed under different theoretical GI policies, and c the extent to which GI could promote sustainable redevelopment. The model outcomes underscore the importance of private land in helping PWD achieve its GI goals in Point Breeze. Achieving a meaningful density of GI in the neighborhoods most in need of sustainable redevelopment may require new and creative strategies for GI implementation tailored for the types of land present in those particular communities.

  18. Land water storage from space and the geodetic infrastructure

    Science.gov (United States)

    Cazenave, A.; Larson, K.; Wahr, J.

    2009-04-01

    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  19. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  20. Green Infrastructure Research Promotes Students' Deeper Interest in Core Courses of a Water Resources Program

    Science.gov (United States)

    Yerk, W.; Montalto, F. A.; Foti, R.

    2015-12-01

    As one of most innovative among low impact development technologies, Green Infrastructure (GI) is a new technology that presents a range of potential research opportunities. Inherently linked to sustainability, urban quality of life, resilience, and other such topics, GI also represents a unique opportunity to highlight the social relevance of practical STEM research to undergraduate students. The nature of research on urban GI, in fact, as well as the accessibility of the GI sites, allows students to combine hands-on experience with theoretical work. Furthermore, the range of scales of the projects is such that they can be managed within a single term, but does not preclude longer engagement. The Sustainable Water Resource Engineering lab at Drexel University is engaged in two types of GI research outside the classroom. One type is a research co-op research internship. The second is a selective university-wide faculty-mentored summer scholarship STAR (Students Tackling Advanced Research) specifically designed for freshmen. The research projects we developed for those curricula can be accomplished by undergraduate students, but also address a larger research need in this emerging field. The research tasks have included identifying and calibrating affordable instruments, designing and building experimental setups, and monitoring and evaluating performance of GI sites. The work also promoted deeper understanding of the hydrological processes and initiated learning beyond the students' current curricula. The practice of the Lab's research being embedded into the educational process receives positive feedback from the students and achieves meaningful and long-lasting learning objectives. The experience helps students to students acquire hands-on experience, improves their metacognition and evidence-based inquiring into real-world problems, and further advances decision-making and communication skills.

  1. Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L. [ORNL; Simon, AJ [Lawrence Livermore National Laboratory (LLNL); Allen, Melissa R. [ORNL; Sanyal, Jibonananda [ORNL; Stewart, Robert N. [ORNL; McManamay, Ryan A. [ORNL

    2018-01-01

    Energy and water generation and delivery systems are inherently interconnected. With worldwide demandfor energy growing, the energy sector is experiencing increasing competition for water. With increasingpopulation and changing environmental, socioeconomic, and demographic scenarios, new technology andinvestment decisions must be made for optimized and sustainable energy-water resource management. These decisions require novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales.

  2. Center for Reinventing Aging Infrastructure for Nutrient Management

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of RAINmgt is to achieve sustainable and cost-effective health and environmental outcomes by re-imagining aging coastal urban infrastructure communities....

  3. EPA-WERF Cooperative Agreement: Innovation and Research for Water Infrastructure for the 21st Century

    Science.gov (United States)

    This is a brief slide presentation that will provide an overview of several projects that are being conducted in EPA-WERF Cooperative Agreement, Innovation and Research for Water Infrastructure for the 21st Century. The cooperative agreement objectives are to produce, evaluate, &...

  4. Sustainable water future with global implications: everyone's responsibility.

    Science.gov (United States)

    Kuylenstierna, J L; Bjorklund, G; Najlis, P

    1997-01-01

    The current use and management of freshwater is not sustainable in many countries and regions of the world. If current trends are maintained, about two-thirds of the world's population will face moderate to severe water stress by 2025 compared to one-third at present. This water stress will hamper economic and social development unless action is taken to deal with the emerging problems. The Comprehensive Assessment of the Freshwater Resources of the World, prepared by the UN and the Stockholm Environment Institute, calls for immediate action to prevent further deterioration of freshwater resources. Although most problems related to water quantity and quality require national and regional solutions, only a global commitment can achieve the necessary agreement on principles, as well as financial means to attain sustainability. Due to the central and integrated role played by water in human activities, any measures taken need to incorporate a wide range of social, ecological and economic factors and needs. The Assessment thus addresses the many issues related to freshwater use, such as integrated land and water management at the watershed level, global food security, water supply and sanitation, ecosystem requirements, pollution, strengthening of major groups, and national water resource assessment capabilities and monitoring networks. Governments are urged to work towards a consensus regarding global principles and guidelines for integrated water management, and towards their implementation in local and regional water management situations. The alternative development options available to countries facing water stress, or the risk thereof, needs to be considered in all aspects of development planning.

  5. Sustainability Appraisal of Water Governance Regimes: The Case of Guanacaste, Costa Rica

    Science.gov (United States)

    Kuzdas, Christopher; Wiek, Arnim; Warner, Benjamin; Vignola, Raffaele; Morataya, Ricardo

    2014-08-01

    Sustainability appraisals produce evidence for how well water governance regimes operate and where problems exist. This evidence is particularly relevant for regions that face water scarcity and conflicts. In this study, we present a criteria-based and participatory sustainability appraisal of water governance in a region with such characteristics—the dry tropics of NW Costa Rica. Data collection included 47 interviews and three stakeholder workshops. The appraisal was conducted through a collaborative and iterative process between researchers and stakeholders. Out of the 25 sustainability criteria used, seven posed a significant challenge for the governance regime. We found challenges faced by the governance regime primarily clustered around and were re-enforced by failing coordination related to the use, management, and protection of groundwater resources; and inadequate leadership to identify collective goals and to constructively deliberate alternative ways of governing water with diverse groups. The appraisal yielded some positive impact in the study area, yet we found its application provided only limited strategic information to support broader problem-solving efforts. Insights from this study suggest key starting points for sustainable water governance in the Central American dry tropics, including investing in increasingly influential collective organizations that are already active in water governance; and leveraging policy windows that can be used to build confidence and disperse more governing authority to regional and local governing actors that are in-tune with the challenges faced in the dry tropics. We conclude the article with reflections on how to produce research results that are actionable for sustainable water governance.

  6. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry's needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: (1) Develop national capabilities at the university and laboratory level; (2) Create or renew infrastructure needed for long-term research, education, and testing; (3) Support development and testing of needed I and C technologies; and (4) Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  7. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry’s needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: • Develop national capabilities at the university and laboratory level • Create or renew infrastructure needed for long-term research, education, and testing • Support development and testing of needed I&C technologies • Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  8. Rainwater Harvesting and Social Networks: Visualising Interactions for Niche Governance, Resilience and Sustainability

    Directory of Open Access Journals (Sweden)

    Sarah Ward

    2016-11-01

    Full Text Available Visualising interactions across urban water systems to explore transition and change processes requires the development of methods and models at different scales. This paper contributes a model representing the network interactions of rainwater harvesting (RWH infrastructure innovators and other organisations in the UK RWH niche to identify how resilience and sustainability feature within niche governance in practice. The RWH network interaction model was constructed using a modified participatory social network analysis (SNA. The SNA was further analysed through the application of a two-part analytical framework based on niche management and the safe, resilient and sustainable (‘Safe and SuRe’ framework. Weak interactions between some RWH infrastructure innovators and other organisations highlighted reliance on a limited number of persuaders to influence the regime and landscape, which were underrepresented. Features from niche creation and management were exhibited by the RWH network interaction model, though some observed characteristics were not represented. Additional Safe and SuRe features were identified covering diverse innovation, responsivity, no protection, unconverged expectations, primary influencers, polycentric or adaptive governance and multiple learning-types. These features enable RWH infrastructure innovators and other organisations to reflect on improving resilience and sustainability, though further research in other sectors would be useful to verify and validate observation of the seven features.

  9. Index of sustainability of the water resource for the definition of technological sustainable and competitives strategies in the Microbasin la Centella

    International Nuclear Information System (INIS)

    Martha Constanza Daza; Aldemar Reyes Trujillo; Wilmar Loaiza Ceron; Martha Patricia Fajardo Vasquez

    2012-01-01

    The Index of Sustainable Water Resource Management in Agriculture (ISRHA) implemented in the watershed Centella (Dagua, Cauca Valley) assesses the sustainability of water resource management in agriculture, using pressure gauges, for State and Response factor analysis: biophysical, technological, socioeconomic and political-institutional. Each factor is composed of indicators which are evaluated based on parameters established by of ISRHA. The results of applying sustainability index shows a half the three study areas (watersheds La Virgen, Centella and Aguas Calientes), which were rated average to good in the proposed scale (1 to 5), identifying weaknesses and strengths in relation to the factors considered, which allows us to suggest some strategies for sustainability of and competitive for water resources in agricultural production systems in the watershed.

  10. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Science.gov (United States)

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  11. Water Decisions for Sustainability of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Lazrus, H.; Mcpherson, R. A.; Morss, R. E.; PaiMazumder, D.; Silvis, V.; Towler, E.

    2012-12-01

    The Arbuckle-Simpson Aquifer in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only freeflowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To address these issues, this interdisciplinary project takes an integrated approach to understanding risk perceptions and water decisions for sustainability of the Arbuckle-Simpson Aquifer. Our interdisciplinary research asks: How do stakeholders in the Arbuckle-Simpson Aquifer perceive drought risks across weather and climate scales, and how do these perceptions guide water management decisions given (i) diverse cultural beliefs, (ii) valued hydrologic services, (iii) past drought experience, and (iv) uncertainties in future projection of precipitation and drought? We will use ethnographic methods to diagnose how cultural values and beliefs inform risk perceptions, and how this in turn guides decision making or ignites conflict across different sectors and stakeholder groups. Further, the characterization of drought risk will be examined in the context of historic meteorological and hydrologic events, as well as climate variability and change. This will identify which risks are prioritized, and under what conditions, in regional decision making or water-related conflicts.

  12. Climate change, energy, sustainability and pavements

    International Nuclear Information System (INIS)

    Gopalakrishnan, Kasthurirangan; Steyn, Wynand JvdM; Harvey, John

    2014-01-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  13. Climate change, energy, sustainability and pavements

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Dept. of Civil, Construction and Environmental Engineering; Steyn, Wynand JvdM [Pretoria Univ. (South Africa). Dept. of Civil Engineering; Harvey, John (ed.) [California Univ., Davis, CA (United States). Dept. of Civil and Environmental Engineering

    2014-07-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  14. Closing of water circuits – a global benchmark on sustainable water management

    Directory of Open Access Journals (Sweden)

    Fröhlich Siegmund

    2017-01-01

    Full Text Available Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: “The wars of the 21st century will be fought not over oil, they will be fought over water.” [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  15. Integrating sea floor observatory data: the EMSO data infrastructure

    Science.gov (United States)

    Huber, Robert; Azzarone, Adriano; Carval, Thierry; Doumaz, Fawzi; Giovanetti, Gabriele; Marinaro, Giuditta; Rolin, Jean-Francois; Beranzoli, Laura; Waldmann, Christoph

    2013-04-01

    The European research infrastructure EMSO is a European network of fixed-point, deep-seafloor and water column observatories deployed in key sites of the European Continental margin and Arctic. It aims to provide the technological and scientific framework for the investigation of the environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere and for a sustainable management by long-term monitoring also with real-time data transmission. Since 2006, EMSO is on the ESFRI (European Strategy Forum on Research Infrastructures) roadmap and has entered its construction phase in 2012. Within this framework, EMSO is contributing to large infrastructure integration projects such as ENVRI and COOPEUS. The EMSO infrastructure is geographically distributed in key sites of European waters, spanning from the Arctic, through the Atlantic and Mediterranean Sea to the Black Sea. It is presently consisting of thirteen sites which have been identified by the scientific community according to their importance respect to Marine Ecosystems, Climate Changes and Marine GeoHazards. The data infrastructure for EMSO is being designed as a distributed system. Presently, EMSO data collected during experiments at each EMSO site are locally stored and organized in catalogues or relational databases run by the responsible regional EMSO nodes. Three major institutions and their data centers are currently offering access to EMSO data: PANGAEA, INGV and IFREMER. In continuation of the IT activities which have been performed during EMSOs twin project ESONET, EMSO is now implementing the ESONET data architecture within an operational EMSO data infrastructure. EMSO aims to be compliant with relevant marine initiatives such as MyOceans, EUROSITES, EuroARGO, SEADATANET and EMODNET as well as to meet the requirements of international and interdisciplinary projects such as COOPEUS and ENVRI, EUDAT and iCORDI. A major focus is therefore set on standardization and

  16. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  17. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    Science.gov (United States)

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  18. Measuring global water security towards sustainable development goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  19. Measuring Global Water Security Towards Sustainable Development Goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  20. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    HOSSAIN M. ANAWAR

    2012-06-01

    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  1. Franchising of water services: a viable business format that can be used to improve the cost and reliability of water services at schools and in poor communities

    CSIR Research Space (South Africa)

    Ive, O

    2011-10-01

    Full Text Available with previously unserved and poor communities, the operation and maintenance of the water services infrastructure offers a sustainable work opportunity for local people. Having observed the difficulties experienced by small operating enterprises...

  2. Designing Green Stormwater Infrastructure for Hydrologic and Human Benefits: An Image Based Machine Learning Approach

    Science.gov (United States)

    Rai, A.; Minsker, B. S.

    2014-12-01

    Urbanization over the last century has degraded our natural water resources by increasing storm-water runoff, reducing nutrient retention, and creating poor ecosystem health downstream. The loss of tree canopy and expansion of impervious area and storm sewer systems have significantly decreased infiltration and evapotranspiration, increased stream-flow velocities, and increased flood risk. These problems have brought increasing attention to catchment-wide implementation of green infrastructure (e.g., decentralized green storm water management practices such as bioswales, rain gardens, permeable pavements, tree box filters, cisterns, urban wetlands, urban forests, stream buffers, and green roofs) to replace or supplement conventional storm water management practices and create more sustainable urban water systems. Current green infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring pre-development hydrology and ultimately addressing water quality issues at an urban catchment scale. The benefits of green infrastructure extend well beyond local storm water management, as urban green spaces are also major contributors to human health. Considerable research in the psychological sciences have shown significant human health benefits from appropriately designed green spaces, yet impacts on human wellbeing have not yet been formally considered in GI design frameworks. This research is developing a novel computational green infrastructure (GI) design framework that integrates hydrologic requirements with criteria for human wellbeing. A supervised machine learning model is created to identify specific patterns in urban green spaces that promote human wellbeing; the model is linked to RHESSYS model to evaluate GI designs in terms of both hydrologic and human health benefits. An application of the models to Dead Run Watershed in Baltimore showed that image mining methods were able to capture key elements of human preferences that could

  3. Investing in soils as an infrastructure to maintain and enhance food water and carbon services

    Science.gov (United States)

    Davies, Jessica

    2017-04-01

    Soils are a life support system for global society and our planet. In addition to providing the vast majority of our food; soils regulate water quality and quantity reducing the risk of floods, droughts and pollution; and as the largest store of carbon in the earth system they are critical to climate change. By providing these multiple essential services, soils act a natural form of infrastructure that is critical to supporting both rural and urban communities and economies. Can natural infrastructure and natural capital concepts be used to motivate and enable investment and regulation of soils for purposes such as soil carbon sequestration? What scientific knowledge and tools would we need to support soil infrastructure decision making - in policy arenas and elsewhere? This poster will present progress from a new research project supported by the UK research council (EP/N030532/1) that addresses these questions.

  4. Suggestion for a Framework for a Sustainable Infrastructure Asset Management Manual in Korea

    OpenAIRE

    Lee, Sang-Ho; Park, Sanghoon; Kim, Jong

    2015-01-01

    This study proposes a framework for an infrastructure asset management manual containing infrastructure asset management processes and operation techniques, which can be adjusted by different ordering authorities to develop their own manuals. The following conclusions were drawn in this study. First, the justification for implementation of asset management was examined through analysis of changes and status of asset management in domestic infrastructure, and the current status and insufficien...

  5. DRIVER: Building a Sustainable Infrastructure of European Scientific Repositories

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The acronym DRIVER stands for “Digital Repository Infrastructure Vision for European Research”. Ten partners from eight countries have entered into an international partnership, to connect and network as a first step more than 50 physically distributed institutional repositories to one, large-scale, virtual Knowledge Base of European research. Universities and research organisations around the world currently build repositories, whose overall number is estimated to exceed 600 by far. As the academic information landscape is already highly fragmented, DRIVER is the trans-national catalyst to overcome local, isolated efforts and to stop fragmentation by offering one harmonised, virtual knowledge resource. DRIVER currently builds a production quality test-bed to assist the development of a knowledge infrastructure across Europe. DRIVER as a project, funded by the “Research Infrastructure” unit of the European Commission, is also preparing for the future expansion and upgrade of the Digital Repository in...

  6. DRIVER Building a Sustainable Infrastructure of European Scientific Repositories

    CERN Document Server

    CERN. Geneva; Hagemann, Melissa

    2007-01-01

    The acronym DRIVER stands for “Digital Repository Infrastructure Vision for European Research”. Ten partners from eight countries have entered into an international partnership, to connect and network as a first step more than 50 physically distributed institutional repositories to one, large-scale, virtual Knowledge Base of European research. Universities and research organisations around the world currently build repositories, whose overall number is estimated to exceed 600 by far. As the academic information landscape is already highly fragmented, DRIVER is the trans-national catalyst to overcome local, isolated efforts and to stop fragmentation by offering one harmonised, virtual knowledge resource. DRIVER currently builds a production quality test-bed to assist the development of a knowledge infrastructure across Europe. DRIVER as a project, funded by the “Research Infrastructure” unit of the European Commission, is also preparing for the future expansion and upgrade of the Digital Repository inf...

  7. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    Science.gov (United States)

    Parkinson, Simon Christopher

    Widespread access to renewable electricity is seen as a viable method to mitigate carbon emissions, although problematic are the issues associated with the integration of the generation systems within current power system configurations. Wind power plants are the primary large-scale renewable generation technology applied globally, but display considerable short-term supply variability that is difficult to predict. Power systems are currently not designed to operate under these conditions, and results in the need to increase operating reserve in order to guarantee stability. Often, operating conventional generation as reserve is both technically and economically inefficient, which can overshadow positive benefits associated with renewable energy exploitation. The purpose of this thesis is to introduce and assess an alternative method of enhancing power system operations through the control of electric loads. In particular, this thesis focuses on managing highly-distributed sustainable demand-side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as dispatchable short-term energy balancing resources. The main contribution of the thesis is an optimal control strategy capable of simultaneously balancing grid- and demand-side objectives. The viability of the load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently and avoid the need for possible capacity expansions.

  8. Risk-informed Management of Water Infrastructure in the United States: History, Development, and Best Practices

    Science.gov (United States)

    Wolfhope, J.

    2017-12-01

    This presentation will focus on the history, development, and best practices for evaluating the risks associated with the portfolio of water infrastructure in the United States. These practices have evolved from the early development of the Federal Guidelines for Dam Safety and the establishment of the National Dam Safety Program, to the most recent update of the Best Practices for Dam and Levee Risk Analysis jointly published by the U.S. Department of Interior Bureau of Reclamation and the U.S. Army Corps of Engineers. Since President Obama signed the Water Infrastructure Improvements for the Nation Act (WIIN) Act, on December 16, 2016, adding a new grant program under FEMA's National Dam Safety Program, the focus has been on establishing a risk-based priority system for use in identifying eligible high hazard potential dams for which grants may be made. Finally, the presentation provides thoughts on the future direction and priorities for managing the risk of dams and levees in the United States.

  9. Adaptive exchange of capitals in urban water resources management : an approach to sustainability?

    Science.gov (United States)

    With water availability increasingly restricted by deficiencies in quality and quantity, water resources management is a central issue in planning for sustainability in the Anthropocene. We first offer a definition of sustainability based on the ease with which capitals (e.g., na...

  10. Refresher Course on Geomatic Applications for Sustainable Water ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. Refresher Course on Geomatic Applications for Sustainable Water Resources and Environment. Information and Announcements Volume 14 Issue 6 June 2009 pp 630-630 ...

  11. The scale concept and sustainable development: implications on the energetics and water resources

    International Nuclear Information System (INIS)

    Demanboro, Antonio Carlos; Mariotoni, Carlos Alberto

    1999-01-01

    The relationships between both the demographic growth and the water and energetic resources are focused. The planet scale and carrying capacity are discussed starting from the maximum and optimum sustainable concepts, both anthropocentric and biocentric. Two scenarios denominated 'sustainable agriculture' and 'sharing-water' are elaborated with the available resources of water, fertile lands and energy consumption, and with the population trends. (author)

  12. End User Development and Infrastructuring - Sustaining Organizational Innovation Capabilities

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; Bolmsten, Johan; Eriksson, Jeanette

    2017-01-01

    of an IT infrastructure based on flexible technologies. The chapter further discusses how such practices are supported by (participatory) organizational IT management structures and processes. Finally, it discusses how EUD in this way contributes to the innovation capability of the organization. The conclusion points...

  13. Kennedy Space Center Five Year Sustainability Plan

    Science.gov (United States)

    Williams, Ann T.

    2016-01-01

    The Federal Government is committed to following sustainable principles. At its heart, sustainability integrates environmental, societal and economic solutions for present needs without compromising the ability of future generations to meet their needs. Building upon its pledge towards environmental stewardship, the Administration generated a vision of sustainability spanning ten goals mandated within Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade. In November 2015, the National Aeronautics and Space Administration (NASA) responded to this EO by incorporating it into a new release of the NASA Strategic Sustainability Performance Plan (SSPP). The SSPP recognizes the importance of aligning environmental practices in a manner that preserves, enhances and strengthens NASA's ability to perform its mission indefinitely. The Kennedy Space Center (KSC) is following suit with KSC's Sustainability Plan (SP) by promoting, maintaining and pioneering green practices in all aspects of our mission. KSC's SP recognizes that the best sustainable solutions use an interdisciplinary, collaborative approach spanning civil servant and contractor personnel from across the Center. This approach relies on the participation of all employees to develop and implement sustainability endeavors connected with the following ten goals: Reduce greenhouse gas (GHG) emissions. Design, build and maintain sustainable buildings, facilities and infrastructure. Leverage clean and renewable energy. Increase water conservation. Improve fleet and vehicle efficiency and management. Purchase sustainable products and services. Minimize waste and prevent pollution. Implement performance contracts for Federal buildings. Manage electronic equipment and data centers responsibly. Pursue climate change resilience. The KSC SP details the strategies and actions that address the following objectives: Reduce Center costs. center dot Increase energy and water efficiencies. Promote smart

  14. Water Operational Plan 2011-2020

    OpenAIRE

    Asian Development Bank (ADB)

    2011-01-01

    ADB established through Strategy 2020 three strategic agendas to guide its work up to 2020—inclusive economic growth, environmentally sustainable growth, and regional integration. Water is common to each of these and is in fact central to their attainment. The Strategy refocuses ADB’s operations into five core areas that best support its agenda and reflect ADB’s comparative advantages and core competencies. One core area is infrastructure, where water resources management and the delivery of ...

  15. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    Science.gov (United States)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  16. The Challenge of Space Infrastructure Construction

    Science.gov (United States)

    Howe, A. Scott; Colombano, Silvano P.

    2010-01-01

    This paper reviews the range of technologies that will contribute to the construction of space infrastructure that will both enable and, in some cases, provide the motivation for space exploration. Five parts are addressed: Managing complexity, robotics based construction, materials acquisition, manufacturing, and self-sustaining systems.

  17. Using VELMA to Quantify and Visualize the Effectiveness of Green Infrastructure Options for Protecting Water Quality

    Science.gov (United States)

    This webinar describes the use of VELMA, a spatially-distributed ecohydrological model, to identify green infrastructure (GI) best management practices for protecting water quality in intensively managed watersheds. The seminar will include a brief description of VELMA and an ex...

  18. The Concept of Directly Connected Impervious Areas and Its Implication on Sustainable Development in Urban Catchments

    Science.gov (United States)

    Seo, Yongwon; Hwang, Junsik; Choi, Hyun Il

    2017-04-01

    The concept of directly connected impervious area (DCIA) or efficient impervious areas (EIA) refers to a subset of impervious cover, which is directly connected to a drainage system or a water body via continuous impervious surfaces. The concept of DCIA is important in that it is regarded as a better predictor of stream ecosystem health than the total impervious area (TIA). DCIA is a key concept for a better assessment of green infrastructures introduced in urban catchments. Green infrastructure can help restore water cycle; it improves water quality, manages stormwater, provides recreational environment even at lower cost compared to conventional alternatives. In this study, we evaluated several methods to obtain the DCIA based on a GIS database and showed the importance of the accurate measurement of DCIA in terms of resulting hydrographs. We also evaluated several potential green infrastructure scenarios and showed how the spatial planning of green infrastruesture affects the shape of hydrographs and reduction of peak flows. These results imply that well-planned green infrastructure can be introduced to urban catchments for flood risk managements and quantitative assessment of spatial distribution of DCIA is crucial for sustainable development in urban environment.

  19. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2011-01-01

    Most of the work relating to Infrastructure has been concentrated in the new CSC and RPC manufactory at building 904, on the Prevessin site. Brand new gas distribution, powering and HVAC infrastructures are being deployed and the production of the first CSC chambers has started. Other activities at the CMS site concern the installation of a new small crane bridge in the Cooling technical room in USC55, in order to facilitate the intervention of the maintenance team in case of major failures of the chilled water pumping units. The laser barrack in USC55 has been also the object of a study, requested by the ECAL community, for the new laser system that shall be delivered in few months. In addition, ordinary maintenance works have been performed during the short machine stops on all the main infrastructures at Point 5 and in preparation to the Year-End Technical Stop (YETS), when most of the systems will be carefully inspected in order to ensure a smooth running through the crucial year 2012. After the incide...

  20. A Need for Education in Water Sustainability in the Agricultural Realm

    Science.gov (United States)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  1. Time evolving multi-city dependencies and robustness tradeoffs for risk-based portfolios of conservation, transfers, and cooperative water supply infrastructure development pathways

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.

    2016-12-01

    Water scarcity in historically water-rich regions such as the southeastern United States is becoming a more prevalent concern. It has been shown that cooperative short-term planning that relies on conservation and transfers of existing supplies amongst communities can be used by water utilities to mitigate the effects of water scarcity in the near future. However, in the longer term, infrastructure expansion is likely to be necessary to address imbalances between growing water demands and the available supply capacity. This study seeks to better diagnose and avoid candidate modes for system failure. Although it is becoming more common for water utilities to evaluate the robustness of their water supply, defined as the insensitivity of their systems to errors in deeply uncertain projections or assumptions, defining robustness is particularly challenging in multi-stakeholder regional contexts for decisions that encompass short management actions and long-term infrastructure planning. Planning and management decisions are highly interdependent and strongly shape how a region's infrastructure itself evolves. This research advances the concept of system robustness by making it evolve over time rather than static, so that it is applicable to an adaptive system and therefore more suited for use for combined short and long-term planning efforts. The test case for this research is the Research Triangle area of North Carolina, where the cities of Raleigh, Durham, Cary and Chapel Hill are experiencing rapid population growth and increasing concerns over drought. This study is facilitating their engagement in cooperative and robust regional water portfolio planning. The insights from this work have general merit for regions where adjacent municipalities can benefit from improving cooperative infrastructure investments and more efficient resource management strategies.

  2. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2017-06-01

    Full Text Available This special issue is a collection of recent papers in the field of Water Footprint Assessment (WFA, an emerging area of research focused on the analysis of freshwater use, scarcity, and pollution in relation to consumption, production, and trade. As increasing freshwater scarcity forms a major risk to the global economy, sustainable management of water resources is a prerequisite to development. We introduce the papers in this special issue by relating them to Sustainable Development Goal (SDG number 6 of the United Nations, the goal on water. We will particularly articulate how each paper drives the understanding needed to achieve target 6.3 on water quality and pollution and target 6.4 on water-use efficiency and water scarcity. Regarding SDG 6, we conclude that it lacks any target on using green water more efficiently, and while addressing efficiency and sustainability of water use, it lacks a target on equitable sharing of water. The latter issue is receiving limited attention in research as well. By primarily focusing on water-use efficiency in farming and industries at the local level, to a lesser extent to using water sustainably at the level of total water systems (like drainage basins, aquifers, and largely ignoring issues around equitable water use, understanding of our water problems and proposed solutions will likely remain unbalanced.

  3. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    Science.gov (United States)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  4. A database of volcanic hazards and their physical impacts to critical infrastructure

    Science.gov (United States)

    Wilson, Grant; Wilson, Thomas; Deligne, Natalia

    2013-04-01

    Approximately 10% of the world's population lives within 100 km of historically active volcanoes. Consequently, considerable critical infrastructure is at risk of being affected by volcanic eruptions, where critical infrastructure includes: electricity and wastewater networks; water supply systems; transport routes; communications; and buildings. Appropriate risk management strategies are required to minimise the risk to infrastructure, which necessitates detailed understanding of both volcanic hazards and infrastructure parameters and vulnerabilities. To address this, we are developing a database of the physical impacts and vulnerability of critical infrastructure observed during/following historic eruptions, placed in the context of event-specific volcanic hazard and infrastructure parameters. Our database considers: volcanic hazard parameters for each case study eruption (tephra thickness, dynamic pressure of PDCs, etc.); inventory of infrastructure elements present within the study area (geographical extent, age, etc.); the type and number of impacts and disruption caused to particular infrastructure sectors; and the quantified assessment of the vulnerability of built environments. Data have been compiled from a wide range of literature, focussing in particular on impact assessment studies which document in detail the damage sustained by critical infrastructure during a given eruption. We are creating a new vulnerability ranking to quantify the vulnerability of built environments affected by volcanic eruptions. The ranking is based upon a range of physical impacts and service disruption criteria, and is assigned to each case study. This ranking will permit comparison of vulnerabilities between case studies as well as indicate expected vulnerability during future eruptions. We are also developing hazard intensity thresholds indicating when specific damage states are expected for different critical infrastructure sectors. Finally, we have developed a data quality

  5. Indigenous Practices of Water Management for Sustainable Services

    Directory of Open Access Journals (Sweden)

    Beshah M. Behailu

    2016-12-01

    Full Text Available This article explores the possibility of incorporating traditional water management experiences into modern water management. After the literature review, two case studies are presented from Borana and Konso communities in southern Ethiopia. The study was conducted through interviews, discussions, and observations. The two cases were selected due to their long existence. Both communities have their own water source types, depending on local hydrogeological conditions. Borana is known for the so-called Ella (wells and Konso for Harta (ponds, which have been managed for more than five centuries. All government and development partners strive to achieve sustainable services in water supply and sanitation. Therefore, they design various management packages to engage the communities and keep the systems sustainable. However, the management components are often designed with little attention to local customs and traditions. The cases in the two communities show that traditional knowledge is largely ignored when replaced by modern one. However, the concepts of cost recovery, ownership experience, equity, enforcement, integrity, and unity, which are highly pronounced in modern systems, can also be found in the traditional water managements of Borana and Konso. Naturally, one shoe never fits all. Borana and Konso experiences are working for their own community. This research implies that when we plan a project or a program for a particular community, the starting point should be the indigenous practices and thoughts on life.

  6. Achieving Sustainable Development Goals from a Water Perspective

    Directory of Open Access Journals (Sweden)

    Anik Bhaduri

    2016-10-01

    Full Text Available Efforts to meet human water needs only at local scales may cause negative environmental externality and stress on the water system at regional and global scales. Hence, assessing SDG targets requires a broad and in-depth knowledge of the global to local dynamics of water availability and use. Further, Interconnection and trade-offs between different SDG targets may lead to sub-optimal or even adverse outcome if the set of actions are not properly pre-designed considering such interlinkages. Thus scientific research and evidence have a role to play in facilitating the implementation of SDGs through assessments and policy engagement from global to local scales. The paper addresses some of these challenges related to implementation and monitoring the targets of the Sustainable Development Goals from a water perspective, based on the key findings of a conference organised in 2015 with the focus on three essential aspects of SDGs- indicators, interlinkages and implementation. The paper discusses that indicators should not be too simple but ultimately deliver sustainability measures. The paper finds that remote sensing and earth observation technologies can play a key role in supporting the monitoring of water targets. It also recognises that implementing SDGs is a societal process of development, and there is need to link how SDGs relate to public benefits and communicate this to the broader public.

  7. A full value-chain Water Footprint Assessment to help informed decision in corporate sustainability strategies

    Science.gov (United States)

    Zhang, Guoping; Chico Zamanilo, Daniel; Bai, Xue; Ren, Xiajing; Chen, Rong; Qin, Jun

    2017-04-01

    This study evaluated the water footprint (WF) of five production facilities along Muyuan Foodstuff Co. Ltd's (Muyuan) value chain, and assessed the sustainability and impact of their water footprints at the river catchment level. Muyuan, a large-scale, integrated pig breeder and producer in China, is keen to fulfil its corporate social responsibilities and committed to ensuring food quality and security, promoting environmental protection, and participating in catchment water resources management. Formulating corporate water related sustainability strategies, however, has been challenging. This study carried out a comprehensive Water Footprint Assessment (WFA) for Muyuan's full value chain to assist in formulating such strategies and setting up action plans with water footprint reduction targets. The study showed that that the water footprint of the supply chain, resulting from crops and crop products used in Muyuan's feed production facility is a major contributor to Muyuan's facilities' water footprint. From the perspective of the direct WF at the facilities, addressing the impact on water quality from effluents (i.e. the grey water footprint) at hog farms is a critical component of any water sustainability strategy. From the blue WF perspective, there are opportunities to reduce blue water consumption at hog farms through improved technology and implementation of best practices. The water footprint sustainability assessment in this study indicated that Muyuan operates in a catchment which is already under water stress and is a hotspot in terms of both blue water scarcity and water pollution level. The study helped identify potential water-related risks and opportunities for improving Muyuan's water use efficiency as well as ways Muyuan could contribute to sustainable water resources management in the catchment within which it operates. This is an innovative application of WFA in the livestock sector and supports the development of Muyuan's corporate water

  8. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.; Agarwal, Vivek; Heidrich, Brenden J.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors and measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry

  9. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  10. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-06-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a Set of Sustainability Indicators for Water Resources Management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the Basin Committee of Tietê-Jacaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  11. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-01-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a set of sustainability indicators for water resources management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the basin committee of Tietê-J acaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation, the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  12. Sustainable water for rural security - A transdisciplinary approach [Presentation

    CSIR Research Space (South Africa)

    Maherry, A

    2012-05-01

    Full Text Available -research through effective transfer of knowledge and technologies; and to identify the critical design criteria that ensure sustainability of rural water supply systems in South Africa....

  13. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  14. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  15. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  16. Study benefit value of utilization water resources for energy and sustainable environment

    Science.gov (United States)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  17. The 3D Elevation Program and America's infrastructure

    Science.gov (United States)

    Lukas, Vicki; Carswell, Jr., William J.

    2016-11-07

    Infrastructure—the physical framework of transportation, energy, communications, water supply, and other systems—and construction management—the overall planning, coordination, and control of a project from beginning to end—are critical to the Nation’s prosperity. The American Society of Civil Engineers has warned that, despite the importance of the Nation’s infrastructure, it is in fair to poor condition and needs sizable and urgent investments to maintain and modernize it, and to ensure that it is sustainable and resilient. Three-dimensional (3D) light detection and ranging (lidar) elevation data provide valuable productivity, safety, and cost-saving benefits to infrastructure improvement projects and associated construction management. By providing data to users, the 3D Elevation Program (3DEP) of the U.S. Geological Survey reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data. The size and breadth of improvements for the Nation’s infrastructure and construction management needs call for an efficient, systematic approach to acquiring foundational 3D elevation data. The 3DEP approach to national data coverage will yield large cost savings over individual project-by-project acquisitions and will ensure that data are accessible for other critical applications.

  18. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...

  19. The water sensitive city: principles for practice.

    Science.gov (United States)

    Wong, T H F; Brown, R R

    2009-01-01

    With the widespread realisation of the significance of climate change, urban communities are increasingly seeking to ensure resilience to future uncertainties in urban water supplies, yet change seems slow with many cities facing ongoing investment in the conventional approach. This is because transforming cities to more sustainable urban water cities, or to Water Sensitive Cities, requires a major overhaul of the hydro-social contract that underpins conventional approaches. This paper provides an overview of the emerging research and practice focused on system resilience and principles of sustainable urban water management Three key pillars that need to underpin the development and practice of a Water Sensitive City are proposed: (i) access to a diversity of water sources underpinned by a diversity of centralised and decentralised infrastructure; (ii) provision of ecosystem services for the built and natural environment; and (iii) socio-political capital for sustainability and water sensitive behaviours. While there is not one example in the world of a Water Sensitive City, there are cities that lead on distinct and varying attributes of the water sensitive approach and examples from Australia and Singapore are presented.

  20. From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation

    Directory of Open Access Journals (Sweden)

    Guangwei Huang

    2015-07-01

    Full Text Available A water allocation policy that aimed to balance water demand with water availability to ensure sustainability was implemented in an arid region of China over ten years ago. This policy’s success was assessed across three dimensions: society, the environment, and the economy. While the assessment was not intended to be comprehensive, it highlighted the best outcomes of the policy intervention while revealing some hidden issues. It was found that although the policy was successful in placing a ceiling on water use in the middle reaches of the Heihe River, the Water User Association, one of the main actors in water policy implementation, was under-recognized, even though it functioned well. Moreover, the economic structural adjustment at the macro level had not led to any significant reduction in water use, the reasons for which were explored.

  1. Sustainable Water Supplies in Uppsala, Sweden?

    Science.gov (United States)

    Eriksson, Bert

    2014-05-01

    This is a description of a transdisciplinary three-day project with upper secondary school students around ecosystem services and sustainability. Uppsala (200 000 inhabitants) gets its municipal water from wells in the esker that dominates the landscape in and around the town. This esker was formed by glacial melt water around 11 000 BP, at the end of the latest glaciation and was lifted above sea level by post-glacial land rise from 6000 BP. To keep up the water table in the esker, water from river Fyris is pumped up and infiltrated in the esker. The river is also the recipient of wastewater downstream of the town, and the river runs out into Lake Mälaren that in its turn spills out into the Baltic Sea through Stockholm. The esker and river can thus be a central topic to work around, in Biology and Geography in upper secondary school, concerning recent and future water supplies, quaternary geology, limnology and landscape history. The fieldwork is carried out during three days in a period of three subsequent weeks. 1. One day is used to examine the water quality in the river above the town, organisms, pH, levels of nitrogen and phosphorous, conductivity and turbidity. Then the direction of the water is followed, first up to the infiltration dams on the esker, and then along the esker to the wells in the town. The formation of the esker and other traces in the landscape from the latest glaciation is also studied, as well as the historical use of the esker as a road and as a source of gravel and sand. The tap water that comes from the wells is finally tested in school in the same way as in the river. 2. The second day is used to follow the wastewater from households to the sewage plant, where the staff presents the plant. The water quality is tested in the same way as above in the outlet from the plant to the river. 3. The third day consists of a limnological excursion on the lake outside the mouth of the river where plankton and other organisms are studied, as

  2. Conceptual Model of IT Infrastructure Capability and Its Empirical Justification

    Institute of Scientific and Technical Information of China (English)

    QI Xianfeng; LAN Boxiong; GUO Zhenwei

    2008-01-01

    Increasing importance has been attached to the value of information technology (IT) infrastructure in today's organizations. The development of efficacious IT infrastructure capability enhances business performance and brings sustainable competitive advantage. This study analyzed the IT infrastructure capability in a holistic way and then presented a concept model of IT capability. IT infrastructure capability was categorized into sharing capability, service capability, and flexibility. This study then empirically tested the model using a set of survey data collected from 145 firms. Three factors emerge from the factor analysis as IT flexibility, IT service capability, and IT sharing capability, which agree with those in the conceptual model built in this study.

  3. Community management and sustainability of rural water facilities in Tanzania

    NARCIS (Netherlands)

    Mandara, C.G.; Butijn, C.A.A.; Niehof, Anke

    2013-01-01

    This paper addresses the question of whether community management in water service delivery affects the sustainability of rural water facilities (RWFs) at village level, in terms of their technical and managerial aspects, and what role capacity building of users and providers plays in this process.

  4. Determination of Infrastructure Development in the Integrated Management Planning of Firtina Basin throug Participatary Approach

    Directory of Open Access Journals (Sweden)

    Cenap SANCAR

    2015-12-01

    Full Text Available Fırtına Basin (FB having natural temperate zone forests, rich biodiversity and high endemic variety is located in Caucasus Ecoregion which is among the most important 25 ecoregions on earth. Additionally, forest zones in FB are listed among “100 Forest Hotspots” in Europe by The World Conservation Monitoring Centre (UNEP WCMC. This study identified how and to what level existing land use pattern and related infrastructure, which compose basic inputs of sustainable basin management, influence ecology and biodiversity. Findings also revealed certain socio-economic and environmental effects of recent applications / projects which were not based on a holistic management plan. This study seeks to establish adequate technical infrastructure for the rational use and sustainable management of natural resources (water, soil, forest, etc. in Fırtına Basin and to provide coordination among the institutions. The Integrated Basin Management project also aims at designing a sustainable natural resource management and biodiversity conservation model for the piloting area, Fırtına Basin as well as for other basins. Moreover, IBM (Integrated Basin Management experiences will be opened to debate among scholars in academic and institutional circles who are also concerned with the basins in the same ecological corridor (Eastern Black Sea Mountains or other basins in the wider Caucasus Ecoregion.

  5. A water management decision support system contributing to sustainability

    Science.gov (United States)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  6. Sustainable development of deep-water seaport: the case of Lithuania.

    Science.gov (United States)

    Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta

    2011-06-01

    In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the

  7. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Michael J. Lathuillière

    2018-03-01

    Full Text Available We performed a Water Footprint Sustainability Assessment (WFSA in the Xingu Basin of Mato Grosso (XBMT, Brazil, with the objectives of (1 tracking blue (as surface water and green water (as soil moisture regenerated by precipitation consumption in recent years (2000, 2014; and (2 evaluating agricultural intensification options for future years (2030, 2050 considering the effects of deforestation and climate change on water availability in the basin. The agricultural sector was the largest consumer of water in the basin despite there being almost no irrigation of cropland or pastures. In addition to water use by crops and pasture grass, water consumption attributed to cattle production included evaporation from roughly 9463 ha of small farm reservoirs used to provide drinking water for cattle in 2014. The WFSA showed that while blue and green water consumptive uses were within sustainable limits in 2014, deforestation, cattle confinement, and the use of irrigation to increase cropping frequency could drive water use to unsustainable levels in the future. While land management policies and practices should strive for protection of the remaining natural vegetation, increased agricultural production will require reservoir and irrigation water management to reduce the potential threat of blue water scarcity in the dry season. In addition to providing general guidance for future water allocation decisions in the basin, our study offers an interpretation of blue and green water scarcities with changes in land use and climate in a rapidly evolving agricultural frontier.

  8. Characterization of the relative importance of human- and infrastructure-associated bacteria in grey water: a case study.

    Science.gov (United States)

    Keely, S P; Brinkman, N E; Zimmerman, B D; Wendell, D; Ekeren, K M; De Long, S K; Sharvelle, S; Garland, J L

    2015-07-01

    Development of efficacious grey water (GW) treatment systems would benefit from detailed knowledge of the bacterial composition of GW. Thus, the aim of this study was to characterize the bacterial composition from (i) various points throughout a GW recycling system that collects shower and sink handwash (SH) water into an equalization tank (ET) prior to treatment and (ii) laundry (LA) water effluent of a commercial-scale washer. Bacterial composition was analysed by high-throughput pyrosequencing of the 16S rRNA gene. LA was dominated by skin-associated bacteria, with Corynebacterium, Staphylococcus, Micrococcus, Propionibacterium and Lactobacillus collectively accounting for nearly 50% of the total sequences. SH contained a more evenly distributed community than LA, with some overlap (e.g. Propionibacterium), but also contained distinct genera common to wastewater infrastructure (e.g. Zoogloea). The ET contained many of these same wastewater infrastructure-associated bacteria, but was dominated by genera adapted for anaerobic conditions. The data indicate that a relatively consistent set of skin-associated genera are the dominant human-associated bacteria in GW, but infrastructure-associated bacteria from the GW collection system and ET used for transient storage will be the most common bacteria entering GW treatment and reuse systems. This study is the first to use high-throughput sequencing to identify the bacterial composition of various GW sources. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Water footprints of cities - indicators for sustainable consumption and production

    Science.gov (United States)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2014-01-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  10. Role of Flexibility in Sustainable Port Development

    NARCIS (Netherlands)

    Taneja, P.; Vellinga, T.; Ros, R.

    2012-01-01

    Sustainability has become a high profile objective in all aspects of our lives, including the development of our infrastructures. Flexibility can enhance sustainability endeavors, yet its contribution is not clear to most. In this paper we investigate the role of flexibility in sustainable port

  11. Energy infrastructure in India: Profile and risks under climate change

    International Nuclear Information System (INIS)

    Garg, Amit; Naswa, Prakriti; Shukla, P.R.

    2015-01-01

    India has committed large investments to energy infrastructure assets-power plants, refineries, energy ports, pipelines, roads, railways, etc. The coastal infrastructure being developed to meet the rising energy imports is vulnerable to climate extremes. This paper provides an overview of climate risks to energy infrastructures in India and details two case studies – a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8.5 scenarios. Our analysis shows that risk management through adaptation is likely to be very expensive. The system risks can be even greater and might adversely affect energy security and access objectives. Aligning sustainable development and climate adaptation measures can deliver substantial co-benefits. The key policy recommendations include: i) mandatory vulnerability assessment to future climate risks for energy infrastructures; ii) project and systemic risks in the vulnerability index; iii) adaptation funds for unmitigated climate risks; iv) continuous monitoring of climatic parameters and implementation of adaptation measures, and iv) sustainability actions along energy infrastructures that enhance climate resilience and simultaneously deliver co-benefits to local agents. -- Highlights: •Climate risks to energy infrastructures adversely impact energy security. •Case studies of a port and a railway show their future climate change vulnerability. •Managing climate-induced risks through preventive adaptation policies

  12. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  13. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  14. Implementation of green infrastructure concept in Citarum Watershed

    Science.gov (United States)

    Maryati, Sri; Humaira, An Nisaa'Siti

    2017-03-01

    Green infrastructure has several benefits compared to grey infrastructure in term of environmental services and sustainability, such as reducing energy consumption, improving air quality, providing carbon sequestration, and increasing property values. Nevertheless in practice, the implementation of the concept in Indonesia is still limited. Implementation of the certain concept has to be guided in planning document. In this paper, green infrastructure concept in the current spatial plan and other planning documents is assessed. The purpose of this research is to figure out how far the green infrastructure concept is integrated into planning system, based on the analysis of planning documents in Citarum Watershed and expert interviews with local stakeholders. Content analysis method is used to analyze the documents and result of interview. The result shows that green infrastructure concept has not been accommodated in spatial plan or other planning documents widely. There are some challenges in implementing the concept including reward and punishment system (incentive and disincentive), coordination, and lack of human resources.

  15. Towards sustainable food production

    DEFF Research Database (Denmark)

    Aramyan, Lusine H; Hoste, Robert; van den Broek, Willie

    2011-01-01

    continuous innovation of supply chain network structures, reconsideration of business processes, relocation of logistics infrastructures and renewed allocation of chain activities to these infrastructures in order to achieve sustainable performances. This paper presents a scenario analysis of the spatial...... of pigs, processing of pork and pork consumption, is used to analyse the scenarios. The results reveal major opportunities for reductions in cost as well as in CO2 equivalent emissions if a European sector perspective is taken and some chain activities are relocated to other countries. However......, as minimizing costs will not always lead to an optimal reduction in CO2 equivalent emissions, a differentiated strategy is needed for the European pork sector to move towards more sustainable production...

  16. A National Strategy to Develop Pragmatic Clinical Trials Infrastructure

    Science.gov (United States)

    Guise, Jeanne‐Marie; Dolor, Rowena J.; Meissner, Paul; Tunis, Sean; Krishnan, Jerry A.; Pace, Wilson D.; Saltz, Joel; Hersh, William R.; Michener, Lloyd; Carey, Timothy S.

    2014-01-01

    Abstract An important challenge in comparative effectiveness research is the lack of infrastructure to support pragmatic clinical trials, which compare interventions in usual practice settings and subjects. These trials present challenges that differ from those of classical efficacy trials, which are conducted under ideal circumstances, in patients selected for their suitability, and with highly controlled protocols. In 2012, we launched a 1‐year learning network to identify high‐priority pragmatic clinical trials and to deploy research infrastructure through the NIH Clinical and Translational Science Awards Consortium that could be used to launch and sustain them. The network and infrastructure were initiated as a learning ground and shared resource for investigators and communities interested in developing pragmatic clinical trials. We followed a three‐stage process of developing the network, prioritizing proposed trials, and implementing learning exercises that culminated in a 1‐day network meeting at the end of the year. The year‐long project resulted in five recommendations related to developing the network, enhancing community engagement, addressing regulatory challenges, advancing information technology, and developing research methods. The recommendations can be implemented within 24 months and are designed to lead toward a sustained national infrastructure for pragmatic trials. PMID:24472114

  17. Sustainable cities: A research by McKinsey and Siemens on sustainable development in London

    Energy Technology Data Exchange (ETDEWEB)

    Denig, Stefan

    2010-09-15

    The research Sustainable Urban Infrastructure conducted by McKinsey and Company and Siemens assesses technological levers of varying effectiveness, and with different cost implications, which can all contribute to greater environmental sustainability in cities, drawing in particular on the example of London. It's the first comprehensive research focusing on technological and economic implications of a city's infrastructure management in the fields of energy, buildings and transportation. The encouraging message is that many of the levers to reduce energy consumption and CO2 emissions in urban agglomerations not only help protect the environment, but also pay back from an economic point of view.

  18. Climate Vulnerability of Hydro-power infrastructure in the Eastern African Power Pool

    Science.gov (United States)

    Sridharan, Vignesh

    2017-04-01

    At present there is around 6000 MW of installed hydropower capacity in the Eastern African power pool (EAPP)[1]. With countries aggressively planning to achieve the Sustainable development goal (SDG) of ensuring access to affordable electricity for all, a three-fold increase in hydropower capacity is expected by 2040 [1]. Most of the existing and planned infrastructure lie inside the Nile River Basin. The latest assessment report (AR 5) from the Intergovernmental Panel on Climate Change (IPCC) indicates a high level of climatic uncertainty in the Nile Basin. The Climate Moisture index (CMI) for the Eastern Nile region and the Nile Equatorial lakes varies significantly across the different General Circulation Models (GCM)[2]. Such high uncertainty casts a shadow on the plans to expand hydropower capacity, doubting whether hydropower expansion can contribute to the goal of improving access to electricity or end up as sunk investments. In this assessment, we analyze adaptation strategies for national energy systems in the Eastern African Power Pool (EAPP), which minimize the regret that could potentially arise from impacts of a changed climate. An energy systems model of the EAPP is developed representing national electricity supply infrastructure. Cross border transmission and hydropower infrastructure is defined at individual project level. The energy systems model is coupled with a water systems management model of the Nile River Basin that calculates the water availability at different hydropower infrastructures under a range of climate scenarios. The results suggest that a robust adaptation strategy consisting of investments in cross border electricity transmission infrastructure and diversifying sources of electricity supply will require additional investments of USD 4.2 billion by 2050. However, this leads to fuel and operational cost savings of up to USD 22.6 billion, depending on the climate scenario. [1] "Platts, 2016. World Electric Power Plants Database

  19. ESONET , a milestone towards sustained multidisciplinary ocean observation.

    Science.gov (United States)

    Rolin, J.-F.

    2012-04-01

    At the end of a 4 year project dedicated to the constitution of a Network of Excellence (NoE) on subsea observatories in Europe, large expectations are still in the agenda. The economical crisis changes the infrastructure construction planning in many ways but the objectives are quite clear and may be reached at European scale. The overall objective of the ESONET NoE was to create an organisation able to implement, operate and maintain a sustainable underwater observation network, extending into deep water, capable of monitoring biological, geo-chemical, geological, geophysical and physical processes occurring throughout the water column, sea floor interface and solid earth below. This main objective of ESONET has been met by creating the network of 11 permanent underwater observation sites together with the "ESONET Vi" Virtual Institute organising the exchange of staff and joint experiments on EMSO large research infrastructure observatories. The development of recommendations on best practices, standardization and interoperability concepts concerning underwater observatory equipment, as synthetized by the so called ESONET Label document has been created. The ESONET Label is a set of criteria to be met by the deep-sea observatory equipment as well as recommended solutions and options to guarantee their optimal operation in the ocean over long time periods. ESONET contributes to the fixed point sustained observatory community which extends worldwide, is fully multidisciplinary and in its way may open a new page in ocean sciences history.

  20. An automated repair method of water pipe infrastructure using carbon fiber bundles

    Science.gov (United States)

    Wisotzkey, Sean; Carr, Heath; Fyfe, Ed

    2011-04-01

    The United States water pipe infrastructure is made up of over 2 million miles of pipe. Due to age and deterioration, a large portion of this pipe is in need of repair to prevent catastrophic failures. Current repair methods generally involve intrusive techniques that can be time consuming and costly, but also can cause major societal impacts. A new automated repair method incorporating innovative carbon fiber technology is in development. This automated method would eliminate the need for trenching and would vastly cut time and labor costs, providing a much more economical pipe repair solution.

  1. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  2. Designing the Monitoring of Water-Related Sustainable Development Goals Based on Value of Information

    Science.gov (United States)

    Chen, R. S.; Levy, M. A.; de Sherbinin, A. M.; Fischer, A.

    2015-12-01

    The proposed Sustainable Development Goals (SDGs) represent an unprecedented international commitment to collective action and targeted interventions at global, regional, and national scales. Existing monitoring and data infrastructures are inadequate for producing the variety of environmental and socioeconomic information needed to ensure efficient and effective outcomes across the range of interlinked SDGs and targets. The scientific community needs to take a lead in developing new tools and approaches that, at reasonable cost, provide monitoring data of sufficient quality and spatial and temporal coverage to support informed decision making by diverse stakeholders. The expanded SDGs related to water offer the opportunity to explore potential new monitoring approaches and data system architectures in a key sector, building on existing water monitoring capabilities and incorporating new technologies and methods. Since additional investments in monitoring will undoubtedly be limited, it is important to assess carefully the value of information produced by different options and their associated risks and tradeoffs. We review here the existing set of water monitoring systems, known gaps and limitations, stakeholder inputs on data needs, and the potential value of information in light of alternative water sector interventions. Of particular interest are opportunities to share investments in monitoring across sectors and stakeholders (e.g., public and private entities) and to identify where incremental improvements in water monitoring could have significant benefits for other SDGs (e.g., related to health, energy, agriculture, and climate change). Value of information is also driven by the numbers of people affected by decisions or able to take advantage of improved data, which implies the need not only to collect and archive data, but also to invest in making data accessible and usable to diverse and geographically dispersed users.

  3. Infrastructure Commons in Economic Perspective

    Science.gov (United States)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  4. Governance, Sustainability and Decision Making in Water and Sanitation Management Systems

    Directory of Open Access Journals (Sweden)

    Martín Alejandro Iribarnegaray

    2012-11-01

    Full Text Available We explore the connections between the concepts of governance and sustainability and discuss their possible roles in water and sanitation management systems (WSMS. We see governance as a decision-making process that drives the relationship between social institutions and the public affairs of a given society. We understand sustainability as a combination of spatial, temporal, and personal aspects, and we argue that this definition is more comprehensive than the traditional triple bottom line of economy, environment, and society. We combined these two concepts into a new conceptual framework of “governance for sustainability” that is theoretically sound and arguably appropriate to understand local WSMS. To illustrate this framework, we developed and estimated a Sustainable Water Governance Index (SWGI for the city of Salta, Argentina. This aggregated index was calculated with data from literature, information from the city’s water company and other local institutions, field visits, and interviews. The SWGI for Salta obtained an overall score of 49 on a 0–100 scale, which fell into the “danger” range. We discuss the advantages and limitations of the method and conclude that aggregated indices such as the SWGI, complemented with contextual information, can be a helpful decision-making tool to promote more sustainable WSMS.

  5. Composting toilets as a sustainable alternative to urban sanitation – A review

    International Nuclear Information System (INIS)

    Anand, Chirjiv K.; Apul, Defne S.

    2014-01-01

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  6. Composting toilets as a sustainable alternative to urban sanitation – A review

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Chirjiv K., E-mail: chirjiv@gmail.com; Apul, Defne S., E-mail: defne.apul@utoledo.edu

    2014-02-15

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  7. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala.

    Science.gov (United States)

    Scarborough, Vernon L; Dunning, Nicholas P; Tankersley, Kenneth B; Carr, Christopher; Weaver, Eric; Grazioso, Liwy; Lane, Brian; Jones, John G; Buttles, Palma; Valdez, Fred; Lentz, David L

    2012-07-31

    The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction of a cofferdam for dredging the largest reservoir at Tikal; the presence of ancient springs linked to the initial colonization of Tikal; the use of sand filtration to cleanse water entering reservoirs; a switching station that facilitated seasonal filling and release; and the deepest rock-cut canal segment in the Maya Lowlands. These engineering achievements were integrated into a system that sustained the urban complex through deep time, and they have implications for sustainable construction and use of water management systems in tropical forest settings worldwide.

  8. Sustainable Water Management under Climate Change in Small ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sustainable Water Management under Climate Change in Small Island States of the Caribbean. In the Caribbean islands, climate change is affecting freshwater availability and other ecosystem services in complex ways. For example, freshwater supply is diminished by droughts and affected by saline intrusion due to sea ...

  9. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung; Naomi Davidson; Ajeet Kumar Reddy; Mingzhen Wei

    2003-04-01

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information, (2) a web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries, (3) a fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water, and (4) a corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project has been focused on creating the water quality databases for produced water and surface water, along with collection of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 4000 entries for southeast New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the

  10. Innovative bio-mediated particulate materials for sustainable maritime transportation infrastructure.

    Science.gov (United States)

    2017-08-15

    The mechanical properties of sandy soils in the coastal area and beach sands often do not satisfy construction expectation for maritime transportation infrastructure. The salty, loose sand makes it difficult for quick construction of port, building a...

  11. A primer on industrial ecosystems : a strategy for sustainable industrial development

    Energy Technology Data Exchange (ETDEWEB)

    Cote, R P [Dalhousie Univ., Halifax, NS (Canada). Eco-Efficiency Centre; [Dalhousie Univ., Halifax, NS (Canada). Faculty of Management, School for Resource and Environmental Studies

    2003-07-01

    Industrial ecology incorporates ecological theories, functions and limits into the design of industrial production systems, processes and products. The main objective is to enhance environmental and economic performance through collaboration in managing environmental resource issues such as energy, water and materials. Industrial ecology recognizes the connectedness and synergies of materials, products and infrastructure. As such, it considers the life cycle of products, the design of buildings, infrastructure and industrial parks. By working together, businesses gain a collective benefit which is greater than the total of the individual benefits each company could achieve on its own. Industrial ecology also considers the reuse, recovery and recycling of resources. The benefits include: efficiency of resource use; cost reduction for industrial infrastructure; sustainable development support; and, new opportunities in economic development, technology development, manufacturing, and business management. This primer also presents guidelines for win-win projects in industrial ecology. refs., figs.

  12. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

    2003-09-24

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed

  13. An assessment of Spain's Programa AGUA and its implications for sustainable water management in the province of Almería, southeast Spain.

    Science.gov (United States)

    Downward, Stuart R; Taylor, Ros

    2007-01-01

    Spain's Programa AGUA was proposed in 2004 as a replacement for the Spanish National Hydrological Plan and represented a fundamental policy shift in national water management from large inter-basin water transfers to a commitment to desalination. Twenty-one desalination facilities are planned for six provinces on the Spanish Mediterranean coast to supplement their water needs. These include the province of Almería that for the last 30 years has endured a net water abstraction overdraft leading to serious reservoir depletion and groundwater imbalances. Rising water use is a result of increasing demand to support irrigated agriculture (e.g. greenhouse horticulture) and for domestic needs (e.g. rapid urban growth and tourism development), which has led observers to question Almería's long-term water sustainability. Desalinated water alone is unlikely to be sufficient to make up these water deficits and water-users will have to accept a move to full-price water recovery by 2010 under the European Union (EU) Water Framework Directive of which Spain is a signatory. Anticipated water efficiencies resulting from higher water tariffs, increasing water reuse and water infrastructure improvements (including inter-basin transfers), in conjunction with increasing use of desalinated water, are expected to address the province's current water overdraft. However, Almería will need to balance its planned initiatives against long-term estimates of projected agricultural and domestic development and the environmental consequences of adopting a desalination-supported water future.

  14. ESTIMATION OF THE INFLUENCE OF FARM INFRASTRUCTURE ON THE POLLUTION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2016-02-01

    Full Text Available In farm areas, evacuations of animal excrements (manure, liquid manure, slurry and domestic sewage are most dangerous for pure groundwater . For betterment sanitary condition villages and pure waters in their area will be a necessity of right infrastructure and good condition (sewers, water treatments and proper animal excrements management. Research conducted in 2001–2011 in six farms located in the area of a few villages in the basin of Miedwie lake. Researches points were placed (piezometer and wells in the area of these farms. High concentration of NH4+, NO3- and PO43- were found in a ground water which are exposed to contact inflow of pollutant from farms areas, and sources which are occurred in outlying from the source of pollutants. Also water from a farm wells, which are periodically used, manifested the presence of large chemical elements concentration, especially NO3- and PO43-, what proves a constant inflow of pollutants. For monitoring ground water in samples we marked the concentration of NH4+, NO3- i PO43- and pH.

  15. ESTIMATION OF THE INFLUENCE OF FARM INFRASTRUCTURE ON THE POLLUTION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2015-11-01

    Full Text Available In farm areas, evacuations of animal excrements (manure, liquid manure, slurry and domestic sewage are most dangerous for pure groundwater. For betterment sanitary condition villages and pure waters in their area will be necessity of right infrastructure and good condition (canalization, water treatments and proper animal excrements management. Researches conducted in 2001–2011 years in six farms located in the area of a few villages in the basin of Miedwie lake. Researches points were put (piezometer and wells in the area of these farms. High concentration of NH4+, NO3- and PO43- were found in ground water which is exposed to contact inflow of pollutant from farms areas, and sources which are occurred in outlying from a source of pollutants. Also water from a farm wells, which are periodically used, showed the presence of large concentrations of chemical elements especially NO3- and PO43- what proves constant inflow of pollutants. For monitoring ground water we marked concentration of NH4+, NO3- i PO43- and pH in the samples.

  16. Integrated Nutrient and Water Management for Sustainable Food ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrated Nutrient and Water Management for Sustainable Food Production in the Sahel (CIFSRF). In the Sahel, agricultural production is strictly limited by drought and low soil fertility. In 2005 and 2010, these two factors led to food scarcity in Niger. However, innovative technologies such as microdose fertilization ...

  17. Culturally appropriate organization of water and sewerage projects built through public private partnerships.

    Directory of Open Access Journals (Sweden)

    Jessica A Kaminsky

    Full Text Available This paper contributes to the pursuit of socially sustainable water and sanitation infrastructure for all people by discovering statistically robust relationships between Hofstede's dimensions of cross-cultural comparison and the choice of contract award types, project type, and primary revenue sources. This analysis, which represents 973 projects distributed across 24 low- and middle-income nations, uses a World Bank dataset describing high capital cost water and sewerage projects funded through private investment. The results show that cultural dimensions explain variation in the choice of contract award types, project type, and primary revenue sources. These results provide empirical evidence that strategies for water and sewerage project organization are not culturally neutral. The data show, for example, that highly individualistic contexts are more likely to select competitive contract award types and to depend on user fees to provide the primary project revenue stream post-construction. By selecting more locally appropriate ways to organize projects, project stakeholders will be better able to pursue the construction of socially sustainable water and sewerage infrastructure.

  18. Culturally appropriate organization of water and sewerage projects built through public private partnerships.

    Science.gov (United States)

    Kaminsky, Jessica A

    2017-01-01

    This paper contributes to the pursuit of socially sustainable water and sanitation infrastructure for all people by discovering statistically robust relationships between Hofstede's dimensions of cross-cultural comparison and the choice of contract award types, project type, and primary revenue sources. This analysis, which represents 973 projects distributed across 24 low- and middle-income nations, uses a World Bank dataset describing high capital cost water and sewerage projects funded through private investment. The results show that cultural dimensions explain variation in the choice of contract award types, project type, and primary revenue sources. These results provide empirical evidence that strategies for water and sewerage project organization are not culturally neutral. The data show, for example, that highly individualistic contexts are more likely to select competitive contract award types and to depend on user fees to provide the primary project revenue stream post-construction. By selecting more locally appropriate ways to organize projects, project stakeholders will be better able to pursue the construction of socially sustainable water and sewerage infrastructure.

  19. Practitioners’ Views Promoting Infrastructure Investment: The G20 and the Multilateral Development Banks

    Directory of Open Access Journals (Sweden)

    Hannah Wurf

    2017-12-01

    Full Text Available The G20 is committed to promoting infrastructure investment and has called on multilateral development banks (MDBs to increase their infrastructure lending to help boost global growth. Alongside long-standing MDBs such as the World Bank and Asian Development Bank (ADB, new MDBs such as the Asian Infrastructure and Investment Bank (AIIB and the New Development Bank have been established, and G20 members would like both old and new multilateral banks to scale up their infrastructure investment by developing a pipeline of bankable projects. Even with all the MDBs investing more, they will not be able to satisfy the global need for infrastructure. What they can do, however, is start to fill the infrastructure gap by catalyzing private investment and cooperating on standards and regional infrastructure. Concerns have been raised about the geo-political implications of the new MDBs which underscore the need for MDB cooperation. There are challenges to and opportunities for this cooperation. The G20 needs to be clear about the role it can play in encouraging MDB cooperation and infrastructure investment, and must also be aware of the limitations on its role given that each MDB has its own mandate. Specifically, the G20 can downplay the perceived trade-off between efficiency and standards in the MDBs, encourage cooperation on new standards for sustainable or green infrastructure, invest in the Global Connectivity Alliance as a coordinating body for the MDBs and help align the G20 work on infrastructure with the United Nations Sustainable Development Agenda

  20. Adaptive pathways and coupled infrastructure: seven centuries of adaptation to water risk and the production of vulnerability in Mexico City

    Directory of Open Access Journals (Sweden)

    Beth Tellman

    2018-03-01

    Full Text Available Infrastructure development is central to the processes that abate and produce vulnerabilities in cities. Urban actors, especially those with power and authority, perceive and interpret vulnerability and decide when and how to adapt. When city managers use infrastructure to reduce urban risk in the complex, interconnected city system, new fragilities are introduced because of inherent system feedbacks. We trace the interactions between system dynamics and decision-making processes over 700 years of Mexico City's adaptations to water risks, focusing on the decision cycles of public infrastructure providers (in this case, government authorities. We bring together two lenses in examining this history: robustness-vulnerability trade-offs to explain the evolution of systemic risk dynamics mediated by feedback control, and adaptation pathways to focus on the evolution of decision cycles that motivate significant infrastructure investments. Drawing from historical accounts, archeological evidence, and original research on water, engineering, and cultural history, we examine adaptation pathways of humans settlement, water supply, and flood risk. Mexico City's history reveals insights that expand the theory of coupled infrastructure and lessons salient to contemporary urban risk management: (1 adapting by spatially externalizing risks can backfire: as cities expand, such risks become endogenous; (2 over time, adaptation pathways initiated to address specific risks may begin to intersect, creating complex trade-offs in risk management; and (3 city authorities are agents of risk production: even in the face of new exogenous risks (climate change, acknowledging and managing risks produced endogenously may prove more adaptive. History demonstrates that the very best solutions today may present critical challenges for tomorrow, and that collectively people have far more agency in and influence over the complex systems we live in than is often acknowledged.

  1. Dynamic Collaboration Infrastructure for Hydrologic Science

    Science.gov (United States)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the

  2. Resilient Urban Infrastructures - Basics of Smart Sustainable Cities

    Science.gov (United States)

    Timashev, S. A.

    2017-11-01

    In this paper the notion of urban infrastructure resilience is formulated being expressed verbally and strictly in conditional probability terms. It is further used to formulate several most important features of a smart city. This multidisciplinary and multifaceted approach is used to explain the concept of quantitative resilience in urban design, operation, managing urban risk and mitigating of the consequences of a natural or industrial disaster. The extremely urgent problem is formulated on how to connect the physical and spatial (core) resiliencies with the functional, organizational, economic and social resiliencies.

  3. The Cross-fertilization between the Sustainable Development Goals and International Water Law

    NARCIS (Netherlands)

    Spijkers, O.

    2016-01-01

    Are the main principles of international water law, as reflected in the Watercourses Convention, sufficiently equipped to motivate States to sustainably manage their freshwater resources? This article suggests that a more pronounced sustainable approach to these principles is desirable. The

  4. Green infrastructure: a natural systems approach to stormwater in the city

    Directory of Open Access Journals (Sweden)

    Nathaniel S. Cormier

    2008-06-01

    Full Text Available This paper presents diverse typologies of urban open space designed as green infrastructure in the american cities of Seattle and Portland. In these cities of the Pacific Northwest, landscape design is viewed as much more than mere beautification of the urban environment, but as pieces of a high-performance infrastructure that protects and even improves urban hydrology, climate, and ecology. Green infrastructure is a landscape approach that creates a distinctive local landscape identity and a more sustainable urban environment.

  5. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  6. Managing for Multifunctionality in Urban Open Spaces: Approaches for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Wenzheng Shi

    Full Text Available ABSTRACT: Landscape management plays a key role in improving the quality of urban environments and enhancing the multifunctionality of green infrastructure. It works to guide the efficient and effective management of green spaces for sustainability and the well-being of users. However, while most researchers have emphasised spatial planning as a basis for developing green infrastructure to promote new strategic connections in urban green space, they have simultaneously ignored the impact of management. Against this background, this paper argues that if our towns and cities seek to maintain the well-being of citizens while also achieving sustainable environments, they must engage in effective landscape management to improve their green infrastructure. It is not enough to simply design or maintain parks and green spaces so as to keep up their physical condition; rather, green infrastructure work should be adapted to the understanding and implementation of managers, users and stakeholders in an integrated management process in order to provide more services for sustainable development. A selected study in Sheffield investigated the management planning required for sustainable development. It is beneficial to learn the experiences of management planning in Sheffield, a city which has rich management practices for green and open spaces. This study will analyse how management planning helps local authorities and managers to improve multifunctional green and open spaces in the context of sustainable development. As a result, the study also explores the framework of management planning with regard to the transferability of the existing practices in Sheffield. It also attempts to provide a primer for sustainability impact assessments in other cities with a considered knowledge exchange. KEYWORDS: Management planning, green infrastructure, multifunctionality, sustainability, knowledge exchange

  7. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    Science.gov (United States)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  8. Enhancing Resilience Of Urban Ecosystems through Green Infrastructure (EnRoute): Progress report

    OpenAIRE

    ZULIAN GRAZIA; THIJSSEN MARTIJN; GUENTHER SUSANN; MAES JOACHIM

    2017-01-01

    EnRoute stands for Enhancing Resilience of urban ecosystems through green infrastructure. EnRoute is a project of the European Commission in the framework of the EU Biodiversity Strategy and the Green Infrastructure Strategy. EnRoute provides scientific knowledge of how urban ecosystems can support urban planning at different stages of policy and for various spatial scales and how to help policy-making for sustainable cities. It aims to promote the application of urban green infrastructur...

  9. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts

    Directory of Open Access Journals (Sweden)

    Qianqian Zhou

    2014-04-01

    Full Text Available Climate change and urbanization are converging to challenge city drainage infrastructure due to their adverse impacts on precipitation extremes and the environment of urban areas. Sustainable drainage systems have gained growing public interest in recent years, as a result of its positive effects on water quality and quantity issues and additional recreational amenities perceived in the urban landscape. This paper reviews recent progress in sustainable drainage development based on literature across different disciplinary fields. After presenting the key elements and criteria of sustainable drainage design, various devices and examples of sustainable drainage systems are introduced. The state-of-the-art model approaches and decision-aid tools for assessing the sustainable alternatives are discussed and compared. The paper further explores some limitations and difficulties in the application of the innovative solutions and suggests an integrated and trans-disciplinary approach for sustainable drainage design.

  10. Ecohydrology of managed ecosystems: Linking rainfall unpredictability, agronomic performance, and sustainable water use

    Science.gov (United States)

    Vico, Giulia; Porporato, Amilcare

    2014-05-01

    The field of ecohydrology, traditionally focusing on natural ecosystems, can offer the necessary quantitative tools to assess and compare the sustainability of agriculture across climates, soil types, crops, and irrigation strategies, including rainfall unpredictability. In particular, irrigation is one of the main strategies to enhance and stabilize agricultural productivity, but represents a cost in terms of often scarce water resources. Here, the sustainability of irrigated and rainfed agriculture is assessed by means of water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability. These indicators are quantified using a probabilistic description of the soil water balance and crop development. Employing this framework, we interpret changes in water productivity as total water input is altered, in two staple crops (maize and wheat) grown under different soils, climates, and irrigation strategies. Climate change scenarios are explored by using the same approach and altering the rainfall statistics. For a given irrigation strategy, intermediate rainfall inputs leads to the highest variability in yield and irrigation water requirement - it is under these conditions that water management is most problematic. When considering the contrasting needs of limiting water requirements while ensuring adequate yields, micro-irrigation emerges as the most sustainable strategy at the field level, although consideration should be given to its profitability and long-term environmental implications.

  11. Review of Multi-Criteria Decision Aid for Integrated Sustainability Assessment of Urban Water Systems - MCEARD

    Science.gov (United States)

    Integrated sustainability assessment is part of a new paradigm for urban water decision making. Multi-criteria decision aid (MCDA) is an integrative framework used in urban water sustainability assessment, which has a particular focus on utilising stakeholder participation. Here ...

  12. Influence of governance structure on green stormwater infrastructure investment

    Science.gov (United States)

    Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.

    2018-01-01

    Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.

  13. A systems engineering approach for realizing sustainability in infrastructure projects

    Directory of Open Access Journals (Sweden)

    Mohamed Matar

    2017-08-01

    The developed model addresses an identified gap within the current body of knowledge by considering infrastructure projects. Through the ability to simulate different scenarios, the model enables identifying which activities, products, and processes impact the environment more, and hence potential areas for optimization and improvement.

  14. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  15. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Science.gov (United States)

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  16. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  17. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun

    2016-03-01

    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  18. Making sustainable water and sanitation in the Peruvian Andes: an intervention model.

    Science.gov (United States)

    Campos, Marco

    2008-01-01

    Sustainability of water supplies in remote rural communities is problematic and resource consuming. CARE has a long history of working hand in hand with remote rural communities and devising programs tailored to their needs. We present here an intervention that integrates development of water supplies and sanitation, with operation and maintenance skills development and training of health promoters that can educate from within the community that ensures the sustainability of drinking water supply systems in rural communities. The training used is innovative in that it uses a series of video-workshops which are found to be particularly useful in communities with high illiteracy rates.

  19. Sustainability Infused Curriculum

    Science.gov (United States)

    Ibarra, D. L.

    2015-12-01

    The Independent Schools Foundation Academy (ISF) in Hong Kong established a sustainability policy in 2015, which explicitly states, "an experimentally integrated, environmentally and ethically sustainable system of science education and conservation practices based on the 2012 Jeju Declaration of the World Conservation Congress will be implemented through the school". ISF Academy is a private Chinese bilingual school in Hong Kong serving over 1500 students K-12, following the framework and curriculum of the International Baccalaureate Organization (IBO). The strategy behind the implementation of this policy includes: development of a scientific sustainable curriculum that is age appropriate; establish a culture of sustainability within the ISF community and beyond to the wider HK community; install sustainable infrastructure that allows students to learn; and learn first hand sustainable living practices. It is well understood that solutions to the environmental challenges facing Hong Kong and our planet will require multiple disciplines. The current sustainability programs at ISF include: a) a whole school aerobic food waste composting system and organic farming, b) energy consumption monitoring of existing buildings, c) upcoming installation of an air pollution monitoring equipment that will correlate with the AQHI data collected by the Hong Kong government, d) a Renewable Energy Education Center (REEC) that will teach students about RE and also produce solar energy for classroom consumption, and e) student lead environmental group that manages the paper and used cooking oil recycling on campus. The Shuyuan Science and Sustainability faculty work closely with classroom teachers to ensure that the above mentioned projects are incorporated into the curriculum throughout the school. Interdisciplinary units (IDU) of study are being developed that encourage faculty and students to work across subject areas. Projects include Personal Projects, Extended Essays

  20. After the year 2000: Critical infrastructure protection

    International Nuclear Information System (INIS)

    Dreicer, M.

    1999-01-01

    Presentation defines the critical infrastructure which includes: telecommunication, banking, transportation, electric energy, oil and gas supply, water supply, emergency services and government operations. The problem of protecting the critical infrastructure is is exposed in detail concerning physical protection and protection of information systems against cyberthreats

  1. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  2. Business Engagement with Sustainable Water Resource Management through Water Footprint Accounting: The Case of the Barilla Company

    Directory of Open Access Journals (Sweden)

    Marta Antonelli

    2015-05-01

    Full Text Available This study investigates business engagement in sustainable water management, focusing on water footprint accounting as a tool to account for water use in food supply chains. An explorative analysis is conducted on the Barilla Company. The study explores two corporate strategies aimed at achieving more sustainable water use: the adoption of environmental products declarations (EPDs, a reporting system that accounts for the environmental footprints of Barilla’s pasta and other products; and the implementation of the Aureo Wheat Programme. The study deployed both primary and secondary data. The study shows that the largest share of the water footprint of pasta relates to the cultivation phase (over 90%, which is almost fully rainfed. EPDs show that the water footprint of the other phases of the supply chain is negligible. It is argued that the use of water footprinting in EPDs can raise awareness about water use in agricultural supply chains to reach a broad spectrum of stakeholders, including consumers. The study also shows that the implementation of the Aureo Wheat Programme, consisting of a shift in cultivation site and in the type of wheat, enabled a reduction in the blue water footprint of pasta, with water savings amounting to 35 million m3 of blue water since 2011.

  3. Public Private Partnerships: A possible alternative for delivery of infrastructure projects in Africa

    OpenAIRE

    Salim Bwanali; Pantaleo Rwelamila

    2017-01-01

    It is estimated that Africa needs $93 billion annually until 2020 in order to bridge its infrastructure deficit. It is through significant investment in infrastructure development that economic growth and poverty alleviation can be enhanced. However central to all construction projects is an effective and sustainable procurement system. There is a notable shift by some African governments to turn to the private sector to design, build, finance and operate infrastructure facilities previously ...

  4. How to quantify sustainable development: a risk-based approach to water quality management.

    Science.gov (United States)

    Sarang, Amin; Vahedi, Arman; Shamsai, Abolfazl

    2008-02-01

    Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.

  5. Reporting the condition of South Africa’s water sector infrastructure

    CSIR Research Space (South Africa)

    Wall, Kevin

    2017-07-01

    Full Text Available The purpose of the “national infrastructure report cards” of the condition of engineering infrastructure in South Africa has been to draw the attention of government, and of the South African public at large to the importance of maintenance...

  6. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.; Elimelech, Menachem

    2012-01-01

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  7. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Transition to large scale use of hydrogen and sustainable energy services. Choices of technology and infrastructure under path dependence, feedback and nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Gether, Kaare

    2004-07-01

    We live in a world of becoming. The future is not given, but forms continuously in dynamic processes where path dependence plays a major role. There are many different possible futures. What we actually end up with is determined in part by chance and in part by the decisions we make. To make sound decisions we require models that are flexible enough to identify opportunities and to help us choose options that lead to advantageous alternatives. This way of thinking differs from traditional cost-benefit analysis that employs net present value calculations to choose on purely economic grounds, without regard to future consequences. Time and dynamic behaviour introduce a separate perspective. There is a focus on change, and decisions acquire windows of opportunity: the right decision at the right time may lead to substantial change, while it will have little effect if too early or too late. Modelling needs to reflect this dynamic behaviour. It is the perspective of time and dynamics that leads to a focus on sustainability, and thereby the role hydrogen might play in a future energy system. The present work develops a particular understanding relevant to energy infrastructures. Central elements of this understanding are: competition, market preference and choice beyond costs, bounded rationality, uncertainty and risk, irreversibility, increasing returns, path dependence, feedback, delay, nonlinear behaviour. Change towards a ''hydrogen economy'' will involve far-reaching change away from our existing energy infrastructure. This infrastructure is viewed as a dynamic set of interacting technologies (value sequences) that provide services to end-users and uphold the required supply of energy for this, all the way from primary energy sources. The individual technologies also develop with time. Building on this understanding and analysis, an analytical tool has emerged: the Energy Infrastructure Competition (EICOMP) model. In the model each technology is

  9. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    Science.gov (United States)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  10. Financing Trans-European Energy Infrastructures - Past, Present and Perspectives

    International Nuclear Information System (INIS)

    Hirschhausen, Christian von

    2011-01-01

    The transformation of the European energy system towards a low carbon industry requires substantial investment and financing. According to the Energy Infrastructure Package (EIP), around one trillion euros must be invested in the European energy system until 2020. Out of the euro 200 billion required investment for transmission networks, only half of the capital will be provided by markets. This leaves a financial gap of ca. euro 100 bn. and poses a question on the EU role in financing European energy infrastructures. This policy paper by Christian Von Hirschhausen focuses on the future financing of trans-European energy infrastructures. After providing an overview of the long-term infrastructure needs and of the various instruments that currently exist to finance these infrastructures, the author discusses various aspects related with the planning and financing of cross border energy infrastructures with the help of a case study: the North Sea Grid Project. On the basis of the North Sea example, he highlights the importance of adopting a regulatory approach balancing European and Member States' interests as well as of streamlining and expanding the EU financial support to sustainable energy infrastructures

  11. Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China.

    Science.gov (United States)

    Liu, Wen; Chen, Weiping; Feng, Qi; Peng, Chi; Kang, Peng

    2016-12-01

    Cost-benefit analysis is demanded for guiding the plan, design and construction of green infrastructure practices in rapidly urbanized regions. We developed a framework to calculate the costs and benefits of different green infrastructures on stormwater reduction and utilization. A typical community of 54,783 m 2 in Beijing was selected for case study. For the four designed green infrastructure scenarios (green space depression, porous brick pavement, storage pond, and their combination), the average annual costs of green infrastructure facilities are ranged from 40.54 to 110.31 thousand yuan, and the average of the cost per m 3 stormwater reduction and utilization is 4.61 yuan. The total average annual benefits of stormwater reduction and utilization by green infrastructures of the community are ranged from 63.24 to 250.15 thousand yuan, and the benefit per m 3 stormwater reduction and utilization is ranged from 5.78 to 11.14 yuan. The average ratio of average annual benefit to cost of four green infrastructure facilities is 1.91. The integrated facilities had the highest economic feasibility with a benefit to cost ratio of 2.27, and followed by the storage pond construction with a benefit to cost ratio of 2.14. The results suggested that while the stormwater reduction and utilization by green infrastructures had higher construction and maintenance costs, their comprehensive benefits including source water replacements benefits, environmental benefits and avoided cost benefits are potentially interesting. The green infrastructure practices should be promoted for sustainable management of urban stormwater.

  12. Second law of thermodynamics and urban green infrastructure - A knowledge synthesis to address spatial planning strategies

    OpenAIRE

    Raffaele Pelorosso; Federica Gobattoni; Maria Nicolina Ripa; Antonio Leone

    2018-01-01

    Planning of ecosystem services provided by the Urban Green Infrastructure (UGI) is a key issue for urban sustainability. Planning strategies driven by the second law of thermodynamics (SLT) are innovative approaches to sustainability but they are still in seminal phase. In this article, a coupled review of SLT within spatial planning is accomplished looking at the main applications in urban green infrastructure (UGI) planning. The work has supported the definition of a preliminary low-entropy...

  13. Transformation of technical infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    , the evolution of large technological systems and theories about organisational and technological transformationprocesses. The empirical work consist of three analysis at three different levels: socio-technical descriptions of each sector, an envestigation of one municipality and envestigations of one workshop......The scope of the project is to investigate the possibillities of - and the barriers for a transformation of technical infrastructure conserning energy, water and waste. It focus on urban ecology as a transformation strategy. The theoretical background of the project is theories about infrastructure...

  14. Sustainable and efficient allocation of limited blue and green water resources

    OpenAIRE

    Schyns, Joseph Franciscus

    2018-01-01

    Freshwater stems from precipitation over land, which differentiates into a blue water flow (groundwater and surface water) and a green water flow (evaporation). Both flows are partially allocated to serve the economy, resulting in blue and green water footprints (WF). There are maximum sustainable levels to the blue and green WF, since rainfall is limited and part of the flows need to be reserved for aquatic and terrestrial biodiversity. Water scarcity, the degree to which the actual approach...

  15. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    2001-01-01

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  16. Riverbank Filtration: A Sustainable Process to Attenuate Contaminants during Drinking Water Production

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2018-03-01

    Full Text Available Riverbank filtration leads to purification of water. For India it can be a simple, economical and effective alternative. A few unanswered questions were: Can it work in Indian mountainous regions? Will it be of any advantage in the case of some of the polluted Indian surface waters? With the goal to evaluate use of riverbank filtration as a sustainable technology under widely varying conditions prevalent in India, the effectiveness of riverbank filtration has been examined over the last 10 years. In the case of cleaner surface waters, the wells deliver water free of turbidity and coliform even during monsoon irrespective of well configuration. In the case of polluted source waters, it results in an overall advantage in terms of improved raw water quality, reduced degree and cost of subsequent treatment and decreased levels of disinfection by-products. The study shows riverbank filtration to be an effective and sustainable option for plains as well as the mountainous region.

  17. Pennsylvania Reaches Infrastructure Milestone

    Science.gov (United States)

    With a series of “aye” votes, the Pennsylvania agency that turns EPA funding and state financing into water infrastructure projects crossed a key threshold recently – $8 billion in investment over nearly three decades

  18. Light Water Reactor Sustainability Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  19. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The development of a cislunar space infrastructure

    Science.gov (United States)

    Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.

    1989-01-01

    The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.

  1. Transport Infrastructure and the Environment in the Global South: Sustainable Mobility and Urbanism

    Directory of Open Access Journals (Sweden)

    Robert Cervero

    2015-04-01

    Full Text Available Abstrak. Integrasi infrastruktur transportasi dan perkembangan kota harus ditingkatkan kepentingannya. Di banyak kota di belahan bumi bagian selatan, investasi pada Bus Rapid Transit (BRT memberikan kesempatan untuk peningkatan tersebut. Akan tetapi, sampai saat ini, sistem BRT telah gagal dalam menciptakan pembangunan yang kompak dan multi-guna bukan saja karena kurangnya perencanaan strategis kawasan stasiun tetapi juga dampak dari penempatan jalur-jalur dan stasiun pada wilayah perkotaan yang stagnan dan pada median jalan yang sibuk. Sistem BRT selama ini dipertimbangkan dan dirancang sebagai suatu investasi pergerakan dan bukan pembentuk kota. Disebabkan mayoritas pertumbuhan kota di masa depan di seluruh dunia akan berada pada kota-kota menengah yang cocok untuk investasi BRT, kesempatan untuk membuat sistem BRT sebagai investasi pembentuk kota tidak boleh disia-siakan. Pembangunan yang berorientasi transit adalah salah satu dari sejumlah model yang paling menjanjikan untuk mendorong pola pergerakan dan urbanisasi yang lebih berkelanjutan di kota-kota di belahan bumi selatan.Kata kunci. Transportasi publik, bus rapid transit, tata guna lahan, keberlanjutan, pembangunan berorientasi transitAbstract. The integration of transport infrastructure and urban development must be elevated in importance. In many cities of the Global South, recent Bus Rapid Transit (BRT investments provide an unprecedented opportunity to do just that. To date, however, BRT systems have failed to leverage compact, mixed-use development due not only to little strategic station-area planning but also factors like siting lines and stations in stagnant urban districts and busy roadway medians. BRT systems are being conceived and designed as mobility investments rather than city-shaping ones. Given that the majority of future urban growth worldwide will be in intermediate-size cities well-suited for BRT investments, the opportunities for making these not only mobility

  2. Linear infrastructure impacts on landscape hydrology.

    Science.gov (United States)

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  3. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    OpenAIRE

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2010-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, ar...

  4. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  5. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  6. Lick Run: Green Infrastructure in Cincinnati and Beyond

    Science.gov (United States)

    By capturing and redistributing rain water or runoff in plant-soil systems such as green roofs, rain gardens or swales, green infrastructure restores natural hydrologic cycles and reduces runoff from overburdened gray infrastructure. Targeted ecosystem restoration, contaminant fi...

  7. Measuring sustainable accessibility potential using the mobility infrastructure's network configuration

    NARCIS (Netherlands)

    Gil, J.; Read, S.

    2012-01-01

    This paper is an exploration into the analysis of public transport networks using space syntax approaches combined with concepts of sustainable accessibility. Present urban development policy aims to achieve sustainable mobility patterns, shifting mobility to soft transportation modes such as

  8. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  9. LCA as a Tool to Evaluate Green Infrastructure's Environmental Performance

    Science.gov (United States)

    Catalano De Sousa, M.; Erispaha, A.; Spatari, S.; Montalto, F.

    2011-12-01

    Decentralized approaches to managing urban stormwater through use of green infrastructure (GI) often lead to system-wide efficiency gains within the urban watershed's energy supply system. These efficiencies lead to direct greenhouse gas (GHG) emissions savings, and also restore some ecosystem functions within the urban landscape. We developed a consequential life cycle assessment (LCA) model to estimate the life cycle energy, global warming potential (GWP), and payback times for each if GI were applied within a select neighborhood in New York City. We applied the SIMAPRO LCA software and the economic input-output LCA (EIO-LCA) tool developed by Carnegie Mellon University. The results showed that for a new intersection installation highlighted in this study a conventional infrastructure construction would emit and use approximately 3 times more for both CO2 and energy than a design using GI. Two GI benefits were analyzed with regards to retrofitting the existing intersection. The first was related to the savings in energy and CO2 at the Waste Water Treatment Plant via runoff reduction accrued from GI use. The second benefit was related to the avoided environmental costs associated with an additional new grey infrastructure installation needed to prevent CSO in case of no GI implementation. The first benefit indicated a high payback time for a GI installation in terms of CO2 and energy demand (80 and 90 years respectively) and suggest a slow energy and carbon recovery time. However, concerning to the second benefit, GI proved to be a sustainable alternative considering the high CO2 releases (429 MTE) and energy demand (5.5 TJ) associated with a grey infrastructure construction.

  10. A sociotechnical framework for understanding infrastructure breakdown and repair

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Benjamin H [Los Alamos National Laboratory

    2009-01-01

    This paper looks at how and why infrastructure is repaired. With a new era of infrastructure spending underway, policymakers need to understand and anticipate the particular technical and political challenges posed by infrastructure repair. In particular, as infrastructure problems are increasingly in the public eye with current economic stimulus efforts, the question has increasingly been asked: why has it been so difficult for the United Statesto devote sustained resources to maintaining and upgrading its national infrastructure? This paper provides a sociotechnical framework for understanding the challenges of infrastructure repair, and demonstrates this framework using a case study of seismic retrofit of freeway bridges in California. The design of infrastructure is quite different from other types of design work even when new infrastructure is being designed. Infrastructure projects are almost always situated within, and must work with, existing infrastructure networks. As a result, compared to design of more discrete technological artifacts, the design of infrastructure systems requires a great deal of attention to interfaces as well as adaptation of design to the constraints imposed by existing systems. Also, because of their scale, infrastructural technologies engage with social life at a level where explicit political agendas may playa central role in the design process. The design and building of infrastructure is therefore often an enormously complex feat of sociotechnical engineering, in which technical and political agendas are negotiated together until an outcome is reached that allows the project to move forward. These sociotechnical settlements often result in a complex balancing of powerful interests around infrastructural artifacts; at the same time, less powerful interests have historically often been excluded or marginalized from such settlements.

  11. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  12. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  13. Addressing water resources risk in England and Wales: Long term infrastructure planning in a private, regulated industry

    Science.gov (United States)

    Turner, Sean

    2015-04-01

    Water resources planning is a complex and challenging discipline in which decision makers must deal with conflicting objectives, contested socio-economic values and vast uncertainties, including long term hydrological variability. The task is arguably more demanding in England and Wales, where private water companies must adhere to a rigid set of regulatory planning guidelines in order to justify new infrastructural investments. These guidelines prescribe a "capacity expansion" approach to planning: ensure that a deterministic measure of supply, known as "Deployable Output," meets projected demand over a 25-year planning horizon. Deployable Output is derived using a method akin to yield analysis and is commensurate with the maximum rate of supply that a water resources system can sustain without incurring failure under a simulation of historical recorded hydrological conditions. This study examines whether Deployable Output analysis is fit to serve an industry in which: water companies are seeking to invest in cross-company water transfer schemes to deal with loss of water availability brought about by European environmental legislation and an increase in demand driven by population growth; water companies are expected address potential climate change impacts through their planning activities; and regulators wish to benchmark water resource system performance across the separate companies. Of particular interest, then, is the adequacy of Deployable Output analysis as a means to measuring current and future water shortage risk and comparing across supply systems. Data from the UK National River Flow Archive are used to develop a series of hypothetical reservoir systems in two hydrologically contrasting regions -- northwest England/north Wales and Southeast England. The systems are varied by adjusting the draft ratio (ratio of target annual demand to mean annual inflow), the inflow diversity (covariance of streamflow sequences supplying the system), the strength of

  14. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  15. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    Science.gov (United States)

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  16. Water-energy-food nexus for adopting sustainable development goals in Asia

    Science.gov (United States)

    Taniguchi, M.

    2016-12-01

    Water, energy, and food are the most essential and fundamental resources for human well-beings, a sustainable society, and global sustainability. These are inextricably linked, and there are complex synergies and tradeoffs among the three resources. More issues arise and attention must be paid when it comes to the Water-Energy-Food (WEF) Nexus. Lack of integrated research between a nexus and policy implementation is the most concerning. The United Nations Sustainable Development Goals (SDGs) aim to end poverty, protect the planet, and ensure prosperity for all, and are scheduled to be achieved by 2030. Of the 17 SDGs, Goal 2, 6 and 7 are directly related to food, water, and energy sectors. However, there are no integrated SDGs related to the Water-Energy-Food Nexus. Two different directions of nexus research exist in developing and industrialized worlds, and synthesis of both are needed. Developing countries are striving to increase their Human Development Index (HDI) while keeping Ecological Footprints, including Nexus Footprint, low. On the other hand, industrialized countries are targeting to maintain their high HDI and reduce their Ecological Footprints. Both are challenging tasks under the restrictions of planetary boundaries (limited nature) and doughnut economy (limited society). In this study, WEF Nexus research in Asian countries, including developing and industrialized countries, demonstrates the different types of nexus approaches to achieve SDGs through renewable energy, agriculture and aquaculture as food, and water management in Monsoon and semi-arid Asia. Mutual learning between the two types of nexus approaches can be made in the Asian area.

  17. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  18. Sustainability of donor-funded rural water supply and sanitation projects in Mbire district, Zimbabwe

    Science.gov (United States)

    Kwangware, Johnson; Mayo, Aloyce; Hoko, Zvikomborero

    The sustainability of donor-funded rural water supply and sanitation projects was assessed in Mbire district, Zimbabwe in terms of level of community participation, quality of implementation and reliability of the systems. The study was carried out through questionnaires, focus group discussions, interviews and field observations. The results show that the quality of implementation of the projects was deemed to be good and participation of the communities in project ideas initiation and choice of technology was found to be very low. Reliability of the systems was found to be very high with 97% of the boreholes in all the three wards studied being functional. Financial management mechanisms were very poor because water consumers were not willing to pay for operation and maintenance. The projects were classified as potentially sustainable with sustainability index between 5.00 and 6.67. Poor financial management mechanisms for effective borehole maintenance, poor quality of construction and lack of community participation in project planning were found to be potential threats to the sustainability of the projects. Future projects should establish the need for the service and should thus be demand driven to ensure effective participation of the water consumers and enhance project's potential for sustainability.

  19. E-Infrastructure and Data Management for Global Change Research

    Science.gov (United States)

    Allison, M. L.; Gurney, R. J.; Cesar, R.; Cossu, R.; Gemeinholzer, B.; Koike, T.; Mokrane, M.; Peters, D.; Nativi, S.; Samors, R.; Treloar, A.; Vilotte, J. P.; Visbeck, M.; Waldmann, H. C.

    2014-12-01

    The Belmont Forum, a coalition of science funding agencies from 15 countries, is supporting an 18-month effort to assess the state of international of e-infrastructures and data management so that global change data and information can be more easily and efficiently exchanged internationally and across domains. Ultimately, this project aims to address the Belmont "Challenge" to deliver knowledge needed for action to avoid and adapt to detrimental environmental change, including extreme hazardous events. This effort emerged from conclusions by the Belmont Forum that transformative approaches and innovative technologies are needed for heterogeneous data/information to be integrated and made interoperable for researchers in disparate fields, and for myriad uses across international, institutional, disciplinary, spatial and temporal boundaries. The project will deliver a Community Strategy and Implementation Plan to prioritize international funding opportunities and long-term policy recommendations on how the Belmont Forum can implement a more coordinated, holistic, and sustainable approach to funding and supporting global change research. The Plan is expected to serve as the foundation of future Belmont Forum funding calls for proposals in support of research science goals as well as to establish long term e-infrastructure. More than 120 scientists, technologists, legal experts, social scientists, and other experts are participating in six Work Packages to develop the Plan by spring, 2015, under the broad rubrics of Architecture/Interoperability and Governance: Data Integration for Multidisciplinary Research; Improved Interface between Computation & Data Infrastructures; Harmonization of Global Data Infrastructure; Data Sharing; Open Data; and Capacity Building. Recommendations could lead to a more coordinated approach to policies, procedures and funding mechanisms to support e-infrastructures in a more sustainable way.

  20. Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Kelli L. Larson

    2015-11-01

    Full Text Available Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for water sustainability and urban adaptation to climate change in the case study region of Phoenix, Arizona. In doing so, we integrate over a decade of research conducted by Arizona State University’s Decision Center for a Desert City (DCDC. DCDC is a boundary organization that conducts research in collaboration with policy makers, with the goal of informing decision-making under uncertainty. Our results highlight: the counterintuitive, non-linear, and competing relationships in human–environment dynamics; the myriad uncertainties in climatic, scientific, political, and other domains of knowledge and practice; and, the social learning that has occurred across science and policy spheres. Finally, we reflect on how our interdisciplinary research and boundary organization has evolved over time to enhance adaptive and sustainable governance in the face of complex system dynamics.