WorldWideScience

Sample records for sustainable water deliveries

  1. Sustainable water deliveries from the Colorado River in a changing climate.

    Science.gov (United States)

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  2. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  3. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  4. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  5. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  6. Application of a sustainability index for integrated urban water ...

    African Journals Online (AJOL)

    guide appropriate action and policy-making towards better service delivery and improved resource management. ... surface water, groundwater and rainwater, as well as methods of ... systems in order to define how the objective of sustainability can ..... the relevant decision-makers towards more sustainable prac- tices.

  7. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  8. Sustainability of portable water services in the Philippines

    Science.gov (United States)

    Bohm, Robert A.; Essenburg, Timothy J.; Fox, William F.

    1993-07-01

    Financial sustainability of rural water systems in the Philippines is evaluated based on a comparison of willingness to pay for improved water and the costs of service delivery. Willingness to pay estimates indicate that user fees are unlikely to be sufficient to cover the full cost of service and subsidies are necessary, at least for a major portion of capital costs, or the water systems will become unsustainable because of insufficient resources. Sustainability is more probable when care is exercised in selecting villages for improved water services. Economies of scale lead to lower unit costs in larger villages. Willingness to pay is greater for household connections than for public faucets. Willingness to pay increases with income and wealth, family size, education, and dissatisfaction with traditional water sources.

  9. Community management and sustainability of rural water facilities in Tanzania

    NARCIS (Netherlands)

    Mandara, C.G.; Butijn, C.A.A.; Niehof, Anke

    2013-01-01

    This paper addresses the question of whether community management in water service delivery affects the sustainability of rural water facilities (RWFs) at village level, in terms of their technical and managerial aspects, and what role capacity building of users and providers plays in this process.

  10. Delivery through innovation: CSIR research on water services infrastructure operation through franchising

    CSIR Research Space (South Africa)

    Wall, K

    2006-02-01

    Full Text Available There is a great need for institutional innovations aimed at improving access to basic water services in South Africa, and sustaining that improvement. In support of effective delivery, the CSIR, with the support of the Water Research Commission...

  11. Benchmarking Sustainability Practices Use throughout Industrial Construction Project Delivery

    Directory of Open Access Journals (Sweden)

    Sungmin Yun

    2017-06-01

    Full Text Available Despite the efforts for sustainability studies in building and infrastructure construction, the sustainability issues in industrial construction remain understudied. Further, few studies evaluate sustainability and benchmark sustainability issues in industrial construction from a management perspective. This study presents a phase-based benchmarking framework for evaluating sustainability practices use focusing on industrial facilities project. Based on the framework, this study quantifies and assesses sustainability practices use, and further sorts the results by project phase and major project characteristics, including project type, project nature, and project delivery method. The results show that sustainability practices were implemented higher in the construction and startup phases relative to other phases, with a very broad range. An assessment by project type and project nature showed significant differences in sustainability practices use, but no significant difference in practices use by project delivery method. This study contributes to providing a benchmarking method for sustainability practices in industrial facilities projects at the project phase level. This study also discusses and provides an application of phase-based benchmarking for sustainability in industrial construction.

  12. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds

    International Nuclear Information System (INIS)

    Zhai Peng; Chen, X B; Schreyer, David J

    2013-01-01

    Tissue engineering scaffolds are designed not only to provide structural support for the repair of damaged tissue, but can also serve the function of bioactive protein delivery. Here we present a study on the preparation and characterization of protein-loaded microspheres, either alone or incorporated into mock tissue scaffolds, for sustained protein delivery. Alginate microspheres were prepared by a novel, small-scale water-in-oil emulsion technique and loaded with fluorescently labeled immunoglobulin G (IgG). Microsphere size appears to be influenced by the magnitude and distribution of force generated by mechanical stirring during emulsion. Protein release studies show that sustained IgG release from microspheres could be achieved and that application of a secondary coating of chitosan could further slow the rate of protein release. Preservation of bioactivity of released IgG protein was confirmed using an immunohistochemical assay. When IgG-loaded microspheres were incorporated into mock scaffolds, initial protein release was diminished and the overall time course of release was extended. The present study demonstrates that protein-loaded microspheres can be prepared with a controlled release profile and preserved biological activity, and can be incorporated into scaffolds to achieve sustained and prolonged protein delivery in a tissue engineering application. (paper)

  13. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  14. Sustainable Water Infrastructure

    Science.gov (United States)

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  15. Architecting for Sustainable Software Delivery

    Science.gov (United States)

    2012-06-01

    14 CrossTalk—May/June 2012 RAPID AND AGILE STABILITY Architecting for Sustainable Software Delivery Ronald J. Koontz , Boeing Robert L. Nord...Figure 2, and additional architecture documentation can be found in the work of Koontz [9, 10, 11]. Designing for extensibility promotes continued...Mapping of Practices to Agile and Architecture Criteria CrossTalk—May/June 2012 19 RAPID AND AGILE STABILITY ABOUT THE AUTHORS Ronald J. Koontz

  16. Sustained Pulmonary Delivery of a Water-Soluble Antibiotic Without Encapsulating Carriers.

    Science.gov (United States)

    Ong, Winston; Nowak, Pawel; Cu, Yen; Schopf, Lisa; Bourassa, James; Enlow, Elizabeth; Moskowitz, Samuel M; Chen, Hongming

    2016-03-01

    Traditional polymeric nanoparticle formulations for prolonged local action during inhalation therapy are highly susceptible to muco-ciliary clearance. In addition, polymeric carriers are typically administered in high doses due to finite drug loading. For toxicological reasons, these carriers and their degradation byproducts are undesirable for inhalation therapy, particularly for chronic use, due to potential lung accumulation. We synthesized a novel, insoluble prodrug (MRPD) of a time-dependent β-lactam, meropenem, and formulated MRPD into mucus-penetrating crystals (MRPD-MPCs). After characterizing their mucus mobility (in vitro) and stability, we evaluated the lung pharmacokinetics of intratracheally-instilled MRPD-MPCs and a meropenem solution in guinea pigs. Meropenem levels rapidly declined in the lungs of guinea pigs receiving meropenem solution compared to those given MRPD-MPCs. At 9 h after dosing, drug levels in the lungs of animals that received meropenem solution dropped to 12 ng/mL, whereas those that received MRPD-MPCs maintained an average drug level of ≥1,065 ng/mL over a 12-h period. This work demonstrated that the combination of prodrug chemistry and mucus-penetrating platform created nanoparticles that produced sustained levels of meropenem in guinea pig lungs. This strategy represents a novel approach for sustained local drug delivery to the lung without using encapsulating matrices.

  17. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  18. Catalysing low cost green technologies for sustainable water service delivery in Kenya: Feasibility Study Report

    DEFF Research Database (Denmark)

    Ndirangu, Wangai; Schaer, Caroline

    2017-01-01

    Since 1974, the government of Kenya has recognised water supplies as critical for poverty reduction and development. Kenya’s economic and social development Vision 2030 emphasises the need for adequate and sustainable provision of water supply and sanitation services, with a target to achieve...... universal access by 2030. However, thus far most water development targets have not been achieved. Improvement has been much slower in rural and low income urban areas, and the current funding level is inadequate to achieve universal access by 2030. Over the years, official effort have been complemented...... to planning, standards and operations and maintenance, including source and cost of energy in rural and peri-urban water supplies is a key challenge to functionality and sustainability....

  19. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  20. Principles and practices of sustainable water management

    Institute of Scientific and Technical Information of China (English)

    Bixia Xu

    2010-01-01

    Literature related to sustainable water management is reviewed to illustrate the relationship among water management, sustainability (sustainable development), and sustainable water management. This review begins with the explanation on the definition of sustainable water management, followed by a discussion of sustainable water management principles and practices.

  1. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    Science.gov (United States)

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Water Footprints and Sustainable Water Allocation

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2015-12-01

    Full Text Available Water Footprint Assessment (WFA is a quickly growing research field. This Special Issue contains a selection of papers advancing the field or showing innovative applications. The first seven papers are geographic WFA studies, from an urban to a continental scale; the next five papers have a global scope; the final five papers focus on water sustainability from the business point of view. The collection of papers shows that the historical picture of a town relying on its hinterland for its supply of water and food is no longer true: the water footprint of urban consumers is global. It has become clear that wise water governance is no longer the exclusive domain of government, even though water is and will remain a public resource with government in a primary role. With most water being used for producing our food and other consumer goods, and with product supply chains becoming increasingly complex and global, there is a growing awareness that consumers, companies and investors also have a key role. The interest in sustainable water use grows quickly, in both civil society and business communities, but the poor state of transparency of companies regarding their direct and indirect water use implies that there is still a long way to go before we can expect that companies effectively contribute to making water footprints more sustainable at a relevant scale.

  3. Water-based preparation of spider silk films as drug delivery matrices.

    Science.gov (United States)

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2015-09-10

    The main focus of this work was to obtain a drug delivery matrix characterized by biocompatibility, water insolubility and good mechanical properties. Moreover the preparation process has to be compatible with protein encapsulation and the obtained matrix should be able to sustain release a model protein. Spider silk proteins represent exceptional natural polymers due to their mechanical properties in combination with biocompatibility. As both hydrophobic and slowly biodegrading biopolymers, recombinant spider silk proteins fulfill the required properties for a drug delivery system. In this work, we present the preparation of eADF4(C16) films as drug delivery matrices without the use of any organic solvent. Water-based spider silk films were characterized in terms of protein secondary structure, thermal stability, zeta-potential, solubility, mechanical properties, and water absorption and desorption. Additionally, this study includes an evaluation of their application as a drug delivery system for both small molecular weight drugs and high molecular weight molecules such as proteins. Our investigation focused on possible improvements in the film's mechanical properties including plasticizers in the film matrix. Furthermore, different film designs were prepared, such as: monolayer, coated monolayer, multilayer (sandwich), and coated multilayer. The release of the model protein BSA from these new systems was studied. Results indicated that spider silk films are a promising protein drug delivery matrix, capable of releasing the model protein over 90 days with a release profile close to zero order kinetic. Such films could be used for several pharmaceutical and medical purposes, especially when mechanical strength of a drug eluting matrix is of high importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 25 CFR 135.23 - Refusal of water delivery.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Refusal of water delivery. 135.23 Section 135.23 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES CONSTRUCTION ASSESSMENTS, CROW... District § 135.23 Refusal of water delivery. The right is reserved to refuse the delivery of water to any...

  5. 25 CFR 135.6 - Refusal of water delivery.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Refusal of water delivery. 135.6 Section 135.6 Indians... INDIAN IRRIGATION PROJECT Charges Assessed Against Irrigation District Lands § 135.6 Refusal of water delivery. The right is reserved to the United States to refuse the delivery of water to each of the said...

  6. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  7. Water Quality and Sustainable Environmental Health

    Science.gov (United States)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  8. Sustainable Water Management in the Tourism Economy: Linking the Mediterranean’s Traditional Rainwater Cisterns to Modern Needs

    Directory of Open Access Journals (Sweden)

    Jared Enriquez

    2017-11-01

    Full Text Available Communities on islands with mass-tourism, like Santorini, rely on vast quantities of water to develop the local economy. Today’s inhabitants of Santorini have largely abandoned the traditional cisterns that were used to sustain the island’s pre-modern civilizations in favor of water obtained from desalinization, ship deliveries, and well withdrawals. In June 2016, Cornell University researchers worked with the Water and Sewage Authority of Thera (DEYATH to assess the viability of improving sustainability and water efficiency by restoring traditional rainwater harvesting and storage cisterns. The team surveyed five cisterns, held meetings with water authority staff and mayoral leadership, conducted interviews with local tourism stakeholders, and coordinated with Global Water Partnership-Mediterranean. One conclusion was that cisterns could be rehabilitated as decentralized storage reservoirs and integrated into the island’s centralized water systems, or alternatively, serve as educational and cultural spaces used to communicate the importance of water to residents and tourists. The research findings highlight how multi-stakeholder partnerships could assist local authorities with developing new water management initiatives to foster more sustainable models of tourism development.

  9. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  10. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  11. Self-assembled pentablock copolymers for selective and sustained gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingqi [Iowa State Univ., Ames, IA (United States)

    2011-05-15

    The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.

  12. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  13. Conflict between Water Policy and Sustainability

    Science.gov (United States)

    Barros, A. F.

    2001-05-01

    Recent developments in the area of water policy have focussed around the concepts of Integrated Water Resources Management (IWRM). The goal of this activity has been to improve the efficiency of the potential worldwide investment of \\$80 billion per year into the water sector, and to lobby for more expenditure to meet the rapidly expanding demands placed upon water resources worldwide. Unfortunately, there is no definitive and widely accepted definition of IWRM and this fuels the long-standing feeling amongst the scientific community that water policy studies and institutions shortchange sustainability considerations, including those dealing scientific understanding of hydrology and aquatic ecosystems. This is made more difficult because the concepts used in describing sustainability are themselves diffuse and can be contradictory. The nature of understanding of the essential elements of sustainable development and those of the policy community are basically different. Policy has to be general, descriptive, and immediate-sustainability is just the opposite; it must be specific, analytical, and take a long perspective. No one on either side of the divide would claim that the other activities are not important, but bridging the divide is extremely difficult and rare. Typically, policy studies try to incorporate the bureaucratic concepts of water management and institutional reforms without considering the analytical work associated with long-term sustainability of water resources. Furthermore, water resource problems are characterized by high levels of complexity and require a strong interdisciplinary mix of approaches. Unfortunately, what is known and what is likely in the near future are subject to wide interpretation by different observers. This paper examines the conflict between the demands of water policy, which is essentially short-term and narrowly focused with the demands of sustainability, which are long-term and broadly based.

  14. Defining and delivering appropriate technology for sustainable access to safe drinking water in un- and under-serviced rural South Africa

    CSIR Research Space (South Africa)

    Maposa, Sibonginkosi

    2012-05-01

    Full Text Available This paper presents the experiences and lessons from the Accelerating Sustainable Water Services Delivery (ASWSD) initiative that is currently being implemented in South Africa. The initiative is being spearheaded by the Department of Science...

  15. Trends in Rural Water Supply: Towards a Service Delivery Approach

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2013-10-01

    The papers in this special issue argue that tackling these challenges requires a shift in emphasis in rural water supply in developing countries: away from a de-facto focus on the provision of hardware for first-time access towards the proper use of installed hardware as the basis for universal access to rural water services. The outline of the main actions required to achieve this shift are becoming clearer. Chief amongst these are the professionalisation of community management and/or provision of direct support to community service providers; adoption of a wider range of service delivery models than community management alone; and addressing the sustainable financing of all costs with a particular focus on financing capital maintenance (asset management and direct support costs. This introductory paper provides an overview of these issues and a guide to the other articles, which demonstrate these points.

  16. Polymer nanocomposite particles of S-nitrosoglutathione: A suitable formulation for protection and sustained oral delivery.

    Science.gov (United States)

    Wu, Wen; Gaucher, Caroline; Fries, Isabelle; Hu, Xian-Ming; Maincent, Philippe; Sapin-Minet, Anne

    2015-11-10

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor with therapeutic potential for cardiovascular disease treatment. Chronic oral treatment with GSNO is limited by high drug sensitivity to the environment and limited oral bioavailability, requiring the development of delivery systems able to sustain NO release. The present work describes new platforms based on polymer nanocomposite particles for the delivery of GSNO. Five types of optimized nanocomposite particles have been developed (three based on chitosan, two based on alginate sodium). Those nanocomposite particles encapsulate GSNO with high efficiency from 64% to 70% and an average size of 13 to 61 μm compatible with oral delivery. Sustained release of GSNO in vitro was achieved. Indeed, chitosan nanocomposites discharged their payload within 24h; whereas alginate nanocomposites released GSNO more slowly (10% of GSNO was still remaining in the dosage form after 24h). Their cytocompatibility toward intestinal Caco-2 cells (MTT assay) was acceptable (IC50: 6.07 ± 0.07-9.46 ± 0.08 mg/mL), demonstrating their suitability as oral delivery systems for GSNO. These delivery systems presented efficient GSNO loading and sustained release as well as cytocompatibility, showing their promise as a means of improving the oral bioavailability of GSNO and as a potential new treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  18. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  19. Transscleral sustained vasohibin-1 delivery by a novel device suppressed experimentally-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Hideyuki Onami

    Full Text Available We established a sustained vasohibin-1 (a 42-kDa protein, delivery device by a novel method using photopolymerization of a mixture of polyethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and collagen microparticles. We evaluated its effects in a model of rat laser-induced choroidal neovascularization (CNV using a transscleral approach. We used variable concentrations of vasohibin-1 in the devices, and used an enzyme-linked immunosorbent assay and Western blotting to measure the released vasohibin-1 (0.31 nM/day when using the 10 μM vasohibin-1 delivery device [10VDD]. The released vasohibin-1 showed suppression activity comparable to native effects when evaluated using endothelial tube formation. We also used pelletized vasohibin-1 and fluorescein isothiocyanate-labeled 40 kDa dextran as controls. Strong fluorescein staining was observed on the sclera when the device was used for drug delivery, whereas pellet use produced strong staining in the conjunctiva and surrounding tissue, but not on the sclera. Vasohibin-1 was found in the sclera, choroid, retinal pigment epithelium (RPE, and neural retina after device implantation. Stronger immunoreactivity at the RPE and ganglion cell layers was observed than in other retinal regions. Significantly lower fluorescein angiography (FA scores and smaller CNV areas in the flat mounts of RPE-choroid-sclera were observed for the 10VDD, VDD (1 μM vasohibin-1 delivery device, and vasohibin-1 intravitreal direct injection (0.24 μM groups when compared to the pellet, non-vasohibin-1 delivery device, and intravitreal vehicle injection groups. Choroidal neovascularization can be treated with transscleral sustained protein delivery using our novel device. We offer a safer sustained protein release for treatment of retinal disease using the transscleral approach.

  20. Sustainability of agricultural water use worldwide

    Science.gov (United States)

    Tuninetti, M.; Tamea, S.; Dalin, C.

    2017-12-01

    Water is a renewable but limited resource. Most human use of freshwater resources is for agriculture, and global water demand for agriculture is increasing because of the growth in food demand, driven by increasing population and changing diets. Hence, measuring the pressure exerted by agriculture on freshwater sources is a key issue. The sustainability of water use depends on the water source renewability rate: the water use is not sustainable (depleting the water storage) where/when it exceeds the renewable freshwater availability. In this study, we explore the sustainability of rain and irrigation water use for the production of nine major crops, globally at a 5'x5' spatial resolution. We split the crop water use into soil moisture (from rainfall) and irrigation, with, for the first time, separating ground- and surface-water sources, which is a key distinction because the renewability of these two water sources can be very different. In order to physically quantify the extent to which crop water use is sustainable, we measure the severity of the source depletion as the number of years required for the hydrological cycle to replenish the water resource used by the annual crop production, namely the Water Debt. This newly developed indicator allows one to compare the depletion level of the three water sources at a certain location for a specific crop. Hence, we mapped, for each crop, the number of years required to replenish the water withdrawn from soil-, surface- and ground-water resources. Each map identifies the hotspots for each water source, highlighting regions and crops that threaten most the water resource. We found that the water debt with soil moisture is heterogeneous in space but always lower than one year indicating a non-surprising sustainability of rain-fed agriculture. Rice and sugarcane make the largest contribution to global soil moisture depletion. Water debt in surface water is particularly high in areas of intense wheat and cotton production

  1. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  2. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens.

    Science.gov (United States)

    Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui

    2018-06-10

    In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Factors affecting sustainability of rural water schemes in Swaziland

    Science.gov (United States)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  4. Water Delivery--It's All about Pressure

    Science.gov (United States)

    Roman, Harry T.

    2005-01-01

    There is a great deal of wisdom in the old saying "water seeks its level." In fact, the concept has bearing on a very practical side of human life as well, since the public water delivery system is based on it. In this article, the author discusses the concept behind water pressure and describes how the water systems work based on this concept.…

  5. A pathway to a more sustainable water sector: sustainability-based asset management.

    Science.gov (United States)

    Marlow, D R; Beale, D J; Burn, S

    2010-01-01

    The water sectors of many countries are faced with the need to address simultaneously two overarching challenges; the need to undertake effective asset management coupled with the broader need to evolve business processes so as to embrace sustainability principles. Research has thus been undertaken into the role sustainability principles play in asset management. As part of this research, a series of 25 in-depth interviews were undertaken with water sector professionals from around Australia. Drawing on the results of these interviews, this paper outlines the conceptual relationship between asset management and sustainability along with a synthesis of the relevant opinions voiced in the interviews. The interviews indicated that the participating water authorities have made a strong commitment to sustainability, but there is a need to facilitate change processes to embed sustainability principles into business as usual practices. Interviewees also noted that asset management and sustainability are interlinked from a number of perspectives, especially in the way decision making is undertaken with respect to assets and service provision. The interviews also provided insights into the research needed to develop a holistic sustainability-based asset management framework.

  6. Toward A Science of Sustainable Water Management

    Science.gov (United States)

    Brown, C.

    2016-12-01

    Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. The related challenges of resolving the competition for freshwater among competing uses (so called "nexus" issues) and adapting water resources systems to climate change are prominent examples of the of sustainable water management challenges. In addition, largely untested concepts such as "integrated water resources management" have surfaced as Sustainable Development Goals. In this presentation, we argue that for research to improve water management, and for practice to inspire better research, a new focus is required, one that bridges disciplinary barriers between the water resources research focus on infrastructure planning and management, and the role of human actors, and geophysical sciences community focus on physical processes in the absence of dynamical human response. Examples drawn from climate change adaptation for water resource systems and groundwater management policy provide evidence of initial progress towards a science of sustainable water management that links improved physical understanding of the hydrological cycle with the socioeconomic and ecological understanding of water and societal interactions.

  7. Virtual water trade and time scales for loss of water sustainability: a comparative regional analysis.

    Science.gov (United States)

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-20

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  8. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  9. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene.

    Science.gov (United States)

    Hutton, Guy; Chase, Claire

    2016-05-27

    Safe drinking water, sanitation, and hygiene (WASH) are fundamental to an improved standard of living. Globally, 91% of households used improved drinking water sources in 2015, while for improved sanitation it is 68%. Wealth disparities are stark, with rural populations, slum dwellers and marginalized groups lagging significantly behind. Service coverage is significantly lower when considering the new water and sanitation targets under the sustainable development goals (SDGs) which aspire to a higher standard of 'safely managed' water and sanitation. Lack of access to WASH can have an economic impact as much as 7% of Gross Domestic Product, not including the social and environmental consequences. Research points to significant health and socio-economic consequences of poor nutritional status, child growth and school performance caused by inadequate WASH. Groundwater over-extraction and pollution of surface water bodies have serious impacts on water resource availability and biodiversity, while climate change exacerbates the health risks of water insecurity. A significant literature documents the beneficial impacts of WASH interventions, and a growing number of impact evaluation studies assess how interventions are optimally financed, implemented and sustained. Many innovations in behavior change and service delivery offer potential for scaling up services to meet the SDGs.

  10. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    Science.gov (United States)

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Reconciling IWRM and water delivery in Ghana - The potential and the challenges

    Science.gov (United States)

    Anokye, Nana Amma; Gupta, Joyeeta

    The key elements of integrated water resources management include a holistic integrated approach and the main principles of public participation, the role of gender and the notion of recognising the economic value of water. This paper investigates how these notions play out in the context of providing water to the rural communities in the Densu basin in Ghana. This investigation is based on a content analysis of the relevant policy documents and interviews with state agencies and local stakeholders. The paper concludes that there is a conflict between the IWRM goal of integrating all water uses and sectors in the management of water resources and focusing on the prioritisation of water delivery services. However, three of the IWRM principles can be used in implementing water delivery. While Ghana has adopted IWRM, it clearly prioritises water delivery. At basin level, the IWRM planning process does not take water delivery into account and water delivery is conducted independent of the IWRM process. Although the participatory and gender approaches are being implemented relatively successfully, if slowly, the ‘water as an economic good’ principle is given less priority than the notion of the human right to water as local communities pay only 5% of the capital costs of water delivery services. The impact of the rural water delivery services has been positive in the Densu basin in seven different ways; and if this helps the rural community out of the poverty trap, it may lead to economically viable water facilities in the long-term.

  12. Modeling Sustainability of Water, Environment, Livelihood, and Culture in Traditional Irrigation Communities and Their Linked Watersheds

    Directory of Open Access Journals (Sweden)

    Kenneth Boykin

    2012-11-01

    Full Text Available Water scarcity, land use conversion and cultural and ecosystem changes threaten the way of life for traditional irrigation communities of the semi-arid southwestern United States. Traditions are strong, yet potential upheaval is great in these communities that rely on acequia irrigation systems. Acequias are ancient ditch systems brought from the Iberian Peninsula to the New World over 400 years ago; they are simultaneously gravity flow water delivery systems and shared water governance institutions. Acequias have survived periods of drought and external shocks from changing economics, demographics, and resource uses. Now, climate change and urbanization threaten water availability, ecosystem functions, and the acequia communities themselves. Do past adaptive practices hold the key to future sustainability, or are new strategies required? To explore this issue we translated disciplinary understanding into a uniform format of causal loop diagrams to conceptualize the subsystems of the entire acequia-based human-natural system. Four subsystems are identified in this study: hydrology, ecosystem, land use/economics, and sociocultural. Important linkages between subsystems were revealed as well as variables indicating community cohesion (e.g., total irrigated land, intensity of upland grazing, mutualism. Ongoing work will test the conceptualizations with field data and modeling exercises to capture tipping points for non-sustainability and thresholds for sustainable water use and community longevity.

  13. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  14. Cephradin-plaga microspheres for sustained delivery to cattle.

    Science.gov (United States)

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  15. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib; Ghaffour, NorEddine; Naceur, Mohamed Wahib; Lounici, Hakim; Drouiche, Madani

    2012-01-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing

  16. Urban water sustainability: framework and application

    Directory of Open Access Journals (Sweden)

    Wu Yang

    2016-12-01

    Full Text Available Urban areas such as megacities (those with populations greater than 10 million are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems. The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water

  17. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  18. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene

    Directory of Open Access Journals (Sweden)

    Guy Hutton

    2016-05-01

    Full Text Available Safe drinking water, sanitation, and hygiene (WASH are fundamental to an improved standard of living. Globally, 91% of households used improved drinking water sources in 2015, while for improved sanitation it is 68%. Wealth disparities are stark, with rural populations, slum dwellers and marginalized groups lagging significantly behind. Service coverage is significantly lower when considering the new water and sanitation targets under the sustainable development goals (SDGs which aspire to a higher standard of ‘safely managed’ water and sanitation. Lack of access to WASH can have an economic impact as much as 7% of Gross Domestic Product, not including the social and environmental consequences. Research points to significant health and socio-economic consequences of poor nutritional status, child growth and school performance caused by inadequate WASH. Groundwater over-extraction and pollution of surface water bodies have serious impacts on water resource availability and biodiversity, while climate change exacerbates the health risks of water insecurity. A significant literature documents the beneficial impacts of WASH interventions, and a growing number of impact evaluation studies assess how interventions are optimally financed, implemented and sustained. Many innovations in behavior change and service delivery offer potential for scaling up services to meet the SDGs.

  19. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene

    Science.gov (United States)

    Hutton, Guy; Chase, Claire

    2016-01-01

    Safe drinking water, sanitation, and hygiene (WASH) are fundamental to an improved standard of living. Globally, 91% of households used improved drinking water sources in 2015, while for improved sanitation it is 68%. Wealth disparities are stark, with rural populations, slum dwellers and marginalized groups lagging significantly behind. Service coverage is significantly lower when considering the new water and sanitation targets under the sustainable development goals (SDGs) which aspire to a higher standard of ‘safely managed’ water and sanitation. Lack of access to WASH can have an economic impact as much as 7% of Gross Domestic Product, not including the social and environmental consequences. Research points to significant health and socio-economic consequences of poor nutritional status, child growth and school performance caused by inadequate WASH. Groundwater over-extraction and pollution of surface water bodies have serious impacts on water resource availability and biodiversity, while climate change exacerbates the health risks of water insecurity. A significant literature documents the beneficial impacts of WASH interventions, and a growing number of impact evaluation studies assess how interventions are optimally financed, implemented and sustained. Many innovations in behavior change and service delivery offer potential for scaling up services to meet the SDGs. PMID:27240389

  20. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  1. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein

    Science.gov (United States)

    Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.

    1996-01-01

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064

  2. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  3. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  4. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  5. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  6. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  7. Sustainable agricultural water management across climates

    Science.gov (United States)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  8. Evaluating Water Management Practice for Sustainable Mining

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zhang

    2014-02-01

    Full Text Available To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has provided a solution to aid the identification of more sustainable mine water management practices. The solution includes a conceptual framework for forming a decision hierarchy; an evaluation method for assessing mine water management practices; and a sensitivity analysis in view of different preferences of stakeholders or managers. The solution is applied to a case study of the evaluation of sustainable water management practices in 16 mines located in the Bowen Basin in Queensland, Australia. The evaluation results illustrate the usefulness of the proposed solution. A sensitivity analysis is performed according to preference weights of stakeholders or managers. Some measures are provided for assessing sensitivity of strategy ranking outcomes if the weight of an indicator changes. Finally, some advice is given to improve the mine water management in some mines.

  9. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  10. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    Science.gov (United States)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  11. Ocular Insert: Dosage Form for Sustain Opthalmic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-06-01

    Full Text Available Except for skin, the eye is the most easily accessible site for topical administration of a medication. Traditional topical ophthalmic formulations (eye drops and ointments have poor bioavailability because of rapid pre-corneal elimination, conjunctival absorption, solution drainage by gravity, induced lacrimation and normal tear turnover. This leads to frequent installations of concentrated medication to achieve a therapeutic effect. The typical “pulse-entry” type drug release observed with ocular aqueous solutions (eye drops, suspensions and ointments can be replaced by more controlled, sustained, and continuous drug delivery, using a controlled-release ocular drug delivery system. Ocular inserts are solid or semisolid sterile preparations, of appropriate size and shape, designed to be inserted behind the eyelid or held on the eye and to deliver drugs for topical or systemic effect. These are polymeric systems into which the drug is incorporated as a solution or dispersion. They are better tolerated as to drainage and tear flow compared with other ophthalmic formulation and produce reliable drug release in the conjunctival cul-de-sac.

  12. Following the Water Cycle to Sustainability

    Science.gov (United States)

    Lutz, T. M.

    2012-12-01

    For scientists, modeling the connections among the parts of complex, dynamic systems is crucial. Doing so lets us understand emergent phenomena such as ecosystem behavior and climate patterns that could not otherwise be predicted. Emergent phenomena can typically only be understood or appreciated when we stand "outside" the system. When scientists take such an outsiders view of earth's systems they can propose many ways that human activities modify the climate system (e.g., increasing or reducing GHG emissions). But what should we do to achieve a sustainable future? Sustainability is an emergent property that arises at the level of the planetary management system, of which the scientific establishment is just a part. We are "insiders" and it is impossible to completely envision the conditions for sustainability or to plan for it. The crises in our atmosphere, biosphere, oceans, and in the natural and energy resource sectors are based in science and do call for urgent changes in science education. But education that focuses solely on science to meet the challenges of sustainability may be as likely to harm humanity's long-term prospects as to improve them. I present activities and teaching strategies that I use in general education classes at West Chester University, a comprehensive institution of roughly 14,000 undergraduates. The overarching concept is to extend "modeling the connections" to the sustainability level and to train students to think outside the system. To make the ideas more accessible, I have the students become sensors at their particular point in the web of connections that constitute the planetary management system. I ask them to evaluate their connection in three domains proposed by John Ehrenfeld (Sustainability by Design, Yale University Press, 2008): sense of place in the natural world; sense of responsibility for our actions, and sense of what it is to be a human being. I have them analyze their sense of connection with reference to a

  13. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  14. A novel nanoparticle formulation for sustained paclitaxel delivery.

    Science.gov (United States)

    Trickler, W J; Nagvekar, A A; Dash, A K

    2008-01-01

    To develop a novel nanoparticle drug delivery system consisting of chitosan and glyceryl monooleate (GMO) for the delivery of a wide variety of therapeutics including paclitaxel. Chitosan/GMO nanoparticles were prepared by multiple emulsion (o/w/o) solvent evaporation methods. Particle size and surface charge were determined. The morphological characteristics and cellular adhesion were evaluated with surface or transmission electron microscopy methods. The drug loading, encapsulation efficiency, in vitro release and cellular uptake were determined using HPLC methods. The safety and efficacy were evaluated by MTT cytotoxicity assay in human breast cancer cells (MDA-MB-231). These studies provide conceptual proof that chitosan/GMO can form polycationic nano-sized particles (400 to 700 nm). The formulation demonstrates high yields (98 to 100%) and similar entrapment efficiencies. The lyophilized powder can be stored and easily be resuspended in an aqueous matrix. The nanoparticles have a hydrophobic inner-core with a hydrophilic coating that exhibits a significant positive charge and sustained release characteristics. This novel nanoparticle formulation shows evidence of mucoadhesive properties; a fourfold increased cellular uptake and a 1000-fold reduction in the IC(50) of PTX. These advantages allow lower doses of PTX to achieve a therapeutic effect, thus presumably minimizing the adverse side effects.

  15. ISSUES ON THE ROLE OF EFFICIENT WATER PRICING FOR SUSTAINABLE WATER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Simona FRONE

    2012-06-01

    Full Text Available This paper aims to highlight some of the main issues raised by developing and implementing the most appropriate approach to water pricing, and to induce a sustainable water management. Therefore, we define the concept and utility of water demand management as one objective of efficient water pricing. Next we analyse the basic economics and some important theoretical insights of water pricing. We further with state the main four inter-correlated principles of sustainable water pricing (full-cost recovery, economic efficiency,equity and administrative feasability and the trends and challenges of their actual implementing in the water pricing policy of Romania and other EU countries. We end with a review of opinions, personal conclusions and recommendations on the actual opportunity, effectiveness and role of efficient water pricing in fulfilling the goals of sustainabilty.

  16. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    Science.gov (United States)

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  18. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  19. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    Science.gov (United States)

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ideas towards sustainable water security

    Science.gov (United States)

    Dalin, Carole

    2016-04-01

    With growing global demands and a changing climate, ensuring water security - the access to sufficient, quality water resources for health and livelihoods and an acceptable level of water related risk - is increasingly challenging. While a billion people still lack access to water, over-exploitation of this resource increases in many developed and developing parts of the world. While some solutions to water stress have been known for a long time, financial, cultural and political barriers often prevent their implementations. This talk will highlight three crucial areas that need to be addressed to progress towards sustainable water security. The first point is on scale, the second on the agricultural sector and irrigation, and the third on food trade and policy.

  1. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  2. Alternative Public Service Delivery Models in Health, Water and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The literature on public service delivery alternatives has to date been highly localized, sector specific and lacking in methodological consistency. This project seeks to analyze health, water and electricity delivery models in Africa, Asia and Latin America in order to identify and document successful alternatives to ...

  3. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  4. A New Framework for Assessing the Sustainability Reporting Disclosure of Water Utilities

    Directory of Open Access Journals (Sweden)

    Silvia Cantele

    2018-02-01

    Full Text Available Sustainability reporting is becoming more and more widespread among companies aiming at disclosing their contribution to sustainable development and gaining legitimacy from stakeholders. This is more significant for firms operating in a public services’ context and mainly when supplying a fundamental public resource, like water utilities. While the literature on sustainability reporting in the water sector is scant, there is an increasing need to study the usefulness and quality of its sustainability disclosures to adequately inform the stakeholders about the activities of water utilities to protect this fundamental resource and general sustainable development. This article presents a novel assessment framework based on a scoring technique and an empirical analysis on the sustainability reports of Italian water utilities carried out through it. The results highlight a low level of disclosure on the sustainability indicators suggested by the main sustainability reporting guidelines (Global Reporting Initiative, (GRI, and Sustainability Accounting Standard Board, (SASB; most companies tend to disclose only qualitative information and fail to inform about some material aspects of water management, such as water recycled, network resilience, water sources, and effluent quality. These findings indicate that sustainability reporting is mainly considered as a communication tool, rather than a performance measurement and an accountability tool, but also suggest the need for a new and international industry-specific sustainability reporting standard.

  5. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  6. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016

  7. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  8. Fluvastatin as a micropore lifetime enhancer for sustained delivery across microneedle-treated skin.

    Science.gov (United States)

    Ghosh, Priyanka; Brogden, Nicole K; Stinchcomb, Audra L

    2014-02-01

    Microneedles (MNs), a physical skin permeation enhancement technique, facilitate drug delivery across the skin, thus enhancing the number of drugs that can be delivered transdermally in therapeutically relevant concentrations. The micropores created in the skin by MNs reseal because of normal healing processes of the skin, thus limiting the duration of the drug delivery window. Pore lifetime enhancement strategies can increase the effectiveness of MNs as a drug delivery mechanism by prolonging the delivery window. Fluvastatin (FLU), a HMGCoA reductase inhibitor, was used in this study to enhance the pore lifetime by inhibiting the synthesis of cholesterol, a major component of the stratum corneum lipids. The study showed that using FLU as a pretreatment it is possible to enhance the pore lifetime of MN-treated skin and thus allow for sustained drug delivery. The skin recovered within a 30-45-min time period following the removal of occlusion, and there was no significant irritation observed due to the treatment compared to the control sites. Thus, it can be concluded that localized skin treatment with FLU can be used to extend micropore lifetime and deliver drugs for up to 7 days across MN-treated skin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  10. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  11. Perspective: The challenge of ecologically sustainable water management

    CSIR Research Space (South Africa)

    Bernhardt, E

    2006-10-01

    Full Text Available Sustainable water resource management is constrained by three pervasive myths; that societal and environmental water demands always compete with one another; that technological solutions can solve all water resource management problems...

  12. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  13. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab

    Science.gov (United States)

    K.Yandrapu, Sarath; Upadhyay, Arun K.; Petrash, J. Mark; Kompella, Uday B.

    2014-01-01

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9 fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Flour 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases. PMID:24131101

  14. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

    Science.gov (United States)

    Yandrapu, Sarath K; Upadhyay, Arun K; Petrash, J Mark; Kompella, Uday B

    2013-12-02

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

  15. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib

    2012-12-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing to improve its water sector performance. The water strategy focuses on desalination for the coastal cities, medium-sized dams to irrigate the inland mountains and high plateau, and ambitious water transfer projects interconnecting Algeria\\'s 65 dams to bring water to water scarce parts of the country. Waste water treatment and water reclamation technologies are also highly sought after. The main objective of the country\\'s water policy consists on providing sufficient potable water for the population supply. This objective is undertaken by increasing the water resources and availability. © 2012 Desalination Publications. All rights reserved.

  16. Moving Towards Sustainable and Resilient Smart Water Grids

    Directory of Open Access Journals (Sweden)

    Michele Mutchek

    2014-03-01

    Full Text Available Urban water systems face sustainability and resiliency challenges including water leaks, over-use, quality issues, and response to drought and natural disasters. Information and communications technology (ICT could help address these challenges through the development of smart water grids that network and automate monitoring and control devices. While progress is being made on technology elements, as a system, the smart water grid has received scant attention. This article aims to raise awareness of the systems-level idea of smart water grids by reviewing the technology elements and their integration into smart water systems, discussing potential sustainability and resiliency benefits, and challenges relating to the adoption of smart water grids. Water losses and inefficient use stand out as promising areas for applications of smart water grids. Potential barriers to the adoption of smart water grids include lack of funding for research and development, economic disincentives as well as institutional and political structures that favor the current system. It is our hope that future work can clarify the benefits of smart water grids and address challenges to their further development.

  17. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  18. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    Science.gov (United States)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  19. Evaluating Water Management Practice for Sustainable Mining

    OpenAIRE

    Xiangfeng Zhang; Lei Gao; Damian Barrett; Yun Chen

    2014-01-01

    To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has pr...

  20. From safe yield to sustainable development of water resources - The Kansas experience

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  1. Measuring global water security towards sustainable development goals

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819; Gain, A.K.; Giupponi, C.

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals(SDGs). Many international river basins are likely to experience ‘low water

  2. Alternative Public Service Delivery Models in Health, Water and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project seeks to analyze health, water and electricity delivery models in Africa, Asia and Latin America in order to identify and document successful alternatives to commercialization. ... Contradictions in municipal transformation from apartheid to democracy : the battle over local water privatization in South Africa.

  3. Sustainable Urban Homecare Delivery with Different Means of Transport

    Directory of Open Access Journals (Sweden)

    Norina Szander

    2018-02-01

    Full Text Available Due to the increasing number of requests for homecare services, care institutions struggle to perform in urban traffic, which eventually makes travel times longer and less predictable and, therefore, leads to a declining service quality. Homecare delivery scheduling and planning tools must lead to efficient reliable routes that allow the nursing crew to make the least efforts and use the fewest institutional resources, and that consider urban sustainability goals. For the case study, a European city was selected with 58,000 people of whom 73 patients received long-term care at homes provided by 11 homecare nurses. While maximising patient satisfaction, a homecare planning algorithm considered many means of transport and minimised travel times. The study reduced the total nurses’ working hours/day by a bus and walking combination, and by comparing if nurses ride e-bikes, which respectively reduced ~35–44% of the total time that nurses spent travelling. This result is applicable to an urban environment where the public transport network is sufficient and biking is allowed on a reasonable number of roads. Better homecare management can support the efficient use of resources of health care institutions, high-quality home care and aspirations towards livable communities and sustainable development.

  4. Alternative Public Service Delivery Models in Health, Water and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project seeks to analyze health, water and electricity delivery models in Africa, Asia and Latin America in order to identify and document successful alternatives to commercialization. Researchers will draw up a set of ... Documents. Environmental and water management law in post-apartheid South Africa. Documents.

  5. The effect of local sustained delivery of sirolimus on the vascular PAI-1 and t-PA expression after angioplasty

    International Nuclear Information System (INIS)

    E Yajun; He Nengshu; Fan Hailun

    2011-01-01

    Objective: To investigate the effect of local sustained delivery of sirolimus on the vascular inhibitor of plasminogen activator-1 (PAI-1) and tissue type plasminogen activator (t-PA) expression after angioplasty. Methods: Experimental common carotid artery injury model was established in the rats. A total of 30 male Wistar rats were divided into experimental group (n=20) and control group (n=10). Adventitial administration of drug was applied. Pluronic F-127 gel containing sirolimus was administered to the exposed adventitial surface of injured carotid artery. The experimental group was divided into high concentration (600 μg/100 μl) sub-group and low concentration (300 μg/100μl) sub-group according to the concentration of sirolimus delivered. The effect of local sustained delivery sirolimus on vascular PAI-1 and t-PA expression after percutaneous angioplasty was evaluated by immunohistochemistry. Results: Compared to control group, 15 and 30 days after injury local sustained delivery of sirolimus in both high concentration and low concentration sub-groups the expression of the PAI-1 in neointima was significantly enhanced (P 0.05). At 15 and 30 days after injury, the expression of t-PA in neointima was decreased in both high and low concentration sub-groups (P<0.05), and the expression of t-PA in media was significantly decreased in high concentration sub-group (P<0.05) while on significant difference could be detected in low concentration sub-group. Conclusion: Local sustained delivery of sirolimus can induce the high expression of PAI-1 and low expression of t-PA in neointima although it inhibits the proliferation of neointima in the same time, and the imbalanced expression of t-PA and PAI-1 may probably play an important role in the late formation of thrombosis after the placement of drug-eluting stent. (authors)

  6. Economic sustainability, water security and multi-level governance of local water schemes in Nepal

    Directory of Open Access Journals (Sweden)

    Emma Hakala

    2017-07-01

    Full Text Available This article explores the role of multi-level governance and power structures in local water security through a case study of the Nawalparasi district in Nepal. It focuses on economic sustainability as a measure to address water security, placing this thematic in the context of a complicated power structure consisting of local, district and national administration as well as external development cooperation actors. The study aims to find out whether efforts to improve the economic sustainability of water schemes have contributed to water security at the local level. In addition, it will consider the interactions between water security, power structures and local equality and justice. The research builds upon survey data from the Nepalese districts of Nawalparasi and Palpa, and a case study based on interviews and observation in Nawalparasi. The survey was performed in water schemes built within a Finnish development cooperation programme spanning from 1990 to 2004, allowing a consideration of the long-term sustainability of water management projects. This adds a crucial external influence into the intra-state power structures shaping water management in Nepal. The article thus provides an alternative perspective to cross-regional water security through a discussion combining transnational involvement with national and local points of view.

  7. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  8. Improving service delivery of water, sanitation, and hygiene in primary schools: a cluster-randomized trial in western Kenya.

    Science.gov (United States)

    Alexander, Kelly T; Dreibelbis, Robert; Freeman, Matthew C; Ojeny, Betty; Rheingans, Richard

    2013-09-01

    Water, sanitation, and hygiene (WASH) programs in schools have been shown to improve health and reduce absence. In resource-poor settings, barriers such as inadequate budgets, lack of oversight, and competing priorities limit effective and sustained WASH service delivery in schools. We employed a cluster-randomized trial to examine if schools could improve WASH conditions within existing administrative structures. Seventy schools were divided into a control group and three intervention groups. All intervention schools received a budget for purchasing WASH-related items. One group received no further intervention. A second group received additional funding for hiring a WASH attendant and making repairs to WASH infrastructure, and a third group was given guides for student and community monitoring of conditions. Intervention schools made significant improvements in provision of soap and handwashing water, treated drinking water, and clean latrines compared with controls. Teachers reported benefits of monitoring, repairs, and a WASH attendant, but quantitative data of WASH conditions did not determine whether expanded interventions out-performed our budget-only intervention. Providing schools with budgets for WASH operational costs improved access to necessary supplies, but did not ensure consistent service delivery to students. Further work is needed to clarify how schools can provide WASH services daily.

  9. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  10. Local sustained-release delivery systems of the antibiofilm agent thiazolidinedione-8 for prevention of catheter-associated urinary tract infections.

    Science.gov (United States)

    Shenderovich, Julia; Feldman, Mark; Kirmayer, David; Al-Quntar, Abed; Steinberg, Doron; Lavy, Eran; Friedman, Michael

    2015-05-15

    Thiazolidinedione-8 (TZD-8) is an anti-quorum-sensing molecule that has the potential to effectively prevent catheter-associated urinary tract infections, a major healthcare challenge. Sustained-release drug-delivery systems can enhance drugs' therapeutic potential, by maintaining their therapeutic level and reducing their side effects. Varnishes for sustained release of TZD-8 based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit(®) RL) were developed. The main factors affecting release rate were found to be film thickness and presence of a hydrophilic or swellable polymer in the matrix. The release mechanism of ethylcellulose-based systems matched the Higuchi model. Selected varnishes were retained on catheters for at least 8 days. Sustained-release delivery systems of TZD-8 were active against Candida albicans biofilms. The present study demonstrates promising results en route to developing applications for the prevention of catheter-associated infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  12. Factors influencing sustainability of communally-managed water facilities in rural areas of Zimbabwe

    Science.gov (United States)

    Kativhu, T.; Mazvimavi, D.; Tevera, D.; Nhapi, I.

    2017-08-01

    Sustainability of point water facilities is a major development challenge in many rural settings of developing countries not sparing those in the Sub-Saharan Africa region. This study was done in Zimbabwe to investigate the factors influencing sustainability of rural water supply systems. A total of 399 water points were studied in Nyanga, Chivi and Gwanda districts. Data was collected using a questionnaire, observation checklist and key informant interview guide. Multi-Criteria analysis was used to assess the sustainability of water points and inferential statistical analysis such as Chi square tests and Analysis of Variance (ANOVA) were used to determine if there were significant differences on selected variables across districts and types of lifting devices used in the study area. The thematic approach was used to analyze qualitative data. Results show that most water points were not functional and only 17% across the districts were found to be sustainable. A fusion of social, technical, financial, environmental and institutional factors was found to be influencing sustainability. On technical factors the ANOVA results show that the type of lifting device fitted at a water point significantly influences sustainability (F = 37.4, p planning stage of water projects was also found to be critical for sustainability although field results showed passive participation by communities at this critical project stage. Financial factors of adequacy of financial contributions and establishment of operation and maintenance funds were also found to be of great importance in sustaining water supply systems. It is recommended that all factors should be considered when assessing sustainability since they are interrelated.

  13. Environmental impacts and sustainability of degraded water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, D.L.; Bradford, S.A. [USDA ARS, Riverside, CA (United States). US Salin Laboratory

    2008-09-15

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  14. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Directory of Open Access Journals (Sweden)

    Sadia Rahman

    2014-01-01

    Full Text Available Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  15. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  16. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  17. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yang; Wu, Chao, E-mail: wuchao27@126.com; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-02-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption.

  18. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    International Nuclear Information System (INIS)

    Qiu, Yang; Wu, Chao; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-01-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption

  19. Water for Survival, Water for Pleasure – A Biopolitical Perspective on the Social Sustainability of the Basic Water Agenda

    Directory of Open Access Journals (Sweden)

    Sofie Hellberg

    2017-02-01

    Full Text Available This article explores the social sustainability of the basic water agenda. It does so through a biopolitical analysis of water narratives from eThekwini municipality, South Africa, where a policy of Free Basic Water (FBW has been implemented. The article addresses the question of what water 'is' and 'does' and shows that water and water governance are productive of lifestyles, people’s self-understanding and how they view their place in the social hierarchy. The analysis brings to light that a differentiated management system, that provides different levels of water services to different populations and individuals, becomes part of (reproducing social hierarchies and deepens divisions between communities. Based on these findings, the article argues that while the basic water agenda has brought successful results globally and remains important in terms of guaranteeing health and survival for the most vulnerable, it should not be confused with efforts of social sustainability. Social sustainability would not only involve a situation where basic needs are met but would also have to address effects of water systems on the relationships between individuals and populations in society.

  20. Systems Reliability Framework for Surface Water Sustainability and Risk Management

    Science.gov (United States)

    Myers, J. R.; Yeghiazarian, L.

    2016-12-01

    With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this

  1. From Indicators to Policies: Open Sustainability Assessment in the Water and Sanitation Sector

    Directory of Open Access Journals (Sweden)

    Martín Alejandro Iribarnegaray

    2015-10-01

    Full Text Available A water and sanitation sustainability index (WASSI was developed and estimated in four cities of the province of Salta, in northern Argentina. The index was built with nine descriptors and fifteen indicators that covered all essential aspects of the sustainability of local water and sanitation management systems. Only one of the cities studied obtained a sustainability value above the acceptability threshold adopted (50 of 100 points. Results indicate that the water company needs to address some environmental and social issues to enhance the sustainability of the systems studied. The WASSI was conceptually robust and operationally simple, and could be easily adapted to the case studies. The index can be followed and updated online on a web site specially developed for this project. This website could be useful to promote participatory processes, assist decision makers, and facilitate academic research. According to local stakeholders, a more open sustainability assessment based on sustainability indices and supported by virtual tools would be relevant and highly feasible. It would help decision makers improve the sustainability and transparency of water and sanitation management systems, and promote more sustainable water policies in the region and beyond.

  2. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Mazur Steven

    2010-09-01

    Full Text Available Abstract Background The mutation in the cystic fibrosis transmembrane conductance regulator (CFTR gene results in CF. The most common mutation, ΔF508-CFTR, is a temperature-sensitive, trafficking mutant with reduced chloride transport and exaggerated immune response. The ΔF508-CFTR is misfolded, ubiquitinated, and prematurely degraded by proteasome mediated- degradation. We recently demonstrated that selective inhibition of proteasomal pathway by the FDA approved drug PS-341 (pyrazylcarbonyl-Phe-Leuboronate, a.k.a. Velcade or bortezomib ameliorates the inflammatory pathophysiology of CF cells. This proteasomal drug is an extremely potent, stable, reversible and selective inhibitor of chymotryptic threonine protease-activity. The apprehension in considering the proteasome as a therapeutic target is that proteasome inhibitors may affect proteostasis and consecutive processes. The affect on multiple processes can be mitigated by nanoparticle mediated PS-341 lung-delivery resulting in favorable outcome observed in this study. Results To overcome this challenge, we developed a nano-based approach that uses drug loaded biodegradable nanoparticle (PLGA-PEGPS-341 to provide controlled and sustained drug delivery. The in vitro release kinetics of drug from nanoparticle was quantified by proteasomal activity assay from days 1-7 that showed slow drug release from day 2-7 with maximum inhibition at day 7. For in vivo release kinetics and biodistribution, these drug-loaded nanoparticles were fluorescently labeled, and administered to C57BL6 mice by intranasal route. Whole-body optical imaging of the treated live animals demonstrates efficient delivery of particles to murine lungs, 24 hrs post treatment, followed by biodegradation and release over time, day 1-11. The efficacy of drug release in CF mice (Cftr-/- lungs was determined by quantifying the changes in proteasomal activity (~2 fold decrease and ability to rescue the Pseudomonas aeruginosa LPS (Pa

  3. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  4. Sustainable development of energy, water and environment systems

    International Nuclear Information System (INIS)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav; Klemeš, Jiří Jaromír; Mathiessen, Brian vad; Yan, Jinyue

    2013-01-01

    Highlights: ► This special issue of contributions presented at the 6th SDEWES Conference. ► Buildings are becoming energy neutral. ► Process integration enables significant improvements of energy efficiency. ► The electrification of transport and measures to increase its efficiency are needed. ► Renewable energy is becoming more viable while being complicated to integrate. -- Abstract: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations.

  5. Exploring the knowledge ‘base’ of practitioners in the delivery of sustainable regeneration projects

    Directory of Open Access Journals (Sweden)

    Julius Akotia

    2016-06-01

    Full Text Available In recent years, sustainable regeneration has been recognised as being of major economic and social concern in the world. In the UK for instance, government has initiated a number of policies and evaluation methods to deal with some of the environmental problems associated with regeneration projects. However, the post construction evaluation of these projects has often resulted in them being seen as not achieving their set objectives. Attempts aimed at evaluating the impact of sustainability by built environment practitioners have primarily been limited to their assessment of the projects’ potential environmental impacts, with the associated socio-economic impacts being neglected. There has not been any well-defined built environment research that has been able to deal holistically with the broader issues of sustainability in terms of benefits/impacts of the regeneration projects to the communities concerned. The findings of an exploratory study that adopted a semi-structured interview approach for data collection, to explore the knowledge and understanding of fifteen practitioners who are often involved in the delivery of these projects are presented. The findings reveal a lack of knowledge and understanding of sustainability as well as structured mechanism/practices for evaluating the socio-economic sustainability factors in relation to regeneration projects.

  6. Bridging the Gap: Ideas for water sustainability in the western United States

    Science.gov (United States)

    Tidwell, V. C.; Passell, H. D.; Roach, J. D.

    2012-12-01

    Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  7. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  8. Water and Energy Sustainability: A Balance of Government Action and Industry Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald

    2009-12-31

    By completing the tasks and subtasks of the project, the Ground Water Protection Council (GWPC) through its state regulatory agency members and oil and gas industry partners, will bring attention to water quality and quantity issues and make progress toward water and energy sustainability though enhanced water protection and conservation thus enhancing the viability of the domestic fossil fuel industry. The project contains 4 major independent Tasks. Task 1 - Work Plan: Water-Energy Sustainability: A Symposium on Resource Viability. Task 2 - Work Plan: A Regional Assessment of Water and Energy Sustainability. Task 3 - Work Plan: Risk Based Data Management System-Water Water and Energy Module. Task 4 - Work Plan: Identification and Assessment of States Regulatory Programs Regarding Geothermal Heating and Cooling Systems. Each task has a specific scope (details given).

  9. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  10. WATER AND ARCHAEOLOGY FOR SUSTAINABLE TOURISM

    Directory of Open Access Journals (Sweden)

    NICHOLAS KATHIJOTES

    2016-03-01

    Full Text Available Water is undoubtedly the most precious resource of the planet and the accessibility to water resources marked the history of mankind since the dawn of times. Water has been indeed very central to archaeology and anthropology, that studied the ways in which water was provisioned, tanked, distributed, worshipped, exploited for agricultural irrigation or to power machines like water-mills, used for leisure, hygiene and healing, or abused to confer power on particular groups ,and how it played a central role in political and economic strategies. More than any other factor, waterways marked cultural and economic developments in history. This paper outlines examples of water resources management throughout the ages, in Cyprus and the Hellenic Civilization on different aspects of the use and management of water, investigates technical issues and gives suggestions, thus promoting a new approach to archaeological heritage and sustainable tourism.

  11. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  12. SUSTAINABILITY INDICES AS MEASURES OF SERVICE DELIVERY IN OPEN AND DISTANCE LEARNING INSTITUTIONS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Salawu, I. O, Adeoye, Felix A & Olugbenga David OJO

    2010-01-01

    Full Text Available Open and Distance Education if well organized, is an adequate alternative to conventional education. For acceptability of this assertion, the public, governments, employers of labour and other stakeholders need to be convinced that ODL institutions are not providing half-baked education. Also, for the public and other shareholders enthusiasm and interest that are usually hard earned to be sustained, there is need for total commitment to the implementation of some established indices of sustainability. The thrust of this paper is in the appraisal of the extent to which two ODL institutions in Nigeria adhere to the principles of sustainability. A set of questionnaire was developed and used to collect data which were analyzed using simple non-parametric statistics. Suggestions which were aimed at improving the service delivery, in the institutions used for the study in particular, and other sister institutions especially in the developed countries were highlighted.

  13. Barriers to sustainable water resources management : Case study in Omnogovi province, Mongolia

    OpenAIRE

    Enkhtsetseg, Mandukhai

    2017-01-01

    This study examines the barriers to sustainable water resources management in water vulnerable, yet a mining booming area. The case study is conducted in Omnogovi province of Mongolia in Nov-Dec 2016. This study presents how the Omnogovi province manages its water with increased mining and examines what hinders the province from practicing sustainable water resources management and examines the involvement of residents in the water resources management of Omnogovi province. Qualitative approa...

  14. Closing of water circuits - a global benchmark on sustainable water management

    Science.gov (United States)

    Fröhlich, Siegmund

    2017-11-01

    Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: "The wars of the 21st century will be fought not over oil, they will be fought over water." [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  15. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  16. Virtual Water and Water Footprints: Overreaching Into the Discourse on Sustainability, Efficiency, and Equity

    Directory of Open Access Journals (Sweden)

    Dennis Wichelns

    2015-10-01

    Full Text Available The notions of virtual water and water footprints were introduced originally to bring attention to the large amounts of water required to produce crops and livestock. Recently, several authors have begun applying those notions in efforts to describe efficiency, equity, and the sustainability of resources and production activities. In this paper, I describe why the notions of virtual water and water footprints are not appropriate for analysing issues pertaining to those topics. Both notions lack a supporting conceptual framework and they contain too little information to enhance understanding of important policy issues. Neither notion accounts for the opportunity cost or scarcity value of water in any setting, or the impacts of water availability and use on livelihoods. In addition, countries trade in goods and services – not in crop and livestock water requirements. Thus, the notions of virtual water and water footprints cannot provide helpful insight regarding the sustainability of water use, economic efficiency, or social equity. Gaining such insight requires the application of legitimate conceptual frameworks, representing a broad range of perspectives from the physical and social sciences, with due consideration of dynamics, uncertainty, and the impacts of policy choices on livelihoods and natural resources.

  17. The post-2015 delivery of universal and sustainable access to infrastructure services. Working Paper

    Energy Technology Data Exchange (ETDEWEB)

    Doczi, Julian, Dorr, Tobias; Mason, Nathaniel; Scott, Andrew

    2013-06-15

    In this new working paper, the authors focus specifically on what would be necessary to achieve High Level Panel-style goals and targets for water, energy and transport, if these were to be eventually adopted by world leaders. In all three cases, much of the advocacy - and the proposed High Level Panel goals - have emphasized the need to strive for universal and sustainable access to at least basic levels of services from these sectors. Many of the proposals for post-2015 goals and targets appear ambitious, but what would it take to achieve them? This paper assesses what is needed to achieve goals for universal and sustainable access to infrastructure, specifically water, energy and transport. Using illustrative goals and targets, the paper reviews the development challenges in each sector, and what will be necessary to overcome the barriers to universal and sustainable access to water, energy and transport infrastructure services, in the areas of governance, finance, capacity development and environmental protection. The paper ends with general conclusions about infrastructure in the post-2015 development agenda.

  18. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  19. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  20. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2011-07-01

    Full Text Available Anticancer drugs, such as paclitaxel (PTX, are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy.

  1. Sustainability of Water Safety Plans Developed in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Luca Rondi

    2015-08-01

    Full Text Available In developing countries, the drinking water supply is still an open issue. In sub-Saharan Africa, only 68% of the population has access to improved sources of drinking water. Moreover, some regions are affected by geogenic contaminants (e.g., fluoride and arsenic and the lack of access to sanitation facilities and hygiene practices causes high microbiological contamination of drinking water in the supply chain. The Water Safety Plan (WSP approach introduced by the World Health Organisation (WHO in 2004 is now under development in several developing countries in order to face up to these issues. The WSP approach was elaborated within two cooperation projects implemented in rural areas of Burkina Faso and Senegal by two Italian NGOs (Non-Governmental Organisations. In order to evaluate its sustainability, a questionnaire based on five different sustainability elements and a cost and time consumption evaluation were carried out and applied in both the case studies. Results demonstrated that the questionnaire can provide a useful and interesting overview regarding the sustainability of the WSP; however, further surveys in the field are recommended for gathering more information. Time and costs related to the WSP elaboration, implementation, and management were demonstrated not to be negligible and above all strongly dependent on water quality and the water supply system complexity.

  2. Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov

    2018-01-01

    Full Text Available The design, development, and operation of current and future urban water infrastructure in many parts of the world increasingly rely on and apply the principles of sustainable development. However, this approach suffers from a lack of the necessary knowledge, skills, and practice of how sustainable development can be attained and promoted in a given city. This paper presents the framework of an integrated systems approach analysis that deals with the abovementioned issues. The “Water and Urban Initiative” project, which was implemented by the United Nations University’s Institute for the Advanced Study of Sustainability, focused on urban water and wastewater systems, floods, and their related health risk assessment, and the economics of water quality improvements. A team of researchers has investigated issues confronting cities in the developing countries of Southeast Asia, in relation to sustainable urban water management in the face of such ongoing changes as rapid population growth, economic development, and climate change; they have also run future scenarios and proposed policy recommendations for decision-makers in selected countries in Southeast Asia. The results, lessons, and practical recommendations of this project could contribute to the ongoing policy debates and decision-making processes in these countries.

  3. Water Hyacinth in China: A Sustainability Science-Based Management Framework

    Science.gov (United States)

    Lu, Jianbo; Wu, Jianguo; Fu, Zhihui; Zhu, Lei

    2007-12-01

    The invasion of water hyacinth ( Eichhornia crassipes) has resulted in enormous ecological and economic consequences worldwide. Although the spread of this weed in Africa, Australia, and North America has been well documented, its invasion in China is yet to be fully documented. Here we report that since its introduction about seven decades ago, water hyacinth has infested many water bodies across almost half of China’s territory, causing a decline of native biodiversity, alteration of ecosystem services, deterioration of aquatic environments, and spread of diseases affecting human health. Water hyacinth infestations have also led to enormous economic losses in China by impeding water flows, paralyzing navigation, and damaging irrigation and hydroelectricity facilities. To effectively control the rampage of water hyacinth in China, we propose a sustainability science-based management framework that explicitly incorporates principles from landscape ecology and Integrated Pest Management. This framework emphasizes multiple-scale long-term monitoring and research, integration among different control techniques, combination of control with utilization, and landscape-level adaptive management. Sustainability science represents a new, transdisciplinary paradigm that integrates scientific research, technological innovation, and socioeconomic development of particular regions. Our proposed management framework is aimed to broaden the currently dominant biological control-centered view in China and to illustrate how sustainability science can be used to guide the research and management of water hyacinth.

  4. Implications of Frugal Innovations on Sustainable Development: Evaluating Water and Energy Innovations

    Directory of Open Access Journals (Sweden)

    Jarkko Levänen

    2015-12-01

    Full Text Available Frugal innovations are often associated with sustainable development. These connections, however, are based on anecdotal assumptions rather than empirical evidence. This article evaluates the sustainability of four frugal innovations from water and energy sectors. For the purposes of the evaluation, a set of indicators was developed. Indicators are drawn from sustainable development goals by the United Nations and they encompass central dimensions of sustainability: ecological, social and economic. In this article, frugal innovations are compared to solutions that are currently used in similar low-income contexts. Studied frugal innovations were found more sustainable in terms of energy production and water purification capacity than the existing solutions. In terms of social sustainability, larger differences between innovations were found. For example, business models of frugal energy solutions focus on capacity building and the inclusion of marginalized low-income people, whereas business models of water purification solutions focus on more traditional corporate social responsibility activities, such as marketing awareness campaigns and cooperation with non-governmental organizations. Three major sustainability challenges for frugal innovators were identified: (1 the proper integration of material efficiency into product or service systems; (2 the patient promotion of inclusive employment; and (3 the promotion of inclusive and sustainable local industrialization. The article concludes that despite indisputable similarities between frugality and sustainability, it is problematic to equate the two conceptually.

  5. Consumer Cooperatives for Delivery of Urban Water and Sanitation Services

    OpenAIRE

    Ruiz-Mier, Fernando; Ginneken, Meike van

    2008-01-01

    To find the optimal delivery model for urban water supply and sanitation (WSS) services, one must look beyond ownership structures to the practices and designs that support good performance. Consumer cooperatives are often attractive institutional models. This note focuses on a Bolivian cooperative that is one of the most successful water cooperatives in Latin America. Successful cooperatives ...

  6. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  7. Sustainable water future with global implications: everyone's responsibility.

    Science.gov (United States)

    Kuylenstierna, J L; Bjorklund, G; Najlis, P

    1997-01-01

    The current use and management of freshwater is not sustainable in many countries and regions of the world. If current trends are maintained, about two-thirds of the world's population will face moderate to severe water stress by 2025 compared to one-third at present. This water stress will hamper economic and social development unless action is taken to deal with the emerging problems. The Comprehensive Assessment of the Freshwater Resources of the World, prepared by the UN and the Stockholm Environment Institute, calls for immediate action to prevent further deterioration of freshwater resources. Although most problems related to water quantity and quality require national and regional solutions, only a global commitment can achieve the necessary agreement on principles, as well as financial means to attain sustainability. Due to the central and integrated role played by water in human activities, any measures taken need to incorporate a wide range of social, ecological and economic factors and needs. The Assessment thus addresses the many issues related to freshwater use, such as integrated land and water management at the watershed level, global food security, water supply and sanitation, ecosystem requirements, pollution, strengthening of major groups, and national water resource assessment capabilities and monitoring networks. Governments are urged to work towards a consensus regarding global principles and guidelines for integrated water management, and towards their implementation in local and regional water management situations. The alternative development options available to countries facing water stress, or the risk thereof, needs to be considered in all aspects of development planning.

  8. Sustainability Appraisal of Water Governance Regimes: The Case of Guanacaste, Costa Rica

    Science.gov (United States)

    Kuzdas, Christopher; Wiek, Arnim; Warner, Benjamin; Vignola, Raffaele; Morataya, Ricardo

    2014-08-01

    Sustainability appraisals produce evidence for how well water governance regimes operate and where problems exist. This evidence is particularly relevant for regions that face water scarcity and conflicts. In this study, we present a criteria-based and participatory sustainability appraisal of water governance in a region with such characteristics—the dry tropics of NW Costa Rica. Data collection included 47 interviews and three stakeholder workshops. The appraisal was conducted through a collaborative and iterative process between researchers and stakeholders. Out of the 25 sustainability criteria used, seven posed a significant challenge for the governance regime. We found challenges faced by the governance regime primarily clustered around and were re-enforced by failing coordination related to the use, management, and protection of groundwater resources; and inadequate leadership to identify collective goals and to constructively deliberate alternative ways of governing water with diverse groups. The appraisal yielded some positive impact in the study area, yet we found its application provided only limited strategic information to support broader problem-solving efforts. Insights from this study suggest key starting points for sustainable water governance in the Central American dry tropics, including investing in increasingly influential collective organizations that are already active in water governance; and leveraging policy windows that can be used to build confidence and disperse more governing authority to regional and local governing actors that are in-tune with the challenges faced in the dry tropics. We conclude the article with reflections on how to produce research results that are actionable for sustainable water governance.

  9. Index of sustainability of the water resource for the definition of technological sustainable and competitives strategies in the Microbasin la Centella

    International Nuclear Information System (INIS)

    Martha Constanza Daza; Aldemar Reyes Trujillo; Wilmar Loaiza Ceron; Martha Patricia Fajardo Vasquez

    2012-01-01

    The Index of Sustainable Water Resource Management in Agriculture (ISRHA) implemented in the watershed Centella (Dagua, Cauca Valley) assesses the sustainability of water resource management in agriculture, using pressure gauges, for State and Response factor analysis: biophysical, technological, socioeconomic and political-institutional. Each factor is composed of indicators which are evaluated based on parameters established by of ISRHA. The results of applying sustainability index shows a half the three study areas (watersheds La Virgen, Centella and Aguas Calientes), which were rated average to good in the proposed scale (1 to 5), identifying weaknesses and strengths in relation to the factors considered, which allows us to suggest some strategies for sustainability of and competitive for water resources in agricultural production systems in the watershed.

  10. Production Functions for Water Delivery Systems: Analysis and Estimation Using Dual Cost Function and Implicit Price Specifications

    Science.gov (United States)

    Teeples, Ronald; Glyer, David

    1987-05-01

    Both policy and technical analysis of water delivery systems have been based on cost functions that are inconsistent with or are incomplete representations of the neoclassical production functions of economics. We present a full-featured production function model of water delivery which can be estimated from a multiproduct, dual cost function. The model features implicit prices for own-water inputs and is implemented as a jointly estimated system of input share equations and a translog cost function. Likelihood ratio tests are performed showing that a minimally constrained, full-featured production function is a necessary specification of the water delivery operations in our sample. This, plus the model's highly efficient and economically correct parameter estimates, confirms the usefulness of a production function approach to modeling the economic activities of water delivery systems.

  11. Water Decisions for Sustainability of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Lazrus, H.; Mcpherson, R. A.; Morss, R. E.; PaiMazumder, D.; Silvis, V.; Towler, E.

    2012-12-01

    The Arbuckle-Simpson Aquifer in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only freeflowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To address these issues, this interdisciplinary project takes an integrated approach to understanding risk perceptions and water decisions for sustainability of the Arbuckle-Simpson Aquifer. Our interdisciplinary research asks: How do stakeholders in the Arbuckle-Simpson Aquifer perceive drought risks across weather and climate scales, and how do these perceptions guide water management decisions given (i) diverse cultural beliefs, (ii) valued hydrologic services, (iii) past drought experience, and (iv) uncertainties in future projection of precipitation and drought? We will use ethnographic methods to diagnose how cultural values and beliefs inform risk perceptions, and how this in turn guides decision making or ignites conflict across different sectors and stakeholder groups. Further, the characterization of drought risk will be examined in the context of historic meteorological and hydrologic events, as well as climate variability and change. This will identify which risks are prioritized, and under what conditions, in regional decision making or water-related conflicts.

  12. Closing of water circuits – a global benchmark on sustainable water management

    Directory of Open Access Journals (Sweden)

    Fröhlich Siegmund

    2017-01-01

    Full Text Available Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: “The wars of the 21st century will be fought not over oil, they will be fought over water.” [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  13. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Xin (Cissy Ma

    2015-09-01

    Full Text Available Urban water systems are an example of complex, dynamic human–environment coupled systems which exhibit emergent behaviors that transcend individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and stormwater have led to great improvements in public health protection, sustainable solutions for a growing global population facing increased resource constraints demand a paradigm shift based on holistic management to maximize the use and recovery of water, energy, nutrients, and materials. The objective of this review paper is to highlight the issues in traditional water systems including water demand and use, centralized configuration, sewer collection systems, characteristics of mixed wastewater, and to explore alternative solutions such as decentralized water systems, fit for purpose and water reuse, natural/green infrastructure, vacuum sewer collection systems, and nutrient/energy recovery. This review also emphasizes a system thinking approach for evaluating alternatives that should include sustainability indicators and metrics such as emergy to assess global system efficiency. An example paradigm shift design for urban water system is presented, not as the recommended solution for all environments, but to emphasize the framework of system-level analysis and the need to visualize water services as an organic whole. When water systems are designed to maximize the resources and optimum efficiency, they are more prevailing and sustainable than siloed management because a system is more than the sum of its parts.

  14. Measuring global water security towards sustainable development goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  15. Measuring Global Water Security Towards Sustainable Development Goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  16. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    HOSSAIN M. ANAWAR

    2012-06-01

    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  17. A Prototype Educational Delivery System Using Water Quality Monitoring as a Model.

    Science.gov (United States)

    Glazer, Richard B.

    This report describes the model educational delivery system used by Ulster County Community College in its water quality monitoring program. The educational delivery system described in the report encompasses the use of behavioral objectives as its foundation and builds upon this foundation to form a complete system whose outcomes can be measured,…

  18. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  19. Adaptive exchange of capitals in urban water resources management : an approach to sustainability?

    Science.gov (United States)

    With water availability increasingly restricted by deficiencies in quality and quantity, water resources management is a central issue in planning for sustainability in the Anthropocene. We first offer a definition of sustainability based on the ease with which capitals (e.g., na...

  20. Refresher Course on Geomatic Applications for Sustainable Water ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. Refresher Course on Geomatic Applications for Sustainable Water Resources and Environment. Information and Announcements Volume 14 Issue 6 June 2009 pp 630-630 ...

  1. The scale concept and sustainable development: implications on the energetics and water resources

    International Nuclear Information System (INIS)

    Demanboro, Antonio Carlos; Mariotoni, Carlos Alberto

    1999-01-01

    The relationships between both the demographic growth and the water and energetic resources are focused. The planet scale and carrying capacity are discussed starting from the maximum and optimum sustainable concepts, both anthropocentric and biocentric. Two scenarios denominated 'sustainable agriculture' and 'sharing-water' are elaborated with the available resources of water, fertile lands and energy consumption, and with the population trends. (author)

  2. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    Science.gov (United States)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  3. Possibilities of information infrastructure in evaluation of environmental pollution and water quality by implementing the solutions of sustainable development

    Directory of Open Access Journals (Sweden)

    Ramutė Naujikienė

    2014-10-01

    benchmarking results of the analysis of economic operators and the impact of pollution on the contamination of the Baltic Sea. Pollution indicators are changing, but the statistical analysis of the data did not reveal any significant gradual decrease. It is important to control the resulting pollution of the environment, by constantly checking the operation of cleaning systems, and to carry out the ecological balance of the accounting.Research limitations – the implementation of innovative solutions in the economic development of areas, related factors affecting the sustainable development of the system and the change of their characteristics. The analysis of environmental performance solutions focus on such components as air, water, climate, landscape and biodiversity increase.The practical significance – of the study reveals sustainable development opportunities for wastewater compliance monitoring and water treatment sector activities; it identifies the existing problems that need to be addressed in order to ensure the quality of water and a clean environment.Originality/value – the article analyses the problems associated with environmental contamination situations and search for appropriate indicators, which provides an illustration of the water contamination processes in the Baltic Sea region. The results of the study demonstrate the quality of water pollution by means of the indicators provided by information infrastructure based on the implementation of sustainable development decisions.Research type: a conceptual analysis of the study and data delivery.

  4. A Need for Education in Water Sustainability in the Agricultural Realm

    Science.gov (United States)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  5. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2017-06-01

    Full Text Available This special issue is a collection of recent papers in the field of Water Footprint Assessment (WFA, an emerging area of research focused on the analysis of freshwater use, scarcity, and pollution in relation to consumption, production, and trade. As increasing freshwater scarcity forms a major risk to the global economy, sustainable management of water resources is a prerequisite to development. We introduce the papers in this special issue by relating them to Sustainable Development Goal (SDG number 6 of the United Nations, the goal on water. We will particularly articulate how each paper drives the understanding needed to achieve target 6.3 on water quality and pollution and target 6.4 on water-use efficiency and water scarcity. Regarding SDG 6, we conclude that it lacks any target on using green water more efficiently, and while addressing efficiency and sustainability of water use, it lacks a target on equitable sharing of water. The latter issue is receiving limited attention in research as well. By primarily focusing on water-use efficiency in farming and industries at the local level, to a lesser extent to using water sustainably at the level of total water systems (like drainage basins, aquifers, and largely ignoring issues around equitable water use, understanding of our water problems and proposed solutions will likely remain unbalanced.

  6. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    Science.gov (United States)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  7. Indigenous Practices of Water Management for Sustainable Services

    Directory of Open Access Journals (Sweden)

    Beshah M. Behailu

    2016-12-01

    Full Text Available This article explores the possibility of incorporating traditional water management experiences into modern water management. After the literature review, two case studies are presented from Borana and Konso communities in southern Ethiopia. The study was conducted through interviews, discussions, and observations. The two cases were selected due to their long existence. Both communities have their own water source types, depending on local hydrogeological conditions. Borana is known for the so-called Ella (wells and Konso for Harta (ponds, which have been managed for more than five centuries. All government and development partners strive to achieve sustainable services in water supply and sanitation. Therefore, they design various management packages to engage the communities and keep the systems sustainable. However, the management components are often designed with little attention to local customs and traditions. The cases in the two communities show that traditional knowledge is largely ignored when replaced by modern one. However, the concepts of cost recovery, ownership experience, equity, enforcement, integrity, and unity, which are highly pronounced in modern systems, can also be found in the traditional water managements of Borana and Konso. Naturally, one shoe never fits all. Borana and Konso experiences are working for their own community. This research implies that when we plan a project or a program for a particular community, the starting point should be the indigenous practices and thoughts on life.

  8. Achieving Sustainable Development Goals from a Water Perspective

    Directory of Open Access Journals (Sweden)

    Anik Bhaduri

    2016-10-01

    Full Text Available Efforts to meet human water needs only at local scales may cause negative environmental externality and stress on the water system at regional and global scales. Hence, assessing SDG targets requires a broad and in-depth knowledge of the global to local dynamics of water availability and use. Further, Interconnection and trade-offs between different SDG targets may lead to sub-optimal or even adverse outcome if the set of actions are not properly pre-designed considering such interlinkages. Thus scientific research and evidence have a role to play in facilitating the implementation of SDGs through assessments and policy engagement from global to local scales. The paper addresses some of these challenges related to implementation and monitoring the targets of the Sustainable Development Goals from a water perspective, based on the key findings of a conference organised in 2015 with the focus on three essential aspects of SDGs- indicators, interlinkages and implementation. The paper discusses that indicators should not be too simple but ultimately deliver sustainability measures. The paper finds that remote sensing and earth observation technologies can play a key role in supporting the monitoring of water targets. It also recognises that implementing SDGs is a societal process of development, and there is need to link how SDGs relate to public benefits and communicate this to the broader public.

  9. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    Science.gov (United States)

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  10. A full value-chain Water Footprint Assessment to help informed decision in corporate sustainability strategies

    Science.gov (United States)

    Zhang, Guoping; Chico Zamanilo, Daniel; Bai, Xue; Ren, Xiajing; Chen, Rong; Qin, Jun

    2017-04-01

    This study evaluated the water footprint (WF) of five production facilities along Muyuan Foodstuff Co. Ltd's (Muyuan) value chain, and assessed the sustainability and impact of their water footprints at the river catchment level. Muyuan, a large-scale, integrated pig breeder and producer in China, is keen to fulfil its corporate social responsibilities and committed to ensuring food quality and security, promoting environmental protection, and participating in catchment water resources management. Formulating corporate water related sustainability strategies, however, has been challenging. This study carried out a comprehensive Water Footprint Assessment (WFA) for Muyuan's full value chain to assist in formulating such strategies and setting up action plans with water footprint reduction targets. The study showed that that the water footprint of the supply chain, resulting from crops and crop products used in Muyuan's feed production facility is a major contributor to Muyuan's facilities' water footprint. From the perspective of the direct WF at the facilities, addressing the impact on water quality from effluents (i.e. the grey water footprint) at hog farms is a critical component of any water sustainability strategy. From the blue WF perspective, there are opportunities to reduce blue water consumption at hog farms through improved technology and implementation of best practices. The water footprint sustainability assessment in this study indicated that Muyuan operates in a catchment which is already under water stress and is a hotspot in terms of both blue water scarcity and water pollution level. The study helped identify potential water-related risks and opportunities for improving Muyuan's water use efficiency as well as ways Muyuan could contribute to sustainable water resources management in the catchment within which it operates. This is an innovative application of WFA in the livestock sector and supports the development of Muyuan's corporate water

  11. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  12. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  13. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-06-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a Set of Sustainability Indicators for Water Resources Management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the Basin Committee of Tietê-Jacaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  14. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-01-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a set of sustainability indicators for water resources management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the basin committee of Tietê-J acaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation, the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  15. Microsensing networks for sustainable cities

    CERN Document Server

    Lambrechts, Johannes

    2016-01-01

    This book explores the microsensing technologies and systems now available to monitor the quality of air and water within the urban environment and examines their role in the creation of sustainable cities against the background of the challenges posed by rapid urbanization. The opening section addresses the theoretical and conceptual background of microsensing networks. The coverage includes detailed description of microsensors, supported by design-specific equations, and clear explanation of the ways in which devices that harvest energy from ambient sources can detect and quantify pollution. The practical application of such systems in addressing environmental impacts within cities and in sustainable urban planning is then discussed with the aid of case studies in developing countries. The book will be of interest to all who wish to understand the benefits of microsensing networks in promoting sustainable cities through better delivery of information on health hazards and improved provision of data to envir...

  16. Sustainable water for rural security - A transdisciplinary approach [Presentation

    CSIR Research Space (South Africa)

    Maherry, A

    2012-05-01

    Full Text Available -research through effective transfer of knowledge and technologies; and to identify the critical design criteria that ensure sustainability of rural water supply systems in South Africa....

  17. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  18. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  19. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  20. Study benefit value of utilization water resources for energy and sustainable environment

    Science.gov (United States)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  1. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...

  2. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  3. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  4. From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation

    Directory of Open Access Journals (Sweden)

    Guangwei Huang

    2015-07-01

    Full Text Available A water allocation policy that aimed to balance water demand with water availability to ensure sustainability was implemented in an arid region of China over ten years ago. This policy’s success was assessed across three dimensions: society, the environment, and the economy. While the assessment was not intended to be comprehensive, it highlighted the best outcomes of the policy intervention while revealing some hidden issues. It was found that although the policy was successful in placing a ceiling on water use in the middle reaches of the Heihe River, the Water User Association, one of the main actors in water policy implementation, was under-recognized, even though it functioned well. Moreover, the economic structural adjustment at the macro level had not led to any significant reduction in water use, the reasons for which were explored.

  5. Sustainable Water Supplies in Uppsala, Sweden?

    Science.gov (United States)

    Eriksson, Bert

    2014-05-01

    This is a description of a transdisciplinary three-day project with upper secondary school students around ecosystem services and sustainability. Uppsala (200 000 inhabitants) gets its municipal water from wells in the esker that dominates the landscape in and around the town. This esker was formed by glacial melt water around 11 000 BP, at the end of the latest glaciation and was lifted above sea level by post-glacial land rise from 6000 BP. To keep up the water table in the esker, water from river Fyris is pumped up and infiltrated in the esker. The river is also the recipient of wastewater downstream of the town, and the river runs out into Lake Mälaren that in its turn spills out into the Baltic Sea through Stockholm. The esker and river can thus be a central topic to work around, in Biology and Geography in upper secondary school, concerning recent and future water supplies, quaternary geology, limnology and landscape history. The fieldwork is carried out during three days in a period of three subsequent weeks. 1. One day is used to examine the water quality in the river above the town, organisms, pH, levels of nitrogen and phosphorous, conductivity and turbidity. Then the direction of the water is followed, first up to the infiltration dams on the esker, and then along the esker to the wells in the town. The formation of the esker and other traces in the landscape from the latest glaciation is also studied, as well as the historical use of the esker as a road and as a source of gravel and sand. The tap water that comes from the wells is finally tested in school in the same way as in the river. 2. The second day is used to follow the wastewater from households to the sewage plant, where the staff presents the plant. The water quality is tested in the same way as above in the outlet from the plant to the river. 3. The third day consists of a limnological excursion on the lake outside the mouth of the river where plankton and other organisms are studied, as

  6. A water management decision support system contributing to sustainability

    Science.gov (United States)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  7. Sustainable development of deep-water seaport: the case of Lithuania.

    Science.gov (United States)

    Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta

    2011-06-01

    In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the

  8. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Michael J. Lathuillière

    2018-03-01

    Full Text Available We performed a Water Footprint Sustainability Assessment (WFSA in the Xingu Basin of Mato Grosso (XBMT, Brazil, with the objectives of (1 tracking blue (as surface water and green water (as soil moisture regenerated by precipitation consumption in recent years (2000, 2014; and (2 evaluating agricultural intensification options for future years (2030, 2050 considering the effects of deforestation and climate change on water availability in the basin. The agricultural sector was the largest consumer of water in the basin despite there being almost no irrigation of cropland or pastures. In addition to water use by crops and pasture grass, water consumption attributed to cattle production included evaporation from roughly 9463 ha of small farm reservoirs used to provide drinking water for cattle in 2014. The WFSA showed that while blue and green water consumptive uses were within sustainable limits in 2014, deforestation, cattle confinement, and the use of irrigation to increase cropping frequency could drive water use to unsustainable levels in the future. While land management policies and practices should strive for protection of the remaining natural vegetation, increased agricultural production will require reservoir and irrigation water management to reduce the potential threat of blue water scarcity in the dry season. In addition to providing general guidance for future water allocation decisions in the basin, our study offers an interpretation of blue and green water scarcities with changes in land use and climate in a rapidly evolving agricultural frontier.

  9. Water footprints of cities - indicators for sustainable consumption and production

    Science.gov (United States)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2014-01-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  10. Segmented polyurethane intravaginal rings for the sustained combined delivery of antiretroviral agents dapivirine and tenofovir.

    Science.gov (United States)

    Johnson, Todd J; Gupta, Kavita M; Fabian, Judit; Albright, Theodore H; Kiser, Patrick F

    2010-02-19

    Dual segment polyurethane intravaginal rings (IVRs) were fabricated to enable sustained release of antiretroviral agents dapivirine and tenofovir to prevent the male to female sexual transmission of the human immunodeficiency virus. Due to the contrasting hydrophilicity of the two drugs, dapivirine and tenofovir were separately formulated into polymers with matching hydrophilicity via solvent casting and hot melt extrusion. The resultant drug loaded rods were then joined together to form dual segment IVRs. Compression testing of the IVRs revealed that they are mechanically comparable to the widely accepted NuvaRing IVR. Physical characterization of the individual IVR segments using wide angle X-ray scattering and differential scanning calorimetry determined that dapivirine and tenofovir are amorphous and crystalline within their polymeric segments, respectively. In vitro release of tenofovir from the dual segment IVR was sustained over 30 days while dapivirine exhibited linear release over the time period. A 90 day accelerated stability study confirmed that dapivirine and tenofovir are stable in the IVR formulation. Altogether, these results suggest that multisegment polyurethane IVRs are an attractive formulation for the sustained vaginal delivery of drugs with contrasting hydrophilicity such as dapivirine and tenofovir. 2009 Elsevier B.V. All rights reserved.

  11. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  12. Double emulsion electrospun nanofibers as a growth factor delivery vehicle for salivary gland regeneration

    Science.gov (United States)

    Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James

    2017-08-01

    Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.

  13. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  14. Governance, Sustainability and Decision Making in Water and Sanitation Management Systems

    Directory of Open Access Journals (Sweden)

    Martín Alejandro Iribarnegaray

    2012-11-01

    Full Text Available We explore the connections between the concepts of governance and sustainability and discuss their possible roles in water and sanitation management systems (WSMS. We see governance as a decision-making process that drives the relationship between social institutions and the public affairs of a given society. We understand sustainability as a combination of spatial, temporal, and personal aspects, and we argue that this definition is more comprehensive than the traditional triple bottom line of economy, environment, and society. We combined these two concepts into a new conceptual framework of “governance for sustainability” that is theoretically sound and arguably appropriate to understand local WSMS. To illustrate this framework, we developed and estimated a Sustainable Water Governance Index (SWGI for the city of Salta, Argentina. This aggregated index was calculated with data from literature, information from the city’s water company and other local institutions, field visits, and interviews. The SWGI for Salta obtained an overall score of 49 on a 0–100 scale, which fell into the “danger” range. We discuss the advantages and limitations of the method and conclude that aggregated indices such as the SWGI, complemented with contextual information, can be a helpful decision-making tool to promote more sustainable WSMS.

  15. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala.

    Science.gov (United States)

    Scarborough, Vernon L; Dunning, Nicholas P; Tankersley, Kenneth B; Carr, Christopher; Weaver, Eric; Grazioso, Liwy; Lane, Brian; Jones, John G; Buttles, Palma; Valdez, Fred; Lentz, David L

    2012-07-31

    The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction of a cofferdam for dredging the largest reservoir at Tikal; the presence of ancient springs linked to the initial colonization of Tikal; the use of sand filtration to cleanse water entering reservoirs; a switching station that facilitated seasonal filling and release; and the deepest rock-cut canal segment in the Maya Lowlands. These engineering achievements were integrated into a system that sustained the urban complex through deep time, and they have implications for sustainable construction and use of water management systems in tropical forest settings worldwide.

  17. Sustainable Water Management under Climate Change in Small ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sustainable Water Management under Climate Change in Small Island States of the Caribbean. In the Caribbean islands, climate change is affecting freshwater availability and other ecosystem services in complex ways. For example, freshwater supply is diminished by droughts and affected by saline intrusion due to sea ...

  18. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  19. Integrated Nutrient and Water Management for Sustainable Food ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrated Nutrient and Water Management for Sustainable Food Production in the Sahel (CIFSRF). In the Sahel, agricultural production is strictly limited by drought and low soil fertility. In 2005 and 2010, these two factors led to food scarcity in Niger. However, innovative technologies such as microdose fertilization ...

  20. The Cross-fertilization between the Sustainable Development Goals and International Water Law

    NARCIS (Netherlands)

    Spijkers, O.

    2016-01-01

    Are the main principles of international water law, as reflected in the Watercourses Convention, sufficiently equipped to motivate States to sustainably manage their freshwater resources? This article suggests that a more pronounced sustainable approach to these principles is desirable. The

  1. Continuous corticosterone delivery via the drinking water or pellet implantation: A comparative study in mice.

    Science.gov (United States)

    Gasparini, Sylvia J; Weber, Marie-Christin; Henneicke, Holger; Kim, Sarah; Zhou, Hong; Seibel, Markus J

    2016-12-01

    In order to investigate the effects of glucocorticoid excess in rodent models, reliable methods of continuous glucocorticoid delivery are essential. The current study compares two methods of corticosterone (CS) delivery in regards to their ability to induce typical adverse outcomes such as fat accrual, insulin resistance, sarcopenia and bone loss. Eight-week-old mice received CS for 4weeks either via the drinking water (25-100μgCS/mL) or through weekly surgical implantation of slow release pellets containing 1.5mg CS. Both methods induced abnormal fat mass accrual, inhibited lean mass accretion and bone expansion, suppressed serum osteocalcin levels and induced severe insulin resistance. There was a clear dose dependant relationship between the CS concentrations in the drinking water and the severity of the phenotype, with a concentration of 50μg CS/mL drinking water most closely matching the metabolic changes induced by weekly pellet implantations. In contrast to pellets, however, delivery of CS via the drinking water resulted in a consistent diurnal exposure pattern, closely mimicking the kinetics of clinical glucocorticoid therapy. In addition, the method is safe, inexpensive, easily adjustable, non-invasive and avoids operative stress to the animals. Our data demonstrate that delivery of CS via the drinking water has advantages over weekly implantations of slow-release pellets. A dose of 50μg CS/mL drinking water is appropriate for the investigation of chronic glucocorticoid excess in mice. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  2. When good practices by water committees are not relevant: Sustainability of small water infrastructures in semi-arid mozambique

    Science.gov (United States)

    Ducrot, Raphaëlle

    2017-12-01

    This paper explores the contradiction between the need for large scale interventions in rural water supplies and the need for flexibility when providing support for community institutions, by investigating the implementation of the Mozambique - National Rural Water Supply and Sanitation Program in a semi-arid district of the Limpopo Basin. Our results showed that coordinated leadership by key committee members, and the level of village governance was more important for borehole sustainability than the normative functioning of the committee. In a context in which the centrality of leadership prevails over collective action the sustainability of rural water infrastructure derives from the ability of leaders to motivate the community to provide supplementary funding. This, in turn, depends on the added value to the community of the water points and on village politics. Any interventions that increased community conflicts, for example because of lack of transparency or unequitable access to the benefit of the intervention, weakened the coordination and the collective action capacity of the community and hence the sustainability of the infrastructures even if the intervention was not directly related to water access. These results stress the importance of the project/program implementation pathway.

  3. Collaborative procurement for developing a sustainable campus

    Science.gov (United States)

    Nifa, Faizatul Akmar Abdul; Rahim, Syukran Abdul; Rani, Wan Nurul Mardiah Wan Mohd; Ismail, Mohd. Noorizhar

    2016-08-01

    It is particularly challenging to achieve sustainability in campus universities, where a high volume of users and activities has made it more imperative to promote green buildings that reduce energy and water consumption while having a minimal carbon footprint. At present, the frameworks for sustainable campus have seldom focused on the project procurement method which would improve construction team integration in developing the physical aspect of campus development. Therefore, in response to that challenge, this paper investigates how the delivery team, responsible for the design and construction of a project, can be integrated to work together more efficiently and more using the collaborative procurement method known as partnering. This paper reports part of a previous research and sets the base for ongoing research on the critical factors in partnering for sustainable campus development. The outcome or result of this study will meet and support the requirement for construction, maintenance, and operation process for universities towards sustainable building/campus in the future.

  4. Ecohydrology of managed ecosystems: Linking rainfall unpredictability, agronomic performance, and sustainable water use

    Science.gov (United States)

    Vico, Giulia; Porporato, Amilcare

    2014-05-01

    The field of ecohydrology, traditionally focusing on natural ecosystems, can offer the necessary quantitative tools to assess and compare the sustainability of agriculture across climates, soil types, crops, and irrigation strategies, including rainfall unpredictability. In particular, irrigation is one of the main strategies to enhance and stabilize agricultural productivity, but represents a cost in terms of often scarce water resources. Here, the sustainability of irrigated and rainfed agriculture is assessed by means of water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability. These indicators are quantified using a probabilistic description of the soil water balance and crop development. Employing this framework, we interpret changes in water productivity as total water input is altered, in two staple crops (maize and wheat) grown under different soils, climates, and irrigation strategies. Climate change scenarios are explored by using the same approach and altering the rainfall statistics. For a given irrigation strategy, intermediate rainfall inputs leads to the highest variability in yield and irrigation water requirement - it is under these conditions that water management is most problematic. When considering the contrasting needs of limiting water requirements while ensuring adequate yields, micro-irrigation emerges as the most sustainable strategy at the field level, although consideration should be given to its profitability and long-term environmental implications.

  5. Review of Multi-Criteria Decision Aid for Integrated Sustainability Assessment of Urban Water Systems - MCEARD

    Science.gov (United States)

    Integrated sustainability assessment is part of a new paradigm for urban water decision making. Multi-criteria decision aid (MCDA) is an integrative framework used in urban water sustainability assessment, which has a particular focus on utilising stakeholder participation. Here ...

  6. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  7. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Science.gov (United States)

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  8. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  9. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun

    2016-03-01

    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  10. The Impact of Water Shortages on Educational Delivery in Selected ...

    African Journals Online (AJOL)

    The goal of the study was to investigate the impact of water shortages on educational delivery in selected schools in Harare East District. The population included school heads, teachers and pupils all drawn from selected schools of Harare East District. The sample consisted of five school heads, fifty teachers and one ...

  11. Making sustainable water and sanitation in the Peruvian Andes: an intervention model.

    Science.gov (United States)

    Campos, Marco

    2008-01-01

    Sustainability of water supplies in remote rural communities is problematic and resource consuming. CARE has a long history of working hand in hand with remote rural communities and devising programs tailored to their needs. We present here an intervention that integrates development of water supplies and sanitation, with operation and maintenance skills development and training of health promoters that can educate from within the community that ensures the sustainability of drinking water supply systems in rural communities. The training used is innovative in that it uses a series of video-workshops which are found to be particularly useful in communities with high illiteracy rates.

  12. In situ metrology to characterize water vapor delivery during atomic layer deposition

    International Nuclear Information System (INIS)

    Ahmido, Tariq; Kimes, William A.; Sperling, Brent A.; Hodges, Joseph T.; Maslar, James E.

    2016-01-01

    Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative water partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.

  13. Local drug delivery - the early Berlin experience: single drug administration versus sustained release.

    Science.gov (United States)

    Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena

    2011-05-01

    Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.

  14. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  15. Business Engagement with Sustainable Water Resource Management through Water Footprint Accounting: The Case of the Barilla Company

    Directory of Open Access Journals (Sweden)

    Marta Antonelli

    2015-05-01

    Full Text Available This study investigates business engagement in sustainable water management, focusing on water footprint accounting as a tool to account for water use in food supply chains. An explorative analysis is conducted on the Barilla Company. The study explores two corporate strategies aimed at achieving more sustainable water use: the adoption of environmental products declarations (EPDs, a reporting system that accounts for the environmental footprints of Barilla’s pasta and other products; and the implementation of the Aureo Wheat Programme. The study deployed both primary and secondary data. The study shows that the largest share of the water footprint of pasta relates to the cultivation phase (over 90%, which is almost fully rainfed. EPDs show that the water footprint of the other phases of the supply chain is negligible. It is argued that the use of water footprinting in EPDs can raise awareness about water use in agricultural supply chains to reach a broad spectrum of stakeholders, including consumers. The study also shows that the implementation of the Aureo Wheat Programme, consisting of a shift in cultivation site and in the type of wheat, enabled a reduction in the blue water footprint of pasta, with water savings amounting to 35 million m3 of blue water since 2011.

  16. How to quantify sustainable development: a risk-based approach to water quality management.

    Science.gov (United States)

    Sarang, Amin; Vahedi, Arman; Shamsai, Abolfazl

    2008-02-01

    Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.

  17. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.; Elimelech, Menachem

    2012-01-01

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  18. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  19. Sustainable and efficient allocation of limited blue and green water resources

    OpenAIRE

    Schyns, Joseph Franciscus

    2018-01-01

    Freshwater stems from precipitation over land, which differentiates into a blue water flow (groundwater and surface water) and a green water flow (evaporation). Both flows are partially allocated to serve the economy, resulting in blue and green water footprints (WF). There are maximum sustainable levels to the blue and green WF, since rainfall is limited and part of the flows need to be reserved for aquatic and terrestrial biodiversity. Water scarcity, the degree to which the actual approach...

  20. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    2001-01-01

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  1. Water splitting: Taking cobalt in isolation

    Science.gov (United States)

    Wang, Aiqin; Zhang, Tao

    2016-01-01

    The sustainable production of hydrogen is key to the delivery of clean energy in a hydrogen economy; however, lower-cost alternatives to platinum electrocatalysts are needed. Now, isolated, earth-abundant cobalt atoms dispersed over nitrogen-doped graphene are shown to efficiently electrolyse water to generate hydrogen.

  2. Riverbank Filtration: A Sustainable Process to Attenuate Contaminants during Drinking Water Production

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2018-03-01

    Full Text Available Riverbank filtration leads to purification of water. For India it can be a simple, economical and effective alternative. A few unanswered questions were: Can it work in Indian mountainous regions? Will it be of any advantage in the case of some of the polluted Indian surface waters? With the goal to evaluate use of riverbank filtration as a sustainable technology under widely varying conditions prevalent in India, the effectiveness of riverbank filtration has been examined over the last 10 years. In the case of cleaner surface waters, the wells deliver water free of turbidity and coliform even during monsoon irrespective of well configuration. In the case of polluted source waters, it results in an overall advantage in terms of improved raw water quality, reduced degree and cost of subsequent treatment and decreased levels of disinfection by-products. The study shows riverbank filtration to be an effective and sustainable option for plains as well as the mountainous region.

  3. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy

    2015-06-01

    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  5. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery.

    Science.gov (United States)

    Kim, Jae Dong; Jung, Youn Jae; Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Cho, Yong Woo

    2017-01-01

    Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  7. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  8. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  9. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  10. Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L. [ORNL; Simon, AJ [Lawrence Livermore National Laboratory (LLNL); Allen, Melissa R. [ORNL; Sanyal, Jibonananda [ORNL; Stewart, Robert N. [ORNL; McManamay, Ryan A. [ORNL

    2018-01-01

    Energy and water generation and delivery systems are inherently interconnected. With worldwide demandfor energy growing, the energy sector is experiencing increasing competition for water. With increasingpopulation and changing environmental, socioeconomic, and demographic scenarios, new technology andinvestment decisions must be made for optimized and sustainable energy-water resource management. These decisions require novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales.

  11. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  12. Water-energy-food nexus for adopting sustainable development goals in Asia

    Science.gov (United States)

    Taniguchi, M.

    2016-12-01

    Water, energy, and food are the most essential and fundamental resources for human well-beings, a sustainable society, and global sustainability. These are inextricably linked, and there are complex synergies and tradeoffs among the three resources. More issues arise and attention must be paid when it comes to the Water-Energy-Food (WEF) Nexus. Lack of integrated research between a nexus and policy implementation is the most concerning. The United Nations Sustainable Development Goals (SDGs) aim to end poverty, protect the planet, and ensure prosperity for all, and are scheduled to be achieved by 2030. Of the 17 SDGs, Goal 2, 6 and 7 are directly related to food, water, and energy sectors. However, there are no integrated SDGs related to the Water-Energy-Food Nexus. Two different directions of nexus research exist in developing and industrialized worlds, and synthesis of both are needed. Developing countries are striving to increase their Human Development Index (HDI) while keeping Ecological Footprints, including Nexus Footprint, low. On the other hand, industrialized countries are targeting to maintain their high HDI and reduce their Ecological Footprints. Both are challenging tasks under the restrictions of planetary boundaries (limited nature) and doughnut economy (limited society). In this study, WEF Nexus research in Asian countries, including developing and industrialized countries, demonstrates the different types of nexus approaches to achieve SDGs through renewable energy, agriculture and aquaculture as food, and water management in Monsoon and semi-arid Asia. Mutual learning between the two types of nexus approaches can be made in the Asian area.

  13. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  14. Sustainability of donor-funded rural water supply and sanitation projects in Mbire district, Zimbabwe

    Science.gov (United States)

    Kwangware, Johnson; Mayo, Aloyce; Hoko, Zvikomborero

    The sustainability of donor-funded rural water supply and sanitation projects was assessed in Mbire district, Zimbabwe in terms of level of community participation, quality of implementation and reliability of the systems. The study was carried out through questionnaires, focus group discussions, interviews and field observations. The results show that the quality of implementation of the projects was deemed to be good and participation of the communities in project ideas initiation and choice of technology was found to be very low. Reliability of the systems was found to be very high with 97% of the boreholes in all the three wards studied being functional. Financial management mechanisms were very poor because water consumers were not willing to pay for operation and maintenance. The projects were classified as potentially sustainable with sustainability index between 5.00 and 6.67. Poor financial management mechanisms for effective borehole maintenance, poor quality of construction and lack of community participation in project planning were found to be potential threats to the sustainability of the projects. Future projects should establish the need for the service and should thus be demand driven to ensure effective participation of the water consumers and enhance project's potential for sustainability.

  15. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  16. Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Kelli L. Larson

    2015-11-01

    Full Text Available Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for water sustainability and urban adaptation to climate change in the case study region of Phoenix, Arizona. In doing so, we integrate over a decade of research conducted by Arizona State University’s Decision Center for a Desert City (DCDC. DCDC is a boundary organization that conducts research in collaboration with policy makers, with the goal of informing decision-making under uncertainty. Our results highlight: the counterintuitive, non-linear, and competing relationships in human–environment dynamics; the myriad uncertainties in climatic, scientific, political, and other domains of knowledge and practice; and, the social learning that has occurred across science and policy spheres. Finally, we reflect on how our interdisciplinary research and boundary organization has evolved over time to enhance adaptive and sustainable governance in the face of complex system dynamics.

  17. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    Science.gov (United States)

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is

  18. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    Science.gov (United States)

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  20. Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials

    Science.gov (United States)

    Garhwal, Rahul; Shady, Sally F.; Ellis, Edward J.; Ellis, Jeanne Y.; Leahy, Charles D.; McCarthy, Stephen P.; Crawford, Kathryn S.

    2012-01-01

    Purpose. To formulate conventional contact lenses that incorporate nanosphere-encapsulated antibiotic and demonstrate that the lenses provide for sustained antibacterial activity. Methods. A copolymer composed of pullulan and polycaprolactone (PCL) was used to synthesize core-shell nanospheres that encapsulated ciprofloxacin. Bactericidal activity of the nanosphere-encapsulated ciprofloxacin (nanosphere/cipro) was tested by using liquid cultures of either Staphylococcus aureus or Pseudomonas aeruginosa. Nanosphere/cipro was then incorporated into HEMA-based contact lenses that were tested for growth inhibition of S. aureus or P. aeruginosa in liquid cultures inoculated daily with fresh bacteria. Lens designs included thin or thick lenses incorporating nanosphere/cipro and ciprofloxacin-HCl-soaked Acuvue lenses (Acuvue; Johnson & Johnson Vision Care, Inc., Jacksonville, FL). Results. Less than 2 μg/mL of nanosphere/cipro effectively inhibited the proliferation of cultures inoculated with 107 or 108 bacteria/mL of S. aureus and P. aeruginosa, respectively. HEMA-based contact lenses polymerized with nanosphere/cipro were transparent, effectively inhibited the proliferation of greater than 107/mL of bacteria added daily over 3 days of culture, and killed up to 5 × 109 total microbes in a single inoculation. A thicker lens design provided additional inhibition of bacterial growth for up to 96 hours. Conclusions. Core-shell nanospheres loaded with an antibiotic can be incorporated into a conventional, transparent contact lens and provide for sustained and effective bactericidal activity and thereby provide a new drug delivery platform for widespread use in treating ocular disorders. PMID:22266514

  1. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  2. Method selection for sustainability assessments: The case of recovery of resources from waste water.

    Science.gov (United States)

    Zijp, M C; Waaijers-van der Loop, S L; Heijungs, R; Broeren, M L M; Peeters, R; Van Nieuwenhuijzen, A; Shen, L; Heugens, E H W; Posthuma, L

    2017-07-15

    Sustainability assessments provide scientific support in decision procedures towards sustainable solutions. However, in order to contribute in identifying and choosing sustainable solutions, the sustainability assessment has to fit the decision context. Two complicating factors exist. First, different stakeholders tend to have different views on what a sustainability assessment should encompass. Second, a plethora of sustainability assessment methods exist, due to the multi-dimensional characteristic of the concept. Different methods provide other representations of sustainability. Based on a literature review, we present a protocol to facilitate method selection together with stakeholders. The protocol guides the exploration of i) the decision context, ii) the different views of stakeholders and iii) the selection of pertinent assessment methods. In addition, we present an online tool for method selection. This tool identifies assessment methods that meet the specifications obtained with the protocol, and currently contains characteristics of 30 sustainability assessment methods. The utility of the protocol and the tool are tested in a case study on the recovery of resources from domestic waste water. In several iterations, a combination of methods was selected, followed by execution of the selected sustainability assessment methods. The assessment results can be used in the first phase of the decision procedure that leads to a strategic choice for sustainable resource recovery from waste water in the Netherlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Capture and Utilization of Water From Rain: The Way for Sustainable School

    Directory of Open Access Journals (Sweden)

    Jamila El Tugoz

    2017-05-01

    Full Text Available Currently, issues related to environmental preservation and responsible use of water, have become a global concern, which has driven the increasing number of public policies aimed at promoting sustainable practices. In this context, it addresses the implementation of a system harnessing rainwater for non-potable purposes in a school unit. This article aimed to evaluate the results obtained from the use of tanks to capture and use of rainwater in a state school of Paraná, in the city of Marechal Cândido Rondon. It is a descriptive exploratory research, qualitative and quantitative approach. Based on data from historical series water consumption of the College Eron Domingues, a relationship between the consumption of water and the monthly rainfall for the period was established. The results confirmed the efficiency of the capture of rain water system, reducing the consumption of treated water supplied by the Water and Sewage Company, up 57.2%. Thus, while stimulating in students an awareness focused on sustainability, inclusion of knowledge and environmental practices at school, comprise the prospect of a multiplier effect on society.

  4. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    International Nuclear Information System (INIS)

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  5. Managing Water Sustainability: Virtual Water Flows and Economic Water Productivity Assessment of the Wine Trade between Italy and the Balkans

    Directory of Open Access Journals (Sweden)

    Pier Paolo Miglietta

    2018-02-01

    Full Text Available The management of natural resources in economic activities has become a fundamental issue when considering the perspective of sustainable development. It is necessary to rethink every process in order to reach efficiency from different points of view, not only environmentally but also economically. Water scarcity is growing because of economic and population growth, climate change, and the increasing water demand. Currently, agri-food represents the most water consumptive sector, and the increasing importance of international trade in this industry puts freshwater issues in a global context that should be analyzed and regulated by sustainable policies. This analysis is focused on virtual water flows and economic water productivity related to the wine trade, and aims to evaluate water loss/savings achieved through bilateral trade relations. The choice fell on Italy, the first wine producer in the world, and the Balkan countries. The latter are new markets for wine production/consumption, in which Italian wines are strongly positioned for different reasons. The results show that, from a national point of view and considering wine trade, Italy exports water in virtual form to the Balkan countries, more than it imports, so that in effect it partially uses its own water resources for the wine supply of the Balkans. The latter, on the other hand, being a net importer of wine, partially depends on Italian water resources and exerts less pressure on their own water basins in the supporting wine supply. We also observed that the wine trade between Italy and the Balkans implies global water savings.

  6. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  7. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  8. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications.

    Science.gov (United States)

    McClain, Michael E

    2013-09-01

    Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.

  9. Mashhad Wise Water Forum: a path to sustainable water resources management in a semi-arid region of Iran

    Science.gov (United States)

    Tabatabaee, Seyyed Alireza; Neyshaboori, Shahnaz; Basirat, Ali; Tavakoli Aminiyan, Samaneh; Mirbehrooziyan, Ahmad; Sakhdari, Hossein; Shafiei, Mojtaba; Davary, Kamran

    2016-04-01

    Water is key to sustainable development especially in semi-arid regions in which the main source of water provision is groundwater. Water has value from a social, economic and environmental perspective and is required to be managed within a sound, integrated socio-economic and environmental framework. Mashhad, the second big city in Iran, has been faced with rapid growth rates of population and economic activities. The groundwater in Mashhad basin has been overexploited to meet the increasing trend of water demand during the past 20 years. Consequently, the region has faced with water scarcity and water quality problems which originates from inefficient use and poor management. To tackle the water issue on a durable basis, within the economic, ecological, and political constraints (i.e. the integrated water resources management, IWRM concept), a Non-Governmental Organization (NGO), named as Mashhad Wise Water Forum (MWWF), has been established in 2013 that encompasses contribution of experts from academia, industry, and governmental policy-makers. The MWWF considers the UN-Water IWRM spiral conceptual model (which contains four stages: Recognizing and identifying; Conceptualizing; Coordinating and planning; Implementing, Monitoring and Evaluating) by implicating participatory water management (water users' involvement) methods in Mashhad basin. Furthermore, the MWWF has planned to look at all dimensions of water crisis (i.e. physical, economic, policy and institutional) particularly institutional dimension by gathering all stockholders, beneficiaries and experts in different parts of water policy making in Mashhad basin. The MWWF vision for Mashhad basin is achieving to sustainable equilibrium of water resources and consumptions in the basin by the prospect to 2040 year. So far, the MWWF has tried to understand and deal with regional diversity in legal systems as well as conflicts between private interests and public welfare in water allocation and management. At

  10. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    Science.gov (United States)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  11. Water Operational Plan 2011-2020

    OpenAIRE

    Asian Development Bank (ADB)

    2011-01-01

    ADB established through Strategy 2020 three strategic agendas to guide its work up to 2020—inclusive economic growth, environmentally sustainable growth, and regional integration. Water is common to each of these and is in fact central to their attainment. The Strategy refocuses ADB’s operations into five core areas that best support its agenda and reflect ADB’s comparative advantages and core competencies. One core area is infrastructure, where water resources management and the delivery of ...

  12. Hydrocolloid-based nutraceutical delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Janaswamy, Srinivas; Youngren, Susanne R. (Purdue)

    2012-07-11

    Nutraceuticals are important due to their inherent health benefits. However, utilization and consumption are limited by their poor water solubility and instability at normal processing and storage conditions. Herein, we propose an elegant and novel approach for the delivery of nutraceuticals in their active form using hydrocolloid matrices that are inexpensive and non-toxic with generally recognized as safe (GRAS) status. Iota-carrageenan and curcumin have been chosen as models of hydrocolloid and nutraceutical compounds, respectively. The iota-carrageenan network maintains a stable organization after encapsulating curcumin molecules, protects them from melting and then releases them in a sustained manner. These findings lay a strong foundation for developing value-added functional and medicinal foods.

  13. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  14. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  15. Constraints in animal health service delivery and sustainable improvement alternatives in North Gondar, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hassen Kebede

    2014-11-01

    Full Text Available Poor livestock health services remain one of the main constraints to livestock production in many developing countries, including Ethiopia. A study was carried out in 11 districts of North Gondar, from December 2011 to September 2012, with the objective of identifying the existing status and constraints of animal health service delivery, and thus recommending possible alternatives for its sustainable improvement. Data were collected by using pre-tested questionnaires and focus group discussion. Findings revealed that 46.34% of the responding farmers had taken their animals to government veterinary clinics after initially trying treatments with local medication. More than 90.00% of the clinical cases were diagnosed solely on clinical signs or even history alone. The antibacterial drugs found in veterinary clinics were procaine penicillin (with or without streptomycin, oxytetracycline and sulphonamides, whilst albendazole, tetramisole and ivermectin were the only anthelmintics. A thermometer was the only clinical aid available in all clinics, whilst only nine (45.00% clinics had a refrigerator. In the private sector, almost 95.00% were retail veterinary pharmacies and only 41.20% fulfilled the requirement criteria set. Professionals working in the government indicated the following problems: lack of incentives (70.00%, poor management and lack of awareness (60.00% and inadequate budget (40.00%. For farmers, the most frequent problems were failure of private practitioners to adhere to ethical procedures (74.00% and lack of knowledge of animal diseases and physical distance from the service centre (50.00%. Of all responding farmers, 58.54% preferred the government service, 21.14% liked both services equally and 20.33% preferred the private service. Farmers’ indiscriminate use of drugs from the black market (23.00% was also mentioned as a problem by private practitioners. Sustainable improvement of animal health service delivery needs increased

  16. Constraints in animal health service delivery and sustainable improvement alternatives in North Gondar, Ethiopia.

    Science.gov (United States)

    Kebede, Hassen; Melaku, Achenef; Kebede, Elias

    2014-11-12

    Poor livestock health services remain one of the main constraints to livestock production in many developing countries, including Ethiopia. A study was carried out in 11 districts of North Gondar, from December 2011 to September 2012, with the objective of identifying the existing status and constraints of animal health service delivery, and thus recommending possible alternatives for its sustainable improvement. Data were collected by using pre-tested questionnaires and focus group discussion. Findings revealed that 46.34% of the responding farmers had taken their animals to government veterinary clinics after initially trying treatments with local medication. More than 90.00% of the clinical cases were diagnosed solely on clinical signs or even history alone. The antibacterial drugs found in veterinary clinics were procaine penicillin (with or without streptomycin), oxytetracycline and sulphonamides, whilst albendazole, tetramisole and ivermectin were the only anthelmintics. A thermometer was the only clinical aid available in all clinics, whilst only nine (45.00%) clinics had a refrigerator. In the private sector, almost 95.00% were retail veterinary pharmacies and only 41.20% fulfilled the requirement criteria set. Professionals working in the government indicated the following problems: lack of incentives (70.00%), poor management and lack of awareness (60.00%) and inadequate budget (40.00%). For farmers, the most frequent problems were failure of private practitioners to adhere to ethical procedures (74.00%) and lack of knowledge of animal diseases and physical distance from the service centre (50.00%). Of all responding farmers, 58.54% preferred the government service, 21.14% liked both services equally and 20.33% preferred the private service. Farmers' indiscriminate use of drugs from the black market (23.00%) was also mentioned as a problem by private practitioners. Sustainable improvement of animal health service delivery needs increased awareness for all

  17. LCA and Sustainability

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bjørn, Anders

    2018-01-01

    LCA is often presented as a sustainability assessment tool. This chapter analyses the relationship between LCA and sustainability. This is done by first outlining the history of the sustainability concept, which gained momentum with the Brundtland Commission’s report ‘Our Common Future report...... is then demonstrated, and the strategy of LCA to achieving environmental protection, namely to guide the reduction of environmental impacts per delivery of a function, is explained. The attempt to broaden the scope of LCA, beyond environmental protection, by so-called life cycle sustainability assessment (LCSA......) is outlined. Finally, the limitations of LCA in guiding a sustainable development are discussed....

  18. Franchising - a partnership model for efficient water services operation and maintenance

    CSIR Research Space (South Africa)

    Wall, K

    2007-05-01

    Full Text Available There is a need in South Africa for institutional innovations aimed at increasing the coverage and reliability of water services, and sustaining those services. The paper describes an alternative service delivery institutional concept, viz...

  19. Application of mathematical modeling in sustained release delivery systems.

    Science.gov (United States)

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  20. Evaluation of Small-Scale Providers of Water Supply and Sanitation Services in Peru

    OpenAIRE

    World Bank

    2007-01-01

    The Water and Sanitation Program (WSP), administered by the World Bank, helps countries find sustainable solutions to ensure efficient delivery of the quality water supply and sanitation services the population demands. The WSP is carrying out a systematic analysis in several countries to identify the role of small-scale providers (SSP) of water and sanitation services to poor populations ...

  1. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  2. Energy Recovery in Existing Water Networks: Towards Greater Sustainability

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-02-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.

  3. The sustainable wood production initiative.

    Science.gov (United States)

    Robert. Deal

    2004-01-01

    To address concerns about sustainable forestry in the region, the Focused Science Delivery Program is sponsoring a three year Sustainable Wood Production Initiative. The Pacific Northwest is one of the world's major timber producing regions, and the ability of this region to produce wood on a sustained yield basis is widely recognized. Concerns relating to the...

  4. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    International Nuclear Information System (INIS)

    Brauman, Kate A; Foley, Jonathan A; Siebert, Stefan

    2013-01-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ∼40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people. (letter)

  5. Using Causal Loop Diagramming to Explore the Drivers of the Sustained Functionality of Rural Water Services in Timor-Leste

    Directory of Open Access Journals (Sweden)

    Kate Neely

    2016-01-01

    Full Text Available It is recognized that international water sector development work has issues with a lack of sustained positive outcomes. A large driver of this outcome is how NGOs work with communities to implement and then manage water services. Many NGOs tend to focus their efforts on improving their reach and organisational growth by continually engaging in new projects. This behaviour is largely driven by short-term donor funding models that reward extended coverage, leaving little focus on sustained outcomes. Similarly, community-based management (CBM schemes often impede sustained services as a result of the community’s limited capacity to operate and maintain the technology. To explore these complicated drivers on water service sustainability, we used causal loop diagramming to analyse the key aspect influencing the combined dynamics between NGOs, donors and CBM. We demonstrate this methodology through a study in Timor-Leste, where we gathered data necessary to develop and apply causal loop diagrams to analyse rural water supply program outcomes. The analysis of these diagrams allowed identification of leverage points used to suggest structural changes for sustained benefits of water services. These structural changes emphasize the importance of increased robustness and reliability of water technology and the associated impact this has on community satisfaction and, conjointly, on water service sustainability.

  6. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  7. Chitosan and its derivatives for application in mucoadhesive drug delivery systems

    OpenAIRE

    Ways, Twana Mohammed M.; Lau, Wing Man; Khutoryanskiy, Vitaliy V.

    2018-01-01

    Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major ...

  8. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems

    OpenAIRE

    Twana Mohammed M. Ways; Wing Man Lau; Vitaliy V. Khutoryanskiy

    2018-01-01

    Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major ...

  9. E3 Success Story - Path Toward Sustainability Leads to Significant Water Savings: Southwire

    Science.gov (United States)

    Southwire—a manufacturer of wire and cable products— searched for opportunities to reduce its water use and launched a sustainability campaign that established goals to reduce water use by 15 percent and overall carbon footprint by 10 percent.

  10. AGRO-ECOSYSTEMS AND SUSTAINABLE DEVELOPMENT OF WATER RESOURCES IN ARGES RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Tatiana Diaconu

    2010-01-01

    Full Text Available Lotic ecosystems, part of the Natural Capital, is one of the key factors functioning of socio - economic development andtheir support. An important role in their sustainable development, is the retention and recycling of nutrients, especiallyN, P and their compounds. The nutrients in lotic and lentic ecosystems are either due to natural biochemical processesor by human impact of pollution or broadcast process and characterize the ecological status of water bodies and thuscan determine the quality of services provided. A special importance have agro-ecosystems, particularly multifunctionallivestock farms. Pathways by which pollutants (especially nutrients and pesticides, and other pollutants to reach bodiesof water are different (surface drainage, percolation, etc..To ensure sustainable development of water resources is necessary for agricultural development to take place in termsof minimizing waste streams and not affect the production and support of NC.

  11. Research on the comparison of the demethylvancomycin's diffusion-deposition characteristics in the ocular solid tissues of sustained subtenon drug delivery with subconjunctival injection.

    Science.gov (United States)

    Duan, Yi-Qin; Yang, Ye-Zhen; Huang, Xue-Tao; Lin, Ding

    2017-11-01

    To compare the demethylvancomycin's diffusion-deposition characteristics in the ocular solid tissues of sustained subtenon drug delivery with subconjunctival injection. Sixty adult white rabbits were randomly assigned to the subtenon drug delivery group and the subconjunctival injection group. The subtenon drug delivery group was continuously infused demethylvancomycin to the subtenon of rabbits. The subconjunctival injection group was injected demethylvancomycin to the subconjunctival of rabbits. Cornea, iris and sclera were collected for high-performance liquid chromatography analyses to determine drug concentrations at one hour, three hours, six hours, 12 h and 24 h of drug administration. WinNonlin 6.3 was used to calculate the parameters of cumulative area under the curve (AUC cum ) of demethylvancomycin. The peak levels of demethylvancomycin concentration of the subtenon drug delivery group and the subconjunctival injection group were 92.406 ± 21.555 and 51.778 ± 14.001 μg/g in cornea, 28.451 ± 10.229 μg/g and 42.271 ± 27.291 μg/g in iris, 153.166 ± 51.738 μg/g and 57.423 ± 18.480 μg/g in sclera. The differences of concentrations between the two groups in cornea and sclera were statistically significant (F = 487.775, p drug delivery group and the subconjunctival injection group was 1808.23 h * μg/g and 273.73 h * μg/g in cornea, 489.12 h * μg/g and 216.16 h * μg/g in iris and 2166.34 h * μg/g and 392.57 h * μg/g in sclera at 24 h of drug administration. The sustained subtenon drug delivery had a better drug permeability and accumulation in the intraocular solid tissue compared to subconjunctival injection, which demonstrated it was probably a promising and effective approach for treating posterior segment diseases and endophthalmitis.

  12. A Life-cycle Approach to Improve the Sustainability of Rural Water Systems in Resource-Limited Countries

    Directory of Open Access Journals (Sweden)

    Nicholas Stacey

    2012-11-01

    Full Text Available A WHO and UNICEF joint report states that in 2008, 884 million people lacked access to potable drinking water. A life-cycle approach to develop potable water systems may improve the sustainability for such systems, however, a review of the literature shows that such an approach has primarily been used for urban systems located in resourced countries. Although urbanization is increasing globally, over 40 percent of the world’s population is currently rural with many considered poor. In this paper, we present a first step towards using life-cycle assessment to develop sustainable rural water systems in resource-limited countries while pointing out the needs. For example, while there are few differences in costs and environmental impacts for many improved rural water system options, a system that uses groundwater with community standpipes is substantially lower in cost that other alternatives with a somewhat lower environmental inventory. However, a LCA approach shows that from institutional as well as community and managerial perspectives, sustainability includes many other factors besides cost and environment that are a function of the interdependent decision process used across the life cycle of a water system by aid organizations, water user committees, and household users. These factors often present the biggest challenge to designing sustainable rural water systems for resource-limited countries.

  13. Sustainable Energy for All - What does it mean for Water and Food Security : Seeking sustainable development CLEWS: Climate-change, Land-use, Energy and Water (CLEW) Strategies

    OpenAIRE

    Hermann, Sebastian; Howells, Mark; Welsch, Manuel; Rogner, Hans Holger; Steduto, Pasquale; Gielen, Dolf; Roehrl, Alexander; Bazilian, Morgan

    2011-01-01

    This background note serves to inform the “hot topic” session entitled ‘Sustainable Energy for All – What does it mean for Water and Food Security?’.Energy is vital for human development. This is why the United Nations proclaimed 2012 as the ‘International Year of Sustainable Energy for All’. The goal is to ensure universal access to modern energy services by 2030. Today’s energy production, however, is already putting prohibitive strain on the global environment. In support of worldwide effo...

  14. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    Science.gov (United States)

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  15. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    Science.gov (United States)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  16. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  17. Numerical modeling and remote sensing of global water management systems: Applications for land surface modeling, satellite missions, and sustainable water resources

    Science.gov (United States)

    Solander, Kurt C.

    The ability to accurately quantify water storages and fluxes in water management systems through observations or models is of increasing importance due to the expected impacts from climate change and population growth worldwide. Here, I describe three innovative techniques developed to better understand this problem. First, a model was created to represent reservoir storage and outflow with the objective of integration into a Land Surface Model (LSM) to simulate the impacts of reservoir management on the climate system. Given this goal, storage capacity represented the lone model input required that is not already available to an LSM user. Model parameterization was linked to air temperature to allow future simulations to adapt to a changing climate, making it the first such model to mimic the potential response of a reservoir operator to climate change. Second, spatial and temporal error properties of future NASA Surface Water and Ocean Topography (SWOT) satellite reservoir operations were quantified. This work invoked the use of the SWOTsim instrument simulator, which was run over a number of synthetic and actual reservoirs so the resulting error properties could be extrapolated to the global scale. The results provide eventual users of SWOT data with a blueprint of expected reservoir error properties so such characteristics can be determined a priori for a reservoir given knowledge about its topology and anticipated repeat orbit pass over its location. Finally, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission was used in conjunction with in-situ water use records to evaluate sustainable water use at the two-digit HUC basin scale over the contiguous United States. Results indicate that the least sustainable water management region is centered in the southwest, where consumptive water use exceeded water availability by over 100% on average for some of these basins. This work represents the first attempt at evaluating sustainable

  18. Meeting water needs for sustainable development: an overview of approaches, measures and data sources

    Science.gov (United States)

    Lissner, Tabea; Reusser, Dominik E.; Sullivan, Caroline A.; Kropp, Jürgen P.

    2013-04-01

    An essential part of a global transition towards sustainability is the Millennium Development Goals (MDG), providing a blueprint of goals to meet human needs. Water is an essential resource in itself, but also a vital factor of production for food, energy and other industrial products. Access to sufficient water has only recently been recognized as a human right. One central MDG is halving the population without access to safe drinking water and sanitation. To adequately assess the state of development and the potential for a transition towards sustainability, consistent and meaningful measures of water availability and adequate access are thus fundamental. Much work has been done to identify thresholds and definitions to measure water scarcity. This includes some work on defining basic water needs of different sectors. A range of data and approaches has been made available from a variety of sources, but all of these approaches differ in their underlying assumptions, the nature of the data used, and consequently in the final results. We review and compare approaches, methods and data sources on human water use and human water needs. This data review enables identifying levels of consumption in different countries and different sectors. Further comparison is made between actual water needs (based on human and ecological requirements), and recognised levels of water abstraction. The results of our review highlight the differences between different accounts of water use and needs, and reflect the importance of standardised approaches to data definitions and measurements, making studies more comparable across space and time. The comparison of different use and allocation patterns in countries enables levels of water use to be identified which allow for an adequate level of human wellbeing to be maintained within sustainable water abstraction limits. Recommendations are provided of how data can be defined more clearly to make comparisons of water use more meaningful and

  19. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  20. Future market sustainable water management and nanotechnology; Zukunftsmarkt Nachhaltige Wasserwirtschaft und Nanotechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Wolfgang; Bachmann, Gerd; Grimm, Vera; Schug, Hartmut; Zweck, Axel [VDI Technologiezentrum GmbH, Duesseldorf (Germany); Marscheider-Weidemann, Frank [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    This case study on nanotechnology with a focus on sustainable water management was done within the scope of the research project ''Future markets - innovative environmental policy in important fields of action''. Nanotechnology is a broad cross-cutting technology with a multitude of process and technology platforms. Nanotechnologies can contribute to preventing water pollution (e. g. by substituting water polluting processes) or removing this (e. g. nanomaterials/ membranes in wastewater treatment) and can be used to monitor water quality (e. g. nanosensors). Water plays a key role in nutrition and health, in agriculture (irrigation) and as a solvent in industrial processes. A globally sustainable supply of drinking water and industrial water is seen as one of the main challenges of the next decades. The world water supply market is predicted to be more than 400 billion US-$ (2010), in which membrane technologies will play a key role. The rapid development of nanotechnologies is reflected in the constant growth in the number of nanotechnology patents and publications. New types of filtration membranes and nanomaterials for the catalytic, adsorptive or magnetic-separation purification of wastewater constitute an important segment; some marketable products have already been developed in this field. In the long term, convergence in the fields of electronics, biotechnology, nanotechnology and microsystems will offer new perspectives and applications, in sustainable water management as well. Germany has high technological competence in membrane and nanofiltration technology, mostly based on the strength of its basic research, which can serve as a good basis from which to tap foreign markets. The USA is the leader in the field of nanotechnology and in water management applications. Starting points for policy measures are the initiation and implementation of innovationsupporting measures for the further development of these technologies -particularly

  1. Reactive or proactive approach towards sustainability? A conceptual framework based on sustainable business models to increase stakeholders' sustainable value capture

    DEFF Research Database (Denmark)

    Rosati, Francesco; Morioka, Sandra; Monteiro de Carvalho, Marly

    2016-01-01

    and challenging companies to seek for business opportunities with an entrepreneurial attitude to help solving sustainable development challenges. By combining both approaches, organizations have the opportunity to increase sustainable value capture by its stakeholders, acting on their institutional responsibility...... as instrument to help companies describe, analyze, manage and communicate their sustainable value proposition, creation, delivery and capture mechanism. In particular, this research focuses on value capture dynamics, aiming to explore how companies can increase their contribution to sustainable development...... sustainability. In this sense, a proactive approach to foster sustainable value capture can complement the reactive approach by delivering value beyond stakeholders' expectations. In this case, companies use their capabilities to identify opportunities to create and deliver sustainable value that stakeholders...

  2. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Wang Xiaoyun; Xu Hui; Zhao Yanqiu; Wang Shaoning; Abe, Hiroya; Naito, Makio; Liu Yanli; Wang Guoqing

    2012-01-01

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  3. Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.

    Science.gov (United States)

    Stoler, Justin

    2012-12-01

    The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.

  4. City Blueprints: Baseline Assessments of Sustainable Water Management in 11 Cities of the Future

    NARCIS (Netherlands)

    van Leeuwen, C.J.

    2013-01-01

    The necessity of Urban Water Cycle Services (UWCS) adapting to future stresses calls for changes that take sustainability into account. Megatrends (e.g. population growth, water scarcity, pollution and climate change) pose urgent water challenges in cities. In a previous paper, a set of indicators,

  5. Scalar alignment and sustainable water governance: The case of irrigated agriculture in Turkey

    NARCIS (Netherlands)

    Özerol, Gül; Bressers, Johannes T.A.

    2015-01-01

    Irrigated agriculture plays a significant role in global food security and poverty reduction. At the same time its negative impacts on water and land resources threaten environmental sustainability. With the objective of improving the understanding on the complexity of governing water resources for

  6. Modern technologies and equipment for environment and sustainable development at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian; Patrascu, Mihai; Pop, Artimisia; Chilom, Rodica

    2004-01-01

    At ROMAG-PROD Heavy Water Plant, the sustainable development concept incorporates as a priority the environmental protection through the production process technology. Norway's Prime Minister, Mr. Gro Harlem Brundtland used the concept of 'sustainable development' in 1987, when as President of International Commission for Environment and Sustainable Development, he presented his report 'Our common future'. Sustainable development means that development that allows satisfying our present needs without spoiling the next generation capacity to meet their own needs. Any technology has both advantages and disadvantages; when considering the concept of sustainable development we have to take into account all the aspects, namely: - causes identification and review; - results evaluation; - corrective and preventive actions. Thus, ROMAG-PROD Heavy Water Plant has implemented a typical environment management system by means of what the general and specific objectives have been established, these objectives being stated in an Environment Policy Declaration: - Environment Management System as per SR EN ISO 14001/1997; - Quality Management System as per SR EN ISO 9001/2000; - IQNet- The International Certification Network. The paper presents the modern equipment for emissions and in-missions management with real time data transmission, for air and water as environment elements. Section two deals with trial of modern technology for industrial discharged wastewater treatment using the method of controlled batching of surface-active materials. Investigations on method application and laboratory testing as well as findings are given. As a conclusion, one can state that ROMAG-PROD Heavy Water Plant, has as one of its main concern keeping on high standards the safety of its equipment operation, sustainable development and risk eliminating so that neither environment or the population in vicinity is affected. (authors)

  7. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  8. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    Science.gov (United States)

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  9. Extracellular Matrix (ECM Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Soon Sim Yang

    Full Text Available Recombinant human transforming growth factor beta-3 (rhTGF-β3 is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs using western blot and circular dichroism (CD analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+ rhTGF-β3 EMLDS in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.

  10. Water access, water scarcity, and climate change.

    Science.gov (United States)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  11. Corporatization of the water sector: Implications for transitioning to sustainable urban water management

    DEFF Research Database (Denmark)

    Fratini, Chiara; Elle, Morten; Brown, Norman R.

    2012-01-01

    In the context of climate change, the Danish water sector is experiencing two major pressures. On one hand, a number of agents are pushing towards more sustainable urban water management (SUWM) approaches with the aim of improving surface water quality and mitigating flood risk. On the other hand....... A more direct collaboration of the national regulator of competitive performances with government institutions and other non-governmental actors might be an effective answer to such challenges....... the influencing factors for transitioning to SUWM and highlighted the potential governance attributes for enhancing and/or constraining such change. This paper explores the corporatization of the water sector and its implications for transitioning to SUWM. On the base of a preliminary literature review we...... identify the rationales for and drawbacks of corporatization and compare them with the critical factors to build institutional capacity for SUWM. Preliminary results suggest that corporatization is expected to create a range of challenges that might hinder the transition towards more SUWM approaches...

  12. A global survey of urban water tariffs: are they sustainable, efficient and fair?

    NARCIS (Netherlands)

    Zetland, D.J.; Gasson, C.

    2013-01-01

    This paper examines the relations between tariffs and sustainability, efficiency and equity, using a unique data-set for 308 cities in 102 countries. Higher water tariffs are correlated with lower per capita consumption, smaller local populations, lower water availability, higher demand and a lower

  13. Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment.

    Science.gov (United States)

    Collet, Lila; Ruelland, Denis; Estupina, Valérie Borrell; Dezetter, Alain; Servat, Eric

    2015-12-01

    Assessing water supply sustainability is crucial to meet stakeholders' needs, notably in the Mediterranean. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km2, France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need to evaluate possible future changes in water allocation capacity in the catchment, using climate change, dam management and water use scenarios. A modelling framework that was already calibrated and validated on this catchment over the last 50 years was used to assess whether water resources could meet water demands at the 2030 horizon for the domestic, agricultural and environmental sectors. Water supply sustainability was evaluated at the sub-basin scale according to priority allocations using a water supply capacity index, frequency of unsatisfactory years as well as the reliability, resilience and sustainability metrics. Water use projections were based on the evolution of population, per-unit water demand, irrigated areas, water supply network efficiency, as well as on the evaluation of a biological flow. Climate projections were based on an increase in temperature up to 2°C and a decrease in daily precipitation by 20%. Adaptation strategies considered reducing per-unit water demand for the domestic sector and the importation of water volume for the agricultural sector. The dissociated effects of water use and climatic constraints on water supply sustainability were evaluated. Results showed that the downstream portions would be the more impacted as they are the most exploited ones. In the domestic sector, sustainability indicators would be more degraded by climate change scenarios than water use constraints. In the agricultural sector the negative impact of water use scenarios would be

  14. Study on the Forming Process and Exploration of Concept of Human-Water Harmonization of Sustainable Development

    Science.gov (United States)

    Liu, Fang; Si, Liqi

    2018-05-01

    According to Maslow's hierarchy of needs, the process of human development and utilization of water resources can be divided into three stages: engineering water conservancy, resource water conservancy and harmonious coexistence between man and water. These three stages reflect the transformation of the idea of human development and utilization of water resources and eventually reach the state of harmony between human being and water. At the same time, this article draws on the experiences of water management under the thinking of sustainable development in the United States, Western Europe, Northern Europe and Africa. Finally, this paper points out that we need to realize the harmonious coexistence between man and water and sustainable development of water resources in the process of development and utilization of water resources, which is the inevitable requirement of the economic and social development.

  15. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    Science.gov (United States)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  16. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    Science.gov (United States)

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  17. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.

    Science.gov (United States)

    Chen, Zhi; Wang, Ting; Yan, Qing

    2018-02-01

    Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.

  18. A biodegradable, sustained-released, prednisolone acetate microfilm drug delivery system effectively prolongs corneal allograft survival in the rat keratoplasty model.

    Directory of Open Access Journals (Sweden)

    Yu-Chi Liu

    Full Text Available Frequent and long-term use of topical corticosteroids after corneal transplantation is necessary to prevent graft rejection. However, it relies heavily on patient compliance, and sustained therapeutic drug levels are often not achieved with administration of topical eye drops. A biodegradable drug delivery system with a controlled and sustained drug release may circumvent these limitations. In this study, we investigated the efficacy of a prednisolone acetate (PA-loaded poly (d,l-lactide-co-ε-caprolactone (PLC microfilm drug delivery system on promoting the survival of allogeneic grafts after penetrating keratoplasty (PK using a rat model. The drug release profiles of the microfilms were characterized (group 1. Subsequently, forty-eight PK were performed in four experimental groups: syngeneic control grafts (group 2, allogeneic control grafts (group 3, allogeneic grafts with subconjunctivally-implanted PA microfilm (group 4, and allogeneic grafts with PA eye drops (group 5; n = 12 in each. PA-loaded microfilm achieved a sustained and steady release at a rate of 0.006-0.009 mg/day, with a consistent aqueous drug concentration of 207-209 ng/ml. The mean survival days was >28 days in group 2, 9.9±0.8 days in group 3, 26.8±2.7 days in group 4, and 26.4±3.4 days in group 5 (P = 0.023 and P = 0.027 compared with group 3. Statistically significant decrease in CD4+, CD163+, CD 25+, and CD54+ cell infiltration was observed in group 4 and group 5 compared with group 3 (P<0.001. There was no significant difference in the mean survival and immunohistochemical analysis between group 4 and group 5. These results showed that sustained PA-loaded microfilm effectively prolongs corneal allograft survival. It is as effective as conventional PA eye drops, providing a promising clinically applicable alternative for patients undergoing corneal transplantation.

  19. Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis

    Science.gov (United States)

    Darzi-Naftchali, Abdullah; Karandish, Fatemeh

    2017-12-01

    Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a

  20. Achieving sustainable irrigation water withdrawals: global impacts on food security and land use

    Science.gov (United States)

    Liu, Jing; Hertel, Thomas W.; Lammers, Richard B.; Prusevich, Alexander; Baldos, Uris Lantz C.; Grogan, Danielle S.; Frolking, Steve

    2017-10-01

    Unsustainable water use challenges the capacity of water resources to ensure food security and continued growth of the economy. Adaptation policies targeting future water security can easily overlook its interaction with other sustainability metrics and unanticipated local responses to the larger-scale policy interventions. Using a global partial equilibrium grid-resolving model SIMPLE-G, and coupling it with the global Water Balance Model, we simulate the consequences of reducing unsustainable irrigation for food security, land use change, and terrestrial carbon. A variety of future (2050) scenarios are considered that interact irrigation productivity with two policy interventions— inter-basin water transfers and international commodity market integration. We find that pursuing sustainable irrigation may erode other development and environmental goals due to higher food prices and cropland expansion. This results in over 800 000 more undernourished people and 0.87 GtC additional emissions. Faster total factor productivity growth in irrigated sectors will encourage more aggressive irrigation water use in the basins where irrigation vulnerability is expected to be reduced by inter-basin water transfer. By allowing for a systematic comparison of these alternative adaptations to future irrigation vulnerability, the global gridded modeling approach offers unique insights into the multiscale nature of the water scarcity challenge.

  1. Sustained reductions in time to antibiotic delivery in febrile immunocompromised children: results of a quality improvement collaborative.

    Science.gov (United States)

    Dandoy, Christopher E; Hariharan, Selena; Weiss, Brian; Demmel, Kathy; Timm, Nathan; Chiarenzelli, Janis; Dewald, Mary Katherine; Kennebeck, Stephanie; Langworthy, Shawna; Pomales, Jennifer; Rineair, Sylvia; Sandfoss, Erin; Volz-Noe, Pamela; Nagarajan, Rajaram; Alessandrini, Evaline

    2016-02-01

    Timely delivery of antibiotics to febrile immunocompromised (F&I) paediatric patients in the emergency department (ED) and outpatient clinic reduces morbidity and mortality. The aim of this quality improvement initiative was to increase the percentage of F&I patients who received antibiotics within goal in the clinic and ED from 25% to 90%. Using the Model of Improvement, we performed Plan-Do-Study-Act cycles to design, test and implement high-reliability interventions to decrease time to antibiotics. Pre-arrival interventions were tested and implemented, followed by post-arrival interventions in the ED. Many processes were spread successfully to the outpatient clinic. The Chronic Care Model was used, in addition to active family engagement, to inform and improve processes. The study period was from January 2010 to January 2015. Pre-arrival planning improved our F&I time to antibiotics in the ED from 137 to 88 min. This was sustained until October 2012, when further interventions including a pre-arrival huddle decreased the median time to antibiotics within 60 min to >90%. In September 2014, we implemented a rapid response team to improve reliable venous access in the ED, which increased our mean percentage of patients receiving timely antibiotics to its highest rate (95%). This stepwise approach with pre-arrival planning using the Chronic Care Model, followed by standardisation of processes, created a sustainable improvement of timely antibiotic delivery in F&I patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Water Policy Reforms in South Korea: A Historical Review and Ongoing Challenges for Sustainable Water Governance and Management

    Directory of Open Access Journals (Sweden)

    Ik-Chang Choi

    2017-09-01

    Full Text Available This study aims to provide an opinion on the state-of-the-art of changes and reforms of water policies in South Korea, as well as the challenges along with their implications for sustainable water governance and management. In parallel with change in water resource characteristics generated by physical, environmental and socio-economic challenges such as: (1 uncertainties about climate change (flooding and drought including seasonal and regional variation in precipitation; (2 significant increase in water use caused by rapid urbanization and population growth in industrialized urban areas; (3 inadequate water pricing mechanism which covers only around 80% of the production cost and makes it harder to maintain water systems; and (4 recursive water quality degradation and conflicts over water rights between regions resulting from non-point source pollution in highland versus lowland areas, Korean water policies have been developed through diverse reforms over 100 years. Nevertheless, new challenges for sustainable water management are continuously emerging. To meet those challenges we provide two ideas: (i provider-gets-principle (payment for ecosystem services of cost-benefit sharing among stakeholders who benefit from water use; and (ii water pricing applying full-cost pricing-principle internalizing environmental externalities caused by the intensive water use. Funds secured from the application of those methods would facilitate: (1 support for upstream (rural low income householders suffering from economic restrictions; (2 improvement in water facilities; and (3 efficient water use and demand management in South Korea’s water sectors. We expect that this paper can examine the lessons relevant to challenges that South Korea faces and offer some implications on the formulation of new integration and further reforms of the institutions, laws and organizations responsible for managing water resources in South Korea.

  3. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.

    Science.gov (United States)

    Xu, Leyuan; Yeudall, W Andrew; Yang, Hu

    2017-07-15

    The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR

  4. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  5. Greenhouse gas and energy co-benefits of water conservation[Water Sustainability Project

    Energy Technology Data Exchange (ETDEWEB)

    Maas, C.

    2009-03-15

    Energy is needed to deliver water to, within and from communities to remove contaminants from water and wastewater, and to heat water in homes. The interconnections between water and energy are referred to as the water-energy nexus. Large volumes of water are needed to generate energy, notably to power turbines, to cool thermal or nuclear energy plants, and to extract oil from tar sands. At the same time, large amounts of energy are needed to pump, treat, heat and distribute water for urban, industrial and agricultural use and to collect and treat the resulting wastewater. The two sides of the water-energy nexus are generating new research and policy proposals to address the challenges of climate change, energy security and increasing water scarcity. This report demonstrated that a large untapped opportunity exists for water conservation to reduce energy, municipal costs and greenhouse gas (GHG) emissions. The water-energy research in this study was based on a Soft Path for Water approach that incorporated facets of water demand management while moving beyond a short-term focus on cost-benefit criteria to examine how the services currently provided by water can be delivered to meet the need for economic, social and ecological sustainability. Although the research was conducted using data for municipalities in Ontario, the report is relevant to the rest of Canada and much of North America. Water conservation strategies included water efficiency measures such as high efficiency toilets and washing machines, as well as water saving measures such as xeriscaping and rainwater harvesting. The objectives of the study were to quantify the energy use associated with each component of the urban water use cycle and to determine the potential for energy and GHG emissions reductions associated with water conservation strategies. This report provided an overview of energy inputs needed for water provision. It outlined the methodology used to achieve the project objectives and

  6. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    Science.gov (United States)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  7. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    Science.gov (United States)

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Water Sciences - Connecting the dots to achieve the 2030 Agenda for Sustainable Development

    Science.gov (United States)

    Uhlenbrook, Stefan; Ortigara, Angela; Minelli, Lucilla

    2017-04-01

    Land use change, urbanisation, climate change, demographic development and migration, conflicts and peace, change of diets, industry 4.0, globalisation etc. are among the challenges that water sciences need to address to serve societal needs. Water availability per capita is decreasing, water quality is deteriorating at many places, but water demand is continuously escalating. Business as usual in water science is not up to the related challenges. In fact, business as usual cannot be the answer in all aspects, i.e. also current policy making processes will need to improve and take stock of evidences provided by science in order to better address societal challenges. However, exciting developments have been taking place. The global community agreed on a new and ambitious agenda for development, which aims to be comprehensive and include the participation of all stakeholders in one integrated framework. The 2030 Agenda for Sustainable Development provides a stimulating new era, with unique opportunities to reconcile science, society and policy making. Hydrology and water management - in all its facets including wastewater - play a central role in the Agenda 2030, as it is not only central in Sustainable Development Goal (SDG) 6, but it is fundamental for the realization of other SDGs related to, for instance, poverty reduction, sustainable growth, health, food security, climate change, ecosystems (land and sea), gender equality, etc. Despite the recognition of the critical importance of water in this agenda, the implementation of related policies and use of scientific developments represent a difficult task. Two main challenges remain: (i) the utilization of the knowledge and developments already available, and (ii) the need to overcome current and future knowledge gaps ensuring that scientific results support sustainable development effectively. The UN system will produce a Synthesis Report for SDG 6, which is currently being prepared by a UN-Water Task Force that

  9. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    Science.gov (United States)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of

  10. Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation.

    Science.gov (United States)

    He, Qing-Li; Minn, Il; Wang, Qiaoling; Xu, Peng; Head, Sarah A; Datan, Emmanuel; Yu, Biao; Pomper, Martin G; Liu, Jun O

    2016-09-19

    Triptolide, a key ingredient from the traditional Chinese medicinal plant thunder god vine, which has been used to treat inflammation and autoimmune diseases for centuries, has been shown to be an irreversible inhibitor of the XPB subunit of the transcription factor TFIIH and initiation of RNA polymerase II mediated transcription. The clinical development of triptolide over the past two decades has been limited by its toxicity and low water solubility. Herein, we report the development of a glucose conjugate of triptolide, named glutriptolide, which was intended to target tumor cells overexpressing glucose transporters selectively. Glutriptolide did not inhibit XPB activity in vitro but demonstrated significantly higher cytotoxicity against tumor cells over normal cells with greater water solubility than triptolide. Furthermore, it exhibited remarkable tumor control in vivo, which is likely due to sustained stepwise release of active triptolide within cancer cells. These findings indicate that glutriptolide may serve as a promising lead for developing a new mechanistic class of anticancer drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Williams, D.L.; Reister, R.

    2012-01-01

    The US Department of Energy Light Water Reactor Sustainability (LWRS) Program is focused on enabling the long-term operation of US commercial power plants. Decisions on life extension will be made by commercial power plant owners - the information provided by the research and development activities in the LWRS Program will reduce the uncertainty (and therefore the risk) associated with making those decisions. The LWRS Program encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper provides an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables. (author)

  12. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    Science.gov (United States)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  13. Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism

    Directory of Open Access Journals (Sweden)

    Abeer M. El-Kady

    2015-01-01

    Full Text Available Bioactive glass nanoparticles were synthesized and tested for the first time as a new delivery system for sustained 5-fluorouracil (5-FU release. They were characterized by TEM, DTA, TGA, and FT-IR. The porosity % and specific surface area of glass nanoparticles were 85.59% and 378.36 m2/g, respectively. The in vitro bioactivity evaluation confirmed that bioactive glass disks prepared from these nanoparticles could induce hydroxyapatite layer over their surfaces in simulated body fluid. The in vitro drug release experiment indicated that glass nanoparticles could serve as long-term local delivery vehicles for sustained 5-FU release. The release profile of 5-FU showed an initial fast release stage followed by a second stage of slower release. The initial burst release of 5-FU in the first day was about 23% (28.92 mg·L−1 of the total amount of loaded 5-FU, while the final cumulative percentage of the 5-FU released after 32 days was about 45.6% (57.31 mg·L−1 of the total amount of loaded 5-FU. The application of different mathematical models indicated that 5-FU was released by diffusion controlled mechanism and suggested that its release rate was dependent on glass particles dissolution, changes of surface area as well as diameter of glass particles, and concentration of loaded drug.

  14. The institutional regulation of the sustainability of water resources within mining contexts: accountability and plurality

    NARCIS (Netherlands)

    Sosa Landeo, M.; Zwarteveen, M.Z.

    2014-01-01

    This article reviews recent literature on water and mining and uses illustrations from a large gold mine, Yanacocha, operating in Peru, to assess the effectiveness of institutional mechanisms for safeguarding the sustainability of water resources (and water-based ecosystems) in mining regions. The

  15. Urban Cholera and Water Sustainability Challenges under Climatic and Anthropogenic Change

    Science.gov (United States)

    Akanda, A. S.; Jutla, A.; Huq, A.; Faruque, A. G.; Colwell, R. R.

    2013-12-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city of the world - Dhaka, Bangladesh. Emerging megacities in the developing world, especially those located in coastal regions of the tropics remain vulnerable to similar. However, there has not been any systematic study on linking the long-term disease trends with changes in related climatic, environmental, or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or societal factors: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns. An interesting change is observed in the seasonal trends of cholera incidence; while an endemic upward trend is seen in the dry season, the post-monsoon trend seem to be more epidemic in nature. Evidence points to growing urbanization and rising population in unplanned settlements that have negligible to poor water and sanitation systems compounded by increasing frequency of record flood events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of spring outbreaks, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate water sustainability challenges in the context of climatic and anthropogenic changes in the region.

  16. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts.

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization.

  17. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization. PMID:26251592

  18. Water-Energy-Food Nexus : A Platform for Implementing the Sustainable Development Goals

    OpenAIRE

    Stephan, Raya; Mohtar, Rabi H.; Daher, Bassel; Embid, Antonio; Hillers, Astrid; Ganter, Carl; Karlberg, Louise; Martin, Liber; Nairiz, Saeed; Rodriguez, Diego J.; Sarni, Will

    2018-01-01

    This article was developed as an outcome of the “Water-Energy-Food Nexus” High Level Panel (HLP) which took place at the XVI World Water Congress, Cancun Mexico, June 1, 2017. The HLP’s goal was to demonstrate the extent of interconnection between the water, energy, and food Sustainable Development Goals (SDGs) of the United Nations. The HLP highlighted lessons learned from various thematic and regional case studies and experiences. The panel focused on exploring the possible trade-offs among...

  19. Development and in vitro evaluation of diclofenac sodium loaded mucoadhesive microsphere with natural gum for sustained delivery.

    Science.gov (United States)

    Amin, Md Lutful; Jesmeen, Tasbira; Sutradhar, Kumar Bishwajit; Mannan, Md Abdul

    2013-12-01

    The objective of this study was to develop and evaluate mucoadhesive microsphere of diclofenac sodium with natural gums for sustained delivery. Guar gum and tragacanth were used along with sodium alginate as mucoadhesive polymers. Microspheres were formulated using orifice-ionic gelation method. Particle size, surface morphology, swelling study and drug entrapment efficiency of the prepared microspheres were determined. In vitro evaluation was carried out comprising of mucoadhesion and drug release study. The prepared microspheres were discrete and free flowing. Sodium alginate and natural gum, at a ratio of 1:0.25, showed good mucoadhesive property and they had high drug entrapment efficiencies. They also exhibited the best rate retarding effect among all the formulations. Drug entrapment efficiency of all the microspheres ranged from 80.42% to 91.67%. An inverse relationship was found between extent of crosslinking and drug release rate. Release rate was slow and extended in case of the formulations of 1:0.25 ratio (F1 and F3), releasing 68.36% and 70.56% drug respectively after 8 hours. Tragacanth-containing microspheres of F1 showed superiority over other formulations, with best mucoadhesive and rate retarding profile. The correlation value (r(2)) indicated that the drug release of all the formulations followed Higuchi's model. Overall, the results indicated that mucoadhesive microspheres containing natural gum can be promising in terms of prolonged delivery with good mucoadhesive action, targeting the absorption site to thrive oral drug delivery.

  20. Greenlandic water and sanitation-a context oriented analysis of system challenges towards local sustainable development.

    Science.gov (United States)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-08-28

    Today, as Greenland focuses on more economic and cultural autonomy, the continued development of societal infrastructure systems is vital. At the same time, pressure is put on the systems by a lack of financial resources and locally based professional competences as well as new market-based forms of organization. Against this background, the article discusses the challenges facing Greenland's self-rule in relation to further develop the existing water and wastewater systems so that they can contribute to the sustainable development of Greenland. The article reviews the historical development of the water supply and wastewater system. This leads to an analysis of the sectorisation, which in recent decades has reorganized the Greenlandic infrastructures, and of how this process is influencing local sustainable development. The article discusses the socio-economic and human impacts and points to the need for developing the water and sanitation system to support not only hygiene and health, but also local sustainable development.

  1. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2017-10-01

    Full Text Available The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”. However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1 model, and build a new GM (1,1 model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1 model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  2. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Science.gov (United States)

    Huang, Shuaijin; Qu, Xuexin

    2017-01-01

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006

  3. Gelucire Based In Situ Gelling Emulsions: A Potential Carrier for Sustained Stomach Specific Delivery of Gastric Irritant Drugs

    Directory of Open Access Journals (Sweden)

    Ashwin Saxena

    2013-01-01

    Full Text Available Non steroidal anti-inflammatory drugs (NSAIDs are commonly prescribed medications to the geriatric patients for the treatment of arthritis and other painful disorders. The major side effects of NSAIDs are related to their effects on the stomach and bowels. The present study concerns assessment of the potential of liquid in situ gelling emulsion formulations (emulgels as patient compliant stomach specific sustained release carrier for the delivery of highly gastric irritant drug, Piroxicam. Emulgels were prepared, without using any emulgent, by mixing different concentrations of molten Gelucire 39/01 with low viscosity sodium alginate solution prepared in deionized water at 50°C. CaCO3 was used as buoyancy imparting as well as crosslinking agent. Emulgels so prepared were homogenous, physically stable, and rapidly formed into buoyant gelled mass when exposed to simulated gastric fluid (SGF, pH 1.2. Drug release studies carried out in SGF revealed significant retardation (P<0.05 of Piroxicam release from emulgels compared to conventional in situ gelling formulations prepared without Gelucire 39/01. Pharmacodynamic studies carried out in albino rats revealed significantly increased analgesic/anti-inflammatory response from in situ emulgels compared to conventional in situ gelling formulations. Further, in vivo toxicity studies carried out in albino rats revealed no signs of gastric ulceration upon prolonged dosing.

  4. Network analysis as a tool for assessing environmental sustainability: applying the ecosystem perspective to a Danish water management system

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Scotti, Marco; Thomsen, Marianne

    2013-01-01

    New insights into the sustainable use of natural resources in human systems can be gained through comparison with ecosystems via common indices. In both kinds of system, resources are processed by a number of users within a network, but we consider ecosystems as the only ones displaying sustainable...... patterns of growth and development. We applied Network Analysis (NA) for assessing the sustainability of a Danish municipal Water Management System (WMS). We identified water users within the WMS and represented their interactions as a network of water flows. We computed intensive and extensive indices...

  5. ASTA - A method for multi-criteria evaluation of water supply technologies to Assess the most SusTainable Alternative for Copenhagen

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Albrechtsen, Hans-Jørgen

    2018-01-01

    these environmental, economic and social sustainability dimensions we introduce a novel multi-criteria assessment method for evaluation of water supply technologies. The method is presented and demonstrated for four alternatives for water supply based on groundwater, rain- & stormwater or seawater developed...... for augmenting Copenhagen's current groundwater based water supply. To identify the most sustainable technology, we applied rank order distribution weights to a multi-criteria decision analysis to combine the impact assessments of environment, economy and society. The three dimensions were assessed using 1) life...... weight was assigned to the environmental dimension of sustainability then the alternative of 'Rain- & stormwater harvesting' was the most sustainable water supply technology; when the highest weight was assigned to the economy or society dimensions then an alternative with 'Groundwater abstraction...

  6. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala

    OpenAIRE

    Scarborough, Vernon L.; Dunning, Nicholas P.; Tankersley, Kenneth B.; Carr, Christopher; Weaver, Eric; Grazioso, Liwy; Lane, Brian; Jones, John G.; Buttles, Palma; Valdez, Fred; Lentz, David L.

    2012-01-01

    The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction...

  7. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  8. Sustainability, efficiency and equitability of water consumption and pollution in Latin America and the Caribbean

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Pahlow, Markus; Martinez-Aldaya, Maite; Zarate, E.; Hoekstra, Arjen Ysbert

    2015-01-01

    This paper assesses the sustainability, efficiency and equity of water use in Latin America and the Caribbean (LAC) by means of a geographic Water Footprint Assessment (WFA). It aims to provide understanding of water use from both a production and consumption point of view. The study identifies

  9. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes

    Directory of Open Access Journals (Sweden)

    Cai Y

    2014-07-01

    Full Text Available Yunpeng Cai,1,2 Mingxin Xu,2 Minglu Yuan,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, School of Medicine, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Abstract: Since the availability of recombinant human growth hormone (rhGH enabled the application of human growth hormone both in clinical and research use in the 1980s, millions of patients were prescribed a daily injection of rhGH, but noncompliance rates were high. To address the problem of noncompliance, numerous studies have been carried out, involving: sustained-release preparations, prolonged half-life derivatives, new injectors that cause less pain, and other noninvasive delivery methods such as intranasal, pulmonary and transdermal deliveries. Some accomplishments have been made and launched already, such as the Nutropin Depot® microsphere and injectors (Zomajet®, Serojet®, and NordiFlex®. Here, we provide a review of the different technologies and illustrate the key points of these studies to achieve an improved rhGH product. Keywords: intranasal, pulmonary, transdermal, microsphere, microneedle, hydrogel

  10. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  11. Intracranial drug delivery for subarachnoid hemorrhage.

    Science.gov (United States)

    Macdonald, Robert Loch; Leung, Ming; Tice, Tom

    2012-01-01

    Tice and colleagues pioneered site-specific, sustained-release drug delivery to the brain almost 30 years ago. Currently there is one drug approved for use in this manner. Clinical trials in subarachnoid hemorrhage have led to approval of nimodipine for oral and intravenous use, but other drugs, such as clazosentan, hydroxymethylglutaryl CoA reductase inhibitors (statins) and magnesium, have not shown consistent clinical efficacy. We propose that intracranial delivery of drugs such as nimodipine, formulated in sustained-release preparations, are good candidates for improving outcome after subarachnoid hemorrhage because they can be administered to patients that are already undergoing surgery and who have a self-limited condition from which full recovery is possible.

  12. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    harvesting measures like construction of big, small and mini dams, roof top rain, flood water harvesting and application of water conservation measures like propagation of high-efficiency irrigation systems, changes of cropping patterns, lining of distributaries, minor sand water courses in saline groundwater areas, identification of feasible surface and underground water storage sites and dams, and activation of water-user organizations. Other measures can be Installation of tube-wells in technically groundwater potential feasible areas, to improve flood and drought-forecasting methods, and a much wider application of conjunctive water-use approach, institutional reforms for better co-ordination and a wider formulation of a national water-policy are other priority areas. Formulation of a regulatory frame work on groundwater abstraction. It is recommended that an experts panel, be created to steer the formulation of the strategies and ensure the implementation of the water resources strategies proposed. This paper discusses water resources management measures in Pakistan and the efforts to establish efficient and sustainable management of irrigation water system. (author)

  13. In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery.

    Science.gov (United States)

    Liu, Dongyun; Kobayashi, Taku; Russo, Steven; Li, Fengling; Plevy, Scott E; Gambling, Todd M; Carson, Johnny L; Mumper, Russell J

    2013-01-01

    Peptide and protein drugs have become the new generation of therapeutics, yet most of them are only available as injections, and reports on oral local intestinal delivery of peptides and proteins are quite limited. The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration. A fluorescent labeled peptide, 5-(and-6)-carboxytetramethylrhodamine labeled HIV transactivator protein TAT (TAMRA-TAT), was used as a model peptide. Water-in-oil microemulsions consisting of Miglyol 812, Capmul MCM, Tween 80, and water were developed and characterized in terms of appearance, viscosity, conductivity, morphology, and particle size analysis. TAMRA-TAT was loaded and its enzymatic stability was assessed in modified simulated intestinal fluid (MSIF) in vitro. In in vivo studies, TAMRA-TAT intestinal distribution was evaluated using fluorescence microscopy after TAMRA-TAT microemulsion, TAMRA-TAT solution, and placebo microemulsion were orally gavaged to mice. The half-life of TAMRA-TAT in microemulsion was enhanced nearly three-fold compared to that in the water solution when challenged by MSIF. The treatment with TAMRA-TAT microemulsion after oral administration resulted in greater fluorescence intensity in all intestine sections (duodenum, jejunum, ileum, and colon) compared to TAMRA-TAT solution or placebo microemulsion. The in vitro and in vivo studies together suggested TAMRA-TAT was better protected in the w/o microemulsion in an enzyme-containing environment, suggesting that the w/o microemulsions developed in this study may serve as a potential delivery vehicle for local intestinal delivery of peptides or proteins after oral administration.

  14. Summary and conclusions from the SIWI seminar for young water professionals water and sustainable development--how to ensure development without compromising sustainability?

    Science.gov (United States)

    Johannessen, A

    2003-01-01

    There is a need to create a balance between development and conservation in order to find a way to mitigate the conflicting interest of water for society, the environment and the economy. Apart from finding a solution to this there is a need to get the mesaage across to the decision makers. How do we make good ideas permeate policy and translate into concrete programs? The Young Water Professionals gave their view through presentations and discussions. It was argued that the answer was not to be found only in environmental science but also in the political and social arena. It was argued that the sanctioned discourse is a powerful force in water allocation and management. How can a balance be struck? Many argued for a unique design of a policy for the whole catchment, acknowledging ecology and existing institutions. Furthermore, many argued in favor of building on existing institutions and steward groups for sustainability and increase their adaptive capacity.

  15. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    Science.gov (United States)

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2018-01-01

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  16. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  17. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  18. Basic criteria for a sustainable water management at the U.S.-México border: the case of ambos Nogales

    Directory of Open Access Journals (Sweden)

    Luis Ernesto Cervera Gómez

    2003-01-01

    Full Text Available This article aims to analyze some basic criteria for a sustainable use of water in an international watershed shared by Mexico and the United States. The study area comprises the region of Ambos Nogales, which is located inside the Upper Santa Cruz River Basin. This portion of the watershed represents the main ecosystem and the main source of water for urban and rural populations located in this region. Following criteria of sustainability the authors revise and adapt to the case of Ambos Nogales, a set of guidelines proposed by the Pacific Institute for Studies in Development, Environment, and Security. These guidelines include the following elements: basic water requirements needed to maintain quality of life in the population and the health of ecosystems; water quality that meets certain minimum standards; human actions and their impact on long-term renewability of freshwater stocks and flows; collection of data concerning water resources, use and quality of water; institutional mechanisms to prevent and resolve conflicts; and a democratic process of water-planning and decision-making. These twin cities have a long history of cooperation and conflict linked to water resources, which makes available enough information to create a diagnostic about the water management inside a binational arena, and allowing to explore possibilities for a better water resources management under a sustainable regime and from an international perspective. Keywords: Sustainability, binational water management, ambos Nogales region.

  19. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  20. Agricultural Water Use Sustainability Assessment in the Tarim River Basin under Climatic Risks

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2018-02-01

    Full Text Available Proper agricultural water management in arid regions is the key to tackling climatic risks. However, an effective assessment of the current response to climate change in agricultural water use is the precondition for a group adaptation strategy. The paper, taking the Tarim River basin (TRB as an example, aims to examine the agricultural water use sustainability of water resource increase caused by climatic variability. In order to describe the response result, groundwater change has been estimated based on the Gravity Recovery and Climate Experiment (GRACE and the Global Land Data Assimilation System (GLDAS–Noah land surface model (NOAH data. In order to better understand the relationship between water resource increase and agricultural water consumption, an agricultural water stress index has been established. Agricultural water stress has been in a severe state during the whole period, although it alleviated somewhat in the mid–late period. This paper illustrates that an increase in water supply could not satisfy agricultural production expansion. Thus, seasonal groundwater loss and a regional water shortage occurred. Particularly in 2008 and 2009, the sharp shortage of water supply in the Tarim River basin directly led to a serious groundwater drop by nearly 20 mm from the end of 2009 to early 2010. At the same time, a regional water shortage led to water scarcity for the whole basin, because the water consumption, which was mainly distributed around Source Rivers, resulted in break-off discharge in the mainstream. Therefore, current agricultural development in the Tarim River basin is unsustainable in the context of water supply under climatic risks. Under the control of irrigation, spatial and temporal water allocation optimization is the key to the sustainable management of the basin.

  1. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-23

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  2. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-17

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  3. Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE.

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-03-01

      Urban water systems (UWSs) are challenged by the sustainability perspective. Certain limitations of the sustainability of centralized UWSs and decentralized household level wastewater treatments can be overcome by managing UWSs at an intermediate scale, referred to as small to medium sized UWSs (SMUWSs). SMUWSs are different from large UWSs, mainly in terms of smaller infrastructure, data limitation, smaller service area, and institutional limitations. Moreover, sustainability assessment systems to evaluate the sustainability of an entire UWS are very limited and confined only to large UWSs. This research addressed the gap and has developed a set of 38 applied sustainability performance indicators (SPIs) by using fuzzy-Elimination and Choice Translating Reality (ELECTRE) I outranking method to assess the sustainability of SMUWSs. The developed set of SPIs can be applied to existing and new SMUWSs and also provides a flexibility to include additional SPIs in the future based on the same selection criteria.

  4. A Qualitative Comparative Analysis of sustainable household water treatment interventions in developing countries

    Science.gov (United States)

    Sihombing, Daniel; Pande, Saket; Rietveld, Luuk

    2017-04-01

    One of the sub-goals of United Nations Sustainable Development Goal 6 is to achieve universal and equitable access to safe and affordable drinking water for all by 2030. Household water treatment (HWT; such as boiling, chlorination, solar or UV disinfection with lamps, etc.) is one of the technologies that can be used to reach this target. However, there is a big challenge to scale up the widespread implementation of this technology. Even though there are many HWT products on the market, sustainable uptake of this method (compliance) is unsatisfying. Researchers have shown that its compliance rate has often declined over time. Since there are many factors that influence the compliance rate, it is desirable to know the best combination of causal factors (pathway) that give the highest compliance based on the success stories reported in the literature. The motivation of this research is to find the pathways characteristic of local people that influence the compliance rate of HWT, using QCA (Qualitative Comparative Analysis). The comparative analysis is essentially a meta-analysis of HWT interventions and factors, possibly, behind successful or unsuccessful HWT uptake reported in literature. This thus helps to identify the characteristics of target communities that are willing to adopt HWT intervention, irrespective of the type of HWT. Out of 102 case studies reported in literature, 36 are selected from developing countries where an HWT intervention lasted for at least 12 months were selected and analyzed. Factors such as education level, perception about water quality, local beliefs, sanitation coverage, existing water treatment, type of water source, ability to pay, willingness to pay, existing local supply chain, and accessibility to water treatment were examined. Preliminary results show that 1) a combination of no prior HWT intervention in the community with a general perception of water quality being poor often leads to uptake of HWT technology, 2) education

  5. Towards sustainable urban water governance in Denmark: collective building of capabilities in local authorities

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Marina Bergen

    2016-01-01

    be achieved. The ‘urban water platform’ was tested and is hereby presented as a course concept for building collective capabilities for integrated sustainable water design among local authorities in Denmark. The course is an innovation because: 1) it invites urban planners, road and park managers and sewage...

  6. Physical-chemical aspects of a coaxial sustained release device based on Poly-Eva

    NARCIS (Netherlands)

    Laarhoven, Johannes Antonius Hendrikus van

    2005-01-01

    Sustained release of dugs offers several advantages like increased efficacy, safety, compliance and convenience. As a consequence sustained drug delivery is often preferred above daily administration of drugs. Furthermore, drug delivery systems can be designed to deliver one or more drugs at a

  7. Biomimicry using Nano-Engineered Enhanced Condensing Surfaces for Sustainable Fresh Water Technology

    OpenAIRE

    Al-Beaini, Sara

    2012-01-01

    Biomimicry offers innovative sustainable solutions for many dire resource-based challenges. The Namib Desert beetle (sp. Stenocara) invites us to explore how we can collect fresh water more energy-efficiently. The beetle's unique back features with alternating hydrophobic-hydrophilic regions, aid its survival in a water scarce desert environment. We investigated the feasibility for enhanced condensation by patterning a zinc oxide (ZnO) surface to mimic the beetle's back. ZnO was selected as t...

  8. Assessment of Non-Revenue Water Situation in Mandalay City: Response to the Management of Sustainable Water Supply System in Mandalay City

    Directory of Open Access Journals (Sweden)

    Ser Moe Yi

    2017-07-01

    Full Text Available Mandalay city is experiencing inefficient use of groundwater resources and inadequate water supply system to residents. The study focused on the issue of non-revenue water (NRW and stakeholders’ perception on its management in order to design the remediation measures for the water lost controls and the sustainable water supply system. A total of 134 samples of water employees, and 383 households were assessed through structured questionnaires. It has been found that more than 50% of the water employees are not aware of the NRW concept. Furthermore, over 90% of the water users are not willing to participate in water management. The WB­EasyCalc software version 4.09 was used to determine NRW and the result of NRW is 46% of the total system input volume. The main causes of water losses in Mandalay city are: 1 a very low pressure system; 2 poor-quality repairs; 3 lack of regular maintenance; 4 water employees’ insufficient knowledge; 5 lack of awareness about the NRW concept; 6 poor customer relationships; and 7 water users’ lack of willingness to participate in the water losses management. Therefore, it is recommended that water utility service efficiency be optimized by giving capacity building to the water employees. It is also recommended that district metering areas (DMA be introduced and good customer relationship be established. This is to improve the water users’ willingness to participate in the water losses management for the efficient use under scarcity groundwater resources and for the sustainable water supply system.

  9. First National Expert and Stakeholder Workshop on Water Infrastructure Sustainability and Adaptation to Climate Change

    Science.gov (United States)

    EPA Office of Research and Development (ORD) and EPA Office of Water (OW) joinined efforts to assess and evaluate programmatic, research & development (R&D) needs for sustainable water infrastructure development and effective adaptation to climate changes. The purpose of this pr...

  10. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  11. Sustainable fishing of inland waters

    Directory of Open Access Journals (Sweden)

    Jeppe Kolding

    2014-04-01

    Full Text Available Sustainability in fisheries has over the past decades evolved from a single species maximization concept to covering ecosystem and biodiversity considerations. This expansion of the notion, together with increased evidence that the targeted removal of selected components of the fish community may have adverse ecological consequences, poses a serious dilemma to the conventional fisheries management approach of protecting juveniles and targeting adults. Recently, the idea of balanced harvest, i.e., harvesting all components in the ecosystem in proportion to their productivity, has been promoted as a unifying solution in accordance with the ecosystem approach to fisheries, but this will require a fundamental change to management. In this paper, we review the objectives, theoretical background, and practicalities of securing high yielding fisheries in inland waters, with empirical examples from tropical freshwater fisheries which satisfy the extended objectives of minimal impact on community and ecosystem structure. We propose a framework of ecological indicators to assess these objectives.  Normal 0 false false false EN-GB ZH-CN HE

  12. New findings and setting the research agenda for soil and water conservation for sustainable land management

    Science.gov (United States)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  13. Classroom Active Learning Complemented by an Online Discussion Forum to Teach Sustainability

    Science.gov (United States)

    Dengler, Mary

    2008-01-01

    This paper identifies some of the pedagogical benefits of an active learning course delivery complemented by an online discussion forum to teach sustainability by evaluating the case of a geography master's course. The potential benefits and some challenges of an active learning course delivery to teach sustainability in geography and related…

  14. Possibilities of information infrastructure in evaluation of environmental pollution and water quality by implementing the solutions of sustainable development

    OpenAIRE

    Ramutė Naujikienė; Dalė Dzemydienė

    2014-01-01

    The purpose – of the article is attached to the examination of information infrastructure for the assessment of water resource planning and water treatment activities, to provide data warehouse (DW) analysis measuring environmental and water pollution and indicators for the evaluation based on the requirements of sustainable development.Methodology – the analysis is performed by revealing the factors affecting sustainable development decisions. The insights of scientists are demonstrated by a...

  15. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  16. Integrated co-operative governance in the context of sustainable development

    Directory of Open Access Journals (Sweden)

    Eric Nealer

    2011-07-01

    Keywords:Sustainable development, governance, co-operative governance, integrated,organising, and communication. Disciplines:Public Administration, Public Management, Social Welfare, Environmental Management, Municipal public service delivery, Social Development, Organisational Behaviour, Co-operative Governance, Communication, Sustainable Development, Sustainable Organisational Development

  17. Sustainable Water Infrastructure Asset Management: A Gap Analysis of Customer and Service Provider Perspectives

    Directory of Open Access Journals (Sweden)

    Sangjong Han

    2015-09-01

    Full Text Available The ultimate goal of urban water infrastructure asset management may be sustainable water supply with satisfaction for customers. In this work, we attempted to evaluate the gaps between the perspectives of customers and service providers in Korea’s water infrastructure asset management. To evaluate the customers’ perspective, a hierarchical questionnaire survey was conducted to estimate the weights of influence for six customer values and their attributes on Korean water utility management. To evaluate the service providers’ perspective, an AHP (Analytic Hierarchy Process analysis was performed to estimate the weights of influence for the customer values and their PIs (performance indicators. The gap analysis results show that customers place higher value on customer service satisfaction (emotion and information than do the service providers (managers, whereas the managers place more value on affordability than do the customers. The findings from this work imply that improving customer service is effective in satisfying the desirable water LOS (level of service for customers. Recommendations have also been provided for administrators and engineers to develop integrated decision-making systems that can reflect customer needs regarding the improvement of their water infrastructure asset management. The findings from this work may be helpful for the Korean government and water supply utilities in improving the sustainability of their water infrastructure asset management.

  18. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J.; Freeman, William R.; Cheng, Lingyun

    2015-01-01

    Purpose. To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Methods. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. Results. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Conclusions. Porous silicon–based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. PMID:25613937

  19. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2015-01-22

    To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Porous silicon-based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  20. Application of a GIS-BIOLOCO tool for the design and assessment of biomass delivery chains

    NARCIS (Netherlands)

    Geijzendorffer, I.R.; Annevelink, E.; Elbersen, B.S.; Smidt, R.A.; Mol, de R.M.

    2008-01-01

    The spatial fragmentation of different biomass sources in one or more regions makes design and assessment of sustainable biomass delivery chains rather complicated. This paper presents a GIS tool that supports the design and facilitates a sustainability assessment of biomass delivery chains at a

  1. Functionally engineered nanosized particles in pharmaceutics: improved oral delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Ozeki, Tetsuya; Tagami, Tatsuaki

    2013-01-01

    The development of drug nanoparticles has attracted substantial attention because of their potential to improve the dissolution rate and oral availability of poorly water-soluble drugs. This review summarizes the recent articles that discussed nanoparticle-based oral drug delivery systems. The preparation methods were categorized as top-down and bottom-up methods, which are common methods for preparing drug nanoparticles. In addition, methods of handling drug nanoparticles (e.g., one-step preparation of nanocomposites which are microparticles containing drug nanoparticles) were introduced for the effective preservation of drug nanoparticles. The carrier-based preparation of drug nanoparticles was also introduced as a potentially promising oral drug delivery system.

  2. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    Science.gov (United States)

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  3. Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems.

    Science.gov (United States)

    Behzadian, Kourosh; Kapelan, Zoran

    2015-09-15

    Despite providing water-related services as the primary purpose of urban water system (UWS), all relevant activities require capital investments and operational expenditures, consume resources (e.g. materials and chemicals), and may increase negative environmental impacts (e.g. contaminant discharge, emissions to water and air). Performance assessment of such a metabolic system may require developing a holistic approach which encompasses various system elements and criteria. This paper analyses the impact of integration of UWS components on the metabolism based performance assessment for future planning using a number of intervention strategies. It also explores the importance of sustainability based criteria in the assessment of long-term planning. Two assessment approaches analysed here are: (1) planning for only water supply system (WSS) as a part of the UWS and (2) planning for an integrated UWS including potable water, stormwater, wastewater and water recycling. WaterMet(2) model is used to simulate metabolic type processes in the UWS and calculate quantitative performance indicators. The analysis is demonstrated on the problem of strategic level planning of a real-world UWS to where optional intervention strategies are applied. The resulting performance is assessed using the multiple criteria of both conventional and sustainability type; and optional intervention strategies are then ranked using the Compromise Programming method. The results obtained show that the high ranked intervention strategies in the integrated UWS are those supporting both water supply and stormwater/wastewater subsystems (e.g. rainwater harvesting and greywater recycling schemes) whilst these strategies are ranked low in the WSS and those targeting improvement of water supply components only (e.g. rehabilitation of clean water pipes and addition of new water resources) are preferred instead. Results also demonstrate that both conventional and sustainability type performance indicators

  4. HydroGrid: Technologies for Global Water Quality and Sustainability

    Science.gov (United States)

    Yeghiazarian, L.

    2017-12-01

    Humans have been transforming planet Earth for millennia. We have recently come to understand that the collective impact of our decisions and actions has brought about severe water quality problems, which are likely to worsen in the light of rapid population growth to the projected nine billion by 2050. To sustainably manage our global water resources and possibly reverse these effects requires efforts in real-time monitoring of water contamination, analysis of monitoring data, and control of the state of water contamination. We develop technologies to address all three areas: monitoring, analysis and control. These efforts are carried out in the conceptual framework of the HydroGrid, an interconnected water system, which is (1) firmly rooted in the fundamental understanding of processes that govern microbial dynamics on multiple scales; and (2) used to develop watershed-specific management strategies. In the area of monitoring we are developing mobile autonomous sensors to detect surface water contamination, an effort supported by extensive materials research to provide multifunctional materials. We analyze environmental data within a stochastic modeling paradigm that bridges microscopic particle interactions to macroscopic manifestation of microbial population behavior in time and space in entire watersheds. These models are supported with laboratory and field experiments. Finally, we combine control and graph theories to derive controllability metrics of natural watersheds.

  5. Harmonizing water management and social needs: a necessary condition for sustainable development. The case of Israel's coastal aquifer.

    Science.gov (United States)

    Melloul, Abraham J; Collin, Martin L

    2003-04-01

    This study focuses on the problem of most efficiently fulfilling the water requirements of society for sustainable water resources management. The goal is to coordinate effectively the social needs of the resident population with operational water resources management planning.The proposed approach consists of a pyramidal hierarchy of water resource management needs, similar to that suggested by psychologist Abraham Maslow for human social needs. The two pyramidal hierarchies can be simultaneously employed to delineate guidelines to synchronize planning for sustainable water resources development with the concerns and expectations of the resident population. In both hierarchies, higher level needs remain irrelevant and difficult to attain until lower level needs of the resident population have been fulfilled. Management planning measures employed with regard to Israel's coastal aquifer have been used to illustrate this approach. Observation of Israel's experience indicates markedly reduced effectiveness where such measures have failed to be properly synchronised with societal needs. Conversely, where hydrological management measures were successfully synchronized with societal concerns, increased efficiency towards attaining sustainable groundwater management was evident.

  6. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    Science.gov (United States)

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  7. Drought, climate change and sustainability of water in agriculture: A roadmap towards the NWRS2

    Directory of Open Access Journals (Sweden)

    Daniel El Chami

    2016-09-01

    Full Text Available The frequency and intensity of drought, extreme events and high wind velocities in South Africa are expected to increase in the next century as a result of the changing climate. The National Water Resource Strategy 2 (NWRS2 has set out the general and strategic directions for water resources management in the country for the next 20 years. However, the strategy does not draw a framework tailored specifically for agricultural use, with specific measures and goals. Therefore, to reach sustainability of water in agriculture, four major strategic goals are suggested, on which research institutions can focus and promote through good governance. The strategy emphasises: (1 crop research to find new drought-and heat- tolerant and resistant breeds and varieties; (2 intensified research in agricultural practices; (3 increasing the efficiency of water use within agriculture; and (4 integrating all these strategic goals within a sustainable research framework. Finally, the research calls for rapid action and implementation.

  8. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  9. Joint management of water and electricity in State Water Project

    Science.gov (United States)

    Yang, T.

    2013-12-01

    Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

  10. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    Science.gov (United States)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  11. Costs of reducing water use of concentrating solar power to sustainable levels: Scenarios for North Africa

    International Nuclear Information System (INIS)

    Damerau, Kerstin; Williges, Keith; Patt, Anthony G.; Gauche, Paul

    2011-01-01

    Concentrating solar power (CSP) has the potential to become a leading sustainable energy technology for the European electricity system. In order to reach a substantial share in the energy mix, European investment in CSP appears most profitable in North Africa, where solar potential is significantly higher than in southern Europe. As well as sufficient solar irradiance, however, the majority of today's CSP plants also require a considerable amount of water, primarily for cooling purposes. In this paper we examine water usage associated with CSP in North Africa, and the cost penalties associated with technologies that could reduce those needs. We inspect four representative sites to compare the ecological and economical drawbacks from conventional and alternative cooling systems, depending on the local environment, and including an outlook with climate change to the mid-century. Scaling our results up to a regional level indicates that the use of wet cooling technologies would likely be unsustainable. Dry cooling systems, as well as sourcing of alternative water supplies, would allow for sustainable operation. Their cost penalty would be minor compared to the variance in CSP costs due to different average solar irradiance values. - Highlights: → Scaling up CSP with wet cooling from ground water will be unsustainable in North Africa. → Desalination and alternative cooling systems can assure a sustainable water supply. → On large-scale, the cost penalties of alternative cooling technologies appear minor.

  12. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    International Nuclear Information System (INIS)

    Johansen, R.

    2011-01-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  13. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water

    KAUST Repository

    Jetly, Aditya

    2018-01-22

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.

  14. Bacteriological monitoring and sustainable management of beach water quality in Malaysia: problems and prospects.

    Science.gov (United States)

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-04-28

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia.

  15. Bacteriological Monitoring and Sustainable Management of Beach Water Quality in Malaysia: Problems and Prospects

    Science.gov (United States)

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-01-01

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia. PMID:22980239

  16. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. 18 CFR 157.211 - Delivery points.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Delivery points. 157... for Certain Transactions and Abandonment § 157.211 Delivery points. (a) Construction and operation—(1... delivery point, excluding the construction of certain delivery points subject to the prior notice...

  18. A preliminary evaluation of dexamethasone palmitate emulsion: a novel intravitreal sustained delivery of corticosteroid for treatment of macular edema.

    Science.gov (United States)

    Daull, Philippe; Paterson, Christopher A; Kuppermann, Baruch D; Garrigue, Jean-Sébastien

    2013-03-01

    Dexamethasone palmitate (DXP) is a lipophilic prodrug of dexamethasone (DXM), a potent corticosteroid used to treat a variety of ophthalmic diseases. The aim of the study was to characterize the sustained release capacity (in rabbit), efficacy (in rat and rabbit), and safety (in rabbit, cat, and minipig) of intravitreal (IVT) DXP emulsions in preclinical models. Oil-in-water emulsions of DXP were administered by IVT injections in rats, rabbits, cats, or minipigs. Efficacy was assessed in rabbits by the inhibition of VEGF-induced vascular leakage and in rats by inhibition of laser-induced choroidal neovascularization. Concentrations of DXP and DXM in aqueous humor, vitreous, retina, choroid, and blood were determined to characterize the ocular and systemic pharmacokinetic (PK) profile. Complete ophthalmic examinations (indirect ophthalmoscopy, slit-lamp biomacroscopy, electroretinography, tonometry) were performed to assess the ocular safety of IVT DXP doses up to 2,600 μg in minipig, followed by histopathologic examinations. A validated feline model of DXM-induced elevated intraocular pressure (IOP) was used to assess the ocular hypertensive impact (i.e., the safety) of an IVT injection of DXP emulsion. Rat and rabbit efficacy data demonstrated that IVT injections of DXP emulsions were effective. Rabbit PK data demonstrated that following a single 1,280 μg IVT injection resulted in sustained DXM levels in the retina and choroid (1,179.6 and 577.7 ng/g with a half-life of 189 and 103 days, respectively) sufficient to inhibit VEGF-induced vascular hyper-permeability for up to 9 months. No adverse ocular findings were observed in the rabbit at the 1,280 μg DXP dose. Plasma levels of DXP and DXM were close to the lower limit of quantification (0.5 ng/mL). In minipigs, no systemic effects were observed at a dose up to 2,600 μg DXP. In steroid responsive cats, IVT DXP emulsions increased IOP to a lesser extent than triamcinolone acetonide with a more rapid return to

  19. To built a solar hot water heater to work the sustainability problem

    Directory of Open Access Journals (Sweden)

    Carretero Gómez, María Begoña

    2012-01-01

    Full Text Available We are commemorating the Education Decade for Sustainable Development. If we want to create positive towards our environment and its sustainable development we have to begin working at school. It is necessary to show our students what problems of the environment are and which solutions can be adopted. That is the reason we have planned this activity in our secondary school. We do think that by doing daily activities we have a good opportunity to fulfil this goal. An example of such experiences is the fabrication of a solar hot water heater to make them and their families more environment conscience.

  20. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    Science.gov (United States)

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  1. Indirect water management through Life Cycle Assessment: Fostering sustainable production in developing countries

    Science.gov (United States)

    Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S.

    2009-04-01

    Life Cycle Assessment (LCA) represents a methodological framework for analyzing the total environmental impact of any product or service of our daily life. After tracking all associated emissions and the consumption of resources, this impact is expressed with respect to a few common impact categories. These are supposed to reflect major societal and environmental priorities. However, despite their central role in environmental processes, to date hydrological as well as hydrogeological aspects are only rarely considered in LCA. Compared with standard impact categories within LCA, water is special. In contrast to other abiotic resources such as crude oil, it can be replenished. Total freshwater resources are immense, but not evenly distributed and often scarce in regions of high demand. Consequently, threads to natural water bodies have immense spatial dependency. Setting up functional relationships in order to derive a generally valid and practicable evaluation is tedious due to the complex, insufficiently understood, and uncertain natural processes involved. LCA that includes the environmental effects of water consumption means global indirect water resource management. It supports goal-directed consumer behaviour that aims to reduce pressure on natural water systems. By developing a hydrologically-based assessment of potential impacts from human interaction with natural water bodies, "greener" products can be prioritised. More sustainable and environmentally friendly water management is the result. The proposed contribution presents an operational assessment method of global surface water consumption for impacts on human health and ecosystem quality within a LCA framework. A major focus is the issue of how such global assessment helps to quantify potential impacts from water-intensive production in developing countries, where the means for proper water management are often limited. We depict a compensation scheme for impacts related to water consumption that

  2. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş

    2015-08-01

    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  3. Application of ion exchange resin in floating drug delivery system.

    Science.gov (United States)

    Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant

    2008-10-01

    The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.

  4. Clean drinking water as a sustainable development goal: Fair, universal access with increasing block tariffs

    OpenAIRE

    von Hirschhausen, Christian; Flekstad, Maya; Meran, Georg

    2017-01-01

    One focus of the G20 Summit in Hamburg in July 2017 was the United Nations' sustainable development goals, including those set for the water sector. Despite progress, around 800 million people worldwide do not have adequate access to drinking water. Increasing block tariffs are an instrument widely used to support access to drinking water for poorer segments of the population. With this system, the price of water progressively increases with the volume consumed. An affordable first block ensu...

  5. Sustainable use of Brackish water for crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Iqbal, M.; Subhani, K.M.

    2005-01-01

    The good quality surface-water is not sufficient to meet the crop water requirement for potential crop production. To augment the inadequate supplies of good quality water the only alternative is the use of poor quality , ground water. To explore sustainable use of brackish water a study was conducted in Fordwah Eastern Sadiqia South, Bahawalnagar, Punjab during the year 1998-99 to 2000-2001 with the objective to evaluate the impact of different irrigation treatments on physical and chemical properties of soil and crops yield. The experiment was conducted on farmer's field with his collaboration. The initial soil pH was about 8.0 while ECe and SAR ranged between 2.0 to 4.1 dS m/sup -/1 and 7.1 to 15.1 (mmol/sub c/ L/sup -1/)1/2, respectively with sandy loam texture. The brackish water used for irrigation had ECiw, SAR and RSC between 5.6 to 6.7 dS m/sup -/1, 15.1 to 16.4 (mmolc L/sup -1/sup 1/2/ and 1.52 to 1.64 (mmol/sub c/ L/sup -1/.The crops tested were wheat during Rabi and cotton during Kharif season. The treatments tested were: irrigation with canal water (T/sub 1/), canal water during Rabi and drainage water during Kharif (T/sub 2/), drainage water for two years and canal water for one season(T/sub 3/); and drainage water for three years + application of gypsum at the rate of 25% of CWR and thereafter canal water for one season(T 4). Fertilizers were applied at the rate of 120-60-50 N, P/sub 2/O/sub 5/ and K20 kg ha/sup -1/, respectively in the form of urea, diammonium phosphate and sulfate of potash. Crops irrigated with drainage water visualized yield reduction depending upon the share of drainage water in the irrigation delta. Application of gypsum provided reasonable check against salinity build-up with brackish water irrigation besides a nominal boost of 3 and 5% in yield of wheat and cotton, respectively over comparable treatment of year-round brackish water irrigation lacking gypsum application. Drainage water in alternate arrangement of seasonal

  6. Sustainable Water Resources Management to Combat Desertification in the Nurra Region, Northwestern Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    Giorgio Ghiglieri

    2010-10-01

    Full Text Available Sustainable water management plays an important role in the frame of the multidisciplinary research activities aiming to combat or to mitigate the desertification processes. The study activities have been carried out by RIADE Research Project (Integrated Research for Applying new technologies and processes for combating Desertification,www.riade.net. RIADE was co-financed by MIUR within the National Operative Programme 2000-2006. The primary objective was to explore and to develop models and strategies for innovative and sustainable solutions of water resources management, adopting a multidisciplinary approach, at the catchment and hydrogeological basin scale in a Mediterranean context, using a case history of a pilot area in NW Sardinia (Italy. The high concentration of population in this coastal zone and the intense agricultural activity have determined a relevant increase of water demand. This demand is generally satisfied by surface water, but, in some peculiar dry periods, it exceeds the available quantities. In these critical periods, groundwater are the only alternative source constituting a strategic water resource. The groundwater chemical properties are then correlated with the effects of the anthropogenic pressures. The used approach shows the application of groundwater protection criteria, in accordance with EU policies, and it was aimed to develop a methodological tool which can be applied to different scenarios.

  7. Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters

    Directory of Open Access Journals (Sweden)

    Eva Ring

    2011-02-01

    Full Text Available Additions of nutrients, faster growing tree varieties, more intense harvest practices, and a changing climate all have the potential to increase forest production in Sweden, thereby mitigating climate change through carbon sequestration and fossil fuel substitution. However, the effects of management strategies for increased biomass production on soil resources and water quality at landscape scales are inadequately understood. Key knowledge gaps also remain regarding the sustainability of shorter rotation periods and more intensive biomass harvests. This includes effects of fertilization on the long-term weathering and supply of base cations and the consequences of changing mineral availability for future forest production. Furthermore, because soils and surface waters are closely connected, management efforts in the terrestrial landscape will potentially have consequences for water quality and the ecology of streams, rivers, and lakes. Here, we review and discuss some of the most pertinent questions related to how increased forest biomass production in Sweden could affect soils and surface waters, and how contemporary forestry goals can be met while minimizing the loss of other ecosystem services. We suggest that the development of management plans to promote the sustainable use of soil resources and water quality, while maximizing biomass production, will require a holistic ecosystem approach that is placed within a broader landscape perspective.

  8. Understanding why women adopt and sustain home water treatment: insights from the Malawi antenatal care program.

    Science.gov (United States)

    Wood, Siri; Foster, Jennifer; Kols, Adrienne

    2012-08-01

    In many settings in Africa, social marketing has proven more successful in generating brand recognition for chlorine water treatment products than in promoting their use. To promote household use of one such product in Malawi, WaterGuard, the Ministry of Health (MOH) and Population Services International (PSI) distributed free hygiene kits that included WaterGuard to pregnant women attending antenatal clinics in 2007. Follow-up surveys documented a sustained increase in WaterGuard use three years after the initial intervention. In 2010, PATH (www.path.org) conducted qualitative research on the factors motivating women to adopt, sustain, or discontinue use. To provide context, interviews were also conducted with their friends, relatives, and husbands. Interviews revealed that sustained use of WaterGuard does not necessarily imply consistent use. Most respondents reported switching back and forth between WaterGuard and stock chlorine distributed for free by the government, and many treated water seasonally rather than year-round. Qualitative findings suggest that two program strategies strongly influenced women's decisions to adopt, purchase, and continue using WaterGuard. First, positive, ongoing contacts with health care workers, especially during home visits, raised awareness of the need to treat water, encouraged trial use, and supported continuing use. Second, an extended free trial of the product overcame initial cost barriers and allowed women and their families to experience the health benefits of WaterGuard, appreciate its value and relevance to their lives, and get used to its taste. Social support-from like-minded relatives, friends, neighbors, health care workers, husbands, and children-was also a critical factor that promoted consistent, ongoing use of WaterGuard. The findings confirm the importance of interpersonal communication in prompting adoption of household water treatment and suggest that consumers assess the perceived value of a product, not

  9. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    Science.gov (United States)

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  10. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Directory of Open Access Journals (Sweden)

    Jessica C. Wedgworth

    2014-07-01

    Full Text Available Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure and general aesthetic characteristics (taste, odor and color, providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets and as-delivered from the distribution network (from outside flame-sterilized taps, if available, where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color. Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts.

  11. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Science.gov (United States)

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  12. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  13. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume IV

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2016-12-01

    In total 32 manuscripts were published in Volume IV, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  14. Development of polyether urethane intravaginal rings for the sustained delivery of hydroxychloroquine

    Science.gov (United States)

    Chen, Yufei; Traore, Yannick Leandre; Li, Amanda; Fowke, Keith R; Ho, Emmanuel A

    2014-01-01

    Hydroxychloroquine (HCQ) has been shown to demonstrate anti-inflammatory properties and direct anti-HIV activity. In this study, we describe for the first time the fabrication and in vitro evaluation of two types of intravaginal ring (IVR) devices (a surfaced-modified matrix IVR and a reservoir segmental IVR) for achieving sustained delivery (>14 days) of HCQ as a strategy for preventing male-to-female transmission of HIV. Both IVRs were fabricated by hot-melt injection molding. Surface-modified matrix IVRs with polyvinylpyrrolidone or poly(vinyl alcohol) coatings exhibited significantly reduced burst release on the first day (6.45% and 15.72% reduction, respectively). Reservoir IVR segments designed to release lower amounts of HCQ displayed near-zero-order release kinetics with an average release rate of 28.38 μg/mL per day for IVRs loaded with aqueous HCQ and 32.23 μg/mL per day for IVRs loaded with HCQ mixed with a rate-controlling excipient. Stability studies demonstrated that HCQ was stable in coated or noncoated IVRs for 30 days. The IVR segments had no significant effect on cell viability, pro-inflammatory cytokine production, or colony formation of vaginal and ectocervical epithelial cells. Both IVR systems may be suitable for the prevention of HIV transmission and other sexually transmitted infections. PMID:25336923

  15. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    Science.gov (United States)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  16. Welfare values of sustained urban water flows for recreational and cultural amenities under climate change

    NARCIS (Netherlands)

    Nikouei, A.; Brouwer, R.

    2017-01-01

    The main objective of this study is to estimate the welfare values related to sustained water flows in the Zayandeh-Rud River for recreational and cultural amenities in the urban park of Isfahan City in Iran. As is elsewhere the case in arid regions, the drying up of the river due to growing water

  17. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  18. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    Science.gov (United States)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  19. A model for 'sustainable' US beef production.

    Science.gov (United States)

    Eshel, Gidon; Shepon, Alon; Shaket, Taga; Cotler, Brett D; Gilutz, Stav; Giddings, Daniel; Raymo, Maureen E; Milo, Ron

    2018-01-01

    Food production dominates land, water and fertilizer use and is a greenhouse gas source. In the United States, beef production is the main agricultural resource user overall, as well as per kcal or g of protein. Here, we offer a possible, non-unique, definition of 'sustainable' beef as that subsisting exclusively on grass and by-products, and quantify its expected US production as a function of pastureland use. Assuming today's pastureland characteristics, all of the pastureland that US beef currently use can sustainably deliver ≈45% of current production. Rewilding this pastureland's less productive half (≈135 million ha) can still deliver ≈43% of current beef production. In all considered scenarios, the ≈32 million ha of high-quality cropland that beef currently use are reallocated for plant-based food production. These plant items deliver 2- to 20-fold more calories and protein than the replaced beef and increase the delivery of protective nutrients, but deliver no B 12 . Increased deployment of rapid rotational grazing or grassland multi-purposing may increase beef production capacity.

  20. Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine.

    Science.gov (United States)

    Zhang, Yanzhuo; Zhao, Qinfu; Zhu, Wufu; Zhang, Lihua; Han, Jin; Lin, Qisi; Ai, Fengwei

    2015-07-01

    A novel mesoporous carbon/lipid bilayer nanocomposite (MCLN) with a core-shell structure was synthesized and characterized as an oral drug delivery system for poorly water-soluble drugs. The objective of this study was to investigate the potential of MCLN-based formulation to modulate the in vitro release and in vivo absorption of a model drug, nimodipine (NIM). NIM-loaded MCLN was prepared by a procedure involving a combination of thin-film hydration and lyophilization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed to characterize the NIM-loaded MCLN formulation. The effect of MCLN on cell viability was assessed using the MTT assay. In addition, the oral bioavailability of NIM-loaded MCLN in beagle dogs was compared with that of the immediate-release formulation, Nimotop®. Our results demonstrate that the NIM-loaded MCLN formulation exhibited a typical sustained release pattern. The NIM-loaded MCLN formulation achieved a greater degree of absorption and longer lasting plasma drug levels compared with the commercial formulation. The relative bioavailability of NIM for NIM-loaded MCLN was 214%. MCLN exhibited negligible toxicity. The data reported herein suggest that the MCLN matrix is a promising carrier for controlling the drug release rate and improving the oral absorption of poorly water-soluble drugs.

  1. Continuation of Health Behaviors: Psychosocial Factors Sustaining Drinking Water Chlorination in a Longitudinal Study from Chad

    Directory of Open Access Journals (Sweden)

    Jonathan Lilje

    2016-11-01

    Full Text Available Behavior that has changed following promotion campaigns is usually not maintained at its initial level. Psychosocial factors for initiating behavior are often not the same as for the continuation of health behaviors such as water treatment and are much less understood. Better knowledge of factors for behavioral continuation would help to improve programs, both in the design of strategies for sustainable behavior change and by defining stronger criteria for the evaluation of sustainability. This study compared the mindsets of caregivers who continuously performed household drinking water treatment over time with individuals that stopped doing so in a population sample from Chad. Several factors from health psychology based on the Risks, Attitudes, Norms, Abilities, and Self-Regulation (RANAS model were used to compare the two groups and examine their differing development. Normative factors such as others’ behavior, personal obligation, social support and discourse, perceived self-efficacy convictions, action control, and intention best discriminated between the two groups and developed significantly more positively over time for continuers of water treatment. These factors should be considered when designing future interventions intended to lead to sustainable behavior change.

  2. Collagen and hyaluronic acid hydrogel in water-in-oil microemulsion delivery systems.

    Science.gov (United States)

    Kupper, Sylwia; Kłosowska-Chomiczewska, Ilona; Szumała, Patrycja

    2017-11-01

    The increase in skin related health issues has promoted interest in research on the efficacy of microemulsion in dermal and transdermal delivery of active ingredients. Here, we assessed the water-in-oil microemulsion capacity to incorporate two natural polymers, i.e. collagen and hyaluronic acid with low and high molecular weight. Systems were extensively characterized in terms of conductivity, phase inversion studies, droplet diameter, polydispersity index and rheological properties. The results of this research indicate that the structure and extent of water phase in microemulsions is governed by ratio and amount of surfactant mixture (sorbitan ester derivatives). However, results have also shown that collagen, depending upon the weight of the molecule and its surface activity, influence the droplet size of the microemulsions. While the hyaluronic acid, especially with high molecular weight, due to the water-binding ability and hydrogel formation alters the rheological properties of the microemulsion, thus providing viscous consistency of the formulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; and they do offer practical advantages of using abundant organic raw materials for clean and sustainable energy...... in vivo glucose monitoring in diabetes patients). However, the most attractive are oxygen-reducing enzymes such as blue-copper-containing laccases coupled to electrodes, which provide the 4e- bioelectroreduction of O2 to H2O (1.23 V vs. NHE) at potentials approaching the thermodynamic ones. Exploitation...... of laccase-based biocathodes in the biofuel cells and in the hybrid biobattery-type or photovoltaic power sources could essentially broaden their application, enabling extraction of energy from the sea water/water dissolved oxygen. Here we demonstrate up to 0.8 mW cm-2 extracted power densities and 1.5 month...

  4. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China

    Science.gov (United States)

    Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen

    2018-01-01

    Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.

  5. Modeling the sustainability of a ceramic water filter intervention.

    Science.gov (United States)

    Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James

    2014-02-01

    Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF

  6. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  7. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  8. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management.

    Science.gov (United States)

    Fratini, C F; Elle, M; Jensen, M B; Mikkelsen, P S

    2012-01-01

    To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a 'more sustainable and integrated urban water management cycle'. But Danish municipalities and utility companies are struggling to bring such solutions into practice. 'Green infrastructure', for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.

  9. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    Science.gov (United States)

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  10. Incorporating sustainability into accounting curricula

    DEFF Research Database (Denmark)

    Hazelton, James; Haigh, Matthew

    2010-01-01

    . The first author introduced sustainability-related material into a core technical accounting unit and created an elective unit. The second author participated with students to evaluate critically social reports of employers, current and potential. In terms of an objective of bringing reflexivity......This paper chronicles the journey of two projects that sought to incorporate principles of sustainable development into predominantly technical postgraduate accounting curricula. The design and delivery of the projects were informed by Freirian principles of praxis and critical empowerment...... as vocational skills) add to the difficulties for sustainability in penetrating already overcrowded curricula....

  11. Insuring Water Sustainability for Resource Extraction in the New Mexico Permian Basin

    Science.gov (United States)

    Lowry, T. S.; Schuhen, M. D.; Lofton, O. W.; Walker, L. T. N.; Johnson, P. B.; Land, L. A.; Herrell, D.

    2017-12-01

    Advancements in directional drilling and well completion technologies have resulted in an exponential growth in the use of hydraulic fracturing for oil and gas extraction. Within the New Mexico portion of the Permian Basin (see figure), water demand to complete each hydraulically fractured well is estimated to average 7.3 acre-feet (2.4 million gallons), which has resulted in an increase in the regional water demand of over 5000 acre-feet per year. The rise in demand along with proposed rule changes that govern the regulation and management of hydraulic fracturing on Federal and Indian lands (40 CFS 3160) has created concern as to the regions ability to meet the demand in a manner that can sustainably meet the needs of the variety of water users and other stakeholders in the region while also protecting human health and the environment. Funded by the Bureau of Land Management who is charged with managing the regions water resources on Federal lands, this project is addressing those concerns using a multi-disciplinary approach that synthesizes data collection, field verification, and system dynamics (SD) modeling to better understand the dynamics of the regional water supply and demand under different management, policy, and growth scenarios. The scientific challenge has been in bringing together disparate data in a manner that exposes the temporal and spatial dynamics of the regional water supply in the context of increasing demands and changing policy and management scenarios. Field verification and testing activities are used to evaluate existing borehole data to insure that the data are accurate and up to date. The SD model simulates forecasted increases in drilling activity and water demand relative to each water source to identify areas that are most vulnerable and to estimate risk to water sustainability. Key to this is the models ability to seamlessly handle uncertainty such that it produces probabilistic outputs that allow decision makers to explore and

  12. Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Cha Yee Kuen

    2017-11-01

    Full Text Available Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB, a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS and Field Emission-Scanning Electron Microscopy (FESEM results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.

  13. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    Science.gov (United States)

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  14. Light Water Reactor Sustainability Program Integrated Program Plan

    International Nuclear Information System (INIS)

    Griffith, George; Youngblood, Robert; Busby, Jeremy; Hallbert, Bruce; Barnard, Cathy; McCarthy, Kathryn

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  15. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  16. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Busby, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barnard, Cathy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  17. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  18. Sustainable water supply systems in India: The role of financial institutions and ethical perspective

    Directory of Open Access Journals (Sweden)

    Gowda Krishne

    2011-01-01

    Full Text Available Water is a scarce resource and an important basic necessity for the human survival. The quantity of potable water on earth is limited and its availability per person is reducing day by day due to increase in global population and damage to environment. Though water available in nature is free, sizeable investment is needed in order to supply water to the people at their doorsteps with required quality. This paper deals with the role of financial institutions in the balanced distribution of water for the public, the related problems with various regulatory instruments, and ethical perspectives for efficient utilization of this scarce resource through internal control aimed at long term sustainability.

  19. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  20. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling

    Science.gov (United States)

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of it...

  1. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  2. Assessment of Sustainable Use of Coastal Resources of Regional Waters Conservation Area Biak Numfor Regency, Papua Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sutaman Sutaman

    2017-06-01

    Full Text Available Efforts to exploit fish resources optimally, continuous and sustainable is an urgent demand for the greatest prosperity of the people, especially to improve the welfare of fishermen and fish farmers. The level of sustainable use of coastal resources in water conservation is very important, so that the utilization does not exceed the carrying capacity of the environment. The purpose of this study was to determine the level of sustainable use of coastal resources Biak Numfor, associated with the utilization of fisheries, aquaculture and tourism. The study was conducted in June to December 2015 and October to November 2016. The primary data obtained by interview and direct discussion through Focus Group Disscution (FGD with fishermen community, tourist and tourist entrepreneurs as well as related officials in the Office of Fisheries and Marine Affairs, and Tourism Office of Biak Numfor Regency. Methods of data analysis approach sustainability analysis conducted by the method of MDS (Multi-Dimensional Scaling with the help of software Rapfish. Based on the survey results revealed that the value of fisheries ordinated to achieve 57.66%, 44.80% aquaculture, and tourism 46.25%. With these achievements ordinated value, it can be concluded that the use of sustainable capture fisheries are still classified by the lever sustainability attributes include; the type of fishing gear, vessel types used and the catch per unit effort (CPUE. Meanwhile the relatively less sustainable aquaculture with the sustainability lever attributes include; cultivation technology, the number of business units with different types and species of fish. For tourism utilization is still considered less sustainable with levers sustainability attributes include the number of tourists, the type and number of amenities and facilities and infrastructure   Keywords: Sustainability, utilization, waters conservation area (KKPD, MDS-Rapfish

  3. Value uncaptured perspective for sustainable business model innovation

    OpenAIRE

    Yang, M; Evans, S; Vladimirova, D; Rana, P

    2016-01-01

    Sustainability has become one of the key factors for long-term business success. Recent research and practice show that business model innovation is a promising approach for improving sustainability in manufacturing firms. To date business models have been examined mostly from the perspectives of value proposition, value capture, value creation and delivery. There is a need for a more comprehensive understanding of value in order to promote sustainability. This paper proposes value uncaptured...

  4. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  5. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  6. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    Science.gov (United States)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  7. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Utilizing Earth Observations for Reaching Sustainable Development Goals in Water, Sanitation and Public Health

    Science.gov (United States)

    Akanda, A. S.; Hasan, M. A.; Nusrat, F.; Jutla, A.; Huq, A.; Alam, M.; Colwell, R. R.

    2016-12-01

    The United Nations Sustainable Development Goals call for universal and equitable access to safe and affordable drinking water, improvement of water quality, and adequate and equitable sanitation for all, with special attention to the needs of women and girls and those in vulnerable situations (Goal 6). In addition, the world community also aims to end preventable deaths of newborns and children under 5 years of age, and end the epidemics of neglected tropical diseases and combat hepatitis, water-borne diseases and other infectious diseases (Goal 3). Water and sanitation-related diseases remain the leading causes of death in children under five, mostly in South Asia and sub-Saharan Africa, due to diarrheal diseases linked to poor sanitation and hygiene. Water scarcity affects more than 40 per cent of the global population and is projected to rise substantially. More than 80 per cent of wastewater resulting from human activities is also discharged into rivers or sea without any treatment and poor water quality controls. As a result, around 1.8 billion people globally are still forced to use a source of drinking water that is fecally contaminated. Earth observation techniques provide the most effective and encompassing tool to monitor both regional and local scale changes in water quality and quantity, impacts of droughts and flooding, and water resources vulnerabilities in delta regions around the globe. University of Rhode Island, along with partners in the US and Bangladesh, is using satellite remote sensing datasets and earth observation techniques to develop a series of tools for surveillance, analysis and decision support for various government, academic, and non-government stakeholder organizations in South-Asia to achieve sustainable development goals in 1) providing safe water and sanitation access in vulnerable regions through safe water resources mapping, 2) providing increasing access to medicine and vaccines through estimation of disease burden and

  9. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  10. Computational sustainability

    CERN Document Server

    Kersting, Kristian; Morik, Katharina

    2016-01-01

    The book at hand gives an overview of the state of the art research in Computational Sustainability as well as case studies of different application scenarios. This covers topics such as renewable energy supply, energy storage and e-mobility, efficiency in data centers and networks, sustainable food and water supply, sustainable health, industrial production and quality, etc. The book describes computational methods and possible application scenarios.

  11. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  12. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    Energy Technology Data Exchange (ETDEWEB)

    none, none; Tuchman, Nancy [Institute of Environmental Sustainability (IES), Chicago, IL (United States)

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  13. Sustainable Waste Water Treatment in Developing Countries: A Case Study of IIT Kharagpur Campus

    Science.gov (United States)

    Das, Sutapa; Bokshi, Sanjit

    2017-06-01

    Treatment of wastewater and its reuse in irrigation and agriculture can mitigate the inevitable scarcity of safe drinking water in coming decades. For developing countries like India and especially in its under-privileged regions, it is high time to focus on sustainable wastewater treatment which will be economical and easy to construct, operate and maintain by unskilled users without much dependency on electricity. Addressing this issue, various sustainable methods of wastewater treatment was critically analyzed and the Waste Stabilization Pond system was selected. A facility was designed for 20,000 residents of Indian Institute of Technology Kharagpur campus based on its geo-climatic and wastewater characteristics. Detailed calculations were carried out to demonstrate the effluent quality with reduced BOD and E-coli is suitable for unrestricted irrigation. This project with minor customisation can act as a prototype for adjacent vast rural areas where land is available but water, electricity and skilled technicians are not. If implemented, this project will bear social benefits beyond campus such as water supply to drought prone areas, better harvest and rural employment. Moreover, it underpins government' several initiatives to develop rural infrastructure and inclusive growth of the country.

  14. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  15. Sustainable Contracts in the Bottled Tawilis Value Chain in Taal, Batangas, Philippines

    Directory of Open Access Journals (Sweden)

    Cynthia V. Almazan

    2012-03-01

    Full Text Available This research was conceptualized to investigate the potential impact of contracts on the sustainability of the bottled tawilis supply chain, i.e. sustainability in terms of environmental protection, well-being of the people whose livelihood depends on tawilis production, processing and marketing; and enhanced economic gains from the chain. A survey amongst fishermen, middlemen and processors was performed in the lake Taal area. The study concludes that formal contracts, with specific demands to gear used and the handling of fish, may stimulate the catch of minimum and uniform sized fish. Such contracts may also stimulate delivery of higher quality fish by fishermen. These contracts thereby enhance sustainable fishing and increase in fishermen’s income. Direct (win-win contracts between processors and fishermen seem to be the best way to stimulate delivery of sustainably catched fish. Government should strongly increase enforcement of sustainable fishing practices and stimulate contracting for sustainable fishing in this chain.

  16. Service delivery innovation architecture: An empirical study of antecedents and outcomes

    Directory of Open Access Journals (Sweden)

    Rajeev Verma

    2014-06-01

    Full Text Available The research examines service delivery innovation architecture and its role in achieving sustainable competitive advantage of firms. The study develops and empirically examines an antecedent based model of service delivery innovation. We collected data from 203 service sector professionals working in Mexican financial and information technology firms, and tested the proposed relationship. Further, the study investigates the moderating role of customer orientation on innovation driven performance outcomes. Results show that customer orientation strengthens the service delivery–performance relationship. This paper aims to contribute to the strategic planning of service firms by guiding their resource allocation to ensure sustainable growth.

  17. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  18. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    Directory of Open Access Journals (Sweden)

    T. S. Bibby

    2011-03-01

    Full Text Available Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic and the waters off Hawai'i (Pacific, alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si* in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  19. Sustainable development in agriculture: is it really sustainable?

    International Nuclear Information System (INIS)

    Singh, S.R.K.; Srinivas, K.; Kumar, L.R.; Gupta, H.S.

    2005-01-01

    Indian agriculture has achieved remarkable success in the food grain production due to inception of 'rainbow revolution', which made the country self-sufficient in food production. Sustainable agriculture (SA) is an ongoing process, in which people take actions leading to development of agriculture that meets their current needs without compromising the ability of future generations to meet their needs. It advocates avoiding all those actions, which reduce the ability of future generations to meet out the present generations. It is based on the optimal interaction between clean environment, healthy economy, and vital society by avoiding trade-off of problems to other regions on to the future. Moreover, sustainable agriculture is the function of people's progress and nature's capacity. In fact, SA commits us to considering the long-term effect and to recognize our place within the ecosystem. It encourages a continuous reflection on the implications of human activity on the ecosystem. Empirical evidences shows that in the race of self-sufficiency in food grain production, we compromised a lot on social and environmental fronts. The aftermath of green revolution is not so sustainable as it showed reverse side too, in the form of environmental degradation and ecological imbalances. Such threats have led to the need for promoting sustainable development in agriculture. Due to several unsustainable activities which resulted in resource degradation in the form of top soil loss, ground water depletion and forest degradation. The average soil loss is estimated to be over 16 tonnes/ha/year. The ground water depletion resulted in several blocks as 'grey blocks' and 'dark blocks'. This happened mainly due to increase in number of tube-wells and free supply of electricity making the cost of pumping water very low. Rate of human induced land degradation is very high. Out of total geographical area of 329.0 million ha, 187 million ha (57.0 %) are reported to have degraded, of

  20. Bulawayo water supplies: Sustainable alternatives for the next decade

    Science.gov (United States)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    contemplated, namely drawing groundwater from Umguza, part of the Nyamandlovu aquifer. The paper then provides details of the Umguza alternative, which was designed at pre-feasibility level by Mkandla [Mkandla, N., 2003. Bulawayo water supplies: Umguza well field as a sustainable alternative for the next decade. Unpublished M.Sc. WREM dissertation. University of Zimbabwe, Harare]. All alternative additional water supply sources were compared in terms of their Net Present Values. It was found that Umguza well field is the least-cost alternative to meet additional water demand. The Umguza alternative will be able to satisfy water demand for a period of six to ten years. Thereafter, the second least-cost alternative, namely Gwayi Shangani dam, must be on stream.

  1. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1 protection of the loaded drug from the harsh environment of the GI tract, (2 release of the drug in a controlled manner at target sites, (3 prolongation of the residence time in the gut by mucoadhesion, and (4 inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.

  2. Sustainability of mega water diversion projects: Experience and lessons from China.

    Science.gov (United States)

    Yu, Min; Wang, Chaoran; Liu, Yi; Olsson, Gustaf; Wang, Chunyan

    2018-04-01

    Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis. The relationship between nine major basins is measured using a network analysis method, and the associated economic, environmental and social impacts are explored using an impact analysis method. The study finds the development of water diversion has experienced four stages in China, from a starting period through to a period of high-speed development. Both the length of water diversion channels and the amount of transferred water have increased significantly in the past 50years. As of 2015, over 100billionm 3 of water was transferred in China through 16,000km in channels. These projects reached over half of China's provinces. The Yangtze River Basin is now the largest source of transferred water. Through inter-basin water diversion, China gains the opportunity to increase Gross Domestic Product by 4%. However, the construction costs exceed 150 billion US dollars, larger than in any other country. The average cost per unit of transferred water has increased with time and scale but decreased from western to eastern China. Furthermore, annual total energy consumption for pumping exceeded 50billionkilowatt-hours and the related greenhouse gas emissions are estimated to be 48milliontons. It is worth noting that ecological problems caused by water diversion affect the Han River and Yellow River Basins. Over 500 thousand people have been relocated away from their homes due to water diversion. To improve the sustainability of water diversion, four kinds of innovative measures have been provided for decision makers: national diversion guidelines, integrated water basin management, economic incentives and ex-post evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    Science.gov (United States)

    Madulu, Ndalahwa F.

    The Wami Rivers basin is an important area due to its diversified use which benefits a multi-diversity of stakeholders. While large scale irrigated sugar production is the main issue of concern upstream, there are other equally important socio-economic activities which include biodiversity and environmental conservation, domestic water supply, livestock water needs, and fishing. A large water supply project has just been completed downstream of the Wami River to provide water for the Chalinze township and surrounding villages. Other important undertakings include irrigated rice farming in Dakawa area, livestock keeping activities, and the establishment of the Sadani National Park (SANAPA) and the Wami-Mbiki Wildlife Management Area (WMA). The Wami River basin forms significant parts of both the Wami-Mbiki WMA and the SANAPA wildlife conservation areas. Regardless of its importance, the basin is increasingly being degraded through deforestation for agricultural expansion, timber, and more important charcoal making. The basin is also being polluted through disposal of excess molasses from the sugar industry, and use of poisonous substances and herbs in fishing. The worsening environmental condition in the basin has become a health threat to both people in the surrounding villages and wildlife. To a large extent, such changes are intensifying poverty levels among the local population. These changes are raising concerns about the long-term environmental sustainability and health implications of the current water use competition and conflicts in the basin. The purpose of this paper is to examine the main water resource use conflicts and how they affect environmental sustainability in the long-run. It also intends to establish linkages between wildlife management, pastoralism, agricultural activities and how such linkages influence poverty alleviation efforts in the basin. An attempt has been made to examine the environmental and health implications of human activities

  4. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  5. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  6. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity. Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  7. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  8. A Pedagogical Dimension to the Technocratic Problem of Water Management: Preschool Teacher Beliefs and Attitudes Towards Teaching Water Science and Sustainable Management of Water in the Context of Environmental Education

    Directory of Open Access Journals (Sweden)

    E. Bourotzoglou

    2016-05-01

    Full Text Available Future generations are necessary to become conscious of water environmental problems, since preschool age, as they will be forced to manage them in the future. Experiential Environmental Education is a tool for sustainable management of water resources, but the key to this process is teachers and the factors that shape their readiness to fulfill their role. In this research their beliefs and attitudes are being investigated, as they influence the quality of teaching and environmental awareness of children. Specifically, 128 preschool teachers from North Greece were interviewed on how they perceive a their Willingness to improve their skills and knowledge on the scientific subject of water and its sustainable management, b their Comfort in teaching these subjects and c their Familiarity with the content knowledge, pedagogical teaching methods of preschool and environmental education and developmentally appropriate activities for teaching these subjects according to Psychology. In addition, it explores preschool teacher’s beliefs and attitudes d about whether water science and sustainable management of water could keep Child’s Interest and e if it contributes to Child Benefit, raising children’s awareness of environmental issues and developing his/her language, art, math, technological and social skills. Correlation Analysis showed that preschool teacher’s beliefs and attitudes towards teaching the subject of water were positive but under certain preconditions (they do not have the Willingness to spend time creating materials, they do not need more scientific knowledge, they do not consider children’s experimentation as the best way of learning, the ‘creative clutter’ caused by experimentation annoys them, they are not willing to engage in children’s experimentation with water, watching what children do, what they say or ask and they do not consider more activities with water necessary. However, these items of the Scale may

  9. The Nišava river water quality as the indicator of the sustainable development of the city of Niš

    Directory of Open Access Journals (Sweden)

    Branković Saša

    2007-01-01

    Full Text Available The Nišava river has a great importance for the sustainable development of the city of Niš. From the Mediana spring, which is on the bank of the Nišava, the city of Niš satisfies around 30% of its water demand. The aim of this paper is to, on the basis of the analysis of several tens of parameters of water quality; determine whether the Nišava river is a limiting factor to the sustainable development of the city of Niš. For this purpose the data of Public Utility Company Naissus have been used, as it collects daily samples of the Nišava river water. The number of conducted analyses, depending on the water quality parameters, varies from 1 to 1,240. The obtained results, which have been presented in detail in the paper, indicate that a great majority of analyses, of almost all the water quality parameters, is within predicted range. At the end of the paper, certain measures have been proposed, which should contribute to the sustainable development of Niš in this field. .

  10. MicroRNA delivery for regenerative medicine.

    Science.gov (United States)

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characterization of gelation process and drug release profile of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen.

    Science.gov (United States)

    Djekic, Ljiljana; Krajisnik, Danina; Martinovic, Martina; Djordjevic, Dragana; Primorac, Marija

    2015-07-25

    Suitability of liquid lecithin (i.e., solution of lecithin in soy bean oil with ∼ 60% w/w of phospholipids) for formation of gels, upon addition of water solution of poloxamer 407, was investigated, and formulated systems were evaluated as carriers for percutaneous delivery of ibuprofen. Formulation study of pseudo-ternary system liquid lecithin/poloxamer 407/water at constant liquid lecithin/poloxamer 407 mass ratio (2.0) revealed that minimum concentrations of liquid lecithin and poloxamer 407 required for formation of gel like systems were 15.75% w/w and 13.13% w/w, respectively, while the maximum content of water was 60.62% w/w. The systems comprising water concentrations in a range from 55 to 60.62% w/w were soft semisolids suitable for topical application, and they were selected for physicochemical and biopharmaceutical evaluation. Analysis of conductivity results and light microscopy examination revealed that investigated systems were water dilutable dispersions of spherical oligolamellar associates of phospholipids and triglyceride molecules in the copolymer water solution. Rheological behavior evaluation results indicated that the investigated gels were thermosensitive shear thinning systems. Ibuprofen (5% w/w) was incorporated by dispersing into the previously prepared carriers. Drug-loaded systems were physically stable at storage temperature from 5 ± 3°C to 40 ± 2°C, for 30 days. In vitro ibuprofen release was in accordance with the Higuchi model (rH>0.95) and sustained for 12h. The obtained results implicated that formulated LLPBGs, optimized regarding drug release and organoleptic properties, represent promising carriers for sustained percutaneous drug delivery of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  13. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery

    OpenAIRE

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spe...

  15. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  16. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.

    Science.gov (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  17. Increasing sustainable stormwater management adaption through transdisciplinary research

    Science.gov (United States)

    Wingfield, Thea; Potter, Karen; Jones, Gareth; Spees, Jack; Macdonald, Neil

    2016-04-01

    The Ribble Rivers Trust leads a partnership of land and water management organisations that use a holistic approach to water management in the Ribble catchment. They are interested in incorporating sustainable stormwater systems, into their program of delivery with a view to ensuring that their activities to improve the environments and habitats of the catchment also contribute to reducing flood risk. A methodology, to locate interventions that would slow water within the catchment are identified; however partner buy in, institutional caution and economic barriers are felt to be hindering delivery. In response a transdisciplinary research project in which both the academics of the University of Liverpool and the practitioners of The Ribble Rivers Trust are active investigators has been established. The project aims to increase the uptake of sustainable stormwater management techniques through the analysis of the institutional, experiential and governance processes and their interactions with the physical hydrological processes governing stormwater systems. Research that is transdisciplinary must integrate academic knowledge with practitioner, local understanding and practice. Furthermore methodologies belonging to different academic fields must be blended together to collect, analyse and interpret data in order to examine complex problems through different disciplinary lenses in an integrated way. This approach has been developed in response to the complex relationships of cause and effect of contemporary inter-related economic, environmental and societal challenges. There have been a number of challenges to overcome as transdisciplinary researchers, the first and most important was to understand the different research philosophies and theoretical assumptions behind various natural science and social science research methods. Without this understanding research methodologies could be flawed and would not be effectively integrated and the data would not be

  18. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    Science.gov (United States)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  19. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    Science.gov (United States)

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  20. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    Energy Technology Data Exchange (ETDEWEB)

    Wiek, Arnim, E-mail: arnim.wiek@asu.edu; Foley, Rider W. [Arizona State University, School of Sustainability (United States); Guston, David H. [Arizona State University, Center for Nanotechnology in Society, Consortium for Science, Policy and Outcomes (United States)

    2012-09-15

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  1. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    International Nuclear Information System (INIS)

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-01-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology’s contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  2. Sustainability Annual Report 2013

    OpenAIRE

    2013-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  3. Sustainability Annual Report 2014

    OpenAIRE

    2014-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  4. Sustainability Annual Report 2017

    OpenAIRE

    2017-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  5. Sustainability Annual Report 2011

    OpenAIRE

    2011-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  6. Sustainability Annual Report 2012

    OpenAIRE

    2012-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  7. Sustainability Annual Report 2015

    OpenAIRE

    2015-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  8. Sustainability Annual Report 2016

    OpenAIRE

    2016-01-01

    Every year, Virginia Tech releases a sustainability annual report to show the university’s progress in meeting the sustainability goals. The key sustainability metrics these reports cover include: greenhouse gas (GHG) emissions, energy use intensity, alternative transportation use, recycling, and water consumption.

  9. Use of non-conventional technologies for sustainable urban water resource management

    International Nuclear Information System (INIS)

    Brar, T.S.

    2005-01-01

    Patiala an erstwhile Princely State Capital also known as city of gardens, is the fourth largest city of Punjab (India) with a population of 0.35 million in 2001. Water demand has continuously increased with the growth of the city to 206.03 Million liters per day (MLD) and is expected to cross 400.00 MLD. Ground water being the only source of water supply today, Water supply network of Patiala presently consists of over 100 tube wells, which has resulted in fall of ground water level from 3.3 m in 1980 to 24.9 m in 2004 at an annual rate of 0.85 m per year. The main reason for the problem is the neglect of water resources while preparing the master plan for the city. Inspite of having a network of canals with sanctioned flow of 209.8 MLD per day and seasonal drains with annual discharge of 200 m/sup 3//s for 15 to 20 days. Average annual rainfall in the city is over 800 mm but it also drains out as runoff resulting in decrease in ground water recharge. The wastewater that is generated is 131.31 MLD and is expected to be 317.6 MLD in 2021. It is being discharged in the seasonal drains without any treatment and polluting the groundwater. This paper discusses the proposal for the Sustainable Urban Water Resource Management Plan for Patiala. The proposal calls for Paradigm shift from conventional to non-conventional technologies and integrate water resource management as an integral part of master plan. (author)

  10. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    Science.gov (United States)

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-05

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    Science.gov (United States)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  12. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    Science.gov (United States)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  13. Water resources management in the urban agglomeration of the Lake Biwa region, Japan: An ecosystem services-based sustainability assessment.

    Science.gov (United States)

    Chen, Xiaochen; Chen, Yuqing; Shimizu, Toshiyuki; Niu, Jia; Nakagami, Ken'ichi; Qian, Xuepeng; Jia, Baoju; Nakajima, Jun; Han, Ji; Li, Jianhua

    2017-05-15

    An innovative ecosystem services-based sustainability assessment was conducted in the important urban agglomeration of the Lake Biwa region, Japan, covering the time period from 1950 to 2014. A 22-indicator system was established that was based on the major ecosystem services of Lake Biwa and its water courses, i.e., provisioning services regarding aquatic products and water; regulating services regarding floods and water quality; cultural services regarding recreation and tourism, scientific research, and environmental education; and supporting services regarding biodiversity. First, changes in the eight ecosystem services were discussed together with the considerable experience and difficult lessons that can be drawn from the development trajectory. Next, with the indicators rearranged according to sustainability principles, the regional sustainability over the past six-plus decades was assessed. In general, this urban agglomeration has been progressing in terms of its sustainability, although economic and social development was achieved at the cost of environmental degradation in the past, and the current economic downturn is hurting the balanced development and integrated benefits. The results lead directly to recommendations for regional development, especially in terms of economic rejuvenation, from the perspective of improving management of Lake Biwa's water resources. Moreover, the relevant knowledge is educational and inspirational for other places in the world that are facing similar development issues. For example, the effective and even pioneering countermeasures that have been taken against environmental degradation, as well as the participation and collaboration of multiple stakeholders, could be useful as a model. Moreover, the study invites increased understanding of ecosystem vulnerability to anthropogenic devastation and emphasizes the priority of precautionary measures over countermeasures in the context of holistic urban planning and sustainable

  14. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiyue Zhang

    2012-01-01

    Full Text Available The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.

  15. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    International Nuclear Information System (INIS)

    Zhang, Z.; Huang, G.

    2012-01-01

    The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis

  16. The journey from safe yield to sustainability.

    Science.gov (United States)

    Alley, William M; Leake, Stanley A

    2004-01-01

    Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.

  17. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery.

    Science.gov (United States)

    Engelke, Laura; Winter, Gerhard; Engert, Julia

    2018-07-01

    The intradermal delivery of biologics has long been recognized as attractive approach for cutaneous immunotherapy, particularly vaccination. Although intradermal (i.d.) or subcutaneous (s.c.) injection provide reproducible dosing and good cost- and delivery efficiency, the major objective to avoid sharps and the need for enhanced storage stability have renewed the interest in alternative needle-free delivery strategies. This study presents a new concept for the delivery of macromolecules and nanoparticles to viable skin layers with a high density of professional antigen-presenting cells (APCs). Stable polyvinyl alcohol (PVA) polymer films as well as PVA blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared using an easily-scalable film casting technique. Fluorescein isothiocyanate (FITC) and rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model substances, or polystyrene (PS)-nano- and microparticles with diameters of 0.5 µm and 5 µm were directly incorporated into the polymer formulations at varying concentrations. The assembly of the polymer films with an occlusive backing tape created a film patch that provided a fast drug release upon dissolution of the water-soluble film and facilitated an intradermal drug delivery on laser microporated skin. The minimally-invasive P.L.E.A.S.E.® laser poration system (Pantec Biosolutions, Ruggell, Liechtenstein) provided access to viable skin layers by thermally ablating the superficial tissue with a pulsed Er:YAG laser (λ = 2.94 µm). In our in vitro study using excised pig skin, laser microporation induced a 4- to 5-fold increase of water transport (TEWL) through excised skin in a Franz diffusion cell compared to intact skin. The TEWL values detected were comparable to in vivo human skin. The increased water transport facilitated the dissolution of all topically applied dry PVA-based film formulations within 6 h. No dissolution of the films was seen on

  18. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Water resources in the Klein Karoo: the challenge of sustainable development in a water-scarce area

    Directory of Open Access Journals (Sweden)

    Ashton Maherry

    2009-12-01

    Full Text Available The Klein Karoo is situated in the Western Cape, South Africa, and is characterised by low rainfall (100–450 mm yr–1. The Klein Karoo is situated in the primary catchment of the Gouritz River. The mean annual runoff (MAR for the three major tributaries of the Gouritz River arising in or feeding the Klein Karoo (Touws, Gamka, Olifants is 540 Mm3 yr–1. Groundwater recharge in the three Klein Karoo catchments is ±257 Mm3 yr–1, but only a portion of this reaches the rivers. The very variable flows result in low 1:50 year yield of 161 Mm3 (30% of MAR. The current demand for water in these catchments is 182 Mm3 yr–1, which exceeds the yield, and demand is projected to increase between 23% and 150% by 2025. Changes in the approach to water management are required, including improving the efficiency of irrigation and land restoration to improve water infiltration and reduce soil erosion. We believe that it is time to change to a water management approach that is designed to anticipate and manage the inherent variability in water resources in the Klein Karoo, thereby placing the region on a path to sustainable development.

  20. Large-scale hydrological modelling and decision-making for sustainable water and land management along the Tarim River

    OpenAIRE

    Yu, Yang

    2017-01-01

    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases in practice, it is difficult for hydrological models to directly simulate the interactions among water, ecosystem and humans. This study presents the large-scale hydrological modeling (MIKE HYDRO) approach and a Decision Support System (DSS) for decision-making with stakeholders on the sustainable water and land management along the ...

  1. Conjugated and Entrapped HPMA-PLA Nano-Polymeric Micelles Based Dual Delivery of First Line Anti TB Drugs: Improved and Safe Drug Delivery against Sensitive and Resistant Mycobacterium Tuberculosis.

    Science.gov (United States)

    Upadhyay, Seema; Khan, Iliyas; Gothwal, Avinash; Pachouri, Praveen K; Bhaskar, N; Gupta, Umesh D; Chauhan, Devendra S; Gupta, Umesh

    2017-09-01

    First line antiTB drugs have several physical and toxic manifestations which limit their applications. RIF is a hydrophobic drug and has low water solubility and INH is hepatotoxic. The main objective of the study was to synthesize, characterize HPMA-PLA co-polymeric micelles for the effective dual delivery of INH and RIF. HPMA-PLA co-polymer and HPMA-PLA-INH (HPI) conjugates were synthesized and characterized by FT-IR and 1 H-NMR spectroscopy. Later on RIF loaded HPMA-PLA-INH co-polymeric micelles (PMRI) were formulated and characterized for size, zeta potential and surface morphology (SEM, TEM) as well as critical micellar concentration. The safety was assessed through RBC's interaction study. The prepared PMRI were evaluated through MABA assay against sensitive and resistant strains of M. Tuberculosis. Size, zeta and entrapment efficiency for RIF loaded HPMA-PLA-INH polymeric micelles (PMRI) was 87.64 ± 1.98 nm, -19 ± 1.93 mV and 97.2 ± 1.56%, respectively. In vitro release followed controlled and sustained delivery pattern. Sustained release was also supported by release kinetics. Haemolytic toxicity of HPI and PMRI was 8.57 and 7.05% (p PLA polymeric micelles (PMRI) were more effective against sensitive and resistant M tuberculosis. The developed approach can lead to improved patient compliance and reduced dosing in future, offering improved treatment of tuberculosis.

  2. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    International Nuclear Information System (INIS)

    Lybeck, Nancy J.; Tawfik, Magdy S.; Pham, Binh T.

    2011-01-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  3. On-The-Move Nutrient Delivery System - Description and Initial Evaluation

    National Research Council Canada - National Science Library

    Mountain, Scott

    2004-01-01

    .... A novel nutrient delivery system has been developed to provide Warfighters on-demand access to flavored electrolyte- and carbohydrate-enhanced drinks, to provide hydration, and energy to sustain work...

  4. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R and D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10-12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I and C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy's Light Water Reactor Sustainability Program. DOE

  5. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  6. A planning-oriented sustainability assessment framework for peri-urban water management in developing countries.

    Science.gov (United States)

    Starkl, Markus; Brunner, Norbert; López, Eduardo; Martínez-Ruiz, José Luis

    2013-12-15

    DPSIR and the three-pillar model are well-established frameworks for sustainability assessment. This paper proposes a planning-oriented sustainability assessment framework (POSAF). It is informed by those frameworks but differs insofar as it puts more emphasis on a constructivist conception which recognises that sustainability needs to be defined anew for each planning problem. In finding such a consensus definition, POSAF uses participatory scenario analysis and participatory planning, technical feasibility study, participatory assessment, analysis of trade-offs and social networks in an unusual combination and for goals that differ from the original conceptions of these methods. POSAF was applied in a peri-urban area of Mexico City for the design of improved water service provision, integrating solid waste management. It supported consensus amongst users about the importance of environmental issues, informed planners about the values of stakeholders and users, detected local differences, and identified possible conflicts at an early stage of decision-making. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Water Quality, Essential Condition Sustaining the Health, Production, Reproduction in Cattle. A Review

    Directory of Open Access Journals (Sweden)

    Cristina Iuliana El Mahdy

    2016-11-01

    Full Text Available The main component of the body: the water, alongside with many function which it has,represents a constituent in the diet of animal. There are many and various factors that influence the daily water requirements of animals: some dependent on animal: and others dependent on the environment. Water quality administered to livestock must meet the requirements for potability prerequisite to maintaining the health, externalization full productive potential and sustaining breeding. Knowing the importance of water quality consists in the negative action which can exert on the body to exceeding certain thresholds translated through: reducing water consumption simultaneously with the decrease milk production, decreased feed conversion rate and average daily gain, degradation of health status by reducing the local resistance, decrease overall body resistance, metabolic, digestive, skeletal disorders and impaired reproduction sphere translated through:decreasing fertility, abortions; elements interfering with the absorption of other essential water body, producing chronic or acute poisoning. The water composition plays essential role depending on which is supplemented or not as the case the quantity of the macro and trace minerals from feedingstuff  according to the synergism or antagonism action between  the minerals present.

  8. Connecting cities and their environments: Harnessing the water-energy-food nexus for sustainable urban development

    Directory of Open Access Journals (Sweden)

    Chan Arthur

    2015-01-01

    Full Text Available Thousands of years of development have made the production and consumption of water, energy, and food for urban environments more complex. While the rise of cities has fostered social and economic progress, the accompanying environmental pressures threaten to undermine these benefits. The compounding effects of climate change, habitat loss, pollution, overexploitation (in addition to financial constraints make the individual management of these three vital resources incompatible with rapidly growing populations and resource-intensive lifestyles. Nexus thinking is a critical tool to capture opportunities for urban sustainability in both industrialised and developing cities. A nexus approach to water, energy, and food security recognises that conventional decisionmaking, strictly confined within distinct sectors, limits the sustainability of urban development. Important nexus considerations include the need to collaborate with a wide spectrum of stakeholders, and to “re-integrate” urban systems. This means recognising the opportunities coming from the interconnected nature of cities and metropolitan regions, including links with rural environments and wider biophysical dynamics.

  9. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-02-15

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  10. Light Water Reactor Sustainability Program: Integrated Program Plan

    International Nuclear Information System (INIS)

    2016-02-01

    and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  11. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  12. Integrated water resources management for sustainable development of in western rural China

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-bao; HUANG Gao-bao

    2010-01-01

    Management in water resources development of Jinghe watershed of western rural China is examined with Participatory Rural Appraisal method--a rare applied method in China and questionnaire survey of stakeholders.Combination of these two survey methods derives good results as it could avoid personal bias in identifying and ranking the issues on a concrete basis in following up households'survey.Statistic Package for Social Sciences(SPSS)was used for data analysis.Results indicate that since the early 1980s.issues of water scarcity,river pollution,soil erosion,insufficient participation of stakeholders in water resources use and management,as well as centrahzed water planning and management system have created difficulties for sustainable development of the watershed.The stakeholders and local governments are fully aware of the challenges and are committed to achieving a solution through integrated water resource management(IWRD).The concept and the application of IWRD for rural China are reviewed and analyzed,and a framework for implementation of IWRD in China is developed.It is conchided that the keys to successful implementation of the approach will depend on optimal arrangement of institutions,policy reforms,community involvement and capacity building in water sector,which need to fully integrate various management functions within the watershed.

  13. Sustained delivery of exogenous melatonin influences biomarkers of oxidative stress and total antioxidant capacity in summer-stressed anestrous water buffalo (Bubalus bubalis).

    Science.gov (United States)

    Kumar, Ashok; Mehrotra, S; Singh, G; Narayanan, K; Das, G K; Soni, Y K; Singh, Mahak; Mahla, A S; Srivastava, N; Verma, M R

    2015-06-01

    High ambient temperature during summer in tropical and subtropical countries predisposes water buffaloes (Bubalus bubalis) to develop oxidative stress having antigonadotropic and antisteroidogenic actions. Melatonin is a regulator of seasonal reproduction in photoperiodic species and highly effective antioxidant and free radical scavenger. Therefore, a study was designed to evaluate the effect of sustained-release melatonin on biomarkers of oxidative stress i.e., the serum malondialdehyde (MDA) and nitric oxide (NO), and the total antioxidant capacity (TAC). For the study, postpartum buffaloes diagnosed as summer anestrus (absence of overt signs of estrus, concurrent rectal examination, and RIA for serum progesterone) were grouped as treated (single subcutaneous injection of melatonin at 18 mg/50 kg body weight dissolved in sterilized corn oil as vehicle, n = 20) and untreated (subcutaneous sterilized corn oil, n = 8). Blood sampling for estimation of serum TAC and MDA (mmol/L) and NO (μmol/L) was carried out at 4 days of interval from 8 days before treatment till 28 days after treatment or for the ensuing entire cycle length. Results showed serum TAC concentration was higher in the treatment group with a significant (P stress resulting in the induction of cyclicity in summer-stressed anestrous buffaloes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits

    Science.gov (United States)

    Feng, Xiaoming; Fu, Bojie; Piao, Shilong; Wang, Shuai; Ciais, Philippe; Zeng, Zhenzhong; Lü, Yihe; Zeng, Yuan; Li, Yue; Jiang, Xiaohui; Wu, Bingfang

    2016-11-01

    Revegetation of degraded ecosystems provides opportunities for carbon sequestration and bioenergy production. However, vegetation expansion in water-limited areas creates potentially conflicting demands for water between the ecosystem and humans. Current understanding of these competing demands is still limited. Here, we study the semi-arid Loess Plateau in China, where the `Grain to Green’ large-scale revegetation programme has been in operation since 1999. As expected, we found that the new planting has caused both net primary productivity (NPP) and evapotranspiration (ET) to increase. Also the increase of ET has induced a significant (p develop a new conceptual framework to determine the critical carbon sequestration that is sustainable in terms of both ecological and socio-economic resource demands in a coupled anthropogenic-biological system.

  15. 33 CFR 385.17 - Project Delivery Team.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Project Delivery Team. 385.17... Processes § 385.17 Project Delivery Team. (a) In accordance with the procedures of the Corps of Engineers...,” the Corps of Engineers and the non-Federal sponsor shall form a Project Delivery Team to develop the...

  16. Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems

    OpenAIRE

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-01-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron ...

  17. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  18. Water sustainable management for buildings Water sustainable management for buildings

    Directory of Open Access Journals (Sweden)

    Juan Arturo Ocaña Ponce

    2013-01-01

    Full Text Available This paper presents a literature review article that deals with how to manage water in build­ings, specifically in facility projects, in ways to save water during the use, maintenance and operation of the building. This work is aimed at architects, builders and developers, and may be helpful for decision-making in the planning and management of efficient water use in buildings.Este trabajo es un artículo de revisión relacionado con el manejo y gestión del recurso agua, particularmente en proyectos de edificaciones, con el fin de propiciar ahorro de agua durante el uso, mantenimiento y operación del inmueble. Este documento está dirigido a arquitectos, constructores y desarrolladores inmobiliarios y puede ser de gran utilidad para la toma de decisiones en la fase de planeación y de gestión del uso eficiente del agua en los edificios.

  19. Capture and Utilization of Water From Rain: The Way for Sustainable School

    OpenAIRE

    Jamila El Tugoz; Geysler Rogis Flor Bertolini; Loreni Teresinha Brandalise

    2017-01-01

    Currently, issues related to environmental preservation and responsible use of water, have become a global concern, which has driven the increasing number of public policies aimed at promoting sustainable practices. In this context, it addresses the implementation of a system harnessing rainwater for non-potable purposes in a school unit. This article aimed to evaluate the results obtained from the use of tanks to capture and use of rainwater in a state school of Paraná, in the city of Marec...

  20. Evaluation of poly(2-ethyl-2-oxazoline) containing copolymer networks of varied composition as sustained metoprolol tartrate delivery systems.

    Science.gov (United States)

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-08-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. Swelling kinetics of SCNs in various media was followed, and the conditions for effective MT loading were specified. MT-loaded SCNs with drug content up to 80 wt.% were produced. The release kinetics of metoprolol tartrate from the systems was studied and it was shown that the conetworks of different structure and composition are able to sustain the metoprolol tartrate release without additional excipients.