WorldWideScience

Sample records for sustainable power distribution

  1. Distributed Power Systems for Sustainable Energy

    Science.gov (United States)

    2012-10-01

    Base ALC Automatic Logic Corporation BEMS building energy management system BMS battery management system CHP combined heat and power DC...direct current DOD U.S. Department of Defense DSB Defense Science Board EES electric energy storage EMS energy management system EO Executive...Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers LCC life-cycle cost MPPT maximum power point of tracking NDAA National

  2. Power Distribution at the Bottom of the Pyramid: Illumination through Affordable and Sustainable Solution of Gram Power

    Science.gov (United States)

    Pandey, Nisha; Sarswat, Prashant

    2016-03-01

    Energy plays a vital role in the socio -economic development, mainly due to the dependency of indispensable amenities on electricity. However, a matter of concern is developing country domestic power needs and inadequate supply. One of the cases is Indian subcontinent, where more than 50,000 villages still not have access to uninterrupted electric power. `Power theft' is a major challenge due to the lack of adequate energy supply and the financial constraints. Long distances, inaccurate and inflated electricity bills are the other issues lead to default on payments. Gram Power, a social enterprise, is providing a smart metering and affordable solution in areas where the extension of existing grid supply is economically not viable. India's first solar powered micro-grid (centralized array of solar panels) in Rajasthan was established by this initiative. The core innovation is a smart distribution technology that consists of smart meters with recharging facility and grid monitoring, to provide on-demand, theft-proof power through centralized servers with a pay-as-you-use schedule. The details of the changes, socio-economic transformation, and operational sustainability of such a community engagement model will be discussed in this study.

  3. On Stability of Sustainable Power Systems : Network Fault Response of Transmission Systems with Very High Penetration of Distributed Generation

    NARCIS (Netherlands)

    Boemer, J.

    2016-01-01

    Power systems are undergoing a historic structural and technological transformation. The increase of distributed generation (DG), recently mostly wind power park modules (WPPMs) and photovoltaic power park modules (PVPPMs), is already changing the way power systems are structured and operated.

  4. Family Members Identification with Brightness Distribution Sensors to Self-sustaining of Power as Personal Actions

    Directory of Open Access Journals (Sweden)

    Nobuaki Takaoka

    2015-11-01

    Full Text Available There are many attempts to recognize actions using sensors in homes. Some of them aim to keep watching on the elderly living alone, while others try to bring ecological life, scheduling domestic actions consuming energy. We need an inexpensive method to make it prevail in the society. In the meantime, recognition results threaten privacy, if outsiders obtain them. Almost all people mind whether they are used in malicious ways. The sensor should prevent the leak of the privacy of users. This work proposes a method to recognize various domestic actions with a single kind of sensors, which is not only inexpensive, but also safe enough to protect the privacy. The method uses brightness distribution sensors presenting a sequence of cells, each of which indicates the brightness of one direction in the view area of the sensor. The method gets local features along with the persons who conduct domestic actions. The method enables to recognize both of domestic actions and the period in which they are conducted. To evaluate the accuracy of the method, 10 men and women have participated in an experiment, where they take various domestic actions in their own ways with 4 brightness distribution sensors installed on the wall of an actual kitchen. As a result, the method has marked high performance on the recognition of “vacuuming”, “cooking”, and “taking a rest”, along with their periods. The method also identifies all examinees who conduct them in high accuracy. It is possible to recognize domestic actions in actual home spaces.

  5. Sustainable tidal power

    Energy Technology Data Exchange (ETDEWEB)

    Walsum, E. van

    2003-07-01

    North America is increasingly searching for ways to achieve energy self-sufficiency. This paper discussed the tidal power potential of the Upper Bay of Fundy, located on Canada's east coast. The Bay of Fundy has the largest tides in the world. It is also close to a major electricity market. Tidal power plants could mean substantial quantities of clean, renewable energy. Some of the environmental concerns with the development of tidal power plants on the Bay of Fundy include: siltation, shorebird survival, fish-stock survival, sea-mammal survival, drainage of agricultural lands, and changes in the tidal regime of the Bay of Fundy-Gulf of Maine Basin. In this paper, the author proved that it is possible to qualitatively assess those concerns, but that the quantitative assessment is more complex. A quantitative assessment of the effect on living organisms would require assessing the overall performance of an ecologically designed, built and operated pilot tidal power plant. The author argued that a full-fledged tidal power plant construction can take place once a pilot plant has been proven to operate symbiotically with a thriving marine shore-based flora and fauna. 18 refs., 2 tabs., 6 figs.

  6. Industrial power distribution

    CERN Document Server

    Fehr, Ralph

    2016-01-01

    In this fully updated version of Industrial Power Distribution, the author addresses key areas of electric power distribution from an end-user perspective for both electrical engineers, as well as students who are training for a career in the electrical power engineering field. Industrial Power Distribution, Second Edition, begins by describing how industrial facilities are supplied from utility sources, which is supported with background information on the components of AC power, voltage drop calculations, and the sizing of conductors and transformers. Important concepts and discussions are featured throughout the book including those for sequence networks, ladder logic, motor application, fault calculations, and transformer connections. The book concludes with an introduction to power quality, how it affects industrial power systems, and an expansion of the concept of power factor, including a distortion term made necessary by the existence of harmonic.

  7. Renewables for Sustainable Village Power

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Baring-Gould, I.; Bianchi, J.; Corbus, D.; Drouilhet, S.; Elliott, D.; Gevorgian, V.; Jimenez, A.; Lilienthal, P.; Newcomb, C.; Taylor, R.

    2000-11-06

    This paper describes the efforts of NREL's Renewables for Sustainable Village Power team to match renewable energy technologies with rural energy needs in the international market. The paper describes the team's activities, updates the lessons learned, and proposes an integrated approach as a model for rural electrification with renewables.

  8. Electric power distribution handbook

    CERN Document Server

    Short, Thomas Allen

    2014-01-01

    Of the ""big three"" components of electrical infrastructure, distribution typically gets the least attention. In fact, a thorough, up-to-date treatment of the subject hasn't been published in years, yet deregulation and technical changes have increased the need for better information. Filling this void, the Electric Power Distribution Handbook delivers comprehensive, cutting-edge coverage of the electrical aspects of power distribution systems. The first few chapters of this pragmatic guidebook focus on equipment-oriented information and applications such as choosing transformer connections,

  9. Power distribution arrangement

    DEFF Research Database (Denmark)

    2010-01-01

    An arrangement and a method for distributing power supplied by a power source to two or more of loads (e.g., electrical vehicular systems) is disclosed, where a representation of the power taken by a particular one of the loads from the source is measured. The measured representation of the amount...... of power taken from the source by the particular one of the loads is compared to a threshold to provide an overload signal in the event the representation exceeds the threshold. Control signals dependant on the occurring of the overload signal are provided such that the control signal decreases the output...... power of the power circuit in case the overload signal occurs...

  10. LHC Power Distribution

    CERN Document Server

    Pedersen, J

    1999-01-01

    The power distribution for the LHC machine and its experiments will be realised making extensive use of the existing infrastructure for the LEP. The overall power requirement is approximately the same, about 125 MW. The load distribution will however change. The even points will loose in importance and the points 1 and 5 will, due to the installation of ATLAS and CMS, gain. A thorough reorganisation of the 18 kV distribution will thus be necessary. Due to the important cryogenic installations required for the LHC, the 3.3 kV distribution system, supplying mainly cryogenic compressors, will be extended with a number of new substations. The important number of new surface buildings, underground caverns and other underground structures all will receive general service installations: Lighting and power. The new injection tunnels will require complete installations: A.C. supplies for the power converters and for general service, and D.C. cabling for the magnets of the beam line. Special safe power installations ar...

  11. Renewables for sustainable village power

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L

    1997-03-01

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-technology, multi-application program composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets, micro-hydro and micro-biomass technologies may be integrated in the future. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. The integration of the technology developments, institutional experiences, and the financial solutions for the implementation of renewables in the main line rural electrification processes in both the developing world and remote regions of the developed world is the goal.

  12. Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation

    Directory of Open Access Journals (Sweden)

    A. Elmitwally

    2015-12-01

    Full Text Available This paper addresses the problem of overcurrent relays (OCRs coordination in the presence of DGs. OCRs are optimally set to work in a coordinated manner to isolate faults with minimal impacts on customers. The penetration of DGs into the power system changes the fault current levels seen by the OCRs. This can deteriorate the coordinated operation of OCRs. Operation time difference between backup and main relays can be below the standard limit or even the backup OCR can incorrectly work before the main OCR. Though resetting of OCRs is tedious especially in large systems, it cannot alone restore the original coordinated operation in the presence of DGs. The paper investigates the optimal utilization of fault current limiters (FCLs to maintain the directional OCRs coordinated operation without any need to OCRs resetting irrespective of DGs status. It is required to maintain the OCRs coordination at minimum cost of prospective FCLs. Hence, the FCLs location and sizing problem is formulated as a constrained multi-objective optimization problem. Multi-objective particle swarm optimization is adopted for solving the optimization problem to determine the optimal locations and sizes of FCLs. The proposed algorithm is applied to meshed and radial power systems at different DGs arrangements using different types of FCLs. Moreover, the OCRs coordination problem is studied when the system includes both directional and non-directional OCRs. Comparative analysis of results is provided.

  13. Distributed Power Flow Controller

    OpenAIRE

    Yuan, Z

    2010-01-01

    In modern power systems, there is a great demand to control the power flow actively. Power flow controlling devices (PFCDs) are required for such purpose, because the power flow over the lines is the nature result of the impedance of each line. Due to the control capabilities of different types of PFCDs, the trend is that mechanical PFCDs are gradually being replaced by Power electronics (PE) PFCDs. Among all PE PFCDs, the Unified Power Flow Controller (UPFC) is the most versatile device. How...

  14. Distributed Power Flow Controller

    NARCIS (Netherlands)

    Yuan, Z.

    2010-01-01

    In modern power systems, there is a great demand to control the power flow actively. Power flow controlling devices (PFCDs) are required for such purpose, because the power flow over the lines is the nature result of the impedance of each line. Due to the control capabilities of different types of

  15. The Power Distribution Innovation achieves

    Indian Academy of Sciences (India)

    And at the same time have 24x7 DC power at each home. Adequate for Lowest income homes; Mid and high Income homes will install solar. Could help Manage Subsidy. Power Distribution Companies unconstrained: would become financially viable. uninterrupted DC power supply at low tariff; AC power can be charged at ...

  16. Power Law Distribution in Education

    Science.gov (United States)

    Gupta, Hari M.; Campanha, José R.; Chavarette, Fábio R.

    We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study-day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects are due to the nature of the subjects themselves. Further and better study, teaching and economical conditions are more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.

  17. Distributed Power-Generation Systems and Protection

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng

    2017-01-01

    Continuously expanding deployments of distrib¬uted power-generation systems (DPGSs) are transforming the conventional centralized power grid into a mixed distributed electrical network. The modern power grid requires flexible energy utilization but presents challenges in the case of a high...... penetration degree of renewable energy, among which wind and solar photovoltaics are typical sources. The integration level of the DPGS into the grid plays a critical role in developing sustainable and resilient power systems, especially with highly intermittent renewable energy resources. To address...... the challenging issues and, more importantly, to leverage the energy generation, stringent demands from both utility operators and consumers have been imposed on the DPGS. Furthermore, as the core of energy conversion, numerous power electronic converters employing advanced control techniques have been developed...

  18. Authority, Power and Distributed Leadership

    Science.gov (United States)

    Woods, Philip A.

    2016-01-01

    A much greater understanding is needed of power in the practice of distributed leadership. This article explores how the concept of social authority might be helpful in achieving this. It suggests that the practice of distributed leadership is characterized by multiple authorities which are constructed in the interactions between people. Rather…

  19. The Power of Micro Urban Structures, Theory of EEPGC - the Micro Urban Energy Distribution Model as a Planning Tool for Sustainable City Development

    Directory of Open Access Journals (Sweden)

    Tkáč Štefan

    2015-11-01

    Full Text Available To achieve the smart growth and equitable development in the region, urban planners should consider also lateral energies represented by the energy urban models like further proposed EEPGC focused on energy distribution via connections among micro-urban structures, their onsite renewable resources and the perception of micro-urban structures as decentralized energy carriers based on pre industrialized era. These structures are still variously bound when part of greater patterns. After the industrial revolution the main traded goods became energy in its various forms. The EEPGC is focused on sustainable energy transportation distances between the villages and the city, described by the virtual “energy circles”. This more human scale urbanization, boost the economy in micro-urban areas, rising along with clean energy available in situ that surely gives a different perspective to human quality of life in contrast to overcrowded multicultural mega-urban structures facing generations of problems and struggling to survive as a whole.

  20. Electronic Power Transformer for Power Distribution Networks

    Directory of Open Access Journals (Sweden)

    Ermuraсhi Iu.V.

    2017-12-01

    Full Text Available Reducing losses in electricity distribution networks is a current technical problem. This issue also has social and environmental aspects. As a promising solution one can examine the direct distribution from the medium voltage power network using new equipment based on the use of power electronics. The aim of the paper is to propose and argue an innovative technical solution for the realization of the Solid State Transformer (SST in order to decrease the number of energy transformation stages compared to the known solutions, simplifying the topology of the functional scheme with the reduction of production costs and the loss of energy in transformers used in electrical distribution networks. It is proposed the solution of simplifying the topology of the AC/AC electronic transformer by reducing the number of passive electronic components (resistors, inductors, capacitors and active (transistors. The inverter of the SST transformer ensures the switching mode of the transistors, using for this purpose the inductance of the magnetic leakage flux of the high frequency transformer. The robustness of the laboratory sample of the SST 10 / 0.22 kV transformer with the power of 20 kW was manufactured and tested. Testing of the laboratory sample confirmed the functionality of the proposed scheme and the possibility of switching of the transistors to at zero current (ZCS mode with the reduction of the energy losses. In the proposed converter a single high-frequency transformer with a simplified construction with two windings is used, which reduces its mass and the cost of making the transformer. The reduction in the manufacturing cost of the converter is also due to the decrease in the number of links between the functional elements.

  1. Power Generation and Distribution via Distributed Coordination Control

    OpenAIRE

    Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung

    2014-01-01

    This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...

  2. Adaption of the power distribution system to a sustainable energy system - Smart meters and intelligent nets; Anpassning av elnaeten, till ett uthaalligt energisystem - Smarta maetare och intelligenta naet

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Math

    2010-11-15

    The conversion of the energy system towards sustainability is a major challenge for society. The conversion includes a large-scale introduction of renewable electricity and the electrification of transport. Adaptations of the grid are needed in order to cope with this development: - Facilitate an increased introduction of renewable electricity; - Enabling power reduction at peak load; - Improve incentives for energy efficiency; - Creating conditions for more active purchasers of electricity. Security of supply must be high, although the new production affects the electricity grid in a different way than today. Therefore, new technical solutions, a so-called smart grid, is necessary in order to, inter alia, prevent congestion and over voltages, but also to enhance the operational safety in general. There is new technology that can help adjust the grid in an efficient and flexible way. Intelligent networks, or smart grids, is the collection of new technology, function and regulatory framework in the electricity market, etc. that cost-effectively facilitate introduction and utilization of renewable electricity generation, leading to reduced energy consumption, contributes to power reduction in peak load and creates conditions for active electricity customers. Sweden is one of the countries that score high in terms of active electricity customers and feedback of consumption for electricity customers. There is a direct consequence of introduction of the metering reform and installation of the AMR, in which Sweden was one of the first countries in Europe. As for modern technology to increase transmission capacity of transmission networks such as HVDC and FACTS technology, Sweden is a world leader. This technology will play an important role in enabling large-scale use of renewable electricity generation on European level. The investigation has resulted in the following proposals: - A knowledge platform created to be collect and disseminate relevant knowledge of research

  3. Quality, safety and sustainability in food distribution

    DEFF Research Database (Denmark)

    Akkerman, Renzo; Farahani, Poorya; Grunow, Martin

    2010-01-01

    , our main focus is on three aspects: food quality, food safety, and sustainability. We discuss the literature on three decision levels: strategic network design, tactical network planning and operational transportation planning. For each of these, we survey the research contributions, discuss the state......The management of food distribution networks is receiving more and more attention, both in practice and in the scientific literature. In this paper, we review quantitative operations management approaches to food distribution management, and relate this to challenges faced by the industry. Here...

  4. Electric power distribution, automation, protection, and control

    CERN Document Server

    Momoh, James A

    2007-01-01

    * Each Chapter Provides an Introduction, Illustrative Examples, and a SummaryIntroduction to Distribution Automation Systems Historical Background Distribution System Topology and Structure Distribution Automation (DA) and Control Computational Techniques for Distribution Systems Complex Power Concepts Balanced Voltage to Neutral-Connected System Power Relationship for f Y-?-Connected System Per-Unit System Calculation of Power Losses Voltage Regulation Techniques Voltage-Sag Analysis and Calculation Equipment Modeling Components Modeling Distribution System Line Model Distribution Power Flo

  5. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  6. Power distribution for electron beam welding

    Science.gov (United States)

    Edwards, E.

    1980-01-01

    The power distribution of an electron seam is analyzed. Digital computer techniques are used to evaluate the radial distribution of power detected by a wire probe circulating through the beam. Results are reported.

  7. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  8. Performance of Power Systems under Sustained Random Perturbations

    Directory of Open Access Journals (Sweden)

    Humberto Verdejo

    2014-01-01

    Full Text Available This paper studies linear systems under sustained additive random perturbations. The stable operating point of an electric power system is replaced by an attracting stationary solution if the system is subjected to (small random additive perturbations. The invariant distribution of this stationary solution gives rise to several performance indices that measure how well the system copes with the randomness. These indices are introduced, showing how they can be used for the optimal tuning of system parameters in the presence of noise. Results on a four-generator two-area system are presented and discussed.

  9. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  10. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    NARCIS (Netherlands)

    Palit, D.; Malhotra, R.; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability

  11. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated...... as distributed generators in distribution systems. This paper discusses the issues of wind turbines in distribution systems. Wind power conversion systems briefly introduced, the basic features and technical characteristics of distributed wind power system are described, and the main technical demands...

  12. Environmental and exergetic sustainability assessment of power generation from biomass

    NARCIS (Netherlands)

    Stougie, L.; Tsalidis, G.A.; van der Kooi, H.J.; Korevaar, G.

    2017-01-01

    Power generation from biomass is mentioned as a means to make our society more sustainable as it decreases greenhouse gas emissions of fossil origin and reduces the dependency on finite energy carriers, such as coal, oil and natural gas. When assessing the sustainability of power generation from

  13. Distributed Power Quality Improvement in Residential Microgrids

    DEFF Research Database (Denmark)

    Naderi Zarnaghi, Yahya; Hosseini, Seyed Hossein; Ghassem Zadeh, Saeed

    2017-01-01

    The importance of power quality issue on micro grids and also the changing nature of power system distortions will lead the future power systems to use distributed power quality improvement (DPQI) devices. One possible choice of these DPQIs are multifunctional DGs that could compensate some harmo...

  14. MILP approaches to sustainable production and distribution of meal elements

    DEFF Research Database (Denmark)

    Akkerman, Renzo; Wang, Yang; Grunow, Martin

    2009-01-01

    This paper studies the production and distribution system for professionally prepared meals, in which a new innovative concept is applied. The concept aims to improve the sustainability of the system by distributing meal elements super-chilled in the conventional cold chain. Here, sustainability...... comprises economic, environmental and social aspects. The impacts on and trade-offs between the different dimensions of sustainability are discussed, and combined with aspect of product quality. Furthermore, we identify the important planning decisions in relation to production and distribution and organise...... and distribution planning, and also evaluate the performance of and quantify the trade-offs between the different sustainability dimensions....

  15. Maximizing wind power integration in distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Nursebo Salih, S.; Chen, Peiyuan; Carlson, Ola [Chalmers Univ. of Technology (Sweden)

    2011-07-01

    Due to the location of favorable wind sites and lower connection costs associated with installing wind power in a distribution system, there is a need to know the hosting capacity of a distribution system so that it can be used effectively for injecting wind power into the power system. Therefore this paper presents a methodology to investigate the wind power hosting capacity of a distribution system. Stochastic nature of wind power and customer loads is taken into account using copulas. Hence it is possible to investigate various levels of correlation among customer loads. A simple algorithm is proposed for selecting the connection points of wind power in the network. The effectiveness of active management strategies such as wind power curtailment and reactive power compensation are thoroughly investigated. The analysis shows that allowing a curtailment level of as low as 0.2% with power factor (PF) control of wind turbines could boost the hosting capacity by 118%. (orig.)

  16. Sustainable Data Evolution Technology for Power Grid Optimization

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-09

    The SDET Tool is used to create open-access power grid data sets and facilitate updates of these data sets by the community. Pacific Northwest National Laboratory (PNNL) and its power industry and software vendor partners are developing an innovative sustainable data evolution technology (SDET) to create open-access power grid datasets and facilitate updates to these datasets by the power grid community. The objective is to make this a sustained effort within and beyond the ARPA-E GRID DATA program so that the datasets can evolve over time and meet the current and future needs for power grid optimization and potentially other applications in power grid operation and planning.

  17. Sustainable energy landscapes: The power of imagination

    NARCIS (Netherlands)

    Stremke, S.

    2012-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Sustainable energy transition necessitates a transformation of large parts of the existing built environment and presents one of the great challenges of present-day

  18. Extended generalized exponential power series distribution

    Science.gov (United States)

    Kunjiratanachot, Natcha; Bodhisuwan, Winai

    2017-11-01

    In this paper, we introduce the Topp-Leone generalized exponential power series class of distributions. It is obtained by compounding the Topp-Leone generalized exponential distribution and the power series family. This new class of distributions can be applied in reliability of parallel system with identical components, where lifetime of each component has the Topp-Leone generalized exponential distribution. The proposed distribution contains several lifetime models such as the Topp-Leone generalized exponential-geometric, Topp-Leone generalized exponential-binomial,Topp-Leone generalized exponential-poisson, and Topp-Leone generalized exponential-logarithmic distributions as special cases. The hazard function of the new distributions can be increasing, decreasing, and v shaped. We obtain several properties of this distributions such as probability density function, quantile and moments. The parameter estimation using maximum likelihood estimation is discussed. Some real datasets are illustrated the flexibility and potentiality of the Topp-Leone generalized exponential power series class of distributions.

  19. Distributed power generation using microturbines

    CSIR Research Space (South Africa)

    Szewczuk, S

    2008-11-01

    Full Text Available At present, the bulk of the world is electricity is generated in central power stations. This approach, one of `economy of size generates electricity in large power stations and delivers it to load centres via an extensive network of transmission...

  20. Delivering Sustainability Through Supply Chain Distribution Network Redesign

    Directory of Open Access Journals (Sweden)

    Denise Ravet

    2013-09-01

    Full Text Available Purpose - Companies could gain (cost, service, green/sustainable competitive advantage through the supply chain network. The goal of this article is to study how to deliver sustainability through the supply chain distribution network redesign.Design/methodology/approach - A literature review is conducted to examine research relating to sustainable supply chain strategies and supply chain distribution network redesign.Findings - A study of the supply chain literature reveals the importance to rethink the supply chain distribution network design and to treat sustainability as integral to operations.

  1. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...

  2. Delivering Sustainability Through Supply Chain Distribution Network Redesign

    OpenAIRE

    Denise Ravet

    2013-01-01

    Purpose - Companies could gain (cost, service, green/sustainable) competitive advantage through the supply chain network. The goal of this article is to study how to deliver sustainability through the supply chain distribution network redesign.Design/methodology/approach - A literature review is conducted to examine research relating to sustainable supply chain strategies and supply chain distribution network redesign.Findings - A study of the supply chain literature reveals the importance to...

  3. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  4. Building the Leviathan – Voluntary centralisation of punishment power sustains cooperation in humans

    Science.gov (United States)

    Gross, Jörg; Méder, Zsombor Z.; Okamoto-Barth, Sanae; Riedl, Arno

    2016-01-01

    The prevalence of cooperation among humans is puzzling because cooperators can be exploited by free riders. Peer punishment has been suggested as a solution to this puzzle, but cumulating evidence questions its robustness in sustaining cooperation. Amongst others, punishment fails when it is not powerful enough, or when it elicits counter-punishment. Existing research, however, has ignored that the distribution of punishment power can be the result of social interactions. We introduce a novel experiment in which individuals can transfer punishment power to others. We find that while decentralised peer punishment fails to overcome free riding, the voluntary transfer of punishment power enables groups to sustain cooperation. This is achieved by non-punishing cooperators empowering those who are willing to punish in the interest of the group. Our results show how voluntary power centralisation can efficiently sustain cooperation, which could explain why hierarchical power structures are widespread among animals and humans. PMID:26888519

  5. Modeling and control of sustainable power systems

    CERN Document Server

    Wang, Lingfeng

    2011-01-01

    The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power

  6. Harnessing wind power with sustained policy support

    Energy Technology Data Exchange (ETDEWEB)

    Meera, L. [BITS-Pilani. Dept. of Economics, Hyderabad (India)

    2012-07-01

    The development of wind power in India began in the 1990s, and has significantly increased in the last few years. The ''Indian Wind Turbine Manufacturers Association (IWTMA)'' has played a leading role in promoting wind energy in India. Although a relative newcomer to the wind industry compared with Denmark or the US, a combination of domestic policy support for wind power and the rise of Suzlon (a leading global wind turbine manufacturer) have led India to become the country with the fifth largest installed wind power capacity in the world. Wind power accounts for 6% of India's total installed power capacity, and it generates 1.6% of the country's power. (Author)

  7. Certainty Power Flow Calculation for Distribution Network with Distributed Generation

    Directory of Open Access Journals (Sweden)

    FU Min

    2017-06-01

    Full Text Available System nodes need to be renumbered manually when upgrading and reforming distribution network makes network topology change. Because optimization method is inapplicable to the network change,an improved forward and backward sweep algorithm is proposed which is unrelated to node label. In this paper,node type of sorts of distributed generation ( DG in power flow calculation are induced and part of new node type of DG under improved control strategy are provided. The basis of DG as active constant node in certainty power flow calculation is analyzed. Based on improved back - forward sweep algorithm,general programs of power flow calculation in power distribution network of DG are programmed by MATLAB and the impact of DG on flow calculation to distribution network is analyzed quantitatively by plenty of simulation calculation of IEEE33 test system.

  8. Logistic service providers and sustainable physical distribution

    Directory of Open Access Journals (Sweden)

    Stef Weijers

    2012-06-01

    Full Text Available Background: Logistic Service Providers main concern was to ensure reliability for a low price (Christopher, 2005. Dutch Logistic Service Providers still have these two aspects at the top of their list, but also have to take in a new aspect: sustainability. 88% Of the investigated Logistic Service Providers have included sustainability in the company's goals. These Logistic Service Providers have developed different strategies to achieve a higher level of sustainability. This paper presents the results of a study into what Logistic Service Providers say what they are doing, or intend to do, to improve sustainability for their transport services. In this way insight is given in the attitude of Dutch Logistic Service Providers towards sustainability and how they intend to translate this into business practise: internal solutions or new methods incorporating external partners. Methods: Various methods of the investigations were used, among which the analysis of the statements about the sustainabilityon the websites of various companies as well as the questionnaire per Internet. The research covered 50 largest logistics companies operating in the Netherlands and 60 companies that competed for the award "Lean and Green" advertised in the Netherlands. In addition, the Internet survey was answered by 41 companies that belong to the network of our university. Results: The investigation has shown that sustainability is handled by the logistics company as an integral part of the corporate strategy. In contrast, shippers depend in the choice of logistics services primarily on such classical aspects as the reliability or the price and the sustainability play a minor role. Conclusions: Trying to find methods to improve the sustainability, Dutch logistics service providers, in the first place, look for solutions that increase the efficiency and therefore the cost reduction potential. Solutions, which require the involvement of clients, were less often

  9. Towards self-sustainable power systems

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Danzi, Pietro; Stefanovic, Cedomir

    2017-01-01

    We propose use of a “modemless” communication solution, termed power talk, tailored for optimization and monitoring, i.e., upper layer control in low voltage DC MicroGrids (MGs). Specifically, the exchange of the information required for the upper control among control agents is achieved by modul......We propose use of a “modemless” communication solution, termed power talk, tailored for optimization and monitoring, i.e., upper layer control in low voltage DC MicroGrids (MGs). Specifically, the exchange of the information required for the upper control among control agents is achieved...... of additional hardware and can be implemented via software modifications of the power electronic converters. We present the communication solution in the context of decentralized optimal power flow, where the generators periodically transmit information about their local generation capacity with an aim...

  10. Strategic Sustainability Performance Plan. Discovering Sustainable Solutions to Power and Secure America’s Future

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-09-01

    Sustainability is fundamental to the Department of Energy’s research mission and operations as reflected in the Department’s Strategic Plan. Our overarching mission is to discover the solutions to power and secure America’s future.

  11. Dutch logistics service providers and sustainable physical distribution

    NARCIS (Netherlands)

    Onno Omta; Hans-Heinrich Glöckner; Reinder Pieters; Stef Weijers

    2013-01-01

    As environmental concerns becoming increasingly important to logistics service providers, the question arises as to how they can achieve sustainable physical distribution practices while surviving the severe competition in freight transport. This issue is further complicated by the pressures from

  12. Cathode power distribution system and method of using the same for power distribution

    Science.gov (United States)

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  13. Intelligent Systems for Power Management and Distribution

    Science.gov (United States)

    Button, Robert M.

    2002-01-01

    The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.

  14. Limitations of Nuclear Power as a Sustainable Energy Source

    OpenAIRE

    Pearce, Joshua M.

    2012-01-01

    This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability&l...

  15. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  16. Piikani wind power project : sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Big Bull, W. [Piikuni Utilities Corp., AB (Canada)

    2004-07-01

    This presentation reviewed the potential environmental impacts that a wind turbine array may have on the sacred way of life of the Piikuni Nation, an Aboriginal community living in Blackfoot Territory in Alberta and Saskatchewan. A map depicting the traditional land use area as delineated in an 1877 Treaty was presented. Companies that require access to the land must be aware of historic sites and utilize protocol to approach First Nations communities. The community consultation process is driven by a desire to embark in partnerships to ensure that best practice methods are used throughout the duration of the project. The Weather Dancer 1 is a 100 MW wind power joint venture project between the Piikani Utilities Corporation and EPCOR. Electricity is presently being sold to the city of Edmonton. figs.

  17. Distributed generation and centralized power system in Thailand

    DEFF Research Database (Denmark)

    Sukkumnoed, Decharut

    2004-01-01

    The paper examines and discusses conflicts between the development of distributed power and centralized power system.......The paper examines and discusses conflicts between the development of distributed power and centralized power system....

  18. Distributed generation and centralized power system in Thailand

    DEFF Research Database (Denmark)

    Sukkumnoed, Decharut

    The paper examines and discusses conflicts between the development of distributed power and centralized power system in Thailand.......The paper examines and discusses conflicts between the development of distributed power and centralized power system in Thailand....

  19. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  20. Modelling Sustainable Development Scenarios of Croatian Power System

    Science.gov (United States)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  1. Supplier perceptions of distributive justice in sustainable apparel sourcing

    DEFF Research Database (Denmark)

    Møller, Morten Munksgaard; Ellegaard, Chris; Normann, Ulla

    2017-01-01

    their perceptions of distributive justice in relation to their key customers’ sustainable sourcing initiatives. Findings – Most of the interviewees perceived that their customers’ assessment of governance initiatives was unfair. Four types of suppliers are identified based on their varying perceptions of the equity......Purpose – The purpose of this paper is two-fold: first, it attempts to determine whether suppliers perceive distributive justice (equity) when their key customers implement sustainable sourcing initiatives based on assessmentgovernance...... equation. Research limitations/implications – The findings introduce distributive justice as an important mediating variable between assessment-based governance and compliance. They also provide insights into the varioustypes of perceived costs, rewards,and investments relatedto sustainable sourcing...

  2. Improvement of power quality using distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Lopez-Rodriguez, M.A.; Flores-Arias, J.M.; Bellido-Outerino, F.J. [Universidad de Cordoba, Departamento A.C., Electronica y T.E., Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); de-la-Rosa, J.J.G. [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202-Algeciras-Cadiz (Spain); Ruiz-de-Adana, M. [Universidad de Cordoba, Departamento de Quimica Fisica y Termodinamica Aplicada, Campus de Rabanales, E-14071 Cordoba (Spain)

    2010-12-15

    This paper addresses how Distributed Generation (DG), particularly when configured in Combined Heat and Power (CHP) mode, can become a powerful reliability solution in highlight automated factories, especially when integrated with complimentary Power Quality (PQ) measures. The paper presents results from the PQ audit conducted at a highly automated plant over last year. It was found that the main problems for the equipment installed were voltage sags. Among all categories of electrical disturbances, the voltage sag (dip) and momentary interruption are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addressed the role of the DG/CHP on the reliability of digital factories. (author)

  3. Sustainability in the Power Sector. 2010 Update. The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Steinweg, T.; Ten Kate, A.; Racz, K.

    2010-11-15

    This 2010 series of power company and thematic fact sheets aims to raise public awareness about sustainability issues in the electricity sector and to improve the sustainability of power companies operating in the Netherlands. The fact sheet series investigates the companies' performance on incorporating renewable energy sources into their fuel mix for both generation and supply of electricity, and on their investments and future plans with respect to energy sources at both the Dutch and European level. The 2010 fact sheet series is the annual update that is going into its fourth year, and builds on the work from previous years (available at www.somo.nl), but includes a slightly different range of companies due to a number of recent and pending mergers and acquisitions among power companies with operations in the Netherlands.

  4. Strategic Sustainable Electric Power Energy for Ethiopia:- Electric ...

    African Journals Online (AJOL)

    Mengesha

    MSc program covering high-voltage engineering, transmission and distribution systems, renewable energy technologies and power electronics and derives. The first batches of electrical power engineering masters students, from EEPCo are working on their. MSc thesis proposal at present. The followings are the main areas ...

  5. Distributed Wireless Power Transfer With Energy Feedback

    Science.gov (United States)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  6. A Conceptual Study on the Sustainability of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Choi, Hang Bok; Lim, Chae Young; Yoon, Ji Sup; Park, Seong Won

    2007-06-15

    Due to the current population growth and industrialization, energy consumption is increasing continuously. The world population and energy consumption were 2.5 billion and 1.5 billion tons of equivalent oil in 1950, but they are expected to be 9.2 billion and 60 tons, respectively, in 2100. This amount of energy consumption will result in an exhaustion of fossil resources and cause a serious environmental problem such as global warming. Therefore it is necessary to develop sustainable energy resources that maintain current economic growth and social welfare level without burdening a next generation's life style. Nuclear energy has an excellent competitiveness from the viewpoint of a sustainability. Especially nuclear power can effectively reduce greenhouse gas emissions and can be developed in a complementary way with a new and renewable energy, such as solar and wind power, and hydrogen energy. It is expected that nuclear power will maintain its sustainability in the following directions: Implementation of a fast reactor fuel cycle with a high uranium utilization efficiency, Implementation of a pyro-process with an excellent proliferation-resistance, Activity on the enhancement of a domestic social acceptance for nuclear power, International cooperation and joint research for the enhancement of an international nuclear transparency, Optimization of a nuclear grid structure through an accommodation of new and renewable energy resources, Application to a mass production of hydrogen energy.

  7. Characterizations of the power distribution by record values

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 2. Characterizations of the power distribution by record values. Min-Young Lee. Research ... Keywords. Characterizations; power distribution; independent and identically distributed; hazard rate; lower record values; theory of functional equations.

  8. Optimal power flow for distribution networks with distributed generation

    Directory of Open Access Journals (Sweden)

    Radosavljević Jordan

    2015-01-01

    Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046

  9. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  10. Membrane-based processes for sustainable power generation using water.

    Science.gov (United States)

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

  11. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  12. A Sustainability-Oriented Multiobjective Optimization Model for Siting and Sizing Distributed Generation Plants in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Guang Chen

    2013-01-01

    Full Text Available This paper proposes a sustainability-oriented multiobjective optimization model for siting and sizing DG plants in distribution systems. Life cycle exergy (LCE is used as a unified indicator of the entire system’s environmental sustainability, and it is optimized as an objective function in the model. Other two objective functions include economic cost and expected power loss. Chance constraints are used to control the operation risks caused by the uncertain power loads and renewable energies. A semilinearized simulation method is proposed and combined with the Latin hypercube sampling (LHS method to improve the efficiency of probabilistic load flow (PLF analysis which is repeatedly performed to verify the chance constraints. A numerical study based on the modified IEEE 33-node system is performed to verify the proposed method. Numerical results show that the proposed semilinearized simulation method reduces about 93.3% of the calculation time of PLF analysis and guarantees satisfying accuracy. The results also indicate that benefits for environmental sustainability of using DG plants can be effectively reflected by the proposed model which helps the planner to make rational decision towards sustainable development of the distribution system.

  13. A Distribution Power Electronic Transformer with MMC

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2018-01-01

    Full Text Available This paper deals with a Power Electronic Transformer (PET topology for a 3-phase AC distribution grid. In the discussed topology, a Modular Multilevel Converter (MMC and a Full-Bridge converter are employed for the medium voltage (MV and the low voltage (LV side, respectively. By using the space vector, approach a mathematical model for the MMC is presented and a grid-synchronous algorithm is implemented to easily control the power flow through the structure. The MV and LV side converters are linked through a High Frequency (HF transformer, whose control strategy is a Dual-Active Phase-Shift Control (PSC with Square Wave Modulation (SQM. This technique is combined with a predictive algorithm, which is able to keep each leg’s capacitors’ voltages balanced both in stationary and in transient conditions. The proposed algorithm is numerically validated in the Matlab/Simulink® environment.

  14. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  15. Distributed power generation using biogas fuelled microturbines

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, K.; Langan, M.

    2002-07-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.

  16. Power grid operation risk management: V2G deployment for sustainable development

    Science.gov (United States)

    Haddadian, Ghazale J.

    The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems

  17. Structure Learning in Power Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  18. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  19. Motion charged battery as sustainable flexible-power-unit.

    Science.gov (United States)

    Wang, Sihong; Lin, Zong-Hong; Niu, Simiao; Lin, Long; Xie, Yannan; Pradel, Ken C; Wang, Zhong Lin

    2013-12-23

    Energy harvesting and storage are the two most important energy technologies developed for portable, sustainable, and self-sufficient power sources for mobile electronic systems. However, both have limitations for providing stable direct-current (DC) with an infinite lifetime. Herein, we integrated a triboelectric nanogenerator (TENG)-based mechanical energy harvester with Li-ion-battery (LIB)-based energy storage as a single device for demonstrating a flexible self-charging power unit (SCPU), which allows a battery to be charged directly by ambient mechanical motion. This physical integration enables a new operation mode of the SCPU: the "sustainable mode", in which the LIB stores the TENG-generated electricity while it is driving an external load. With the LIB being replenished by the ambient mechanical energy, the SCPU can keep providing a constant voltage to the load by utilizing the stable difference between the battery's intrinsic electrode potentials. This study will impact the traditional trends of battery research and advance the development of the self-powered systems.

  20. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power

    Science.gov (United States)

    Manheimer, Wallace

    2015-11-01

    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  1. DISTRIBUTED ELECTRICAL POWER PRODUCTION SYSTEM AND METHOD OF CONTROL THEREOF

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a distributed electrical power production system wherein two or more electrical power units comprise respective sets of power supply attributes. Each set of power supply attributes is associated with a dynamic operating state of a particular electrical power unit....

  2. Sustainability in the Power Sector. 2010 Update. Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Steinweg, T.; Ten Kate, A.; Racz, K.

    2010-11-15

    This 2010 series of power company and thematic fact sheets aims to raise public awareness about sustainability issues in the electricity sector and to improve the sustainability of power companies operating in the Netherlands. The fact sheet series investigates the companies' performance on incorporating renewable energy sources into their fuel mix for both generation and supply of electricity, and on their investments and future plans with respect to energy sources at both the Dutch and European level. The 2010 fact sheet series is the annual update that is going into its fourth year, and builds on the work from previous years (available at www.somo.nl), but includes a slightly different range of companies due to a number of recent and pending mergers and acquisitions among power companies with operations in the Netherlands. For the first time this year, Essent is fully incorporated in the RWE company profile. SPE, a company covered for the first time, is included in the company profile of its owner EdF. The Vattenfall and Nuon fact sheets were drafted and reviewed separately, and combined into one company profile afterwards. In total, the 2010 series consist of ten company fact sheets; Delta, Dong Energy, E.ON, EdF, SPE, Eneco, Enel, Gdf Suez/Electrabel, Iberdrola, Nuon/Vattenfall and RWE. The company fact sheets form the basis of three separate reports, covering companies active in (1) The Netherlands, (2) Belgium, and an overview of (3) the largest European companies. This report is the version for Belgium, and covers the following companies, all active on the Belgian market: EdF, GDF Suez/Electrabel, RWE, SPE, Vattenfall/Nuon.

  3. Sustainability in the Power Sector. 2010 Update. Europe

    Energy Technology Data Exchange (ETDEWEB)

    Steinweg, T.; Ten Kate, A.; Racz, K.

    2010-11-15

    This 2010 series of power company and thematic fact sheets aims to raise public awareness about sustainability issues in the electricity sector and to improve the sustainability of power companies operating in the Netherlands. The fact sheet series investigates the companies' performance on incorporating renewable energy sources into their fuel mix for both generation and supply of electricity, and on their investments and future plans with respect to energy sources at both the Dutch and European level. The 2010 fact sheet series is the annual update that is going into its fourth year, and builds on the work from previous years (available at www.somo.nl), but includes a slightly different range of companies due to a number of recent and pending mergers and acquisitions among power companies with operations in the Netherlands. For the first time this year, Essent is fully incorporated in the RWE company profile. SPE, a company covered for the first time, is included in the company profile of its owner EdF. The Vattenfall and Nuon fact sheets were drafted and reviewed separately, and combined into one company profile afterwards. In total, the 2010 series consist of ten company fact sheets; Delta, Dong Energy, E.ON, EdF, SPE, Eneco, Enel, Gdf Suez/Electrabel, Iberdrola, Nuon/Vattenfall and RWE. The company fact sheets form the basis of three separate reports, covering companies active in (1) The Netherlands, (2) Belgium, and an overview of (3) the largest European companies. This report is the version for Europe, and covers the following companies, all among the largest electricity companies in Europe: EdF, Enel, E.ON, GDF Suez/Electrabel, Iberdrola, RWE, Vattenfall/Nuon.

  4. Grid Integration of Solar Power into Distribution Systems

    OpenAIRE

    Nguyen, Dung

    2016-01-01

    As solar energy penetration in the power grid increases, challenges arise from the variable nature of solar power. Like any distributed generation source or load, photovoltaic (PV) generation can impact the voltage profile of a distribution feeder, potentially driving the service voltage outside of acceptable ranges. However, distributed energy resources can also bring great opportunities to improve power quality and cost effectiveness of the current power grid. In this dissertation, we will ...

  5. Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael

    2013-01-01

    In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and

  6. Power-law distributions based on exponential distributions: Latent scaling, spurious Zipf's law, and fractal rabbits

    CERN Document Server

    Chen, Yanguang

    2013-01-01

    The different between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through averaging an exponential distribution. For the distributions defined in a 1-dimension space, the scaling exponent is 1; while for those defined in a 2-dimension space, the scaling exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distribution. Third, it is the real power-law distribution that can be related with fractal dimension. ...

  7. Wireless powering for low-power distributed sensors

    Directory of Open Access Journals (Sweden)

    Popović Zoya B.

    2006-01-01

    Full Text Available In this paper, an overview of the field of wireless powering is presented with an emphasis on low-power applications. Several rectenna elements and arrays are discussed in more detail: (1 a 10-GHz array for powering sensors in aircraft wings; (2 a single antenna in the 2.4-GHz ISM band for low-power assisted-living sensors; and (3 a broadband array for power harvesting in the 2-18GHz frequency range.

  8. Patch Network for Power Allocation and Distribution in Smart Materials

    Science.gov (United States)

    Golembiewski, Walter T.

    2000-01-01

    The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

  9. Business Pattern of Distributed Energy in Electric Power System Reformation

    Science.gov (United States)

    Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI

    2017-05-01

    Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.

  10. Sustainable or Distributed Energy—or both? Clarifying the Basic Concepts of Reforming the Energy Sector

    Directory of Open Access Journals (Sweden)

    Pekka Peura

    2015-06-01

    Full Text Available This paper clarifies the concepts of Sustainable Energy (SE and Distributed Energy (DE including their related synonyms, by discussing, analyzing and presenting recommendations. This is important because these concepts are crucial in the on-going transformation from the fossil carbon based to renewable energy based societies, but still the use of the concepts has been confusing. SE consists of the integration of rational use of energy (energy saving, energy efficiency, use of renewable energy sources and sustainability management for anticipating, avoiding and reducing adverse impacts. The best consensus for defining DE is “facilities connected to the distribution network or on the customer side of the meter”. Devices using fossil fuels but otherwise falling under this umbrella cannot be excluded from DE. This paper explores definitions of wind power in relation to its grid connections via DE. SE is more comprehensive embracing the whole field of energy management, with the exception of distributed fossil generation. SE is valuable for understanding, planning and implementing energy strategies in the transition process of the energy sector. SE also includes centralized energy. It is useful for planning at national or sub-national geographic regions. The combination Sustainable Distributed Energy (SDE is excellent for regional contexts and for creating regional renewable energy self-sufficiency, integrated with society-wide energy saving and energy efficiency programs.

  11. Strategic Role of Financial Institutions in Sustainable Development of Indian Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V.K.

    2007-07-01

    Paper focuses on appraisal of Indian power sector, its achievements and inadequacies, measures and initiatives taken by Government of India (GOI) and blueprint for the development of power sector in next five years i.e. XI Plan (2007-2012); the role played by various Financial Institutions, Banks, Bilateral/Multilateral agencies etc. with focus on role of Power Finance Corporation (PFC) in development and financing of Indian Power sector and in Institutional development of State power utilities by facilitating in their reform and restructuring process and improving their financial health; role played by PFC in implementation of various policies and programmes of GOI; its competitive edge in Indian financial sector and growth strategies for enriching the stakeholders' value and acting as a significant partner in the development of power sector and growth of the nation. The paper provides information on capacity addition planned along with matching transmission and distribution system in the next five years to achieve GOI's 'Mission 2012: Power for All'; estimated funds required; funds that can be generated both in the form of Debt and Equity; the funding gap; proposed measures to meet overall funding requirement for sustainable development of the power sector. (auth)

  12. Autonomous Active and Reactive Power Distribution Strategy in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Guerrero, Josep M.

    2014-01-01

    This paper proposes an autonomous active and reactive power distribution strategy that can be applied directly on current control mode (CCM) inverters, being compatible as well with conventional droop-controlled voltage control mode (VCM) converters. In a microgrid, since renewable energy sources...... (RES) units regulate different active power, the proposed reactive power distribution is adaptively controlled according to the active power distribution among energy storage systems (ESS) and RES units. The virtual impedance is implemented in order to improve the reactive power sharing...... in a distributed way. Real-time hardware-in-the-loop results are presented to verify the proposed control strategy....

  13. Sustainable practices in urban freight distribution in Bilbao

    Directory of Open Access Journals (Sweden)

    Esther Alvarez

    2011-10-01

    Full Text Available Purpose: The objective of the present study is to select some feasible and sustainable logistic practices in order to improve the urban freight distribution in Bilbao city. Design/methodology/approach: After a thorough literature review and a benchmarking, Analytic Hierarchy Process (AHP techniques were used in order to support the decision making processes in order to select the most interesting practices. The criteria used for this selection were based on four factors: (1 improvement of the city freight distribution, (2 implementation possibility, (3 short and medium term applicability and (4 impact on the citizens of Bilbao. Findings: The paper identifies some specific problems that must be faced during the last stage of the logistics chain, where products are usually delivered to final customers in the urban environment. Research limitations/implications: Not all good urban freight distribution practices can be applied universally to all types of towns. Therefore, it is necessary to design some practices specifically to each particular city according to the physical characteristics of the city, the companies’ motivation and the citizens’ habits. Practical implications: All the agents involved in the city freight distribution should be aware of the benefits and problems that their actions cause. Originality/value: This study was carried out from a wide perspective that included researchers, logistics operators and local authorities.

  14. Energy indicators impact in multi-criteria sustainability analyse of thermal power plant unit

    OpenAIRE

    Škobalj Predrag D.; Kijevčanin Mirjana Lj.; Jovanović Marina P.; Afgan Naim H.; Erić Milić D.

    2017-01-01

    This paper presents method for sustainability assessment of thermal power plant unit using multi-criteria analysis with aim to create base for business decision. Seven options of possible status of thermal power plant „Kolubara A” unit No. 2 with energy indicators of sustainable development were shown. Energy indicators of sustainable development consists of sets of resource preservation, economic, environmental, and social indicators. Sustainability assessment often fails to account for soci...

  15. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    Science.gov (United States)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  16. Power-Law Distributions Based on Exponential Distributions: Latent Scaling, Spurious Zipf's Law, and Fractal Rabbits

    Science.gov (United States)

    Chen, Yanguang

    2015-03-01

    The difference between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. This paper is devoted to exploring the relationships between exponential laws and power laws from the angle of view of urban geography. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through a semi-moving average process of an exponential distribution. For the distributions defined in a one-dimension space (e.g. Zipf's law), the power exponent is 1; while for those defined in a two-dimension space (e.g. Clark's law), the power exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distributions. Third, it is the real power-law distributions that can be related with fractal dimension. This study discloses an inherent link between simplicity and complexity. In practice, maybe the result presented in this paper can be employed to distinguish the real power laws from spurious power laws (e.g. the fake Zipf distribution).

  17. A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow

    Directory of Open Access Journals (Sweden)

    Paulo Maciel

    2013-07-01

    Full Text Available Energy consumption is a matter of common concern in the world today. Research demonstrates that as a consequence of the constantly evolving and expanding field of information technology, data centers are now major consumers of electrical energy. Such high electrical energy consumption emphasizes the issues of sustainability and cost. Against this background, the present paper proposes a power load distribution algorithm (PLDA to optimize energy distribution of data center power infrastructures. The PLDA, which is based on the Ford-Fulkerson algorithm, is supported by an environment called ASTRO, capable of performing the integrated evaluation of dependability, cost and sustainability. More specifically, the PLDA optimizes the flow distribution of the energy flow model (EFM. EFMs are responsible for estimating sustainability and cost issues of data center infrastructures without crossing the restrictions of the power capacity that each device can provide (power system or extract (cooling system. Additionally, a case study is presented that analyzed seven data center power architectures. Significant results were observed, achieving a reduction in power consumption of up to 15.5%.

  18. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  19. Distributed optimal coordination for distributed energy resources in power systems

    DEFF Research Database (Denmark)

    Wu, Di; Yang, Tao; Stoorvogel, A.

    2017-01-01

    Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...

  20. SUSTAINABILITY OF ECONOMIC GROWTH AND INEQUALITY IN INCOMES DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Bogdan Ion Boldea

    2012-07-01

    correlation between the explanatory variables and the country-specific effects. For a robustness assessment, we also apply the so-called GMM-System estimation. According to our results, an increase in the volatility of the social output (a decrease in the sustainability of the growth processes leads to a greater inequality in incomes distribution. Such outcome appears to be robust to the changes in estimation methodology

  1. Optimization of Power Distribution Networks in Megacities

    Science.gov (United States)

    Manusov, V. Z.; Matrenin, P. V.; Ahyoev, J. S.; Atabaeva, L. Sh

    2017-06-01

    The study deals with the problem of city electrical networks optimization in big towns and megacities to increase electrical energy quality and decrease real and active power losses in the networks as well as in domestic consumers. The optimization is carried out according to the location selection and separate reactive power source in 10 kW networks of Swarm Intelligence algorithms, in particular, of Particle Swarm one. The problem solution based on Particle Swarm algorithm is determined by variables being discrete quantities and, in addition, there are several local minimums (troughs) to be available for a global minimum to be found. It is proved that the city power supply system optimization is carried out by the additional reactive power source to be installed at consumers location reducing reactive power flow, thereby, ensuring increase of power supply system quality and decrease of power losses in city networks.

  2. LIFE: a sustainable solution for developing safe, clean fusion power.

    Science.gov (United States)

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob

    2013-06-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors.

  3. Evolution of power law distributions in science and society.

    Science.gov (United States)

    Jeon, Young-Pyo; McCoy, Benjamin J

    2005-09-01

    Power law distributions have been observed in numerous physical and social systems; for example, the size distributions of particles, aerosols, corporations, and cities are often power laws. Each system is an ensemble of clusters, comprising units that combine with or dissociate from the cluster. Constructing models and investigating their properties are needed to understand how such clusters evolve. To describe the growth of clusters, we hypothesize that a distribution obeys a governing population dynamics equation based on a reversible association-dissociation process. The rate coefficients are considered to depend on the cluster size as power expressions, thus providing an explanation for the asymptotic evolution of power law distributions.

  4. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    National Research Council Canada - National Science Library

    Zhao, Huiru; Guo, Sen

    2015-01-01

    ... goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was ap...

  5. An Overview of Power Quality Enhancement Techniques Applied to Distributed Generation in Electrical Distribution Networks

    DEFF Research Database (Denmark)

    Naderi Zarnaghi, Yahya; hosseini, Seyed Hossein; Ghassem Zadeh, Saeed

    2017-01-01

    It is obvious that power quality is an important characteristic of today’s distribution power systems as loads become more sensitive on the other hand nonlinear loads are increasing in the electrical distribution system. Considering the distributed nature of harmonic loads, the need for distribut...

  6. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    energy at the end-user should also be set up. Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources will be high in the near future. Two major technologies will play important roles to solve the future problems. One...

  7. Distributed Power-Flow Controller (DPFC) Simulation

    OpenAIRE

    T Jagan Mohan Rao; B. Ravi Kumar

    2014-01-01

    This paper describes the steady-state response and control of power in transmission line equipped with FACTS devices. Detailed simulations are carried out on two -machine systems to illustrate the control features of these devices and their influence to increase power transfer capability and improve system reliability. The DPFC is derived from the unified power-flow controller (UPFC) and DPFC has the same control capability as the UPFC. The DPFC can be considered as a UPFC with an...

  8. Power Quality Improvement in Electrical Distribution Network

    OpenAIRE

    Oladepo Olatunde; Awofolaju Tolulope Tola

    2016-01-01

    The introduction of Distributed Generation (DG) in a distribution system offers several benefits to utilities, customers and society. However, the integration of these sources into the networks can cause some challenges regarding their expected impacts on the security and the dynamic behaviour of the entire network. This paper presents the Modified Particle Swarm Optimization algorithm (MPSOA) to determine the optimal location and size of Distributed Generation and Capacitor banks to maximizi...

  9. Sustainable alternative for use of waste from pruning deriving from power distribution networks maintenance; Alternativa sustentavel para utilizacao de residuos de poda provenientes da manutencao das redes de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Cristiane Lima; Grisoli, Renata; Gavioli, Fabio; Coelho, Suani Teixeira [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], email: cenbio@iee.usp.br; Carmelo, Silma [AES Eletropaulo, Sao Paulo, SP (Brazil)], email: silma.carmelo@aes.com

    2008-07-01

    In the context of the environmental issue, the increasing production of solid residues seems to be a problem due to scarcity of methods and solutions for the management. This article presents a project that has as objective to make a survey of the impacts caused by urban pruning residues generated by the electric energy concessionaire AES Eletropaulo, besides developing a method to standardize this residues composting. The obtained results refer to the observation that 50% of the cities that participated on the survey discard the residues in dumps or sanitary landfills, while only 8% perform composting. In the experimental composting plant built, the organic compound obtained reached satisfactory levels of quality with related to the specifications of minimum quality, but showed that humidity should be better controlled. The feasibility of implementing a composting plant was established, with the exception that the higher the production, the better the return on initial investment. Based in the concepts of environmental and social responsibility, we expect that the conclusion of this work can assist the civil, public and private sectors to contribute with the sustainable development. (author)

  10. Facts controllers in power transmission and distribution

    CERN Document Server

    Padiyar, KR

    2007-01-01

    About the Book: The emerging technology of Flexible AC Transmission System (FACTS) enables planning and operation of power systems at minimum costs, without compromising security. This is based on modern high power electronic systems that provide fast controllability to ensure ''flexible'' operation under changing system conditions. This book presents a comprehensive treatment of the subject by discussing the operating principles, mathematical models, control design and issues that affect the applications. The concepts are explained often with illustrative examples and case studies. In partic

  11. optimal location of distributed generation on the nigerian power ...

    African Journals Online (AJOL)

    user

    The optimal sizing and location of distributed generators (DG) remain crucial factors in their application for active power loss minimization as well as voltage profile improvement. This paper describes an analytical method for the optimal sizing and placement of DG in the Nigerian power network for active power loss ...

  12. Structural vulnerability analysis of electric power distribution grids

    NARCIS (Netherlands)

    Koc, Y.; Raman, Abhishek; Warnier, M.E.; Kumar, Tarun

    2016-01-01

    Power grid outages cause huge economical and societal costs. Disruptions in the power distribution grid are responsible for a significant fraction of electric power unavailability to customers. The impact of extreme weather conditions, continuously increasing demand, and the over-ageing of assets

  13. The Distribution of Power in Ugandan Society | Vasher | Africa Insight

    African Journals Online (AJOL)

    Understanding the dynamics of various forms of societal power is important when analysing change in a society. This article seeks to develop a model that aids in analysing the distribution of four types of societal power: political, economic, citizen, and cultural. Each of these types of power is acquired through different ...

  14. Multichannel Distribution Meter: A Veritable Solution in Power ...

    African Journals Online (AJOL)

    Power theft in partitioned commercial apartments, especially in the form of unpaid bills due to disputes, is a major challenge to revenue recovery in the power sector. This paper presents a multi-channel power distribution metering solution that serves to resolve disputes among users in partitioned apartments, and between ...

  15. TS Seminar: Overview of Fermilab’s Power Distribution System

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    A 27.5 km2 (6800 acre) site is powered by two 345 kV, two 34.5 kV, one 12.4 kV and five 7.2 kV lines. The talk gives an overview of Fermilab’s power distribution system with emphasis on accelerator power. The accelerator power distribution system provides 13.8 kV power to all accelerators and conventional loads. Design criteria, design features and operational experience are given.Organiser(s): F. Rodriguez-Mateos & Emmanuel Tsesmelis

  16. A Distributed Digital Control Architecture for Power Electronics Systems

    OpenAIRE

    Celanovic, Ivan

    2000-01-01

    This thesis proposes a novel approach to power electronics system design that is based on the open-architecture distributed digital controller and modular power electronics building blocks (PEBBs). The proposed distributed digital controller partitions the controller in three levels of control authority. The power stage controller, designated as hardware manager, is responsible for low-level hardware oriented tasks; the high level controller, designated as applications manager, performs high...

  17. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  18. A power flow mode theory based on a system's damping distribution and power flow design approaches

    OpenAIRE

    Xiong, Ye-Ping; Xing, J. T.; Price, W.G.

    2005-01-01

    A power flow mode theory is developed to describe the natural power flow behaviour of a dynamic system based on its inherent damping distribution. The system's characteristic-damping matrix is constructed and it is shown that the eigenvalues and eigenvectors of this matrix identify natural power flow characteristics. These eigenvectors, or power flow mode vectors, are chosen as a set of base-vectors spanning the power flow space and completely describe the power flow in the system. The genera...

  19. Major dealers' expert power in distribution channels

    National Research Council Canada - National Science Library

    Richard Chinomona; Marius Pretorius

    2011-01-01

    The importance of major dealers’ expertise in distribution channels and effects on exchange relations is widely acknowledged by many SMEs in Africa and yet there seem to be a paucity of research on this matter...

  20. Parallel and distributed processing: applications to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Felix; Murphy, Liam [California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1994-12-31

    Applications of parallel and distributed processing to power systems problems are still in the early stages. Rapid progress in computing and communications promises a revolutionary increase in the capacity of distributed processing systems. In this paper, the state-of-the art in distributed processing technology and applications is reviewed and future trends are discussed. (author) 14 refs.,1 tab.

  1. Wind Farms’ Spatial Distribution Effect on Power System Reserves Requirements

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    The wind power development during last millennium was typically based on small wind turbines dispersed over large areas, leading to a significant smoothing of the wind power fluctuations in a power system balancing area. The present development goes towards much larger wind farms, concentrated...... in smaller areas, which causes the total wind power fluctuations in power system areas to increase significantly. The impact of future large wind farms spatial distribution with respect to the power system reserve requirements is analyzed in this paper. For this purpose, Correlated Wind (CorWind) power time...... series simulation model developed to simulate wind power variability over a large area is used. As a study case, two scenarios for short term offshore wind power development in the West Danish power system region are used. The first scenario assumes that all the wind farms are built in the region...

  2. Sliding mode active and reactive power decoupled control for Distributed Power Flow Controllers

    OpenAIRE

    Martins, I m; Silva, F. A.; Pinto, S. F.; Martins, I. E.

    2014-01-01

    Unified Power Flow Controllers (UPFC) are one of the most useful Flexible AC Transmission Systems (FACTS). They can be used for power flow control in AC transmission grids, allowing simultaneous control of the bus voltage and line active and reactive power. However, due to high costs and reliability concerns, UPFCs have experimented limited use in such applications. Recently, the concepts of Distributed FACTS (DFACTS) and Distributed Power Flow Controller (DPFC) have been introduced as a low ...

  3. Optimal Output of Distributed Generation Based On Complex Power Increment

    Science.gov (United States)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  4. Power-aware applications for scientific cluster and distributed computing

    CERN Document Server

    Abdurachmanov, David; Eulisse, Giulio; Grosso, Paola; Hillegas, Curtis; Holzman, Burt; Klous, Sander; Knight, Robert; Muzaffar, Shahzad

    2014-01-01

    The aggregate power use of computing hardware is an important cost factor in scientific cluster and distributed computing systems. The Worldwide LHC Computing Grid (WLCG) is a major example of such a distributed computing system, used primarily for high throughput computing (HTC) applications. It has a computing capacity and power consumption rivaling that of the largest supercomputers. The computing capacity required from this system is also expected to grow over the next decade. Optimizing the power utilization and cost of such systems is thus of great interest. A number of trends currently underway will provide new opportunities for power-aware optimizations. We discuss how power-aware software applications and scheduling might be used to reduce power consumption, both as autonomous entities and as part of a (globally) distributed system. As concrete examples of computing centers we provide information on the large HEP-focused Tier-1 at FNAL, and the Tigress High Performance Computing Center at Princeton U...

  5. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  6. Toward sustainable energy development in the Indian power sector: A critique of fifty years of power development in India and an analysis of sustainable energy alternatives

    Science.gov (United States)

    Govindarajalu, Chandrasekhar

    At present, the Indian electric power sector (EPS) finds itself in a "triple bind," plagued by a severe resource crunch, adverse environmental impacts and unequal social access to energy services, and a poor record of technical performance in generation and distribution of electricity. The problems of the EPS are seen in this dissertation as manifestations of a larger crisis of unsustainable energy development, rooted in the political economy of power development in India. A theoretical framework is articulated based on a political economy approach constructed for this dissertation. The political economy framework is comprised of three elements: a materialization thesis that describes the core social relations in support of a specific political and economic structure; an institutionalization thesis that describes how these material relations are reproduced; and an ideology thesis which argues that a pervasive ideology exists making intelligible the existence of a particular form of political economy. From the vantage-point of this framework, and through a detailed examination of the political history of the power sector in India, the crisis in the Indian power sector is linked to the contradictions of what is termed as the "conventional model of energy development" (CMED) embraced by Indian planners at the time of independence. It is argued that the crisis in the EPS is caused by the intensive bureaucratization and technicization of the system, all but removing it from social and environmental evaluation. Current policy prescriptions for the Indian EPS, both Western as well as domestic, call for further strengthening the technocratic construct of the EPS. Privatization and restructuring experiments, underway in India, rather than breaking away from the existing approach, actually deepen the institutional hold of the CMED. Sustainable energy development (SED) is examined as an alternative to the CMED. The meaning and relevance of this concept in the context of the

  7. Cow power : stepping stones towards sustainable livestock husbandry

    NARCIS (Netherlands)

    Bos, A.P.; Cornelissen, J.M.R.; Groot Koerkamp, P.W.G.

    2009-01-01

    Realising sustainable livestock husbandry is a practical quest in the end. Many parties and initiatives are already aiming at sustainability in dairy husbandry. In interaction with livestock farmers, trade and industry, and policy makers, the Animal Sciences Group of Wageningen UR has produced

  8. Statistical analyses support power law distributions found in neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Andreas Klaus

    Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  9. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-04-01

    Full Text Available China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts of renewable energy power accessing the power grid for multiple stakeholders in the electric power system were analyzed. Secondly, the external benefit evaluation index system for renewable energy power was built from the economic, social and environmental factors, based on the concept of sustainability. Then, the basic theory of the hybrid MCDM method employed in this paper was introduced in two parts: the superiority linguistic ratings and entropy weighting method for index weight determination and the fuzzy grey relation analysis for ranking alternatives. Finally, the external benefits of wind power, solar PV power and biomass power were evaluated. Taking a regional electric power system as an example, the results show that PV power has the greatest external benefit, followed by wind power and biomass power. Therefore, more policies supporting PV power should be put in place to promote the harmonious and sustainable development of the whole renewable energy power industry.

  10. Power in Transition: Empowering Discourses on Sustainability Transitions

    NARCIS (Netherlands)

    F. Avelino (Flor)

    2011-01-01

    textabstractThis is a book about power and transformative change. It explores how groups of people who are trying to transform the mobility system are affected by notions of change and power, and how they deal with the dilemmas of power. Academic literature on power and transitions offers concepts

  11. Voltage Control in Distribution Systems Considered Reactive Power Output Sharing

    Science.gov (United States)

    Oshiro, Masato; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu; Funabashi, Toshihisa

    In recent years, distributed generation (DG) and renewable energy source (RES) are attracting special attention to distribution systems. Renewable energy such as photovoltaic (PV) system and wind turbine generator are used as a source of clean energy. However, the large amount of distributed generation causes voltage deviation beyond a statutory range in distribution systems. This paper proposes a methodology for voltage control by using inverters interfaced with DG and tap changing transformers. In the proposed method a one-day schedule of voltage references for the control devices are determined by an optimization technique based on predicted values of load demand and PV power generation. Furthermore, decided reactive power output according to the locally measurable voltage based on droop characteristic. Slope and base value on droop characteristic are selected by fuzzy control. The proposed method accomplishes improvement against voltage distribution considered the reactive power output sharing and reduction of distribution loss. The effectiveness of the proposed method is verified by using MATLAB®.

  12. High-power CSI-fed induction motor drive with optimal power distribution based control

    Science.gov (United States)

    Kwak, S.-S.

    2011-11-01

    In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM-VSI) and capacitors. Due to the PWM-VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM-VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM-VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.

  13. Power Quality Investigation of Distribution Networks Embedded Wind Turbines

    Directory of Open Access Journals (Sweden)

    A. Elsherif

    2016-01-01

    Full Text Available In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG. The expansion of the distributed generators- (DGs- based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.

  14. Projective Power Entropy and Maximum Tsallis Entropy Distributions

    Directory of Open Access Journals (Sweden)

    Shinto Eguchi

    2011-09-01

    Full Text Available We discuss a one-parameter family of generalized cross entropy between two distributions with the power index, called the projective power entropy. The cross entropy is essentially reduced to the Tsallis entropy if two distributions are taken to be equal. Statistical and probabilistic properties associated with the projective power entropy are extensively investigated including a characterization problem of which conditions uniquely determine the projective power entropy up to the power index. A close relation of the entropy with the Lebesgue space Lp and the dual Lq is explored, in which the escort distribution associates with an interesting property. When we consider maximum Tsallis entropy distributions under the constraints of the mean vector and variance matrix, the model becomes a multivariate q-Gaussian model with elliptical contours, including a Gaussian and t-distribution model. We discuss the statistical estimation by minimization of the empirical loss associated with the projective power entropy. It is shown that the minimum loss estimator for the mean vector and variance matrix under the maximum entropy model are the sample mean vector and the sample variance matrix. The escort distribution of the maximum entropy distribution plays the key role for the derivation.

  15. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components......, and damps the possible harmonic resonance. Simulation results demonstrate that the converter system can transfer the real power by following a desired reference power for a variable speed wind power conversion system to effectively extract the renewable energy and also enhance the power quality...

  16. Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2014-01-01

    Full Text Available With the growing worldwide awareness of environmental protection and sustainable development, green purchasing has become an important issue for companies to gain environmental and developmental sustainability. Thermal power is the main power generation form in China, and the green supplier selection is essential to the smooth and sustainable construction of thermal power plants. Therefore, selecting the proper green supplier of thermal power equipment is very important to the company’s sustainable development and the sustainability of China’s electric power industry. In this paper, a hybrid fuzzy multi-attribute decision making approach (fuzzy entropy-TOPSIS is proposed for selecting the best green supplier. The fuzzy set theory is applied to translate the linguistic preferences into triangular fuzzy numbers. The subjective criteria weights are determined by using decision makers’ superiority linguistic ratings and the objective ones are determined by combining the superiority linguistic ratings and fuzzy-entropy weighting method. The fuzzy TOPSIS is employed to generate an overall performance score for each green supplier. An empirical green supplier selection is conducted to illustrate the effectiveness of this proposed fuzzy entropy-TOPSIS approach. This proposed fuzzy entropy-TOPSIS approach can select the proper green supplier of thermal power equipment, which contributes to promoting the company’s sustainable development and the sustainability of China’s electric power industry to some extent.

  17. Stochastic invertible mappings between power law and Gaussian probability distributions

    OpenAIRE

    Vignat, C.; Plastino, A.

    2005-01-01

    We construct "stochastic mappings" between power law probability distributions (PD's) and Gaussian ones. To a given vector $N$, Gaussian distributed (respectively $Z$, exponentially distributed), one can associate a vector $X$, "power law distributed", by multiplying $X$ by a random scalar variable $a$, $N= a X$. This mapping is "invertible": one can go via multiplication by another random variable $b$ from $X$ to $N$ (resp. from $X$ to $Z$), i.e., $X=b N$ (resp. $X=b Z$). Note that all the a...

  18. Power Capability in Low Voltage DC Distribution Systems

    Directory of Open Access Journals (Sweden)

    C.O. Gecan

    2009-12-01

    Full Text Available Recent developments in power electronics components enable the use of power electronics in Low Voltage (LV networks. This development makes the model of a Low Voltage Direct Current (LVDC distribution system possible. The technical and economical benefits of this technology make possible the alternative hypothesis of using DC instead of AC distribution systems. Some aspects, such as increasing the capability of the existing lines, interconnecting distributed generation units and even supplying in DC some loads are creating additional requirements of using a LVDC distribution system. The paper presents some general considerations regarding cables used in a LVAC distribution system and different line reconfigurations witch enable the use of cobles in a LVDC distribution system. The reconfigurations are presented in respect of the DC network topologies: unipolar and bipolar. The central aim of this paper is to investigate capability of power transmission and to calculate the transmission distance for cables used in Low Voltage AC and DC distribution systems. Capability computation is considered in respect of two constrains imposed in the cables cross section selection: cable thermal limit and the maximum allowable voltage drop. Cable thermal limit is represented in calculations by the maximum rated current. The equations used to calculate the power capability are presented for single-phase and threephase AC networks and unipolar and bipolar DC networks. Based on these equations, comparisons between power capability of cables with different cross sections used in Low Voltage DC and AC distribution systems are realized and presented.

  19. Communication Systems and Study Method for Active Distribution Power systems

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    Due to the involvement and evolvement of communication technologies in contemporary power systems, the applications of modern communication technologies in distribution power system are becoming increasingly important. In this paper, the International Organization for Standardization (ISO......) reference seven-layer model of communication systems, and the main communication technologies and protocols on each corresponding layer are introduced. Some newly developed communication techniques, like Ethernet, are discussed with reference to the possible applications in distributed power system....... The suitability of the communication technology to the distribution power system with active renewable energy based generation units is discussed. Subsequently the typical possible communication systems are studied by simulation. In this paper, a novel method of integrating communication system impact into power...

  20. Power laws in citation distributions: evidence from Scopus.

    Science.gov (United States)

    Brzezinski, Michal

    Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.

  1. Functional Study of A Distributed MPPT Power Management System

    Directory of Open Access Journals (Sweden)

    Bifaretti S.

    2017-01-01

    Full Text Available This paper presents the concept of a control strategy for Solar Array (SA power regulation using an independent Maximum Power Point Tracking system for each Solar Array section in order to maximize the power extracted from every SA sections. Moreover, it allows to distribute the battery charge current between the power sources in order to evenly divide the switching losses on the power semiconductors of the converters and, thus, extending their life time and to reduce the dissipation power. The proposed strategy can be applied to the Power Control Unit designed for satellites with unregulated power bus architecture. Significant simulation results, obtained using a Matlab/Simulink model, demonstrates the validity of the proposed approach.

  2. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  3. Grounding, Shielding and Power Distribution for the LHCb Silicon Tracking

    CERN Document Server

    Bauer, C; Frei, R; Straumann, U; Vázquez, P; Vollhardt, A

    2005-01-01

    This note lists the relevant items for power and grounding, it explains the sensitive detector input signal circuits and describes the grounding, power distribution and line filtering measures applied to each of the electrical units of the LHCb silicon tracking system. This note deals with both silicon sub-projects, the Inner Tracker (IT) and the Trigger Tracker (TT).

  4. Controlling electrical power losses in transmission and distribution ...

    African Journals Online (AJOL)

    ... undertaking regular energy audit and implementing pre-paid meter-ing systems. The policies on deterring energy theft, meter tampering, fully accounting for energy generated and distributed and strategic marketing of power should be enforced. The re-branding of the Power Holding Comp-pany of Nigeria for satisfactory ...

  5. Technological, economic and sustainability evaluation of power plants using the analytic hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2009-03-15

    Complexity of power plant evaluation is steadily rising, as more criteria are involved in the overall assessment while evaluation data change rapidly. Apart from evaluating several aspects of power plants separately, a multicriteria analysis based on hierarchically structured criteria is necessary, so as to address the overall assessment of power plants according to the technological, economic and sustainability aspects. For this reason, in this paper, ten types of power plant are evaluated using nine end node criteria properly structured under the Analytical Hierarchy Process. Moreover, pairwise comparisons allow for accurate subjective criteria weighting. According to the scenario based on the subjective criteria weighting, emphasis is laid on sustainability driving renewable energy power plants at the top of the overall ranking, while nuclear and fossil fuel power plants rank in the last five positions. End node criteria contribution to each power plant and power plant performance per end node criterion is presented for all types of power plant and end node criteria. (author)

  6. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    Science.gov (United States)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  7. A generalization of the power law distribution with nonlinear exponent

    Science.gov (United States)

    Prieto, Faustino; Sarabia, José María

    2017-01-01

    The power law distribution is usually used to fit data in the upper tail of the distribution. However, commonly it is not valid to model data in all the range. In this paper, we present a new family of distributions, the so-called Generalized Power Law (GPL), which can be useful for modeling data in all the range and possess power law tails. To do that, we model the exponent of the power law using a non-linear function which depends on data and two parameters. Then, we provide some basic properties and some specific models of that new family of distributions. After that, we study a relevant model of the family, with special emphasis on the quantile and hazard functions, and the corresponding estimation and testing methods. Finally, as an empirical evidence, we study how the debt is distributed across municipalities in Spain. We check that power law model is only valid in the upper tail; we show analytically and graphically the competence of the new model with municipal debt data in the whole range; and we compare the new distribution with other well-known distributions including the Lognormal, the Generalized Pareto, the Fisk, the Burr type XII and the Dagum models.

  8. A Novel Frequency Communication Technology in Power Distribution Communication Network

    OpenAIRE

    Li Ying-Jun

    2017-01-01

    With the expansion of the power terminal access network scale, the main road corridor resources, branch line cable Laying difficulties has become an important factor restricting the construction of the network. In this paper, we focus on the frequency communication technology in power distribution communication network, and design a novel technology in communication mode, error correcting coding and data transfer frame format. We also discuss the influence of voltage phase difference on power...

  9. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been ...

  10. Power corrections and renormalons in Transverse Momentum Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Scimemi, Ignazio [Departamento de Física Teórica II, Universidad Complutense de Madrid,Ciudad Universitaria, 28040 Madrid (Spain); Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)

    2017-03-01

    We study the power corrections to Transverse Momentum Distributions (TMDs) by analyzing renormalon divergences of the perturbative series. The renormalon divergences arise independently in two constituents of TMDs: the rapidity evolution kernel and the small-b matching coefficient. The renormalon contributions (and consequently power corrections and non-perturbative corrections to the related cross sections) have a non-trivial dependence on the Bjorken variable and the transverse distance. We discuss the consistency requirements for power corrections for TMDs and suggest inputs for the TMD phenomenology in accordance with this study. Both unpolarized quark TMD parton distribution function and fragmentation function are considered.

  11. Assessing Sustainability Transition in the US Electrical Power System

    Directory of Open Access Journals (Sweden)

    Stephen McCauley

    2010-02-01

    Full Text Available This paper examines sustainability transition dynamics in the US electricity system, drawing on the socio-technical systems approach. We view system change as unfolding along several critical dimensions and geographical scales, including dynamics in the environment, science, civil society, discourse, and state regulatory institutions, as well as in capital and technology formations. A particular emphasis is given to the interaction of discourses, policy networks, and institutions. We trace four distinct regimes which have characterized the evolution of this discourse-network-institutional nexus over the last century. The research examines dynamics that present a challenge to the incumbent energy regime based on fossil fuels, nuclear and hydropower, and demonstrates how the actor-network supporting renewables and energy efficiency has grown stronger and more capable of moving toward a sustainability transition than at any time since the sustainable energy movement began a generation ago.

  12. Agent Based Control of Electric Power Systems with Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad

    Distributed generation, decentralized and local control, self organization and autonomy are evident trends of today's electric power systems focusing on innovative control architectures such as MicroGrids, Virtual Power Plants, Cell based systems, plug-in electric vehicles and real time markets...... have been developed particularly in the area of communication and distributed control. Electric power industry is eager to explore, evaluate and adopt these new advancements in ICT for improving its current practices of automation and control in order to cope with above mentioned challenges....... This thesis focuses on making a systematic evaluation of using intelligent software agent technology for control of electric power systems with high penetration of distributed generation. The thesis is based upon a requirement driven approach. It starts with investigating new trends and challenges in Electric...

  13. Sustainability Assessment of Power Generation Systems by Applying Exergy Analysis and LCA Methods

    NARCIS (Netherlands)

    Stougie, L.; van der Kooi, H.J.; Valero Delgado, A.

    2015-01-01

    The selection of power generation systems is important when striving for a more sustainable society. However, the results of environmental, economic and social sustainability assessments are subject to new insights into the calculation methods and to changing needs, economic conditions and societal

  14. Nuclear Power and Sustainable Energy Policy : Promises and Perils

    OpenAIRE

    Kessides, Ioannis N.

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  15. Nuclear Power and Sustainable Energy Policy: Promises and Perils

    OpenAIRE

    Kessides, Ioannis N.

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  16. STUDY ON THE OPERATION OF THE THERMOELECTRIC POWER PLANTS IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Cristinel RACOCEANU

    2017-12-01

    Full Text Available This paper presents a case study on the technical measures applied in the thermoelectric power plants in order to achieve an ecological functioning. Sustainable development implies the adaptation of Romanian thermoelectric power plants to the European Union requirements for environmental protection. The results of the experimental measurements of the thermoelectric power plant pollutants, which comprise 330 MW energy groups, are presented. There are presented the technical measures that lead to the sustainable development of the Romanian thermal power plants, the influence of the energy efficiency of the steam boiler of the 330 MW energy group on the environment.

  17. Remediation Optimization and Sustainability: Wind Turbine on Cape Cod to Power Groundwater Remediation Systems

    Science.gov (United States)

    2009-05-04

    1 Mr. Jon Davis, P.E. Program Manager May 4, 2009 Remediation Optimization and Sustainability: Wind Turbine on Cape Cod to Power Groundwater...Sustainability: Wind Turbine on Cape Cod to Power Groundwater Remediation Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Std Z39-18 2 Outline  Brief Background  Program Consumption/Emissions  Small Scale Initiatives  Wind Turbine 3 Massachusetts Vineyard Sound Cape

  18. Nuclear power and sustainable energy supply for Europe; Kernenergie im Kontext einer nachhaltigen Energieversorgung fuer Europa

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, W. [Commission of the European Communities, Brussels (Belgium)

    2005-07-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  19. Education as a Global "Soft Power" for Sustainable Development

    Science.gov (United States)

    Sayamov, Yury Nikolayevich

    2013-01-01

    Purpose: The purpose of this paper is to analyse various aspects of education for sustainable development (ESD) drawing attention to the approaching end of the UN Decade on ESD (DESD) in 2014 and to the necessity of the continuation of ESD activities. Defining the internationalisation of education as an ever more significant part of globalisation,…

  20. An Effective Distributed Model for Power System Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    MUTHU, B. M.

    2011-08-01

    Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.

  1. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    OpenAIRE

    Huiru Zhao; Sen Guo

    2015-01-01

    China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts o...

  2. Optimal Operation of Energy Storage in Power Transmission and Distribution

    Science.gov (United States)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  3. High-Efficiency Solar-Powered 3-D Printers for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT, has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic (PV-powered mobile systems have been developed, but recent improvements in novel delta-style 3-D printer designs allows for reduced costs and improved performance. This study builds on these innovations to develop and experimentally validate a mobile solar-PV-powered delta 3-D printer system. It is designed to run the RepRap 3-D printer regardless of solar flux. The electrical system design is tested outdoors for operating conditions: (1 PV charging battery and running 3-D printer; (2 printing under low insolation; (3 battery powering the 3-D printer alone; (4 PV charging the battery only; and (5 battery fully charged with PV-powered 3-D printing. The results show the system performed as required under all conditions providing feasibility for adoption in off-grid rural communities. 3-D printers powered by affordable mobile PV solar systems have a great potential to reduce poverty through employment creation, as well as ensuring a constant supply of scarce products for isolated communities.

  4. Power-law tails in the distribution of order imbalance

    Science.gov (United States)

    Zhang, Ting; Gu, Gao-Feng; Xu, Hai-Chuan; Xiong, Xiong; Chen, Wei; Zhou, Wei-Xing

    2017-10-01

    We investigate the probability distribution of order imbalance calculated from the order flow data of 43 Chinese stocks traded on the Shenzhen Stock Exchange. Two definitions of order imbalance are considered based on the order number and the order size. We find that the order imbalance distributions of individual stocks have power-law tails. However, the tail index fluctuates remarkably from stock to stock. We also investigate the distributions of aggregated order imbalance of all stocks at different timescales Δt. We find no clear trend in the tail index with respect Δt. All the analyses suggest that the distributions of order imbalance are asymmetric.

  5. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  6. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  7. Experimental muscle pain changes the spatial distribution of upper trapezius muscle activity during sustained contraction.

    Science.gov (United States)

    Madeleine, Pascal; Leclerc, Fredéric; Arendt-Nielsen, Lars; Ravier, Philippe; Farina, Dario

    2006-11-01

    To investigate the effect of local excitation of nociceptive muscle afferents on the spatial distribution of muscle activity. Surface electromyographic (EMG) signals were recorded from the upper trapezius muscle of 10 healthy volunteers with a 5 x 13 electrode grid during 90-s isometric contractions before, during, 15 and 30 min after intramuscular injection of hypertonic (painful) or isotonic (non-painful) saline. From the multi-channel EMG recordings, two-dimensional maps of root mean square and mean power frequency were obtained. The centre of gravity of the root mean square map was used to quantify global changes in the spatial distribution of muscle activity. During sustained contractions, average root mean square increased, average mean frequency decreased and the centre of gravity moved cranially. During experimental muscle pain, compared to before injection, the average root mean square decreased and there was a caudal shift of the centre of gravity. Fifteen minutes after the painful injection the centre of gravity returned to its original position. Short-term dynamic reorganization of the spatial distribution of muscle activity occurred in response to nociceptive afferent input. The study furnishes an extension of the pain adaptation model indicating heterogeneous inhibition of muscle activity.

  8. Distributed Reactive Power Control based Conservation Voltage Reduction in Active Distribution Systems

    Directory of Open Access Journals (Sweden)

    EMIROGLU, S.

    2017-11-01

    Full Text Available This paper proposes a distributed reactive power control based approach to deploy Volt/VAr optimization (VVO / Conservation Voltage Reduction (CVR algorithm in a distribution network with distributed generations (DG units and distribution static synchronous compensators (D-STATCOM. A three-phase VVO/CVR problem is formulated and the reactive power references of D-STATCOMs and DGs are determined in a distributed way by decomposing the VVO/CVR problem into voltage and reactive power control. The main purpose is to determine the coordination between voltage regulator (VR and reactive power sources (Capacitors, D-STATCOMs and DGs based on VVO/CVR. The study shows that the reactive power injection capability of DG units may play an important role in VVO/CVR. In addition, it is shown that the coordination of VR and reactive power sources does not only save more energy and power but also reduces the power losses. Moreover, the proposed VVO/CVR algorithm reduces the computational burden and finds fast solutions. To illustrate the effectiveness of the proposed method, the VVO/CVR is performed on the IEEE 13-node test system feeder considering unbalanced loading and line configurations. The tests are performed taking the practical voltage-dependent load modeling and different customer types into consideration to improve accuracy.

  9. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

    Science.gov (United States)

    Mitra, Parag

    The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

  10. Procedure for determining maximum sustainable power generated by microbial fuel cells.

    Science.gov (United States)

    Menicucci, Joseph; Beyenal, Haluk; Marsili, Enrico; Veluchamy, Raajaraajan Angathevar; Demir, Goksel; Lewandowski, Zbigniew

    2006-02-01

    Power generated by microbial fuel cells is computed as a product of current passing through an external resistor and voltage drop across this resistor. If the applied resistance is very low, then high instantaneous power generated by the cell is measured, which is not sustainable; the cell cannot deliver that much power for long periods of time. Since using small electrical resistors leads to erroneous assessment of the capabilities of microbial fuel cells, a question arises: what resistor should be used in such measurements? To address this question, we have defined the sustainable power as the steady state of power delivery by a microbial fuel cell under a given set of conditions and the maximum sustainable power as the highest sustainable power that a microbial fuel cell can deliver under a given set of conditions. Selecting the external resistance that is associated with the maximum sustainable power in a microbial fuel cell (MFC) is difficult because the operator has limited influence on the main factors that control power generation: the rate of charge transfer at the current-limiting electrode and the potential established across the fuel cell. The internal electrical resistance of microbial fuel cells varies, and it depends on the operational conditions of the fuel cell. We have designed an empirical procedure to predict the maximum sustainable power that can be generated by a microbial fuel cell operated under a given set of conditions. Following the procedure, we change the external resistors incrementally, in steps of 500 omega every 10, 60, or 180 s and measure the anode potential, the cathode potential, and the cell current. Power generated in the microbial fuel cell that we were using was limited by the anodic current. The anodic potential was used to determine the condition where the maximum sustainable power is obtained. The procedure is simple, microbial fuel cells can be characterized within an hour, and the results of the measurements can serve

  11. Operation of Modern Distribution Power Systems in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao

    , DG units, loads and electricity price are studied. Further, the effect of energy storage systems will be considered, and an optimal operation strategy for energy storage devices in a large scale wind power system in the electricity market is proposed. The western Danish power system, which has large...... maximum profit of the BESS is proposed. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studied. Optimal operation strategies of PEV in the spot market are then proposed in order to decrease the energy cost for PEV owners. Furthermore......In this dissertation, the characteristics of a distribution system under a dynamic electricity-pricing, load management system and under a large number of power electronic interfaced distributed generation units are investigated. The operation characteristics of a power system with wind turbines...

  12. Radiated power distributions in impurity-seeded plasmas in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, T., E-mail: morisaki@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Nagoya 464-8602 (Japan); Oyama, K. [Nagoya University, Nagoya 464-8602 (Japan); Tamura, N.; Masuzaki, S.; Akiyama, T.; Motojima, G.; Miyazawa, J.; Peterson, B.J. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ohno, N. [Nagoya University, Nagoya 464-8602 (Japan); Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-08-15

    In LHD, impurity seeding has been performed to enhance the radiative cooling in the edge region. Neon, nitrogen and argon were seeded by gas puffing, and the behaviour of those impurities in the plasma was investigated with the innovative diagnostic method. Two bolometer arrays were used to measure the two-dimensional radiated power distribution. Using the tomographic technique, radiated power distributions on a poloidal plane can be obtained with the high time resolution. During the discharge with neon puff, considerable radiation from the core region was observed, in addition to the strong edge radiation. In spite of the highly radiated power, plasma did not result in the radiation collapse. On the other hand, in the nitrogen-seeded discharge, the strong radiation only from the peripheral region was observed. Different time evolutions of the total radiated power between neon and nitrogen seeded discharges were observed after stopping each impurity puff.

  13. Designing sustainable production and distribution scenarios for the beef and pork supply chains in Brazil

    NARCIS (Netherlands)

    Dondè, Giulia; Trienekens, Jacques; Bloemhof-Ruwaard, Jacqueline

    2016-01-01

    Due to the intensive use of natural resources in food production in Brazil and the consequent air and water pollution, sustainable production is high on the agenda of businesses and policy makers. This paper designs sustainable production and distribution scenarios for the beef and pork supply

  14. Silicon Carbide Based Power Mangement and Distribution for Space Nuclear Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard, 100's kWe power management and distribution (PMAD) system for space nuclear...

  15. Proposal of an Innovative Electric Power Distribution System based on Packet Power Transactions

    Science.gov (United States)

    Inoue, Jun; Fujii, Yasumasa

    Recently, the introduction of decentralized generators, such as photovoltaic power generations, has been promoted rapidly. In the future, extensive use of PV is thought to give rise to the daytime surplus electricity, and a household will manage the surplus electricity rationally. The purpose of this research is to propose an innovative electric power distribution system based on packet power transactions. First, this paper explains distributed markets of which the price can easily reflect the geographical diversity of renewable energy availability and load curve characteristic within the local area. Second, this paper exemplifies the specific electronic circuit that makes pulse-shaped power transmission to develop the packet power distribution system. Finally, this paper shows the results of multi-agent simulations of electricity trading to evaluate the usefulness of the proposed system.

  16. A test to assess the mechanical power sustainable during everyday activities in older people.

    Science.gov (United States)

    Capodaglio, Edda Maria; Saibene, Franco

    2003-01-01

    to define with a simple test the power sustainable by older people during everyday occupations. nine healthy subjects (65-71 years) performed two series of 5-6 trials on bicycle and arm ergometers at constant power. Throughout the exercise they reported their evaluation of the effort, referred either to perceived whole body exertion or to the working muscles, using Borg's category-ratio, CR10, scale. The exercise was interrupted when CR7 was attained. From a linear regression of the individual data of the work done from the start of each trial to the transition from CR4 to CR5, corresponding to 'somewhat heavy' and 'heavy', and the corresponding duration it was possible to calculate the slope of the work/time relationship. This was considered as the value of power sustainable for leg or arm muscles. on average the sustainable power for the work done on the bicycle ergometer represented 55% of the maximal mechanical power. During the control trial on the bicycle ergometer at a power corresponding to their sustainable power the subjects were able to exercise for 30 min without symptoms of fatigue or discomfort, with an average CR of 3. The average heart rate was 114 bpm and the blood lactate concentration at the end of the exercise was always lower than 4 mmol/l. Sustainable power calculated for the arm muscles was about one quarter that of the leg muscles, but all subjects reported the evaluation of the effort as more difficult. the determination of power sustainable for the leg muscles with this simple test appears reliable and accurate.

  17. Electrical Power Distribution and Control Modeling and Analysis

    Science.gov (United States)

    Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.

    2001-01-01

    This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.

  18. System-wide power management control via clock distribution network

    Science.gov (United States)

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  19. Dutch Logistics Service Providers and Sustainable Physical Distribution: Searching for Focus

    NARCIS (Netherlands)

    Pieters, R.; Glöckner, H.H.; Omta, S.W.F.; Weijers, S.

    2012-01-01

    As environmental concerns becoming increasingly important to logistics service providers, the question arises as to how they can achieve sustainable physical distribution practices while surviving the severe competition in freight transport. This issue is further complicated by the pressures from

  20. Dutch logistics service providers and sustainable physical distribution : Searching for focus

    NARCIS (Netherlands)

    Onno Omta; Hans-Heinrich Glöckner; Reinder Pieters; Stef Weijers

    2013-01-01

    As environmental concerns becoming increasingly important to logistics service providers, the question arises as to how they can achieve sustainable physical distribution practices while surviving the severe competition in freight transport. This issue is further complicated by the pressures from

  1. Dutch Logistics Service Providers and Sustainable Physical Distribution: Searching for Focus

    NARCIS (Netherlands)

    Pieters, R.; Glöckner, H.H.; Omta, S.W.F.; Weijers, S.

    2013-01-01

    As environmental concerns becoming increasingly important to logistics service providers, the question arises as to how they can achieve sustainable physical distribution practices while surviving the severe competition in freight transport. This issue is further complicated by the pressures from

  2. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kyri; Dall' Anese, Emiliano; Summers, Tyler

    2016-09-01

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.

  3. Multi-Functional Distributed Generation Unit for Power Quality Enhancement

    DEFF Research Database (Denmark)

    Zeng, Zheng; Yang, Huan; Guerrero, Josep M.

    2015-01-01

    A multi-functional distributed generation unit (MFDGU) and its control strategy are proposed in this paper for the purpose of enhancing power quality in low-voltage networks. By using the 3H-bridge converter structure, an MFDGU can be applied in 3-phase 4-wire low-voltage distribution networks to...... reference of the MFDGU, which can be easily implemented in three-phase networks. A 15kVA prototype consisting of three full bridge converters has been built and tested. Experimental results show the feasibility of the proposed topology and control strategy.......A multi-functional distributed generation unit (MFDGU) and its control strategy are proposed in this paper for the purpose of enhancing power quality in low-voltage networks. By using the 3H-bridge converter structure, an MFDGU can be applied in 3-phase 4-wire low-voltage distribution networks...

  4. Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power

    DEFF Research Database (Denmark)

    Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...

  5. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation......This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....

  6. Site selection of active damper for stabilizing power electronics based power distribution system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    Stability in the nowadays distribution power system is endangered by interaction problems that may arise from newly added power-electronics based power devices. Recently, a new concept to deal with this higher frequency instability, the active damper, has been proposed. The active damper is a power...... point when the system has many nodes. Therefore, this paper addresses the proper placement of an active damper in an unstable small-scale power distribution system. A time-domain model of the Cigre benchmark low-vltage network is used as a test field. The result shows the active damper location...... is important for stabilizing the overall network and the active damper should be placed near to the problematic power devices. Finally, the unstable network with five inverters is able to obtain stability by adopting an active damper to the place where its ability becomes the most effective....

  7. Power law distribution of dividends in horse races

    Science.gov (United States)

    Park, K.; Domany, E.

    2001-02-01

    We discovered that the distribution of dividends in Korean horse races follows a power law. A simple model of betting is proposed, which reproduces the observed distribution. The model provides a mechanism to arrive at the true underlying winning probabilities, which are initially unknown, in a self-organized collective fashion, through the dynamic process of betting. Numerical simulations yield excellent agreement with the empirical data.

  8. Distributed leadership: the uses and abuses of power

    OpenAIRE

    Lumby, Jacky

    2013-01-01

    In about a decade the theory of distributed leadership has moved from a tool to better understand the ecology of leadership to a widely prescribed practice. This article considers how to account for its spread and dominance and what purpose it serves. The concept offers an enticing suggestion of including more in leadership, and even sometimes including staff members equally. The resulting issues around distribution of power are largely ignored or referred to in passing; a kind of inclusivity...

  9. A Dual Method for Computing Power Transfer Distribution Factors

    OpenAIRE

    Ronellenfitsch, Henrik; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Power Transfer Distribution Factors (PTDFs) play a crucial role in power grid security analysis, planning, and redispatch. Fast calculation of the PTDFs is therefore of great importance. In this paper, we present a non-approximative dual method of computing PTDFs. It uses power flows along topological cycles of the network but still relies on simple matrix algebra. At the core, our method changes the size of the matrix that needs to be inverted to calculate the PTDFs from $N\\times N$, where $...

  10. Wind Power Forecasting Error Distributions: An International Comparison

    DEFF Research Database (Denmark)

    Hodge, Bri-Mathias; Lew, Debra; Milligan, Michael

    2012-01-01

    Wind power forecasting is essential for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that may occur is a critical factor for system operation functions, such as the setting of operating reserve...... levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations....

  11. Economic and Environmental Performance of Fashion Supply Chain: The Joint Effect of Power Structure and Sustainable Investment

    Directory of Open Access Journals (Sweden)

    Xiutian Shi

    2017-06-01

    Full Text Available Fashion supply chain members now search for trade-offs between sustainable investment and the related incentives, such as savings on environmental taxes and gains in incremental demands. To evaluate the economic and environmental performance of sustainable investment from a power perspective, we develop an analytical model to study a two-echelon sustainable supply chain consisting of one retailer and one manufacturer with three different power structures. We derive the optimal solutions for various cases associated with different supply chain power structures and sustainable investors. Though it is beneficial for both the manufacturer and retailer to make sustainable investment, they often utilize high power to gain economic benefit with less sustainable investment. Interestingly, the follower with less supply chain power has more incentive to make a sustainable effort to achieve a higher profit. The optimal amount of sustainable investment in the apparel manufacturer investment case is greater than that in the retailer investment case in most scenarios.

  12. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    Science.gov (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  13. The rising power of random distributed feedback fiber laser

    Science.gov (United States)

    Zhou, Pu; Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Huang, Long; Wu, Jian; Xiao, Hu; Leng, Jinyong

    2018-01-01

    Random distributed feedback fiber lasers (RDFFL) are now attracting more and more attentions for their unique cavity-free, mode-free and structural simplicity features and broadband application potentials in many fields, such as long distance sensing, speck free imaging, nonlinear frequency conversion as well as new pump source. In this talk, we will review the recent research progresses on high power RDFFLs. We have achieved (1) More than 400 W RDFFL with nearly Gaussian beam profile based on crucial employment of fiber mismatching architecture. (2) High power RDFFL with specialized optical property that include: high power narrow-band RDFFL, hundred-watt level linearly-polarized RDFFL, hundred-watt level high-order RDFFL. (3) Power enhancements of RDFFL to record kilowatt level are demonstrated with the aid of fiber master oscillator power amplifier (MOPA) with different pump schemes.

  14. Turby - sustainable urban wind power from the roof top

    NARCIS (Netherlands)

    Mertens, S.; Van Bussel, G.; Mols, B.

    2005-01-01

    If current trends are anything to go by, in future we will no longer produce all our electricity in large, central power stations. Small-scale local electricity generation will gain in importance. Sander Mertens, a post-doctoral student at TU Delft, developed the aerodynamic design of a wind turbine

  15. Supervision functions - Secure operation of sustainable power systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Zhang, Xinxin; Lind, Morten

    2013-01-01

    the power system operation state based on new stability and security parameters derived from PMUs measurement and coordinate the use of automatic and manual control actions. The coordination of the control action is based not only in the static indicators but also in the performance evaluation of control...

  16. Transforming Island power supply to sustainability. The example of Bonaire

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, M. [DIgSILENT GmbH (Germany); Burges, K. [Ecofys GmbH (Germany)

    2008-07-01

    Until 2015, the contribution of renewable energies to the overall electricity supply of the island of Bonaire shall increase to at least 50%, produced by a wind-diesel power plant, which is currently in a planning stage. For the longer term, there are plans to increase the share of renewable energies up to 100% by replacing the diesel (HFO) by locally produced bio diesel. At the same time, a very high power quality and reliability of supply standard is required for accommodating the expectations of the tourism industry. In 2007 Ecofys and DIgSILENT carried out extensive studies for the new wind-diesel power plant on the island of Bonaire for working out the basic design and for validating it against the required quality of supply requirements. This paper provides a general background of the new wind-diesel power plant for the island of Bonaire describes the basic design of the new plant and provides an overview of the modeling approaches and studies that have been carried out for design and impact analysis. This includes loss of load analysis, stability studies, harmonic studies and flicker impact assessment. (orig.)

  17. Energy indicators impact in multi-criteria sustainability analyse of thermal power plant unit

    Directory of Open Access Journals (Sweden)

    Škobalj Predrag D.

    2017-01-01

    Full Text Available This paper presents method for sustainability assessment of thermal power plant unit using multi-criteria analysis with aim to create base for business decision. Seven options of possible status of thermal power plant „Kolubara A” unit No. 2 with energy indicators of sustainable development were shown. Energy indicators of sustainable development consists of sets of resource preservation, economic, environmental, and social indicators. Sustainability assessment often fails to account for social influence on energy system. Considering to this, special focus will be on social indicators, their definition, forming, and impact on multi-criteria sustainability analysis. Analysis of quality of the selected options (energy systems in respect to sustainable development by compare of their general index of sustainability is presented. Methodology of multi-criteria analyse of thermal power plant unit can show decision makers how to find best available options when the social indicators impact is leading. The aim of this paper is to choose the criteria for the evaluation of the available options, determine the relative importance of specific criteria and present methodology of multi-criteria analysis in the decision-making process.

  18. Sustainable support for WLCG through the EGI distributed infrastructure

    Science.gov (United States)

    Antoni, Torsten; Bozic, Stefan; Reisser, Sabine

    2011-12-01

    Grid computing is now in a transition phase from development in research projects to routine usage in a sustainable infrastructure. This is mirrored in Europe by the transition from the series of EGEE projects to the European Grid Initiative (EGI). EGI aims at establishing a self-sustained grid infrastructure across Europe. The main building blocks of EGI are the national grid initiatives in the participating countries and a central coordinating institution (EGI.eu). The middleware used is provided by consortia outside of EGI. Also the user communities are organized separately from EGI. The transition to a self-sustained grid infrastructure is aided by the EGI-InSPIRE project, aiming at reducing the project-funding needed to run EGI over the course of its four year duration. Providing user support in this framework poses new technical and organisational challenges as it has to cross the boundaries of various projects and infrastructures. The EGI user support infrastructure is built around the Gobal Grid User Support system (GGUS) that was also the basis of user support in EGEE. Utmost care was taken that during the transition from EGEE to EGI support services which are already used in production were not perturbed. A year into the EGI-InSPIRE project, in this paper we would like to present the current status of the user support infrastructure provided by EGI for WLCG, new features that were needed to match the new infrastructure, issues and challenges that occurred during the transition and give an outlook on future plans and developments.

  19. Seasonal wave power distribution around the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.

    The ship reported wave data published in Indian Daily Weather Report were compiled for the period of 16 years from 1968 to 1983 for 5 degrees x 5 degrees grids around the Indian coast. The distribution of wave power potential during the three...

  20. Edge effect on the power law distribution of granular avalanches

    NARCIS (Netherlands)

    Lorincz-Nagy, K.; Wijngaarden, R.J.

    2007-01-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such

  1. A Numerical Simulation of Temperature Distribution and Power Loss ...

    African Journals Online (AJOL)

    A Numerical Simulation of Temperature Distribution and Power Loss of Slider Bearings Lubricated With Fluids Having Constant Viscosity. ... The stream wise pressure gradient, shear stresses and flow rate obtained from post processing of the finite element solution of the Reynolds equation act as inputs when the energy ...

  2. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  3. High Resolution PV Power Modeling for Distribution Circuit Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  4. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    . CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities......An energy supply based on 100% renewable energy in Denmark is the official goal for the Danish energy policy towards 2050. A smart energy system should be developed to integrate as much supply from fluctuating renewable sources and to utilise the scarce biomass resources as efficiently as possible...... are constructed to analyse how the different alternatives influences the energy system. The scenarios are analysed in the energy systems modelling tool EnergyPLAN both from a technical energy systems perspective and from a market economic analysis with focus on the electricity exchange potential of the scenarios...

  5. Energy cost saving strategies in distributed power networks

    Directory of Open Access Journals (Sweden)

    Tcheukam Alain

    2016-01-01

    Full Text Available In this paper we study energy cost saving strategies in power networks in presence of prosumers. Three tips are considered: (i distributed power network architecture, (ii peak energy shaving with the integration of prosumers’ contribution, (iii Electric vehicles self-charging by means of prosumers’ production. The proposed distributed power network architecture reduces significantly the transmission costs and can reduce significantly the global energy cost up to 42 percent. Different types of prosumer who use self-charging photovoltaic systems, are able to intelligently buy energy from, or sell it, to the power grid. Therein, prosumers interact in a distributed environment during the purchase or sale of electric power using a double auction with negotiation mechanism. Using a two-step combined learning and optimization scheme, each prosumer can learn its optimal bidding strategy and forecast its energy production, consumption and storage. Our simulation results, conducted for the region of Sicily in Italy, show that the integration of prosumers can reduce peak hour costs up to 19 percent and 6 percent for eligible prosumers with electric vehicles.

  6. RF-based power distribution system for optogenetic experiments

    Science.gov (United States)

    Filipek, Tomasz A.; Kasprowicz, Grzegorz H.

    2017-08-01

    In this paper, the wireless power distribution system for optogenetic experiment was demonstrated. The design and the analysis of the power transfer system development is described in details. The architecture is outlined in the context of performance requirements that had to be met. We show how to design a wireless power transfer system using resonant coupling circuits which consist of a number of receivers and one transmitter covering the entire cage area with a specific power density. The transmitter design with the full automated protection stage is described with detailed consideration of the specification and the construction of the transmitting loop antenna. In addition, the design of the receiver is described, including simplification of implementation and the minimization of the impact of component tolerances on the performance of the distribution system. The conducted analysis has been confirmed by calculations and measurement results. The presented distribution system was designed to provide 100 mW power supply to each of the ten possible receivers in a limited 490 x 350 mm cage space while using a single transmitter working at the coupling resonant frequency of 27 MHz.

  7. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  8. Electron beam machining using rotating and shaped beam power distribution

    Science.gov (United States)

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  9. Exploring empowerment in settings: mapping distributions of network power.

    Science.gov (United States)

    Neal, Jennifer Watling

    2014-06-01

    This paper brings together two trends in the empowerment literature-understanding empowerment in settings and understanding empowerment as relational-by examining what makes settings empowering from a social network perspective. Specifically, extending Neal and Neal's (Am J Community Psychol 48(3/4):157-167, 2011) conception of network power, an empowering setting is defined as one in which (1) actors have existing relationships that allow for the exchange of resources and (2) the distribution of network power among actors in the setting is roughly equal. The paper includes a description of how researchers can examine distributions of network power in settings. Next, this process is illustrated in both an abstract example and using empirical data on early adolescents' peer relationships in urban classrooms. Finally, implications for theory, methods, and intervention related to understanding empowering settings are explored.

  10. Reduction and power losses in transmission and distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, J.I.; Reed, J.H.; Reddoch, T.W.

    1988-08-30

    The very real power crisis in many developing countries calls for both innovativeness and efficiency in meeting the needs for electric power posed by social and economic development. One of the key elements in such a strategy is improving the efficiency of electricity transmission and distribution (in other words, reducing unnecessary losses in these parts of a power system). United Nations data, self-reported by individual countries, suggest that average losses in transmission and distribution systems across the region are about 13%. Other data, however, indicate that losses in many countries are on the order of 50% higher than the UN figures; for example, recent data suggest that losses in one country within the region are more than 30%. 22 refs., 8 figs., 3 tabs.

  11. A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Submodule Differential Power Processing

    Energy Technology Data Exchange (ETDEWEB)

    Qin, SB; Cady, ST; Dominguez-Garcia, AD; Pilawa-Podgurski, RCN

    2015-04-01

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented. The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.

  12. Interacting discrete Markov processes with power-law probability distributions

    Science.gov (United States)

    Ridley, Kevin D.; Jakeman, Eric

    2017-09-01

    During recent years there has been growing interest in the occurrence of long-tailed distributions, also known as heavy-tailed or fat-tailed distributions, which can exhibit power-law behaviour and often characterise physical systems that undergo very large fluctuations. In this paper we show that the interaction between two discrete Markov processes naturally generates a time-series characterised by such a distribution. This possibility is first demonstrated by numerical simulation and then confirmed by a mathematical analysis that enables the parameter range over which the power-law occurs to be quantified. The results are supported by comparison of numerical results with theoretical predictions and general conclusions are drawn regarding mechanisms that can cause this behaviour.

  13. Parallel and distributed processing in power system simulation and control

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Djalma M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1994-12-31

    Recent advances in computer technology will certainly have a great impact in the methodologies used in power system expansion and operational planning as well as in real-time control. Parallel and distributed processing are among the new technologies that present great potential for application in these areas. Parallel computers use multiple functional or processing units to speed up computation while distributed processing computer systems are collection of computers joined together by high speed communication networks having many objectives and advantages. The paper presents some ideas for the use of parallel and distributed processing in power system simulation and control. It also comments on some of the current research work in these topics and presents a summary of the work presently being developed at COPPE. (author) 53 refs., 2 figs.

  14. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  15. Developing an Indicator System for Measuring the Social Sustainability of Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Tzay-An Shiau

    2016-05-01

    Full Text Available Taiwan’s government has promoted investment in an offshore wind power farm, and local fishermen have protested. A social impact assessment (SIA has examined the impact of the proposed offshore wind power farm on all stakeholders. The main objective of the present study was to develop an indicator system for measuring the social sustainability of offshore wind power farms; this study also reports on the particular case of Taiwan’s offshore wind power project. This study began by defining 35 social sustainability indicators and selecting 23 representative indicators by using rough set theory. Subsequently, 14 key indicators were constructed using the social construction of technology (SCOT method. Finally, we developed a social impact index for evaluating the social sustainability of offshore wind power farms by using the analytic network process and Dempster-Shafer theory. Our social impact index yields a total score of 0.149 for Taiwan’s pilot offshore wind power project; this result indicates that the pilot project is socially sustainable. A substantial contradiction exists between the fishermen’s protest and the results of the social impact assessment. The findings can assist the government in building a coordination platform for the investors and the fishermen. Government regulation is necessary to set boundaries for fishing areas that protect both the fishermen’s and investors’ rights.

  16. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    resources as efficiently as possible. Using the advanced energy systems analysis tool EnergyPLAN and Denmark as a case, this analysis defines which of the three assessed types of CHP plants connected to district heating systems is most feasible in terms of total socioeconomic costs and biomass consumption......In many countries, the electricity supply and power plant operation are challenged by increasing amounts of fluctuating renewable energy sources. A smart energy system should be developed to integrate as much energy supply from fluctuating renewable sources and to utilise the scarce biomass...

  17. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    Science.gov (United States)

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  18. Public Acceptance for Sustainable Power Development: Sharing Nepalese Experience

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dilli Bahadur; Singh, Anju; Shrestha, Sugam

    2007-07-01

    Nepal with 83000 MW of hydropower potential has harnessed only 1% of it. With a target of 8% GDP growth rate needs 15000 MW of hydropower to be exported, by 2012. Which will bring the majority(32%) of its population above the poverty line. For this Nepal ought to develop its hydropower potential maintaining social equity and environmental justice leading towards the sustainable development. One of the key attributes/ingredient to this is Public Participation/Acceptance. Hence, an in depth study was conducted for examining the level of peoples' participation/acceptance. Field visit of 6 projects and questionnaire survey conducted involving 13 groups of stakeholders revealed that public participation were sufficiently done and acceptance was also sought specially after the promulgation of Environmental Legislations. Nepal has no choice other than to develop its hydropower potential for its internal demand and to supply to the neighbouring countries, in the endeavour to reduce/eliminate the poverty, prevailing as a cancer. Henceforth, all the hydropower projects to be developed in the future should be socio-culturally acceptable, economically viable and environmentally benign. For this to happen one of the key ingredients/attributes is the public participation and gaining public acceptance in an effective and efficient manner. (auth)

  19. Chattanooga Electric Power Board Case Study Distribution Automation

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Jim [Chattanooga Electric Power Board (EPB), TN (United States); Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ollis, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    In 2009, the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA) awarded a grant to the Chattanooga, Tennessee, Electric Power Board (EPB) as part of the Smart Grid Investment Grant Program. The grant had the objective “to accelerate the transformation of the nation’s electric grid by deploying smart grid technologies.” This funding award enabled EPB to expedite the original smart grid implementation schedule from an estimated 10-12 years to 2.5 years. With this funding, EPB invested heavily in distribution automation technologies including installing over 1,200 automated circuit switches and sensors on 171 circuits. For utilities considering a commitment to distribution automation, there are underlying questions such as the following: “What is the value?” and “What are the costs?” This case study attempts to answer these questions. The primary benefit of distribution automation is increased reliability or reduced power outage duration and frequency. Power outages directly impact customer economics by interfering with business functions. In the past, this economic driver has been difficult to effectively evaluate. However, as this case study demonstrates, tools and analysis techniques are now available. In this case study, the impact on customer costs associated with power outages before and after the implementation of distribution automation are compared. Two example evaluations are performed to demonstrate the benefits: 1) a savings baseline for customers under normal operations1 and 2) customer savings for a single severe weather event. Cost calculations for customer power outages are performed using the US Department of Energy (DOE) Interruption Cost Estimate (ICE) calculator2. This tool uses standard metrics associated with outages and the customers to calculate cost impact. The analysis shows that EPB customers have seen significant reliability improvements from the implementation of distribution automation. Under

  20. Power Sharing Control between Load-Side Inverters in DC Microgrid for Super High Quality Electric Power Distribution System

    Science.gov (United States)

    Kakigano, Hiroaki; Nada, Kaho; Miura, Yushi; Ise, Toshifumi; Uchida, Ryohei

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality electric power. The dc distribution system is suitable for dc output type distributed generations such as photovoltaic and fuel cells, and energy storages such as batteries and electric double layer capacitors. Power is distributed through dc distribution line and converted to required ac or dc voltage by converters placed near loads. Load-side single phase inverters are connected through transformers in order to share active and reactive power. In this paper, a power sharing control scheme was proposed, and the power sharing characteristics were demonstrated by experimental results.

  1. Power-law citation distributions are not scale-free

    Science.gov (United States)

    Golosovsky, Michael

    2017-09-01

    We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.

  2. Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2012-01-01

    The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

  3. Distributed Generation in Power Systems: An Overview and Key Issues

    DEFF Research Database (Denmark)

    Singh, Sri Niwas

    2009-01-01

    The necessity for smart electrical systems having minimum technical loss and environmental impact is providing impetus to go for Distributed Generations (DGs) which may offer several other advantages such as reduced transmission and distribution system resources, increased reliability, better power...... quality, etc. However, depending on the system configuration and management, these advantages may not be true. Moreover, due to structural and managerial changes in the electricity supply industry motivated with introduction of completion, the role of small generations distributed in the low....../medium voltage network has gained importance. This paper adopts a systematic approach by focusing on the most important research areas related to the distributed generations. Various DG technologies are described and penetration of DGs in the Indian system has been discussed. This paper also highlights the key...

  4. Deviation from power law of the global seismic moment distribution

    Science.gov (United States)

    Serra, Isabel; Corral, Álvaro

    2017-01-01

    The distribution of seismic moment is of capital interest to evaluate earthquake hazard, in particular regarding the most extreme events. We make use of likelihood-ratio tests to compare the simple Gutenberg-Richter power-law (PL) distribution with two statistical models that incorporate an exponential tail, the so-called tapered Gutenberg-Richter (Tap) and the truncated gamma, when fitted to the global CMT earthquake catalog. Although the Tap distribution does not introduce any significant improvement of fit respect the PL, the truncated gamma does. Simulated samples of this distribution, with parameters β = 0.68 and mc = 9.15 and reshuffled in order to mimic the time occurrence of the order statistics of the empirical data, are able to explain the temporal heterogeneity of global seismicity both before and after the great Sumatra-Andaman earthquake of 2004.

  5. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions...

  6. Power-law distributions in noisy dynamical systems

    Science.gov (United States)

    Wilkinson, Michael; Guichardaz, Robin; Pradas, Marc; Pumir, Alain

    2015-09-01

    We consider a dynamical system which is non-autonomous, has a stable attractor and which is perturbed by an additive noise. We establish that under some quite typical conditions, the intermittent fluctuations from the attractor have a probability distribution with power-law tails. We show that this results from a stochastic cascade of amplification of fluctuations due to transient periods of instability. The exponent of the power-law is interpreted as a negative fractal dimension, and is explicitly determined, using numerics or perturbation expansion, in the case of a model of colloidal particles in one-dimension.

  7. Power management and distribution considerations for a lunar base

    Science.gov (United States)

    Kenny, Barbara H.; Coleman, Anthony S.

    1991-07-01

    Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.

  8. Intelligent Fault Diagnosis in a Power Distribution Network

    Directory of Open Access Journals (Sweden)

    Oluleke O. Babayomi

    2016-01-01

    Full Text Available This paper presents a novel method of fault diagnosis by the use of fuzzy logic and neural network-based techniques for electric power fault detection, classification, and location in a power distribution network. A real network was used as a case study. The ten different types of line faults including single line-to-ground, line-to-line, double line-to-ground, and three-phase faults were investigated. The designed system has 89% accuracy for fault type identification. It also has 93% accuracy for fault location. The results indicate that the proposed technique is effective in detecting, classifying, and locating low impedance faults.

  9. Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM

    Science.gov (United States)

    Liang, Zijun; Lin, Shunjiang; Liu, Mingbo

    2017-05-01

    Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.

  10. Power system distributed oscilation detection based on Synchrophasor data

    Science.gov (United States)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

  11. Power-law tailed statistical distributions and Lorentz transformations

    Energy Technology Data Exchange (ETDEWEB)

    Kaniadakis, G., E-mail: giorgio.kaniadakis@polito.i [Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-01-17

    The present Letter, deals with the statistical theory [G. Kaniadakis, Phys. Rev. E 66 (2002) 056125; G. Kaniadakis, Phys. Rev. E 72 (2005) 036108], which predicts the probability distribution p(E){proportional_to}exp{sub {kappa}}(-I), where, I{proportional_to}{beta}E-{beta}{mu}, is the collision invariant, and exp{sub {kappa}}(x)=({radical}(1+{kappa}{sup 2}x{sup 2})+{kappa}x){sup 1}/{kappa}, with {kappa}{sup 2}<1. This, experimentally observed distribution, at low energies behaves as the Maxwell-Boltzmann exponential distribution, while at high energies presents power law tails. Here we show that the function exp{sub {kappa}}(x) and its inverse ln{sub {kappa}}(x), can be obtained within the one-particle relativistic dynamics, in a very simple and transparent way, without invoking any extra principle or assumption, starting directly from the Lorentz transformations. The achievements support the idea that the power law tailed distributions are enforced by the Lorentz relativistic microscopic dynamics, like in the case of the exponential distribution which follows from the Newton classical microscopic dynamics.

  12. Power-law tailed statistical distributions and Lorentz transformations

    Science.gov (United States)

    Kaniadakis, G.

    2011-01-01

    The present Letter, deals with the statistical theory [G. Kaniadakis, Phys. Rev. E 66 (2002) 056125; G. Kaniadakis, Phys. Rev. E 72 (2005) 036108], which predicts the probability distribution p(E)∝expκ(-I), where, I∝βE-βμ, is the collision invariant, and expκ(x)=(x+κx)1/κ, with κ<1. This, experimentally observed distribution, at low energies behaves as the Maxwell-Boltzmann exponential distribution, while at high energies presents power law tails. Here we show that the function expκ(x) and its inverse lnκ(x), can be obtained within the one-particle relativistic dynamics, in a very simple and transparent way, without invoking any extra principle or assumption, starting directly from the Lorentz transformations. The achievements support the idea that the power law tailed distributions are enforced by the Lorentz relativistic microscopic dynamics, like in the case of the exponential distribution which follows from the Newton classical microscopic dynamics.

  13. Power exponential velocity distributions in disordered porous media

    CERN Document Server

    Matyka, Maciej; Koza, Zbigniew

    2016-01-01

    Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power exponential law controlled by an exponent $\\gamma$ and a shift parameter $u_0$ and examine how these parameters depend on the porosity. We find that $\\gamma$ has a universal value $1/2$ at the percolation threshold and grows with the porosity, but never exceeds 2.

  14. Distributed Generation Using Indirect Matrix Converter in Reverse Power Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Chiang Loh, Poh; Wang, Peng

    2013-01-01

    Indirect matrix converter (IMC) is an alternative for ac/ac energy conversion, usually operated with a voltage stepped-down gain of only 0.866. For applications like distribution generation where voltage-boost functionality is required, the traditional style of operating the IMC is therefore...... not appropriate. Like most power converters, the operation of the IMC can surely be reversed to produce a boosted gain, but so far its relevant control principles have not been discussed. These challenges are now addressed in this paper with distributed generation suggested as a potential application. Simulation...

  15. Hierarchical Coordinated Control of Distributed Generators and Active Power Filters to Enhance Power Quality of Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Hashempour, Mohammad M.; Guerrero, Josep M.

    2014-01-01

    This paper addresses the coordinated control of distributed generators (DGs) inverters and active power filters (APFs) to compensate voltage harmonics in microgrids. For this, a hierarchical control system is proposed to mitigate voltage harmonic distortion. The hierarchical control structure...... includes two control levels: primary control and secondary control. Primary control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. Secondary control manages the compensation of voltage harmonic distortion of sensitive load bus...

  16. Asymmetric Bimodal Exponential Power Distribution on the Real Line

    Directory of Open Access Journals (Sweden)

    Mehmet Niyazi Çankaya

    2018-01-01

    Full Text Available The asymmetric bimodal exponential power (ABEP distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.

  17. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  18. Robust Distributed Power Control in Cognitive Radio Networks

    CERN Document Server

    fard, Saeideh Parsaei

    2011-01-01

    We propose a robust distributed uplink power allocation algorithm for underlay cognitive radio networks (CRNs) with a view to maximizing the total utility of secondary users (SUs) when channel gains from SUs to primary base stations, and interference caused by primary users (PUs) to the SUs' base station are uncertain. In doing so, we utilize the worst-case robust optimization to keep the interference caused by SUs to each primary base station below a given threshold, and satisfy the SUs' quality of service for all realizations of uncertainty. We model each uncertain parameter by a bounded distance between its estimated and exact values, and formulate the robust power allocation problem via protection values for constraints. We demonstrate that the convexity of our problem is preserved, and in some cases converts into a geometric programming problem, which we solve via a distributed algorithm by using Lagrange dual decomposition. To reduce the cost of robustness, defined as the reduction in the total utility ...

  19. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  20. Generating light with a specified spectral power distribution

    Science.gov (United States)

    Farup, Ivar; Wold, Jan Henrik; Seim, Thorstein; Søndrol, Torkjel

    2007-05-01

    A particular version of a spectral integrator has been designed. It consists of a xenon lamp whose light is dispersed into a color spectrum by dispersing prisms. Using a transmissive LCD panel controlled by a computer, certain fractions of the light in different parts of the spectrum are masked out. The remaining transmitted light is integrated and projected onto a translucent diffusing plate. A spectroradiometer that measures the generated light is also attached to the computer, thus making the spectral integrator a closed-loop system. An algorithm for generating the light of a specified spectral power distribution has been developed. The resulting measured spectra differ from the specified ones with relative rms errors in the range of 1%-20% depending on the shape of the spectral power distribution.

  1. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods......Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... as well as their major characteristics is given. New solutions to optimize the synchronization methods when running on distorted grid conditions are discussed. Simulation and experimental results are used to evaluate the behavior of the synchronization methods under different kind of grid disturbances...

  2. Optimal Power Flow for Distribution Systems under Uncertain Forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-29

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  3. Using Model Checking for Analyzing Distributed Power Control Problems

    Directory of Open Access Journals (Sweden)

    Thomas Brihaye

    2010-01-01

    Full Text Available Model checking (MC is a formal verification technique which has been known and still knows a resounding success in the computer science community. Realizing that the distributed power control (PC problem can be modeled by a timed game between a given transmitter and its environment, the authors wanted to know whether this approach can be applied to distributed PC. It turns out that it can be applied successfully and allows one to analyze realistic scenarios including the case of discrete transmit powers and games with incomplete information. The proposed methodology is as follows. We state some objectives a transmitter-receiver pair would like to reach. The network is modeled by a game where transmitters are considered as timed automata interacting with each other. The objectives are then translated into timed alternating-time temporal logic formulae and MC is exploited to know whether the desired properties are verified and determine a winning strategy.

  4. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin; Yang, Liuqing; Florita, Anthony; Alam, S.M. Shafiul; Elgindy, Tarek; Hodge, Bri-Mathias

    2017-04-24

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the help of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.

  5. Wireless Power Transfer for Distributed Estimation in Sensor Networks

    Science.gov (United States)

    Mai, Vien V.; Shin, Won-Yong; Ishibashi, Koji

    2017-04-01

    This paper studies power allocation for distributed estimation of an unknown scalar random source in sensor networks with a multiple-antenna fusion center (FC), where wireless sensors are equipped with radio-frequency based energy harvesting technology. The sensors' observation is locally processed by using an uncoded amplify-and-forward scheme. The processed signals are then sent to the FC, and are coherently combined at the FC, at which the best linear unbiased estimator (BLUE) is adopted for reliable estimation. We aim to solve the following two power allocation problems: 1) minimizing distortion under various power constraints; and 2) minimizing total transmit power under distortion constraints, where the distortion is measured in terms of mean-squared error of the BLUE. Two iterative algorithms are developed to solve the non-convex problems, which converge at least to a local optimum. In particular, the above algorithms are designed to jointly optimize the amplification coefficients, energy beamforming, and receive filtering. For each problem, a suboptimal design, a single-antenna FC scenario, and a common harvester deployment for colocated sensors, are also studied. Using the powerful semidefinite relaxation framework, our result is shown to be valid for any number of sensors, each with different noise power, and for an arbitrarily number of antennas at the FC.

  6. Integration of distributed generation in the power system

    CERN Document Server

    Bollen, Math H J

    2011-01-01

    "The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high. The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration...

  7. The Power Quality Compensation Strategy for Power Distribution System Based on Hybrid Parallel Active Power Filters

    Directory of Open Access Journals (Sweden)

    Rachid DEHINI

    2010-12-01

    Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFET’s. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.

  8. Application of geographic information system in distribution power network automation

    Science.gov (United States)

    Wei, Xianmin

    2011-02-01

    Geographic information system (GIS) is the computer system in support of computer software with collection, storage, management, retrieval and comprehensive analysis of a variety of geospatial information, with various forms output data and graphics products. This paper introduced GIS data organization and its main applications in distribution power network automation, including both offline and online, and proposed component-based system development model and the need to establish WEBGIS and reliability.

  9. User-friendly Tool for Power Flow Analysis and Distributed Generation Optimisation in Radial Distribution Networks

    Directory of Open Access Journals (Sweden)

    M. F. Akorede

    2017-06-01

    Full Text Available The intent of power distribution companies (DISCOs is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG units on the distribution networks. However, to maximise benefits, it is highly crucial for a DISCO to ensure that these DG units are of optimal size and sited in the best locations on the network. This paper gives an overview of a software package developed in this study, called Power System Analysis and DG Optimisation Tool (PFADOT. The main purpose of the graphical user interface-based package is to guide a DISCO in finding the optimal size and location for DG placement in radial distribution networks. The package, which is also suitable for load flow analysis, employs the GUI feature of MATLAB. Three objective functions are formulated into a single optimisation problem and solved with fuzzy genetic algorithm to simultaneously obtain DG optimal size and location. The accuracy and reliability of the developed tool was validated using several radial test systems, and the results obtained are evaluated against the existing similar package cited in the literature, which are impressive and computationally efficient.

  10. Transport and sustainability - with special emphasis on grocery distribution

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Kaj

    1998-12-31

    The reduction of the number of retail shops, in principle, provide for better planning opportunities regarding the distribution of commodities to the shops. But this, according to the study is more than offset by the longer distances the goods have to travel before reaching the shops. The report investigates the potentials for reduction of the energy demand and emission by means of technical improvements of vehicles. The assessments are based on fuel cycle considerations covering both the energy system (that is, the system providing the fuel to the vehicle) and the vehicle system (the system on board the vehicle transforming the fuel to useful work). In general, there are substantial potentials for improvements of the energy efficiency of the transportation means - and even greater potentials for CO{sub 2}-reductions. The reap the full potentials, it is probably necessary to break with the present technological development trend. (au) 274 refs.

  11. Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel

    Directory of Open Access Journals (Sweden)

    Zhiwen Hu

    2015-01-01

    Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.

  12. Control strategies for power distribution networks with electric vehicles integration

    DEFF Research Database (Denmark)

    Hu, Junjie

    Demand side resources, like electric vehicles (EVs), can become integral parts of a smart grids because instead of just consuming power they are capable of providing valuable services to power systems. EVs can be used to balance the intermittent renewable energy resources such as wind and solar....... EVs can absorb energy during periods of high electricity production and feed the electricity back into the grid when the demand is high or in situations of insucient electricity generation. However, extra loads created by the increasing number of EVs may have adverse impacts on the distribution...... strategies supported by an increased use of information and communication technology. This is the idea of the smart grid. The smart grid is a next-generation electrical power system that is typied by the increased use of communications and information technology in the generation, delivery and consumption...

  13. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  14. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  15. Assessment of distributed solar power systems: Issues and impacts

    Science.gov (United States)

    Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.

    1982-11-01

    The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.

  16. Power Management and Distribution (PMAD) Model Development: Final Report

    Science.gov (United States)

    Metcalf, Kenneth J.

    2011-01-01

    Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.

  17. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin

    2013-11-13

    A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solar Power Generation for ICT and Sustainable Development in Emerging Economies

    Science.gov (United States)

    Paul, Damasen I.; Uhomoibhi, James

    2012-01-01

    Purpose: The purpose of this paper is to systematically examine and draw attention to the potential benefits of solar power generation for access to and use of information and communication technologies (ICT) aimed at sustainable development in emerging economies. Design/methodology/approach: Electricity plays a crucial role in the development and…

  19. Sustainable Water Distribution Strategy with Smart Water Grid

    Directory of Open Access Journals (Sweden)

    Seongjoon Byeon

    2015-04-01

    Full Text Available Many problems that are encountered in regards to water balance and resources management are related to challenges of economic development under limited resources and tough competition among various water uses. The development of major infrastructure like airports in remote areas that have limited water resources is becoming a common problem. In order to overcome these difficulties, water management has to articulate and combine several resources in order to respond to various demands while preserving the ecological quality of the environment. The paper discusses the interest in implementing the Smart Water Grid concept on Yeongjongdo Island, which is the location of Korea’s main airport. This new concept is based on the connection of various water resources and their optimized management with new information technology solutions. The proposed system integrates water generated through rainfall, external water resources (i.e., metropolitan water distribution system, gray water and other types of alternative water resources. The paper analyses the feasibility of this approach and explores interest in the Smart Water Grid concept.

  20. FleetPower: Creating Virtual Power Plants in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha); W. Ketter (Wolfgang); A. Gupta (Alok)

    2017-01-01

    textabstractElectric vehicles have the potential to be used as virtual power plants to provide reliable back-up power. This generates additional profits for carsharing rental firms, who rent vehicles by the minute. We show this by developing a discrete event simulation platform based on real-time

  1. Possibilities and consequences of the Total Cumulative Exergy Loss method in improving the sustainability of power generation

    NARCIS (Netherlands)

    Stougie, L.; van der Kooi, H.J.

    2016-01-01

    It is difficult to decide which power generation system is the most sustainable when environmental, economic and social sustainability aspects are taken into account. Problems with conventional environmental sustainability assessment methods are that no consensus exists about the applied models

  2. Sustainability assessment of power generation in combination with lng evaporation : A comparison of lca methods and exergy analysis

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2013-01-01

    Several options exist for power generation, but it is difficult to determine which option is the most sustainable. When assessing the sustainability of an option or system, it is important to consider the environmental, economic and social aspects of sustainability and to take a life-cycle point of

  3. User-friendly tool for power flow analysis and distributed generation ...

    African Journals Online (AJOL)

    The intent of power distribution companies (DISCOs) is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG) units on the distribution networks. However, to ...

  4. Generalized fluctuation relation for power-law distributions

    Science.gov (United States)

    Budini, Adrián A.

    2012-07-01

    Strong violations of existing fluctuation theorems may arise in nonequilibrium steady states characterized by distributions with power-law tails. The ratio of the probabilities of positive and negative fluctuations of equal magnitude behaves in an anomalous nonmonotonic way [H. Touchette and E. G. D. Cohen, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.76.020101 76, 020101(R) (2007)]. Here, we propose an alternative definition of fluctuation relation (FR) symmetry that, in the power-law regime, is characterized by a monotonic linear behavior. The proposal is consistent with a large deviationlike principle. As an example, we study the fluctuations of the work done on a dragged particle immersed in a complex environment able to induce power-law tails. When the environment is characterized by spatiotemporal temperature fluctuations, distributions arising in nonextensive statistical mechanics define the work statistics. In that situation, we find that the FR symmetry is solely defined by the average bath temperature. The case of a dragged particle subjected to a Lévy noise is also analyzed in detail.

  5. Time series power flow analysis for distribution connected PV generation.

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  6. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    The unbalanced temperature distribution influences the power output of thermoelectric generator (TEG) system, which leads to mismatch power among TEG modules. This mismatch power degrades the energy efficiency of TEG systems based on the series-connected TEG modules. A hybrid centralized......-distributed (HCD) power conditioning system for TEG and its control strategy are proposed in this paper. The HCD power conditioning system is composed by a centralized power conversion stage and multiple distributed power conversion stages. Most of the power is processed by the centralized power conversion stage...... while only the mismatched power among the TEG modules is processed by the distributed power conversion stages. As a result, accurate distributed maximum power point tracking (MPPT) for each TEG module and single-stage power conversion between TEG modules and the load can be achieved by using...

  7. Integration of Small Solar tower Systems into Distributed Power Islands

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S. [Ciemat, Madrid (Spain)

    2000-07-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-paks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leadings to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begum. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostat configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs.

  8. Framework of systematic sustainability assessment strategy (FSSAS) for hydroelectric power industry in Malaysia

    Science.gov (United States)

    Johan, Kartina; Turan, Faiz Mohd

    2017-08-01

    Hydroelectric power is an alternative power resource in Malaysia and always associated with negative impact on environmental, social and economy of the surrounding site. The dispute over environmental, societal and economic issues can be minimised if compliance to sustainability development requirement is included in the project as part of the project premises during planning phase. This paper suggests a framework targeted for decision-makers in charge of implementing the projects to produce hydropower the sustainable way in Malaysian context which can mitigate the risks in social, environment and economy. The framework is strategic in nature and based on project management methodology with objective to provide a ‘common language’ by having a project value as measureable for stakeholders to state their mutual agreement of what a sustainable hydropower project in the context of Malaysia and in line with the United Nations (UN) 17 Sustainable Development Goals (SDGs). The paper discusses how the proposed systematic sustainability assessment strategy (FSSAS) framework support the call for Malaysia to promote meaningful public participation in ensuring land and natural resource decisions and to address citizens’ interests which is the core idea of Environmental Democracy Index established in 2014. The paper argues that, even though it is at present impossible to define precision status of sustainability development with respect to the nature of the multi stakeholders and the lack of systematic assessment the proposed FSSAS framework can be a valuable tool because it tracks the project value as a quantitative deliverable to determine the status of the journey in sustainable development towards accomplishing the SDG under a consensus in hydropower industry of any scale over time.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  10. Evolutionary Optimization of Electric Power Distribution Using the Dandelion Code

    Directory of Open Access Journals (Sweden)

    Jorge Sabattin

    2012-01-01

    Full Text Available Planning primary electric power distribution involves solving an optimization problem using nonlinear components, which makes it difficult to obtain the optimum solution when the problem has dimensions that are found in reality, in terms of both the installation cost and the power loss cost. To tackle this problem, heuristic methods have been used, but even when sacrificing quality, finding the optimum solution still represents a computational challenge. In this paper, we study this problem using genetic algorithms. With the help of a coding scheme based on the dandelion code, these genetic algorithms allow larger instances of the problem to be solved. With the stated approach, we have solved instances of up to 40,000 consumer nodes when considering 20 substations; the total cost deviates 3.1% with respect to a lower bound that considers only the construction costs of the network.

  11. How to ensure sustainable interoperability in heterogeneous distributed systems through architectural approach.

    Science.gov (United States)

    Pape-Haugaard, Louise; Frank, Lars

    2011-01-01

    A major obstacle in ensuring ubiquitous information is the utilization of heterogeneous systems in eHealth. The objective in this paper is to illustrate how an architecture for distributed eHealth databases can be designed without lacking the characteristic features of traditional sustainable databases. The approach is firstly to explain traditional architecture in central and homogeneous distributed database computing, followed by a possible approach to use an architectural framework to obtain sustainability across disparate systems i.e. heterogeneous databases, concluded with a discussion. It is seen that through a method of using relaxed ACID properties on a service-oriented architecture it is possible to achieve data consistency which is essential when ensuring sustainable interoperability.

  12. A distributed control approach for power and energy management in a notional shipboard power system

    Science.gov (United States)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability

  13. Making distribution of wheelchairs sustainable: A Wheels for the World program in North India, October 2015

    Directory of Open Access Journals (Sweden)

    Jubin Varghese

    2015-01-01

    Full Text Available A description of a program carried out in October 2015 in North India of distribution of wheelchairs and other assistive devices for persons with disabilities. Applying cooperative approaches through churches, NGOs and networks, outside resources were utilized to develop a sustainable approach to meeting identified disability needs in low-resource settings.

  14. Sustainable fuels for the transport and maritime sector : A blueprint of the LNG distribution network

    NARCIS (Netherlands)

    Thunnissen, Simon K.; Van De Bunt, Luke G.; Vis, Iris F A; Zijm, Henk; Klump, Matthias; Clausen, Uwe; ten Hompel, Michael

    2015-01-01

    Liquefied Natural Gas (LNG) is one of the alternative sustainable fuels available to the transportation sector. A new distribution network needs to be in place to enable better accessibility and more efficient usage of this fuel type for all modes of transport. Currently, a chicken-and-egg problem

  15. Harmonic Mitigation Techniques Applied to Power Distribution Networks

    Directory of Open Access Journals (Sweden)

    Hussein A. Kazem

    2013-01-01

    Full Text Available A growing number of harmonic mitigation techniques are now available including active and passive methods, and the selection of the best-suited technique for a particular case can be a complicated decision-making process. The performance of some of these techniques is largely dependent on system conditions, while others require extensive system analysis to prevent resonance problems and capacitor failure. A classification of the various available harmonic mitigation techniques is presented in this paper aimed at presenting a review of harmonic mitigation methods to researchers, designers, and engineers dealing with power distribution systems.

  16. Electrical power transmission and distribution aging and life extension techniques

    CERN Document Server

    Chudnovsky, Bella H

    2012-01-01

    ""The focus of this unique reference book is four critical areas in the manufacturing of power distribution components. These areas are plating, lubrication, insulator failure, and maintenance. ... The many SEM images, x-ray studies, photos, and tabular data make for a very convenient reference source for diagnosing plating problems. ... Examples often help to drive home a point, and many case studies illustrating the various failure modes described throughout the book are included. These could prove to be an invaluable source of information when trying to diagnose unknown field failures. ...

  17. Detection of Interphase Fault Zone in Overhead Power Distribution Networks

    Directory of Open Access Journals (Sweden)

    E. Kalentionok

    2013-01-01

    Full Text Available Parametric methods have been recommended on the basis of current and voltage value recording in normal and emergency modes at a sub-transmission substation in order to detect two- and three-phase short circuits in overhead power distribution networks. The paper proposes to detect an inspection zone in order to locate an interphase fault with the help of analytical calculation of distance up to the fault point using 3–4 expressions on the basis of data obtained as a result of multiple metering pertaining to emergency mode parameters  with their subsequent statistical processing.

  18. METHODS FOR ESTIMATING THE PARAMETERS OF THE POWER FUNCTION DISTRIBUTION.

    Directory of Open Access Journals (Sweden)

    azam zaka

    2013-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper, we present some methods for estimating the parameters of the two parameter Power function distribution. We used the least squares method (LSM, relative least squares method (RELS and ridge regression method (RR. Sampling behavior of the estimates is indicated by a Monte Carlo simulation. The objective of identifying the best estimator amongst them we use the Total Deviation (T.D and Mean Square Error (M.S.E as performance index. We determined the best method for estimation using different values for the parameters and different sample sizes.

  19. Using Model Checking for Analyzing Distributed Power Control Problems

    DEFF Research Database (Denmark)

    Brihaye, Thomas; Jungers, Marc; Lasaulce, Samson

    2010-01-01

    wanted to know whether this approach can be applied to distributed PC. It turns out that it can be applied successfully and allows one to analyze realistic scenarios including the case of discrete transmit powers and games with incomplete information. The proposed methodology is as follows. We state some...... objectives a transmitter-receiver pair would like to reach. The network is modeled by a game where transmitters are considered as timed automata interacting with each other. The objectives are then translated into timed alternating-time temporal logic formulae and MC is exploited to know whether the desired...

  20. Optimal integrated scheduling of distributed energy resources in power systems by virtual power plant.

    Science.gov (United States)

    Kasaei, Mohammad Javad; Gandomkar, Majid; Nikoukar, Javad

    2017-12-13

    Due to many environmental and economic influences, the application of Renewable Energy Sources (RESs) such as Photovoltaic (PV), Wind Turbine (WT), Fuel Cell (FC), and Micro Turbine (MT) have quickly been increased. The rapid growth of the RESs has provided both advantages and disadvantages for the power systems. In the side of advantages, lower environmental pollution, less power losses and better power quality and in the side of disadvantages, intermittent nature of RESs and higher uncertainties that cause the variable generation and uncertainty in distribution systems can be mentioned. Under this condition, an idea to solve problems due to the variable outputs of these resources is to aggregate them altogether. A collection of Distributed Energy Resources (DERs), energy storage devices and controllable loads which are aggregated and then are managed by an Energy Management System (EMS) and can operate as a single power plant is called Virtual Power Plant (VPP). This paper proposes a meta-heuristic optimization method based on Imperialist Competitive Algorithm (ICA), to minimize the total operating cost by VPP, considering energy loss cost in a 24h time interval. In order to see the effectiveness and satisfying performance of the proposed algorithm a case study including RESs, storage battery and controllable loads is studied as test system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  2. Citation distribution of individual scientist: approximations of stretch exponential distribution with power law tails

    CERN Document Server

    Garanina, O S

    2016-01-01

    A multi-parametric family of stretch exponential distributions with various power law tails is introduced and is shown to describe adequately the empirical distributions of scientific citation of individual authors. The four-parametric families are characterized by a normalization coefficient in the exponential part, the power exponent in the power-law asymptotic part, and the coefficient for the transition between the above two parts. The distribution of papers of individual scientist over citations of these papers is studied. Scientists are selected via total number of citations in three ranges: 102-103, 103-104, and 104-105 of total citations. We study these intervals for physicists in ISI Web of Knowledge. The scientists who started their scientific publications after 1980 were taken into consideration only. It is detected that the power coefficient in the stretch exponent starts from one for low-cited authors and has to trend to smaller values for scientists with large number of citation. At the same tim...

  3. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.

    Science.gov (United States)

    Wang, Sihong; Lin, Long; Wang, Zhong Lin

    2012-12-12

    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.

  4. Single-phase power distribution system power flow and fault analysis

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  5. Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network

    Directory of Open Access Journals (Sweden)

    Bahman Bahmanifirouzi

    2012-03-01

    Full Text Available This paper presents a new Fuzzy Adaptive Modified Particle Swarm Optimization algorithm (FAMPSO for the placement of Fuel Cell Power Plants (FCPPs in distribution systems. FCPPs, as Distributed Generation (DG units, can be considered as Combined sources of Heat, Power, and Hydrogen (CHPH. CHPH operation of FCPPs can improve overall system efficiency, as well as produce hydrogen which can be stored for the future use of FCPPs or can be sold for profit. The objective functions investigated are minimizing the operating costs of electrical energy generation of distribution substations and FCPPs, minimizing the voltage deviation and minimizing the total emission. In this regard, this paper just considers the placement of CHPH FCPPs while investment cost of devices is not considered. Considering the fact that the objectives are different, non-commensurable and nonlinear, it is difficult to solve the problem using conventional approaches that may optimize a single objective. Moreover, the placement of FCPPs in distribution systems is a mixed integer problem. Therefore, this paper uses the FAMPSO algorithm to overcome these problems. For solving the proposed multi-objective problem, this paper utilizes the Pareto Optimality idea to obtain a set of solution in the multi-objective problem instead of only one. Also, a fuzzy system is used to tune parameters of FAMPSO algorithm such as inertia weight. The efficacy of the proposed approach is validated on a 69-bus distribution system.

  6. Distributed GIS Systems, Open Specifications and Interoperability: How do They Relate to the Sustainable Management of Natural Resources?

    Science.gov (United States)

    Rafael Moreno-Sanchez

    2006-01-01

    The aim of this is paper is to provide a conceptual framework for the session: “The role of web-based Geographic Information Systems in supporting sustainable management.” The concepts of sustainability, sustainable forest management, Web Services, Distributed Geographic Information Systems, interoperability, Open Specifications, and Open Source Software are defined...

  7. Analysis of the sustainability of using wastes in the Brazilian power industry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Basto; de Araujo, Maria Silvia Muylaert; Rosa, Luiz Pinguelli; Barata, Martha; La Rovere, Emilio Lebre [Energy Planning Program - COPPE/UFRJ (Coordination of the Post Graduation Programs in Engineering at the Federal University of Rio de Janeiro), Centro de Tecnologia, bloco C, sala 211, Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, CEP: 21949-900 (Brazil)

    2008-04-15

    This paper presents a methodology for analyzing the sustainability of using wastes in the Brazilian power industry. It will describe projects, both completed and under development by coordination of the post-graduation programs in engineering (COPPE) at the Federal University of Rio de Janeiro (UFRJ), for generating energy from wastes. The results of these projects were included in a doctoral thesis [Oliveira LB. Aproveitamento energetico de lixo e biodiesel no Brasil (energy use of garbage and biodiesel in Brazil). Dissertation (doctoral), COPPE/UFRJ, 2004, p. 204, http://www.ppe.ufrj.br/ppe/production/tesis/lboliveira.pdf] defended in 2004 at the Energy Planning Program of the COPPE at the UFRJ - PPE/COPPE/UFRJ. The study encompasses an analysis of sustainability using a methodology developed for the above-mentioned dissertation, taking two existing methodologies into account: sustainability analysis and data envelopment analysis. (author)

  8. Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Al Ameri

    2017-04-01

    Full Text Available The growth of electrical demand increases the need of renewable energy sources, such as wind energy, to meet that need. Electrical power losses are an important factor when wind farm location and size are selected. The capitalized cost of constant power losses during the life of a wind farm will continue to high levels. During the operation period, a method to determine if the losses meet the requirements of the design is significantly needed. This article presents a Simulink simulation of wind farm integration into the grid; the aim is to achieve a better understanding of wind variation impact on grid losses. The real power losses are set as a function of the annual variation, considering a Weibull distribution. An analytical method has been used to select the size and placement of a wind farm, taking into account active power loss reduction. It proposes a fast linear model estimation to find the optimal capacity of a wind farm based on DC power flow and graph theory. The results show that the analytical approach is capable of predicting the optimal size and location of wind turbines. Furthermore, it revealed that the annual variation of wind speed could have a strong effect on real power loss calculations. In addition to helping to improve utility efficiency, the proposed method can develop specific designs to speeding up integration of wind farms into grids.

  9. Modelling altered revenue function based on varying power consumption distribution and electricity tariff charge using data analytics framework

    Science.gov (United States)

    Zainudin, W. N. R. A.; Ramli, N. A.

    2017-09-01

    In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.

  10. Modeling and unified tuning of distributed power flow controller for damping of power system oscillations

    OpenAIRE

    Safari, Amin; Soulat, Behrouz; AJAMI, Ali

    2013-01-01

    A new control scheme to improve the stability of a system by optimal design of distributed power flow controller (DPFC) based stabilizer is presented in this paper. The paper demonstrates the basic module, steady state operation, mathematical analysis, and current injection modeling of the DPFC. The purpose of the work reported in this paper is to design an oscillation damping controller for DPFC to damp low frequency electromechanical oscillations. The optimal design problem is formulated as...

  11. Microscale air quality impacts of distributed power generation facilities.

    Science.gov (United States)

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  12. Energy for the future - with Risoe from nuclear power to sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Jastrup, M. (ed.)

    2008-07-01

    The title of the book is inspired by Risoe's mission which, at the time of its 50th anniversary, remains uncannily close to that given to Risoe when it was inaugurated in 1958. First and foremost, then as now, Risoe is engaged in the development of tomorrow's energy technologies. In 1958, it was nuclear power. On the occasion of its 50th anniversary, Risoe is working with a palette of sustainable energy sources. (author)

  13. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    OpenAIRE

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-01-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient ener...

  14. Molecular clouds have power-law probability distribution functions

    Science.gov (United States)

    Lombardi, Marco; Alves, João; Lada, Charles J.

    2015-04-01

    In this Letter we investigate the shape of the probability distribution of column densities (PDF) in molecular clouds. Through the use of low-noise, extinction-calibrated Herschel/Planck emission data for eight molecular clouds, we demonstrate that, contrary to common belief, the PDFs of molecular clouds are not described well by log-normal functions, but are instead power laws with exponents close to two and with breaks between AK ≃ 0.1 and 0.2 mag, so close to the CO self-shielding limit and not far from the transition between molecular and atomic gas. Additionally, we argue that the intrinsic functional form of the PDF cannot be securely determined below AK ≃ 0.1 mag, limiting our ability to investigate more complex models for the shape of the cloud PDF.

  15. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

    Science.gov (United States)

    Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; El Mouden, Claire; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

    2016-01-01

    Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    Directory of Open Access Journals (Sweden)

    Nasrin Aghamohammadi

    2016-04-01

    Full Text Available Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several key sustainability factors were identified: the security of the biomass supply, the efficiency of conversion technology, the existing network system, challenges and future prospects for power generation from palm biomass. These factors were assessed through a set of questionnaires. The returned questionnaires were then analysed using statistical tools. The results of this study demonstrate that Sarawak has biomass in abundance, and that it is ready to be exploited for large scale power generation. The key challenge to achieving the renewable energy target is the inadequate grid infrastructure that inhibits palm oil developers from benefiting from the Feed-in-Tariff payment scheme. One way forward, a strategic partnership between government and industrial players, offers a promising outcome, depending on an economic feasibility study. The decentralization of electricity generation to support rural electrification is another feasible alternative for renewable energy development in the state.

  17. Power law distributions of patents as indicators of innovation.

    Directory of Open Access Journals (Sweden)

    Dion R J O'Neale

    Full Text Available The total number of patents produced by a country (or the number of patents produced per capita is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan and 2.37 (Poland. We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.

  18. Power law distributions of patents as indicators of innovation.

    Science.gov (United States)

    O'Neale, Dion R J; Hendy, Shaun C

    2012-01-01

    The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.

  19. Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source

    Directory of Open Access Journals (Sweden)

    Zhiming Lin

    2016-01-01

    Full Text Available The newly developed triboelectric nanogenerators (TENGs provide an excellent approach to convert mechanical energy into electricity, which are mainly based on the coupling between triboelectrification and electrostatic induction. The TENG has the potential of harvesting many kinds of mechanical energies such as vibration, rotation, wind, human motion, and even water wave energy, which could be a new paradigm for scavenging large scale energy. It also demonstrates a possible route towards practical applications for powering electronic devices. This paper presents a comprehensive review of the four modes of TENGs: vertical contact-separation mode, in-plane sliding mode, single-electrode mode, and free-standing triboelectric-layer mode. The performance enhancements of TENGs for harvesting energy as a sustainable power source are also discussed. In addition, recent reports on the hybridized nanogenerator are introduced, which may enable fully self-powered electronic devices. Finally, the practical applications of TENGs for energy harvesting are presented.

  20. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Toman, G.; Gazdzinski, R. [Sandia National Labs., Albuquerque, NM (United States)

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  1. Modeling and unified tuning of distributed power flow controller for damping of power system oscillations

    Directory of Open Access Journals (Sweden)

    Amin Safari

    2013-12-01

    Full Text Available A new control scheme to improve the stability of a system by optimal design of distributed power flow controller (DPFC based stabilizer is presented in this paper. The paper demonstrates the basic module, steady state operation, mathematical analysis, and current injection modeling of the DPFC. The purpose of the work reported in this paper is to design an oscillation damping controller for DPFC to damp low frequency electromechanical oscillations. The optimal design problem is formulated as an optimization problem, and particle swarm optimization (PSO is employed to search for the damping controller parameters. Results demonstrate that DPFC with the proposed model can more effectively improve the dynamic stability and enhance the transient stability of power system compared to the genetic algorithm based damping controllers. The r and λ are relative magnitude and phase angle of DPFC controller. Moreover, the results show that the λ based controller is superior to the r based controller.

  2. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  3. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes.

    Science.gov (United States)

    Gençer, Emre; Mallapragada, Dharik S; Maréchal, François; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-12-29

    We introduce a paradigm-"hydricity"-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a "turbine"-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses.

  4. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes

    Science.gov (United States)

    Gençer, Emre; Mallapragada, Dharik S.; Maréchal, François; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-01-01

    We introduce a paradigm—“hydricity”—that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40–46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a “turbine”-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65–70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses. PMID:26668380

  5. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  6. Sustainable Development Commission Scotland response to the Scottish Government 'Consultation on the consenting process for thermal power stations in Scotland'

    OpenAIRE

    Sustainable Development Commission Scotland

    2009-01-01

    This document is the response of the Sustainable Development Commission Scotland to the Scottish Government’s 'Consultation on the consenting process for thermal power stations in Scotland' Publisher PDF

  7. The power of the Brown v. Board of Education decision: theorizing threats to sustainability.

    Science.gov (United States)

    Fine, Michelle

    2004-09-01

    Interviews with African American and White American elders capture the immediate power of the Brown v. Board of Education (1954) decision and the biography of its impact over time. This article reviews the lived experience of the decision and theorizes 3 threats to sustainability that ruthlessly undermined the decision over time: (a) the unacknowledged and enormous sacrifice endured by the African American community in the name of desegregation; b) the violent and relentless resistance to the decision by government officials, educators, and many White community members; and (c) the dramatic shrinkage of the vision of Brown from the dismantling of White supremacy to a technical matter of busing. Implications are drawn for the study of desegregation and for the study of sustainability of social justice more broadly. ((c) 2004 APA, all rights reserved)

  8. A micro-sized bio-solar cell for self-sustaining power generation.

    Science.gov (United States)

    Lee, Hankeun; Choi, Seokheun

    2015-01-21

    Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.

  9. Climate protection and reliability of supply. Development of a sustainable power supply concept; Klimaschutz und Versorgungssicherheit. Entwicklung einer nachhaltigen Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, Thomas; Loreck, Charlotte; Mueschen, Klaus

    2009-09-15

    Germany, like other states, committed itself to sustainable development in the Rio declaration of 1992. The boundary conditions for this are set by nature itself, whose laws must be respected if goals like reliability of supply and economic efficiency are to be achieved. This study of the Federal Environmental Office shows how sustainable power supply can be achieved. It is possible to combine climate protection, reliability of supply and economic efficiency, even without nuclear power and without constructing new conventional power plants that do not have the function of combined heat and power generation. (orig.)

  10. Overvoltages related to distributed generation-power system interconnection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Zamanillo, G.R.; Gomez, J.C.; Florena, E.F. [Rio Cuarto National University (IPSEP/UNRC), Cordoba (Argentina). Electric Power Systems Protection Institute], Email: jcgomez@ing.unrc.edu.ar

    2009-07-01

    The energy crisis that experiences the world drives to carry to an extreme, the use of all energy sources which are available. The sources need to be connected to the electric network in their next point, requiring of electric-electronic interfaces. The traditional electric power systems are changing their characteristics, in what concerns to structure, operation and on overvoltage generation. This change is not taking place in coordinated form among the involved sectors. The interconnection of a Distributed Generator (DG) directly with the power system is objectionable and risky. It is required of an interconnection transformer which performs several functions. Rigid specifications do not exist in this respect, for the variety of systems in use in the world, nevertheless there are utilities recommendations. Overvoltages caused by the DG, which arise due to the change of structure of the electric system, are explained. The transformer connection selection, presents positive and negative aspects that impact the utility and the user in a different or many times in an antagonistic way. The phenomenon of balanced and unbalanced ferroresonance overvoltage is studied. This phenomenon can takes place when using DG, either with synchronous or asynchronous generator, and for any type of connection of the transformer. The necessary conditions so that the phenomenon appears are presented. Eight interconnection transformer connection ways were studied. It is concluded that the solutions to reach by means of the employment of the DG, offer technical-economic advantages so much to the utility as to the user. It is also concluded in this work that the more advisable interconnection type is function of the system connection type. (author)

  11. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....

  12. Practical Coupled Resonators in Domino Arrangements for Power Transmission and Distribution: Replacing Step-Down Power Transformers and Their Branches across the Power Grid

    Directory of Open Access Journals (Sweden)

    Athanasios G. Lazaropoulos

    2013-01-01

    /low-voltage (MV/LV, and HV/LV power transformers used across the world is investigated verifying their replacement potential with practical DCR configurations in all the cases examined. Fifth, based on a detailed collection of dimensions concerning power transformers and transmission line branches, it is first verified that practical DCR configurations cannot only substitute all step-down power transformers of the today's power grid but also replace entire transmission line branches too. Finally, it is obvious that there is a long journey ahead for WPT technology and its ultramodern DCR configurations to be affordably, widely, reliably, sustainably, and safely adopted in the human society. During these first steps of WPT development for power transmission and distribution, theoretical analyses and visions are necessary. The last cable problem, that is, the seamless power delivery as easily as information is now transmitted through the air, is one of the major technological challenges of the 21st century, and, thus, WPT technology will certainly play key role.

  13. The influence of sand mining towards the sustainability of power support and capacity of Lambidaro River

    Science.gov (United States)

    Juniah, Restu; Rahmi, Hisni

    2017-11-01

    Activities of sand mining on the surface stream (river) conducted by Panji Mahakarya company potentially cause various environmental issues. These problems include the destruction of the river ecosystem, decreased the quality of river water quality, increased water pollution load, and another effect on capacity and power support river. The Lambidaro River is one of the rivers found in Palembang, where the inhabitants who live around it take advantage of the existence of this river to meet their daily needs such as bathing, washing, and latrines. The purpose of this research is to know the influence of mining activities towards sustainability of the power support and capacity of the river. The method used in this research is to compare the availability of water and water needs of the population in determining the status of environmental power support based on regulation of the state minister of the environment number 17 in 2009 about the determination of the power guidance support environment in spatial regions, as well as using the index method of pollution based on the decision of the State Minister of the environment number 115 in 2003 about the determination of the status of water quality guidelines with parameters measured are TDS, TSS, pH, DO, COD, dan BOD5. The results of the calculation of the power support river are deficit where SA (34,200,655.64 m3/year) good condition (uncontaminated) and mild pollutant.

  14. Improving the Environmental Sustainability of Flash Geothermal Power Plants—A Case Study

    Directory of Open Access Journals (Sweden)

    Lorenzo Bruscoli

    2015-11-01

    Full Text Available The sustainability of geothermal energy production is analyzed with reference to a production plant located in a specific area (Monte Amiata, Italy. Four solutions combining a flash power plant with an Organic Rankine Cycle in a hybrid configuration are analyzed in terms of production of electricity, exergy balance and emissions level (CO2, H2S, Hg. The different solutions correspond to increasing environmental performance, and for the most advanced case achieve near-zero emissions (complete reinjection of the natural resource, including incondensable gases. The results show that this can be achieved at the price of a progressive reduction of electrical productivity.

  15. The place of solar power: an economic analysis of concentrated and distributed solar power

    Directory of Open Access Journals (Sweden)

    Banoni Vanessa

    2012-04-01

    Full Text Available Abstract Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated

  16. The place of solar power: an economic analysis of concentrated and distributed solar power.

    Science.gov (United States)

    Banoni, Vanessa Arellano; Arnone, Aldo; Fondeur, Maria; Hodge, Annabel; Offner, J Patrick; Phillips, Jordan K

    2012-04-23

    This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models' benefits and costs. The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm, outweigh any minor concerns or potential

  17. The place of solar power: an economic analysis of concentrated and distributed solar power

    Science.gov (United States)

    2012-01-01

    Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm

  18. Distributional Challenges of Sustainability Policies—The Case of the German Energy Transition

    Directory of Open Access Journals (Sweden)

    Erik Gawel

    2015-12-01

    Full Text Available Sustainability policies based on the economic rationale of providing incentives to get prices right inevitably place a significant burden on society and often raise distributional concerns. The social acceptability of Germany’s energy transition towards more sustainable generation and usage of energy is frequently the subject of such critical appraisals. The discourse centres upon the burden imposed on electricity users as a result of the promotion of renewable energy sources in the electricity sector in accordance with the German Renewable Energy Sources Act (EEG. A regressive EEG surcharge is suspected of driving up energy prices unreasonably and of being socially unjust. It is also argued that high-income utility owners profit from the EEG system at the expense of low-income electricity consumers (redistribution from bottom to top. The aim of this paper is to examine the validity of these two hypotheses and to show that both exhibit substantial theoretical and empirical weaknesses, with climate and environmental policy being played off against social policy in a questionable manner. At the same time, the article points out remaining conflicts between energy policy and social policy and makes corresponding policy recommendations for their resolution, thus contributing to reconciling distributional concerns arising in the context of incentive-oriented sustainability governance.

  19. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution... § 1910.269 Electric power generation, transmission, and distribution. Note: OSHA is staying the... the operation and maintenance of electric power generation, control, transformation, transmission, and...

  20. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    Science.gov (United States)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  1. Power capability in low voltage dc distribution systems

    National Research Council Canada - National Science Library

    CO Gecan; Chindris; R Bindiu

    2009-01-01

    ... a LVDC distribution system. The paper presents some general considerations regarding cables used in a LVAC distribution system and different line reconfigurations witch enable the use of cobles in a LVDC distribution system...

  2. Water Power: The “Hydropower Discourse” of China in an Age of Environmental Sustainability

    Directory of Open Access Journals (Sweden)

    Yuen-ching Bellette Lee

    2014-02-01

    Full Text Available As the world searches for renewable energy in the face of climate change and China attempts to expand its power supply to further its economic development, hydroelectricity has moved to the top of the country’s energy agenda. This has given rise to a new form of  “hydropower discourse” in China. The discourse is underpinned by the ideas of environmental protection and sustainable development, which are widely perceived as unobjectionable in view of the current availability of resources. This article argues that the apparent ethical pursuit of renewable energy by building dams to generate electricity masks relations of dominance and helps to enable large energy companies, political leaders, and regional decision makers to pursue their interests against those who have limited or no access to the knowledge and capital employed in the development process. It will examine the ideological assumptions and institutional rootedness of hydropower discourse, and the power relations embedded in it.

  3. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Miller, John M [ORNL; Campbell, Steven L [ORNL; Coomer, Chester [ORNL; White, Cliff P [ORNL; Seiber, Larry Eugene [ORNL

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  4. Electricity price as a factor of the national electric power industry sustainability

    Directory of Open Access Journals (Sweden)

    Filipović Sanja

    2012-12-01

    Full Text Available PE Elektroprivreda Srbije (Electric Power Industry of Serbia - PE EPS is of a strategic importance for national economy. Long-term policy of depressed electricity price has caused a number of distortions, mainly through direct impact on the operations of EPS and a number of other effects such as irrational consumption, high energy intensity, low charges, high level of technical and commercial losses, etc. Serbia still has the lowest electricity price in Europe, but regulated price model provides a certain profit level for EPS. The aim of this paper is to show the potential that the electric power industry as a branch can have if the Government provides the conditions for its sustainable operation.

  5. Integrating environmental equity, energy and sustainability: A spatial-temporal study of electric power generation

    Science.gov (United States)

    Touche, George Earl

    The theoretical scope of this dissertation encompasses the ecological factors of equity and energy. Literature important to environmental justice and sustainability are reviewed, and a general integration of global concepts is delineated. The conceptual framework includes ecological integrity, quality human development, intra- and inter-generational equity and risk originating from human economic activity and modern energy production. The empirical focus of this study concentrates on environmental equity and electric power generation within the United States. Several designs are employed while using paired t-tests, independent t-tests, zero-order correlation coefficients and regression coefficients to test seven sets of hypotheses. Examinations are conducted at the census tract level within Texas and at the state level across the United States. At the community level within Texas, communities that host coal or natural gas utility power plants and corresponding comparison communities that do not host such power plants are tested for compositional differences. Comparisons are made both before and after the power plants began operating for purposes of assessing outcomes of the siting process and impacts of the power plants. Relationships between the compositions of the hosting communities and the risks and benefits originating from the observed power plants are also examined. At the statewide level across the United States, relationships between statewide composition variables and risks and benefits originating from statewide electric power generation are examined. Findings indicate the existence of some limited environmental inequities, but they do not indicate disparities that confirm the general thesis of environmental racism put forth by environmental justice advocates. Although environmental justice strategies that would utilize Title VI of the 1964 Civil Rights Act and the disparate impact standard do not appear to be applicable, some findings suggest potential

  6. Characterizations of the power distribution by record values

    Indian Academy of Sciences (India)

    lutely continuous distribution function F(x) with probability density function f (x) and. F(0) = 0. Assume that Xn belongs to the class C ... distributed; hazard rate; lower record values; theory of functional equations. 2010 Mathematics Subject ... distributed, then Xk, k ≥ 1, has the exponential distribution. Also, one can find more.

  7. Interpretation of 798: Changes in Power of Representation and Sustainability of Industrial Landscape

    Directory of Open Access Journals (Sweden)

    Juncheng Dai

    2015-04-01

    Full Text Available Against the background of economic transformation and urban renewal, the protection and sustainable development of urban industrial landscapes has become an important practical issue, and how to maintain the unique local culture of these landscapes is key to solving the problem. By integrating the concept of “layer” and regarding the landscape as text, this paper will investigate the representation of industrial landscapes and the process of changes in power represented by different actors through different texts from the perspective of representation. The paper selected Beijing 798 as the research area to explore the shaping of changes in the industrial landscape of 798 from a weapon manufacturing area to an arts district, creative industry park and the “pan 798” by the factory owners, government, management committee, artists, media and tourists through different presentation forms, revealing the game process of representation of powers among the coalition between artists, management committee and the government. The paper points out that in fact, the representation of industrial landscape by different actors through different texts is a process that continues to explore and define the value of landscape. However, we need to look at this when the value of the industrial landscape is no longer given by localized life practices, but rather depends on different actors to produce and reproduce the value of landscape by representation, and thereby affecting the sustainable development of industrial landscape.

  8. Optimal Day-Ahead Scheduling of a Smart Distribution Grid Considering Reactive Power Capability of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Rongxiang Yuan

    2016-04-01

    Full Text Available In the traditional paradigm, large power plants provide active and reactive power required for the transmission system and the distribution network purchases grid power from it. However, with more and more distributed energy resources (DERs connected at distribution levels, it is necessary to schedule DERs to meet their demand and participate in the electricity markets at the distribution level in the near future. This paper proposes a comprehensive operational scheduling model to be used in the distribution management system (DMS. The model aims to determine optimal decisions on active elements of the network, distributed generations (DGs, and responsive loads (RLs, seeking to minimize the day-ahead composite economic cost of the distribution network. For more detailed simulation, the composite cost includes the aspects of the operation cost, emission cost, and transmission loss cost of the network. Additionally, the DMS effectively utilizes the reactive power support capabilities of wind and solar power integrated in the distribution, which is usually neglected in previous works. The optimization procedure is formulated as a nonlinear combinatorial problem and solved with a modified differential evolution algorithm. A modified 33-bus distribution network is employed to validate the satisfactory performance of the proposed methodology.

  9. Power system services provided by inverter connected distributed energy resources

    DEFF Research Database (Denmark)

    For the last few years there has been a significant increase of DER units in Denmark, of those units more and more are connected to the power system using inverters. These inverter connected units have the potential to support the electrical power system with various power system services. One...

  10. Application of Fuzzy Ensembles for Optimal Distribution of Power in ...

    African Journals Online (AJOL)

    Optimal power flow calculation (OPF), used to optimize specific aspects of power system operations, usually employ standard mathematical programming techniques. These techniques are not suitable to handle many practical considerations encountered in power systems, including the uncertainty of the operational ...

  11. Distributed Control of the Power Supply-Demand Balance

    NARCIS (Netherlands)

    Larsen, Gunn K. H.; van Foreest, Nicky D.; Scherpen, Jacquelien M. A.

    This paper aims to achieve a balance of power in a group of prosumers, based on a price mechanism, i.e., to steer the difference between the total production and consumption of power to zero. We first set the information network topology such that the prosumers exchange price (power) information

  12. A Review of Distributed Control Techniques for Power Quality Improvement in Micro-grids

    Science.gov (United States)

    Zeeshan, Hafiz Muhammad Ali; Nisar, Fatima; Hassan, Ahmad

    2017-05-01

    Micro-grid is typically visualized as a small scale local power supply network dependent on distributed energy resources (DERs) that can operate simultaneously with grid as well as in standalone manner. The distributed generator of a micro-grid system is usually a converter-inverter type topology acting as a non-linear load, and injecting harmonics into the distribution feeder. Hence, the negative effects on power quality by the usage of distributed generation sources and components are clearly witnessed. In this paper, a review of distributed control approaches for power quality improvement is presented which encompasses harmonic compensation, loss mitigation and optimum power sharing in multi-source-load distributed power network. The decentralized subsystems for harmonic compensation and active-reactive power sharing accuracy have been analysed in detail. Results have been validated to be consistent with IEEE standards.

  13. The influence of bromazepam on cortical power distribution

    Directory of Open Access Journals (Sweden)

    Isabel Sampaio

    2008-06-01

    Full Text Available The EEG has been widely employed in the assessment of electrophysiological changes induced by distinct medications. Its sensibility in detecting alterations produced by a specific substance may be enhanced by methods of quantitative analyses (qEEG. The present study aimed at investigating the modulatory effects of bromazepam on brain dynamics. The effects of bromazepam (3mg on EEG power distribution were tested in 10 healthy individuals, in a double-blind experiment. The electrophysiological measure was analyzed across experimental conditions, moments, and electrodes, in the delta, theta, alpha and beta frequency bands separately. A significant decrease of relative power was observed in delta and theta (main effect of condition. No interactions were observed. Although the expected anxiolytic EEG profile was not observed (increased beta and decreased alpha activity, this specific result may be related to other factors such as dosage used and the subjects' general physiological state, and not necessarily to the drug itself.O EEG tem sido amplamente empregado na avaliação de mudanças eletrofisiológicas induzidas por medicações distintas.A sensibilidade desta técnica em detectar alterações produzidas por uma substância pode ser aprimorada por métodos de análise quantitativa (EEGq. O presente estudo teve por objetivo investigar os efeitos modulatórios do bromazepam na dinâmica cerebral. Os efeitos de 3mg de bromazepam na distribuição de potência cortical foram observados em 10 indivíduos sadios, em um desenho duplo-cego. A medida eletrofisiológica foi analisada nas diferentes condições experimentais, momentos e eletrodos, em delta, teta, alfa e beta separadamente. Uma diminuição significativa de potência relativa foi observada em delta e teta (efeito principal para condição. Não foram observadas interações. Embora o perfil ansiolítico do EEG (aumento de beta e diminuição de alfa não tenha sido observado, esteresultado

  14. Asymmetric power device rating selection for even temperature distribution in NPC inverter

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both the ...

  15. Power distribution in complex environmental negotiations: Does balance matter?

    Science.gov (United States)

    Burkardt, N.; Lamb, B.L.; Taylor, J.G.

    1997-01-01

    We studied six interagency negotiations covering Federal Energy Regulatory Commission (FERC) hydroelectric power licenses. Negotiations occurred between state and federal resource agencies and developers over project operations and natural resource mitigation. We postulated that a balance of power among parties was necessary for successful negotiations. We found a complex relationship between balanced power and success and conclude that a balance of power was associated with success in these negotiations. Power played a dynamic role in the bargaining and illuminates important considerations for regulatory design.

  16. DETERMINANTS AFFECTING THE SUCCESS OF DISTRIBUTION GRID PROJECTS IN BINH THUAN POWER COMPANY, VIETNAM

    OpenAIRE

    Pham Van Tai* & Le Duc Thu

    2017-01-01

    The research identified the critical factors affecting the success of the distribution grid project in Binh Thuan Power Company, clarify the mutual relationship between the critical factors affecting the success of the distribution grid project in Binh Thuan Power Company and recommended and rated the solution to enhance the success of the distribution grid project in Binh Thuan Power Company. The research had found fours critical factors: External factors of project, Controlling and coordina...

  17. Concept of co-firing coal with biomass and natural gas: On track of sustainable solution for future thermal power plants

    Directory of Open Access Journals (Sweden)

    Hodžić Nihad

    2016-01-01

    Full Text Available This paper presents R&D project of multi fuel concept (MFC for future coal-based power plants, demonstrated on example of cofiring Middle-Bosnia brown coal with waste woody biomass and natural gas. Pulverised Combustion (PC lab-scale furnace has been used for the cofiring tests, varying up to 20%w portion of biomass and up to 10%th portion of natural gas in the fuel mix. Tests were purposed to optimize the combustion temperature, air distribution, including Over Fire Air System (OFAS, fuel combination and fuel distribution, including reburning concept, as function of emissions and combustion efficiency estimated through the ash deposits behaviours and unburnt. Considering application of proposed MFC in case of TPP Kakanj unit 6 (118 MWe set here as a referent power plant, temperature levels and fuel distributions for lowest emissions of CO2 and NOx were found during lab tests, provided that combustion efficiency is at an acceptable level. Derived research results yield input data for calculation sustainability indicators of MFC for the referent power plant, considering 6 fuel options - different combinations of coal, biomass and natural gas. Single criteria analysis and multicriteria sustainability assessment have been done, giving an advantage to the options of cofiring coal with woody biomass and natural gas in the case demonstrated.

  18. Relay Protection Coordination for Photovoltaic Power Plant Connected on Distribution Network

    OpenAIRE

    Nikolovski, Srete; Papuga, Vanja; Knežević, Goran

    2014-01-01

    This paper presents a procedure and computation of relay protection coordination for a PV power plant connected to the distribution network. In recent years, the growing concern for environment preservation has caused expansion of photovoltaic PV power plants in distribution networks. Numerical computer simulation is an indispensable tool for studying photovoltaic (PV) systems protection coordination. In this paper, EasyPower computer program is used with the module Power Protector. Time-curr...

  19. Analysis and Simulation of Fault Characteristics of Power Switch Failures in Distribution Electronic Power Transformers

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2013-08-01

    Full Text Available This paper presents research on the voltage and current distortion in the input stage, isolation stage and output stage of Distribution Electronic Power transformer (D-EPT after the open-circuit and short-circuit faults of its power switches. In this paper, the operational principles and the control methods for input stage, isolation stage and output stage of D-EPT, which work as a cascaded H-bridge rectifier, DC-DC converter and inverter, respectively, are introduced. Based on conclusions derived from the performance analysis of D-EPT after the faults, this paper comes up with the effects from its topology design and control scheme on the current and voltage distortion. According to the EPT fault characteristics, since the waveforms of relevant components heavily depend on the location of the faulty switch, it is very easy to locate the exact position of the faulty switch. Finally, the fault characteristics peculiar to D-EPT are analyzed, and further discussed with simulation on the Saber platform, as well as a fault location diagnosis algorithm.

  20. EPPRD: An Efficient Privacy-Preserving Power Requirement and Distribution Aggregation Scheme for a Smart Grid

    National Research Council Canada - National Science Library

    Lei Zhang; Jing Zhang

    2017-01-01

    ...’ private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG...

  1. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  2. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  3. Designing Sustainable Systems for Urban Freight Distribution through techniques of Multicriteria Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muerza, V.; Larrode, E.; Moreno- Jimenez, J.M.

    2016-07-01

    This paper focuses on the analysis and selection of the parameters that have a major influence on the optimization of the urban freight distribution system by using sustainable means of transport, such as electric vehicles. In addition, a procedure has been be studied to identify the alternatives that may exist to establish the best system for urban freight distribution, which suits the stage that is considered using the most appropriate means of transportation available. To do this, it has been used the Analytic Hierarchy Process, one of the tools of multicriteria decision analysis. In order to establish an adequate planning of an urban freight distribution system using electric vehicles three hypotheses are necessary: (i) it is necessary to establish the strategic planning of the distribution process by defining the relative importance of the strategic objectives of the process of distribution of goods in the urban environment, both economically and technically and in social and environmental terms; (ii) it must be established the operational planning that allows the achievement of the strategic objectives with the most optimized allocation of available resources; and (iii) to determine the optimal architecture of the vehicle that best suits the operating conditions in which it will work and ensures optimum energy efficiency in operation. (Author)

  4. Sustainable Agrifood Production and Distribution through Innovative Technologies and Operational Research Applications

    DEFF Research Database (Denmark)

    Bochtis, Dionysis

    The global demand for food is expected to grow considerably as a consequence of the expected population increase and the increasing demand of consumers for product quality and differentiation. In this perspective the global need for food is expected to increase by 70% until 2050. As a consequence......, satellite navigation, and robotics that are originated from the different solution domains, can pave the way towards sustainable and efficient agrifood production and the corresponding distribution systems. However, a preliminary step in the direction of achieving increasing efficiency in terms......, agrifood production will have a crucial effect on the future land use, water resources, climate, biodiversity, etc. To this end, bioproduction and the related distribution systems have to tackle a number of environmental, technological, organisational, financial, and political challenges over the coming...

  5. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    Science.gov (United States)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables

  6. Impact of electric vehicles on power distribution networks

    OpenAIRE

    Putrus, Ghanim; Suwanapingkarl, Pasist; Johnston, David; Bentley, Edward; Narayana, Mahinsasa

    2009-01-01

    The market for battery powered and plug-in hybrid electric vehicles is currently limited, but this is expected to grow rapidly with the increased concern about the environment and advances in technology. Due to their high energy capacity, mass deployment of electrical vehicles will have significant impact on power networks. This impact will dictate the design of the electric vehicle interface devices and the way future power networks will be designed and controlled. This paper presents the re...

  7. Facing the challenges of distribution systems operation with high wind power penetration

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    This paper addresses the challenges associated with the operation of a distribution system with high penetration of wind power. The paper presents some preliminary investigations of an ongoing Danish research work, which has as main objective to reduce the network losses by optimizing the reactive...... power flow in 60kV distribution networks through controlling the ability of wind power plants (WPPs) to generate or absorb reactive power. This paper aims to understand the characteristics of a distribution network with high penetration of distributed generation. A detailed analysis of the active...... and reactive power flows in a real distribution network under different wind and load conditions based on actual measurements is performed in order to understand the correlation between the consumption, wind power production, and the network losses. Conclusive remarks are presented, briefly expressing...

  8. Comprehensive Cost Minimization in Distribution Networks Using Segmented-time Feeder Reconfiguration and Reactive Power Control of Distributed Generators

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Chen, Zhe

    2016-01-01

    In this paper, an efficient methodology is proposed to deal with segmented-time reconfiguration problem of distribution networks coupled with segmented-time reactive power control of distributed generators. The target is to find the optimal dispatching schedule of all controllable switches...... and distributed generators’ reactive powers in order to minimize comprehensive cost. Corresponding constraints, including voltage profile, maximum allowable daily switching operation numbers (MADSON), reactive power limits, and so on, are considered. The strategy of grouping branches is used to simplify...... (FAHPSO) is implemented in VC++ 6.0 program language. A modified version of the typical 70-node distribution network and several real distribution networks are used to test the performance of the proposed method. Numerical results show that the proposed methodology is an efficient method for comprehensive...

  9. An Adaptive Neuro-Fuzzy Inference Distributed Power Flow Controller (DPFC) In Multi-Machine Power Systems

    OpenAIRE

    Gurrala Madhusudhan Rao

    2014-01-01

    Abstract: The main theme of the paper which deals with the enhancing steady-state and dynamics performance of the power grids by Flexible AC Transmission System (FACTS) based on computational intelligence. The proposed technique will be applied to solve real problems in a power grid. The FACTS device, which will be used in the paper, is the most promising one, which known as the Distributed Power Flow Controller (DPFC). The paper achieves the optimization of the type, the location and the siz...

  10. Type 2 diabetes mellitus patients manifest characteristic spatial EMG potential distribution pattern during sustained isometric contraction.

    Science.gov (United States)

    Watanabe, Kohei; Miyamoto, Toshiaki; Tanaka, Yoji; Fukuda, Kazuhito; Moritani, Toshio

    2012-09-01

    The purpose of the present study is to investigate spatial surface electromyography (SEMG) potential distribution pattern in type 2 diabetes mellitus (T2DM) patients. Nine T2DM patients and nine age-matched healthy men (CON) performed a sustained isometric knee extension at 10% of maximal voluntary contraction for 120s. Multi-channel SEMG was recorded from the vastus lateralis muscle by means of 64 electrodes. To characterize spatial SEMG potential distribution pattern, modified entropy and correlation coefficients between same electrode locations were calculated at 15, 60 and 120s for the root mean square values. At 60 and 120s, modified entropy in T2DM was significantly lower than those in CON (p<0.05). Correlation coefficients for T2DM were significantly higher than those for CON at 60 and 120s (p<0.05). From these results, we suggested that T2DM patients continue to recruit limited and same motor units during the sustained contraction at low force level. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Carotid artery remodelling in relation to body fat distribution, inflammation and sustained weight loss in obesity.

    Science.gov (United States)

    Kardassis, D; Schönander, M; Sjöström, L; Karason, K

    2014-05-01

    Obesity is known to be associated with carotid artery remodelling, but less is known about how body fat distribution, inflammation and weight loss may affect this relation. Ultrasonography, dual-energy X-ray absorptiometry and computed tomography were performed to evaluate carotid artery intima-media thickness (IMT), body composition and fat distribution, respectively. Participants were divided into three matched study groups (n = 44 per group): obese patients with sustained weight loss 10 years after bariatric surgery [surgery group, body mass index (BMI) 31.5 kg m(-2)]; obese patients who maintained stable weight during the same time period (obese group, BMI 42.5 kg m(-2)); and normal weight subjects (lean group, BMI 24.4 kg m(-2)). Patients in the surgery group, compared with those in the obese group, had slightly lower common carotid artery (CCA) IMT (0.75 ± 0.18 vs. 0.78 ± 0.17 mm) and common carotid bulb (CCB) IMT (0.92 ± 0.32 vs. 0.97 ± 0.32 mm); however, these differences were not statistically significant. Lean individuals, compared with those in the surgery group, had significantly lower CCA and CCB IMT values (P Obese patients with long-term sustained weight loss did not have thinner carotid artery walls compared with their weight-stable obese counterparts. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  12. Local Power -- Global Connections: linking the world to a sustainable future through decentralized energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Brent, Richard; Sweet, David

    2007-07-01

    Various international dynamics are converging to increase the attractiveness of decentralized energy as a complement to existing centralized energy infrastructures. Decentralized energy (DE) technologies, including onsite renewables, high efficiency cogeneration and industrial energy recycling, offer considerable benefits to those seeking working alternatives to emerging challenges in the energy sector. DE is ideally suited to provide clean affordable energy to areas where modern energy services are currently lacking. Having smaller generators close to where energy is required ensures a safe, reliable and secure energy supply when the energy is required. Furthermore, because DE is a much cleaner alternative than conventional central power plants and the energy provided comes at a much smaller price tag DE is an increasingly acceptable alternative both in the developed and developing world. DE is sure to play a key role in any plan to build a sustainable energy future. (auth)

  13. GIS based evaluation of crop suitability for agricultural sustainability around Kolaghat thermal power plant, India.

    Science.gov (United States)

    Adak, Subhas; Adhikari, Kalyan; Brahmachari, Koushik

    2016-09-01

    Fly ash exhaust from Kolaghat thermal power plant, West Bengal, India,?? affects the areas within the radius of 3 - 4 km. Land information system indicated that surface texture within 4 km was silty loam and clay content increased with increase of distance. Soil pH was alkaline (7.58-8.01) in affected circles, whereas soil was acidic (5.95-6.41) in rest of block. Organic carbon (OC) is roving from 0.36 to 0.64% in the nearer circles which is lesser from others. The present Crop suitability analysis revealed that 96.98 % area was suitable (S1) for maize, sesame, jute, whereas these were cultivated in less than 1% of land. Flowers are the best suitable (S1) in 88.9 % but it was grown in 6.02 % area.? The present rice area within 4 km of KTPP is showing moderately suitable (S2) and S1 for the rest. Wheat is moderately suitable (S2) in the almost all the circles.? Cultivation of vegetable crops is limited in the affected circles while the highly suitable (S1) comprises 67.49 % for the remaining areas though it covered only 6.01 % of the block.? This evaluation precisely improves more than 300% from the earlier cropping intensity of 177.95 %. Suitability based land use allocation serves as stepping stone to promote agricultural sustainability. Geographic information system (GIS) model has been developed to assess site specific crop suitability for sustainable agricultural planning.

  14. Assessment of the turkey’s electric power policies in terms of sustainability

    Directory of Open Access Journals (Sweden)

    Atis Selcuk

    2014-01-01

    Full Text Available This study, using statistical data published by the Turkish Electricity Transmission Company, analyzes key parameters such as installed capacity and energy demand growth rates, investment plans and emission rates, taking into consideration the expected increase in use through the year 2023. The results of the analyses were compared to relevant data from around the world. The weight of domestic - and especially renewable - resources in investment plans for the next 10 years was discussed. Recommendations for an investment plan to support sustainable development in Turkey are listed. Consequently, the lack of investment in domestic and renewable energy projects decreases the competitive power of Turkey vis-à-vis Organisation for Economic Co-Operation and Development countries in terms of many parameters. For a sustainable development, the country must make significant changes in its foreign-dependent energy production policies. Any future policies must encourage supplying local resources to meet the continuously increasing demand. Qualifications for incentive mechanisms applied to investments in renewable energy should be developed. The impact of the private sector on the installation of new plants must also be increased by quickly completing the privatization process.

  15. Assessment of Renewable Energy Sources & Municipal Solid Waste for Sustainable Power Generation in Nigeria

    Science.gov (United States)

    Aderoju, Olaide M.; Dias, Guerner A.; Echakraoui, Zhour

    2017-12-01

    The demand for Energy in most Sub-Saharan African countries has become unimaginable despite its high potential of natural and renewable resources. The deficit has impeded the regions’ economic growth and sustainability. Nigeria as a nation is blessed with fossil fuels, abundant sunlight, hydro, wind and many among others, but the energy output to its population (185 million) still remains less than 4000MW. Currently, the clamour for an alternative but renewable energy source is the demand of the globe but it is quite expensive to achieve the yield that meets the Nigeria demand. Hence, this study aims at identifying and mapping out various regions with renewable energy potentials. The study also considers municipal solid waste as a consistent and available resource for power generation. Furthermore, this study examines the drawbacks inhibiting the inability to harness these renewable, energy generating potentials in full capacity. The study will enable the authorities and other stakeholders to invest and plan on providing a sustainable energy for the people.

  16. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    Science.gov (United States)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  17. Recursive Estimation of π-Line Parameters for Electric Power Distribution Grids

    DEFF Research Database (Denmark)

    Prostejovsky, Alexander; Gehrke, Oliver; Kosek, Anna Magdalena

    2016-01-01

    Electrical models of power distribution grids are used in applications such as state estimation and Optimal Power Flow (OPF), the reliability of which depends on the accuracy of the model. This work presents an approach for estimating distribution line parameters from Remote Terminal Unit (RTU...

  18. Modeling wind speed and wind power distributions in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils [Department of Physics, National University of Rwanda, P.O. Box 117, Huye District, South Province (Rwanda)

    2011-02-15

    Utilization of wind energy as an alternative energy source may offer many environmental and economical advantages compared to fossil fuels based energy sources polluting the lower layer atmosphere. Wind energy as other forms of alternative energy may offer the promise of meeting energy demand in the direct, grid connected modes as well as stand alone and remote applications. Wind speed is the most significant parameter of the wind energy. Hence, an accurate determination of probability distribution of wind speed values is very important in estimating wind speed energy potential over a region. In the present study, parameters of five probability density distribution functions such as Weibull, Rayleigh, lognormal, normal and gamma were calculated in the light of long term hourly observed data at four meteorological stations in Rwanda for the period of the year with fairly useful wind energy potential (monthly hourly mean wind speed anti v{>=}2 m s{sup -1}). In order to select good fitting probability density distribution functions, graphical comparisons to the empirical distributions were made. In addition, RMSE and MBE have been computed for each distribution and magnitudes of errors were compared. Residuals of theoretical distributions were visually analyzed graphically. Finally, a selection of three good fitting distributions to the empirical distribution of wind speed measured data was performed with the aid of a {chi}{sup 2} goodness-of-fit test for each station. (author)

  19. modeling and optimization of an electric power distribution network

    African Journals Online (AJOL)

    user

    distribution systems including distributed generation. A constructive heuristic algorithm (CHA) is proposed in [5] for the EDNEPP. In that work, the binary decision variables of the mixed binary integer non-linear problem. (MBINLP) are relaxed making the problem a nonlinear programming (NLP) problem. The NLP problem is ...

  20. Development of An On-Line, Core Power Distribution Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Tunc ALdemir; Don Miller; Peng Wang

    2007-10-02

    The objective of the proposed work was to develop a software package that can construct in three-dimensional core power distributions using the signals from constant temperature power sensors distributed in the reactor core. The software developed uses a mode-based state/parameter estmation technique that is particularly attractive when there are model uncertainties and/or large signal noise. The software yields the expected value of local power at the detector locations and points in between, as well as the probability distribution of the local power density

  1. Self-Powered WSN for Distributed Data Center Monitoring

    Directory of Open Access Journals (Sweden)

    Davide Brunelli

    2016-01-01

    Full Text Available Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  2. OPTIMIZATION OF RELIABILITY ELECTRIC POWER TRANSMISSION AND DISTRIBUTION NETWORKS

    National Research Council Canada - National Science Library

    Dorin Sarchiz; Daniel Bucur

    2011-01-01

      The problem of quality services provided by suppliers of electricity is currently a major problem due to significant economic implications given the complexity and cost of electric power transmission...

  3. Simulation Environment for Power Management and Distribution Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this research project is to investigate autonomous control architectures for spacecraft power systems. Such techniques will be critical for...

  4. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    Science.gov (United States)

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  5. Simulation Environment for Power Management and Distribution Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this research project is to investigate an autonomous and online control structure for finite-inertia power systems (dc and ac) with a...

  6. Self-Powered WSN for Distributed Data Center Monitoring.

    Science.gov (United States)

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-02

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  7. Reactive power balance in a distribution network with wind farms and CHPS

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, John Eli; Hylle, Per

    2007-01-01

    In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems. The tra......In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems....... The transfer of reactive power reduces the capacity of the lines, causes thermal losses and can in some cases reduce the voltage stability margin of the system. To identify the origin of the problem, an actual distribution system with a high penetration of wind power and distributed generation has been...

  8. Multi-objective PSO based optimal placement of solar power DG in radial distribution system

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar

    2017-06-01

    Full Text Available Ever increasing trend of electricity demand, fossil fuel depletion and environmental issues request the integration of renewable energy into the distribution system. The optimal planning of renewable distributed generation (DG is much essential for ensuring maximum benefits. Hence, this paper proposes the optimal placement of probabilistic based solar power DG into the distribution system. The two objective functions such as power loss reduction and voltage stability index improvement are optimized. The power balance and voltage limits are kept as constraints of the problem. The non-sorting pare to-front based multi-objective particle swarm optimization (MOPSO technique is proposed on standard IEEE 33 radial distribution test system.

  9. Consensus-based Distributed Control for Accurate Reactive, Harmonic and Imbalance Power Sharing in Microgrids

    DEFF Research Database (Denmark)

    Zhou, Jianguo; Kim, Sunghyok; Zhang, Huaguang

    2017-01-01

    This paper investigates the issue of accurate reactive, harmonic and imbalance power sharing in a microgrid. Harmonic and imbalance droop controllers are developed to proportionally share the harmonic power and the imbalance power among distributed generation (DG) units and improve the voltage qu...

  10. Effect of stroke rate on the distribution of net mechanical power in rowing

    NARCIS (Netherlands)

    Hofmijster, M.J.; Landman, E.H.; Smith, R.M.; van Soest, A.J.

    2007-01-01

    The aim of this study was to assess the effect of manipulating stroke rate on the distribution of mechanical power in rowing. Two causes of inefficient mechanical energy expenditure were identified in rowing. The ratio between power not lost at the blades and generated mechanical power (P̄

  11. A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Starke, Michael R [ORNL; Zhang, Xiaohu [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2016-01-01

    This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.

  12. A Concept Plane using electric distributed propulsion Evaluation of advanced power architecture

    OpenAIRE

    Ridel, M.; B. Paluch; Doll, C; Donjat, D.; Hermetz, J.; Guigon, A.; Schmollgruber, P.; Atinault, O.; Choy, P.; Le Tallec, P.; Dessornes, O.; Lefebvre, T

    2015-01-01

    International audience; Starting from electrical distributed propulsion system concept, the ONERA’s engineers demonstrated the viability of an all electrical aircraft for a small business aircraft. This paper describes the advanced power architecture considering energy conversion and power distribution. The design of this advanced power architecture requires the multi-physic integration of different domains as flight performances, safety and environmental requirements (thermal, electric, elec...

  13. Agent-based Integration of Complex and Heterogeneous Distributed Energy Resources in Virtual Power Plants

    DEFF Research Database (Denmark)

    Clausen, Anders; Umair, Aisha; Demazeau, Yves

    2017-01-01

    A Virtual Power Plant aggregates several Distributed Energy Resources in order to expose them as a single, controllable entity. This enables smaller Distributed Energy Resources to take part in Demand Response programs which traditionally only targeted larger consumers. To date, models for Virtual...... Power Plants have considered Distributed Energy Resources as simple, atomic entities. However, often Distributed Energy Resources constitute complex and heterogeneous entities with a mix of multiple, controllable loads, generators and electrical storage units which must be coordinated locally....... This paper proposes an agent-based method for integration of complex, heterogeneous Distributed Energy Resources into Virtual Power Plants. The approach models Distributed Energy Resources and Virtual Power Plants as agents with multi-objective, multi-issue reasoning. This enables modeling of VPPs...

  14. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  15. Nuclear power in Canada : an examination of risks, impacts and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, M.; Jamison, A.; Wong, R.; Czajkowski, P.

    2006-12-15

    This study examines the environmental impacts of the use of nuclear energy for electricity generation in Canada through each of the four major stages of nuclear energy production: uranium mining and milling; uranium refining, conversion and fuel fabrication; nuclear power plant operation; and waste fuel management. It is intended to inform public debate over the future role of nuclear energy in Canada, and to facilitate comparisons of nuclear energy with other potential energy sources. The study examines waste generation, atmospheric releases, impacts on water quality and water use, and landscape and ecosystem impacts of nuclear energy production. It also examines the occupational and community health impacts of nuclear power and key long-term challenges to its sustainability, including security and weapons proliferation risks. Specific environmental impacts are examined in the context of CANDU nuclear technology, the only reactor type currently in use in Canada. The study findings likely underestimate the overall impacts of the use of nuclear energy for electricity production in Canada. This is a result of significant gaps in the publicly available information on releases of pollutants and contaminants, as well as on the fate of certain waste streams related to the nuclear industry. In addition, the study relies on what are likely conservative estimates in a number of key areas, particularly with respect to the generation of greenhouse gas (GHG) emissions.

  16. Access, excess, and ethics—towards a sustainable distribution model for antibiotics

    Science.gov (United States)

    Heyman, Gabriel; Cars, Otto; Bejarano, Maria-Teresa

    2014-01-01

    The increasing antibiotic resistance is a global threat to health care as we know it. Yet there is no model of distribution ready for a new antibiotic that balances access against excessive or inappropriate use in rural settings in low- and middle-income countries (LMICs) where the burden of communicable diseases is high and access to quality health care is low. Departing from a hypothetical scenario of rising antibiotic resistance among pneumococci, 11 stakeholders in the health systems of various LMICs were interviewed one-on-one to give their view on how a new effective antibiotic should be distributed to balance access against the risk of inappropriate use. Transcripts were subjected to qualitative ‘framework’ analysis. The analysis resulted in four main themes: Barriers to rational access to antibiotics; balancing access and excess; learning from other communicable diseases; and a system-wide intervention. The tension between access to antibiotics and rational use stems from shortcomings found in the health systems of LMICs. Constructing a sustainable yet accessible model of antibiotic distribution for LMICs is a task of health system-wide proportions, which is why we strongly suggest using systems thinking in future research on this issue. PMID:24735111

  17. Access, excess, and ethics--towards a sustainable distribution model for antibiotics.

    Science.gov (United States)

    Heyman, Gabriel; Cars, Otto; Bejarano, Maria-Teresa; Peterson, Stefan

    2014-05-01

    The increasing antibiotic resistance is a global threat to health care as we know it. Yet there is no model of distribution ready for a new antibiotic that balances access against excessive or inappropriate use in rural settings in low- and middle-income countries (LMICs) where the burden of communicable diseases is high and access to quality health care is low. Departing from a hypothetical scenario of rising antibiotic resistance among pneumococci, 11 stakeholders in the health systems of various LMICs were interviewed one-on-one to give their view on how a new effective antibiotic should be distributed to balance access against the risk of inappropriate use. Transcripts were subjected to qualitative 'framework' analysis. The analysis resulted in four main themes: Barriers to rational access to antibiotics; balancing access and excess; learning from other communicable diseases; and a system-wide intervention. The tension between access to antibiotics and rational use stems from shortcomings found in the health systems of LMICs. Constructing a sustainable yet accessible model of antibiotic distribution for LMICs is a task of health system-wide proportions, which is why we strongly suggest using systems thinking in future research on this issue.

  18. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  19. Modeling and Simulation of Power Distribution System in More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Zhangang Yang

    2015-01-01

    Full Text Available The More Electric Aircraft concept is a fast-developing trend in modern aircraft industry. With this new concept, the performance of the aircraft can be further optimized and meanwhile the operating and maintenance cost will be decreased effectively. In order to optimize the power system integrity and have the ability to investigate the performance of the overall system in any possible situations, one accurate simulation model of the aircraft power system will be very helpful and necessary. This paper mainly introduces a method to build a simulation model for the power distribution system, which is based on detailed component models. The power distribution system model consists of power generation unit, transformer rectifier unit, DC-DC converter unit, and DC-AC inverter unit. In order to optimize the performance of the power distribution system and improve the quality of the distributed power, a feedback control network is designed based on the characteristics of the power distribution system. The simulation result indicates that this new simulation model is well designed and it works accurately. Moreover, steady state performance and transient state performance of the model can fulfill the requirements of aircraft power distribution system in the realistic application.

  20. Objective assessment of the effect of pupil size upon the power distribution of multifocal contact lenses.

    Science.gov (United States)

    Papadatou, Eleni; Del Águila-Carrasco, Antonio J; Esteve-Taboada, José J; Madrid-Costa, David; Cerviño-Expósito, Alejandro

    2017-01-01

    To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses. Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed. The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about -3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens. In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient's visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.

  1. Power Management for A Distributed Wireless Health Management Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — Distributed wireless architectures for prognostics is an important enabling step in prognostic research in order to achieve feasible real-time system health...

  2. An Improved Harmony Search Algorithm for Power Distribution Network Planning

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.

  3. Sustainability of market-based community distribution of Sprinkles in western Kenya.

    Science.gov (United States)

    Suchdev, Parminder S; Shah, Ami; Jefferds, Maria Elena D; Eleveld, Alie; Patel, Minal; Stein, Aryeh D; Macdonald, Barbara; Ruth, Laird

    2013-01-01

    To evaluate the sustainability of market-based community distribution of micronutrient powders (Sprinkles(®), Hexagon Nutrition, Mumbai, India.) among pre-school children in Kenya, we conducted in August 2010 a follow-up survey, 18 months after study-related marketing and household monitoring ended. We surveyed 849 children aged 6-35 months randomly selected from 60 study villages. Nutritional biomarkers were measured by fingerstick; demographic characteristics, Sprinkles purchases and use were assessed through household questionnaires. We compared Sprinkles use, marketing efforts and biomarker levels with the data from surveys conducted in March 2007, March 2008 and March 2009. We used logistic regression to evaluate associations between marketing activities and Sprinkles use in the 2010 survey. At the 2010 follow-up, 21.9% of children used Sprinkles in the previous 7 days, compared with 64.9% in 2008 (P anaemia and malaria (P iron deficiency (P = 0.44), compared with that in 2008. Sprinkles use in 2010 was associated with decreased iron deficiency (P = 0.03). Sprinkles coverage reduced after stopping household monitoring and reducing marketing activities. Continued promotion and monitoring of Sprinkles usage may be important components to sustain the programme. © 2012 Blackwell Publishing Ltd.

  4. Power Dispatch Optimization of a Distributed Energy Network

    Science.gov (United States)

    Han, Tianyi; Shi, Kun; Liu, Huanan; Yu, Dongmin

    2017-12-01

    With the rapid development of the world economy, energy crisis has become a serious problem. In addition, considering the fact that non-renewable energy reservation decreases day by day, it is important to save energy. This paper develops an innovative optimization model, which is based on the linear programming method, to optimize power flow between each individual user. The proposed method considers power transmission losses and carbon emissions at the same time, therefore, the proposed method can effectively reduce carbon emissions and transmission losses. Through MATLAB simulation, the proposed linear programming optimization model can reduce 28.7% of transmission losses compared to the previous literature.

  5. Power Quality Improvement And Mitigation Of Voltage Sag And Current Swell Using Distributed Power Flow Controller

    OpenAIRE

    P. Nirmala; SK.SAJIDA

    2014-01-01

    Modern power utilities have to respond to a number of challenges such as growth of electricity demand specially in non-linear loads in power grids, consequently, That higher power quality should be considered. In this paper, DPFC which is similar to unified power flow controller (UPFC) in structure, which is used to mitigate the voltage sag and swell as a power quality issue. Unlike UPFC, the common dc-link in DPFC, between the shunt and series converter devices should be eliminated and three...

  6. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  7. Microgrids, virtual power plants and our distributed energy future

    Energy Technology Data Exchange (ETDEWEB)

    Asmus, Peter

    2010-12-15

    Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

  8. optimal location of distributed generation on the nigerian power ...

    African Journals Online (AJOL)

    user

    28-bus Nigerian power network are explained in. Section 4 with the conclusions and areas of future research in ... minimization in a network system based on bus admittance, generation information and load ..... determine the optimal location and sizing of DGs. The installation of DG unit at non optimal places can result.

  9. Optimized Power Generation and Distribution Unit for Mobile Applications

    Science.gov (United States)

    2006-09-01

    Energy Storage Dr. Johannes Jensen highlights the two most important features of a system when looking at possible energy storage solutions as: 1...Systems Investigation 91 1900’s and the development of entire power systems that fit into the palm of your hand and now not uncommon. A Radioactive

  10. Dynamic Power Tariff for Congestion Management in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Shahidehpour, Mohammad

    2018-01-01

    the price sensitivity parameter in the DT method, which is relatively unrealistic in practice. Based on the control theory, a control model with two control loops, i.e., the power flow control and voltage control, is established to analyze the congestion management process by the DPT method. Furthermore...... to save congestion management cost compared to the DT methods....

  11. User-friendly Tool for Power Flow Analysis and Distributed ...

    African Journals Online (AJOL)

    Akorede

    renewable, based on the primary energy source used. Apparently, the environmental concerns of reducing the greenhouse gas emissions and the current deregulation of electric energy market are the main drivers leading to the recent renewed global interest in DG since the conventional. User-friendly Tool for Power Flow ...

  12. Protecting Intelligent Distributed Power Grids against Cyber Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

    2010-12-31

    Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

  13. Distributed MPC applied to power demand side control

    NARCIS (Netherlands)

    Larsen, G.K.H.; Pons, J.; Achterop, S.; Scherpen, J.M.A.

    2013-01-01

    In the future, global energy balance of a smart grid system can be achieved by its agents deciding on their own power demand locally and the exchange of these decisions. In this paper, we model a network of households with washing machine programs that can be shifted in time so that the overall

  14. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    Science.gov (United States)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  15. Optimal Power Flow in Islanded Microgrids Using a Simple Distributed Algorithm

    Directory of Open Access Journals (Sweden)

    Eleonora Riva Sanseverino

    2015-10-01

    Full Text Available In this paper, the problem of distributed power losses minimization in islanded distribution systems is dealt with. The problem is formulated in a very simple manner and a solution is reached after a few iterations. The considered distribution system, a microgrid, will not need large bandwidth communication channels, since only closeby nodes will exchange information. The correction of generated active powers is possible by means of the active power losses partition concept that attributes a portion of the overall power losses in each branch to each generator. The experimental part shows the first results of the proposed method on an islanded microgrid. Simulation results of the distributed algorithm are compared to a centralized Optimal Power Flow approach and very small errors can be observed.

  16. An Enhanced Quantum-Behaved Particle Swarm Algorithm for Reactive Power Optimization considering Distributed Generation Penetration

    Directory of Open Access Journals (Sweden)

    Runhai Jiao

    2015-01-01

    Full Text Available This paper puts forward a novel particle swarm optimization algorithm with quantum behavior (QPSO to solve reactive power optimization in power system with distributed generation. Moreover, differential evolution (DE operators are applied to enhance the algorithm (DQPSO. This paper focuses on the minimization of active power loss, respectively, and uses QPSO and DQPSO to determine terminal voltage of generators, and ratio of transformers, switching group number of capacitors to achieve optimal reactive power flow. The proposed algorithms are validated through three IEEE standard examples. Comparing the results obtained from QPSO and DQPSO with those obtained from PSO, we find that our algorithms are more likely to get the global optimal solution and have a better convergence. What is more, DQPSO is better than QPSO. Furthermore, with the integration of distributed generation, active power loss has decreased significantly. Specifically, PV distributed generations can suppress voltage fluctuation better than PQ distributed generations.

  17. Modeling, control, and dispatch of photovoltaic-based power distribution systems

    Science.gov (United States)

    Carrasco, Miguel

    Small-scale generators, also called distributed generators (DGs), are primed to play a central role in future distribution systems. If properly integrated, DGs present two main advantages: (i) they help decongest existing transmission grids; and (ii) CO2 emissions are reduced since most DGs are based on renewables like wind and solar. Their integration into distribution systems is one of the main challenges the power industry will be facing in the coming years. Photovoltaic (PV) power generation represents a key technology for realizing the DG concept. In this dissertation, technical solutions are developed that enable an increased penetration of PV systems, while improving the efficiency, reliability, and power quality of power distribution grids. The presented research spans from PV array modeling, parameter identification and estimation methods, through advanced control strategies for the power electronic interfaces, to system--level optimal dispatch strategies. Simulation-based and experimental validation results show the performance of the proposed techniques.

  18. Sustainability for power generation exemplarily shown by regenerative energy systems. Final report; Nachhaltigkeit am Beispiel regenerativer Energiesysteme zur Stromerzeugung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, T.J.; Wagner, H.J.

    2005-07-01

    Since the energy sector plays a key role in the concept of sustainable development, aspects of sustainability should be addressed within the scope of technology assessments. This applies particularly to new energy systems and new technological solutions. To evaluate sustainability, indicators are needed. A system of indicators was designed within a research project carried out by the Chair of Energy Systems and Energy Economics of the Ruhr-University Bochum. At first, the Brundtland-Definition for sustainable development was put in terms for energy conversion systems. Secondly, indicators were selected. For this purpose, a standardized procedure was developed that allows quantified multi criteria analysis. Overall objective was to cover all significant issues of sustainability by a minimum number of indicators. Seven appropriate indicators were identified: cumulated energy demand, power production costs, demand of air, water and area, as well as two new developed indicators to describe risks related to the security of energy supply, and employment effects. To prove the applicability of the indicator system, sample calculations were made for several solar and wind energy systems as well as for a natural gas fired power plant. Beside these examples, the indicator set in principle is applicable to any other technological pathway. It enables comparisons between conventional power generation technologies and innovative (renewable) energy systems. (orig.)

  19. Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF) method is proven to be efficient...... in the applications such as curtailment management and reactive power control. Nonconvex nature of the OPF makes it difficult to solve and convex relaxation is a promising method to solve the OPF very efficiently. This paper investigates the geometry of the power flows and the convex-relaxed power flows when high...... penetration level of renewables is present in the distribution networks. The geometry study helps understand the fundamental nature of the OPF and its convex-relaxed problem, such as the second-order cone programming (SOCP) problem. A case study based on a three-node system is used to illustrate the geometry...

  20. Z-Source-Inverter-Based Flexible Distributed Generation System Solution for Grid Power Quality Improvement

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Vilathgamuwa, D. M.; Loh, Poh Chiang

    2009-01-01

    . The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage...... buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using......Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time...

  1. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....... charging capability in existing low voltage distribution feeders. The aim is to prevent the voltage to exceed the permitted values when charging at high power, by exploiting the effect of the reactive power. The proposed guidelines for distribution system operators are reported in a matrix, which indicates...

  2. Surge snubber design for high power-density DC-DC converters in HVDC power distribution systems

    OpenAIRE

    Domoto, Kazuhide; Ninomiya, Tamotsu; Ishizuka, Yoichi; Simanjorang, Rejeki; Yamaguchi, Hiroshi; Abe, Seiya; Kaga, Masato

    2012-01-01

    In an isolated DC-DC converter utilized in the HVDC power distribution system, a large surge voltage occurs across the secondary-side diodes due to the transformer's leakage inductance, and then the diodes with a large withstand voltage are required. However, those diodes cause a lot of power loss. In this paper, a simple surge snubber with prominent surge suppression capability is examined, and the surge-voltage evaluation through the analysis using the high-frequency equivalent circuits, wh...

  3. Distributed Leadership: The Uses and Abuses of Power

    Science.gov (United States)

    Lumby, Jacky

    2013-01-01

    In about a decade the theory of distributed leadership has moved from a tool to better understand the ecology of leadership to a widely prescribed practice. This article considers how to account for its spread and dominance and what purpose it serves. The concept offers an enticing suggestion of including more in leadership, and even sometimes…

  4. Grid support by power electronic converters of distributed generation units

    NARCIS (Netherlands)

    Morren, J.

    2006-01-01

    An increasing number of small Distributed Generation (DG) units are connected to the grid. The introduction of DG causes several problems, which are mainly related to the differences between DG units and conventional generators. Four problems have been considered in this thesis: damping of

  5. Space power distribution system technology. Volume 1: Reference EPS design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.

    1983-01-01

    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.

  6. Introducing distributed learning approaches in wind power forecasting

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2016-01-01

    Renewable energy forecasting is now of core interest to both academics, who continuously propose new forecast methodologies, and forecast users for optimal operations and participation in electricity markets. In view of the increasing amount of data being collected at power generation sites, thanks...... to substantial deployment of generating capacities and increased temporal resolution, it may now be possible to build large models accounting for all space-time dependencies. This will eventually allow to significantly improve the quality of short-term renewable power forecasts. However, in practice, it is often...... to large datasets in Australia (22 wind farms) and France (85 wind farms) are used to illustrate the interest and performance of our proposal....

  7. Sustainability performance for Brazilian electricity power industry: An assessment integrating social, economic and environmental issues

    NARCIS (Netherlands)

    Sartori, S.; Witjes, S.; Campos, L.M.S.

    2017-01-01

    The increased pressure on companies to address sustainability issues has resulted in the development of several voluntary corporate sustainability integration approaches. The array of existing approaches is large and overwhelming, resulting in companies not understanding what corporate

  8. Power Distribution on the World Stage: The Impact of the Crimean Crisis

    Directory of Open Access Journals (Sweden)

    Alla Roşca

    2014-10-01

    Full Text Available This article examines the power distribution on the world stage and emphasizes the Russia-US relationship as its essential element.  The article approaches the crisis in Crimea from the system level perspective and seeks to answer the question of its impact on the distribution of power in the world order. Furthermore, the paper examines the interpretation of the uni/multipolarity as expressed by the US and Russia. The article concludes that the crisis did not change the distribution of power on the global stage and became a concentrated expression of the dispute about the multipolar world.  

  9. Development of Ada language control software for the NASA power management and distribution test bed

    Science.gov (United States)

    Wright, Ted; Mackin, Michael; Gantose, Dave

    1989-01-01

    The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.

  10. Exploiting ancillary services from distributed generation - perspectives for the Danish power system

    DEFF Research Database (Denmark)

    Nyeng, Preben; Pedersen, Knud Ole Helgesen; Østergaard, Jacob

    2007-01-01

    The share of the electric power production originating from distributed energy resources has rapidly increased during the recent past. However when it comes to ancillary services necessary to ensure the stability and appropriate operation of the power system, the distributed energy resources take...... a very passive role. This paper outlines suggestions on how to activate the potential of ancillary services from distributed energy resources, thereby exploiting their ability to contribute to power system operation. Furthermore, methods for integrating the ancillary service delivery into a deregulated...

  11. SOSPO-SP: Secure Operation of Sustainable Power Systems Simulation Platform for Real-Time System State Evaluation and Control

    DEFF Research Database (Denmark)

    Morais, Hugo; Vancraeyveld, Pieter; Pedersen, Allan Henning Birger

    2014-01-01

    New challenges are arising in managing power systems as these systems become more complex due to the use of high levels of distributed generation, mainly based on renewable energy sources, and due to the competitive environment within the power sector. At the same time, the use of Phasor Measurem......New challenges are arising in managing power systems as these systems become more complex due to the use of high levels of distributed generation, mainly based on renewable energy sources, and due to the competitive environment within the power sector. At the same time, the use of Phasor...

  12. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana

    2013-01-01

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller...... that exploits this freedom to reduce the fatigue on the turbines in the wind power plant. We show that the controller can be designed in a decentralized manner, such that each wind turbine is equipped with a local low-complexity controller relying only on few measurements and little communication. As a basis...... for the controller design, a linear wind turbine model is constructed and verified in an operational wind power plant of megawatt turbines. Due to limitations of the wind power plant available for tests, it is not possible to implement the developed controller; instead the final distributed controller is evaluated...

  13. Stationarity of the inter-event power-law distributions

    CERN Document Server

    Gandica, Yerali; Aidos, Fernando Sampaio Dos; Lambiotte, Renaud; Carletti, and Timoteo

    2016-01-01

    A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia editing records to unravel some features of this phenomenon. We show that even though the probability to start editing is conditioned by the circadian 24 hour cycle, the conditional probability for the time interval between successive edits at a given time of the day is independent from the latter. We confirm our findings with the activity of posting on the social network Twitter. Our result suggests there is an intrinsic humankind scheduling pattern: after overcoming the encumbrance to start an activity, there is a robust distribution of new related actions, which does not depend on the time of day.

  14. Ethanol used as an environmentally sustainable energy resource for thermal power plants

    Science.gov (United States)

    Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.

    2016-09-01

    Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.

  15. Optimal Power Flow in Islanded Microgrids Using a Simple Distributed Algorithm

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa; Badalamenti, Romina

    2015-01-01

    In this paper, the problem of distributed power losses minimization in islanded distribution systems is dealt with. The problem is formulated in a very simple manner and a solution is reached after a few iterations. The considered distribution system, a microgrid, will not need large bandwidth co...... results of the proposed method on an islanded microgrid. Simulation results of the distributed algorithm are compared to a centralized Optimal Power Flow approach and very small errors can be observed.......In this paper, the problem of distributed power losses minimization in islanded distribution systems is dealt with. The problem is formulated in a very simple manner and a solution is reached after a few iterations. The considered distribution system, a microgrid, will not need large bandwidth...... communication channels, since only closeby nodes will exchange information. The correction of generated active powers is possible by means of the active power losses partition concept that attributes a portion of the overall power losses in each branch to each generator. The experimental part shows the first...

  16. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    Science.gov (United States)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently

  17. Stratum Electricity Markets: Toward Multi-temporal Distributed Risk Management for Sustainable Electricity Provision

    Science.gov (United States)

    Wu, Zhiyong (Richard)

    Motivated by the overall challenge of ensuring long-term sustainable electricity service, we view this challenge as a long-term decision making problem under uncertainties. We start by recognizing that, independent of the industry organization, the uncertainties are enormous and often exogenous to the energy service providers. They are multi-dimensional and are result of fundamental drivers, ranging from the supply side, through the demand side, to the regulatory and policy sides. The basic contribution of this thesis comes from the recognition that long-term investments for ensuring reliable and stable electricity service critically depend on how these uncertainties are perceived, valued and managed by the different stakeholders within the complex industry organization such as the electric power industry. We explain several reasons why price signals obtained from current short-term electricity markets alone are not sufficient enough for long-term sustainable provision. Some enhancements are presented in the thesis to improve the short-term electricity market price signals to reflect the true cost of operation. New market mechanisms and instruments are needed to facilitate the stakeholders to better deal with long-term risks. The problems of ensuring long-term stable reliable service in the sense of the traditional resource adequacy requirements are revisited in both the restructuring industry and regulated industry. We introduce a so-called Stratum Electricity Market (SEM) design as the basic market mechanism for solving the problem of long-term reliable electricity service through a series of interactive multi-lateral market exchange platforms for risks communication, management and evaluations over various time horizons and by the different groups of stakeholders. In other words, our proposed SEM is a basic IT-enabled framework for the decision making processes by various parties over different time. Because of the uniqueness of electricity as a commodity, the

  18. Sustainable Modular Adaptive Redundancy Technique Emphasizing Partial Reconfiguration for Reduced Power Consumption

    Directory of Open Access Journals (Sweden)

    R. Al-Haddad

    2011-01-01

    Full Text Available As reconfigurable devices' capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. Organic computing paradigms have been proposed for fault-tolerant systems because they promote behaviors that allow complex digital systems to adapt and survive in demanding environments. In this paper, we develop a sustainable modular adaptive redundancy technique (SMART composed of a two-layered organic system. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA to provide self-repair using a novel approach called reconfigurable adaptive redundancy system (RARS. The software layer supervises the organic activities on the FPGA and extends the self-healing capabilities through application-independent, intrinsic, and evolutionary repair techniques that leverage the benefits of dynamic partial reconfiguration (PR. SMART was evaluated using a Sobel edge-detection application and was shown to tolerate stressful sequences of injected transient and permanent faults while reducing dynamic power consumption by 30% compared to conventional triple modular redundancy (TMR techniques, with nominal impact on the fault-tolerance capabilities. Moreover, PR is employed to keep the system on line while under repair and also to reduce repair time. Experiments have shown a 27.48% decrease in repair time when PR is employed compared to the full bitstream configuration case.

  19. The greenhouse index of sustainable development for metallurgical processes of production in aspect of green power

    Directory of Open Access Journals (Sweden)

    Lisienko Vladimir

    2016-01-01

    Full Text Available The accounting of greenhouse gases (GHG according to plans of the Russian Federation becomes obligatory since 2016 for the enterprises with issue of GHG not less than 150 thousand tons of CO2, since 2017 – from 50 thousand tons of CO2. Introduction of a carbon tax (15 dollars/t of CO2 is planned. Voluntary inventory of GHG of the enterprises and territories which in the long term apply is carried out to be called clever. According to University of Cambridge (USA about 45% depreciation of joint-stock portfolios in the world markets, the expected climate change connected with are expected. Parameter for an assessment of the clever city with the developed metallurgy and need of decrease in greenhouse emissions in the atmosphere – the indicator of a sustainable development considering emission of carbon dioxide, prime cost of steel and its power consumption is offered. Its values for tandems blast furnace (BF + oxygen converter (OC, BF, Corex, Romelt, Midrex, Hyl-3 everyone with arc furnace (AF are defined.

  20. Digital control of grid connected converters for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Skjellnes, Tore

    2008-07-01

    Pulse width modulated converters are becoming increasingly popular as their cost decreases and power rating increases. The new trend of small scale power producers, often using renewable energy sources, has created new demands for delivery of energy to the grid. A major advantage of the pulse width modulated converter is the ability to control the output voltage at any point in the voltage period. This enables rapid response to load changes and non-linear loads. In addition it can shape the voltage in response to the output current to create an outward appearance of a source impedance. This is called a virtual impedance. This thesis presents a controller for a voltage controlled three phase pulse width modulated converter. This controller enables operation in standalone mode, in parallel with other converters in a micro grid, and in parallel with a strong main grid. A time varying virtual impedance is presented which mainly attenuates reactive currents. A method of investigating the overall impedance including the virtual impedance is presented. New net standards have been introduced, requiring the converter to operate even during severe dips in the grid voltage. Experiments are presented verifying the operation of the controller during voltage dips. (Author). 37 refs., 65 figs., 10 tabs

  1. Electric power distribution. 7. rev. ed.; Elektrische Energieverteilung

    Energy Technology Data Exchange (ETDEWEB)

    Flosdorff, R. [Fachhochschule Aachen (Germany); Hilgarth, G. [Fachhochschule Braunschweig-Wolfenbuettel, Wolfenbuettel (Germany)

    2000-07-01

    This is the 7th revised edition of a 30-year-old standard textbook. There are some new chapters: Methods of calculating voltage drop, thermal capacity and short-circuit resistance; Types and dimensioning of overhead transmission lines and underground cables; Protection systems; Control systems; Power stations; Fundamentals of electric power supply. There is an appendix with units, bibliographic references, VDE regulations, characteristics of cables and supply lines, sysmbols and protective measures. [German] Die vorliegenden 7. Auflage des seit 30 Jahren bewaehrten Werkes wurde ueberarbeitet und aktualisiert. Die Struktur wurde beibehalten; jedoch wurden die modernen Rechenverfahren weiter ergaenzt. Der Studierende wird befaehigt, Leitungen und Netze hinsichtlich Spannungsabfall, thermischer Belastbarkeit und Kurzschlussfestigkeit zu dimensionieren, wobei auch oekologische Gesichtspunkte beruecksichtigt werden. Auf die Bauarten und die Bemessung von Freileitungen und Kabelanlagen einschliesslich der Hochleistungskabel wird eingegangen. Zur Schadensbegrenzung bei elektrischen Fehlern werden die erforderlichen und notwendigen Schutzeinrichtungen vorgestellt. Der Abschnitt ueber Schaltanlagen gibt einen Einblick in die Struktur der Geraetetechnik zur Versorgung mit elektrischer Energie. Die Kraftwerke als Quelle der elektrischen Energieversorgung werden im Ueberblick abgehandelt. Schliesslich werden Grundbegriffe der Elektrizitaetswirtschaft, die jeder Ingenieur der Elektrotechnik kennen sollte, erlaeutert. Auch dem in der Praxis stehenden Ingenieur kann deshalb dieses Buch ein wertvolles Hilfsmittel sein. Im Anhang kann der Leser Einheiten, Schrifttum, Normblaetter, VDE-Bestimmungen, Kenndaten von Kabeln und Leitungen, Schaltzeichen und Schutzmassnahmen nachschlagen. (orig.)

  2. Intelligent system to control electric power distribution networks

    Directory of Open Access Journals (Sweden)

    Pablo CHAMOSO

    2016-07-01

    Full Text Available The use of high voltage power lines transport involves some risks that may be avoided with periodic reviews as imposed by law in most countries. The objective of this work is to reduce the number of these periodic reviews so that the maintenance cost of power lines is also reduced. To reduce the number of transmission towers (TT to be reviewed, a virtual organization (VO based system of agents is proposed in conjunction with different artificial intelligence methods and algorithms. This system is able to propose a sample of TT from a selected set to be reviewed and to ensure that the whole set will have similar values without needing to review all the TT. As a result, the system provides a software solution to manage all the review processes and all the TT of Spain, allowing the review companies to use the application either when they initiate a new review process for a whole line or area of TT, or when they want to place an entirely new set of TT, in which case the system would recommend the best place and the best type of structure to use.

  3. Limit distributions for the terms of central order statistics under power normalization

    OpenAIRE

    El Sayed M. Nigm

    2007-01-01

    In this paper the limiting distributions for sequences of central terms under power nonrandom normalization are obtained. The classes of the limit types having domain of L- attraction are investigated.

  4. Limit distributions for the terms of central order statistics under power normalization

    Directory of Open Access Journals (Sweden)

    El Sayed M. Nigm

    2007-12-01

    Full Text Available In this paper the limiting distributions for sequences of central terms under power nonrandom normalization are obtained. The classes of the limit types having domain of L- attraction are investigated.

  5. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    Science.gov (United States)

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  6. Voltage Control of Distribution Grids with Multi-Microgrids Using Reactive Power Management

    Directory of Open Access Journals (Sweden)

    WLODARCZYK, P.

    2015-02-01

    Full Text Available Low-voltage Microgrids can be valuable sources of ancillary services for the Distribution System Operators (DSOs. The aim of this paper was to study if and how multi-microgrids can contribute to Voltage Control (VC in medium-voltage distribution grids by means of reactive power generation and/or absorption. The hierarchical control strategy was proposed with the main focus on the tertiary control which was defined as optimal power flow problem. The interior-point algorithm was applied to optimise experimental benchmark grid with the presence of Distributed Energy Resources (DERs. Moreover, two primary objectives were formulated: active power losses and amount of reactive power used to reach the voltage profile. As a result the active power losses were minimised to the high extent achieving the savings around 22% during entire day.

  7. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed

    2015-01-01

    The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability...... of the electrical system, opens new horizons for microgrid applications integrated into electrical power systems. The hierarchical control structure consists of primary, secondary, and tertiary levels for microgrids that mimic the behavior of the mains grid is reviewed. The main objective of this paper is to give...... a description of state of the art for the distributed power generation systems (DPGS) based on renewable energy and explores the power converter connected in parallel to the grid which are distinguished by their contribution to the formation of the grid voltage and frequency and are accordingly classified...

  8. An Optimization Framework for Load and Power Distribution in Wind Farms

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal; Kanev, Stoyan

    2012-01-01

    by a system operator. Moreover, the reference signals are determined to reduce the load acting on wind turbines at low frequencies. Therefore, a trade-off is made for load and power control, which is formulated as an optimization problem. Afterwards, the optimization problem for the wind farm modeled......The aim of this paper is to develop a controller for wind farms to optimize the load and power distribution. In this regard, the farm controller calculates the power reference signals for individual wind turbine controllers such that the sum of the power references tracks the power demanded...

  9. Transactive control: a framework for operating power systems characterized by high penetration of distributed energy resources

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Kok, Koen

    2016-01-01

    The increasing number of distributed energy resources connected to power systems raises operational challenges for the network operator, such as introducing grid congestion and voltage deviations in the distribution network level, as well as increasing balancing needs at the whole system level......, followed by a literature review and demonstration projects that apply to transactive control. Cases are then presented to illustrate the transactive control framework. At the end, discussions and research directions are presented, for applying transactive control to operating power systems, characterized...

  10. Application of the mobility power flow approach to structural response from distributed loading

    Science.gov (United States)

    Cuschieri, J. M.

    1988-01-01

    The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.

  11. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2017-01-01

    function of the slave model for the master model, which reflects the impacts of each slave model. Second, the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master......–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost...

  12. Influence of Mobile Users' Density Distribution on the CDMA Base Station Power

    Science.gov (United States)

    Lebl, Aleksandar; Mitić, Dragan; Popović, Miroslav; Markov, Žarko; Mileusnić, Mladen; Matić, Vladimir

    2016-12-01

    In this paper we analyze the influence of users' density distribution in one cell of CDMA mobile network (ie adjusted power control on the forward link) on base station emission power. This influence is analyzed for different circles radii around base station within which same emission power is generated for all mobile users, and for different values of propagation loss coefficient. It is proved that emission power in this cell must be increased comparing to the similar cell, which uses complete power control. The power increase is greater when greater number of users are situated near base station, and for greater values of propagation loss coefficient. The results are presented, illustrated by numerical examples and verified by simulation for three users' density distributions: uniform, decreasing and increasing density from the base station to the cell rim. The simulation process, which is based on random traffic process, is presented briefly.

  13. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  14. Extreme Production Conditions of Photovoltaic Power Plant Operated in Distribution Grid

    Directory of Open Access Journals (Sweden)

    Martin Smocek

    2014-01-01

    Full Text Available Photovoltaic power plants are sources of electrical energy that are very dependent on weather conditions. This paper interests in description of stochastic production of power in photovoltaic power plants and subsequently its impact on the distribution power grid. Stochastic production of power from these sources is considerable and hardly predictable. The aim of this survey is to assess the influence of photovoltaic power plants operation on the daily load diagram with regard to output change difference of active power at the relevant substation. Evaluation is based on real-time synchronous data measuring both on-site photovoltaic power plant operation and on-site electric power line output from the substation. This measurement is used for suggestion of a general calculation methodology for the assessment of the difference of active power at a particular node of the grid under various power changes from the photovoltaic power plant. Statistical methods have been employed to process a methodology in order establish extreme conditions of production power for photovoltaic power plant.

  15. Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency

    Science.gov (United States)

    2017-03-01

    QPSK LTE waveform, the ACPR1improved by ~10 dBc at average output power of 23 dBm, without digital pre-distortion. Keywords: GaN, linear amplifiers...wideband amplifier, OIP3, LTE Introduction RF communications with spectral efficiency utilizes complex modulation schemes that require amplifier...QPSK) long-term evolution ( LTE ) waveforms also improved by ~10 dBc at an average linear power of 23 dBm. Figure 1. (a) A schematic drawing of

  16. A distributed power sharing framework among households in microgrids: a repeated game approach

    NARCIS (Netherlands)

    Alskaif, T.A.; Guerreo Zapata, Manel; Bellalta, Boris; Nilsson, Anders

    2017-01-01

    In microgrids, the integration of distributed energy resources (DERs) in the residential sector can improve power reliability, and potentially reduce power demands and carbon emissions. Improving the utilization of renewable energy in households is a critical challenge for DERs. In this regard,

  17. EBG structures on high permittivity substrate to reduce noise in power distribution networks

    NARCIS (Netherlands)

    Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2012-01-01

    The noise reduction effect in a Power Distribution Network (PDN) by implementing Electromagnetic Band Gap structures (EBG) on standard and high permittivity substrates has been investigated. Boards with different EBG structures have been modelled and designed. Using the EBG structures the Power

  18. Parallel Operation of Inverters and Active Power Filters in Distributed Generation System: A Review

    OpenAIRE

    Khadem, Shafiuzzaman Khan; Basu, Malabika; Conlon, Michael

    2011-01-01

    In this paper a technical review of parallel operation of power electronics inverters for load sharing conditions in distributed generation (DG) network is presented. Emphasis is given to parallel operation of Active Power Filters (APFs) as they are widely used to mitigate load current disturbances into DG networks. Discussions on recent advances in control strategies as applied to APFs are presented.

  19. High power singlemode GaInAs lasers with distributed Bragg reflectors

    Science.gov (United States)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    High power singlemode strained GaInAs lasers have been fabricated which use buried second order gratings as distributed Bragg reflectors. The lasers operate in an edge emitting fashion with CW powers in excess of 110 mW with single longitudinal and transverse mode operation at 971.9 nm up to 42 mW.

  20. Electrical Power Transmission and Distribution Safety. Module SH-40. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on electrical power transmission and distribution safety is one of 50 modules concerned with job safety and health. This module focuses on some of the general safety rules, techniques, and procedures that are essential in establishing a safe environment for the electrical power transmission worker. Following the introduction,…

  1. Power quality challenges in future distribution networks; Aspekte der Strom- und Spannungsqualitaet in kuenftigen Verteilungsnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Klatt, Matthias; Meyer, Jan; Schegner, Peter [TU Dresden (Germany)

    2011-07-01

    Power quality in distribution grids is determined by consumer topology, generation topology, network topology and environmental influences (i.e. weather). New developments like decentralized power generation or e-mobility lead to significant changes in the grids as well as the equipment connected thereto. This paper discusses possible impacts of new technologies on power quality and is intended to attract attention of stakeholders to these issues. (orig.)

  2. Analyses of optimum generation scenarios for sustainable power generation in Ghana

    Directory of Open Access Journals (Sweden)

    Albert K. Awopone

    2017-02-01

    Full Text Available This study examines optimum generation scenarios for Ghana from 2010 to 2040. The Open Source Energy Modelling System (OSeMOSYS, an optimisation model for long term energy planning, which is integrated in Long-range Energy Alternatives Planning (LEAP tool, was applied to model the generation system. The developed model was applied to the case study of the reference scenario (OPT which examines the least cost development of the system without any shift in policy. Three groups of policy scenario were developed based on the future possible energy policy direction in Ghana: energy emission targets, carbon taxes and transmission and distribution losses improvements. The model was then used to simulate the development of technologies in each scenario up to 2040 and the level of renewable generation examined. Finally, cost benefit analysis of the policy scenarios, as well as their greenhouse gas mitigation potential were also discussed. The results show that: suitable policies for clean power generation have an important role in CO2 mitigation in Ghana. The introduction of carbon minimisation policies will also promote diversification of the generation mix with higher penetration of renewable energy technologies, thus reducing the overall fossil fuel generation in Ghana. It further indicated that, significant greenhouse emissions savings is achieved with improvement in transmission and distribution losses.

  3. Distribution of Corporate Responsibility in Ukraine as Implementation of the Strategy of the Partnership of Entrepreneurship, Power and Society

    Directory of Open Access Journals (Sweden)

    Klіmenko Olena M.

    2014-01-01

    Full Text Available The article reveals problems and directions of establishment of responsibility of business in Ukraine for successful, sustainable and long-term interaction of entrepreneurship, power and society. The article conducts graphic-analytical analysis of advantages of implementation of the responsibility strategy, which allowed a conclusion that more than two thirds of Ukrainian enterprises believe that social responsibility measures exert influence upon possibilities of an organisation to find and keep best workers, formation of a positive image and improvement of reputation and creation of competitive advantages. The article shows that development of corporate social responsibility has just started its development in Ukraine. That is why, the majority of domestic enterprises face the task of achieving the economic side of this responsibility. Which means that partnership programmes of support of society, social investments and charity should become the basis of social responsibility. The article offers to distribute the sphere of application of social responsibility, namely: companies should transform corporate social responsibility upon corporate social benefit. Mentality of social entrepreneurship is capable of assisting even major enterprises in finding new markets, new services in existing markets and expansion of the existing markets. Solution of social and ecological problems in partnership with the power and public organisations constitutes certain possibilities for sustainable development of an enterprise.

  4. Analysis on multifocal contact lens design based on optical power distribution with NURBS.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Shum, Patrick Joi-Tsang

    2017-10-01

    This paper aims to develop and analyze the design method of multifocal contact lenses to obtain curvature continuity in the optical surfaces with the high addition (Add) powers by adjusting non-uniform rational B-spline (NURBS) curves. The paper has developed mathematical formulae to generate the optical power distributions in which the powers continuously change from either near or distant center to the opposite focal length in the periphery of the optical region with different change rates and Add power values. This developed method can efficiently adjust and optimize three parameters, including control points, weight, and knots of the NURBS, to be anterior optical lens surface profiles to adapt for these given power profiles. The result shows that the proposed contact lenses not only achieve smooth and continuous anterior optical surfaces, but also satisfy various optical power distributions with high Add power values for different pupil diameters. Then, these designs of contact lenses can be feasibly converted to the computer-aided design format for analysis and manufacture for molding or single-point diamond turning. Experimental results of this method have been tested and proven when both the power distributions of simulation of lenses and the actual machined samples match the original specified powers provided by clinical demands of a multifocal contact lens. Future integration with variant clinical demands and optimization rules of lens design can be explored for a progressive contact lens.

  5. Development of Power Supply System with Distributed Generators using Parallel Processing Method

    Science.gov (United States)

    Hirose, Kenichi; Takeda, Takashi; Okui, Yoshiaki; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Matsumura, Toshiro

    This paper describes a novel power system which consists of distributed energy resources (DER) with a static switch at the point of common coupling. Usage of the static switch with a parallel processing control is a new application of line interactive type uninterruptible power supply (UPS). In recent years, various ways of design, operation, and control methods have been studied in order to find more effective ways to utilize renewable energy and to reduce impact for environment. One of features of a proposed power system can interconnect to existing utility grid without interruption. Electrical power distribution to the loads by the power system can be continued between the states of interconnection and isolate operation seamlessly. The novel power system has other benefits such as more efficiency, demand site management, easy to control power system inside, improvement of reliability for power distribution, the minimum requirement of protection relays for grid interconnection. The proposed power system has been operated with the actual loads of 20kW in the campus of the Aichi Institute of Technology since 2007.

  6. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m2) and biogas storage (35m3), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m2 and 105m3, respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    Science.gov (United States)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  8. Empowering electricity: co-operatives, sustainability, and power sector reform in Canada

    National Research Council Canada - National Science Library

    MacArthur, Julie L

    2016-01-01

    .... Empowering Electricity offers an illuminating analysis of these co-ops within the context of larger debates over climate change, renewable electricity policy, sustainable community development...

  9. Harmonic Domain Modeling of a Distribution System Using the DIgSILENT PowerFactory Software

    DEFF Research Database (Denmark)

    Wasilewski, J.; Wiechowski, Wojciech Tomasz; Bak, Claus Leth

    The first part of this paper presents the comparison between two models of distribution system created in computer simulation software PowerFactory (PF). Model A is an exciting simplified equivalent model of the distribution system used by Transmission System Operator (TSO) Eltra for balenced load...

  10. A comparison of Poisson-one-inflated power series distributions for ...

    African Journals Online (AJOL)

    A class of Poisson-one-inflated power series distributions (the binomial, the Poisson, the negative binomial, the geometric, the log-series and the misrecorded Poisson) are proposed for modeling rural out-migration at the household level. The probability mass functions of the mixture distributions are derived and fitted to the ...

  11. Control of power converters in distributed generation applications under grid fault conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Munoz-Aguilar, Raul

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  12. Coordinated Active Power Dispatch for a Microgrid via Distributed Lambda Iteration

    DEFF Research Database (Denmark)

    Hu, Jianqiang; Z. Q. Chen, Michael; Cao, Jinde

    2017-01-01

    A novel distributed optimal dispatch algorithm is proposed for coordinating the operation of multiple micro units in a microgrid, which has incorporated the distributed consensus algorithm in multi-agent systems and the -iteration optimization algorithm in economic dispatch of power systems...

  13. Transactive control: a framework for operating power systems characterized by high penetration of distributed energy resources

    NARCIS (Netherlands)

    Hu, J.; Yang, G.; Kok, J.K.; Xue, Y.; Bindner, H.W.

    2017-01-01

    The increasing number of distributed energy resources connected to power systems raises operational challenges for the network operator, such as introducing grid congestion and voltage deviations in the distribution network level, as well as increasing balancing needs at the whole system level.

  14. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less...

  15. Trends and Spatial Distribution Characteristics of Sustainability in Eastern Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-11-01

    Full Text Available This study analyzes and evaluates the status and long-term trend of regional economic sustainability in eastern Anhui Province, China. Based on the triangle model and the definition of economic sustainable development, this study evaluates the interrelationship among regional economic development, resource-energy consumption, environmental pollution, and ecological performance. The sustainable and comprehensive utilization situation in the study region from 1975–2012 is examined. The results show that in 2012, the comprehensive development in the study region had a general status in terms of sustainability. The sustainable development trend of the seven administrative subunits inside the region had a weak and general status in terms of sustainability, while the status of sustainability in the southeastern part of the region was better than that in the northwest. During the period from 1975–1998, the study region’s comprehensive development presented a trend of general sustainability. In the period from 1998–2012, the region experienced a trend of very strong sustainability in its development. These statuses and trends have a certain relationship with the study region’s strong economic development and environmental protection over the past 37 years. The triangle method, as an intuitive platform for illustrating sustainability status and trends in economic development, seems to hold promise as an analytical management tool given its simplicity, ease of use, and flexibility.

  16. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  17. Adaptive Monitoring and Control Architectures for Power Distribution Grids over Heterogeneous ICT Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Hägerling, Christian; Kurtz, Fabian M.

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the q......The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...... to the reliability due to the stochastic behaviour found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments. An overview on the required Information and Communication Technology (ICT) architecture and its...

  18. DISTRIBUTION NETWORK RECONFIGURATION FOR POWER LOSS MINIMIZATION AND VOLTAGE PROFILE ENHANCEMENT USING ANT LION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Maryam Shokouhi

    2017-06-01

    Full Text Available Distribution networks are designed as a ring and operated as a radial form. Therefore, the reconfiguration is a simple and cost-effective way to use existing facilities without the need for any new equipment in distribution networks to achieve various objectives such as: power loss reduction, feeder overload reduction, load balancing, voltage profile improvement, reducing the number of switching considering constraints that ultimately result in the power loss reduction. In this paper, a new method based on the Ant Lion algorithm (a modern meta-heuristic algorithm is provided for the reconfiguration of distribution networks. Considering the extension of the distribution networks and complexity of their communications networks, and the various parameters, using smart techniques is inevitable. The proposed approach is tested on the IEEE 33 & 69-bus radial standard distribution networks. The Evaluation of results in MATLAB software shows the effectiveness of the Ant Lion algorithm in the distribution network reconfiguration.

  19. A Power Distribution System for the AMS experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K S [Department of Physics, EWHA Womans University, Seoul, Korea (Korea, Republic of); Capell, M [Massachusetts Institute of Technology, MIT, Cambridge, MA 02139 (United States); Lebedev, A [Massachusetts Institute of Technology, MIT, Cambridge, MA 02139 (United States); Viertel, G M [ETH-Zuerich, Labor fuer Hochenergiephysik, Zurich (Switzerland); Yang, J [Department of Physics, EWHA Womans University, Seoul (Korea, Republic of)

    2006-12-15

    The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station (ISS) requires a fully redundant, highly efficient, space qualified power distribution system. The device receives up to 2.8 kW of electrical power from the ISS and distributes it to the various subsystems of the experiment. The majority of these subsystems require the power to be converted from the ISS delivered nominal voltage level of 120 VDC to 28 VDC. The entire system and the individual output channels will be monitored and controlled from the Control Centers on the ground.

  20. Axial power distribution calculation using a neural network in the nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. H.; Cha, K. H.; Lee, S. H. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore detector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place. 7 refs., 4 figs. (Author)

  1. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2014-01-01

    power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss......Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...

  2. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  3. Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.

  4. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications.

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-11-07

    A microfluidic lab-on-a-chip system that generates its own power is essential for stand-alone, independent, self-sustainable point-of-care diagnostic devices to work in limited-resource and remote regions. Miniaturized biological solar cells (or micro-BSCs) can be the most suitable power source for those lab-on-a-chip applications because the technique resembles the earth's natural ecosystem - living organisms work in conjunction with non-living components of their environment to create a self-assembling and self-maintaining system. Micro-BSCs can continuously generate electricity from microbial photosynthetic and respiratory activities over day-night cycles, offering a clean and renewable power source with self-sustaining potential. However, the promise of this technology has not been translated into practical applications because of its relatively low power (∼nW cm -2 ) and current short lifetimes (∼a couple of hours). In this work, we enabled high-performance, self-sustaining, long-life micro-BSCs by using fundamental breakthroughs of device architectures and electrode materials. A 3-D biocompatible, conductive, and porous anode demonstrated great microbial biofilm formation and a high rate of bacterial extracellular electron transfer, which led to greater power generation. Furthermore, our micro-BSCs promoted gas exchange to the bacteria through a gas-permeable PDMS membrane in a well-controlled, tightly enclosed micro-chamber, substantially enhancing sustainability. Through photosynthetic reactions of the cyanobacteria Synechocystis sp. PCC 6803 without additional organic fuel, the 90 μL single-chambered bio-solar cell generated a maximum power density of 43.8 μW cm -2 and sustained consistent power production of ∼18.6 μW cm -2 during the day and ∼11.4 μW cm -2 at night for 20 days, which is the highest and longest reported success of any existing micro-scale bio-solar cells.

  5. Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network

    Directory of Open Access Journals (Sweden)

    Chi Cao

    2017-02-01

    Full Text Available A virtual power plant (VPP is aimed to integrate distributed energy resources (DERs. To solve the VPP economic dispatch (VPED problem, the power supply-demand balance, power transmission constraints, and power output constraints of each DER must be considered. Meanwhile, the impacts of communication time delays, channel noises, and the time-varying topology on the communication networks cannot be ignored. In this paper, a VPED model is established and a distributed primal-dual sub-gradient method (DPDSM is employed to address the presented VPED model. Compared with the traditional centralized dispatch, the distributed dispatch has the advantages of lower communication costs and stronger system robustness, etc. Simulations are realized in the modified IEEE-34 and IEEE-123 bus test VPP systems and the results indicate that the VPED strategy via DPDSM has the superiority of better convergence, more economic profits, and stronger system stability.

  6. Power Distribution and Possible Influence on Fuel Failure in WWER-1000

    Directory of Open Access Journals (Sweden)

    Ján Mikuš

    2008-10-01

    Full Text Available The work is focused on the influence of investigation of some core heterogeneities and construction materials on the space power (fission rate distribution in WWER-1000-type cores, especially from viewpoint of the values and gradient occurrence that could result in static loads with some consequences, for example, fuel pin (FP or fuel assembly (FA bowing and possible contribution to the FP failure root causes. For this purpose, experimental data and their analysis from two earlier performed measurements on light water, zero-power reactor LR-0 were used, concerning the relative radial power distribution determined by measurements in a WWER-1000-type core containing single FPs with homogeneous gadolinium admixture (Gd2O3 and the relative radial power distribution determined by measurements in FA situated on the periphery of a WWER-1000-type core neighbouring the baffle (thermal shielding.

  7. Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

    Directory of Open Access Journals (Sweden)

    GELANI, H. E.

    2015-02-01

    Full Text Available The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the form of HVDC (High Voltage DC transmission, DC power utilization by various modern electronic loads and DC power distribution that maybe regarded as still in research phase. This paper is an attempt to investigate feasibility of DC in the distribution portion of electrical power system. Specifically, the efficiency of a DC distribution system for residential localities is determined while keeping in view the concept of daily load variation. The aim is to bring out a more practical value of system efficiency as the efficiencies of DC/DC converters making up the system vary with load variation. This paper presents the modeling and simulation of a DC distribution system and efficiency results for various scenarios are presented.

  8. Review of Integration of Distributed Energy Resources (DERs) into Power Systems

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao

    2011-01-01

    state‐of‐the‐art DER integration concepts  relations existing DER integration concepts to the EV system The power balancing challenges of power systems brought by high penetration of intermittent DER have been discussed, especially the wind power integration in the Danish context. The relevance......An overview of the integration of distributed energy resources (DER) into power systems has been presented in this report. Different aspects of integration of DER into power systems have been reviewed and discussed which are listed below.    needs of DER integration into power systems  various...... of the integration of electric vehicles (EVs) to the DER integration concepts have been analyzed as well based on the energy storage potential of EVs.   Two main concepts for DER integration, virtual power plant (VPP) and microgrids, are described and a comparison of the two concepts have been done. The comparison...

  9. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment

    Science.gov (United States)

    Barnes, P. R.; Vandyke, J. W.; Tesche, F. M.; Zaininger, H. W.

    1994-06-01

    Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. 2, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

  10. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [6714 Norway Road, Dallas, TX (United States); Zaininger, H.W. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01

    Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

  11. A Comprehensive Design Approach of Power Electronic-Based Distributed Generation Units Focused on Power-Quality Improvement

    DEFF Research Database (Denmark)

    Esparza, Miguel; Segundo, Juan; Nunez, Ciro

    2017-01-01

    -modulated-voltage-source inverters (PWM-VSI). The proposed design method is based on a least square solution using the harmonic domain modeling approach to effectively consider explicitly the harmonic characteristics of the DGUs and their direct and cross-coupling interaction with the grid, loads, and the other DGUs. Extensive......The undesirable harmonic distortion produced by distributed generation units (DGUs) based on power-electronic inverters presents operating and power-quality challenges in electric systems. The level of distortion depends on the internal elements of the DGUs as well as on the characteristics...

  12. The Power of Urban Planning on Environmental Sustainability: A Focus Group Study in Finland

    Directory of Open Access Journals (Sweden)

    Eeva-Sofia Säynäjoki

    2014-09-01

    Full Text Available Sustainable communities are promoted as a desirable policy goal and, in particular, local authorities are encouraged to contribute to climate change mitigation through urban planning. Furthermore, recent research takes a broad perspective on the environmental sustainability of urban areas and considers the environmental impact of all consumption. A focus group study was conducted in Finland for the purpose of examining how increased environmental awareness influences urban land use. The 32 participants of three focus groups were professionals of urban planning and environmental sustainability, at both a municipal and a state level. The main finding was that urban planning is viewed as being unable to support environmental sustainability in the broader sense. In general, the participants did not see a connection between urban structure and sustainable lifestyles and only the influence of planning on housing and daily journeys was recognised. Three main reasons for this were identified. Firstly, environmental sustainability in its broader definition is seen as too complex for urban planners to influence alone. Secondly, the dominance of short-term economic issues in decision-making and the lack of co-operation from other stakeholders to achieve environmental aims demotivate land use planners. Thirdly, the prioritisation of urban density may overrule alternative means of promoting environmental sustainability, such as the encouragement of sustainable suburban or non-urban lifestyles.

  13. Intrinsic efficiency and critical power deposition in the e-beam sustained Ar:Xe laser

    NARCIS (Netherlands)

    Botma, H.; Botma, H.; Peters, P.J.M.; Witteman, W.J.

    1991-01-01

    Experimental investigations on an e-beam sustained near infrared Ar:Xe laser have been carried out to determine the intrinsic efficiency at optimized conditions. A parametric study at different sustainer currents reveals a maximum output energy depending on current density. Up to 8 bar the optimized

  14. Agent Services for Situation Aware Control of Power Systems With Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad; Heussen, Kai; Lind, Morten

    2009-01-01

    could be exploited for the robust control of electric power systems. In particular, we present our work on the implementation of a dynamic service oriented system, in which autonomous agents represent different components of low voltage grid. These agents could offer and utilize electric power control...... in the process of realization. This situation has created an incentive in electric power industry to utilize modern information and communication technologies (ICT) for improving the distribution system automation. This paper describes our work on how significantly increased amount of distributed generation...... services. We present results from several experiments where agents offer and utilize services in order to achieve distributed and autonomous control for subgrid operation of a distribution system. Finally it is discussed how the service oriented architecture can be combined with knowledge based reasoning...

  15. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  16. The Cosmo-Skymed Second Generation Sar Antenna Electrical Power Chain and Platform Power Distribution

    Directory of Open Access Journals (Sweden)

    Scorzafava E.

    2017-01-01

    The design characteristics of the EPS elements are described. A summary of the main performances is given, including a glance to the EMC aspects, which are very important in the definition and characterization of the design of a high power SAR system.

  17. A study of operational cycle of terminal distributed power supply based on Big-data

    Science.gov (United States)

    Nie, Erbao; Liu, Zhoubin; He, Jinhong; Li, Chao

    2018-01-01

    In China, the distributed power supply industry enjoys a rapid development trend. For the users’ side of the distributed power mode of operation, there are various types. This paper, take rural as an example, mainly studies the all round life cycle operation mode of rural distributed solar power plant, including the feasibility study plan and investment suggestion of the initial construction of the rural power station, and the operation and maintenance in the middle period. China’s vast rural areas, areas per capita is large, average households have independent housing and courtyards, available building area is no problem. Compared with the urban areas, the return rate of investment is low, the investment options is rare, the collective is strong, the risk tolerance is weak and so on. Aiming at the characteristics of the rural areas in the above rural areas, three kinds of investment schemes of rural distributed photovoltaic power plants are put forward, and their concrete implementation plans are analyzed in detail. Especially the second option, for the farmers to consider the risk of investment, given their principal security, which greatly reduces the farmers into the power plant loss of funds risk. At the same time, according to the respective risk of farmers, given the corresponding investment advice. Rural income is generally low, the expected benefits of distributed photovoltaic power plant can significantly improve the income of farmers, improve the quality of life of farmers, coupled with the strong rural collective farmers, rural distributed photovoltaic power plants will mushroom, which On China’s photovoltaic construction and even the supply of clean energy is of great significance, so as to truly benefit the national energy strategy and rural construction.

  18. Impact of distributed and independent power generation on greenhouse gas emissions: Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Wijayatunga, P.D.C. [University of Moratuwa (Sri Lanka). Centre for Energy Studies; Fernando, W.J.L.S. [Sri Lanka Energy Managers Association, Colombo (Sri Lanka); Shrestha, R.M. [Asian Institute of Technology, Pathumthani (Thailand). Energy Program

    2004-12-01

    Sri Lanka has a hydropower dominated power system with approximately two thirds of its generation capacity based on large hydro plants. The remaining one third are based on oil fired thermal generation with varying technologies, such as oil steam, Diesel, gas turbines and combined cycle plants. A significant portion of this capacity is in operation as independent power plants (IPPs). In addition to these, Sri Lanka presently has about 40 MWs of mini-hydro plants, which are distributed in the highlands and their surrounding districts, mainly connected to the primary distribution system. Further, there are a few attempts to build fuel wood fired power plants of small capacities and connect them to the grid in various parts of the country. The study presented in this paper investigates the impact of these new developments in the power sector on the overall emissions and the greenhouse gas (GHG) emissions in particular. It examines the resulting changes to the emissions and costs in the event of developing the proposed coal power plant as an IPP under different investment and operational conditions. The paper also examines the impact on emissions with 80 MWs of distributed power in different capacities of wind, mini-hydro and wood fired power plants. It is concluded that grid connected, distributed power generation (DPG) reduces emissions, with only a marginal increase in overall costs, due to the reduction in transmission and distribution network losses that result from the distributed nature of generation. These reductions can be enhanced by opting for renewable energy based DPGS, as the case presented in the paper, and coupling them with demand side management measures. It is also concluded that there is no impact on overall emissions by the base load IPPs unless they are allowed to change over to different fuel types and technologies. (author)

  19. Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Wenpeng Yu

    2013-12-01

    Full Text Available Due to the interconnection and active management of Distributed Generation (DG and Energy Storage Systems (ESSs, the traditional electrical distribution network has become an Active Distribution Network (ADN, posing challenges to the operation optimization of the network. The power supply and storage capacity indexes of a Local Autonomy Control Region (LACR, which consists of DGs, ESSs and the network, are proposed in this paper to quantify the power regulating range of a LACR. DG/ESS and the network are considered as a whole in the model of the indexes, considering both network constraints and power constraints of the DG/ESS. The index quantifies the maximum LACR power supplied to or received from ADN lines. Similarly, power supply and storage capacity indexes of the ADN line are also proposed to quantify the maximum power exchanged between ADN lines. Then a practical algorithm to calculate the indexes is presented, and an operation optimization model is proposed based on the indexes to maximum the economic benefit of DG/ESS. In the optimization model, the power supply reliability of the ADN line is also considered. Finally, the indexes of power supply and storage capacity and the optimization are demonstrated in a case study.

  20. On-line monitoring of multi-area power systems in distributed environment

    Directory of Open Access Journals (Sweden)

    Ramesh Ramadoss

    2006-01-01

    Full Text Available The main objective of this paper is to develop a distributed model using grid environment through which on-line monitoring of multi-area power systems can be carried out continuously. Grid computing is a viable solution in order to exploit the enormous amount of computing power available across Internet to solve large interconnected power system problems. A grid service model is proposed for on-line monitoring of multi-area power systems, which provides solutions at specific intervals of time. The proposed model is designed in such a way that any node in the grid can provide the service, which can obtain the power system data from other client grid nodes and responds with solution. Hence the proposed model is highly distributed and has inherent features of scalability and reliability implicitly .

  1. Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing

    DEFF Research Database (Denmark)

    Levron, Yoash; Beck, Yuval; Katzir, Liran

    2017-01-01

    as radial ones. The optimization problem is formulated with the cluster reactive powers as free variables, and the solution space is spanned by the cluster reactive power outputs. The optimal solution is then constructed by efficiently scanning the entire solution space, by scanning every possible......In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...

  2. Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids

    Energy Technology Data Exchange (ETDEWEB)

    Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.; Myers, Kurt S.

    2017-07-01

    Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints. We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.

  3. Research on fault characteristics about switching component failures for distribution electronic power transformers

    Science.gov (United States)

    Sang, Z. X.; Huang, J. Q.; Yan, J.; Du, Z.; Xu, Q. S.; Lei, H.; Zhou, S. X.; Wang, S. C.

    2017-11-01

    The protection is an essential part for power device, especially for those in power grid, as the failure may cost great losses to the society. A study on the voltage and current abnormality in the power electronic devices in Distribution Electronic Power Transformer (D-EPT) during the failures on switching components is presented, as well as the operational principles for 10 kV rectifier, 10 kV/400 V DC-DC converter and 400 V inverter in D-EPT. Derived from the discussion on the effects of voltage and current distortion, the fault characteristics as well as a fault diagnosis method for D-EPT are introduced.

  4. Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2013-01-01

    Full Text Available Considering the load frequency control (LFC of large-scale power system, a robust distributed model predictive control (RDMPC is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints (GRC is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem is formulated as convex optimization problem with linear matrix inequalities (LMI that can be solved efficiently. It minimizes an upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness in the presence of power system dynamic uncertainties.

  5. Optimal Power Flow Analysis of IEEE 14 System with Distributed Generators

    Directory of Open Access Journals (Sweden)

    DULĂU Lucian Ioan

    2016-05-01

    Full Text Available This paper describes the mathematical model for the optimal power flow analysis of the IEEE 14 bus system. In the IEEE 14 bus system were connected two distributed generators (DGs: a hydro generator and a photovoltaic power plant. The two objective functions which are minimized, are the generation costs and the total power losses of the system, while there are satisfied equality and inequality constraints. The optimal power flow analysis will be performed for the steady-state condition of the system and for the whole day, for two cases: the DGs are connected to the system and the DGs are not connected to the system.

  6. OLGA. Flexible tar removal for high efficient production of clean heat and power as well as sustainable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, R.W.R. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2009-09-15

    The content of the paper lists the following subjects: The tar problem; The OLGA technology; The development with Step 1: Demonstration of high-efficient production of clean heat and power, Step 2: Developing high-efficient production of sustainable fuels and chemicals, and Step 3: Demonstrating the flexibility of the OLGA tar removal technology. Further, attention is paid to Commercial gasification projects, and finally Conclusions are formulated and an Outlook is given.

  7. Decentralized and Real-Time Power Dispatch Control for an Islanded Microgrid Supported by Distributed Power Sources

    Directory of Open Access Journals (Sweden)

    Changsun Ahn

    2013-12-01

    Full Text Available Microgrids can deploy traditional and/or renewable power sources to support remote sites. Utilizing renewable power sources requires more complicated control strategies to achieve acceptable power quality and maintain grid stability. In this research, we assume that the grid stability problem is already solved. As a next step, we focus on how the power can be dispatched from multiple power sources for improved grid efficiency. Isolated microgrids frequently require reconfigurations because of the grid expansion or component failures. Therefore, the control strategies ideally should be implemented in a plug-and-play fashion. Moreover, these strategies ideally require no pre-knowledge of the grid structure, and as little communication with neighboring power sources as possible. The control objective is to minimize a cost function that can be adjusted to reflect the desire to minimize energy cost and/or losses. An algorithm is designed to satisfy a derived necessary condition of function optimality. Such conditions are obtained by formulating Lagrange functions. An equivalent grid model approximates the grid structure which was later confirmed to represent the grid behavior adequately. For decentralized operations, we execute the distributed control sequentially using a simple token communication protocol. The performance of the combined system identification-Lagrange function minimization algorithm is demonstrated through simulations.

  8. Application of high performance asynchronous socket communication in power distribution automation

    Science.gov (United States)

    Wang, Ziyu

    2017-05-01

    With the development of information technology and Internet technology, and the growing demand for electricity, the stability and the reliable operation of power system have been the goal of power grid workers. With the advent of the era of big data, the power data will gradually become an important breakthrough to guarantee the safe and reliable operation of the power grid. So, in the electric power industry, how to efficiently and robustly receive the data transmitted by the data acquisition device, make the power distribution automation system be able to execute scientific decision quickly, which is the pursuit direction in power grid. In this paper, some existing problems in the power system communication are analysed, and with the help of the network technology, a set of solutions called Asynchronous Socket Technology to the problem in network communication which meets the high concurrency and the high throughput is proposed. Besides, the paper also looks forward to the development direction of power distribution automation in the era of big data and artificial intelligence.

  9. Innovative Approaches to Improve Sustainability of Physical Distribution in Dutch Agrifood Supply Chains

    NARCIS (Netherlands)

    Pieters, Reinder; Beek, van P.; Glöckner, H.H.; Omta, S.W.F.; Weijers, S.

    2017-01-01

    Sustainability has become an important issue in all aspects of corporate
    policy. This also applies to organizations operating in agrifood supply chains. Most literature on sustainability in the agrifood industry focuses on food security or prevention of food losses. However, little attention has

  10. The Circulation Distribution on the Lifting Line for a Given Extracted Power

    Directory of Open Access Journals (Sweden)

    Ali Helali

    2012-01-01

    Full Text Available Presently, there exist few numerical methods which treat the inverse problem for the determination of the geometry of wind turbine blades. In this work, authors intend to solve the inverse optimum project for horizontal axis wind turbine in which the selection of the circulation distribution is obtained by resolving two variational problems: the first consists in sorting the circulation distribution on the lifting line, which, for a given power extracted by the wind turbine, minimizes the loses due to the induced velocity. In the second, the optimal circulation distribution is selected such that the kinetic energy of the wind downstream of the rotor disc is minimum, when the energy extracted by the wind turbine for one rotating period is imposed. A code has been developed which incorporates the real pitch of the helicoidal vortex wake. Very promising results have been obtained: the circulation distribution for a given extracted power and the chord lengths distribution law along the blade span.

  11. Electrical Market Management Considering Power System Constraints in Smart Distribution Grids

    Directory of Open Access Journals (Sweden)

    Poria Hasanpor Divshali

    2016-05-01

    Full Text Available Rising demand, climate change, growing fuel costs, outdated power system infrastructures, and new power generation technologies have made renewable distribution generators very attractive in recent years. Because of the increasing penetration level of renewable energy sources in addition to the growth of new electrical demand sectors, such as electrical vehicles, the power system may face serious problems and challenges in the near future. A revolutionary new power grid system, called smart grid, has been developed as a solution to these problems. The smart grid, equipped with modern communication and computation infrastructures, can coordinate different parts of the power system to enhance energy efficiency, reliability, and quality, while decreasing the energy cost. Since conventional distribution networks lack smart infrastructures, much research has been recently done in the distribution part of the smart grid, called smart distribution grid (SDG. This paper surveys contemporary literature in SDG from the perspective of the electricity market in addition to power system considerations. For this purpose, this paper reviews current demand side management methods, supply side management methods, and electrical vehicle charging and discharging techniques in SDG and also discusses their drawbacks. We also present future research directions to tackle new and existing challenges in the SDG.

  12. Comprehensive evaluation of power grid projects' investment benefits under the reform of transmission and distribution price

    Science.gov (United States)

    Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Ling, Yunpeng

    2017-03-01

    On March 15, 2015, the Central Office issued the "Opinions on Further Deepening the Reform of Electric Power System" (Zhong Fa No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid projects' investment benefits under the reform of transmission and distribution price to improve the investment efficiency of power grid projects after the power reform in China.

  13. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The Principle of Power Distribution as a Factor of Democracy: Case Study

    Directory of Open Access Journals (Sweden)

    Kazimieras Monkevičius

    2011-03-01

    Full Text Available The principle of power distribution is directly connected with the theory of power distribution, which was first launched by the philosophers John Locke and Charles de Montesquieu. This principle was first established in democratic constitutions and soon became one of the main factors of the democratic development of countries. After the regaining of independence of Lithuania, the principle of power distribution was established in the Constitution of the Republic of Lithuania in 1992. Therefore, when analyzing the principle of power distribution as the aspect of democracy, one can take into account the Constitution of the Republic of Lithuania of 1992, which had a significant impact on the development of contemporary democratic Lithuania. The aim of this article is to reveal the rarely raised topic of the establishment of the principle of power distribution in the Constitution of the Republic of Lithuania of 1992, as well as to discuss its importance in the process of democratizing the independent country of Lithuania.   

  15. Variation of Tower Footing Resistance on the Lightning Surge Propagation through Overhead Power Distribution Lines

    Directory of Open Access Journals (Sweden)

    MARIUT, E. L.

    2016-02-01

    Full Text Available This paper deals with the analysis of the effects of electromagnetic transients generated by lightning on power distribution lines, considering the influence of tower footing resistance variation. Both types of lightning stroke, direct and induced, are considered. The model of a 20 kV three-phase overhead power distribution line is performed considering a simple line circuit with triangle canopy and 50/8 mm2 Ol-Al conductors. The model of the power distribution line is done considering a Multistory tower model. New concepts regarding lightning assessment through Electromagnetic Transients program and Finite Element Method are implemented. The simulations are performed based on a time domain analysis, considering the lightning stroke as an electromagnetic perturbation within frequency range of 10-100 kHz. A contribution to value creation is the design of the Multistory tower model, used for electromagnetic transients analysis for medium voltage power distribution lines. Excepting previous research, current study was done by considering the variation of tower footing resistance of the tower, between 4-35 ohms. The novelty of the study is the analysis of the dependency determined by the variation of tower footing resistance on the lightning surge propagation through power distribution networks and subsequent consumers.

  16. The Cost-Optimal Distribution of Wind and Solar Generation Facilities in a Simplified Highly Renewable European Power System

    Science.gov (United States)

    Kies, Alexander; von Bremen, Lüder; Schyska, Bruno; Chattopadhyay, Kabitri; Lorenz, Elke; Heinemann, Detlev

    2016-04-01

    The transition of the European power system from fossil generation towards renewable sources is driven by different reasons like decarbonisation and sustainability. Renewable power sources like wind and solar have, due to their weather dependency, fluctuating feed-in profiles, which make their system integration a difficult task. To overcome this issue, several solutions have been investigated in the past like the optimal mix of wind and PV [1], the extension of the transmission grid or storages [2]. In this work, the optimal distribution of wind turbines and solar modules in Europe is investigated. For this purpose, feed-in data with an hourly temporal resolution and a spatial resolution of 7 km covering Europe for the renewable sources wind, photovoltaics and hydro was used. Together with historical load data and a transmission model , a simplified pan-European power power system was simulated. Under cost assumptions of [3] the levelized cost of electricity (LCOE) for this simplified system consisting of generation, consumption, transmission and backup units is calculated. With respect to the LCOE, the optimal distribution of generation facilities in Europe is derived. It is shown, that by optimal placement of renewable generation facilities the LCOE can be reduced by more than 10% compared to a meta study scenario [4] and a self-sufficient scenario (every country produces on average as much from renewable sources as it consumes). This is mainly caused by a shift of generation facilities towards highly suitable locations, reduced backup and increased transmission need. The results of the optimization will be shown and implications for the extension of renewable shares in the European power mix will be discussed. The work is part of the RESTORE 2050 project (Wuppertal Institute, Next Energy, University of Oldenburg), that is financed by the Federal Ministry of Education and Research (BMBF, Fkz. 03SFF0439A). [1] Kies, A. et al.: Kies, Alexander, et al

  17. Contract models for public power distribution; Modeles de documents contractuels pour la distribution publique d'electricite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document gathers several models of contractual documents relative to the public distribution of electricity: grant conventions (for towns syndicate or for a single town), grant technical specifications (general dispositions, works relative to the granted network, services to users, tariffing, grant completion, various dispositions, local modalities between the granting authority and the grantee, third party participation to connection costs, electricity purchase and sale prices, general delivery conditions for low-power deliveries. (J.S.)

  18. Optimal Operation of Distribution Electronic Power Transformer Using Linear Quadratic Regulator Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Rezaei

    2011-10-01

    Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage flicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.

  19. Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, Richard; Feliachi, Ali

    2008-09-24

    Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

  20. Distributed Measuring System for Predictive Diagnosis of Uninterruptible Power Supplies in Safety-Critical Applications

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2016-04-01

    Full Text Available This work proposes a scalable architecture of an Uninterruptible Power Supply (UPS system, with predictive diagnosis capabilities, for safety critical applications. A Failure Mode and Effect Analysis (FMEA has identified the faults occurring in the energy storage unit, based on Valve Regulated Lead-Acid batteries, and in the 3-phase high power transformers, used in switching converters and for power isolation, as the main bottlenecks for power system reliability. To address these issues, a distributed network of measuring nodes is proposed, where vibration-based mechanical stress diagnosis is implemented together with electrical (voltage, current, impedance and thermal degradation analysis. Power system degradation is tracked through multi-channel measuring nodes with integrated digital signal processing in the transformed frequency domain, from 0.1 Hz to 1 kHz. Experimental measurements on real power systems for safety-critical applications validate the diagnostic unit.