WorldWideScience

Sample records for sustainable planetary explorations

  1. China's roadmap for planetary exploration

    Science.gov (United States)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  2. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  3. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  4. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  5. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  6. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  7. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  8. Robots and humans: synergy in planetary exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  9. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  10. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  11. Information architecture for a planetary 'exploration web'

    Science.gov (United States)

    Lamarra, N.; McVittie, T.

    2002-01-01

    'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.

  12. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  13. Dynamic Reconfiguration in Planetary Exploration

    DEFF Research Database (Denmark)

    Cohn, Marisa

    2014-01-01

    In taking into account the ways in which material and social realms are constitutively entangled within organizations, it is rhetorically tempting to say that technologies and social structures reconfigure each other. But what does it mean to reconfigure? How does one "figure" the other and how do...... we fully embrace a mutually constitutive relationship when examining fluid relations? This paper delves into these questions by exploring how physical, social, material, technological, and organizational arrangements dynamically reconfigure each other in the duration of organizational practice. Using...... be gained by focusing attention on the dynamic reconfigurations between social and material realms. In so doing, we call attention to the ways in which current sociomaterial perspectives have difficulty articulating the shifting, figural, asymmetric and dynamic negotiations between people, social structures...

  14. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  15. Sustainable food systems for optimal planetary health.

    Science.gov (United States)

    Canavan, Chelsey R; Noor, Ramadhani A; Golden, Christopher D; Juma, Calestous; Fawzi, Wafaie

    2017-06-01

    Sustainable food systems are an important component of a planetary health strategy to reduce the threat of infectious disease, minimize environmental footprint and promote nutrition. Human population trends and dietary transition have led to growing demand for food and increasing production and consumption of meat, amid declining availability of arable land and water. The intensification of livestock production has serious environmental and infectious disease impacts. Land clearing for agriculture alters ecosystems, increases human-wildlife interactions and leads to disease proliferation. Context-specific interventions should be evaluated towards optimizing nutrition resilience, minimizing environmental footprint and reducing animal and human disease risk. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  16. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  17. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  18. Ambler - An autonomous rover for planetary exploration

    Science.gov (United States)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  19. The History of Planetary Exploration Using Mass Spectrometers

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  20. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  1. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  2. Robotic Tool Changer for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  3. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Science.gov (United States)

    Cezzar, Ruknet

    1993-01-01

    The project's main contributions have been in the area of student support. Throughout the project, at least one, in some cases two, undergraduate students have been supported. By working with the project, these students gained valuable knowledge involving the scientific research project, including the not-so-pleasant reporting requirements to the funding agencies. The other important contribution was towards the establishment of a graduate program in computer science at Hampton University. Primarily, the PAPER project has served as the main research basis in seeking funds from other agencies, such as the National Science Foundation, for establishing a research infrastructure in the department. In technical areas, especially in the first phase, we believe the trip to Jet Propulsion Laboratory, and gathering together all the pertinent information involving experimental computer architectures aimed for planetary explorations was very helpful. Indeed, if this effort is to be revived in the future due to congressional funding for planetary explorations, say an unmanned mission to Mars, our interim report will be an important starting point. In other technical areas, our simulator has pinpointed and highlighted several important performance issues related to the design of operating system kernels for MIMD machines. In particular, the critical issue of how the kernel itself will run in parallel on a multiple-processor system has been addressed through the various ready list organization and access policies. In the area of neural computing, our main contribution was an introductory tutorial package to familiarize the researchers at NASA with this new and promising field zone axes (20). Finally, we have introduced the notion of reversibility in programming systems which may find applications in various areas of space research.

  4. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  5. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  6. Early-career experts essential for planetary sustainability

    Science.gov (United States)

    Lim, Michelle; Lynch, Abigail J.; Fernández-Llamazares, Alvaro; Balint, Lenke; Basher, Zeenatul; Chan, Ivis; Jaureguiberry, Pedro; Mohamed, A.A.A.; Mwampamba, Tuyeni H.; Palomo, Ignacio; Pliscoff, Patricio; Salimov, R.A.; Samakov, Aibek; Selomane, Odirilwe; Shrestha, Uttam B.; Sidorovich, Anna A.

    2017-01-01

    Early-career experts can play a fundamental role in achieving planetary sustainability by bridging generational divides and developing novel solutions to complex problems. We argue that intergenerational partnerships and interdisciplinary collaboration among early-career experts will enable emerging sustainability leaders to contribute fully to a sustainable future. We review 16 international, interdisciplinary, and sustainability-focused early-career capacity building programs. We conclude that such programs are vital to developing sustainability leaders of the future and that decision-making for sustainability is likely to be best served by strong institutional cultures that promote intergenerational learning and involvement.

  7. Exploring the planetary boundary for chemical pollution.

    Science.gov (United States)

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  8. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  9. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  10. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    . Simulations exhibit that the new methodology succeeds where conventional path planners would fail. Three planetary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual exploration robots. Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the execution of science activities distributed over hundreds of meters.

  11. Sensor Array Analyzer for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  12. Adaptive bio-inspired navigation for planetary exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  13. Planetary sciences and exploration: An Indian perspective

    Indian Academy of Sciences (India)

    Studies of impact craters records in the Indian shield have also been pursued and led to ... and emission of X-rays from planets as well as analytical modelling of martian ionosphere and ... Meteorite; moon; solar activity; solar system; martian atmosphere; planetary .... face layers of any meteorite reaching the earth, one.

  14. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  15. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  16. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  17. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  18. Sustainability, glocal development and planetary citizenship. References for a Pedagogy towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M.ª Ángeles MURGA-MENOYO

    2017-06-01

    Full Text Available Sustainability approaches advise adopting a glocal development model that links local possibilities and practices to global needs and constraints. The complexity of this phenomenon, taken to the political plane, leads to a model of planetary citizenship where humanity’s commitment to nature and the necessary social equity amongst human beings are emphasized. This has clear implications for pedagogy, which this paper aims to highlight. This work starts from the sustainable development scenarios and concludes with a proposal of a planetary citizenship rooted locally. Glocality and planetary citizenship, a concept close to that of cosmopolitan citizenship –once stripped of its anthropocentric connotations–, both lead to significant missions of education in this framework: the formation of a holistic worldview, based on a complex-system thinking, and building a planetary citizenship. In both cases, the consideration of the human as an eco-dependent being, attributes nature an essential position in the educational processes.

  19. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  20. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Bayo, A.

    2002-01-01

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  1. Cavehopping Exploration of Planetary Skylights and Tunnels

    Data.gov (United States)

    National Aeronautics and Space Administration — The robots that venture into caves must leap, fly, or rappel into voids, traverse rubble, navigate safely in the dark, self-power, and explore autonomously with...

  2. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  3. Distant Worlds Milestones in Planetary Exploration

    CERN Document Server

    Bond, Peter

    2007-01-01

    Peter Bond provides an overview of key, unmanned missions, chapter by chapter, to planets in the twentieth century. He tells the story of the mission planners and engineers who, working mostly in the background, made these unprecedented achievements in scientific exploration possible. Bond’s perspective provides a much-needed overview, but it also details the very human feelings that animated the intense rivalries between the Soviet Union and the United States, and most recently the difficulties that arose in collaborations between NASA and ESA on the Rosetta and Halley's Comet missions.

  4. Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom

    2007-01-01

    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

  5. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  6. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  7. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  8. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  9. Galileo Avionica's technologies and instruments for planetary exploration.

    Science.gov (United States)

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  10. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  11. An Antarctic research outpost as a model for planetary exploration.

    Science.gov (United States)

    Andersen, D T; McKay, C P; Wharton, R A; Rummel, J D

    1990-01-01

    During the next 50 years, human civilization may well begin expanding into the solar system. This colonization of extraterrestrial bodies will most likely begin with the establishment of small research outposts on the Moon and/or Mars. In all probability these facilities, designed primarily for conducting exploration and basic science, will have international participation in their crews, logistical support and funding. High fidelity Earth-based simulations of planetary exploration could help prepare for these expensive and complex operations. Antarctica provides one possible venue for such a simulation. The hostile and remote dry valleys of southern Victoria Land offer a valid analog to the Martian environment but are sufficiently accessible to allow routine logistical support and to assure the relative safety of their inhabitants. An Antarctic research outpost designed as a planetary exploration simulation facility would have great potential as a testbed and training site for the operation of future Mars bases and represents a near-term, relatively low-cost alternative to other precursor activities. Antarctica already enjoys an international dimension, an aspect that is more than symbolically appropriate to an international endeavor of unprecedented scientific and social significance--planetary exploration by humans. Potential uses of such a facility include: 1) studying human factors in an isolated environment (including long-term interactions among an international crew); 2) testing emerging technologies (e.g., advanced life support facilities such as a partial bioregenerative life support system, advanced analytical and sample acquisition instrumentation and equipment, etc.); and 3) conducting basic scientific research similar to the research that will be conducted on Mars, while contributing to the planning for human exploration. (Research of this type is already ongoing in Antarctica).

  12. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    Science.gov (United States)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  13. Lunar planetary exploration of Japan; Nippon no tsuki wakusei tansa

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, J. [Research Development Corporation of Japan, Tokyo (Japan)

    1996-05-01

    This paper describes lunar planetary exploration of Japan as a result of success in launching the H-II rocket. Under the cooperation between the Space Chemistry Research Institute (ISAS) of the Ministry of Education and the National Aerospace Development Association (NASDA), discussions have begun on launching an orbital satellite for lunar planetary exploration early in the 2000`s. The objective includes a study on origin and evolution of the moon, feasibility study on moon utilization, and learning the moon surface soft landing technology. Explorations on objects other than moon may be conceived by using such a large rocket as H-II. Exploration on living organisms on Mars may be one of them. Light emitting monitors that operate on the living organism dying identification method could be used on places where living organisms are likely to exist on Mars. Then, samples may be brought back, and it might be possible to pursue the mystery of life origin. A comet has no internal melting by heat as in planets, and keeps composing substances as they have been generated. In other words, it could be said a fossil in the solar system that retains initial substances in the solar system. Samples, if they can be brought back, could be keys to solve the mystery of the solar system formation. The Halley comet is said covered with organic substances. There is a theory that life originating substances on the earth were made on a comet, which were supplied to the earth as a result of collision.

  14. Planetary Protection Issues in the Human Exploration of Mars

    Science.gov (United States)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  15. The US planetary exploration program opportunities for international cooperation

    Science.gov (United States)

    Briggs, G. A.

    1984-01-01

    Opportunities for international participation in US-sponsored interplanetary missions are discussed on the basis of the recommendations of the Committee on Planetary and Lunar Exploration of the National Academy of Sciences Space Science Board. The initial core missions suggested are a Venus radar mapper, a Mars geoscience/climatology orbiter, a comet-rendezvous/asteroid-flyby mission, and a Titan probe/radar mapper. Subsequent core missions are listed, and the need for cooperation in planning and development stages to facilitate international participation is indicated.

  16. Horses for courses: analytical tools to explore planetary boundaries

    Science.gov (United States)

    van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark

    2016-03-01

    There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).

  17. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    Science.gov (United States)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  18. Is Planetary-Scale High Tech Civilization Climatically Sustainable?: The Geophysics v Economics Paradigm War

    Science.gov (United States)

    Hoffert, M.

    2012-12-01

    Climate/energy policy is gridlocked between (1) a geophysics perspective revealing long-term instabilities from continued energy consumption growth, of which the fossil fuel greenhouse an early symptom; and (2) short-term, fossil-fuel energized-rapid-economic-growth-driven policies likely adaptive for hunter-gatherers competing for scarce food, but climatically fatal to planetary-scale economies dependent on agriculture and "energy slaves." Incorporating social science into climate/energy policy formulation has focused on integrated assessment models (IAMs) exploring scenarios (parallel universes making different social choices) depicting the evolution of GDP, energy consumed, the energy technology mixture, land use, greenhouse gas and aerosol emissions, and radiative forcing). Representative concentration pathways (RCP) scenarios developed for the IPCC AR5 report imply 5-10 degree C warming from fossil fuel burning unless unprecedentedly fast decarbonization rates ~ 7 %/yr are implemented from 2020 to 2100. A massive transition to carbon neutrality by midcentury is needed to keep warming use continues growing at 2%/year, fossil-fuel-greenhouse level warming would be generated by heat rejecting in only 200-300 years underscoring that sustainability implies a steady state planetary economy (FIG.2). Evolutionary psychology and neuroeconomics are emergent disciplines that may illuminate the physical v social science paradigm conflict threatening human survivability.

  19. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  20. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  1. An Overview of Wind-Driven Rovers for Planetary Exploration

    Science.gov (United States)

    Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

    2005-01-01

    The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic

  2. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  3. Highly Efficient Compact Laser for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the solicitation for advances in critical components of instruments for enhanced scientific investigations on future planetary mission, Q-Peak...

  4. Novel Space Exploration Technique for Analysing Planetary Atmospheres

    OpenAIRE

    Dekoulis, George

    2010-01-01

    The chapter presents a new reconfigurable wide-beam radio interferometer system for analysing planetary atmospheres. The system operates at frequencies, where the ionisation of the planetary plasma regions induces strong attenuation. For Earth, the attenuation is undistinguishable from the CMB at frequencies over 50 MHz. The system introduces a set of advanced specifications to this field of science, previously unseen in similar suborbital experiments. The reprogrammable dynamic range of the ...

  5. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  6. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  7. Application of radioactive sources in analytical instruments for planetary exploration

    International Nuclear Information System (INIS)

    Economou, T.E.

    2008-01-01

    Full text: In the past 50 years or so, many types of radioactive sources have been used in space exploration. 238 Pu is often used in space missions in Radioactive Heater Units (RHU) and Radioisotope Thermoelectric Generators (RTG) for heat and power generation, respectively. In 1960's, 2 ' 42 Cm alpha radioactive sources have been used for the first time in space applications on 3 Surveyor spacecrafts to obtain the chemical composition of the lunar surface with an instrument based on the Rutherford backscatterring of the alpha particles from nuclei in the analyzed sample. 242 Cm is an alpha emitter of 6.1 MeV alpha particles. Its half-life time, 163 days, is short enough to allow sources to be prepared with the necessary high intensity per unit area ( up to 470 mCi and FWHM of about 1.5% in the lunar instruments) that results in narrow energy distribution, yet long enough that the sources have adequate lifetimes for short duration missions. 242 Cm is readily prepared in curie quantities by irradiation of 241 Am by neutrons in nuclear reactors, followed by chemical separation of the curium from the americium and fission products. For long duration missions, like for example missions to Mars, comets, and asteroids, the isotope 244 Cm (T 1/2 =18.1 y, E α =5.8 MeV) is a better source because of its much longer half-life time. Both of these isotopes are also excellent x-ray excitation sources and have been used for that purpose on several planetary missions. For the light elements the excitation is caused mainly by the alpha particles, while for the heavier elements (> Ca) the excitation is mainly due to the x-rays from the Pu L-lines (E x =14-18 keV). 244 Cm has been used in several variations of the Alpha Proton Xray Spectrometer (APXS): PHOBOS 1 and 2 Pathfinder, Russian Mars-96 mission, Mars Exploration Rover (MER) and Rosetta. Other sources used in X-ray fluorescence instruments in space are 55 Fe and 109 Cd (Viking1,2, Beagle 2) and 57 Co is used in Moessbauer

  8. High Measurement Channel Density Sensor Array Impedance Analyzer for Planetary Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary exploration missions, such as those planned by NASA and other space agencies over the next few decades, require advanced chemical and biological marker...

  9. Ultra-Compact Raman Spectrometer for Planetary Explorations

    Science.gov (United States)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  10. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  11. Development and Testing of Compression Technologies Using Advanced Materials for Mechanical Counter-Pressure Planetary Exploration Suits

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical counterpressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities. MCP...

  12. Exploring Sustainability Using images from Space

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2016-04-01

    Sustainability is the integrating theme of grade 8 science at Dwight D. Eisenhower in Wyckoff, New Jersey. With a focus on science, technology, engineering, and mathematics (STEM), sustainability establishes relevance for students, connects course work to current news topics, and ties together trimester explorations of earth science, physical science, and life science. Units are organized as problem-based learning units centered on disciplinary core ideas. Sustainability education empowers students to think about human and natural systems on a broader scale as they collaboratively seek solutions to scientific or engineering problems. The STEM-related sustainability issues encompass both global and local perspectives. Through problem solving, students acquire and demonstrate proficiency in the three-dimensions of Next Generation Science Standards (disciplinary core ideas, science and engineering practices, and crosscutting concepts). During the earth science trimester, students explore causes, effects, and mitigation strategies associated with urban heat islands and climate change. As a transition to a trimester of chemistry (physical science), students investigate the sustainability of mobile phone technology from raw materials mining to end-of-life disposal. Students explore natural resource conservation strategies in the interdisciplinary context of impacts on the economy, society, and environment. Sustainability creates a natural context for chemical investigations of ocean-atmosphere interactions such as ocean acidification. Students conclude the eighth grade with an investigation of heredity and evolution. Sustainability challenges embedded in genetics studies include endangered species management (California condors) and predicting the effects of climate change on populations in specific environments (Arctic and Antarctic regions). At Dwight D. Eisenhower Middle School, science students have access to a variety of web-enabled devices (e.g., Chromebooks

  13. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  14. TOMOX : An X-rays tomographer for planetary exploration

    Science.gov (United States)

    Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone

    2017-04-01

    The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines

  15. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  16. Planetary exploration with nanosatellites: a space campus for future technology development

    Science.gov (United States)

    Drossart, P.; Mosser, B.; Segret, B.

    2017-09-01

    Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.

  17. International cooperation in planetary exploration - Past success and future prospects

    Science.gov (United States)

    Rosendhal, Jeffrey D.

    1987-01-01

    A review is given of the ways in which the National Aeronautics and Space Administration (NASA) has participated in international efforts to explore the solar system. Past examples of successful international cooperative programs are described. Prospects for future cooperative efforts are discussed with emphasis placed on current events, issues, and trends which are likely to affect possibilities for cooperation over the next 5 to 10 years. Key factors which will play a major role in shaping future prospects for cooperation include the move towards balancing the budget in the United States and the impact of the Challenger accident on the NASA program.

  18. How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikołaj; Clavreul, Julie

    2018-01-01

    The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept...... as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding...... to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice...

  19. Combining Open-Source Packages for Planetary Exploration

    Science.gov (United States)

    Schmidt, Albrecht; Grieger, Björn; Völk, Stefan

    2015-04-01

    The science planning of the ESA Rosetta mission has presented challenges which were addressed with combining various open-source software packages, such as the SPICE toolkit, the Python language and the Web graphics library three.js. The challenge was to compute certain parameters from a pool of trajectories and (possible) attitudes to describe the behaviour of the spacecraft. To be able to do this declaratively and efficiently, a C library was implemented that allows to interface the SPICE toolkit for geometrical computations from the Python language and process as much data as possible during one subroutine call. To minimise the lines of code one has to write special care was taken to ensure that the bindings were idiomatic and thus integrate well into the Python language and ecosystem. When done well, this very much simplifies the structure of the code and facilitates the testing for correctness by automatic test suites and visual inspections. For rapid visualisation and confirmation of correctness of results, the geometries were visualised with the three.js library, a popular Javascript library for displaying three-dimensional graphics in a Web browser. Programmatically, this was achieved by generating data files from SPICE sources that were included into templated HTML and displayed by a browser, thus made easily accessible to interested parties at large. As feedback came and new ideas were to be explored, the authors benefited greatly from the design of the Python-to-SPICE library which allowed the expression of algorithms to be concise and easier to communicate. In summary, by combining several well-established open-source tools, we were able to put together a flexible computation and visualisation environment that helped communicate and build confidence in planning ideas.

  20. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    Directory of Open Access Journals (Sweden)

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  1. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Science.gov (United States)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  2. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  3. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  4. How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology.

    Science.gov (United States)

    Ryberg, Morten W; Owsianiak, Mikołaj; Clavreul, Julie; Mueller, Carina; Sim, Sarah; King, Henry; Hauschild, Michael Z

    2018-09-01

    The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice of sharing principle had the greatest influence on the outcome. We therefore highlight the need for more research on the development and choice of sharing principles. Although further work is required to operationalize Planetary Boundaries in LCA, this study shows the potential to relate impacts of human activities to environmental boundaries using LCA, offering company and policy decision-makers information needed to promote environmental sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment

    Directory of Open Access Journals (Sweden)

    Nediljko Budisa

    2014-08-01

    Full Text Available Supercritical fluids have different properties compared to regular fluids and could play a role as life-sustaining solvents on other worlds. Even on Earth, some bacterial species have been shown to be tolerant to supercritical fluids. The special properties of supercritical fluids, which include various types of selectivities (e.g., stereo-, regio-, and chemo-selectivity have recently been recognized in biotechnology and used to catalyze reactions that do not occur in water. One suitable example is enzymes when they are exposed to supercritical fluids such as supercritical carbon dioxide: enzymes become even more stable, because they are conformationally rigid in the dehydrated state. Furthermore, enzymes in anhydrous organic solvents exhibit a “molecular memory”, i.e., the capacity to “remember” a conformational or pH state from being exposed to a previous solvent. Planetary environments with supercritical fluids, particularly supercritical carbon dioxide, exist, even on Earth (below the ocean floor, on Venus, and likely on Super-Earth type exoplanets. These planetary environments may present a possible habitat for exotic life.

  6. The development of the human exploration demonstration project (HEDP), a planetary systems testbed

    Science.gov (United States)

    Chevers, Edward S.; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

  7. Exploring sustainable manufacturing principles and practices

    OpenAIRE

    Alayón, Claudia

    2016-01-01

    The manufacturing industry remains a critical force in the quest for global sustainability. An increasing number of companies are modifying their operations in favor of more sustainable practices. It is hugely important that manufacturers, irrespective of the subsector they belong to, or their organizational size, implement practices that reduce or eliminate negative environmental, social and economic impacts generated by their manufacturing operations. Consequently, scholars have called for ...

  8. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    Science.gov (United States)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  9. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  10. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  11. Exploring the Aesthetics of Sustainable Fashion

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Folkmann, Mads Nygaard

    2015-01-01

    , sustainable fashion. In programming the didactical setting for the students’ projects, several aesthetics must be considered: the aesthetic codes of the textile and fashion design discipline, both in terms of materials and expression, deriving from within the design practice itself and the aesthetic codes...... of mediated expressions seen in e.g. fashion magazines which create a frame of aestheticization influencing how fashion expressions are valued. In this tension between internal aesthetics and external aestheticization, the students are set out to create a new design expression for sustainable design which...

  12. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  13. Exploring the Aesthetics of Sustainable Fashion

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Folkmann, Mads Nygaard

    , sustainable fashion. In programming the didactical setting for the students’ projects, several aesthetics must be considered: the aesthetic codes of the textile and fashion design discipline, both in terms of materials and expression, deriving from within the design practice itself and the aesthetic codes...... of mediated expressions seen in e.g. fashion magazines which create a frame of aestheticization influencing how fashion expressions are valued. In this tension between internal aesthetics and external aestheticization, the students are set out to create a new design expression for sustainable design which......This working paper is a discussion of different notions and conceptions of aesthetics that may be at play when developing new design. The empirical case of the paper derives from the context of design education in a module aimed at the development of a new design expression for contemporary...

  14. Lunar and Planetary Robotic Exploration Missions in the 20th Century

    Science.gov (United States)

    Huntress, W. T., Jr.; Moroz, V. I.; Shevalev, I. L.

    2003-07-01

    The prospect of traveling to the planets was science fiction at the beginning of the 20th Century and science fact at its end. The space age was born of the Cold War in the 1950s and throughout most of the remainder of the century it provided not just an adventure in the exploration of space but a suspenseful drama as the US and USSR competed to be first and best. It is a tale of patience to overcome obstacles, courage to try the previously impossible and persistence to overcome failure, a tale of both fantastic accomplishment and debilitating loss. We briefly describe the history of robotic lunar and planetary exploration in the 20th Century, the missions attempted, their goals and their fate. We describe how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation.

  15. Exploring the international policy dimension of sustainability in Dutch agriculture

    NARCIS (Netherlands)

    Brouwer, F.M.; Leneman, H.; Groeneveld, R.A.

    2007-01-01

    The report offers an overview of experiences in France and the United Kingdom as regards efforts to promote sustainability in agriculture. It also identifies international policy constraints on national efforts to promote sustainability. In addition, it explores opportunities for and threats to the

  16. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  17. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  18. Engineering planetary exploration systems : Integrating novel technologies and the human element using work domain analysis

    NARCIS (Netherlands)

    Baker, C.; Naikar, N.; Neerincx, M.

    2008-01-01

    The realisation of sustainable space exploration and utilisation requires not only the development of novel concepts and technologies, but also their successful integration. Hardware, software, and the human element must be integrated effectively to make the dream for which these technologies were

  19. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    Science.gov (United States)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  20. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    Science.gov (United States)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In

  1. The TMT International Observatory: A quick overview of future opportunities for planetary science exploration

    Science.gov (United States)

    Dumas, Christophe; Dawson, Sandra; Otarola, Angel; Skidmore, Warren; Squires, Gordon; Travouillon, Tony; Greathouse, Thomas K.; Li, Jian-Yang; Lu, Junjun; Marchis, Frank; Meech, Karen J.; Wong, Michael H.

    2015-11-01

    The construction of the Thirty-Meter-Telescope International Observatory (TIO) is scheduled to take about eight years, with first-light currently planned for the horizon 2023/24, and start of science operations soon after. Its innovative design, the unequalled astronomical quality of its location, and the scientific capabilities that will be offered by its suite of instruments, all contribute to position TIO as a major ground-based facility of the next decade.In this talk, we will review the expected observing performances of the facility, which will combine adaptive-optics corrected wavefronts with powerful imaging and spectroscopic capabilities. TMT will enable ground-based exploration of our solar system - and planetary systems at large - at a dramatically enhanced sensitivity and spatial resolution across the visible and near-/thermal- infrared regimes. This sharpened vision, spanning the study of planetary atmospheres, ring systems, (cryo-)volcanic activity, small body populations (asteroids, comets, trans-Neptunian objects), and exoplanets, will shed new lights on the processes involved in the formation and evolution of our solar system, including the search for life outside the Earth, and will expand our understanding of the physical and chemical properties of extra-solar planets, complementing TIO's direct studies of planetary systems around other stars.TIO operations will meet a wide range of observing needs. Observing support associated with "classical" and "queue" modes will be offered (including some flavors of remote observing). The TIO schedule will integrate observing programs so as to optimize scientific outputs and take into account the stringent observing time constraints often encountered for observations of our solar system such as, for instance, the scheduling of target-of-oportunity observations, the implementation of short observing runs, or the support of long-term "key-science" programmes.Complementary information about TIO, and the

  2. Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Science.gov (United States)

    SunSpiral, Vytas; Agogino, Adrian; Atkinson, David

    2015-01-01

    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration.

  3. A micro seismometer based on molecular electronic transducer technology for planetary exploration

    International Nuclear Information System (INIS)

    Huang, Hai; Tang, Rui; Carande, Bryce; Oiler, Jonathan; Zaitsev, Dmitri; Agafonov, Vadim; Yu, Hongyu

    2013-01-01

    This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1μm and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s 2 ) was measured under acceleration of 400μg(g≡9.81m/s 2 ) at 0.32 Hz. A −115 dB (relative to (m/s 2 )/√(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

  4. Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration

    CERN Document Server

    Reijonen, Jani

    2005-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0 - 9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration in form of neutron based, sub-surface hydrogen detection systems. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Three main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-c...

  5. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Science.gov (United States)

    Ferguson, Scott; Mazzoleni, Andre

    2016-01-01

    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.

  6. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  7. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    Science.gov (United States)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid

  8. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    Science.gov (United States)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  9. Exploring work-related issues on corporate sustainability.

    Science.gov (United States)

    Brunoro, C M; Bolis, I; Sznelwar, L I

    2015-01-01

    In a research project about work-related issues and corporate sustainability conducted in Brazil, the goal was to better understand how work-related issues were addressed in the corporate context. Particularly, there are some specific initiatives that serve as guides to organizational decisions, which make their performance indicators for the context of corporate sustainability. 1) To explore the presence of work-related issues and their origins in corporate sustainability approach, analyzing a) corporate disclosures; b) sustainability guidelines that are identified as relevant in corporate disclosures; c) documents that are related to sustainable development and also identified as key-documents for these guidelines and initiatives. 2) To present the activity-centered ergonomics and psychodynamics of work contributions to work-related issues in a corporate sustainability approach. An exploratory study based on multiple sources of evidence that were performed from 2012 to 2013, including interviews with companies that engaged in corporate sustainability and document analysis using the content analysis approach. Work-related issues have been presented since the earliest sustainable development documents. It is feasible to construct an empirical framework for work-related issues and corporate sustainability approaches. 1) Although some authors argue that corporate sustainability has its roots based only on the environmental dimension, there is strong empirical evidence showing that social dimension aspects such as work-related issues have been present since the beginning. 2) Some indicators should be redesigned to more precisely translate the reality of some workplaces, particularly those indicators related to organizational design and mental health.

  10. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  11. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai

    2012-10-01

    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  12. Compact Neutron Generators for Medical Home Land Security and Planetary Exploration

    International Nuclear Information System (INIS)

    Reijonen, J.

    2005-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented

  13. The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration

    Science.gov (United States)

    Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.

    1999-04-01

    The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.

  14. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    Science.gov (United States)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five

  15. Tourism Partnerships in Protected Areas: Exploring Contributions to Sustainability

    Science.gov (United States)

    Pfueller, Sharron L.; Lee, Diane; Laing, Jennifer

    2011-10-01

    Partnerships between natural-area managers and the tourism industry have been suggested to contribute to sustainability in protected areas. This article explores how important sustainability outcomes of partnerships are to their members, how well they are realised and the features of partnerships leading to their achievement. In 21 case studies in Australia, interviews ( n = 97) and surveys ( n = 100) showed that of 14 sustainability outcomes, improved understanding of protected areas values and improved biodiversity conservation were the most important. Other highly ranked outcomes were greater respect for culture, heritage, and/or traditions; improved quality of environmental conditions; social benefits to local communities; and improved economic viability of the protected area. Scores for satisfaction with outcomes were, like those for importance, all high but were less than those for importance for the majority, with improvement in quality of environmental conditions showing the largest gap. The satisfaction score exceeded that for importance only for increased competitiveness of the protected area as a tourist destination. "Brown" aspects of sustainability, i.e., decreased waste or energy use, were among the lowest-scoring outcomes for both importance and satisfaction. The most important factor enabling sustainability outcomes was provision of benefits to partnership members. Others were increased financial support, inclusiveness, supportive organisational and administrative arrangements, direct involvement of decision makers, partnership maturity, creation of new relationships, decreased conflict, and stimulation of innovation. Improving sustainability outcomes, therefore, requires maintaining these partnership attributes and also increasing emphasis on reducing waste and resource use.

  16. Analyzing the Concept of Planetary Boundaries from a Strategic Sustainability Perspective: How Does Humanity Avoid Tipping the Planet?

    Directory of Open Access Journals (Sweden)

    Karl-Henrik Robèrt

    2013-06-01

    Full Text Available Recently, an approach for global sustainability, the planetary-boundary approach (PBA, has been proposed, which combines the concept of tipping points with global-scale sustainability indicators. The PBA could represent a significant step forward in monitoring and managing known and suspected global sustainability criteria. However, as the authors of the PBA describe, the approach faces numerous and fundamental challenges that must be addressed, including successful identification of key global sustainability metrics and their tipping points, as well as the coordination of systemic individual and institutional actions that are required to address the sustainability challenges highlighted. We apply a previously published framework for systematic and strategic development toward a robust basic definition of sustainability, i.e., the framework for strategic sustainable development (FSSD, to improve and inform the PBA. The FSSD includes basic principles for sustainability, and logical guidelines for how to approach their fulfillment. It is aimed at preventing unsustainable behavior at both the micro, e.g., individual firm, and macro, i.e., global, levels, even when specific global sustainability symptoms and metrics are not yet well understood or even known. Whereas the PBA seeks to estimate how far the biosphere can be driven away from a "normal" or "natural" state before tipping points are reached, because of ongoing violations of basic sustainability principles, the FSSD allows for individual planners to move systematically toward sustainability before all impacts from not doing so, or their respective tipping points, are known. Critical weaknesses in the PBA can, thus, be overcome by a combined approach, significantly increasing both the applicability and efficacy of the PBA, as well as informing strategies developed in line with the FSSD, e.g., by providing a "global warning system" to help prioritize strategic actions highlighted by the FSSD

  17. Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration

    Science.gov (United States)

    Alena, Richard I.; Lee, Charles

    2004-01-01

    Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the

  18. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA's geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA's proposed human exploration systems a compelling endeavor.

  19. Fragile Social Norms: (Un Sustainable Exploration of Forest Products

    Directory of Open Access Journals (Sweden)

    Decio Zylbersztajn

    2010-01-01

    Full Text Available The exhaustion of natural resources is a central problem in the international agenda. The particular case of Amazon forest is at the top on the international environmental debate. Two related problems are keys to be considered in the discussion of sustainable development in this region. First the predatory use of the natural resources of the forest mainly timber and genetic resources. Second the recognition of the existence of a population of around 20 million inhabitants in the region defined as “Legal Amazon Area”, aiming the improvement on the living conditions, enhancement of income level and acceleration of development. How to match both objectives is a puzzle faced by the present generation.The region is populated by initiatives of international non-governmental-organizations, most of them carrying good intentions but lacking the necessary knowledge on local formal and informal institutions to find ways to reach sustainable development. The result is the accelerated process of natural resources depletion, and social disorganization. The case of the production of Brazilian Nuts stands as a corollary of the lack of an institutional structure of property rights that does not provide incentives for sustainable development. The opposite effect is being observed as a result of the fragility of observable institutional arrangements.The case provides the counterfactual for the analysis of Ostrom (1990; 2008, where she presents virtuous cases of sustainable exploration of natural resources, mostly based on informal but solid institutions.

  20. Entrepreneurship And Business Management - Exploring Linkages For Sustainable Development

    Directory of Open Access Journals (Sweden)

    Dr Serah K Mbetwa

    2015-08-01

    Full Text Available Entrepreneurs have emerged as market leaders in todays business world amidst the numerous economic turmoil constantly affecting economies on a global scale. This research paper is on entrepreneurship and business management and its linkages to other business stakeholders. The research paper therefore discusses entrepreneurship and business management exploring the linkages to available financing and potential institutions for startup capital by linking entrepreneurs to the government financiers and the public clientele. It is believed that this can bring about achievement of sustainable development goals translating into sustainable development and hence economic growth. The idea of funding is echoed by Robert Rice 2016 An entrepreneur without funding is like a musician with no instruments. Sustainability and entrepreneurship sustainopreneurship is made possible with availability of information on linkages between entrepreneurs and financial lending institutions as well as government policy. It is hoped that the research will add to the existing knowledge and help entrepreneurs with funding options for their business ideas to come to life. Findings show that the government financial lending institutions and the public are the major linkages between entrepreneurship and business management and are critical for attaining sustainable development goals and achieving economic growth.

  1. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    Science.gov (United States)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  2. Features of Ground Penetrating Radars for the exploration of planetary subsurface

    Science.gov (United States)

    Burghignoli, P.; Cereti, A.; Fiore, E.; Galli, A.; Pajewski, L.; Pettinelli, E.; Pisani, A.; Schettini, G.; Ticconi, F.

    2003-04-01

    Among the various applications of Surface or Ground Penetrating Radars (GPRs), the possibility of achieving useful information about the characterization of planetary soils represents a topic which has deserved particular interest in recent times [1]. The present work intends to analyze various critical aspects related to the GPR capability of properly investigating the subsurface structure, also emphasizing what kind of practical solutions seem to be more suitable to this purpose. Some basic aspects have to be considered, which are peculiar of this type of problem, e.g.: i) the poor information achievable up to now on both the composition and the stratigraphy of planet soils; ii) the typical bulk and weight limitations for instruments when used in onboard rovers for in-situ measurements. As regards the first aspect, additional knowledge should generally be required on the electromagnetic parameters (permittivity, permeability, and conductivity) of the upper subsoil layers in order to extract useful information from the GPR data. The use of different types of sensors, which can be integrated in an overall "sounding package" [1], is a useful way of characterizing more precisely such electromagnetic parameters. Consequently, GPR can primarily be used to get data on the unknown stratigraphy. The second aspect implies fundamental constraints in the design of GPR, involving the choice of the type of radar, the relevant electronic equipment for signal processing, the antenna design, etc. In addition to standard types of "pulsed" GPR, a specific study has been performed on "step-frequency" GPRs, which appear to be attractive due to their low-cost and simple electronic circuitry. As concerns the choice of the radiating elements, the most suitable configurations of GPR antennas have been investigated and compared in terms of dimensions and radiation parameters. New specific antenna configurations have been proposed, designed, and tested. Finally, numerical simulations have

  3. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    Science.gov (United States)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of

  4. Engineering a Sustainable Blue Planet: Exploring the dynamics

    Science.gov (United States)

    Lall, U.

    2004-12-01

    Man's hand as a geomorphic agent is now endemic. The dynamics of water and other material cycles is now significantly impacted at all scales: from hillsides to watersheds to the earth, and from urban flash flood events to mean long term flow. Locally and regionally, climatic exigencies serve to spur either ruin (in the poorest societies) or a flurry of human infrastructure development. Thus, at the local scale, geomorphology depends on man's struggle for survival, and the associated interaction with nature's vagaries. Of course, we now recognize that man induced changes in land surface attributes (related to agriculture or deforestation) and in atmospheric composition translate into relatively unforeseeable climate changes, i.e., nature at a planetary scale has a different face. Despite the recognition of these interacting factors, a conceptual model that treats the dynamics of man and nature as separable and separate, dominates the earth sciences. We study global climate change and its impacts as sequential outcomes of a carbon emission scenario, and not as endogenous processes of the earth-man system with mutual feedbacks. The definition of a man-nature dynamical system is feasible as an abstraction. I explore such a definition through examples, one at the global scale, and one at a local scale. These examples are formulated in the context of meeting the challenge of poverty reduction through the provision of water for health and food, while considering vulnerability to a dynamic climate and to changes in the environment.

  5. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  6. Enabling Sustainable Exploration through the Commercial Development of Space

    Science.gov (United States)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  7. The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth

    Science.gov (United States)

    Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

    2012-03-01

    What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

  8. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    Science.gov (United States)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  9. Sustainability, Learning and Capability: Exploring Questions of Balance

    Directory of Open Access Journals (Sweden)

    William A. H. Scott

    2010-12-01

    Full Text Available It is argued that sustainable development makes best sense as a social learning process that brings tangible and useful outcomes in terms of understanding and skills, and also reinforces the motivation and capability for further learning. Thus, there are always balances to be struck between a broad-based, wide-ranging education and a more specialist one; between a focus on ideas themselves, and on their application in social or economic contexts; and between keeping ideas separate, and integrating them. This paper will explore the nature of such balances, and the issues to bear in mind when striking them, focusing on schools, university and college contexts within the United Kingdom.

  10. Development of a bio-chip dedicated to planetary exploration. First step: resistance studies to space conditions

    International Nuclear Information System (INIS)

    Le Postollec, A.; Dobrijevic, M.; Incerti, S.; Moretto, Ph.; Seznec, H.; Desorgher, L.; Santin, G.; Nieminen, P.; Dartnell, L.; Vandenabeele-Trambouze, O.; Coussot, G.

    2008-02-01

    For upcoming exploration missions, space agencies advocate the development of a new promising technique to search for traces of extent or extinct life: the bio-chip use. A bio-chip is a miniaturized device composed of biological sensitive systems fixed on a solid substrate. As space is a hazardous environment, a main concern relies on the resistance of a bio-chip to a panel of harsh constraints among which the resistance to radiations. Within the framework of the BiOMAS (Bio-chip for Organic Matter Analysis in Space) project, our team is currently developing a bio-chip especially designed for planetary exploration. We present here the methodology adopted and the beginning experiments to select the best constituents, to determine resistance levels and to define well-adapted protection for the bio-chip

  11. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  12. Using art and story to explore how primary school students in rural Tanzania understand planetary health: a qualitative analysis

    Directory of Open Access Journals (Sweden)

    Elizabeth VanWormer, PhD

    2018-05-01

    Full Text Available Background: The global planetary health community increasingly recognises the need to prepare students to investigate and address connections between environmental change and human health. As we strive to support education on planetary health themes for students of all ages, understanding students' concepts of linkages between the health of people and animals, and their shared environments might advance educational approaches. Children living in villages bordering Ruaha National Park in Iringa Region, Tanzania, have direct experience of these connections as they share a water-stressed but biodiverse environment with domestic animals and wildlife. Livelihoods in these villages depend predominantly on crop and livestock production, including extensive pastoralist livestock keeping. Through qualitative research, we aim to explore and describe Tanzanian primary school students' understanding of connections between human health and the environment. Methods: Working with 26 village primary schools in Iringa Rural District, Tanzania, we adapted an art and story outreach activity to explore student perceptions of planetary health concepts. Following a standardised training session, a lead teacher at each primary school helped students aged 12–15 years form small teams to independently develop and illustrate a story centred on themes of how human health depends on water sources, wildlife, livestock, climate, and forest or grassland resources. Students were encouraged to discuss these themes with their teachers, peers, and families while developing their stories to gain broader as well as historical perspectives. The students generated stories that incorporated solutions to challenges within these themes. Written materials and illustrations were collected from each school along with data on sex and tribe of the group members. We translated all stories from Swahili to English for analysis. The primary outcomes of interest in analysing the students

  13. SUSTAINABLE FOOD CONSUMPTION: EXPLORING THE CONSUMER ATTITUDE – BEHAVIOUR GAP

    OpenAIRE

    I. VERMEIR; W. VERBEKE

    2004-01-01

    Although public interest in sustainability increases and consumer attitudes are mainly positive, behavioural patterns are not univocally consistent with attitudes. The presumed gap between favourable attitude towards sustainable behaviour and behavioural intention to purchase sustainable food products is investigated in this study. The impact of involvement, perceived availability, certainty, perceived consumer effectiveness (PCE), values, and social norms on consumers’ attitudes and intentio...

  14. The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration

    Science.gov (United States)

    Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey

    New Phobos mapping. Methods of image processing and modern GIS technologies provide the opportunity for high quality planetary mapping. The new Phobos DTM and global orthomosaic have been used for developing a geodatabase (Karachevtseva et al., 2012) which provides data for various surface spatial analyses: statistics of crater density, as well as studies of gravity field, geomorphology, and photometry. As mapping is the best way to visualize results of research based on spatial context we created the Phobos atlas. The new Phobos atlas includes: control points network which were calculated during photogrammetry processing of SRC images (Zubarev et al., 2012) and fundamental body parameters as a reference basis for Phobos research as well as GIS analyses of surface objects and geomorphologic studies. According to the structure of the atlas we used various scales and projections based on different coordinate system, including three-axial ellipsoid which parameters (a=13.24 km, b=11.49 km, c=9.48 km) derived from new Phobos shape model (Nadezhdina and Zubarev, 2014). The new Phobos atlas includes about 30 thematic original maps that illustrate the surface of the small body based on Mars Express data (Oberst et al., 2008) and illustrates results of various studies of Phobos:, geomorphology parameters of craters (Basilevsky et al., 2014), morphometry studies (Koknanov et al., 2012), statistics of crater size-frequency distributions based on multi-fractal approach (Uchaev Dm. et al., 2012). Phobos Geo-portal. The spatial data products which used for preparing maps for the Phobos atlas are available at the planetary data storage with access via Geo-portal (http://cartsrv.mexlab.ru/geoportal/), based on modern spatial and web-based technologies (Karachevtseva et al., 2013). Now we are developing Geodesy and Cartography node which can integrate various types of information not only for Phobos data, but other planets and their satellites, and it can be used for geo

  15. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  16. Exploring Planetary Analogs With an Ultracompact Near-Infrared Reflectance Instrument

    Science.gov (United States)

    Sobron, P.; Wang, A.

    2017-12-01

    Orbital reflectance spectrometers provide unique measurements of mineralogical features globally and repeatedly on planets and moons of our solar system. Mounted on landed spacecraft, reflectance sensors enable fine-scale investigations and can provide ground truth analyses to assess the validity of spectral remote sensing. We have developed a miniaturized, field-ready, active source NIR (1.14-4.76 μm) reflectance spectrometer (WIR) WIR enables in-situ, near real-time identification of water (structural or adsorbed), carbonates, sulfates, hydrated silicates, as well as C-H & N-H bonds in organic species. WIR is suited for lander/rover deployment in two modes: 1) In Traverse Survey Mode WIR is integrated into a rover wheel and performs nonstop synchronized data collection with every revolution of the wheel; large amounts of data points can be collected during a rover traverse that inform the spatial distribution of mineral phases; 2) In Point-Check Mode WIR is mounted on a robotic arm of a rover/lander and deployed on selected targets at planetary surfaces, or installed inside an analytical lab where samples from a drill/scoop are delivered for detailed analysis. Over the past 10 years we have deployed WIR in planetary analog settings, including hydrothermal springs in Svalbard (Norway) and High Andes (Chile); Arctic volcanoes in Svalbard; Arctic springs and permafrost in Axel Heiberg (Canada); Antarctic ice-covered lakes; saline playas in hyperarid deserts in the Tibetan Plateau (China) and the Atacama; high elevation ore deposits in the Andes and the Abitibi gold belt region (Canada); lava tubes in California; and acidic waters in Rio Tinto (Spain). We have recorded in-situ NIR reflectance spectra from these analogues and used improved spectral unmixing algorithms to determine the mineralogical composition at these sites. We have observed minerals consistent with sedimentary, mineralogical, morphological, and geochemical processes, some of which have been

  17. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  18. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    Science.gov (United States)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  19. Strategies for the sustained human exploration of Mars

    Science.gov (United States)

    Landau, Damon Frederick

    A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for

  20. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  1. Exploring Culturally Sustaining Writing Pedagogy in Urban Classrooms

    Science.gov (United States)

    Woodard, Rebecca; Vaughan, Andrea; Machado, Emily

    2017-01-01

    We examine how culturally sustaining pedagogy that fosters linguistic and cultural pluralism might be taken up in writing instruction. Using data collected through semistructured interviews with nine urban elementary and middle school writing teachers, we document teachers' conceptualizations and enactments of culturally sustaining writing…

  2. The development of a virtual camera system for astronaut-rover planetary exploration.

    Science.gov (United States)

    Platt, Donald W; Boy, Guy A

    2012-01-01

    A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.

  3. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  4. Turning Exploration (R&D) into a Sustainable Business Model

    OpenAIRE

    Buskard, James Livingstone

    2012-01-01

    Nevada Exploration Inc. (“NGE”) is a public exploration company that has developed new technology to identify gold exploration projects in Nevada’s valleys where the bedrock is covered. Covered bedrock settings challenge conventional exploration tools and NGE’s technology represents a significant improvement; however, because the technology is still new, NGE has had a hard time attracting buyers for its projects. Instead, NGE has advanced its exploration targets in house, which has proven cos...

  5. Exploring Sulfur & Argon Abundances in Planetary Nebulae as Metallicity- Indicator Surrogates for Iron in the Interstellar Medium

    Science.gov (United States)

    Kwitter, Karen B.; Henry, Richard C.

    1999-02-01

    Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.

  6. Geodesy and cartography methods of exploration of the outer planetary systems: Galilean satellites and Enceladus

    Science.gov (United States)

    Zubarev, Anatoliy; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina

    elements of external orientation, provides new image processing of previous missions to outer planetary system. Using Photomod software (http://www.racurs.ru/) we have generated a new control point network in 3-D and orthomosaics for Io, Ganymede and Enceladus. Based on improved orbit data for Galileo we have used larger numbers of images than were available before, resulting in a more rigid network for Ganymede. The obtained results will be used for further processing and improvement of the various parameters: body shape parameters and shape modeling, libration, as well as for studying of the surface interesting geomorphological phenomena, for example, distribution of bright and dark surface materials on Ganymede and their correlations with topography and slopes [6]. Acknowledgments: The Ganymede study was partly supported by ROSKOSMOS and Space Research Institute under agreement No. 36/13 “Preliminary assessment of the required coordinate and navigation support for selection of landing sites for lander mission “Laplace” and partly funding by agreement No. 11-05-91323 for “Geodesy, cartography and research satellites Phobos and Deimos” References: [1] Nadezhdina et al. Vol. 14, EGU2012-11210, 2012. [2] Zhukov et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [3] Zubarev et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [4] Lazarev et al. Izvestia VUZov. 2012, No 6, pp. 9-11 http://miigaik.ru/journal.miigaik.ru/2012/20130129120215-2593.pdf (in Russian). [5] Kokhanov et al. Current problems in remote sensing of the Earth from space. 2013. Vol. 10. No 4. pp. 136-153. http://d33.infospace.ru/d33_conf/sb2013t4/136-153.pdf (in Russian). [6] Oberst et al., 2013 International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space

  7. Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration

    International Nuclear Information System (INIS)

    Lee, Kerry; Wilson, Thomas; Zapp, Neal; Pinsky, Lawrence

    2007-01-01

    NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics

  8. Exploring Gamification Techniques and Applications for Sustainable Tourism

    Directory of Open Access Journals (Sweden)

    Adina Letiţia Negruşa

    2015-08-01

    Full Text Available Tourism is perceived as an appropriate solution for pursuing sustainable economic growth due to its main characteristics. In the context of sustainable tourism, gamification can act as an interface between tourists (clients, organisations (companies, NGOs, public institutions and community, an interface built in a responsible and ethical way. The main objective of this study is to identify gamification techniques and applications used by organisations in the hospitality and tourism industry to improve their sustainable activities. The first part of the paper examines the relationship between gamification and sustainability, highlighting the links between these two concepts. The second part identifies success stories of gamification applied in hospitality and tourism and reviews gamification benefits by analysing the relationship between tourism organisations and three main tourism stakeholders: tourists, tourism employees and local community. The analysis is made in connection with the main pillars of sustainability: economic, social and environmental. This study is positioning the role of gamification in the tourism and hospitality industry and further, into the larger context of sustainable development.

  9. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Said, A.; Sehlke, G.; Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T.; Glover, T.

    2006-01-01

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  10. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  11. The Explorer's Guide to the Universe: A Reading List for Planetary and Space Science. Revised

    Science.gov (United States)

    French, Bevan M. (Compiler); McDonagh, Mark S. (Compiler)

    1984-01-01

    During the last decade, both scientists and the public have been engulfed by a flood of discoveries and information from outer space. Distant worlds have become familiar landscapes. Instruments in space have shown us a different Sun by the "light" of ultraviolet radiation and X-rays. Beyond the solar system, we have detected a strange universe of unsuspected violence, unexplained objects, and unimaginable energies. We are completely remarking our picture of the universe around us, and scientists and the general public alike are curious and excited about what we see. The public has participated in this period of exploration and discovery to an extent never possible before. In real time, TV screens show moonwalks, the sands of Mars, the volcanoes of Io, and the rings of Saturn. But after the initial excitement, it is hard for the curious non-scientist to learn more details or even to stay in touch with what is going on. Each space mission or new discovery is quickly skimmed over by newspapers and TV and then preserved in technical journals that are neither accessible nor easily read by the average reader. This reading list is an attempt to bridge the gap between the people who make discoveries in space and the people who would like to read about them. The aim has been to provide to many different people--teachers, students, scientists, other professionals, and curious citizens of all kinds--a list of readings where they can find out what the universe is like and what we have learned about it. We have included sections on the objects that seem to be of general interest--the Moon, the planets, the Sun, comets, and the universe beyond. We have also included material on related subjects that people are interested in--the history of space exploration, space habitats, extraterrestrial life, and U F O ' s . The list is intended to be self-contained; it includes both general references to supply background and more specific sources for new discoveries. Although the list can

  12. Community Gardening Project: Meredith College Students Explore Sustainability, Organics

    Science.gov (United States)

    Roubanis, Jody L.; Landis, William

    2007-01-01

    Consuming locally grown foods promotes sustainable development and individual wellness (Waters, 2006). In the United States, the average food product travels 2,000 miles before reaching the consumer (Schlosser, 2001). This distance between producer and consumer is one reason that today's youth lack an understanding of the origin of the food they…

  13. Exploring the sustainability of composting as a solid waste ...

    African Journals Online (AJOL)

    Solid waste composting has emerged as an innovative approach to managing solid waste in various regions of the world. However, the sustainability of this approach to solid waste management has been sparsely investigated in the study area. This paper reviews composting case studies in Nigeria with the aim of providing ...

  14. An Empirical Exploration, Typology, and Definition of Corporate Sustainability

    Directory of Open Access Journals (Sweden)

    Manfred Max Bergman

    2017-05-01

    Full Text Available The relationship between business and society is evolving. On the one hand, social, environmental, and long-term economic issues subsumed under the UN 2030 Agenda for Sustainable Development are inspiring intergovernmental organizations, governments, NGOs, NPOs, foundations, and civic society to legislate and regulate corporate behavior toward a greater concern for the wellbeing of groups, regions, or entire societies. On the other, a growing trend toward protectionism, nationalism, and populism may be the consequence or expression of a dissatisfaction with the perceived dissociation of the private sector from society. As a form of self-regulation, corporate responsibility deals with the complex responsibilities businesses have toward society. However, it tends to be hampered by an emphasis on theology and philosophy-based business ethics, which are difficult to integrate into day-to-day business operations or to translate between national or corporate cultures. In this article, we argue that corporate sustainability could be a more useful concept to help improve on how government, the private sector, and academia understand the links between business and society, and how to translate the interdependence between business and society from one culture to another. For this purpose, we empirically analyzed the relevant academic literature on corporate sustainability, using Content Configuration Analysis. Our analyses revealed three conceptual types and nine subtypes of corporate sustainability. Based on their assessment, we suggest conceptual preferences and a definition of corporate sustainability, which fulfil criteria that may render the concept more useful to global political and socioeconomic negotiations among stakeholder groups for the long-term benefit of business and society.

  15. Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms

    Science.gov (United States)

    DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.

    2015-04-01

    One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.

  16. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  17. Field Exploration and Life Detection Sampling for Planetary Analogue Research (FELDSPAR)

    Science.gov (United States)

    Gentry, D.; Stockton, A. M.; Amador, E. S.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z. A.; Jacobsen, M. B.; Kirby, J.; McCaig, H. C.; Murukesan, G.; Rennie, V.; Rader, E.; Schwieterman, E. W.; Stevens, A. H.; Sutton, S. A.; Tan, G.; Yin, C.; Cullen, D.; Geppert, W.

    2017-12-01

    Extraterrestrial studies are typically conducted on mg samples from cm-scale features, while landing sites are selected based on m to km-scale features. It is therefore critical to understand spatial distribution of organic molecules over scales from cm to the km, particularly in geological features that appear homogenous at m to km scales. This is addressed by FELDSPAR, a NASA-funded project that conducts field operations analogous to Mars sample return in its science, operations, and technology [1]. Here, we present recent findings from a 2016 and a 2017 campaign to multiple Martian analogue sites in Iceland. Icelandic volcanic regions are Mars analogues due to desiccation, low nutrient availability, temperature extremes [2], and are relatively young and isolated from anthropogenic contamination [3]. Operationally, many Icelandic analogue sites are remote enough to require that field expeditions address several sampling constraints that are also faced by robotic exploration [1, 2]. Four field sites were evaluated in this study. The Fimmvörðuháls lava field was formed by a basaltic effusive eruption associated with the 2010 Eyjafjallajökull eruption. Mælifellssandur is a recently deglaciated plain to the north of the Myrdalsjökull glacier. Holuhraun is a basaltic spatter and cinder cone formed by 2014 fissure eruptions just north of the Vatnajökull glacier. Dyngjusandur is a plain kept barren by repeated aeolian mechanical weathering. Samples were collected in nested triangular grids from 10 cm to the 1 km scale. We obtained overhead imagery at 1 m to 200 m elevation to create digital elevation models. In-field reflectance spectroscopy was obtained with an ASD spectrometer and chemical composition was measured by a Bruker handheld XRF. All sites chosen were homogeneous in apparent color, morphology, moisture, grain size, and reflectance spectra at all scales greater than 10 cm. Field lab ATP assays were conducted to monitor microbial habitation, and home

  18. Sustainability, accountability and corporate governance: Exploring multinationals' reporting practices

    OpenAIRE

    Kolk, A.

    2008-01-01

    Recent years have seen a rapid increase in accountability pressures on particularly large global companies. The increased call for transparency comes from two different angles, which show some (potential) convergence in terms of topics and audiences: accountability requirements in the context of corporate governance, which expand to staff-related, ethical aspects; and sustainability reporting that has broadened from environment only to social and financial issues. This article examines to wha...

  19. Sustainable humanitarian supply chain management: exploring new theory

    OpenAIRE

    Kunz, Nathan; Gold, Stefan

    2015-01-01

    Disaster response operations aim at helping as many victims as possible in the shortest time, with limited consideration of the socio-economic context. During the disaster rehabilitation phase, the perspective needs to broaden and comprehensively take into account the local environment. We propose a framework of sustainable humanitarian supply chain management (SCM) that facilitates such comprehensive performance. We conceptualize the framework by combining literature from the fields of susta...

  20. An Empirical Exploration, Typology, and Definition of Corporate Sustainability

    OpenAIRE

    Manfred Max Bergman; Zinette Bergman; Lena Berger

    2017-01-01

    The relationship between business and society is evolving. On the one hand, social, environmental, and long-term economic issues subsumed under the UN 2030 Agenda for Sustainable Development are inspiring intergovernmental organizations, governments, NGOs, NPOs, foundations, and civic society to legislate and regulate corporate behavior toward a greater concern for the wellbeing of groups, regions, or entire societies. On the other, a growing trend toward protectionism, nationalism, and popul...

  1. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    Science.gov (United States)

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  2. Exploring profit - Sustainability trade-offs in cropping systems using evolutionary algorithms

    NARCIS (Netherlands)

    DeVoil, P.; Rossing, W.A.H.; Hammer, G.L.

    2006-01-01

    Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually

  3. Exploration of sustainable development by applying green economy indicators.

    Science.gov (United States)

    Chen, Yungkun; Chen, Chia-Yon; Hsieh, Tsuifang

    2011-11-01

    Following the global trend of sustainable development, development of green economy is the best way of slowing the negative ecological and environmental impact. This research establishes the Taiwan's green economic indicators based on the ecological footprint and energy analysis. The results are as follows: Taiwan's ecological footprint in 2008 intensity index was at 4.364; ecological overshoot index was at 3.364, showing that Taiwan's ecological system is in overload state. Moreover, this study utilizes energy analysis model to study the sustainable development of Taiwan. Findings showed that total energy use in 2008 was 3.14 × 10(23) sej (solar energy joule, sej), energy of renewable resources was 1.30 × 10(22) sej, energy of nonrenewable resources was 2.26 × 10(23) sej, energy of products from renewable resources was 1.30 × 10(22)sej, energy of currency flow was 8.02 × 10(22) sej and energy of wastes flow was 6.55 × 10(22) sej. Taiwan's energy per capita and the utilization rate of energy is lower while the environmental loading rate is significantly higher comparing to some other countries. The foregoing findings indicate that Taiwan currently belongs to an economic development pattern based on high resource consumption. The economic development is mainly established on the exploitation and utilization of nonrenewable resources. Therefore, Taiwan should change the development pattern, regulate the industrial structure, promote the utilization rate of resources, develop green pollution-free products, and enhance the sustainable development of ecological economic system.

  4. Exploration of the Future – a Key to Sustainable Development

    Directory of Open Access Journals (Sweden)

    Vatroslav Zovko

    2013-01-01

    Full Text Available Throughout the history people were fascinated and curious about the future. The future was, and still is seen as a key for prosperous development in all aspects of the society. As such, new discipline is developed – future studies.This paper discusses the discipline of future studies and its role in the society and science. Future studies are analyzed in the context of sustainable development. It is argued that future studies and sustainable development are complementary in nature. Based on analysis of most developed countries in the world, that spend the greatest portion of their budget on research, development and science in comparison to the rest of the world, there is a conclusive link between investments in research, development and science, and the recognition of the importance of thinking about the future. Those countries started to formalize their future orientation in many respected research centres and universities through their educational programs and research. That situation poses the need for other, less well off countries, to follow up.

  5. Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission

    Science.gov (United States)

    Guerrero, Hector

    2010-05-01

    In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.

  6. Planetary exploration. Chapter 7

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1980-01-01

    Recent knowledge of the planets, particularly that gained through spacecraft missions, is discussed. Sections are headed: Mercury; Venus (atmospheric composition, surface properties, meteorology, atmospheric structure); Mars (atmospheric properties, meteorology, climate change, Phobos and Deimos); Jupiter (magnetosphere and environment, atmospheric properties, meteorology, ring properties, inner satellites). (U.K.)

  7. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    Science.gov (United States)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  8. Exploring Opportunities for Sustainability in the Malaysian Palm Oil Industry

    DEFF Research Database (Denmark)

    Padfield, Rory; Hansen, Sune Balle; Preece, Christopher

    2011-01-01

    The global thirst for vegetable oil can be regarded as one of the greatest environmental challenges of the 21st Century and interest has intensified with the prospect of biofuels. Palm oil has risen to become the dominant player on the vegetable oil market – and the main recipient of environmental...... scrutiny. Focusing specifically on the Malaysian context, this paper analyses the major environmental, social and economic impacts associated with palm oil production. Drawing on recently published research, publicly available data and a comparison made with a recent sustainability initiative undertaken...... by the hydropower industry – an equally controversial and highly scrutinised sector – it is argued that the full extent of the impacts of palm oil should be acknowledged by those on both sides of the debate. Moreover, it is argued that by moving towards a less polarised version of the palm oil narrative and one...

  9. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  10. Sustainability in Higher Education: An explorative approach on sustainable behavior in two universities

    NARCIS (Netherlands)

    M. Juárez Nájera (Margarita)

    2010-01-01

    textabstractThis thesis focuses on identifying psychological factors related to personality features which can influence sustainable behavior of individuals in higher educational institutions (HEI), as well as to present the areas where these individuals work, and in which higher education for

  11. Preparing Graduate Students for Solar System Science and Exploration Careers: Internships and Field Training Courses led by the Lunar and Planetary Institute

    Science.gov (United States)

    Shaner, A. J.; Kring, D. A.

    2015-12-01

    To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills

  12. Globalisation and Education for Sustainable Development: Exploring the Global in Motion

    Science.gov (United States)

    Bengtsson, Stefan L.; Östman, Leif O.

    2016-01-01

    The article explores education for sustainable development (ESD) as a policy concept in different spaces and how it is re-articulated as part of a process of globalisation. The objective is to explore empirically an alternative set of logics in order to conceive of this process of globalisation. With this objective in mind, the article…

  13. Teachers' Initial and Sustained Use of an Instructional Assistive Technology Tool: Exploring the Mitigating Factors

    Science.gov (United States)

    Bouck, Emily C.; Flanagan, Sara; Heutsche, Anne; Okolo, Cynthia M.; Englert, Carol Sue

    2011-01-01

    This qualitative research project explored factors that mitigated teachers implementing an instructional assistive technology and factors that mitigated its sustained use. Specifically, it explored these issues in relation to a social studies based instructional assistive technology (Virtual History Museum [VHM]), which was originally implemented…

  14. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    International Nuclear Information System (INIS)

    Halsnaes, K.; Garg, A.

    2006-11-01

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  15. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K; Garg, A [eds.

    2006-11-15

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  16. Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses

    Science.gov (United States)

    Hoffman, Stephen J.

    2012-01-01

    The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the

  17. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  18. Sustainability is possible despite greed - Exploring the nexus between profitability and sustainability in common pool resource systems.

    Science.gov (United States)

    Osten, Friedrich Burkhard von der; Kirley, Michael; Miller, Tim

    2017-05-23

    The sustainable use of common pool resources has become a significant global challenge. It is now widely accepted that specific mechanisms such as community-based management strategies, institutional responses such as resource privatization, information availability and emergent social norms can be used to constrain individual 'harvesting' to socially optimal levels. However, there is a paucity of research focused specifically on aligning profitability and sustainability goals. In this paper, an integrated mathematical model of a common pool resource game is developed to explore the nexus between the underlying costs and benefits of harvesting decisions and the sustainable level of a shared, dynamic resource. We derive optimal harvesting efforts analytically and then use numerical simulations to show that individuals in a group can learn to make harvesting decisions that lead to the globally optimal levels. Individual agents make their decision based on signals received and a trade-off between economic and ecological sustainability. When the balance is weighted towards profitability, acceptable economic and social outcomes emerge. However, if individual agents are solely driven by profit, the shared resource is depleted in the long run - sustainability is possible despite some greed, but too much will lead to over-exploitation.

  19. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  20. Is sustainability achievable? Exploring the limits of sustainability with model systems.

    Science.gov (United States)

    Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto; Williamson, James

    2008-09-01

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic understanding further includes a sense of the time scale of possible future events and the limits of what is and is not likely to be possible. With this understanding, systematic approaches can then be used to develop policy guidelines for the system. This article presents an illustration of these ideas by analyzing an integrated ecological-economic-social model, which comprises various ecological (natural) and domesticated compartments representing species along with a macroeconomic price setting model. The stable and qualitatively realistic model is used to analyze different relevant scenarios. Apart from highlighting complex relationships within the system, it identifies potentially unsustainable future developments such as increased human per capita consumption rates. Dynamic optimization is then used to develop time-dependent policy guidelines for the unsustainable scenarios using objective functions that aim to minimize fluctuations in the system's Fisher information. The results can help to identify effective policy parameters and highlight the tradeoff between natural and domesticated compartments while managing such integrated systems. The results should also qualitatively guide further investigations in the area of system level studies and policy development.

  1. Exploring aspects of urban sustainability and the use of tools in Europe

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Elle, Morten

    This paper explores the different aspects of urban sustainability that are embedded in the PETUS cases and the different ways tools are being used – and not used – in the cases. The PETUS cases illustrate the diversity and the complexity of projects aiming for urban sustainability in Europe....... The cases operate on different scales and in different sectors – or attempt to be cross-sector (holistic). The case study comprises of both projects – limited in time and space – and policies for urban sustainability. There are many good examples on tools having provided more sustainable urban...... infrastructure, for instance through evaluations, that motivates actors to improve the project or policy, or by tools opening for using sustainable solutions by involving new types of actors in the decision-making process. In most of the cases, a number of tools are used. When tools are used in practice means...

  2. Exploring themes and challenges in developing sustainable supply chains – A complexity theory perspective

    DEFF Research Database (Denmark)

    Abbasi, Maisam

    identify, classify, and tackle the challenges that can hinder the execution of such strategies. To develop innovative strategies, the patterns of current trends and themes need to be learned and the missing ones need to be identified. The purpose of this research was to explore themes and challenges......To develop sustainable supply chains in a way that their negative environmental and social effects are minimized, shortand long-term targets should be set. The transformation of supply chains towards these targets calls for the development of innovative strategies and the need to continuously...... in developing sustainable supply chain activities from theoretical and empirical perspectives. Six research studies (RS) were designed and carried out. Two explored the patterns of the themes and challenges in making supply chains environmentally and socially sustainable in general (RS1, RS2). One explored...

  3. Challenging the planetary boundaries II: Assessing the sustainable global population and phosphate supply, using a systems dynamics assessment model

    International Nuclear Information System (INIS)

    Sverdrup, Harald U.; Ragnarsdottir, Kristin Vala

    2011-01-01

    Highlights: → Peak phosphorus supply behaviour. → Recycling essential for phosphorus supply. → Phosphorus supply is connected to food security. - Abstract: A systems dynamics model was developed to assess the planetary boundary for P supply in relation to use by human society. It is concluded that present day use rates and poor recycling rates of P are unsustainable at timescales beyond 100+ a. The predictions made suggest that P will become a scarce and expensive material in the future. The study shows clearly that market mechanisms alone will not be able to secure an efficient use before a large part of the resource will have been allowed to dissipate into the natural environment. It is suggested that population size management and effective recycling measures must be planned long term to avoid unpleasant consequences of hunger and necessary corrections imposed on society by mass balance and thermodynamics.

  4. From Science Reserves to Sustainable Multiple Uses beyond Earth orbit: Evaluating Issues on the Path towards Balanced Environmental Management on Planetary Bodies

    Science.gov (United States)

    Race, Margaret

    Over the past five decades, our understanding of space beyond Earth orbit has been shaped by a succession of mainly robotic missions whose technologies have enabled scientists to answer diverse science questions about celestial bodies across the solar system. For all that time, exploration has been guided by planetary protection policies and principles promulgated by COSPAR and based on provisions in Article IX of the Outer Space Treaty of 1967. Over time, implementation of the various COSPAR planetary protection policies have sought to avoid harmful forward and backward contamination in order to ensure the integrity of science findings, guide activities on different celestial bodies, and appropriately protect Earth whenever extraterrestrial materials have been returned. The recent increased interest in extending both human missions and commercial activities beyond Earth orbit have prompted discussions in various quarters about the need for updating policies and guidelines to ensure responsible, balanced space exploration and use by all parties, regardless whether activities are undertaken by governmental or non-governmental entities. Already, numerous researchers and workgroups have suggested a range of different ways to manage activities on celestial environments (e.g, wilderness parks, exclusion zones, special regions, claims, national research bases, environmental impact assessments, etc.). While the suggestions are useful in thinking about how to manage future space activities, they are not based on any systematically applied or commonly accepted criteria (scientific or otherwise). In addition, they are borrowed from terrestrial approaches for environmental protection, which may or may not have direct applications to space environments. As noted in a recent COSPAR-PEX workshop (GWU 2012), there are no clear definitions of issues such as harmful contamination, the environment to be protected, or what are considered reasonable activity or impacts for particular

  5. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  6. Affordable Exploration of Mars: Recommendations from a Community Workshop on Sustainable Initial Human Missions

    Science.gov (United States)

    Thronson, Harley; Carberry, Chris; Cassady, R. J.; Cooke, Doug; Hopkins, Joshua; Perino, Maria A.; Kirkpatrick, Jim; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2013-01-01

    There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.

  7. Exploring the relationship between volunteering and hospice sustainability in the UK: a theoretical model.

    Science.gov (United States)

    Scott, Ros; Jindal-Snape, Divya; Manwaring, Gaye

    2018-05-02

    To explore the relationship between volunteering and the sustainability of UK voluntary hospices. A narrative literature review was conducted to inform the development of a theoretical model. Eight databases were searched: CINAHL (EBSCO), British Nursing Index, Intute: Health and Life Sciences, ERIC, SCOPUS, ASSIA (CSA), Cochrane Library and Google Scholar. A total of 90 documents were analysed. Emerging themes included the importance of volunteering to the hospice economy and workforce, the quality of services, and public and community support. Findings suggest that hospice sustainability is dependent on volunteers; however, the supply and retention of volunteers is affected by internal and external factors. A theoretical model was developed to illustrate the relationship between volunteering and hospice sustainability. It demonstrates the factors necessary for hospice sustainability and the reciprocal impact that these factors and volunteering have on each other. The model has a practical application as an assessment framework and strategic planning tool.

  8. Exploring the dynamic and complex integration of sustainability performance measurement into product development

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; Morioka, S.; Pigosso, Daniela Cristina Antelmi

    2016-01-01

    In order to deal with the complex and dynamic nature of sustainability integration into the product development process, this research explore the use of a qualitative System Dynamics approach by using the causal loop diagram (CLD) tool. A literature analysis was followed by a case study, aiming ...

  9. Exploring co-investments in sustainable land management in the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Kessler, A.; Stroosnijder, L.

    2013-01-01

    In Ethiopia, not only farmers but also the public and private sector partners are still hesitant to invest in sustainable land management (SLM). This study focuses on the Central Rift Valley and explores the potential for co-investments in SLM, where public and private sector partners support

  10. Exploring a Pluralist Understanding of Learning for Sustainability and Its Implications for Outdoor Education Practice

    Science.gov (United States)

    Paulus, Susanne C.

    2016-01-01

    This article explores a pluralist understanding of learning for sustainability in educational theory and relates it to outdoor education practice. In brief, this kind of learning can be described as a deep engagement with an individual's multiple identities and the personal location in diverse geo-physical and socio-cultural surroundings. I…

  11. Guides to Sustainable Connections? Exploring Human-Nature Relationships among Wilderness Travel Leaders

    Science.gov (United States)

    Grimwood, Bryan S. R.; Haberer, Alexa; Legault, Maria

    2015-01-01

    This paper explores and critically interprets the role wilderness travel may play in fostering environmental sustainability. The paper draws upon two qualitative studies that sought to understand human-nature relationships as experienced by different groups of wilderness travel leaders in Canada. According to leaders involved in the studies,…

  12. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  13. Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level

    NARCIS (Netherlands)

    Mantel, S.; Engelen, van V.W.P.; Molfino, J.H.; Resink, J.W.

    2000-01-01

    A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water

  14. Competencies in Education for Sustainable Development: Exploring the Student Teachers’ Views

    Directory of Open Access Journals (Sweden)

    Gisela Cebrián

    2015-03-01

    Full Text Available In the context of higher education, over 100 universities have signed international declarations and have committed to embed sustainability within their operations, outreach, education and research. However, despite the declaration of good intentions and policy developments at the national, regional and international level, little has been achieved in terms of embedding education for sustainable development holistically in the curriculum. To date, a number of research studies have focused on the perceptions and views of university students in relation to sustainable development knowledge, skills and competencies; however, few studies have focused on student teachers’ perceptions of education for sustainable development. The aim of this study was to explore the perceptions and views of a group of thirty-two student teachers in relation to education for sustainable development competencies. The research instrument used was a questionnaire. This study provides evidence on the education for sustainable development (ESD competencies that student teachers would prioritize in a school project related to ESD: acquisition of knowledge and practical skills related to nature and natural sciences, to the detriment of other types of learning, such as the promotion of ethical values, positive attitudes towards sustainability and the management of emotions among their future primary school students. Existing ESD theoretical frameworks need to become more alive and integrated within the existing teacher education curriculum to promote the awareness and development of ESD competencies amongst student teachers.

  15. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  16. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2006-07-01

    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  17. Field Exploration and Life Detection Sampling for Planetary Analogue Research (FELDSPAR): Variability and Correlation in Biomarker and Mineralogy Measurements from Icelandic Mars Analogues

    Science.gov (United States)

    Gentry, D.; Amador, E.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z.; Jacobsen, M.; Kirby, J.; McCaig, H.; hide

    2018-01-01

    In situ exploration of planetary environments allows biochemical analysis of sub-centimeter-scale samples; however, landing sites are selected a priori based on measurable meter- to kilometer-scale geological features. Optimizing life detection mission science return requires both understanding the expected biomarker distributions across sample sites at different scales and efficiently using first-stage in situ geochemical instruments to justify later-stage biological or chemical analysis. Icelandic volcanic regions have an extensive history as Mars analogue sites due to desiccation, low nutrient availability, and temperature extremes, in addition to the advantages of geological youth and isolation from anthropogenic contamination. Many Icelandic analogue sites are also rugged and remote enough to create the same type of instrumentation and sampling constraints typically faced by robotic exploration.

  18. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  19. Exploring sustainability transitions in households: insights from real-life experiments

    Science.gov (United States)

    Baedeker, Carolin; Buhl, Johannes; Greiff, Kathrin; Hasselkuß, Marco; Liedtke, Christa; Lukas, Melanie

    2016-04-01

    Societal transformation towards sustainable consumption and production, especially in urban areas, is a key challenge. The design and implementation of sustainable product service systems (PSS) might be the initial point, in which private households play a major role. The Sustainable LivingLab research infrastructure was developed as an experimental setting for investigating consumption and production patterns in private households, especially to explore socio-technical innovations which are helpful to guide sustainability transitions. The suggested presentation describes results of several real-life experiments conducted in German households, e.g. the project SusLabNRW (North-Rhine Westphalia as part of the European SusLabNWE-Project), the EnerTransRuhr project as well as the PATHWAYS project that explore patterns of action, time use, social practices and the related resource use in private households. The presentation gives an overview of the employed methods and analysed data (qualitative interviews, social network analysis, survey on household activities and inventories and a sustainability assessment (resource profiles - MIPS household analysis). Households' resource consumption was calculated in all fields of activity to analyse social practices' impact. The presentation illustrates how aggregated data can inform scenario analysis and concludes with an outlook onto transition pathways at household level and socio-technical innovations in the fields of housing, nutrition and mobility.

  20. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  1. Importance of Actors and Agency in Sustainability Transitions: A Systematic Exploration of the Literature

    Directory of Open Access Journals (Sweden)

    Lisa-Britt Fischer

    2016-05-01

    Full Text Available This article explores the role of actors and agency in the literature on sustainability transitions. We reviewed 386 journal articles on transition management and sustainability transitions listed in Scopus from 1995 to 2014. We investigate the thesis that actors have been neglected in this literature in favor of more abstract system concepts. Results show that this thesis cannot be confirmed on a general level. Rather, we find a variety of different approaches, depending on the systemic level, for clustering actors and agency as niche, regime, and landscape actors; the societal realm; different levels of governance; and intermediaries. We also differentiate between supporting and opposing actors. We find that actor roles in transitions are erratic, since their roles can change over the course of time, and that actors can belong to different categories. We conclude by providing recommendations for a comprehensive typology of actors in sustainability transitions.

  2. Exploration of the Barriers to Implementing Different Types of Sustainability Approaches

    DEFF Research Database (Denmark)

    Stewart, Raphaëlle Marie Marianne; Bey, Niki; Boks, Casper

    2016-01-01

    Integrating sustainability into business is gaining increased attention. Yet, implementing long-lasting sustainability approaches remains a complex task. Many empirical studies have identified the barriers to such implementation but the variation in challenges faced by companies, depending...... on the focus of the approach being implemented, is not addressed. The aim of this paper is i) to explore the barriers related to implementing different types of sustainability approaches and ii) to look for indications of similarities and differences across types of approaches. The research builds on data...... about the barriers, collected from a sample of twenty-two empirical studies in academic research and additional reports. The findings show that performance measurement systems and access to industry-specific information, benchmark or reference cases are common areas of difficulty across all types...

  3. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  4. Exploring Hygge as a Desirable Design Vision for the Sustainable Smart Home

    DEFF Research Database (Denmark)

    Jensen, Rikke Hagensby; Raptis, Dimitrios; Kjeldskov, Jesper

    2018-01-01

    In this paper, we present an exploratory study of hygge as a low-energy design vision for the smart home. Hygge is a Danish concept that embodies aesthetic experiences related to conviviality, often shaped by orchestrating atmospheres through low-level lighting. To explore this vision, we probe two...... Australian households that already live with smart home lighting technology. We report on household reflections of embedding hygge into everyday life. We conclude by outlining future directions for exploring desirable and sustainable smart home visions....

  5. Is there sustainable entrepreneurship in the wine industry? Exploring Sicilian wineries participating in the SOStain program

    Directory of Open Access Journals (Sweden)

    Emanuele Schimmenti

    2016-06-01

    Full Text Available Global climate change and the accelerating depletion of natural resources have contributed to increase discussions about the role of private enterprises in reversing negative environmental trends. Rather than focusing on profit maximization, policy makers and consumers pressure groups expect firms to meet a triple-bottom line of economic, environmental and social value creation. Hence sustainable entrepreneurship has received recently increasing interest as a phenomenon and a research topic. More recently, the concept of sustainability has been taken seriously in the Italian wine industry. The organizational challenge for entrepreneurship is to better integrate social and environmental performance into the economic business logic. The aim of this manuscript is to illustrate, through a descriptive approach, the adaptation of the wine industry to the new scenario of sustainable entrepreneurship. To reach this goal we carried out an explorative analysis of 3 Sicilian wineries involved in the SOStain program, which aims at the improvement of sustainability in the wine industry. The findings of the analysis show the existence of sustainability-driven entrepreneurship, in which the wineries undertake to behave ethically and contribute to economic development while improving the quality of life for the workforce, their families, the local and global community as well as future generations.

  6. Exploring SETAC's roles in the global dialogue on sustainability--an opening debate.

    Science.gov (United States)

    McCormick, Ron; Kapustka, Larry; Stahl, Cynthia; Fava, Jim; Lavoie, Emma; Robertson, Cory; Sanderson, Hans; Scott, Heidi; Seager, Tom; Vigon, Bruce

    2013-01-01

    A combination platform-debate session was held at the Society of Environmental Toxicology and Chemistry (SETAC) North America annual meeting in Boston (November 2011). The session was organized by members of the Advisory Group on Sustainability, newly formed and approved as a global entity by the SETAC World Council just prior to the meeting. The platform portion of the session provided a historical backdrop for the debate that was designed to explore SETAC's role in the sustainability dialogue. The debate portion presented arguments for and against the proposition that "Science is the primary contribution of SETAC to the global dialogue on sustainability." Although the debate was not designed to achieve a definitive sustainability policy for SETAC, the audience clearly rejected the proposition, indicating a desire from the SETAC membership for an expanded role in global sustainability forums. This commentary details the key elements of the session, identifies the contribution the Advisory Group will have at the World Congress in Berlin (May 2012), and invites interested persons to become active in the Advisory Group. Copyright © 2012 SETAC.

  7. Exploring Reasons for the Resistance to Sustainable Management within Non-Profit Organizations

    Directory of Open Access Journals (Sweden)

    Claus-Heinrich Daub

    2014-05-01

    Full Text Available The numerous empirical and conceptual studies that have been conducted over recent years concerning the social responsibility of enterprises and their contributions towards sustainable development have given very little consideration to non-profit organizations (NPOs. This is surprising, because NPOs are confronted with very similar challenges to profit-orientated enterprises regarding their evolution into sustainable organizations. This paper is a preliminary conceptual study and explores the question of why the corporate social responsibility, or corporate sustainability, of NPOs has to date been both neglected by research establishments and also extensively ignored by the NPOs during their day-to-day practical management. The example of church and pastoral institutions in Germany is used to demonstrate the extent to which they take account of ecological and social aspects in their management systems and processes and, thus, implement sustainable management within their day-to-day practice. The paper concludes with some proposals for further empirical and conceptual research projects, which are designed to analyze developments within NPOs with relation to the integration of sustainability into their management systems and processes.

  8. Exploring the knowledge ‘base’ of practitioners in the delivery of sustainable regeneration projects

    Directory of Open Access Journals (Sweden)

    Julius Akotia

    2016-06-01

    Full Text Available In recent years, sustainable regeneration has been recognised as being of major economic and social concern in the world. In the UK for instance, government has initiated a number of policies and evaluation methods to deal with some of the environmental problems associated with regeneration projects. However, the post construction evaluation of these projects has often resulted in them being seen as not achieving their set objectives. Attempts aimed at evaluating the impact of sustainability by built environment practitioners have primarily been limited to their assessment of the projects’ potential environmental impacts, with the associated socio-economic impacts being neglected. There has not been any well-defined built environment research that has been able to deal holistically with the broader issues of sustainability in terms of benefits/impacts of the regeneration projects to the communities concerned. The findings of an exploratory study that adopted a semi-structured interview approach for data collection, to explore the knowledge and understanding of fifteen practitioners who are often involved in the delivery of these projects are presented. The findings reveal a lack of knowledge and understanding of sustainability as well as structured mechanism/practices for evaluating the socio-economic sustainability factors in relation to regeneration projects.

  9. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    Science.gov (United States)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  10. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  11. CE: Original Research: Exploring Clinicians' Perceptions About Sustaining an Evidence-Based Fall Prevention Program.

    Science.gov (United States)

    Porter, Rebecca B; Cullen, Laura; Farrington, Michele; Matthews, Grace; Tucker, Sharon

    2018-05-01

    : Purpose: This study aimed to address the knowledge gap between implementing and sustaining evidence-based fall prevention practices for hospitalized patients by exploring perspectives of the interprofessional health care team. A qualitative design was used to capture insights from clinicians across disciplines in a large midwestern academic medical center. Four homogenous semistructured focus groups and three individual interviews involving a total of 20 clinicians were conducted between October 2013 and March 2014. Audio-recorded data were transcribed and analyzed using inductive qualitative analysis. Two primary themes emerged from participants regarding the sustainability of an evidence-based fall prevention program: communication patterns within the interprofessional health care team and influences of hospital organizational practices and elements. Several subthemes also emerged. Participants gave nursing staff primary responsibility for fall risk assessment and prevention. Individual professional perceptions and practices, as well as organizational characteristics, affect the sustainability of evidence-based fall prevention practices. While all team members recognized patient falls as a significant quality and safety issue, most believed that direct care nurses hold primary responsibility for leading fall prevention efforts. The data support the importance of effective interprofessional team communication and organizational practices in sustaining an evidence-based fall prevention program across inpatient units. Furthermore, the data call into question the wisdom in labeling quality indicators as "nursing sensitive"; the evidence indicates that a team approach is best.

  12. Transformative Learning for a Sustainable Future: An Exploration of Pedagogies for Change at an Alternative College

    Directory of Open Access Journals (Sweden)

    Joanna Blake

    2013-12-01

    Full Text Available Educators and policy makers have long recognised the central role that education can play in creating a more sustainable and equitable world. Yet some question whether current processes across mainstream higher education prepare learners sufficiently to graduate with the capabilities or motivation to shape and create a future that is life-sustaining. This paper presents findings from a qualitative research project carried out by Plymouth University in association with Schumacher College, Devon, UK. Schumacher College is an alternative, civil society college, owned by the Dartington Hall Trust that claims to provide transformative learning opportunities within a broad context of sustainability. The study explored the nature and application of transformative learning as a pedagogical approach to advance change towards sustainability. If learners claimed transformational learning experiences, the research asked whether, and to what extent, this transformation could be attributed to the pedagogies employed at the College. The paper begins by setting out the broad background to the relationship between marginal and mainstream educational settings, and definitions and theoretical underpinnings of transformative learning, and then leads into the research design and findings. The potential for transformative pedagogies to be applied to and employed within the wider higher education (HE sector is then discussed, and the overall findings and conclusions are presented.

  13. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  14. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  15. Analysing the past and exploring the future of sustainable biomass. Participatory stakeholder dialogue and technological innovation systems research

    NARCIS (Netherlands)

    Breukers, S.; Hisschemöller, M.; Cuppen, E.; Suurs, R.

    2014-01-01

    This paper explores the potential of combining technological innovation systems research with a participatory stakeholder dialogue, using empirical material from a dialogue on the options of sustainable biomass in the Netherlands and several historical studies into the emerging Dutch biomass

  16. Sustainability reporting in public sector organisations: Exploring the relation between the reporting process and organisational change management for sustainability.

    Science.gov (United States)

    Domingues, Ana Rita; Lozano, Rodrigo; Ceulemans, Kim; Ramos, Tomás B

    2017-05-01

    Sustainability Reporting has become a key element in different organisations. Although there have been a number of academic publications discussing the adoption of sustainability reports in the public sector, their numbers have been quite low when compared to those focussing on corporate reports. Additionally, there has been little research on the link between sustainability reporting in Public Sector Organisations (PSOs) and Organisational Change Management for Sustainability (OCMS). This paper focuses on the contribution of sustainability reporting to OCMS. A survey was sent to all PSOs that have published at least one sustainability report based on the GRI guidelines. The study provides a critical analysis of the relation between sustainability reporting and OCMS in PSOs, including the drivers for reporting, the impacts on organisation change management, and the role of stakeholders in the process. Despite still lagging in sustainability reporting journey, PSOs are starting to use sustainability reporting as a communication tool, and this could drive organisational changes for sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  18. The Use of Terrestrial Analogs in Preparing for Planetary Surface Exploration: Sampling and Radioisotopic Dating of Impactites and Deployment of In Situ Analytical Technologies

    Science.gov (United States)

    Young, Kelsey

    Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet's evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on Earth. Providing age constraints on these elusive structures will provide a deeper understanding of our planet's development. To do this, (U-Th)/He thermochronology and in situ 40 Ar/39Ar laser microprobe geochronology are used to provide ages for the Haughton and Mistastin Lake impact structures, both located in northern Canada. While terrestrial impact structures provide accessible laboratories for deciphering Earth's impact history, the ultimate goal for understanding the history of the reachable inner Solar System is to acquire robust, quantitative age constraints for the large lunar impact basins. The oldest of these is the South Pole-Aitken basin (SPA), located on the lunar farside. While it is known that this basin is stratigraphically the oldest on the Moon, its absolute age has yet to be determined. Several reports released in the last decade have highlighted sampling and dating SPA as a top priority for inner Solar System exploration. This is no easy task as the SPA structure has been modified by four billion subsequent years of impact events. Informed by studies at Mistastin---which has target lithologies analogous to those at SPA---sampling strategies are discussed that are designed to optimize the probability of a high science return with regard to robust geochronology of the SPA basin. Planetary surface missions, like one designed to explore and sample SPA, require the integration of engineering constraints with scientific goals and traverse planning. The inclusion of in situ geochemical technology, such as the handheld X-ray fluorescence spectrometer (hXRF), into these missions will provide human crews with the

  19. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  20. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  1. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    Science.gov (United States)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  2. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  3. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    Science.gov (United States)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  4. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    Science.gov (United States)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object

  5. Survey for Life-related Species During a Planetary Surface Exploration; System Type I - UV Stimulated Fluorescent Sensor

    Science.gov (United States)

    Wang, Alian; Haskin, L. A.; Gillis, J. J.

    2003-01-01

    The widely accepted minimum requirements for life on Earth include the presence of water and accessible sources of carbon. We assume that the same criteria must hold for putative life on past or present Mars. The evidence for CO2 and H2O at or near the Martian surface, carbon in Martian meteorites, aqueous alteration, and probable hydrothermal activity suggest that conditions conducive to the origin and evolution of life on Mars may have existed for long periods of time and may still obtain at present. Surface exploration on Mars that enables the direct detection of water in minerals and of organic carbon (including not just organic and biogenic materials but their degradation products such as kerogen-like hydrocarbons and graphitized carbon) that might be products or residues of biologic activity, is crucial. The search for evidence of life, past or present, will nevertheless be difficult. The lack of direct evidence for organic carbon and the low amounts of water found in the soils at the Viking sites demonstrated the difficulties. Recent results of GRS experiment of Odyssey mission indicated the existence of abundant water ice beneath the Mars surface. Mineralogical evidence for the presence of carbonate, sulfates, or clay minerals, products of weathering and aqueous deposition, have not been identified unambiguously on Mars. Rocks such as shales and, more particularly, limestones, which we associate with moist and benign environments on Earth, are evidently not abundant. Presumably, then, neither were the photosynthetic organisms that might have produced them. In addition, the harsh present environment on Mars (e.g., dryness, low temperatures, large temperature cycles, high level of UV light on the surface, frequent dust storms, etc.) can both destroy carbon- and water-bearing materials and hide them. Therefore, directly detecting life-related materials on Mars was likened to seeking and examining proverbial needles in haystacks. We argue that survey type

  6. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  7. Exploring the design of a lightweight, sustainable and comfortable aircraft seat.

    Science.gov (United States)

    Kokorikou, A; Vink, P; de Pauw, I C; Braca, A

    2016-07-19

    Making a lightweight seat that is also comfortable can be contradictory because usually comfort improvement means adding a feature (e.g. headrest, adjustable lumbar support, movable armrests, integrated massage systems, etc.), which makes seats heavier. This paper explores the design of an economy class aircraft seat that aims to be lightweight, comfortable and sustainable. Theory about comfort in seats, ergonomics, lightweight design, Biomimicry and Cradle to cradle was studied and resulted in a list of requirements that the new seat should satisfy. The design process resulted in a new seat that is 36% lighter than the reference seat, which showed that a significant weight reduction can be achieved. This was completed by re-designing the backrest and seat pan and integrating their functions into a reduced number of parts. Apart from the weight reduction that helps in reducing the airplane's environmental impact, the seat also satisfies most of the other sustainability requirements such as the use of recyclable materials, design for disassembly, easy to repair. A user test compared the new seat with a premium economy class aircraft seat and the level of comfort was similar. Strong points of the new design were identified such as the lumbar support and the cushioning material, as well as shortcomings on which the seat needs to be improved, like the seat pan length and the first impression. Long term comfort tests are still needed as the seat is meant for long-haul flights.

  8. Exploring R&D Influences on Financial Performance for Business Sustainability Considering Dual Profitability Objectives

    Directory of Open Access Journals (Sweden)

    Kao-Yi Shen

    2017-10-01

    Full Text Available The importance of research and development (R&D for business sustainability have gained increasing interests, especially in the high-tech sector. However, the efforts of R&D might cause complex and mixed impacts on the financial results considering the associated expenses. Thus, this study aims to examine how R&D efforts may influence business to improve its financial performance considering the dual objectives: the gross and the net profitability. This research integrates a rough-set-based soft computing technique and multiple criteria decision-making (MCDM methods to explore this complex and yet valuable issue. A group of public listed companies from Taiwan, all in the semiconductor sector, is analyzed as a case study. More than 30 variables are considered, and the adopted soft computing technique retrieves 14 core attributes—for the dual profitability objectives—to form the evaluation model. The importance of R&D for pursuing superior financial prospects is confirmed, and the empirical case demonstrates how to guide an individual company to plan for improvements to achieve its long-term sustainability by this hybrid approach.

  9. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  10. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  11. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  12. Perspectives on Sustainability: Exploring the Views of Tenants in Supported Social Housing

    Directory of Open Access Journals (Sweden)

    Rosalyn A. V. Robison

    2013-12-01

    Full Text Available Government policy aimed at curbing carbon emissions often focusses on encouraging individual action, however the effectiveness of this approach has been limited. Investigations of why this might be have included segmentation, to identify different groups who undertake more or less action, and analysis of various “barriers” to action. Those on lower incomes who are not home owners have previously been found to be less engaged in seeking out energy efficiency information. Working with low-income tenants living in supported social housing we conducted three group interviews, accompanied by a 7-item scale measuring general attitude towards the environment. The interviews were aimed at opening up discussion about environmental and energy issues, including exploring more deeply what, for these participants, underlies barriers to conservation behaviours. We found participants to be very willing to engage in conversation and knowledgeable about a range of relevant issues. Barriers explored include: lack of confidence in existing levels of knowledge, habit, self-interest and lack of agency, and in all cases several different perspectives were voiced by participants. Implications for policy, interventions and public engagement are given, including ways to increase dialogue and reflection on sustainability issues for all sectors of society.

  13. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems.

    Science.gov (United States)

    Zijp, Michiel C; Posthuma, Leo; Wintersen, Arjen; Devilee, Jeroen; Swartjes, Frank A

    2016-05-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for which sustainable solutions are sought. Wicked problems are multi-faceted, and deriving of a management solution requires an approach that is participative, iterative, innovative, and transparent in its definition of sustainability and translation to sustainability metrics. We suggest to add the use of a solution-focused approach. The SfSA framework is collated from elements from risk assessment, risk governance, adaptive management and sustainability assessment frameworks, expanded with the 'solution-focused' paradigm as recently proposed in the context of risk assessment. The main innovation of this approach is the broad exploration of solutions upfront in assessment projects. The case study concerns the sustainable management of slightly contaminated sediments continuously formed in ditches in rural, agricultural areas. This problem is wicked, as disposal of contaminated sediment on adjacent land is potentially hazardous to humans, ecosystems and agricultural products. Non-removal would however reduce drainage capacity followed by increased risks of flooding, while contaminated sediment removal followed by offsite treatment implies high budget costs and soil subsidence. Application of the steps in the SfSA-framework served in solving this problem. Important elements were early exploration of a wide 'solution-space', stakeholder involvement from the onset of the assessment, clear agreements on the risk and sustainability metrics of the problem and on the interpretation and decision procedures, and adaptive management. Application of the key elements of the SfSA approach eventually resulted in adoption of a novel sediment management policy. The stakeholder

  14. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    Science.gov (United States)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  15. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    ture; recent five publications relevant to the proposed work; budget break up including amount required towards fellowship, equipment, consumables, components, travel contingencies. After suitable reviews, selected proposals will be considered for financial support by ISRO. Two copies of the proposals may be submitted ...

  16. Exploring a Third Space for Sustainable Educational Development—HIV/AIDS Prevention, Zambia

    Directory of Open Access Journals (Sweden)

    Ellen Carm

    2018-03-01

    Full Text Available This study was conducted in Zambia from 2002 to 2008, a country greatly affected by the HIV (Human Immunodeficiency Virus/AIDS (Acquired Immune Deficiency Syndrome epidemic. The global, national, as well as local discourses on spread and mitigation were clustered around scientific knowledge and the local context and cultural traditions. The education sector struggled with implementing the national HIV/AIDS education strategy but by a broader stakeholder involvement, and a close collaboration between the educational sector and tribal chiefs and their traditional internal structures, a localized approach emerged. The overall objective of the paper is to illustrate how a multi-voiced strategy can bring about sustainable change, illustrated by this study. The study used qualitative constructivist and grounded theoretical approaches, and applied the third generation of cultural and historical activity theory (CHAT as an analytical tool. Bernstein’s concept, symbolic control, contributes to a broader understanding of the underlying processes and outcomes of the study. The findings revealed that the strategically monitored multi-voiced participation of local stakeholders created a learning space where both scientific and indigenous knowledge were blended, and thereby creating solutions to preventive action meeting the local needs. The study exemplifies these processes by identifying contradictions between the various levels and activity systems involved, by listing some of their characteristics, manifestations and finally their negotiated solutions. These solutions, or the third space interventions, the outcome of the multi-voiced participation, is in the paper used to explore a theoretical framework for an ethical and decolonized development strategy; a precondition for sustained local development.

  17. The Sustainable Development Goals and the Global Health Security Agenda: exploring synergies for a sustainable and resilient world.

    Science.gov (United States)

    Bali, Sulzhan; Taaffe, Jessica

    2017-05-01

    Both the Sustainable Development Goals (SDGs) and the Global Health Security Agenda (GHSA) represent bold initiatives to address systematically gaps in previous efforts to assure that societies can be resilient when confronted with potentially overwhelming threats to health. Despite their obvious differences, and differing criticisms of both, they shift away from vertical (problem- or disease-specific) to horizontal (comprehensive) solutions. Despite the comprehensiveness of the SDGs, they lack a specific target for global health security. The GHSA focuses primarily on infectious diseases and neglects non-communicable diseases and socioeconomic drivers of health. Even though each agenda has limitations and unique challenges, they are complementary. We discuss ways to understand and implement the two agendas synergistically to hasten progress toward a more sustainable and resilient world.

  18. Exploring Organizational Antecedents for Sustainable Product Development for International Tour Operating Businesses

    DEFF Research Database (Denmark)

    Budeanu, Adriana

    The development of sustainable products or services is defined by Maxwell as the process of making products or services in a more sustainable way (production) throughout their entire life cycle, from conception to the end-of-life (Maxwell & van der Vorst, 2003). Essentially, sustainable products...

  19. HETEROGENEOUS SENSOR DATA EXPLORATION AND SUSTAINABLE DECLARATIVE MONITORING ARCHITECTURE: APPLICATION TO SMART BUILDING

    Directory of Open Access Journals (Sweden)

    S. Servigne

    2016-09-01

    Full Text Available Concerning energy consumption and monitoring architectures, our goal is to develop a sustainable declarative monitoring architecture for lower energy consumption taking into account the monitoring system itself. Our second is to develop theoretical and practical tools to model, explore and exploit heterogeneous data from various sources in order to understand a phenomenon like energy consumption of smart building vs inhabitants' social behaviours. We focus on a generic model for data acquisition campaigns based on the concept of generic sensor. The concept of generic sensor is centered on acquired data and on their inherent multi-dimensional structure, to support complex domain-specific or field-oriented analysis processes. We consider that a methodological breakthrough may pave the way to deep understanding of voluminous and heterogeneous scientific data sets. Our use case concerns energy efficiency of buildings to understand relationship between physical phenomena and user behaviors. The aim of this paper is to give a presentation of our methodology and results concerning architecture and user-centric tools.

  20. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.

    Science.gov (United States)

    Sharma, Amit Kumar; Sahoo, Pradeepta Kumar; Singhal, Shailey; Joshi, Girdhar

    2016-09-01

    The present study explores the integrated approach for the sustainable production of biodiesel from Chlorella vulgaris microalgae. The microalgae were cultivated in 10m(2) open raceway pond at semi-continuous mode with optimum volumetric and areal production of 28.105kg/L/y and 71.51t/h/y, respectively. Alum was used as flocculent for harvesting the microalgae and optimized at different pH. Lipid was extracted using chloroform: methanol (2:1) and having 12.39% of FFA. Effect of various reaction conditions such as effect of catalyst, methanol:lipid ratio, reaction temperature and time on biodiesel yields were studied under microwave irradiation; and 84.01% of biodiesel yield was obtained under optimized reaction conditions. A comparison was also made between the biodiesel productions under conventional heating and microwave irradiation. The synthesized biodiesel was characterized by (1)H NMR, (13)C NMR, FTIR and GC; however, fuel properties of biodiesel were also studied using specified test methods as per ASTM and EN standards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Planetary Habitability

    Science.gov (United States)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  2. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  3. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  4. Exploring options for sustainable farming systems development for vegetable family farmers in Uruguay using a modeling toolkit

    NARCIS (Netherlands)

    Casagrande, M.; Dogliotti, S.; Groot, J.C.J.; Aguerre, V.; Abbas, A.; Albin, A.; Claassen, G.D.H.; Chilibroste, P.; Rossing, W.A.H.

    2010-01-01

    Economic and environmental sustainability of family-based vegetable production systems in south Uruguay are seriously compromised after two decades of net decreasing prices and strategies based on specialization and intensification. This paper presents a model-based exploration of alternative

  5. "Meatless days" or "less but better"? Exploring strategies to adapt Western meat consumption to health and sustainability challenges

    NARCIS (Netherlands)

    de Boer, J.; Schösler, H.; Aiking, H.

    2014-01-01

    Adapting Western meat consumption to health and sustainability challenges requires an overall reduction of industrially produced animal proteins plus a partial replacement by plant proteins. Combining insights on food, environment, and consumers, this paper aims to explore change strategies that may

  6. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    less hands-on labor needed for processing and troubleshooting. Sustainable space exploration solutions demand that all lifecycle phases be optimized. Adopting PLM, which has been used by the automotive industry for many years, for aerospace applications provides a foundation for strong, disciplined systems engineering and accountable return on investment by making lifecycle considerations variables in an iterative decision-making process. This paper combines the perspectives of the founding father of PLM, along with the experience of Engineering leaders who are implementing these processes and practices real-time. As the nation moves from an industrial-based society to one where information is a valued commodity, future NASA programs and projects will benefit from the experience being gained today for the exploration missions of tomorrow.

  7. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  8. Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production

    Energy Technology Data Exchange (ETDEWEB)

    Nørskov, Jens [Stanford Univ., CA (United States); ; SLAC National Accelerator Lab., Menlo Park, CA (United States); Chen, Jingguang [Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Miranda, Raul [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Stack, Robert [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2016-02-18

    Ammonia (NH3) is essential to all life on our planet. Until about 100 years ago, NH3 produced by reduction of dinitrogen (N2) in air came almost exclusively from bacteria containing the enzyme nitrogenase.. DOE convened a roundtable of experts on February 18, 2016. Participants in the Roundtable discussions concluded that the scientific basis for sustainable processes for ammonia synthesis is currently lacking, and it needs to be enhanced substantially before it can form the foundation for alternative processes. The Roundtable Panel identified an overarching grand challenge and several additional scientific grand challenges and research opportunities: -Discovery of active, selective, scalable, long-lived catalysts for sustainable ammonia synthesis. -Development of relatively low pressure (<10 atm) and relatively low temperature (<200 C) thermal processes. -Integration of knowledge from nature (enzyme catalysis), molecular/homogeneous and heterogeneous catalysis. -Development of electrochemical and photochemical routes for N2 reduction based on proton and electron transfer -Development of biochemical routes to N2 reduction -Development of chemical looping (solar thermochemical) approaches -Identification of descriptors of catalytic activity using a combination of theory and experiments -Characterization of surface adsorbates and catalyst structures (chemical, physical and electronic) under conditions relevant to ammonia synthesis.

  9. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  10. Exploring scenarios for more sustainable heating: The case of Niš, Serbia

    International Nuclear Information System (INIS)

    Zivkovic, Marija; Pereverza, Kateryna; Pasichnyi, Oleksii; Madzarevic, Aleksandar; Ivezic, Dejan; Kordas, Olga

    2016-01-01

    Sustainability transformation of the heating sector is recognised as being essential for reaching climate and environmental targets while improving the quality of life in cities worldwide. Participatory strategic planning enabled by scenario methods can be an important tool to guide this transformation, but methods for qualitative scenario analysis supporting stakeholder participation must be further developed and tested in the context of different cities. This paper presents results from integration of urban energy system modelling into the participatory strategic planning process implemented in the city of Niš, which suffers problems typical of the heating sector in Serbia and the Western Balkans. The aim was to explore how the scenarios developed by local stakeholders could transform the Niš heating system by 2030. Five scenarios developed within participatory backcasting project and a BAU scenario were analysed in terms of decarbonisation, energy security and energy efficiency using Long-range Energy Alternatives Planning System (LEAP). A final scenario “Efficiency for the green future” designed by the stakeholders for implementation in the city included high standards of energy efficiency in buildings, increased share of renewables in the heating energy mix, expanding the district heating system, deploying smart technologies and green architecture. The LEAP model demonstrated that this final scenario could lead to achievement of the desirable future vision developed by stakeholders for Niš, through substantial improvements in energy efficiency and energy security, and to considerable emissions decreases by 2030 in comparison with the base year (2010) and the BAU scenario. - Highlights: • Energy system modelling is integrated into the participatory backcasting process. • Five scenarios and BAU for heating system in Niš by 2030 are analysed in LEAP. • The final scenario is based on EE, RES, DH, smart technologies and green architecture. • The

  11. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  12. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  13. Using Causal Loop Diagramming to Explore the Drivers of the Sustained Functionality of Rural Water Services in Timor-Leste

    Directory of Open Access Journals (Sweden)

    Kate Neely

    2016-01-01

    Full Text Available It is recognized that international water sector development work has issues with a lack of sustained positive outcomes. A large driver of this outcome is how NGOs work with communities to implement and then manage water services. Many NGOs tend to focus their efforts on improving their reach and organisational growth by continually engaging in new projects. This behaviour is largely driven by short-term donor funding models that reward extended coverage, leaving little focus on sustained outcomes. Similarly, community-based management (CBM schemes often impede sustained services as a result of the community’s limited capacity to operate and maintain the technology. To explore these complicated drivers on water service sustainability, we used causal loop diagramming to analyse the key aspect influencing the combined dynamics between NGOs, donors and CBM. We demonstrate this methodology through a study in Timor-Leste, where we gathered data necessary to develop and apply causal loop diagrams to analyse rural water supply program outcomes. The analysis of these diagrams allowed identification of leverage points used to suggest structural changes for sustained benefits of water services. These structural changes emphasize the importance of increased robustness and reliability of water technology and the associated impact this has on community satisfaction and, conjointly, on water service sustainability.

  14. Exploration of the Meaning of Sustainability in Textiles and Apparel Discipline and Prospects for Curriculum Enhancement

    Science.gov (United States)

    Pasricha, Anupama

    2010-01-01

    Sustainability is gaining importance because of heightened ecological challenges. The UN declared 2005-2014 as the decade of sustainable development encouraging educational institutions at all levels to nurture ecologically literate individuals. An ecologically literate person has the knowledge necessary to comprehend interrelatedness among…

  15. Business Models for Sustainable Technologies: Exploring Business Model Evolution in the Case of Electric Vehicles

    NARCIS (Netherlands)

    Bohnsack, R.; Pinkse, J.; Kolk, A.

    2014-01-01

    Sustainable technologies challenge prevailing business practices, especially in industries that depend heavily on the use of fossil fuels. Firms are therefore in need of business models that transform the specific characteristics of sustainable technologies into new ways to create economic value and

  16. Is Higher Education Economically Unsustainable? An Exploration of Factors That Undermine Sustainability Assessments of Higher Education

    Science.gov (United States)

    Maragakis, Antonios; van den Dobbelsteen, Andy; Maragakis, Alexandros

    2016-01-01

    As students continue to review the sustainability of higher education institutions, there is a growing need to understand the economic returns of degrees as a function of a sustainable institution. This paper reviews a range of international research to summarize the economic drivers of higher education attainment. Although the cost inputs to…

  17. Exploring the Role and Value of Creativity in Education for Sustainability

    Science.gov (United States)

    Sandri, Orana Jade

    2013-01-01

    Creativity, innovation and divergent thinking are routinely expected to help people envision and implement alternative practices to the status quo. However, these do not feature strongly in the literature on education for sustainability in higher education (HE), and especially graduate competencies or capabilities for sustainability. The paper…

  18. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  19. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  20. Exploring drivers and barriers to sustainability green business practices within small medium sized enterprises: primary findings

    Directory of Open Access Journals (Sweden)

    Amir Aghelie

    2017-03-01

    Full Text Available Presently the conducted studies on how SMEs should integrate sustainability align with their core business principle is limited. Most of the discussion on this field is emphasized to address issues for larger organizations and very limited effort on small firms. The drivers and barriers of approaching sustainability practices in SMEs are different from those in large organizations since SMEs lack technical specialist, experience and money required to make such strategy. Since SMEs play a significant role in nation’s economic growth, it is essential to study and find their drivers and barriers toward sustainability business practices constitutes main motivation of this paper. This is a primary finding that aims to understand the SME motivation and barriers that are facing in implementing green sustainable business practices to offer insight look to small firms to find key factors that influence adoption of sustainability business approach within their management practices.

  1. Exploring the Incorporation of Values for Sustainable Entrepreneurship Teaching/Learning

    Directory of Open Access Journals (Sweden)

    Soledad Parra

    2013-01-01

    Full Text Available The objective of the “United Nations Decade of Education for Sustainable Development”, during the period 2005 to 2014 is to integrate the principles, values and practices of sustainability in all aspects of education. The aim is to stimulate behavior changes, which will allow the creation of an economic, social and environmentally sustainable future. Sustainable entrepreneurial behavior is relevant for carrying out these changes. This paper tries to find the way to promote a sustainable entrepreneurial vision through the incorporation of new values for teaching/learning of potential entrepreneurs from the moment when the idea is born for creating a for-profit, non-profit or hybrid organization. Generating a change of perspective from the beginning of the entrepreneurship process is sought for fostering the birth of organizations that respect the environment and are responsible when confronting social problems, besides being profitable. All this involves a great challenge to all agents implicated in the process.

  2. Beneath Our Eyes: An Exploration of the Relationship between Technology Enhanced Learning and Socio-Ecological Sustainability in Art and Design Higher Education

    Science.gov (United States)

    Sclater, Madeleine

    2016-01-01

    This article uses published research to explore how Technology Enhanced Learning (TEL) can help to sustain learning communities to engage in creative exploration and open investigation. It then draws on this research to ask: how could we use TEL to support pedagogies of socio-ecological sustainability in the Art and Design education community?…

  3. Employee Fitness Programs: Exploring Relationships between Perceived Organizational Support toward Employee Fitness and Organizational Sustainability Performance

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2018-06-01

    Full Text Available This study investigates the influence of employee fitness programs on organizational sustainability performance from the perspective of organizational support as perceived by employees. Organizational sustainability performance was specified as a second-order factor, which was affected by three first-order factors: financial performance, social performance, and environmental performance. A snowball sampling method was employed to conduct an online survey of working adults in Shanghai to test the proposed hypotheses. Results show that perceived organizational support toward employee fitness has a positive and significant effect on organizational sustainability performance, and the positive effect is mediated by job satisfaction and organizational commitment. This study also provides theoretical and managerial implications.

  4. Exploring sustainable behavior structure in higher education a socio-psychology confirmatory approach

    CERN Document Server

    Juárez-Nájera, Margarita

    2015-01-01

    This book presents a social-psychology model delineating the factors that may influence in an altruistic manner sustainable behaviour (SB) of students, faculty and administrators in four higher education institutions (HEI) with very different economic and social characteristics. It presents the areas where these individuals work (education and community management), and in which of them education for sustainability is promoted, focusing on four alternative methods of learning: play, art, group therapy, and personnel management. The book is intended for bachelors and graduated students, as well as researchers in social psychology, environmental psychology, conservation psychology, environmental education, education for sustainable development, cross-cultural psychology, and social sciences.

  5. Working with human nature to achieve sustainability : exploring structural constraints and opportunities

    NARCIS (Netherlands)

    Kopnina, H.N.

    2017-01-01

    Sustainable production is often limited by structural factors such as industrial development, neoliberal democracy, growing population and globalization of consumer culture. Drawing on the work of some theorists linking unsustainability to universal psychological propensities, this article discusses

  6. Exploring the Relationship Between Business Model Innovation, Corporate Sustainability, and Organisational Values within the Fashion Industry

    DEFF Research Database (Denmark)

    Pedersen, Esben Rahbek Gjerdrum; Gwozdz, Wencke; Hvass, Kerli Kant

    2018-01-01

    their origin in the fundamental principles guiding the organisation. In addition, the study also finds a positive relationship between the core organisational values and financial performance. The analysis of the paper is based on survey responses from 492 managers within the Swedish fashion industry.......The objective of this paper is to examine the relationship between business model innovation, corporate sustainability, and the underlying organisational values. Moreover, the paper examines how the three dimensions correlate with corporate financial performance. It is concluded that companies...... with innovative business models are more likely to address corporate sustainability and that business model innovation and corporate sustainability alike are typically found in organisations rooted in values of flexibility and discretion. Business model innovation and corporate sustainability thus seem to have...

  7. Exploring the use of tools for urban sustainability in European cities

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Elle, Morten

    2007-01-01

    This paper outlines the main findings from case studies analysed within the Practical Evaluation Tools for Urban Sustainability (PETUS) project, about the practical use of tools for sustainable urban development in European cities. The paper looks across 60 case studies and identifies the main...... drivers for using tools, the benefits gained by using them and discusses why, in genera, there is limited use of available tools. The main question raised by the PETUS project was, ' why are so few tools for urban sustainability being used, when so many are available?' Recent years have shown a growing...... number of theoretical tools to assess and evaluate urban sustainability. However, experience also shows that only a few of such tools are being used in practice. The paper outlines the motivations for actors to use tools, the benefits achieved and the barriers for using tools. From this, different...

  8. Exploring the knowledge ‘base’ of practitioners in the delivery of sustainable regeneration projects

    OpenAIRE

    Akotia, Julius; Opoku, Alex; Egbu, Charles; Fortune, Chris

    2016-01-01

    In recent years, sustainable regeneration has been recognised as being of major economic and social concern in the world. In the UK for instance, government has initiated a number of policies and evaluation methods to deal with some of the environmental problems associated with regeneration projects. However, the post construction evaluation of these projects has often resulted in them being seen as not achieving their set objectives. Attempts aimed at evaluating the impact of sustainability ...

  9. Exploring the Obstacles and the Limits of Sustainable Development. A Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Paula-Carmen Roșca

    2017-03-01

    Full Text Available The term “sustainable” or “sustainability” is currently used so much and in so many fields that it has become basically part of our everyday lives. It has been connected and linked to almost everything related to our living, to our lifestyle: energy, transport, housing, diet, clothing etc. But what does the term “sustainable” really mean? Many people may have heard about sustainable development or sustainability and may have even tried to have a sustainable living but their efforts might not be enough. The present paper is meant to bring forward a few of the limits of “sustainability” concept. Moreover, it is focused on revealing some arguments from the “other side” along with disagreements regarding some of the principles of “sustainable development” and even critics related to its progress, to its achievements. Another purpose of this paper is to draw attention over some of the issues and obstacles which may threaten the future of sustainability. The paper is also meant to highlight the impact that some stakeholders might have on the evolution of sustainable development due to their financial power, on a global scale.

  10. Shenzhen Comprehensive Transport System Planning:An Exploration of Sustainable Urban Transport Development on Condition of Limited Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With "integration" as the direction,Shenzhen Comprehensive Transport Planning integrates the plan,construction and management of all kinds of transport mode in the transport system,and integrates the transport with the social,economic and environment development.The planning specifies the strategic targets,key indicators,development strategies as well as major policies of the comprehensive transport system,which explores an alternative way for the sustainable urban transport development under the condition of limited resources in Shenzhen.

  11. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  12. THE ACCEPTANCE OF SUSTAINABLE FOOD CONCEPT: A QUALITATIVE EXPLORATION IN STENDEN UNIVERSITY HOTEL, THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    Sia Tjun Han

    2017-09-01

    Full Text Available As customers concern more about the environment, sustainable food demands, which are locally produced, organic, seasonal, and vegetarian or semi-vegetarian, are increasing. Besides, Theory of Planned Behavior (TPB explains that behavior is guided by intentions with the factors of attitude, subjective norm, and perceived behavioral control to predict food choices; food purchasing habits and intake; and attitudes and preferences. Therefore, the research purpose is to examine customers’ acceptance of The Netherlands restaurant implementing sustainable food concept using TPB. Data analysis of 10 semi structured interviews shows that the customers of Restaurant NL are more likely guided by external factors of subjective norms: work related dine-in; others’ encouragement to eat more healthy and more responsibly, as the intentions are to have sustainable benefits.

  13. Exploring mechanisms for mobilising industrial sustainability models across different industrial locations

    DEFF Research Database (Denmark)

    Jacobsen, Ole Morten Noel Brings

    2009-01-01

    Industrial symbiosis is a model of sustainability which suggests that agglomerations of industries can achieve considerable environmental benefits by engaging in inter-organisational waste recycling, energy cascading and water recovery. This article considers how such a complex inter-organisation......Industrial symbiosis is a model of sustainability which suggests that agglomerations of industries can achieve considerable environmental benefits by engaging in inter-organisational waste recycling, energy cascading and water recovery. This article considers how such a complex inter...... symbiosis model may in this way be mobilised across industrial localities as part of the global corporate search for marked access and cost reductions. This suggestion is supported by an illustrative case study shedding some light on the mechanisms for mobilising sustainability models across localities....

  14. Marching out from Ultima Thule: Critical Counterstories of Emancipatory Educators Working at the Intersection of Human Rights, Animal Rights, and Planetary Sustainability

    Science.gov (United States)

    Kahn, Richard; Humes, Brandy

    2009-01-01

    It is not altogether uncommon now to hear environmental educational theorists speak of the need to develop pedagogical methods that can work both for ecological sustainability and social justice. However, the majority of the socio-ecological turn in environmental education has failed to integrate nonhuman animal advocacy as a serious educational…

  15. Exploring options for sustainable development of vegetable farms in South Uruguay

    NARCIS (Netherlands)

    Dogliotti Moro, S.

    2003-01-01

    Keywords:land use system, modeling, farming system, future-oriented studies, vegetables,

    The sustainable development of vegetable farms in South Uruguay requires the development of farming systems that contribute

  16. Creating Partnering Space : Exploring the Right Fit for Sustainable Development Partnerships

    NARCIS (Netherlands)

    R.J.M. van Tulder (Rob); S.M. Pfisterer (Stella)

    2013-01-01

    textabstractIn the policy discourse on sustainable development, the positive role of cross-sector partnerships is increasingly stressed. Governments habitually frame their partnership approach in terms of ‘PPPs’ - Public-Private Partnerships. But it is not very clear whether these initiatives

  17. Reflexive project management in high-ambition projects : Exploring the competencies for managing innovative sustainable designs

    NARCIS (Netherlands)

    Loeber, A.; Vermeulen, T.

    2016-01-01

    Purpose The Aristotelian notion of phronèsis inspired innovative work in the realm of project management as well as in literature on sustainability and societal transformations. We argue that both literatures may benefit from a dialogue between the two, especially in view of outlining project

  18. Role of an explorative model for learning about sustainable agricultural development in Burkina Faso

    NARCIS (Netherlands)

    Paassen, van A.; Ridder, de N.; Stroosnijder, L.

    2011-01-01

    Agricultural development is complex, highly dynamic and differs among varying contexts. Decision-making for sustainable agricultural development cannot be based on generalized science-based knowledge, but should include context-specific knowledge and values of local stakeholders. Computer models

  19. Exploring sustainable practices with trigger-products : A case of staying warm at home

    NARCIS (Netherlands)

    Kuijer, S.C.; De Jong, A.M.

    2010-01-01

    Heating of dwellings forms a significant portion of societies energy use and is increasing. One way of approaching the problem from a sustainable design point of view is to offer thermal comfort in a more energy efficient way. However, the idea of offering comfort to passive receptors (i.e. people)

  20. The Sustainable Office. An exploration of the potential for factor 20 environmental improvement of office accommodation

    NARCIS (Netherlands)

    Van den Dobbelsteen, A.A.J.F.

    2004-01-01

    Sustainable development is the goal of a balance between economy and the environment, whilst establishing a better spread prosperity across the world. In order to make this possible, the environmental load of our commodities needs to be reduced by a factor of 20. This factor 20 can also be

  1. Provider Strategies and the Greening of Consumption Practices: Exploring the Role of Companies in Sustainable Consumption

    NARCIS (Netherlands)

    Spaargaren, G.; Koppen, van C.S.A.

    2009-01-01

    Making consumption practices more sustainable means incorporating new ideas, information and products into existing consumption routines of citizen-consumers. For a successful incorporation process it is crucial that companies, as main providers of new products and services, develop an active

  2. Exploring the Potential of Online Courses to Develop Capacity for Sustainable Development

    Science.gov (United States)

    Mercier, Jean-Roger

    2014-01-01

    A small team of independent entrepreneurs developed two Massive Open Online Courses (MOOCs) on sustainable development that attracted over 400 participants. This article describes the original intentions and formats of the MOOCs as well as their actual performance. With little publicity, the courses revealed strong buy-in by the participants and…

  3. Exploring the relation between individual moral antecedents and entrepreneurial opportunity recognition for sustainable development

    NARCIS (Netherlands)

    Ploum, Lisa; Blok, Vincent; Lans, Thomas; Omta, Onno

    2018-01-01

    When dealing with complex value-driven problems such as sustainable development, individuals need to have values and norms that go beyond the appropriation of tangible business outcomes for themselves. This raises the question of the role played by individual moral antecedents in the entrepreneurial

  4. Data and models for exploring sustainability of human well-being in global environmental change

    NARCIS (Netherlands)

    Deffuant, G.; Alvarez, I.; Barreteau, O.; Vries, de B.; Edmonds, B.; Gilbert, N.; Gotts, N.; Jabot, F.; Janssen, S.J.C.; Hilden, M.; Kolditz, O.; Murray-Rust, D.; Rouge, C.; Smits, P.

    2012-01-01

    This position paper proposes a vision for the research activity about sustainability in global environmental change (GEC) taking place in the FuturICT flagship project. This activity will be organised in an "Exploratory", gathering a core network of European scientists from ICT, social simulation,

  5. Exergy landscapes: Exploration of second-law thinking towards sustainable landscape design

    NARCIS (Netherlands)

    Stremke, S.; Dobbelsteen, van den A.; Koh, J.

    2011-01-01

    Depletion of fossil fuels and climate change necessitate a transition to sustainable energy systems that make efficient use of renewable energy sources. During recent decades, the Second Law of Thermodynamics has helped to increase energy efficiencies. More recently, the disciplines of building

  6. Sustainable employability for older workers: an explorative survey of belgian companies.

    Science.gov (United States)

    Verbrugghe, Mathieu; Kuipers, Yoline; Vriesacker, Bart; Peeters, Ilse; Mortelmans, Katrien

    2016-01-01

    The European Agency for Safety and Health at Work (EU-OSHA) is developing an online e-guide, which will provide tips and practical information for each EU country (in their national language(s)) on ageing and occupational health and safety. The e-guide will be launched in 2016 as part of the EU-OSHA campaign on Healthy Workplaces for all ages. The e-guide will present evidence, tools and practical examples of how companies can take action and effectively promote sustainable employability. As part of the development of the e-guide, a cross-sectional study was conducted to survey Belgian employers in April 2015 to determine their specific needs concerning older workers' occupational health and safety issues. Researchers from Milieu Ltd. (Brussels, Belgium), the consultancy company coordinating the e-guide project, and Mensura Occupational Health Services (Brussels, Belgium) developed a 13-item questionnaire. The survey addressed the needs and importance given to sustainable employability of older workers in Belgian companies and evaluated corporate knowledge regarding relevant national policies. The questionnaire was distributed electronically to the management of 22,084 private-sector companies affiliated with Mensura. Ten percent (n = 2133) of recipients opened the e-mail, and 37 % (n = 790) of these completed the questionnaire. In 89 % of the responding companies, sustainable employability of workers aged ≥55 years plays an important role; 70 % have no active sustainable employability policy/initiative; 18 % experience difficulties promoting sustainable employability; and 86 % indicate no need for support to promote sustainable employability. Respondents noted the following health complaints among workers aged ≥55 years: work-related health problems (31 %), stress (26 %), work agreements/type of work (17 %), work/life balance (15 %), and career development and/or training (9 %). Topics concerning health and well-being of workers aged ≥55

  7. Population, Reproduction and IVF in New Caledonia: Exploring Sociocultural and Caring Dimensions of Sustainable Development

    Directory of Open Access Journals (Sweden)

    Nicola Jane Marks

    2017-10-01

    Full Text Available Abstract Both sustainability and sustainable development have multiple meanings that are underpinned by diverse normative visions. Nonetheless, sustainable development is currently centre-stage at the global level. The main goal of this paper is to critically examine these important concepts, in particular their social and cultural dimensions, and to make a conceptual offering: that of ‘caring sustainable development.’ This way of thinking about sustainable development aims to grapple in a situated way with the different normative underpinnings of sustainability in order to support the building of a common future. The paper briefly examines populations, reproduction (both biological and sociocultural and human in vitro fertilization (IVF, as important sites for thinking about caring sustainable development. It draws on research in New Caledonia examining which populations and which sociocultural social practices are encouraged or sustained, or not. It finds that historically there are many examples of things and people being neglected and not cared for, or being encouraged to ‘develop’ in problematic ways. By contrast, recent practices associated with IVF suggest ways forward that would enable caring sustainable development. Résumé La durabilité et le développement durable ont des significations multiples, qui sont sous-tendues par diverses visions normatives. Néanmoins, le développement durable occupe actuellement une place centrale sur le plan mondial. Le but principal de cet article est d’examiner de manière critique ces concepts importants, en particulier leurs dimensions sociales et culturelles, et de faire une contribution conceptuelle qui est celle de la notion du ‘care dans le développement durable ’. Cette façon de penser au développement durable vise à aborder ces différents fondements normatifs, de façon localisée, pour soutenir la construction à long terme d’un futur commun. L’article examine ensuite

  8. Sustainable Tourism Development: Exploring the Relationship of Travel Agents’ Education and Experience to Their Attitudes on Environmental Issues

    Directory of Open Access Journals (Sweden)

    Nazmiye Erdoğan

    2013-06-01

    Full Text Available This study explored the nature of environmental attitudes of travel agents and investigated the relationship of educational level and business experience to their views on 27 environment related issues that are connected with sustainability. Data were collected from 1620 travel agents in Turkey. It was found that considerable numbers of travel agents had environmentally friendly views in respect to the factors contributing to the environmental problems, outcomes of environmental protection activities, importance of environmental criteria and environmental sensitivity of public sector, private sector and NGOs. Chi-square analyses to test the two hypotheses did not provide support for all 27 items. However, travel agents with higher education and long business experience in tourism sector hold generally more sensitive views toward environmental issues and sustainable tourism.

  9. Exploring the impact of dynamic capabilities on sustainable supply chain firm's performance using Grey-Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Govindan, Kannan; Mathivathanan, Deepak; Haq, A. Noorul

    2017-01-01

    Dynamic capabilities (DCs) are the inherent capabilities developed by firms through the implementation of Sustainable Supply Chain practices. These DCs serve as a backbone for the firms to achieve competitive advantages in contemporary ever-changing markets. The present study focuses on exploring...... industrial managers to identify specific influential DCs for each performance measure category by overcoming the limitations of few experts through the application of the grey multi criteria decision making system. Identifying and prioritizing performance-specific DCs allow sustainable supply chain oriented...... performance measures identified from the literature. First, through a questionnaire survey with industrial experts from south India as respondents, the initial list of 77 DCs is confined to a list of 40 essential DCs. Second, the shortlisted 40 DCs are grouped under six performance measures; a logical...

  10. Education for Sustainable Development in Malaysia's National Curriculum Reformation: A Theoretical Exploration

    Directory of Open Access Journals (Sweden)

    Aai Sheau Yean

    2014-10-01

    Full Text Available This article aims to examine the feasibility and potential of including appropriate Education for Sustainable Development (ESD elements in the National Curriculum Reformation of Malaysia that is set to be introduced in the year 2017. This is done through the proposal of a theoretical approach for understanding ESD fit for Malaysia from an environmental epistemology. To start with, this article outlines dominant ideologies and epistemologies revolving around the concept of Sustainable Development (SD and focuses on critiquing the underlying anthropocentric tendencies found within. Drawing principally from the ideas of Schumacher (1973, Orr (2004, and Sterling (1992, the article then sets out to examine the ideologies and epistemologies needed to support education reformation that are more environmentally sensitive in nature.

  11. The Sustainable Office. An exploration of the potential for factor 20 environmental improvement of office accommodation

    OpenAIRE

    Van den Dobbelsteen, A.A.J.F.

    2004-01-01

    Sustainable development is the goal of a balance between economy and the environment, whilst establishing a better spread prosperity across the world. In order to make this possible, the environmental load of our commodities needs to be reduced by a factor of 20. This factor 20 can also be translated to the office market. The PhD research presented in this thesis focussed on finding solutions effectively contributing to factor 20 environmental improvement of office accommodation. In order to ...

  12. THE ACCEPTANCE OF SUSTAINABLE FOOD CONCEPT: A QUALITATIVE EXPLORATION IN STENDEN UNIVERSITY HOTEL, THE NETHERLANDS

    OpenAIRE

    Sia Tjun Han; Wahyuniwati Wahyudi

    2017-01-01

    As customers concern more about the environment, sustainable food demands, which are locally produced, organic, seasonal, and vegetarian or semi-vegetarian, are increasing. Besides, Theory of Planned Behavior (TPB) explains that behavior is guided by intentions with the factors of attitude, subjective norm, and perceived behavioral control to predict food choices; food purchasing habits and intake; and attitudes and preferences. Therefore, the research purpose is to examine customers’ accepta...

  13. Exploring Consumer Associations between Corporate Reputation, Corporate Sustainability and Product Attributes within Utilitarian Market Contexts

    OpenAIRE

    Garry, Tony; Harwood, Tracy

    2016-01-01

    Much of the extant literature proposes that contemporary motivated consumers assess, evaluate and differentiate firms based not only on their corporate reputation (CR), but also on their corporate sustainability (CS) strategy. However, research that examines the interrelationship and cognitive associations between CR, CS strategy and a firm’s product attributes among consumer stakeholders remains scant. To address this gap, we take a holistic perspective that draws on pertinent literature to ...

  14. Exploring Themes and Challenges in Developing Sustainable Supply Chains - A Complexity Theory Perspective

    OpenAIRE

    Abbasi, Maisam

    2014-01-01

    To develop sustainable supply chains in a way that their negative environmental and social effects are minimized, shortand long-term targets should be set. The transformation of supply chains towards these targets calls for the development of innovative strategies and the need to continuously identify, classify, and tackle the challenges that can hinder the execution of such strategies. To develop innovative strategies, the patterns of current trends and themes need to be learned and th...

  15. Exploring the Applications of Bio-Eco Architecture for Sustainable Design and Construction process

    OpenAIRE

    M. M. Naguib; M. A. M. Hanafi

    2013-01-01

    It has been commonly noted that the main perception of nature influenced forms isbasically aesthetic while little concern is given to the importance of inspiring from naturein the construction and structural performance of buildings as well as in the naturalecological architectural solutions, thus, this paper will focus on bio-inspired architectureapproach which embraces the eco-friendly practices of sustainable construction, the useof natural materials and the energy conservation by mimickin...

  16. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  17. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  18. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  19. Exploring factors that influence the spread and sustainability of a dysphagia innovation: an instrumental case study.

    Science.gov (United States)

    Ilott, Irene; Gerrish, Kate; Eltringham, Sabrina A; Taylor, Carolyn; Pownall, Sue

    2016-08-18

    Swallowing difficulties challenge patient safety due to the increased risk of malnutrition, dehydration and aspiration pneumonia. A theoretically driven study was undertaken to examine the spread and sustainability of a locally developed innovation that involved using the Inter-Professional Dysphagia Framework to structure education for the workforce. A conceptual framework with 3 spread strategies (hierarchical control, participatory adaptation and facilitated evolution) was blended with a processual approach to sustaining organisational change. The aim was to understand the processes, mechanism and outcomes associated with the spread and sustainability of this safety initiative. An instrumental case study, prospectively tracked a dysphagia innovation for 34 months (April 2011 to January 2014) in a large health care organisation in England. A train-the-trainer intervention (as participatory adaptation) was deployed on care pathways for stroke and fractured neck of femur. Data were collected at the organisational and clinical level through interviews (n = 30) and document review. The coding frame combined the processual approach with the spread mechanisms. Pre-determined outcomes included the number of staff trained about dysphagia and impact related to changes in practice. The features and processes associated with hierarchical control and participatory adaptation were identified. Leadership, critical junctures, temporality and making the innovation routine were aspects of hierarchical control. Participatory adaptation was evident on the care pathways through stakeholder responses, workload and resource pressures. Six of the 25 ward based trainers cascaded the dysphagia training. The expected outcomes were achieved when the top-down mandate (hierarchical control) was supplemented by local engagement and support (participatory adaptation). Frameworks for spread and sustainability were combined to create a 'small theory' that described the interventions, the

  20. Optical Mining of Asteroids, Moons, and Planets to Enable Sustainable Human Exploration and Space Industrialization

    Data.gov (United States)

    National Aeronautics and Space Administration — PROBLEM, DEEP SPACE HUMAN EXPLORATION IS UNAFFORDABLE: In 2014 the NASA Advisory Council issued a finding that “The mismatch between NASA’s aspirations for human...

  1. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    Science.gov (United States)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  2. Falling off the bandwagon? Exploring the challenges to sustained digital engagement by older people.

    Science.gov (United States)

    Damodaran, L; Olphert, C W; Sandhu, J

    2014-01-01

    This study examines older people's use of information and communication technologies (ICTs) and identifies the factors which can prevent or promote their sustained use. A mixed methods approach was adopted. Quantitative and qualitative data were collected by a survey of 323 older ICT users (aged ≥50 years) between 2011 and 2012. These data were supplemented by qualitative data obtained through in-depth interviews, focus groups and storytelling. Quantitative data were analysed using PASW including bivariate and multivariate analyses. Qualitative data were analysed using an inductive, thematic approach. The findings show that, contrary to some stereotypes, many older people are enthusiastic, competent and confident users of ICTs. However, they report a range of challenges in reaching and maintaining this situation. These include technological complexity and change, age-related capability changes and a lack of learning and support mechanisms. Intrinsic motivation and social support are important in enabling older people to overcome these challenges. Getting older people online has been a high priority in many countries over the past decade. However, little attention has been paid to whether and how their usage can be sustained over time. We discuss the implications of the findings for policy and practice.

  3. Salty or Sweet: Exploring the Challenges of Groundwater Salinization Within a Sustainability Framework

    Science.gov (United States)

    Basu, N. B.; Van Meter, K. J.; Tate, E.

    2012-12-01

    In semi-arid to arid landscapes under intensive irrigation, groundwater salinization can be a persistent and critical problem, leading to reduced agricultural productivity, limited access to fresh drinking water, and ultimately desertification. It is estimated that in India alone, problems of salinity are now affecting over 6 million hectares of agricultural land. In villages of the Mewat district of Haryana in Northern India, subsistence-level farming is the primary source of income, and farming families live under serious threat from increasing salinity levels, both in terms of crop production and adequate supplies of drinking water. The Institute for Rural Research and Development (IRRAD), a non-governmental organization (NGO) working in Mewat, has taken an innovative approach in this area to problems of groundwater salinization, using check dams and rainwater harvesting ponds to recharge aquifers in the freshwater zones of upstream hill areas, and to create freshwater pockets within the saline groundwater zones of down-gradient areas. Initial, pilot-scale efforts have led to apparent success in raising groundwater levels in freshwater zones and changing the dynamics of encroaching groundwater salinity, but the expansion of such efforts to larger-scale restoration is constrained by the availability of adequate resources. Under such resource constraints, which are typical of international development work, it becomes critical to utilize a decision-analysis framework to quantify both the immediate and long-term effectiveness and sustainability of interventions by NGOs such as IRRAD. In the present study, we have developed such a framework, linking the climate-hydrological dynamics of monsoon driven systems with village-scale socio-economic attributes to evaluate the sustainability of current restoration efforts and to prioritize future areas for intervention. We utilize a multi-dimensional metric that takes into account both physical factors related to water

  4. Ecological Footprints and Lifestyle Archetypes: Exploring Dimensions of Consumption and the Transformation Needed to Achieve Urban Sustainability

    Directory of Open Access Journals (Sweden)

    Jennie Moore

    2015-04-01

    Full Text Available The global urban transition increasingly positions cities as important influencers in determining sustainability outcomes. Urban sustainability literature tends to focus on the built environment as a solution space for reducing energy and materials demand; however, equally important is the consumption characteristics of the people who occupy the city. While size of dwelling and motor vehicle ownership are partially influenced by urban form, they are also influenced by cultural and socio-economic characteristics. Dietary choices and purchases of consumable goods are almost entirely driven by the latter. Using international field data that document urban ways of living, I develop lifestyle archetypes coupled with ecological footprint analysis to develop consumption benchmarks in the domains of: food, buildings, consumables, transportation, and water that correspond to various levels of demand on nature’s services. I also explore the dimensions of transformation that would be needed in each of these domains for the per capita consumption patterns of urban dwellers to achieve ecological sustainability. The dimensions of transformation needed commensurate with ecological carrying capacity include: a 73% reduction in household energy use, a 96% reduction in motor vehicle ownership, a 78% reduction in per capita vehicle kilometres travelled, and a 79% reduction in air kilometres travelled.

  5. Exploring emerging learning needs: a UK-wide consultation on environmental sustainability learning objectives for medical education.

    Science.gov (United States)

    Walpole, Sarah C; Mortimer, Frances; Inman, Alice; Braithwaite, Isobel; Thompson, Trevor

    2015-12-24

    This study aimed to engage wide-ranging stakeholders and develop consensus learning objectives for undergraduate and postgraduate medical education. A UK-wide consultation garnered opinions of healthcare students, healthcare educators and other key stakeholders about environmental sustainability in medical education. The policy Delphi approach informed this study. Draft learning objectives were revised iteratively during three rounds of consultation: online questionnaire or telephone interview, face-to-face seminar and email consultation. Twelve draft learning objectives were developed based on review of relevant literature. In round one, 64 participants' median ratings of the learning objectives were 3.5 for relevance and 3.0 for feasibility on a Likert scale of one to four. Revisions were proposed, e.g. to highlight relevance to public health and professionalism. Thirty three participants attended round two. Conflicting opinions were explored. Added content areas included health benefits of sustainable behaviours. To enhance usability, restructuring provided three overarching learning objectives, each with subsidiary points. All participants from rounds one and two were contacted in round three, and no further edits were required. This is the first attempt to define consensus learning objectives for medical students about environmental sustainability. Allowing a wide range of stakeholders to comment on multiple iterations of the document stimulated their engagement with the issues raised and ownership of the resulting learning objectives.

  6. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.

    2008-01-01

    This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.

  7. Exploring Industry Perceptions of the Development and Sustainability of Academia-Industry Advanced Technological Education Partnerships

    Science.gov (United States)

    Kile, Joanna

    2012-01-01

    The increasing demands on community colleges to broaden access and provide for the community's economic welfare, while maintaining its traditional educational role, have served as a powerful impetus for institutional change. Concurrently, institutions have been forced to explore non-traditional avenues to counteract resource scarcity.…

  8. Mapping the Biosphere: exploring species to understand the origin, organization, and sustainability of biodiversity

    Science.gov (United States)

    The time is ripe for a comprehensive mission to explore and document Earth’s species. We conclude that a goal to describe 10 million new species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation, and...

  9. Exploring compatibility between subjective well-being and sustainable living in Scandinavia

    DEFF Research Database (Denmark)

    Hansen, Karsten Bruun

    2015-01-01

    Dramatic climate changes are predicted if present-day social practices in affluent societies are not changed, but the challenge is that scarce knowledge exists about how to motivate people for social practice changes in everyday life. Preconditions for neccesary lifestyle changes seem to be in pl......Dramatic climate changes are predicted if present-day social practices in affluent societies are not changed, but the challenge is that scarce knowledge exists about how to motivate people for social practice changes in everyday life. Preconditions for neccesary lifestyle changes seem......, personal flourishing and social interaction. However, the topic is complex; social norms and intrinsic contra extrinsic oriented values are discussed in relation to what people see as the good life and a sustainable everyday living (In terms of lowering present personal CO2 emission levels with 60...

  10. Energy Transitions towards Sustainability I: A Staged Exploration of Complexity and Deep Uncertainty

    OpenAIRE

    Pruyt, E.; Kwakkel, J.; Yucel, G.; Hamarat, C.

    2011-01-01

    This paper illustrates the use of Exploratory System Dynamics Modeling and Analysis – a multi-method combining System Dynamics and Exploratory Modeling and Analysis to explore and analyze uncertain dynamic issues and test deep policy robustness. This paper gives an overview of the current state of this multi-method by means of an illustration. The multimethod is applied to the transition of the electricity generation system, more specifically the battle between old and new electricity generat...

  11. Flow-through shares to sustain petroleum and gas exploration in Quebec

    International Nuclear Information System (INIS)

    1999-01-01

    On March 25, 1997, the Quebec government announced tax advantages related to petroleum and natural gas exploration expenditures incurred in Quebec. The government introduced flow-through shares which allow a tax deduction of up to 175 per cent. This incentive was created to promote investment in the province. This pamphlet summarizes the treatment of the capital gains and shows the tax deductions applicable for the 1998 taxation year

  12. Exploring the Key Challenges: Adaptability, Sustainability, Interoperability and Security to M-payment

    Directory of Open Access Journals (Sweden)

    Rashmi Mantri

    2011-04-01

    Full Text Available Abstract: Any payment which uses mobile device as payment method is called M-payment whether it is proximity or remote and online or point of sale. Since it has been identified that mobile phone is everywhere and ever-present essential consumer device, and could be used for payment offline or online, Mobile payment has been hyped significantly. However early market adoption is facing some challenges and in need of the unanimous effort of all key players (manufacturers, mobile operators, merchants and customers of value chain in order to accept mobile payment method and achieve standard and sustainable business model. Achieving one business model is important for user convenience and reachability, resulting in increased market opportunities. The main focus of this research proposal is that why cohesive technologies are needed and how it could be achieved? Some M-payment ventures are successfully working in Japan, US and Asian countries such as NTTDoCoMo and PayPal M-payments. The main reason of M-payment adoption among consumers in those countries is that their security issues are dealt carefully and solved to acceptable level. This paper is presented in the form of research proposal and overview looking into various challenging issues which are preventing the higher success in UK.

  13. How Collaborative Business Modeling Can Be Used to Jointly Explore Sustainability Innovations

    DEFF Research Database (Denmark)

    Konnertz, Lars; Rohrbeck, René; Knab, Sebastian

    2011-01-01

    in the German energy market, where business modeling has been used in a collaborative fashion. After describing this collaborative business modeling (CBM) approach, we discuss its strengths and limitations and compare it to the alternative methods of innovation planning: scenario technique and roadmapping. We...... find that it has its particular strengths in creating a multitude of ideas and solutions, overcoming the obstacle of different terminologies and facilitating planning, implementation and decision-making. We conclude that in a situation where fundamental discussions and understanding about new markets...... are needed, CBM can contribute to explore a new business field with a holistic perspective....

  14. City Size, Density and Sectoral Structure: Exploring Urban Sustainability in the Regions.

    Science.gov (United States)

    Svirejeva-Hopkins, Anastasia

    2010-05-01

    For the first time in history, the Global population is more urban than rural and the trend is obvious at various scales. Cities do not serve just as dynamic centres of activities, jobs and consumption markets, social interactions and cultural expressions, but also carry the weight of the main environmental problems of current times and the near future. Global Warming, air and water pollution, population growth and recourse constraints, i.e. reduction of carrying capacity of the environment are among the well known ones. The overall aim of this research is to develop mitigation (at various scales) and adaptation systems, tailored to urban settlements. They should be effective at the very local as well as regional levels, assess and introduce innovative urban technologies and policies, reduce ecological footprint of cities and increase recycling efficiency. We propose the empirical method of urban sustainability assessment, that supports our hypothesis that city functioning, the changes in its population and area growth depends on the size, average and internal densities and the geographical form. The existing cities of three regions are examined: Western and Eastern Europe (incl. Russia), Latin America and China. There are fundamental urban developmental differences and also within the first region, namely between EU countries and the Eastern part of European geographical region. The cities are considered not only as some agglomerates of areas with dense population but from the ecological point of view, namely examining inflow of food and energy and outflow of waste products across the boundaries. There are major differences between the patterns of urbanisation in the studied regions, urban systems functioning and resilience. Continuous investigation of these differenced helps building regional scenarios of cities development, population allocation and pollution management for the 21st century.

  15. Exploring intrinsic, instrumental, and relational values for sustainable management of social-ecological systems

    Directory of Open Access Journals (Sweden)

    Paola Arias-Arévalo

    2017-12-01

    Full Text Available The values (i.e., importance that people place on ecosystems have been identified as a crucial dimension of sustainable management of social-ecological systems. Recently, the call for integrating plural values of ecosystems beyond intrinsic and instrumental values has prompted the notion of "relational values." With the aim of contributing to environmental management, we assess the environmental motivations (i.e., egoistic, biospheric, altruistic and values that people attribute to the ecosystems of the mid-upper stream of the Otún River watershed, central Andes, Colombia. We analyzed 589 questionnaires that were collected in urban and rural areas of the Otún River watershed using the nonparametric Mann-Whitney U test and logistic regressions. We found salient biospheric motivations and the attribution of plural values (i.e., intrinsic, relational, and instrumental to the ecosystems of the mid-upper stream of the Otún River watershed. Particularly, relational values were the most frequently mentioned value domain. Further, our results showed that environmental motivations and socioeconomic factors are associated with the expression of different value domains. We found negative associations between egoistic motivations and intrinsic values and between rural respondents and instrumental values. We found positive associations between altruistic motivations and relational values and between rural respondents and both intrinsic and relational values. In light of our results, we argue that intrinsic, instrumental, and relational values coexist in people's narratives about the importance of ecosystems. Plural valuation approaches could be enhanced by differentiating relational from instrumental values and by expressing them in nonmonetary terms. We argue that multiple values of ecosystems expressed by rural and urban societies should be included in environmental management to tackle social conflicts and consider the diverse needs and interests of

  16. Scenarios Simulation of Spatio-Temporal Land Use Changes for Exploring Sustainable Management Strategies

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2018-03-01

    Full Text Available Land use and land cover change have received considerable attention from global researchers in recent decades. The conflicts between different development strategies for land uses have become a problem that urgently needs to be solved, especially in those regions with a fragile ecological environment. The development of scenario simulations is essential in order to highlight possible alternative pathways for the future under the backgrounds of urbanization, economic growth and ecological protection. This study simulated land use changes for Tekes in 2020 with the Conversion of Land Use and its Effects at Small regional extent (CLUE-S model under a ‘business as usual’ scenario, cropland protection scenario, ecological security scenario, and artificial modification scenario. The results indicated that the spatial patterns of the land use types were explained well by the environment variables, and the selected models had a satisfactory accuracy in this study. The requirements and the patterns were quite different owing to the variation of the major objectives of the four scenarios. In addition to the constraint rules of the land use transformation, the hot point for land use change was its spatial coherency. Areas near to an existing land use type were more likely to transform to that type than those farther away. The increased cropland and urban land were mainly located around the current cropland and urban land while forests and grassland were more likely to occur in places with flat terrain and good hydrological conditions. The results could contribute to better insight into the relationships between land use changes and their driving factors and provide a scientific basis for regional management strategies and sustainable land use development.

  17. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  18. Building a framework to explore water-human interaction for sustainable agro ecosystems in US Midwest

    Science.gov (United States)

    Mishra, S. K.; Ding, D.; Rapolu, U.

    2012-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. On this context, this team has investigated connections among agriculture, policy, climate, land use/land cover, and water quality in Iowa over the past couple of years. To help explore these connections the team is developing a variety of cyber infrastructure tools that facilitate the collection, analysis and visualization of data, and the simulation of system dynamics. In an ongoing effort, the prototype system is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa in the US Midwest, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. The primary aim of this research is to understand the connections that exist among the agricultural and biofuel economy, land use/land cover change, and water quality. To help explore these connections an agent-based model (ABM) of land use change has been developed that simulates the decisions made by farmers given alternative assumptions about market forces, farmer characteristics, and water quality regulations. The SWAT model was used to simulate the impact of these decisions on the movement of sediment, nitrogen, and phosphorus across the landscape. The paper also demonstrate how through the use of this system researchers can, for example, search for scenarios that lead to desirable socio-economic outcomes as well as preserve water quantity and quality.

  19. "Meatless days" or "less but better"? Exploring strategies to adapt Western meat consumption to health and sustainability challenges.

    Science.gov (United States)

    de Boer, Joop; Schösler, Hanna; Aiking, Harry

    2014-05-01

    Adapting Western meat consumption to health and sustainability challenges requires an overall reduction of industrially produced animal proteins plus a partial replacement by plant proteins. Combining insights on food, environment, and consumers, this paper aims to explore change strategies that may help to meet these challenges, such as promoting smaller portions of meat ("less"), smaller portions using meat raised in a more sustainable manner ("less but better"), smaller portions and eating more vegetable protein ("less and more varied"), and meatless meals with or without meat substitutes ("veggie-days"). The underlying logic of the strategies was clarified by analyzing dietary choices. A nationwide sample of 1083 Dutch consumers provided information on current eating practices and potential changes. The results show that strategies to change meat eating frequencies and meat portion sizes will appeal to overlapping but partly different segments of consumers and that these strategies can be applied to address consumers in terms of their own preferences. The strategies appeared to have different strengths and weaknesses, making them complementary pathways to facilitate step-by-step changes in the amounts and the sources of protein consumed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Exploring canopy structure and function as a potential mechanism of sustain carbon sequestration in aging forests

    Science.gov (United States)

    Fotis, A. T.; Curtis, P.; Ricart, R.

    2013-12-01

    The notion that old-growth forests reach carbon neutrality has recently been challenged, but the mechanisms responsible for continued productivity have remained elusive. Increases in canopy structural complexity, defined by high horizontal and vertical variability in leaf distribution (rugosity), has been proposed as a mechanism for sustained high rates of above ground net primary production (ANPPw) in forests up to ~170 years by enhancing light use efficiency (LUE) and nitrogen use efficiency (NUE). However, a detailed understanding of how rugosity affects resource distribution within and among trees leading to greater LUE and NUE is not known. We propose that leaves in high rugosity plots receive greater photosynthetic photon flux density (PPFD) than leaves in low rugosity plots, causing shifts from shade- to sun- adapted leaves into deeper portions of the canopy, which is thought to increase the photosynthetic capacity of individuals and lead to higher carbon assimilation in forests. The goal of this research was to: 1) quantify different canopy structural characteristics using a portable canopy LiDAR (PCL) and; 2) assess how these structural characteristics affect resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits in three broadleaf species (e.g., Acer rubrum, Quercus rubra and Fagus grandifolia) and one conifer species (e.g., Pinus strobus) at different levels in the canopy in plots with similar leaf are index (LAI) but highly contrasting rugosity levels. We found that gap fraction had a strong positive correlation with rugosity. High rugosity plots had a bimodal distribution of LAI that was concentrated at the top and bottom of the canopy with an open midstory (between 10-50% of total canopy height) whereas low rugosity plots had a more even distribution of leaves. Leaf mass per area (LMA) of all broadleaved species had a strong positive correlation with cumulative gap fraction (P. strobus had a relatively

  1. Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K-Ar Geochronology for Planetary Exploration.

    Science.gov (United States)

    Cho, Yuichiro; Horiuchi, Misa; Shibasaki, Kazuo; Kameda, Shingo; Sugita, Seiji

    2017-08-01

    In situ radiogenic isotope measurements to obtain the absolute age of geologic events on planets are of great scientific value. In particular, K-Ar isochrons are useful because of their relatively high technical readiness and high accuracy. Because this isochron method involves spot-by-spot K measurements using laser-induced breakdown spectroscopy (LIBS) and simultaneous Ar measurements with mass spectrometry, LIBS measurements are conducted under a high vacuum condition in which emission intensity decreases significantly. Furthermore, using a laser power used in previous planetary missions is preferable to examine the technical feasibility of this approach. However, there have been few LIBS measurements for K under such conditions. In this study, we measured K contents in rock samples using 30 mJ and 15 mJ energy lasers under a vacuum condition (10 -3  Pa) to assess the feasibility of in situ K-Ar dating with lasers comparable to those used in NASA's Curiosity and Mars 2020 missions. We obtained various calibration curves for K using internal normalization with the oxygen line at 777 nm and continuum emission from the laser-induced plasma. Experimental results indicate that when K 2 O laser energy, with a detection limit of 88 ppm and 20% of error at 2400 ppm of K 2 O. Futhermore, the calibration curve based on the K 769 nm line intensity normalized with continuum emission yielded the best result for the 15 mJ laser, giving a detection limit of 140 ppm and 20% error at 3400 ppm K 2 O. Error assessments using obtained calibration models indicate that a 4 Ga rock with 3000 ppm K 2 O would be measured with 8% (30 mJ) and 10% (15 mJ) of precision in age when combined with mass spectrometry of 40 Ar with 10% of uncertainty. These results strongly suggest that high precision in situ isochron K-Ar dating is feasible with a laser used in previous and upcoming Mars rover missions.

  2. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    Science.gov (United States)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  3. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  4. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  5. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics

    Science.gov (United States)

    Grube, Martin; Cernava, Tomislav; Soh, Jung; Fuchs, Stephan; Aschenbrenner, Ines; Lassek, Christian; Wegner, Uwe; Becher, Dörte; Riedel, Katharina; Sensen, Christoph W; Berg, Gabriele

    2015-01-01

    Symbioses represent a frequent and successful lifestyle on earth and lichens are one of their classic examples. Recently, bacterial communities were identified as stable, specific and structurally integrated partners of the lichen symbiosis, but their role has remained largely elusive in comparison to the well-known functions of the fungal and algal partners. We have explored the metabolic potentials of the microbiome using the lung lichen Lobaria pulmonaria as the model. Metagenomic and proteomic data were comparatively assessed and visualized by Voronoi treemaps. The study was complemented with molecular, microscopic and physiological assays. We have found that more than 800 bacterial species have the ability to contribute multiple aspects to the symbiotic system, including essential functions such as (i) nutrient supply, especially nitrogen, phosphorous and sulfur, (ii) resistance against biotic stress factors (that is, pathogen defense), (iii) resistance against abiotic factors, (iv) support of photosynthesis by provision of vitamin B12, (v) fungal and algal growth support by provision of hormones, (vi) detoxification of metabolites, and (vii) degradation of older parts of the lichen thallus. Our findings showed the potential of lichen-associated bacteria to interact with the fungal as well as algal partner to support health, growth and fitness of their hosts. We developed a model of the symbiosis depicting the functional multi-player network of the participants, and argue that the strategy of functional diversification in lichens supports the longevity and persistence of lichens under extreme and changing ecological conditions. PMID:25072413

  6. Sustainable mineral resources management: from regional mineral resources exploration to spatial contamination risk assessment of mining

    Science.gov (United States)

    Jordan, Gyozo

    2009-07-01

    Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background contamination associated with mineral deposits, industrial activities and contamination in the three-dimensional subsurface space, problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites, land use conflicts and abandoned mines. These problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to show how regional mineral resources mapping has developed into the spatial contamination risk assessment of mining and how geological knowledge can be transferred to environmental assessment of mines. The paper provides a state-of-the-art review of the spatial mine inventory, hazard, impact and risk assessment and ranking methods developed by national and international efforts in Europe. It is concluded that geological knowledge on mineral resources exploration is essential and should be used for the environmental contamination assessment of mines. Also, sufficient methodological experience, knowledge and documented results are available, but harmonisation of these methods is still required for the efficient spatial environmental assessment of mine contamination.

  7. Towards Sustainable Clothing Disposition: Exploring the Consumer Choice to Use Trash as a Disposal Option

    Directory of Open Access Journals (Sweden)

    Pamela S. Norum

    2017-07-01

    Full Text Available The textile and apparel supply chain plays an integral role in providing consumers with a continuous supply of apparel that must ultimately be discarded. Viewing the consumer as a player in the process between the supply chain and the post-consumer textile waste stream, this study was designed to explore the consumer apparel disposition process with an eye towards understanding how both supply chain members and post-consumer waste entities can interact with consumers to reduce the amount of apparel discarded in landfills. Hanson’s Consumer Product Disposition Process framework was used to help guide the research. Using a qualitative research approach, semi-structured in-depth interviews were conducted with twenty-four female consumers in the United States to address three main research questions. The findings revealed several themes: use of both “compensatory” and “non-compensatory” choice heuristics in decision making; a “usable life” and the “personal nature” of garments as barriers to non-trash disposal options; and the need to “create awareness” and “provide assurance” to encourage alternative disposal modes. Implications for apparel producers and retailers, secondhand stores and textile recyclers are discussed.

  8. Precise Chemical Analyses of Planetary Surfaces

    Science.gov (United States)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  9. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  10. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Science.gov (United States)

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  11. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Science.gov (United States)

    Esper, Jaime

    2005-02-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a

  12. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  13. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  14. Exploration

    International Nuclear Information System (INIS)

    Lohrenz, J.

    1992-01-01

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  15. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  16. Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign

    Science.gov (United States)

    ten Kate, I. L.; Armstrong, R.; Bernhardt, B.; Blummers, M.; Boucher, D.; Caillibot, E.; Captain, J.; Deleuterio, G.; Farmer, J. D.; Glavin, D. P.; hide

    2010-01-01

    Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.

  17. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems

    NARCIS (Netherlands)

    Zijp, M.C.; Posthuma, L.; Wintersen, A.; Devilee, J.; Swartjes, F.A.

    2016-01-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for

  18. Teaching Social Research Methods on an International, Collaborative Environment & Sustainability Degree Programme: Exploring plagiarism, group work, and formative feedback

    OpenAIRE

    Laycock, R

    2017-01-01

    International collaboration is central to the Sustainable Development agenda given environmental challenges that span national boundaries. Education for Sustainability therefore needs to account for international/intercultural understandings, such as though international collaborative degree programmes in Higher Education. This paper evaluates a module taught on an international collaborative Bachelor’s degree programme in Environment & Sustainability taught between Nanjing Xiaozhuang Univers...

  19. Exploring Environmental Behaviours, Attitudes and Knowledge among University Students: Positioning the Concept of Sustainable Development within Malaysian Education

    Science.gov (United States)

    Idros, Sharifah Norhaidah Syed

    2006-01-01

    Movements such as the World Summit on Sustainable Development in Johannesburg (2002) together with the United Nations declaration of The Decade of Education for Sustainable Development (DESD), 2005-2014 should see the increasing need for reorientation of the role of education within the sustainability agenda. Malaysia, unlike other nations, does…

  20. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  1. Advances in Planetary Protection at the Deep Space Gateway

    Science.gov (United States)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  2. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    building Lunar or Martian bases. Factors of this category are the presence of water, 24 h communication oppor- tunity with Earth, radio noise free sky, radiation, temperature etc conditions. Since the emergence of the discipline of astrobiology, potentially habitable niches - and espe- cially the so far undiscovered de facto inhabited niches - make very high value of a given landscape. CONCLUSION As we have closer touch with planetary surfaces other than our, and as human (and manned) exploration of the Solar System will again be in the agenda, in addition to physical geographic or geologic factors, new ones: economical, cultural, aesthetic and geofactors together will determine the value of a certain landscape in a given area. Its study will be more geographic than geologic. The above listed ele- ments can be important when chosing a base or landing site on any planetary body. The landscape values can be merged in a GIS system and this way we can more ea- sity determine not only landcape types but also the optimal landing sites for future missions. References [1] Mezõsi , G.: A földrajzi táj (geographic landscape), in: Általános ter- mészerföldrajz, Budapest, 1993. pp 807-818. [2] Baker, V. R.: Extraterrestrial Geo- morphology: An Introduction. Geomorphology 37 (2001) pp 175-178. [3] Jakucs, L.: A földrajzi burok kozmogén és endogén dinamikája (Endogenic and Cosmogenic Dy- namics of the Geospheres). JATEPress, 1997. 3

  3. Bringing Terramechanics to bear on Planetary Rover Design

    Science.gov (United States)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  4. The spatial politics of place and health policy: Exploring Sustainability and Transformation Plans in the English NHS.

    Science.gov (United States)

    Hammond, Jonathan; Lorne, Colin; Coleman, Anna; Allen, Pauline; Mays, Nicholas; Dam, Rinita; Mason, Thomas; Checkland, Kath

    2017-10-01

    This paper explores how 'place' is conceptualised and mobilized in health policy and considers the implications of this. Using the on-going spatial reorganizing of the English NHS as an exemplar, we draw upon relational geographies of place for illumination. We focus on the introduction of 'Sustainability and Transformation Plans' (STPs): positioned to support improvements in care and relieve financial pressures within the health and social care system. STP implementation requires collaboration between organizations within 44 bounded territories that must reach 'local' consensus about service redesign under conditions of unprecedented financial constraint. Emphasising the continued influence of previous reorganizations, we argue that such spatialized practices elude neat containment within coherent territorial geographies. Rather than a technical process financially and spatially 'fixing' health and care systems, STPs exemplify post-politics-closing down the political dimensions of policy-making by associating 'place' with 'local' empowerment to undertake highly resource-constrained management of health systems, distancing responsibility from national political processes. Relational understandings of place thus provide value in understanding health policies and systems, and help to identify where and how STPs might experience difficulties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    Science.gov (United States)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  6. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  7. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  8. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  9. Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications

    OpenAIRE

    Hazel Si Min Lim; Araz Taeihagh

    2018-01-01

    Amidst rapid urban development, sustainable transportation solutions are required to meet the increasing demands for mobility whilst mitigating the potentially negative social, economic, and environmental impacts. This study analyses autonomous vehicles (AVs) as a potential transportation solution for smart and sustainable development. We identified privacy and cybersecurity risks of AVs as crucial to the development of smart and sustainable cities and examined the steps taken by governments ...

  10. The activities and prospect of planetary protection research in China

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Planetary protection is an important activities and responsibilities for space exploration. In Chinese manned missions, micro-organism research and protection has been developed in Shenzhou-9, Shenzhou-10 and Tiangong-2 missions. In the experiment facility of Lunar Palace-1, the micro-organism pollution and protection/control technology has been studied. In the lunar sample recovery mission and China Mars mission, the planetary protection has become an important issue. This paper introduced the research about planetary protection in China. The planetary protection activities, strategy and procedures have been suggested for future space exploration program to meet the requirement for planetary protection, such as cabin pollution isolation, pollutant detection, and so on.

  11. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  12. Pathways to achieve a set of ambitious global sustainability objectives by 2050 : Explorations using the IMAGE integrated assessment model

    NARCIS (Netherlands)

    van Vuuren, Detlef P.; Kok, Marcel; Lucas, Paul L.; Prins, Anne Gerdien; Alkemade, Rob; van den Berg, Maurits; Bouwman, Lex; van der Esch, Stefan; Jeuken, Michel; Kram, Tom; Stehfest, Elke

    2015-01-01

    In 2012, governments worldwide renewed their commitments to a more sustainable development that would eradicate poverty, halt climate change and conserve ecosystems, and initiated a process to create a long-term vision by formulating Sustainable Development Goals (SDGs). Although progress in

  13. Planetary Cartography - Activities and Current Challenges

    Science.gov (United States)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  14. Planetary mass function and planetary systems

    Science.gov (United States)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  15. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  16. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions

    NARCIS (Netherlands)

    Pigford, Ashlee Ann E.; Hickey, Gordon M.; Klerkx, Laurens

    2018-01-01

    Well-designed and supported innovation niches may facilitate transitions towards sustainable agricultural futures, which may follow different approaches and paradigms such as agroecology, local place-based food systems, vertical farming, bioeconomy, urban agriculture, and smart farming or digital

  17. The System Dynamics Model User Sustainability Explorer (SD-MUSE): a user-friendly tool for interpreting system dynamic models

    Science.gov (United States)

    System Dynamics (SD) models are useful for holistic integration of data to evaluate indirect and cumulative effects and inform decisions. Complex SD models can provide key insights into how decisions affect the three interconnected pillars of sustainability. However, the complexi...

  18. The role of guilt and pride in consumers’ self-regulation: an exploration on sustainability and ethical consumption

    OpenAIRE

    Antonetti, Paolo

    2012-01-01

    Researchers are interested in understanding the individual processes that favour consumers’ self-regulation since they can contribute to the achievement of personal and collective long-term goals in many areas. Sustainable and ethical consumption represents one such context; self-regulation can be a key driver for the solution of environmental and social sustainability challenges. In a series of three studies, this thesis investigates how guilt and pride contribute to consum...

  19. Sustainable Development for Whom and How? Exploring the Gaps between Popular Discourses and Ground Reality Using the Mexican Jatropha Biodiesel Case

    Science.gov (United States)

    Banerjee, Aparajita; Halvorsen, Kathleen E.; Eastmond-Spencer, Amarella; Sweitz, Sam R.

    2017-06-01

    In the last decade, jatropha-based bioenergy projects have gotten significant attention as a solution to various social, economic, and environmental problems. Jatropha's popularity stemmed out from different discourses, some real and some perceived, in scientific and non-scientific literature. These discourses positioned jatropha as a crop helpful in producing biodiesel and protecting sustainability by reducing greenhouse gas emissions compared to fossil fuels and increasing local, rural development by creating jobs. Consequently, many countries established national policies that incentivized the establishment of jatropha as a bioenergy feedstock crop. In this paper, we explore the case of jatropha bioenergy development in Yucatan, Mexico and argue that the popular discourse around jatropha as a sustainability and rural development tool is flawed. Analyzing our results from 70 semi-structured interviews with community members belonging to a region where plantation-scale jatropha projects were introduced, we found that these projects did not have many significant social sustainability benefits. We conclude from our case that by just adding bioenergy projects cannot help achieve social sustainability in rural areas alone. In ensuring social sustainability of bioenergy projects, future policymaking processes should have a more comprehensive understanding of the rural socioeconomic problems where such projects are promoted and use bioenergy projects as one of the many solutions to local problems rather than creating such policies based just on popular discourses.

  20. Sustainable Development for Whom and How? Exploring the Gaps between Popular Discourses and Ground Reality Using the Mexican Jatropha Biodiesel Case.

    Science.gov (United States)

    Banerjee, Aparajita; Halvorsen, Kathleen E; Eastmond-Spencer, Amarella; Sweitz, Sam R

    2017-06-01

    In the last decade, jatropha-based bioenergy projects have gotten significant attention as a solution to various social, economic, and environmental problems. Jatropha's popularity stemmed out from different discourses, some real and some perceived, in scientific and non-scientific literature. These discourses positioned jatropha as a crop helpful in producing biodiesel and protecting sustainability by reducing greenhouse gas emissions compared to fossil fuels and increasing local, rural development by creating jobs. Consequently, many countries established national policies that incentivized the establishment of jatropha as a bioenergy feedstock crop. In this paper, we explore the case of jatropha bioenergy development in Yucatan, Mexico and argue that the popular discourse around jatropha as a sustainability and rural development tool is flawed. Analyzing our results from 70 semi-structured interviews with community members belonging to a region where plantation-scale jatropha projects were introduced, we found that these projects did not have many significant social sustainability benefits. We conclude from our case that by just adding bioenergy projects cannot help achieve social sustainability in rural areas alone. In ensuring social sustainability of bioenergy projects, future policymaking processes should have a more comprehensive understanding of the rural socioeconomic problems where such projects are promoted and use bioenergy projects as one of the many solutions to local problems rather than creating such policies based just on popular discourses.

  1. Cooperation Is Not Enough—Exploring Social-Ecological Micro-Foundations for Sustainable Common-Pool Resource Use

    Science.gov (United States)

    Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese

    2016-01-01

    Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other’s knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty. PMID:27556175

  2. Cooperation Is Not Enough—Exploring Social-Ecological Micro-Foundations for Sustainable Common-Pool Resource Use [corrected].

    Directory of Open Access Journals (Sweden)

    Caroline Schill

    Full Text Available Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other's knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty.

  3. Cooperation Is Not Enough—Exploring Social-Ecological Micro-Foundations for Sustainable Common-Pool Resource Use [corrected].

    Science.gov (United States)

    Schill, Caroline; Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese

    2016-01-01

    Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other's knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty.

  4. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  5. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  6. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  7. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  8. Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications

    Directory of Open Access Journals (Sweden)

    Hazel Si Min Lim

    2018-04-01

    Full Text Available Amidst rapid urban development, sustainable transportation solutions are required to meet the increasing demands for mobility whilst mitigating the potentially negative social, economic, and environmental impacts. This study analyses autonomous vehicles (AVs as a potential transportation solution for smart and sustainable development. We identified privacy and cybersecurity risks of AVs as crucial to the development of smart and sustainable cities and examined the steps taken by governments around the world to address these risks. We highlight the literature that supports why AVs are essential for smart and sustainable development. We then identify the aspects of privacy and cybersecurity in AVs that are important for smart and sustainable development. Lastly, we review the efforts taken by federal governments in the US, the UK, China, Australia, Japan, Singapore, South Korea, Germany, France, and the EU, and by US state governments to address AV-related privacy and cybersecurity risks in-depth. Overall, the actions taken by governments to address privacy risks are mainly in the form of regulations or voluntary guidelines. To address cybersecurity risks, governments have mostly resorted to regulations that are not specific to AVs and are conducting research and fostering research collaborations with the private sector.

  9. Exploring the relationship between nature sounds, connectedness to nature, mood and willingness to buy sustainable food: A retail field experiment.

    Science.gov (United States)

    Spendrup, Sara; Hunter, Erik; Isgren, Ellinor

    2016-05-01

    Nature sounds are increasingly used by some food retailers to enhance in-store ambiance and potentially even influence sustainable food choices. An in-store, 2 × 3 between-subject full factorial experiment conducted on 627 customers over 12 days tested whether nature sound directly and indirectly influenced willingness to buy (WTB) sustainable foods. The results show that nature sounds positively and directly influence WTB organic foods in groups of customers (men) that have relatively low initial intentions to buy. Indirectly, we did not find support for the effect of nature sound on influencing mood or connectedness to nature (CtN). However, we show that information on the product's sustainability characteristics moderates the relationship between CtN and WTB in certain groups. Namely, when CtN is high, sustainability information positively moderated WTB both organic and climate friendly foods in men. Conversely, when CtN was low, men expressed lower WTB organic and climate friendly foods than identical, albeit conventionally labelled products. Consequently, our study concludes that nature sounds might be an effective, yet subtle in-store tool to use on groups of consumers who might otherwise respond negatively to more overt forms of sustainable food information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  11. Sustainable consumption

    DEFF Research Database (Denmark)

    Prothero, Andrea; Dobscha, Susan; Freund, Jim

    2011-01-01

    This essay explores sustainable consumption and considers possible roles for marketing and consumer researchers and public policy makers in addressing the many sustainability challenges that pervade our planet. Future research approaches to this interdisciplinary topic need to be comprehensive...... and systematic and will benefit from a variety of different perspectives. There are a number of opportunities for future research, and three areas are explored in detail. First, the essay considers the inconsistency between the attitudes and behaviors of consumers with respect to sustainability; next, the agenda...... is broadened to explore the role of individual citizens in society; and finally, a macro institutional approach to fostering sustainability is explored. Each of these areas is examined in detail and possible research avenues and public policy initiatives are considered within each of these separate...

  12. 'Powering up' a green Saskatchewan: exploring possible sustainable solutions for Saskatchewan's electricity market

    International Nuclear Information System (INIS)

    Blanco, R.; Faubert, I.; Steele, K.; Wohrizek, J.; Donev, J.

    2013-01-01

    The electrical market in Saskatchewan is embarking on an exciting journey to both increase its generating capacity and reduce greenhouse gas (GHG) emissions to promote a more sustainable future. SaskPower is the centralized generation and transmission crown corporation for the province and has the ability to implement the necessary actions to create a sustainable electrical system. There are many paths that Saskatchewan can take for a more sustainable future. Currently, the future of Saskatchewan's electrical market depends on results from the Boundary Dam Carbon Capture and Storage (CCS) Demonstration Plant. This project proposes electrical capacity models for SaskPower in the event their current CCS project is not a feasible option. (author)

  13. Decision Simulation Technique (DST) as a scanning tool for exploring and explicating sustainability issues in transport decision making

    DEFF Research Database (Denmark)

    Jeppesen, Sara Lise

    2009-01-01

    This paper places focus on explicit consideration of sustainability issues in transport decision making by presenting and using a developed “Decision Simulation Technique” (DST). This technique can be used by an analyst to ‘scan’ a transport planning problem with regard to what in DST terms...... is called a sustainability strategy. This scanning can serve the purpose of informing a group of decision makers before they actually have to deal with, for example, the choice among a number of alternatives that have all been formulated as being relevant. The main focus of the paper is to illustrate how...

  14. Exploring the moderating effect of social intelligence on the relationship between entrepreneurial decision-making strategy and SME sustainable performance

    Directory of Open Access Journals (Sweden)

    Muhd Yusuf Dayang Hasliza

    2018-01-01

    Full Text Available The study reveals that causation, rather than effectuation, decision-making strategy is a more significant predictor of sustainable performance of SMEs. However, social intelligence was not found to be a significant moderator of entrepreneurial decision-making-sustainable performance relationship. The study uses data from a survey among 91 technology-based SMEs (TBS in Malaysia and employs structural equation modelling techniques for data analysis. A new instrument to measure all three variables of entrepreneurial decision-making strategy, social intelligence, and venture performance is proposed based on adoption and adaptation of existing validated scales available in literature.

  15. The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA

    Science.gov (United States)

    Agui, Juan H.

    2011-01-01

    One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.

  16. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  17. Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands.

    NARCIS (Netherlands)

    Rossing, W.A.H.; Meynard, J.M.; Ittersum, van M.K.

    1997-01-01

    Sustainable land use requires development of agricultural production systems that, in addition to economic objectives, contribute to objectives in areas such as environment, health and well-being, rural scenery and nature. Since these objectives are at least partially conflicting, development of

  18. Strategic Niche Management (SNM) beyond sustainability : an exploration of key findings of SNM through the lens of ICT and privacy

    NARCIS (Netherlands)

    Schilpzand, W.F.; Raven, R.P.J.M.; Est, van Q.C.

    2011-01-01

    The governance of transitions to sustainability is gaining attention. This paper discusses the approach of strategic niche management (SNM) and contributes by asking whether this approach is also useful for other types of socially desirable change. This question is addressed through a review of six

  19. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  20. Indicators for environmental sustainability

    DEFF Research Database (Denmark)

    Dong, Yan; Hauschild, Michael Zwicky

    2017-01-01

    . In this study, we reviewed indicators applied in life cycle assessment (LCA), planetary boundary framework (PB), and Sustainable Development Goals (SDGs) developed under United Nation. The aim is to 1) identify their applications and relevant decision context; 2) Review their indicators and categorize them...

  1. Sustainable Urban Development? Exploring the Locational Attributes of LEED-ND Projects in the United States through a GIS Analysis of Light Intensity and Land Use

    Directory of Open Access Journals (Sweden)

    Russell M. Smith

    2016-06-01

    Full Text Available LEED®-ND™ is the latest attempt to develop more sustainable urban environs in the United States. The LEED®-ND™ program was created to provide a green rating system that would improve the quality of life for all people through the inclusion of sustainable development practices. To achieve this, a premium is placed on the locational attributes of proposed projects under the “Smart Location and Linkages” credit category. The purpose of this paper is to explore the locational attributes of LEED®-ND™ projects in the United States to determine if projects are being located in areas that will result in achieving the program’s stated objectives. Specifically, this paper will examine two locational variables (i.e., night-time light intensity and land use cover through the use of GIS to determine the effectiveness of these criteria.

  2. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  3. Study on the Forming Process and Exploration of Concept of Human-Water Harmonization of Sustainable Development

    Science.gov (United States)

    Liu, Fang; Si, Liqi

    2018-05-01

    According to Maslow's hierarchy of needs, the process of human development and utilization of water resources can be divided into three stages: engineering water conservancy, resource water conservancy and harmonious coexistence between man and water. These three stages reflect the transformation of the idea of human development and utilization of water resources and eventually reach the state of harmony between human being and water. At the same time, this article draws on the experiences of water management under the thinking of sustainable development in the United States, Western Europe, Northern Europe and Africa. Finally, this paper points out that we need to realize the harmonious coexistence between man and water and sustainable development of water resources in the process of development and utilization of water resources, which is the inevitable requirement of the economic and social development.

  4. An exploration of the impact of the Green-Schools programme on the development of sustainable behaviours in the home

    OpenAIRE

    O'Neill, Claire

    2015-01-01

    Concern for the sustainability of our planet is widespread. The ever-increasing economic activity and large scale industralisation our consumer society requires has increased concerns among academics, politicians, and consumers alike on natural resource depletion, waste management, dangers of toxic chemicals, and climate change. Human consumption is causing major issues for the space we inhabit. Much work has been done over the past four decades to remedy human impact on our environment at co...

  5. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.

    1982-01-01

    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  6. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.

    Science.gov (United States)

    Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte

    2017-05-01

    While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

  7. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  8. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  9. The International Planetary Data Alliance

    Science.gov (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.

    2017-12-01

    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  10. An archiving system for Planetary Mapping Data - Availability of derived information and knowledge in Planetary Science!

    Science.gov (United States)

    Nass, A.

    2017-12-01

    Since the late 1950s a huge number of planetary missions started to explore our solar system. The data resulting from this robotic exploration and remote sensing varies in data type, resolution and target. After data preprocessing, and referencing, the released data are available for the community on different portals and archiving systems, e.g. PDS or PSA. One major usage for these data is mapping, i.e. the extraction and filtering of information by combining and visualizing different kind of base data. Mapping itself is conducted either for mission planning (e.g. identification of landing site) or fundamental research (e.g. reconstruction of surface). The mapping results for mission planning are directly managed within the mission teams. The derived data for fundamental research - also describable as maps, diagrams, or analysis results - are mainly project-based and exclusively available in scientific papers. Within the last year, first steps have been taken to ensure a sustainable use of these derived data by finding an archiving system comparable to the data portals, i.e. reusable, well-documented, and sustainable. For the implementation three tasks are essential. Two tasks have been treated in the past 1. Comparability and interoperability has been made possible by standardized recommendations for visual, textual, and structural description of mapping data. 2. Interoperability between users, information- and graphic systems is possible by templates and guidelines for digital GIS-based mapping. These two steps are adapted e.g. within recent mapping projects for the Dawn mission. The third task hasn`t been implemented thus far: Establishing an easily detectable and accessible platform that holds already acquired information and published mapping results for future investigations or mapping projects. An archive like this would support the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within

  11. Joint exploration and development: A self-salvation road to sustainable development of unconventional oil and gas resources

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2017-11-01

    Full Text Available Commercial production of unconventional oil and gas resources will not be easily achieved without large-scale engineering measures, let alone the additional operation cost, increasingly stricter requirement for safety and environment, fluctuating low oil and gas prices, etc., defeating the confidence of those investors. Therefore, unconventional measures are urgently needed to guide the exploration and exploitation of unconventional oil and gas resources. Thus, we put forward the concept of joint exploration and development by integrating research methodologies and operating techniques for a variety of oil and gas resources to simultaneously achieve analysis, construction, gathering and exploitation of multiple hydrocarbon sources. In this way, the annoying interference between the produced mixture of hydrocarbon flow resulting in the reduction of single-well flowrate will be possibly turned into a dynamic mutual force to enhance the well's flowrate. We also point out that the inevitability of joint exploration and development is determined by the occurrence conditions of oil and gas resources, its feasibility relies on the advancement of technologies, and its arduous and long-term nature is attributed to the current energy market and environment. In spite of various problems and difficulties, we believe that joint exploration and development will be a feasible option to achieve both cost reduction and production & benefit enhancement, boost investors' confidence, raise energy comprehensive utilization, and enhance energy supply efficiency. In conclusion, the advantages of joint exploration and development outweigh its disadvantages for both countries and enterprises.

  12. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  13. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  14. Exploring the Dynamic Mechanisms of Farmland Abandonment Based on a Spatially Explicit Economic Model for Environmental Sustainability: A Case Study in Jiangxi Province, China

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-03-01

    Full Text Available Farmland abandonment has important impacts on biodiversity and ecosystem recovery, as well as food security and rural sustainable development. Due to rapid urbanization and industrialization, farmland abandonment has become an increasingly important problem in many countries, particularly in China. To promote sustainable land-use management and environmental sustainability, it is important to understand the socioeconomic causes and spatial patterns of farmland abandonment. In this study, we explored the dynamic mechanisms of farmland abandonment in Jiangxi province of China using a spatially explicit economical model. The results show that the variables associated with the agricultural products yield are significantly correlated with farmland abandonment. The increasing opportunity cost of farming labor is the main factor in farmland abandonment in conjunction with a rural labor shortage due to rural-to-urban population migration and regional industrialization. Farmlands are more likely to be abandoned in areas located far from the villages and towns due to higher transportation costs. Additionally, farmers with more land but lower net income are more likely to abandon poor-quality farmland. Our results support the hypothesis that farmland abandonment takes place in locations in which the costs of cultivation are high and the potential crop yield is low. In addition, our study also demonstrates that a spatially explicit economic model is necessary to distinguish between the main driving forces of farmland abandonment. Policy implications are also provided for potential future policy decisions.

  15. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  16. The European standard on planetary protection requirements.

    Science.gov (United States)

    Debus, André

    2006-01-01

    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  17. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  18. Topics in planetary plasmaspheres

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    Contributions to the understanding of two distinct kinds of planetary plasmaspheres: namely the earth-type characterized by an ionospheric source and a convection limited radial extent, and the Jupiter-type characterized by a satellite source and a radial extent determined by flux tube interchange motions. In both cases the central question is the geometry of the plasma distribution in the magnetosphere as it is determined by the appropriate production and loss mechanisms. The contributions contained herein concern the explication and clarification of these production and loss mechanisms

  19. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  20. The diversity of planetary system architectures: contrasting theory with observations

    Science.gov (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  1. The UNCCD Science-Policy Interface (SPI) - Exploring the sustainable land management nexus among the Rio Conventions

    Science.gov (United States)

    Safriel, Uriel; Akhtar-Schuster, Mariam; Abraham, Elena Maria; Cowie, Annette; Daradur, Mihail; de Vente, Joris; Dema Dorji, Karma; Kust, German; Metternicht, Graciela; Orr, Barron; Pietragalla, Vanina

    2015-04-01

    At its 11th meeting in Windhoek/Namibia, in September 2013, the United Nations Convention to Combat Desertification (UNCCD) Conference of the Parties (COP) decided to establish a Science-Policy Interface (SPI)* (decision 23/COP.11). The goal of the SPI is to facilitate a two-way dialogue between scientists and policy makers in order to ensure the delivery of policy-relevant information, knowledge and advice on desertification/land degradation and drought (DLDD). The SPI established several initial objectives, including working with the scientific community to bring to the UNCCD and the other Rio conventions (climate change and biodiversity) the scientific evidence for the contribution of sustainable land use and management to climate change adaptation/mitigation and to safeguarding biodiversity and ecosystem services. *For more on the SPI see: http://www.unccd.int/en/programmes/Science/International-Scientific-Advice/Pages/SPI.aspx?HighlightID=282

  2. Secrets of long life: cross-cultural explorations in sustainably enhancing vitality and promoting longevity via elders' practice wisdom.

    Science.gov (United States)

    Pesek, Todd; Reminick, Ronald; Nair, Murali

    2010-01-01

    In searching for different patterns of practice, lifestyle, and environment supportive of optimal health, we look to our elders around the world, who in the wisdom that has sustained them, we learn from with careful attention. Thirty-seven elders who live by their traditions participated in the present study. They assisted in the refinement of the methodology and collections and preparation of these data. These participants are well-respected, representative elders and traditional healers of their regions. These data, from study sites of the Eastern Afromontane and Albertine Rift region of Ethiopia, Africa; the Maya Mountains region of Belize, Central America; the Western Ghats region of India; and the Appalachian Mountains region of the United States, were grouped into three major categories: (1) philosophy, attitudes, and outlook, (2) lifestyle practices, and (3) dietary and nutritional practices. These elders demonstrate a relatively comprehensive but simple set of practices that can enhance our vitality and promote longevity sustainably. In essence, these practices, or practice wisdom, of our longest living elders, promote propagation of healthful lifestyles by following traditional ways and taking care of body, mind, spirit and our environment. Further field research among a larger cohort is required to fully generalize the findings of this study, but much of it is consistent with what we already know should be done. These data begin illustration of practice wisdom for implementation and serve to engage our universities, our hospitals, our industries, and our students, who we must position toward social change. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  4. Workshop on Advanced Technologies for Planetary Instruments, part 1

    International Nuclear Information System (INIS)

    Appleby, J.F.

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DOD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

  5. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  6. Sustainable Cities

    DEFF Research Database (Denmark)

    Georg, Susse; Garza de Linde, Gabriela Lucía

    Judging from the number of communities and cities striving or claiming to be sustainable and how often eco-development is invoked as the means for urban regeneration, it appears that sustainable and eco-development have become “the leading paradigm within urban development” (Whitehead 2003....../assessment tool. The context for our study is urban regeneration in one Danish city, which had been suffering from industrial decline and which is currently investing in establishing a “sustainable city”. Based on this case study we explore how the insights and inspiration evoked in working with the tool...

  7. An exploration of the interface between national security and sustainable democracy in Nigeria:the way forward

    Directory of Open Access Journals (Sweden)

    Okunlade Isaac Adejumo

    2016-09-01

    Full Text Available The maintenance of internal and external security of the state is essentially the primary duty of the government. In Nigeria, this has become imperative in the face of the myriad of threats to her national security from within and outside. Nigeria has been bedeviled by the problem of insecurity caused by armed robbery, political violence, ethno-religious conflicts, Fulani herdsmen, Boko Haram insurgents and the Niger Delta insurgency. For a country trying to nurture her evolving democracy, security threat in whatever form is antithetic to sustainable democracy. This paper therefore, examines the elements of national security, which include but not limited to military, political, economic, and environmental security. It concludes that the myriad of security threats facing the country requires more than military force to resolve in order to achieve true national security. The paper recommended several measures to be put in place by the government to deemphasize its absolute reliance on the military for national security; ranging from the use of other elements of national power, such as diplomacy, negotiation and law enforcement, social and economic equity to environmental justice.

  8. Proposing a sequential comparative analysis for assessing multilateral health agency transformation and sustainable capacity: exploring the advantages of institutional theory.

    Science.gov (United States)

    Gómez, Eduardo J

    2014-05-20

    This article proposes an approach to comparing and assessing the adaptive capacity of multilateral health agencies in meeting country and individual healthcare needs. Most studies comparing multilateral health agencies have failed to clearly propose a method for conducting agency comparisons. This study conducted a qualitative case study methodological approach, such that secondary and primary case study literature was used to conduct case study comparisons of multilateral health agencies. Through the proposed Sequential Comparative Analysis (SCA), the author found a more effective way to justify the selection of cases, compare and assess organizational transformative capacity, and to learn from agency success in policy sustainability processes. To more affectively understand and explain why some multilateral health agencies are more capable of adapting to country and individual healthcare needs, SCA provides a methodological approach that may help to better understand why these agencies are so different and what we can learn from successful reform processes. As funding challenges continue to hamper these agencies' adaptive capacity, learning from each other will become increasingly important.

  9. Transnational linkages and sustainable transitions in emerging countries: Exploring the role of donor interventions in niche development

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan

    2013-01-01

    Recent studies have found that further development of the MLP is needed to conceptualise and empirically assess the role of transnational linkages in niche development. This paper explores the factors that may explain the effect of twenty years of donor interventions as one form of transnational...... linkage in promoting the development of a palm oil biomass waste-to-energy niche in Malaysia. The paper contributes to the existing literature by a conceptual and empirical examination of this research question. With regard to its empirical findings the paper concludes: (i) that advice on energy policy...

  10. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  11. Ecosystem approach to fisheries: Exploring environmental and trophic effects on Maximum Sustainable Yield (MSY reference point estimates.

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    Full Text Available We present a comprehensive analysis of estimation of fisheries Maximum Sustainable Yield (MSY reference points using an ecosystem model built for Mille Lacs Lake, the second largest lake within Minnesota, USA. Data from single-species modelling output, extensive annual sampling for species abundances, annual catch-survey, stomach-content analysis for predatory-prey interactions, and expert opinions were brought together within the framework of an Ecopath with Ecosim (EwE ecosystem model. An increase in the lake water temperature was observed in the last few decades; therefore, we also incorporated a temperature forcing function in the EwE model to capture the influences of changing temperature on the species composition and food web. The EwE model was fitted to abundance and catch time-series for the period 1985 to 2006. Using the ecosystem model, we estimated reference points for most of the fished species in the lake at single-species as well as ecosystem levels with and without considering the influence of temperature change; therefore, our analysis investigated the trophic and temperature effects on the reference points. The paper concludes that reference points such as MSY are not stationary, but change when (1 environmental conditions alter species productivity and (2 fishing on predators alters the compensatory response of their prey. Thus, it is necessary for the management to re-estimate or re-evaluate the reference points when changes in environmental conditions and/or major shifts in species abundance or community structure are observed.

  12. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the

  13. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  14. Extrasolar Planetary Imaging Coronagraph

    Science.gov (United States)

    Clampin, M.

    2007-06-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F type stars which cannot be found with RV techniques, and observe the inner spatial structure and colors of debris disks. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument.

  15. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  16. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  17. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    Science.gov (United States)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  18. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    International Nuclear Information System (INIS)

    Feng, Li-Chao; Xie, Ning; Shao, Wen-Zhu; Zhen, Liang; Ivanov, V.V.

    2014-01-01

    Highlights: • Cu 2 O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu 2 O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO 2 and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu 2 O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu 2 O/Cu was investigated in Na 3 AlF 6 –CaF 2 –Al 2 O 3 electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu 2 O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling content of Cu phase. The calculated corrosion rate

  19. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  20. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  1. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  2. A decision model for planetary missions

    Science.gov (United States)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  3. Sustainable Consumption

    DEFF Research Database (Denmark)

    Røpke, Inge

    2015-01-01

    The intention of this chapter is to explore the role of consumption and consumers in relation to sustainability transition processes and wider systemic transformations. In contrast to the individualistic focus in much research on sustainable consumption, the embeddedness of consumption activities...... in wider social, economic and technological frameworks is emphasised. In particular, the chapter is inspired by practice theory and transition theory. First, various trends in consumption are outlined to highlight some of the challenges for sustainability transitions. Then, it is discussed how consumption...... patterns are shaped over time and what should be considered in sustainability strategies. While discussions on consumption often take their point of departure in the perspective of the individual and then zoom to the wider context, the present approach is the opposite. The outline starts with the basic...

  4. Sustainable Entrepreneurship

    DEFF Research Database (Denmark)

    Schaltegger, Stefan; Beckmann, Markus; Hockerts, Kai

    2018-01-01

    . We also explore the transformation path of the case company, which starts with simple use and then moves to the feedback to core business pattern. By drawing on insights from lead user theory in innovation management and sustainable entrepreneurship, we ground the new concept in extant literature...

  5. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  6. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  7. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  8. Internalizing Economic Externalities on the Macroeconomic Stage. Exploring and Expanding Paul Hawken’s The Ecology of Commerce: A Declaration of Sustainability for Globalized Solutions

    Directory of Open Access Journals (Sweden)

    Jay Cooper Beeks

    2018-01-01

    Full Text Available The problem of finding the method and means of internalizing the costs of externalities has stumped economists since Arthur Pigou first presented this issue in 1920.  Since Pigou, several mainstream economists and alternative economists have attempted to further his ideas because of the promise of curbing consumer behaviors and thereby reducing detrimental activities such as the production of greenhouse gases. The current call for a carbon tax to stem the causes of Global Climate Change is just one example of a present day method of internalizing externalities.  Of all of the modern day proponents for a carbon tax and other forms of “green fees”, however, Paul Hawken is arguably the most ardent supporter, believing this to be the most effective method of stemming many of humankind’s pollution activities.  His best selling book The Ecology of Commerce, A Declaration of Sustainability is examined here further, in order to explore Hawken’s arguments for these kinds of microeconomic solutions and to expand on these ideas to include macroeconomic solutions as well. As Hawken and others have noted, global climate change presents a size issue that must be countered using global forces in addition to microeconomic solutions such as with green fees.  This paper explores how global problems such as global climate change can be countered with the aid of international organizations for the benefit of global citizens.

  9. Participatory Systems Modeling to Explore Sustainable Solutions: Triple-Value Simulation Modeling Cases Tackle Nutrient and Watershed Management from a Socio-Ecological Systems (ses) Perspective

    Science.gov (United States)

    Buchholtz ten Brink, M. R.; Heineman, K.; Foley, G. J.; Ruder, E.; Tanners, N.; Bassi, A.; Fiksel, J.

    2016-12-01

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. The US EPA is applying sustainability science to address these needs. Triple Value (3V) Scoping and Modeling projects bring a systems approach to understand complex environmental problems, incorporate local knowledge, and allow decision-makers to explore policy scenarios. This leads to better understanding of feedbacks and outcomes to both human and environmental systems.The Suffolk County, NY (eastern Long Island) 3V Case uses SES interconnections to explore possible policy options and scenarios for intervention to mitigate the effects of excess nitrogen (N) loading to ground, surface, and estuarine waters. Many of the environmental impacts of N pollution have adverse effects on social and economic well-being and productivity. Key are loss of enjoyment and recreational use of local beach environments and loss of income and revenues from tourism and local fisheries. Stakeholders generated this Problem Statement: Suffolk County is experiencing widespread degradation to groundwater and the coastal marine environment caused by excess nitrogen. How can local stakeholders and decision makers in Suffolk County arrest and reverse this degradation, restore conditions to support a healthy thriving ecosystem, strengthen the County's resilience to emerging and expected environmental threats from global climate change, support and promote economic growth, attract a vibrant and sustainable workforce, and maintain and enhance quality of life and affordability for all County residents? They then built a Causal Loop Diagram of indicators and relationships that reflect these issues and identified a set of alternative policy interventions to address them. The project team conducted an extensive review of

  10. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    Science.gov (United States)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  11. Sustaining Petroleum Exploration and Development in Mature Basins: Production Sharing Contracts and Financing of Joint Venture Oil and Gas Projects

    International Nuclear Information System (INIS)

    Chukwueke, T.

    2002-01-01

    NNPC is not always secure, adequate funding for the joint venture has sometimes run into difficulties. Similarly, private indigenous companies, run into similar budget difficulties because of the relative high investment cash required by these ventures. Innovative ideas, usually involving forms of disproportionate financing, have to be found to overcome the funding difficulties. These have given rise to various types of 'carry' arrangements in which the 'carrying' party is rewarded in kind. In less mature provinces where technical (exploration and production) risks are very high, the business employs expensive and cutting edge technology, the burden for the development of such assets is borne mostly by IOCs through what is now generally referred to as Production Sharing Agreement (PSA). Under a PSA, the IOC operates the venture as a contractor for the state and recovers its investments through a share of the production. PSA has become an acceptable arrangement for financing oil and gas projects outside the Western World. It is especially suited for operations in new areas of the developing world characterised by weak economies and non-convertible currencies. However, each developing country has adapted the PSA to suit its local environment and conditions. We now have a variety of PSAs ranging from the classical PSA developed in Indonesia and Russia with traditional cost oil and profit oil recovery mechanism to the net-production share mechanism, which case an additional element of tax oil become necessary to ensure that the revenue flow to the government is maintained at all times. However, this arrangement can become a major challenge for the partners

  12. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  13. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  14. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  15. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  16. Pristine Igneous Rocks and the Genesis of Early Planetary Crusts

    Science.gov (United States)

    Warren, Paul H.; Lindstrom, David (Technical Monitor)

    2002-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology.

  17. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  18. Risk to civilization: A planetary science perspective

    International Nuclear Information System (INIS)

    Chapman, C.R.; Morrison, D.

    1988-01-01

    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature

  19. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    Science.gov (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  20. Continuing to Build a Community Consensus on the Future of Human Space Flight: Report of the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV)

    Science.gov (United States)

    Thronson, Harley A.; Baker, John; Beaty, David; Carberry, Chris; Craig, Mark; Davis, Richard M.; Drake, Bret G.; Cassady, Joseph; Hays, Lindsay; Hoffman, Stephen J.; hide

    2016-01-01

    To continue to build broadly based consensus on the future of human space exploration, the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV), organized by Explore Mars, Inc. and the American Astronautical Society, was held at the Double Tree Inn in Monrovia, CA., December 68, 2016. Approximately 60 invited professionals from the industrial and commercial sectors, academia, and NASA, along with international colleagues, participated in the workshop. These individuals were chosen to be representative of the breadth of interests in astronaut and robotic Mars exploration.

  1. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  2. Planetary Missions of the 20th Century*

    Science.gov (United States)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  3. Planetary protection policy overview and application to future missions

    Science.gov (United States)

    Rummel, John D.

    1989-01-01

    The current status of planetary protection (quarantine) policy within NASA is discussed, together with the issues of planetary protection and back-contamination as related to future missions. The policy adopted by COSPAR in 1984 (and recently reaffirmed by the NASA Administrator) for application to all unmanned missions to other solar system bodies and all manned and unmanned sample return missions is examined. Special attention is given to the implementation of the policy and to the specific quarantine-related constraints on spacecraft involved in solar system exploration that depend on the nature of the mission and the identity of the target body.

  4. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  5. Selecting the sharpest tools to explore the food-feed-fuel debate: Sustainability assessment of family farmers producing food, feed and fuel in Brazil

    NARCIS (Netherlands)

    Florin, M.J.; Ittersum, van M.K.; Ven, van de G.W.J.

    2012-01-01

    Continuing interest in sustainable biofuel production is linked with sustainable farming and begs for insights from farming systems research on sustainability assessment and the role of family farms. The aims of this work were two-fold. First, to present a tools and methods selection framework

  6. Planetary Data Systems (PDS) Imaging Node Atlas II

    Science.gov (United States)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  7. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  8. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  9. Sustainable Learning Organizations

    Science.gov (United States)

    Velazquez, Luis E.; Esquer, Javier; Munguia, Nora E.; Moure-Eraso, Rafael

    2011-01-01

    Purpose: The purpose of this paper is to debate how companies may better become a sustainable learning organization by offering the most used and insightful concepts of sustainability. Design/methodology/approach: Through literature review, learning organization and sustainability perspectives are explored and compared. Findings: Learning…

  10. Exploring the Strengths and Limits of Strong and Weak Sustainability Indicators: A Case Study of the Assessment of China’s Megacities with EF and GPI

    Directory of Open Access Journals (Sweden)

    Lu Huang

    2018-01-01

    Full Text Available The perspective of strong/weak sustainability has a great impact on sustainability assessment. In this study, two most widely used indices, Ecological Footprint (EF and Genuine Progress Indicator (GPI for strong and weak sustainability assessment, were employed to evaluate the sustainability of China’s ten megacities between 1978 and 2015. The results showed that the ecological footprint had been enlarged in the past twenty years; while the genuine economic welfare started to increase since 2005. The cities of Xi’an, Chengdu, Chongqing, and Shanghai met the threshold of below 2.5 global hectares for EF/capita, and over 3000 dollars/capita (in 2010 US$ for GPI/capita. By analyzing and comparing the characteristics, the processes and results, and the complementary features of evaluation methods of EF and GPI, the research suggested that: (1 Strong and weak sustainability indicators, with their own pros/cons in sustainability assessment, should be used carefully; (2 Weak sustainability indicators could be analyzed from the perspective of strong sustainability; (3 Strong sustainability indicators need to be developed urgently. The results in this study could guide the selection of sustainability indicators, and help interpret the results of sustainability assessment.

  11. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  12. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    Science.gov (United States)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  13. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  14. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  15. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  16. Drivers to and barriers against sustainable consumption : exploring the role of consumer anticipated emotions in the context of consumer adoption of alternative fuel vehicles

    OpenAIRE

    Rezvani, Zeinab

    2017-01-01

    With the increasing environmental problems, sustainable consumption is an important consumer behavior. Therefore, it is important to investigate further the significant drivers to and barriers against sustainable consumption, in order to increase the share of sustainable consumption and understanding of consumer behavior. This dissertation identifies two gaps. The first is in understanding consumer positive and negative anticipated emotions as an important factor influencing high-involvement ...

  17. The problem of scale in planetary geomorphology

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  18. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  19. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  20. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  1. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  2. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  3. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  4. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  5. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  6. The impact of sustainability criteria on the costs and potentials of bioenergy production. An exploration of the impact of the implementation of sustainability criteria on the costs and potential of bioenergy production, applied for case studies in Brazil and Ukraine

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2005-02-01

    The goal of this study is to make a first attempt to analyse the impact on the potential (quantity) and the costs (per unit) of bioenergy that the compliance with various sustainability criteria brings along. The nature of this work is exploratory. Because of the broad set of issues covered very little work has been published on which we could build. Ukraine and Brazil are used as case studies, because both regions are identified as promising bioenergy producers. This study is part of the FAIR Biotrade project, which is aimed to identify and quantify the impact of sustainability criteria on the potential of bioenergy. Previous work includes an identification of sustainability criteria relevant for bioenergy, an assessment of the environmental and economic costs of long distance biotrade and an assessment of bioenergy production potentials in 2050 in various world regions. In section 2 the approach is presented which is used to select and quantify the impact of sustainability criteria on bioenergy production. In section 3 the selection of the various sustainability criteria is described in detail, followed by a detailed description of how the various socials, ecological and economical sustainability criteria are operationalised. In section 4 (intermediate) results are presented for each sustainability criterium. In section 5 final results are presented, followed by a discussion and by conclusions (section 6)

  7. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  8. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  9. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  10. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  11. Sustainable diets within sustainable food systems.

    Science.gov (United States)

    Meybeck, Alexandre; Gitz, Vincent

    2017-02-01

    Sustainable diets and sustainable food systems are increasingly explored by diverse scientific disciplines. They are also recognised by the international community and called upon to orient action towards the eradication of hunger and malnutrition and the fulfilment of sustainable development goals. The aim of the present paper is to briefly consider some of the links between these two notions in order to facilitate the operationalisation of the concept of sustainable diet. The concept of sustainable diet was defined in 2010 combining two totally different perspectives: a nutrition perspective, focused on individuals, and a global sustainability perspective, in all its dimensions: environmental, economic and social. The nutrition perspective can be easily related to health outcomes. The global sustainability perspective is more difficult to analyse directly. We propose that it be measured as the contribution of a diet to the sustainability of food systems. Such an approach, covering the three dimensions of sustainability, enables identification of interactions and interrelations between food systems and diets. It provides opportunities to find levers of change towards sustainability. Diets are both the results and the drivers of food systems. The drivers of change for those variously involved, consumers and private individuals, are different, and can be triggered by different dimensions (heath, environment, social and cultural). Combining different dimensions and reasons for change can help facilitate the transition to sustainable diets, recognising the food system's specificities. The adoption of sustainable diets can be facilitated and enabled by food systems, and by appropriate policies and incentives.

  12. The System Dynamics Model User Sustainability Explorer (SD-MUSE) user interface: a user-friendly tool for interpreting system dynamic models

    Science.gov (United States)

    Sustainability-based decision making is a challenging process that requires balancing trade-offs among social, economic, and environmental components. System Dynamic (SD) models can be useful tools to inform sustainability-based decision making because they provide a holistic co...

  13. How Pre-Service Teachers Navigate Trade-Offs of Food Systems across Time Scales: A Lens for Exploring Understandings of Sustainability

    Science.gov (United States)

    Yamashita, Lina; Hayes, Kathryn; Trexler, Cary J.

    2017-01-01

    In response to the increasing recognition of the need for sustainable food systems, research on students' and educators' knowledge of food systems and sustainability more broadly has grown but has generally focused on what people "fail" to understand. Moving away from this deficit approach, the present study used semi-structured…

  14. ESTEC/Geovusie/ILEWG planetary student design workshop: a teacher training perspective

    Science.gov (United States)

    Preusterink, Jolanda; Foing, Bernard H.; Kaskes, Pim

    of this setting was inspirational and motivating. A good method with vision to modernize school education and bring innovation to educators: they are the key promoters and facilitators for change in the culture of education. Tutors and mentors are very important to pave the way with more modern interactive learning, including: 1. Social Media 2. Online Learning 3. Creator Society 4. Data-driven learning 5. Virtual Assistance The great importance of emerging technologies and their potential impact on and use in teaching, learning, and creative inquiry in pre-college education environments offer good prospects. The International Lunar Exploration Working Group (ILEWG) has given support to emphasize their vision, goal to "international cooperation towards a world strategy for the exploration and utilization of the Moon” by organizing and facilitating students, teachers, schools and universities with relevant material, ready to use in the classroom and inform the greater audience. This underlines the vision of the importance and responsibility to “draw in” education for primary, secondary and higher education on a more regular base and to implant space exploration on its widest scale and on a more sustainable way in the future. Developing and building a stronger network is crucial to gain technical personal for future Moon missions, samples return and research on other planets, moons or asteroids. This workshop helped to give more outreach about current space projects and will have a follow-up. The international and cooperative character was an innovative experience with enriching information and great promising students for more science and future space exploration. Acknowledgements: we thank the volunteer organiser students from VU GeoVUsie, the participants and the tutors. A video of highlights is available on " 2. Planetary Design student workshop organised by VU Amsterdam GeoVusie/ESTEC/ILEWG" http://www.youtube.com/watch?v=NJxvHKcNeKo

  15. Planetary nebulae and their central stars

    International Nuclear Information System (INIS)

    Kaler, J.B.

    1985-01-01

    The present review is devoted primarily to galactic planetaries, while Ford (1983) provides an extensive review of the rapidly expanding study of the extragalactic type. Nebular parameters and observations are discussed, taking into account discovery, distance, motion, structure, spectrophotometry, and nebular properties. It is pointed out that post-AGB, or prewhite dwarf, stars are not as well known as their nebular progeny. Of the fundamental data regarding the central stars, the magnitudes are particularly important. They are used for both temperature and luminosity determinations. Attention is also given to temperatures and luminosities, and the characteristics of the spectra. Questions concerning the evolutionary process are also explored and aspects of observed distribution and evolution are considered. 259 references

  16. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    Science.gov (United States)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  17. An enhanced Planetary Radar Operating Centre (PROC)

    Science.gov (United States)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  18. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  19. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  20. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    This program is a Microsoft Access program that performed statistical analysis of the colony counts from assays performed on the Mars Science Laboratory (MSL) spacecraft to determine the bioburden density, 3-sigma biodensity, and the total bioburdens required for the MSL prelaunch reports. It also contains numerous tools that report the data in various ways to simplify the reports required. The program performs all the calculations directly in the MS Access program. Prior to this development, the data was exported to large Excel files that had to be cut and pasted to provide the desired results. The program contains a main menu and a number of submenus. Analyses can be performed by using either all the assays, or only the accountable assays that will be used in the final analysis. There are three options on the first menu: either calculate using (1) the old MER (Mars Exploration Rover) statistics, (2) the MSL statistics for all the assays, or This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software

  1. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  2. The four hundred years of planetary science since Galileo and Kepler.

    Science.gov (United States)

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  3. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  4. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  5. Planetary Data Archiving Activities of ISRO

    Science.gov (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    composition & mineralogy of mars, Mars Exospheric Neutral Composition Analyser (MENCA) to study the composition and density of the Martian neutral atmosphere and Lyman Alpha Photometer (LAP) to investigate the loss process of water in Martian atmosphere, towards fulfilling the mission objectives. Active archive created in PDS for some of the instrument data during the earth phase of the mission is being analysed by the PIs. The Mars science data from the onboard instruments is expected during September 2014. The next planetary mission planned to moon is Chandrayaan-2 which consists of an orbiter having five instruments (http://www.isro.org) viz, (i) Imaging IR Spectrometer (IIRS) for mineral mapping, (ii) TMC-2 for topographic mapping, (iii) MiniSAR to detect water ice in the permanently shadowed regions on the Lunar poles, up to a depth of a few meters, (iv) Large Area Soft X-ray spectrometer (CLASS) & Solar X-ray Monitor (XSM) for mapping the major elements present on the lunar surface and (v)Neutral Mass Spectrometer (ChACE2) to carry out a detailed study of the lunar exosphere towards moon exploration; a rover for some specific experiments and a Lander for technology experiment and demonstration. The data is planned to be archived in PDS standards.

  6. INPOP17a planetary ephemerides

    Science.gov (United States)

    Viswanathan, V.; Fienga, A.; Gastineau, M.; Laskar, J.

    2017-08-01

    Based on the use of Cassini radio tracking data and the introduction of LLR data obtained at 1064 nm, a new planetary ephemerides INPOP17a was built including improvements for the planet orbits as well as for Moon ephemerides. Besides new asteroid masses, new parameters related to the inner structure of the Moon were obtained and presented here. Comparisons with values found in the literature are also discussed. LLR Residuals reach the centimeter level for the new INPOP17a ephemerides.

  7. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  8. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  9. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  10. Planetary vistas the landscapes of other worlds

    CERN Document Server

    Murdin, Paul

    2015-01-01

    The word “landscape” can mean picture as well as natural scenery. Recent advances in space exploration imaging have allowed us to now have landscapes never before possible, and this book collects some of the greatest views and vistas of Mars, Venus’s Titan, Io and more in their full glory, with background information to put into context the foreign landforms of our Solar System. Here, literally, are 'other-worldly' visions of strange new scenes, all captured by the latest technology by landing and roving vehicles or by very low-flying spacecraft.   There is more than scientific interest in these views. They are also aesthetically beautiful and intriguing, and Dr. Murdin in a final chapter compares them to terrestrial landscapes in fine art.   Planetary Vistas is a science book and a travel book across the planets and moons of the Solar System for armchair space explorers who want to be amazed and informed. This book shows what future space explorers will experience, because these are the landscapes th...

  11. Planet gaps in the dust layer of 3D proto-planetary disks: Observability with ALMA

    OpenAIRE

    Gonzalez, Jean-François; Pinte, Christophe; Maddison, Sarah T.; Ménard, François

    2013-01-01

    2 pages, 2 figures, to appear in the Proceedings of IAU Symp. 299: Exploring the Formation and Evolution of Planetary Systems (Victoria, Canada); International audience; Among the numerous known extrasolar planets, only a handful have been imaged directly so far, at large orbital radii and in rather evolved systems. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the capacity to observe these wide planetary systems at a younger age, thus bringing a better understanding of th...

  12. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  13. “Goodness itself must change” – Anthroponomy in an age of socially-caused, planetary environmental change

    Directory of Open Access Journals (Sweden)

    Bendik-Keymer Jeremy David

    2016-12-01

    Full Text Available Given the reality of socially-caused, planetary-scaled, environmental change, how – if at all – should our ethical concepts change? It has been a hallmark of environmental literature in recent years to insist that they should or even must. It will be argued that, yes, our ethical concepts should change by exploring the changes needed for the core ethical concept of goodness. Goodness, it will be argued, must change to reflect a change in priority from personal intentions to the right relation between an agent and the collective to which he/she belongs. This relation, which is called herein the civic relation, centers on taking responsibility for the structure which produces unintentional, aggregate effects at the level of planetary ecology. Examples include a fossil fuel-based infrastructure, isolationist nationalism that undercuts international climate agreements to decarbonize energy, and the lack of a political forum to respect the rights of future generations. More generally, goodness according to the civic relation must express an anthroponomic orientation to life – a sustained, life-long attempt to build the practice of the collective self-regulation of humankind as a whole. Of the many consequences of this meta-ethical change in goodness, one is that it addresses the banality of evil today.

  14. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  15. Health and Sustainability

    DEFF Research Database (Denmark)

    Land, Birgit; Pedersen, Kirsten Bransholm; Kjærgård, Bente

    2014-01-01

    In the present article, we explore how sustainable development strategies and health promotion strategies can be bridged. The concept of the ‘duality of structure’ is taken as our starting point for understanding the linkages between health promotion and sustainable development, and for uncovering...... the structural properties or conditions which either enable or constrain sustainable public health initiatives. We argue that strategies towards health promotion are not sufficiently integrated with strategies for sustainable development, and thus political strategies aimed at solving health problems...... or sustainability problems may cause new, undesired and unforeseen environmental or health problems. First, we explore how the relation between health and sustainability is articulated in international policy documents. Next, we develop a model for understanding the relation between health promotion...

  16. Sustainable food consumption. Product choice or curtailment?

    NARCIS (Netherlands)

    Verain, M.C.D.; Dagevos, H.; Antonides, G.

    2015-01-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors

  17. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  18. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  19. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  20. Ups and downs in planetary science

    Science.gov (United States)

    Shoemaker, Carolyn S.

    1999-01-01

    The field of planetary science as it developed during the lifetimes of Gene and Carolyn Shoemaker has sustained a period of exciting growth. Surveying the skies for planet-crossing asteroids and comets and studying the results of their impact upon the planets, especially the Earth, was for Gene and Carolyn an intense and satisfying quest for knowledge. It all started when Gene envisioned man going to the Moon, especially himself. After that, one thing led to another: the study of nuclear craters and a comparison with Meteor Crater, Arizona; the Apollo project and a succession of unmanned space missions to the inner and outer planets; an awareness of cratering throughout our solar system; the search for near-Earth asteroids and comets; a study of ancient craters in Australia; and the impact of Shoemaker-Levy 9 on Jupiter. The new paradigm of impact cratering as a cause for mass extinction and the opening of space for the development of new life forms have been causes to champion.