WorldWideScience

Sample records for sustainable nutrient management

  1. Grazing animal husbandry based on sustainable nutrient management

    NARCIS (Netherlands)

    Hermans, C.; Vereijken, P.H.

    1995-01-01

    Sustainable husbandry systems for grazing animals (cattle and sheep) can be achieved by sustainable nutrient management (SNM). This implies the tuning of inputs to outputs of nutrients, to achieve and maintain optimum ranges of agronomically wanted and ecologically acceptable reserves of single

  2. Sustainable Nutrient Management in Chinese Agriculture:Challenges and Perspective

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China has to raise agricultural productivity in its limited and shrinking farmland to guarantee food security for its huge and ever-growing population. Sustainable soil nutrient management is of paramount importance to the world's most populous country. Critical challenges the country is facing in sustaining soil fertility and in alleviating the hazardous impact of intensive fertilizer use are discussed in this paper. It is emphatically pointed out that national strategies as well as area-specific action plans with respect to scientific nutrient management are urgently needed to balance productivity and sustainability in the future. Relevant proposals for addressing those challenges are also presented.

  3. Integrated Nutrient and Water Management for Sustainable Food ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrated Nutrient and Water Management for Sustainable Food Production in the Sahel (CIFSRF). In the Sahel, agricultural production is strictly limited by drought and low soil fertility. In 2005 and 2010, these two factors led to food scarcity in Niger. However, innovative technologies such as microdose fertilization ...

  4. Transition management and the sustainable nutrients economy in the Netherlands: positioning paper

    NARCIS (Netherlands)

    Hoppe, Thomas; Arentsen, Maarten J.; Mikkila, M.; Linnanen, L.

    2012-01-01

    In this positioning paper transition management (TM) and the sustainable nutrient economy are addressed. We discuss TM from its scholarly origins in the 1990’s to its implementation as a comprehensive sector-wide policy program on sustainability in The Netherlands during the first decade of the

  5. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  6. Strategic nutrient management of field pea in southwestern Uganda ...

    African Journals Online (AJOL)

    Strategic nutrient management of field pea in southwestern Uganda. ... African Journal of Food, Agriculture, Nutrition and Development ... Strategic nutrient management requires that the most limiting nutrient is known in order to provide a foundation for designing effective and sustainable soil fertility management ...

  7. An evaluation of the sustainability of onsite wastewater treatment systems for nutrient management.

    Science.gov (United States)

    Diaz-Elsayed, Nancy; Xu, Xiaofan; Balaguer-Barbosa, Maraida; Zhang, Qiong

    2017-09-15

    The impairment of water bodies from nutrient pollution is a challenging environmental problem that could lead to high eutrophic conditions, fish kills, and human illness, while negatively impacting industries that rely on thriving water bodies. Onsite wastewater treatment systems (OWTSs) are a major source of nutrients, however no prior studies have conducted a holistic sustainability assessment of OWTSs that considers their ability to manage nutrients at the household-level in the United States. The aim of this study is therefore to evaluate the environmental and economic impacts of conventional and advanced OWTSs with respect to their ability to remove total nitrogen (TN). Septic tank and drainfield materials were varied for conventional systems, and the advanced systems evaluated consisted of aerobic treatment units (ATUs) and passive nitrogen reduction systems (PNRSs) with nitrification and denitrification stages. Life cycle assessment and life cycle cost analysis were performed to evaluate OWTSs operating in different soil and temperature conditions. Nutrient management of the advanced OWTSs outperformed the conventional systems (96.7-100% vs. 61-65% TN removal), and resulted in less than 40% of the freshwater (0.06-0.14 vs. 0.37-0.40 kg P-eq/kg TN) and marine eutrophication (0.04-0.06 vs. 0.54-0.65 kg N-eq/kg TN). However, the tradeoff for nutrient management was higher life cycle costs ($101-$121 vs. $45-$58 USD 2015/kg TN) and environmental impacts for the remaining impact categories. Lastly, when the TN removed by the drainfield was <20%, the advanced system had lower impacts than conventional OWTSs across all impact categories except ecotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  9. Sustainability of High Intensity Forest Management with Respect to Water QuaIity and Site Nutrient Reserves

    Science.gov (United States)

    Virginia R. Tolbert; Carl C. Trettin; Dale W. Johnson; John W. Parsons; Allan E. Houston; David A. Mays

    2001-01-01

    Ensuring sustainability of intensively managed woody crops requires determining soil and water quality effects using a combination of field data and modeling projections. Plot- and catchrnent-scale research, models, and meta-analyses are addressing nutrient availability, site quality, and measures to increase short-rotation woody crop (SRWC) productivity and site...

  10. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  11. Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia. Report of a FAO/IAEA consultants' meeting

    International Nuclear Information System (INIS)

    2000-01-01

    A Consultants' Meeting on 'Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia' was held at FAO, Rome, August 22-25, 2000. Five consultants, together with one staff from IAEA headquarters, one staff from IAEA Laboratories, Seibersdorf, five staff from FAO headquarters, two staff from FAO regional offices, one observer from ACIAR, one observer from Cornell University with expertise in crop, nutrient, soil and water management, attended the meeting. The consultants presented reviews of the situation regarding studies of water and nutrient dynamics in rice-wheat systems in South Asia. These were complemented by a paper on the development of 15 N techniques to study the contribution of N from legumes. The consultants also provided recommendations on the formulation and implementation of an FAO/IAEA Co-ordinated Research Project (CRP). Refs, figs, tabs

  12. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  13. Integrated nutrients management for 'desi' cotton

    International Nuclear Information System (INIS)

    Qazi, M.A.; Akram, M.; Ahmad, N.; Khattak, M.A.

    2007-01-01

    Intensive cropping with no return of crop residues and other organic inputs result in the loss of soil organic matter (SOM) and nutrient supply in (Desi) cotton-wheat cropping system in Pakistan. For appraisal of problem and finding solution to sustainability, we evaluated six treatments comprised of two fertilizer doses and three management techniques over a period of three years (2003-05) monitoring their effects on seed cotton yield and soil fertility. The techniques included chemical fertilizers, municipal solid waste manure (MSWM) integrated with chemical fertilizers in 1:4 ratios with, and without pesticides. The results revealed that cotton yields. Were enhanced by 19% due to site-specific fertilizer dose over conventional dose. Ignoring weeds control by means of herbicided application resulted in 5% decrease of seed cotton yield in IPNM technique positive effect of MSWM integration was noted on soil test phosphorus and SOM. Site-specific fertilizer application and integrated plant nutrient management by MSWM proved their suitability as the techniques not only improve soil quality in terms of sustained levels of organic matter and phosphorus but also provide a safe way of waste disposal. (author)

  14. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  15. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  16. Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm.

    Science.gov (United States)

    Luo, Yiming; Stichnothe, Heinz; Schuchardt, Frank; Li, Guoxue; Huaitalla, Roxana Mendoza; Xu, Wen

    2014-01-01

    Driven by the growing numbers of intensified pig farms around cities in China, there are problems of nutrient surplus and shortage of arable land for utilising the manure. Hence, sustainable livestock systems with effective manure management are needed. The objective of this study is to compare the existing manure treatment of a typical pig farm in Beijing area (separate collection of faeces; 'Gan qing fen' system) with an alternative system and to identify the nutrients flow of the whole farm in order to quantify environmental burdens and to estimate the arable land required for sustainable nutrients recycling. Life cycle assessment is used for this purpose. Acidification potential (AP), eutrophication potential (EP) and global warming potential (GWP) are analysed in detail; the functional unit is the annual production of the pig farm. The results show that the cropland area demand for sustainable land application of the effluent can be reduced from 238 to 139 ha with the alternative system. It is possible to transfer 29% of total nitrogen, 87% of phosphorus, 34% of potassium and 75% of magnesium to the compost, and to reduce the total AP, EP and GWP of manure management on the farm by 64.1%, 96.7% and 22%, respectively, compared with the current system. Besides an effective manure management system, a full inventory of the regional nutrients flow is needed for sustainable development of livestock systems around big cities in China.

  17. Effect of integrated nutrient management on nut production of coconut and soil environment: a review

    International Nuclear Information System (INIS)

    Baloch, P.A.; Rajpar, I.

    2014-01-01

    With the adoption of new technology of intensive cropping with high yielding varieties, there is a considerable demand on soil for supply of nutrients. However, the native fertility of our soils is poor and cannot sustain high yields. Sustainable agricultural production incorporates the idea that natural resources should be used to generate increased output and incomes, without depleting the natural resources. The solution is application of integrated nutrient management (INM). It is the system, which envisages the use of organic wastes, biofertilisers and inorganic fertilizers in judicious combinations to sustain soil productivity. The conjunctive use of organic and inorganic sources improves soil health and helps in maximization production as it involves utilization of local sources and, hence turned to be rational, realistic and economically viable way of supply of nutrients. Coconut is a versatile tree and is the most popular home garden crop in the world. It is very beneficial for health because of its high nutrient management affects on its growth and yield characteristics to a great extent. This paper, therefore, presents a review on various aspects of INM used to improve soil environment, coconut growth and yield characters. (author)

  18. Sustainable Dry Land Management Model on Corn Agribusiness System

    Directory of Open Access Journals (Sweden)

    Yulia Pujiharti

    2008-01-01

    Full Text Available The study aimed at building model of dry land management. Dynamic System Analysis was used to build model and Powersim 2.51 version for simulating. The parameter used in model were fertilizer (urea, SP-36, ACL, productivity (corn, cassava, mungbean, soil nutrient (N, P, K, crop nutrient requirements (corn, cassava, mungbean, mucuna, price (corn, cassava, mungbeans corn flour, feed, urea, SP-36, KCl, food security credit, area planted of (maize, cassava, mungbean, area harvested of (maize, cassava, mungbean, (corn, cassava, mungbean production, wages and farmer income. Sustainable indicator for ecology aspect was soil fertility level, economic aspects were productivity and farmer income, and social aspects were job possibility and traditions. The simulation result indicated that sustainable dry land management can improve soil fertility and increase farmer revenue, became sustainable farming system and farmer society. On the other hand, conventional dry land management decreased soil fertility and yield, caused farmer earnings to decrease and a farm activity could not be continued. Fertilizer distribution did not fulfill farmer requirement, which caused fertilizer scarcity. Food security credit increased fertilizer application. Corn was processed to corn flour or feed to give value added.

  19. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges

    OpenAIRE

    Goletti, F.; Gruhn, P.; Yudelman, M.

    2000-01-01

    Metadata only record The challenge for agriculture over the coming decades will be to meet the world's increasing demand for food in a sustainable way. Declining soil fertility and mismanagement of plant nutrients have made this task more difficult. In their 2020 Vision discussion paper, Peter Gruhn, Francesco Goletti, and Montague Yudelman point out that as long as agriculture remains a soil-based industry, major increases in productivity are unlikely to be attained without ensuring that ...

  20. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review

    International Nuclear Information System (INIS)

    Wu, Wei; Ma, Baoluo

    2015-01-01

    The increasing food demands of a growing human population and the need for an environmentally friendly strategy for sustainable agricultural development require significant attention when addressing the issue of enhancing crop productivity. Here we discuss the role of integrated nutrient management (INM) in resolving these concerns, which has been proposed as a promising strategy for addressing such challenges. INM has multifaceted potential for the improvement of plant performance and resource efficiency while also enabling the protection of the environment and resource quality. This review examines the concepts, objectives, procedures and principles of INM. A comprehensive literature search revealed that INM enhances crop yields by 8–150% compared with conventional practices, increases water-use efficiency, and the economic returns to farmers, while improving grain quality and soil health and sustainability. Model simulation and fate assessment further reveal that reactive nitrogen (N) losses and GHG (greenhouse gas) emissions are reduced substantially under advanced INM practices. Lower inputs of chemical fertilizer and therefore lower human and environmental costs (such as intensity of land use, N use, reactive N losses and GHG emissions) were achieved under advanced INM practices without compromising crop yields. Various approaches and perspectives for further development of INM in the near future are also proposed and discussed. Strong and convincing evidence indicates that INM practice could be an innovative and environmentally friendly strategy for sustainable agriculture worldwide. - Highlights: • The increasing pressure to meet global cereal demand poses great challenge. • A changing environment further threatens cereal production. • Literature summary shows 8–150% yield advantage from use of INM method. • INM contributions to mitigation of environmental costs are remarkable. • High crop productivity and less environmental impact can be

  1. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei, E-mail: weiwu@nwsuaf.edu.cn [College of Agronomy, Northwest A& F University, Yangling, Shaanxi 712100 (China); Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre (ECORC), Ottawa, ON K1A 0C6 (Canada); Ma, Baoluo, E-mail: Baoluo.Ma@AGR.GC.CA [Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre (ECORC), Ottawa, ON K1A 0C6 (Canada)

    2015-04-15

    The increasing food demands of a growing human population and the need for an environmentally friendly strategy for sustainable agricultural development require significant attention when addressing the issue of enhancing crop productivity. Here we discuss the role of integrated nutrient management (INM) in resolving these concerns, which has been proposed as a promising strategy for addressing such challenges. INM has multifaceted potential for the improvement of plant performance and resource efficiency while also enabling the protection of the environment and resource quality. This review examines the concepts, objectives, procedures and principles of INM. A comprehensive literature search revealed that INM enhances crop yields by 8–150% compared with conventional practices, increases water-use efficiency, and the economic returns to farmers, while improving grain quality and soil health and sustainability. Model simulation and fate assessment further reveal that reactive nitrogen (N) losses and GHG (greenhouse gas) emissions are reduced substantially under advanced INM practices. Lower inputs of chemical fertilizer and therefore lower human and environmental costs (such as intensity of land use, N use, reactive N losses and GHG emissions) were achieved under advanced INM practices without compromising crop yields. Various approaches and perspectives for further development of INM in the near future are also proposed and discussed. Strong and convincing evidence indicates that INM practice could be an innovative and environmentally friendly strategy for sustainable agriculture worldwide. - Highlights: • The increasing pressure to meet global cereal demand poses great challenge. • A changing environment further threatens cereal production. • Literature summary shows 8–150% yield advantage from use of INM method. • INM contributions to mitigation of environmental costs are remarkable. • High crop productivity and less environmental impact can be

  2. Advances in the understanding of nutrient dynamics and management in UK agriculture

    International Nuclear Information System (INIS)

    Dungait, Jennifer A.J.; Cardenas, Laura M.; Blackwell, Martin S.A.; Wu, Lianhai; Withers, Paul J.A.; Chadwick, David R.; Bol, Roland; Murray, Philip J.; Macdonald, Andrew J.; Whitmore, Andrew P.; Goulding, Keith W.T.

    2012-01-01

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. -- Highlights: ► Major advances in the knowledge of macronutrient cycling in agricultural soils are reviewed in the context of management. ► Novel analytical techniques and innovative modelling approaches that enhance understanding of nutrient cycling are explored. ► Knowledge gaps are identified, and the potential to improve comprehension of the integrated nutrient cycles is considered.

  3. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  4. Advances in the understanding of nutrient dynamics and management in UK agriculture.

    Science.gov (United States)

    Dungait, Jennifer A J; Cardenas, Laura M; Blackwell, Martin S A; Wu, Lianhai; Withers, Paul J A; Chadwick, David R; Bol, Roland; Murray, Philip J; Macdonald, Andrew J; Whitmore, Andrew P; Goulding, Keith W T

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sustained swimming improves fish dietary nutrient assimilation efficiency and body composition of juvenile Brycon amazonicus

    Directory of Open Access Journals (Sweden)

    Gustavo Alberto Arbeláez-Rojas

    Full Text Available ABSTRACT Sustained swimming (SS usually promotes beneficial effects in growth and feed conversion of fishes. Although feed efficiency is improves at moderate water velocity, more information is required to determine the contributions of this factor on growth and body composition. Body composition and efficiency responses to the use of nutrients were determined in juvenile matrinxa Brycon amazonicus (Spix and Agassiz, 1829 fed with two dietary amounts of protein, 28 or 38% of crude protein (CP, and subjected to sustained swimming at a constant speed of 1.5 body lengths s−1 (BL s−1 or let to free swimming. The fish body composition under SS and fed with 28% of dietary protein showed 22% of increased in bulk protein and a 26% of decrease in water content in the white muscle. Red muscle depicted 70% less water content and a 10% more lipid. Nutrient retention was enhanced in fish subjected to SS and a higher gain of ethereal extract sustained was observed in the white muscle of exercised fish fed with 38% CP. The interaction between swimming and dietary protein resulted in a larger bulk of lipid in red muscle. Fish fed with 28% CP under SS at 1.5 BL s−1 presented the best utilization of dietary nutrients and body composition. Thus, this fish farming procedure is proposed as a promising management strategy for rearing matrinxa.

  6. Fisheries management under nutrient influence

    DEFF Research Database (Denmark)

    Hammarlund, Cecilia; Nielsen, Max; Waldo, Staffan

    2018-01-01

    A fisheries management model that identifies the economic optimal management of fisheries under the influence of nutrients is presented. The model starts from the idea that growth in fish biomass increases with increasing availability of nutrients owing to higher food availability up to a peak...

  7. Advances in the understanding of nutrient dynamics and management in UK agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Dungait, Jennifer A.J., E-mail: jennifer.dungait@rothamsted.ac.uk [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Cardenas, Laura M.; Blackwell, Martin S.A.; Wu, Lianhai [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Withers, Paul J.A. [School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, LL57 2UW (United Kingdom); Chadwick, David R.; Bol, Roland; Murray, Philip J. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Macdonald, Andrew J.; Whitmore, Andrew P. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2LQ (United Kingdom); Goulding, Keith W.T. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2LQ (United Kingdom)

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. -- Highlights: Black-Right-Pointing-Pointer Major advances in the knowledge of macronutrient cycling in agricultural soils are reviewed in the context of management. Black-Right-Pointing-Pointer Novel analytical techniques and innovative modelling approaches that enhance understanding of nutrient cycling are explored. Black-Right-Pointing-Pointer Knowledge gaps are identified, and the potential to improve comprehension of the integrated nutrient cycles is considered.

  8. Optimal Management of Water, Nutrient and Carbon Cycles of Green Urban Spaces

    Science.gov (United States)

    Revelli, R.; Pelak, N. F., III; Porporato, A. M.

    2016-12-01

    The urban ecosystem is a complex, metastable system with highly coupled flows of mass, energy, people and capital. Their sustainability is in part linked to the existence of green spaces which provide important ecosystem services, whose sustainable management requires quantification of their benefits in terms of impacts on water, carbon and energy fluxes. An exploration of problems of optimal management of such green urban spaces and the related biogeochemical fluxes is presented, extending probabilistic ecohydrological models of the soil-plant system to the urban context, where biophysical and ecological conditions tend to be radically different from the surrounding rural and natural environment (e.g. heat islands, air and water pollution, low quality soils, etc…). The coupled soil moisture, nutrient and plant dynamics are modeled to compute water requirements, carbon footprint, nutrient demand and losses, and related fluxes under different design, management and climate scenarios. The goal is to provide operative rules for a sustainable water use through focused irrigation and fertilization strategies, optimal choice of plants, soil and cultivation conditions, accounting for the typical hydroclimatic variability that occur in the urban environment. This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701914. The work is also cofounded by USDA Agricultural Research Service cooperative agreement 58-6408-3-027; National Science Foundation (NSF) grants: EAR-1331846, EAR-1316258, and the DGE-1068871 and FESD EAR-1338694.

  9. Enabling nutrient security and sustainability through systems research.

    Science.gov (United States)

    Kaput, Jim; Kussmann, Martin; Mendoza, Yery; Le Coutre, Ronit; Cooper, Karen; Roulin, Anne

    2015-05-01

    Human and companion animal health depends upon nutritional quality of foods. Seed varieties, seasonal and local growing conditions, transportation, food processing, and storage, and local food customs can influence the nutrient content of food. A new and intensive area of investigation is emerging that recognizes many factors in these agri-food systems that influence the maintenance of nutrient quality which is fundamental to ensure nutrient security for world populations. Modeling how these systems function requires data from different sectors including agricultural, environmental, social, and economic, but also must incorporate basic nutrition and other biomedical sciences. Improving the agri-food system through advances in pre- and post-harvest processing methods, biofortification, or fortifying processed foods will aid in targeting nutrition for populations and individuals. The challenge to maintain and improve nutrient quality is magnified by the need to produce food locally and globally in a sustainable and consumer-acceptable manner for current and future populations. An unmet requirement for assessing how to improve nutrient quality, however, is the basic knowledge of how to define health. That is, health cannot be maintained or improved by altering nutrient quality without an adequate definition of what health means for individuals and populations. Defining and measuring health therefore becomes a critical objective for basic nutritional and other biomedical sciences.

  10. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  11. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  12. Nutrient budgets, soil fertility management and livelihood analysis in Northeast Thailand: a basis for integrated rural development strategies in developing countries

    NARCIS (Netherlands)

    Wijnhoud, J.D.

    2007-01-01

    Keywords:  Rainfed lowland rice-based systems, Northeast Thailand, nutrient balance analyses, sustainability assessment, sustainable natural resource management, integrated rural development strategies, livelihood

  13. Ideal and saturated soil fertility as bench marks in nutrient management; 1 outline of the framework

    NARCIS (Netherlands)

    Janssen, B.H.; Willigen, de P.

    2006-01-01

    This paper presents a framework for nutrient management that takes sustainable soil fertility, environmental protection and balanced plant nutrition as starting points, and integrates concepts from plant physiology, soil chemistry and agronomy. The framework is meant as a tool that can be applied

  14. Managing nutrient for both food security and environmental sustainability in China: an experiment for the world

    Directory of Open Access Journals (Sweden)

    Fusuo ZHANG, Zhenling CUI, Weifeng ZHANG

    2014-02-01

    Full Text Available The challenges of how to simultaneously ensure global food security, improve nitrogen use efficiency (NUE and protect the environment have received increasing attention. However, the dominant agricultural paradigm still considers high yield and reducing environmental impacts to be in conflict with one another. Here we examine a Three-Step-Strategy of past 20 years to produce more with less in China, showing that tremendous progress has been made to reduce N fertilizer input without sacrificing crop yield. The first step is to use technology for in-season root-zone nutrient management to significantly increase NUE. The second is to use technology for integrated nutrient management to increase both yield and NUE by 15%—20%. The third step is to use technology for integrated soil-crop system management to increase yield and NUE by 30%—50% simultaneously. These advances can thus be considered an effective agricultural paradigm to ensure food security, while increasing NUE and improving environmental quality.

  15. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    Science.gov (United States)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four

  16. The management of nutrients and water in the west African semi-arid tropics

    International Nuclear Information System (INIS)

    Bationo, A.; Bielders, C.L.; Duivenbooden, N. van; Buerkert, A.C.; Seyni, F.

    1998-01-01

    At present, the farming systems in the west African semi-arid tropics are unsustainable, low in productivity, and destructive to the environment. A striking feature of the soils is their inherently low fertility, with negative plant-nutrient balance in many cropping systems. Research in N-use efficiency (NUE) indicated that calcium ammonium nitrate (CAN) significantly outperformed urea on millet. Fertilizer losses, greater for urea (53%) than for CAN (25%) were believed to be due to ammonia volatilization. Continuous cropping resulted in lower yields compared to a cereal grown after cowpea or groundnut, and NUE was improved with crop rotation. Phosphorus deficiency is a major constraint. Phosphate rock (PR), indigenous to the region, e.g. at Tahoua in Niger and Tilemsi in Mali, is suitable for direct application. Partial acidulation of low-solubility PR improves agronomic effectiveness. Long-term soil-fertility management trials indicate that although application of mineral fertilizers increase yields, they alone cannot sustain productivity. When mineral fertilizers are combined with other technologies, such as the return of crop residues and manure, productive and sustainable production systems are possible. Water-use efficiency increased dramatically with the addition of plant nutrients. Technologies for land surface management and water harvesting, and appropriate cropping systems with careful varietal selection all contribute to the optimization of soil-water use. Future research should focus on water and nutrient interactions and on understanding why presently available improved technologies are not adopted by farmers even when using a participatory approach. (author)

  17. A Vision of Success: How Nutrient Management Will Enhance and Sustain Ecosystem Services

    Science.gov (United States)

    Clean air and water, ample food, renewable fuels, productive fisheries, diverse ecosystems, resilient coasts and watersheds: these are some of the benefits that depend on sustainable nitrogen use and management. Thus, in our vision of the future, uses of reactive nitrogen are suf...

  18. Development and use of a bioeconomic model for management of mussel fisheries under different nutrient regimes in the temperate estuary of the Limfjord, Denmark

    DEFF Research Database (Denmark)

    Timmermann, Karen; Dinesen, Grete E.; Markager, Stiig

    2014-01-01

    Coastal ecosystems worldwide are under pressure from human-induced nutrient inputs, fishing activities, mariculture, construction work, and climate change. Integrated management instruments handling one or more of these problems in combination with socioeconomic issues are therefore necessary...... to secure a sustainable use of resources. In the Limfjord, a temperate eutrophic estuary in Denmark, nutrient load reductions are necessary to fulfill EU regulations such as the Water Framework Directive (WFD). The expected outcome of these load reductions is an improved water quality, but also reduced...... reductions for mussel fishery as practiced today, as well as potential management options, to obtain an economically and ecologically sustainable mussel fishery. Model simulations clearly demonstrate a substantial decrease in mussel production after the nutrient load reductions necessary to obtain...

  19. Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya

    NARCIS (Netherlands)

    Jager, de A.; Onduru, D.; Wijk, van M.S.; Vlaming, J.; Gachini, G.N.

    2001-01-01

    In the search for Integrated Nutrient Management practices in response to the widely observed soil fertility decline in Sub-Saharan Africa, the potential of low-external-input and organic farming remains to be systematically examined. The nutrient monitoring concept was used to assess the impact of

  20. Nutrient management in farms in conversion to organic

    OpenAIRE

    Kolbe, Hartmut

    2008-01-01

    This report, adapted for Saxony, serves converting farmers supported by local advisors as a guideline for a balanced nutrient management at farm level. Essentials of nutrient supply and management measures to consider during the conversion are described to guarantee a successful farming with a naturally based nutrient management. Especially for the conversion phase it is recommended to calculate nitrogen balance after each crop rotation with the help of advisors. This report shows the me...

  1. Nutrient management strategies on Dutch dairy farms: an empirical analysis

    NARCIS (Netherlands)

    Ondersteijn, C.J.M.

    2002-01-01

    Key Words: MINAS; nitrogen surplus; phosphate surplus; nutrient efficiency; nutrient productivity; financial consequences; strategic management; perceived environmental uncertainty; nutrient management planning; dairy farming; The Netherlands.

    Agricultural nutrients are a

  2. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  3. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  4. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  5. Environmental and sustainability evaluation of livestock waste management practices in Cyprus.

    Science.gov (United States)

    Lijó, Lucía; Frison, Nicola; Fatone, Francesco; González-García, Sara; Feijoo, Gumersindo; Moreira, Maria Teresa

    2018-04-05

    The aim of this study was to compare the environmental performance and sustainability of different management options for livestock waste in Cyprus. The two most common practices in the country, i.e. the use of anaerobic lagoons and conventional biogas plants, were compared with the innovative scheme developed in the LiveWaste project (LIFE12 ENV/CY/000544), which aims not only to produce bioenergy, but also to treat the digestate for nutrient recovery and water reuse. The Life Cycle Assessment (LCA) methodology was combined with the Analytic Hierarchy Process (AHP) to compare the performance of these alternatives. Four relevant indicators were selected for each dimension of sustainability (environmental, social and economic). The results of the evaluations showed that anaerobic lagoons are not an appropriate option for the sustainable management of livestock waste due to environmental (e.g. climate change, acidification and eutrophication) and social impacts (e.g. noise exposure, visual impact and risk perception for human health). The most important strengths and weaknesses of anaerobic treatment with and without digestate treatment were identified. Compared to conventional anaerobic digestion where digestate is directly applied as an organic fertiliser, the technology proposed in the project entails higher technological complexity due to nitrogen removal and phosphorus recovery. The rise in chemical and electricity requirements increased the impacts on some indicators, such as climate change and operational cost (emissions of greenhouse gases and operation costs were around 50% higher), while reduced impacts in others due to proper nutrient management, as acidification and eutrophication impacts (which were 10 and almost two times lower, respectively). For the specific Cypriot conditions, where the overapplication of nutrients leads to pollution of water bodies, the innovative treatment scheme with higher technological development presents an interesting

  6. Bioextraction potential of seaweed in Denmark — An instrument for circular nutrient management

    International Nuclear Information System (INIS)

    Seghetta, Michele; Tørring, Ditte; Bruhn, Annette; Thomsen, Marianne

    2016-01-01

    The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150 Mg/km"2 in Danish waters in 2014 was applied to a cultivation scenario of 208 km"2. The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29 kg N eq. and 16.58 kg PO_4"3"− eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and > 100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and > 100% of the target). - Highlights: • Offshore seaweed production for nutrient

  7. Bioextraction potential of seaweed in Denmark — An instrument for circular nutrient management

    Energy Technology Data Exchange (ETDEWEB)

    Seghetta, Michele [Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde (Denmark); Tørring, Ditte [Orbicon A/S, Jens Juuls Vej 16, 8260 Viby (Denmark); Bruhn, Annette [Department of Bioscience, Faculty of Science and Technology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg (Denmark); Thomsen, Marianne, E-mail: mth@envs.au.dk [Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde (Denmark)

    2016-09-01

    The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150 Mg/km{sup 2} in Danish waters in 2014 was applied to a cultivation scenario of 208 km{sup 2}. The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29 kg N eq. and 16.58 kg PO{sub 4}{sup 3−} eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and > 100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and > 100% of the target). - Highlights: • Offshore seaweed production

  8. Managing Sustainability in Management Education

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    2014-01-01

    Sustainability has until relatively recently been seen as irrelevant to business practice and, hence, has been largely missing from management education. But, environmental issues are increasingly becoming a key business concern at local, national, international and global levels. This conceptual...... paper addresses the question: How can sustainability be addresses within management education? It engages in a critical discussion of traditional models for teaching sustainability and Corporate Social Responsibility (CSR) in order to develop an advanced framework that addresses the limitations...... concerning trade-offs and complexity. Thus, the paper proposes an approach to sustainability in management education which help to initiate such critical reflection and discussion by drawing attention to the complex network of relations in which a given business or industry is embedded....

  9. Sustainable livestock production: Low emission farm – The innovative combination of nutrient, emission and waste management with special emphasis on Chinese pig production

    Directory of Open Access Journals (Sweden)

    Thomas Kaufmann

    2015-09-01

    Full Text Available Global livestock production is going to be more and more sophisticated in order to improve efficiency needed to supply the rising demand for animal protein of a growing, more urban and affluent population. To cope with the rising public importance of sustainability is a big challenge for all animal farmers and more industrialized operations especially. Confined animal farming operations (CAFO are seen very critical by many consumers with regard to their sustainability performance, however, the need to improve the sustainability performance especially in the ecological and social dimension exists at both ends of the intensity, i.e., also for the small holder and family owned animal farming models. As in livestock operations, feed and manure contribute the majority to the three most critical environmental impact categories global warming potential (GWP, acidification (AP and eutrophication potential (EP any effort for improvement should start there. Intelligent combination of nutrient-, emission- and waste management in an integrated low emission farm (LEF concept not only significantly reduces the environmental footprint in the ecological dimension of sustainability, but by producing renewable energy (heat, electricity, biomethane with animal manure as major feedstock in an anaerobic digester also the economic dimension can be improved. Model calculations using new software show the ecological improvement potential of low protein diets using more supplemented amino acids for the Chinese pig production. The ecological impact of producing biogas or upgraded biomethane, of further treatment of the digestate and producing defined fertilizers is discussed. Finally, the LEF concept allows the integration of an insect protein plant module which offers additional ecological and economical sustainability improvement potential in the future. Active stakeholder communication about implementation steps of LEF examples improves also the social aspect of

  10. Restoring crop productivity of eroded lands through , integrated plant nutrient management (IPNM) for sustained production

    International Nuclear Information System (INIS)

    Bhatti, A.U.; Ali, S.

    2005-01-01

    Crop productivity of eroded lands is very poor due to removal of top fertile soil losing organic matter and plant nutrients, with consequent exposure of the sub-soil with poor fertility status. Crop productivity of such lands needs to be restored in order to help farmers feed many mouths because of increased population and high land pressure. Three field experiments were laid out at three sites, Thana, Malakand Agency; Kabal and Matta, Swat during 2003-2004 to study the effect of integrated plant nutrient management on the yield of wheat. The fertilizer treatments consisted of farmer's practice (60-45-0 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/), recommended fertilizer rate (120-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -l/ + 5 kg Zn ha/sup -1), and combined application of organic and inorganic sources of plant nutrients (FYM at the rate of 20 t ha/sup -1/ plus 60-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + 5 kg Zn ha/sup -1/). The results obtained from these field trails showed that the combined application of FYM with NPK Zn increased the grain yield significantly over the other two treatments with an increase of 50-80% over the farmer's practice and 11 to 23 % over the recommended dose. As regards straw yields, T/sub 2/ and T/sub 3/ increased the yields significantly over farmer's practice (T) at all the sites; However, T/sub 2/ and T/sub 3/ at Thana and Kabal were at par with each other. As regards effect of various treatments on soil properties, organic matter content was improved at Thana and Kabal sites while at Matta the results were inconsistent. Similarly soil P and Zn contents were increased considerably in T/sub 2/ and T/sub 3/ at Thana and Kabal being at par with each other. It is apparent from these results that the crop productivity of eroded lands at all the three sties was considerably restored and the soil fertility status was improved by integrated plant nutrient management. (author)

  11. PATHWAYS TO SUSTAINABLE BANKING MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Dragan (Santamarian Oana Raluca

    2012-12-01

    Full Text Available This paper describes one of the major challenges of the future: the sustainable development of the society. Sustainability is now increasingly recognized as central to the growth of emerging market economies. For the banking sector, this represents both a demand for greater social and environmental responsibility as well as a new landscape of business opportunity. Several years ago, the main part of the banks did not consider the social and environmental problems relevant for their operations. Recently, the banks began to realize the major impact of the sustainable development over the way of ulterior development of the society and, implicitly over the way of creating of the banking value in the future. In this context, the development of a banking management system, based on sustainable principles represents one of the provocations of these days.Starting from literature in the sustainable banking management field in this paper are presented several relevant issues related to risk management in the context of sustainable banking financing: the need to implement the sustainable management principles in financial and banking industry; the role of banks in sustainable development of society; social and environmental risk management policies, events that have shaped the role of the banking sector in sustainable development; international standards regarding sustainable banking management such us: Equator Principles for sustainable investment projects’ financing or GRI principles for sustainable reporting. Furthermore, we developed a practical case study related to the implementation of sustainable banking management at Bank of America.

  12. Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases

    International Nuclear Information System (INIS)

    Naher, L.; Ismail, A.

    2014-01-01

    Trichoderma spp. are mainly asexual fungi that are present in all types of agricultural soils and also in decaying wood. The antagonistic activity of Trichoderma species showed that it is parasitic on many soil-borne and foliage pathogens. The fungus is also a decomposer of cellulosic waste materials. Recent discoveries show that the fungi not only act as biocontrol agents, but also stimulate plant resistance, and plant growth and development resulting in an increase in crop production. The biocontrol activity involving mycoparasitism, antibiotics and competition for nutrients, also induces defence responses or systemic resistance responses in plants. These responses are an important part of Trichoderma in biocontrol program. Currently, Trichoderma spp., is being used to control plant diseases in sustainable diseases management systems. This paper reviews the published information on Trichoderma spp., and its biocontrol activity in sustainable disease management programs. (author)

  13. A targeted management of the nutrient solution in a soilless tomato crop according to plant needs

    Directory of Open Access Journals (Sweden)

    Angelo eSignore

    2016-03-01

    Full Text Available The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution, in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: 1 studied the effect of several values of the electrical conductivity (EC of nutrient solution in a NFT (Nutrient Film Technique system on a cherry type tomato crop, and 2 define a NS (called recovery solution, based on the concept of uptake concentration and transpiration-biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP, above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5 and 10 dS m-1, respectively, were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively.The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration-biomass ratio, indicates that, in some stages of the plant cycle, the nutrient solution used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries.

  14. Phosphate fertilisers and management for sustainable crop production in tropical acid soils

    International Nuclear Information System (INIS)

    Chien, S.H.; Friesen, D.K.

    2000-01-01

    Extensive research has been conducted over the past 25 years on the management of plant nutrients, especially N and P, for crop production on acidic infertile tropical soils. Under certain conditions, the use of indigenous phosphate rock (PR) and modified PR products, such as partially acidulated PR or compacted mixtures of PR with superphosphates, are attractive alternatives, both agronomically and economically, to the use of conventional water-soluble P fertilisers for increasing crop productivity on Oxisols and Ultisols. A combination of the effects of proper P and N management including biological N 2 fixation, judicious use of lime, and the use of acid-soil tolerant and/or P-efficient cultivars in cropping systems that enhance nutrient cycling and use efficiency, can provide an effective technology to sustainably increase crop productivity and production in tropical agro-ecosystems dominated by these acid soils. (author)

  15. Principles and practices of sustainable water management

    Institute of Scientific and Technical Information of China (English)

    Bixia Xu

    2010-01-01

    Literature related to sustainable water management is reviewed to illustrate the relationship among water management, sustainability (sustainable development), and sustainable water management. This review begins with the explanation on the definition of sustainable water management, followed by a discussion of sustainable water management principles and practices.

  16. Managing sustainability in management education policy

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    Sustainability with regards to environmental issues has until recently been seen as irrelevant to business and management practice and, consequently, has been largely missing from business and management education. But the last decades has seen increasingrecognition of environmental problems...... such as climate change and resource depletion. The main policy instruments used to promote sustainability have been regulation, market-based instruments and voluntary agreements, but in recent years, policies have started tofocus on education. Many different actors, such as business schools, businesses...... and governments, interact in shaping management education. These actors derive their conception of sustainability from a range of meanings, practices, and norms. Drawing on Connolly´s analytical framework regarding “essentially contested concepts” (1994), this paper interrogates management education policy...

  17. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  18. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  19. Managing Sustainability in Fruit Production

    OpenAIRE

    Taragola, N.; Van Passel, S.; Zwiekhorst, W.

    2012-01-01

    As fruit growers are faced with a growing need for sustainable development, it is important to integrate sustainability into their management processes. This research applies and evaluates a self-analysis tool for entrepreneurs called the ‘sustainability scan’. The scan identifies 23 sustainability themes, divided according to the 3P-framework (People, Planet and Profit). In the scan, it is assumed that the management of these themes is at the core of sustainable entrepren...

  20. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (Pforest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, Pforest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  1. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  2. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    management strategies, which consider the site- and field-specific parameters and agricultural machinery’s improvements, it is possible to maximize production and income, while reducing negative environmental impacts and human health issues induced by agricultural activities as well as improving food......Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  3. CLAIMS OF SUSTAINABLE FACILITIES MANAGEMENT

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    Purpose: The purpose of the paper is to provide an overview of current practices within the emergent management discipline: Sustainable Facilities Management (SFM). Background: To develop a sustainable society, facilities managers must become change agents for sustainability in the built...... environment. Facilities Management (FM) is contributing to the environmental, social and economical problems, but can at the same time also be a part of the solution. However, to integrate sustainability in FM is still an emergent niche within FM, and the examples of SFM so far seems to come out of very......-creating of new socio-technical services and technologies These SFM understandings are concluded to be coexisting claims of SFM definitions. Practical Implications: Facilities managers will be able to identify the mindset behind different services and technologies that are promoted as SFM. But maybe just...

  4. Long-term nutrient fertilization and the carbon balance of permanent grassland: any evidence for sustainable intensification?

    Science.gov (United States)

    Fornara, Dario A.; Wasson, Elizabeth-Anne; Christie, Peter; Watson, Catherine J.

    2016-09-01

    Sustainable grassland intensification aims to increase plant yields while maintaining the ability of soil to act as a sink rather than sources of atmospheric CO2. High biomass yields from managed grasslands, however, can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment, we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized control soils showed C sequestration rates of 0.35 Mg C ha-1 yr-1 (i.e. 35 g C m-2 yr-1; 0-15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha-1 yr-1 (i.e. 86 g C m-2 yr-1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of slurry-C retention in soils suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching. Inorganically fertilized soils (i.e. NPK) had the lowest C-gain efficiency (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the top 15 cm of the soil can offset 9-25 % of GHG (greenhouse gas) emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9-12 Mg CO2-equivalent ha-1 yr-1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed

  5. Towards Sustainable Flow Management - Introduction

    DEFF Research Database (Denmark)

    Moss, Timothy; Elle, Morten

    2001-01-01

    Outlines the conditions for the three Local Agenda 21 case-studies in the Sustainable Flow Management project......Outlines the conditions for the three Local Agenda 21 case-studies in the Sustainable Flow Management project...

  6. Towards Sustainable Flow Management - Introduction

    DEFF Research Database (Denmark)

    Moss, Timothy; Elle, Morten

    1998-01-01

    Outlines the conditions for the three Local Agenda 21 case-studies in the Sustainable Flow Management Project......Outlines the conditions for the three Local Agenda 21 case-studies in the Sustainable Flow Management Project...

  7. Advances and challenges for nutrient management in china in the 21st century.

    Science.gov (United States)

    Sims, J T; Ma, L; Oenema, O; Dou, Z; Zhang, F S

    2013-07-01

    Managing agricultural nutrients to provide a safe and secure food supply while protecting the environment remains one of the great challenges for the 21st century. The fourth International Nutrient Management Symposium (INMS), held in 2011 at the University of Delaware, addressed these issues via presentations, panel sessions, and field tours focused on latest technologies and policies available to increase nutrient use efficiency. Participants from the United States, Europe, Canada, and China discussed global trends and challenges, balancing food security and the environment in countries with struggling and emerging economics, nutrient management and transport at the catchment scale, new technologies for managing fertilizer and manure nutrients, and adaptive nutrient management practices for farm to watershed scales. A particular area of interest at the fourth INMS was nutrient management progress and challenges in China over the past 40 years. China's food security challenges and rapidly growing economy have led to major advances in agricultural production systems but also created severe nutrient pollution problems. This special collection of papers from the fourth INMS gives an overview of the remarkable progress China has made in nutrient management and highlights major challenges and changes in agri-environmental policies and practices needed today. Lessons learned in China are of value to both developing and developed countries facing the common task of providing adequate food for an expanding world population, while protecting air and water quality and restoring damaged ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Sustainable Materials Management

    Science.gov (United States)

    To introduce businesses, NGOs, and government officials to the concept of Sustainable Materials Management (SMM). To provide tools to allow stakeholders to take a lifecycle approach managing their materials, & to encourage them to join a SMM challenge.

  9. Planning, Development and Management of Sustainable Cities: A Commentary from the Guest Editors

    Directory of Open Access Journals (Sweden)

    Tan Yigitcanlar

    2015-11-01

    Full Text Available Cities are the most dramatic manifestations of human activities on the surface of the earth. These human-dominated organisms—i.e., cities—degrade natural habitats, simplify species composition, disrupt hydrological systems, and modify energy flow and nutrient cycling. Today, these consequential impacts of human activities, originated from population increase, rapid urbanization, high private motor vehicle dependency, deregulated industrialization and mass livestock production, are increasing exponentially and causing great deal of environmental, social, and economic challenges both at global and local scales. In such a situation, establishment of sustainable cities, through sustainable urban development practices, is seen as a potential panacea to combat these challenges responsibly, effectively, and efficiently. This paper offers a critical review of the key literature on the issues relating to planning, development and management of sustainable cities, introduces the contributions from the Special Issue, and speculates on the prospective research directions to place necessary mechanisms to secure a sustainable urban future for all.

  10. Land degradation causes and sustainable land management practices in southern Jordan

    Science.gov (United States)

    Khresat, Saeb

    2014-05-01

    Jordan is one of the world's most water-deficit countries with only about 4% of the total land area considered arable. As a consequence agricultural production is greatly constrained by limited natural resources. Therefore, a major challenge for the country is to promote the sustainable use of natural resources for agricultural purposes. This challenge is being made harder by the ongoing processes of degradation due to increased population pressure, which undermine any social and economic development gains. In the southern plains of Jordan, sustainability of farming practices has worsened in the past three decades, exacerbating pressure on land and increasing land degradation processes. Non-sustainable land use practices include improper ploughing, inappropriate rotations, inadequate or inexistent management of plant residues, overgrazing of natural vegetation, random urbanization, land fragmentation and over-pumping of groundwater. The root cause is the high population growth which exerts excessive pressure on the natural resources to meet increased food and income demand. The poorest farmers who are increasingly growing cereals on marginal areas. Wheat and barley are now grown with little to no rotation, with no nutrient replenishment, and at places avoiding even fallow. Small landholding sizes and topographic features of the area tend to oblige longitudinal mechanized tillage operations along the slopes. Overall, the constraints facing the deprived land users such as, poor access to technology, capital and organization are the factors that lead into unsustainable practices. The main bottlenecks and barriers that hinder mainstreaming of sustainable land management in Jordan can be grouped into three main categories: (i) Knowledge, (ii) Institutional and Governance, and (iii) Economic and Financial. In this case study, the key challenge was to create a knowledge base among local stakeholders - including planners, extension officers, NGO/community leaders, teachers

  11. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  12. Usefulness of Models in Precision Nutrient Management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Manevski, Kiril; Zhenjiang, Zhou

    Modern agriculture increasingly applies new methods and technologies to increase production and nutrient use efficiencies and at the same time reduce leaching of nutrients and greenhouse gas emissions. GPS based ECa-measurement equipment, ER or EM instrumentations, are used to spatially character......Modern agriculture increasingly applies new methods and technologies to increase production and nutrient use efficiencies and at the same time reduce leaching of nutrients and greenhouse gas emissions. GPS based ECa-measurement equipment, ER or EM instrumentations, are used to spatially...... and mineral composition. Mapping of crop status and the spatial-temporal variability within fields with red-infrared reflection are used to support decision on split fertilisation and more precise dosing. The interpretation and use of these various data in precise nutrient management is not straightforward...... of mineralisation. However, whether the crop would benefit from this depended to a large extent on soil hydraulic conductivity within the range of natural variation when testing the model. In addition the initialisation of the distribution of soil total carbon and nitrogen into conceptual model compartments...

  13. Managing sustainability in management education

    OpenAIRE

    Lystbæk, Christian Tang

    2014-01-01

    Environmental issues are increasingly becoming a key business concern at local, national, international and global levels. Consequently, environmental issues and sustainability have found their way into management education in terms of business ethics, corporate social or sustainability responsibilities (CSR), etc.. Dominant conceptions of CSR identify a series of different types of corporate responsibilities, fx. economic, legal, social, environmental, etc. (e.g. Crane & Matten, 2010). A...

  14. Stakeholder co-development of farm level nutrient management software

    Science.gov (United States)

    Buckley, Cathal; Mechan, Sarah; Macken-Walsh, Aine; Heanue, Kevin

    2013-04-01

    Over the last number of decades intensification in the use nitrogen (N) and phosphorus (P) in agricultural production has lead to excessive accumulations of these nutrients in soils, groundwaters and surface water bodies (Sutton et al., 2011). According to the European Environment Agency (2012) despite some progress diffuse pollution from agriculture is still significant in more than 40% of Europe's water bodies in rivers and coastal waters, and in one third of the water bodies in lakes and transitional waters. Recently it was estimated that approximately 29% of monitored river channel length is polluted to some degree across the Republic of Ireland. Agricultural sources were suspected in 47 per cent of cases (EPA, 2012). Farm level management practices to reduce nutrient transfers from agricultural land to watercourses can be divided into source reduction and source interception approaches (Ribaudo et al., 2001). Source interception approaches involve capturing nutrients post mobilisation through policy instruments such as riparian buffer zones or wetlands. Conversely, the source reduction approach is preventative in nature and promotes strict management of nutrient at farm and field level to reduce risk of mobilisation in the first instance. This has the potential to deliver a double dividend of reduced nutrient loss to the wider ecosystem while maximising economic return to agricultural production at the field and farm levels. Adoption and use of nutrient management plans among farmers is far from the norm. This research engages key farmer and extension stakeholders to explore how current nutrient management planning software and outputs should be developed to make it more user friendly and usable in a practical way. An open innovation technology co-development approach was adopted to investigate what is demanded by the end users - farm advisors and farmers. Open innovation is a knowledge management strategy that uses the input of stakeholders to improve

  15. Global achievements in sustainable land management

    Directory of Open Access Journals (Sweden)

    Peter Motavalli

    2013-06-01

    Full Text Available Identification and development of sustainable land management is urgently required because of widespread resource degradation from poor land use practices. In addition, the world will need to increase food production to meet the nutritional needs of a growing global population without major environmental degradation. Ongoing climate change and its impacts on the environment is an additional factor to consider in identifying and developing sustainable land use practices. The objectives of this paper are to: (1 provide a background to the need for sustainable land management, (2 identify some of its major components, and (3 discuss some examples of sustainable land management systems that are being practiced around the world. Some common components of this type of management are: (1 understanding the ecology of land management, (2 maintenance or enhancement of land productivity, (3 maintenance of soil quality, (4 increased diversity for higher stability and resilience, (5 provision of economic and ecosystem service benefits for communities, and (6 social acceptability. Several examples of sustainable land management systems are discussed to illustrate the wide range of systems that have been developed around the world including agroforestry, conservation agriculture, and precision agricultural systems. Improved technology, allowing for geater environmental measurement and for improved access and sharing of information, provides opportunities to identify and develop more sustainable land management practices and systems for the future.

  16. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  17. A pathway to a more sustainable water sector: sustainability-based asset management.

    Science.gov (United States)

    Marlow, D R; Beale, D J; Burn, S

    2010-01-01

    The water sectors of many countries are faced with the need to address simultaneously two overarching challenges; the need to undertake effective asset management coupled with the broader need to evolve business processes so as to embrace sustainability principles. Research has thus been undertaken into the role sustainability principles play in asset management. As part of this research, a series of 25 in-depth interviews were undertaken with water sector professionals from around Australia. Drawing on the results of these interviews, this paper outlines the conceptual relationship between asset management and sustainability along with a synthesis of the relevant opinions voiced in the interviews. The interviews indicated that the participating water authorities have made a strong commitment to sustainability, but there is a need to facilitate change processes to embed sustainability principles into business as usual practices. Interviewees also noted that asset management and sustainability are interlinked from a number of perspectives, especially in the way decision making is undertaken with respect to assets and service provision. The interviews also provided insights into the research needed to develop a holistic sustainability-based asset management framework.

  18. Management of Business Transformation to Sustainable Business

    OpenAIRE

    Grunda, Rokas

    2011-01-01

    Having examined the concepts of sustainable business and advantages and disadvantages of business sustainability management models, the objective of the dissertation is to formulate a management model of business transformation to sustainable business and to verify it in present business conditions in Lithuania. In the dissertation, the essence of the concepts of sustainable development and sustainability is characterized, the criteria of sustainable society are distinguished and the concept ...

  19. Corporate Sustainability Management and Environmental Ethics

    DEFF Research Database (Denmark)

    Schuler, Douglas; Rasche, Andreas; Etzion, Dror

    2017-01-01

    This article reviews four key orientations in environmental ethics that range from an instrumental understanding of sustainability to one that acknowledges the intrinsic value of sustainable behavior (i.e., sustainable resource use, conservation and preservation, rights-based perspectives, and deep...... ecology). It then shows that the current scholarly discourse around corporate sustainability management—as reflected in environment management (EM), corporate social responsibility (CSR), and corporate political activity (CPA)—mostly favors an instrumental perspective on sustainability. Sustainable...... business practices are viewed as anthropocentric and are conceptualized as a means to achieve competitive advantage. Based on these observations, we speculate about what corporate sustainability management might look like if it applied ethical orientations that emphasize the intrinsic value of nature...

  20. Nutrient compensation as management tool– Sugar kelp production in sustainable aquaculture

    DEFF Research Database (Denmark)

    Schmedes, Peter Søndergaard; Boderskov, Teis; Silva Marinho, Goncalo

    Integrated multi-trophic aquaculture (IMTA) is theoretically a sustainable production form, which minimizes waste products from e.g. fish farms, by the co-production of bivalves or/and seaweed. For the Danish fish farmers the extractive organisms could be the solution for increasing fish production...... and robust mitigation tool for nitrogen removal and hopefully allow for future expansion of sustainable marine fish production in Denmark....

  1. Design and management of sustainable built environments

    CERN Document Server

    2013-01-01

    Climate change is believed to be a great challenge to built environment professionals in design and management. An integrated approach in delivering a sustainable built environment is desired by the built environment professional institutions. The aim of this book is to provide an advanced understanding of the key subjects required for the design and management of modern built environments to meet carbon emission reduction targets. In Design and Management of Sustainable Built Environments, an international group of experts provide comprehensive and the most up-to-date knowledge, covering sustainable urban and building design, management and assessment. The best practice case studies of the implementation of sustainable technology and management from the BRE Innovation Park are included. Design and Management of Sustainable Built Environments will be of interest to urban and building designers, environmental engineers, and building performance assessors.  It will be particularly useful as a reference book ...

  2. Farmer Field School on Nutrient Management.

    NARCIS (Netherlands)

    Onduru, D.; Muchena, F.N.; Gachimbi, L.N.; Jager, de A.

    2003-01-01

    In Kenya Integrated Nutrient Management (INM) is being used to make the best use of local resources and to optimise the effects of external inputs. In Mbeere, a district that lies in the dryland area of Eastern Kenya the Farmer Field School (FFS) has been in operation during one season and work is

  3. Sustainable smallholder intensification through improved water management requires adjusted fertilizer recommendation

    Science.gov (United States)

    Gedfew, Muluye; Schmitter, Petra; Nakawuka, Prossie; Tilahun, Seifu A.; Steenhuis, Tammo; Langan, Simon

    2017-04-01

    found for pepper. The N and K balances were less negative when farmers used organic fertilizers aside from inorganic fertilizers compared to those farmers who only applied Urea and Di-Ammonium Phosphate (DAP). Furthermore, the largest negative nutrient balances were obtained for the water management leading to the highest crop and water productivity (i.e. CWR). Hence, introducing sustainable water management practices in irrigation requires associated fertilizer recommendations to compensate for the increased yields obtained, avoiding land degradation in the long term.

  4. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura; Eun Kim, Jung; El Saliby, Ibrahim; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, NorEddine; Leiknes, TorOve; Kyong Shon, Ho

    2017-01-01

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil

  5. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  6. Sequential Management of Commercial Rosewood (Aniba rosaeodora Ducke Plantations in Central Amazonia: Seeking Sustainable Models for Essential Oil Production

    Directory of Open Access Journals (Sweden)

    Pedro Medrado Krainovic

    2017-11-01

    Full Text Available Rosewood (Aniba rosaeodora Ducke is an endangered tree that produces essential oil of high commercial value. However, technical-scientific knowledge about cultivation is scarce and studies are needed to examine the management viability. The current study evaluated rosewood aboveground biomass management, measuring the export of nutrients resulting from harvesting and testing sustainable management models. The crown of 36 rosewood trees were pruned and 108 trees cut at 50 cm above the soil in two regions in Central Amazonia. Post-harvest performance of sprouting shoots was evaluated and after, sprouting shoots were pruned so that the development of two, three and all shoots was permitted. Nutrient stock estimation was calculated as the product of mass and nutrient concentration, which allowed nutritional replacement to be estimated. The pruning facilitates regrowth by 40.11% of the initial mass while by cut regrow 1.45%. Chemical attributes of regrowth biomass differed significantly prior to management and regrowth had a significant correlation with the reserves in root tissues and with the pre -management status of the individual tree. Driving sprouts resulted in significantly larger growth increments and may provide a form of management that can viably be adopted. Biomass sequential management resulted in high nutrient exports and the amount of fertilizer needed for replenishment depended on the intensity and frequency of cropping. Compared with the cut of the tree, pruning the canopy reduces fertilizers that are required to replenish amount by 44%, decreasing to 26.37% in the second rotation. The generated knowledge contributes to this silvicultural practice as it becomes ecologically and economically viable.

  7. Sustainability in Project Management: Reality Bites

    NARCIS (Netherlands)

    Gilbert Gilbert Silvius; Ron Schipper; Snezana Nedeski

    2012-01-01

    The relationship between project management and sustainable development is rapidly gaining interest from both practitioners and academics. Studies on the integration of the concepts of sustainability into project management, approach this topic mostly from a conceptual, logical or moral point of

  8. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    Science.gov (United States)

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack

  9. A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa

    Directory of Open Access Journals (Sweden)

    Malinda S. Thilakarathna

    2015-06-01

    Full Text Available Finger millet (Eleusine coracana (L. Gaertn is a staple food crop grown by subsistence farmers in the semi-arid tropics of South Asia and Africa. It remains highly valued by traditional farmers as it is nutritious, drought tolerant, short duration, and requires low inputs. Its continued propagation may help vulnerable farmers mitigate climate change. Unfortunately, the land area cultivated with this crop has decreased, displaced by maize and rice. Reversing this trend will involve achieving higher yields, including through improvements in crop nutrition. The objective of this paper is to comprehensively review the literature concerning yield responses of finger millet to inorganic fertilizers (macronutrients and micronutrients, farmyard manure (FYM, green manures, organic by-products, and biofertilizers. The review also describes the impact of these inputs on soils, as well as the impact of diverse cropping systems and finger millet varieties, on nutrient responses. The review critically evaluates the benefits and challenges associated with integrated nutrient management, appreciating that most finger millet farmers are economically poor and primarily use farmyard manure. We conclude by identifying research gaps related to nutrient management in finger millet, and provide recommendations to increase the yield and sustainability of this crop as a guide for subsistence farmers.

  10. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses

    NARCIS (Netherlands)

    Bender, S.F.; van der Heijden, M.G.A.|info:eu-repo/dai/nl/240923901

    2015-01-01

    Efficient resource use is a key factor for sustainable production and a necessity for meeting future global food demands. However, the factors that control resource use efficiency in agro-ecosystems are only partly understood. We investigated the influence of soil biota on nutrient leaching,

  11. Sustainability partnerships and viticulture management in California.

    Science.gov (United States)

    Hillis, Vicken; Lubell, Mark; Hoffman, Matthew

    2018-07-01

    Agricultural regions in the United States are experimenting with sustainability partnerships that, among other goals, seek to improve growers' ability to manage their vineyards sustainably. In this paper, we analyze the association between winegrape grower participation in sustainability partnership activities and practice adoption in three winegrowing regions of California. Using data gathered from a survey of 822 winegrape growers, we find a positive association between participation and adoption of sustainable practices, which holds most strongly for practices in which the perceived private benefits outweigh the costs, and for growers with relatively dense social networks. We highlight the mechanisms by which partnerships may catalyze sustainable farm management, and discuss the implications of these findings for improving sustainability partnerships. Taken together, we provide one of the most comprehensive quantitative analyses to date regarding the effectiveness of agricultural sustainability partnerships for improving farm management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Sustainable operations management: A typological approach

    Directory of Open Access Journals (Sweden)

    Lawrence Michael Corbett

    2009-07-01

    Full Text Available This paper discusses the nature of sustainability and sustainable development as they relate to operations management. It proposes a typology for sustainable operations management that is based on the life cycle stages of a product and the three dimensions of corporate social responsibility. The aim is to show how this typology development could provide a useful approach to integrating the diverse strands of sustainability in operations, using industrial ecology and carbon neutrality as examples. It does this by providing a focused subset of environmental concerns for an industrial ecology approach, and some research propositions for the issue of carbon neutrality.

  13. Tracer methods to quantify nutrient uptake from plough layer, sub-soil and fertilizer: implications on sustainable nutrient management

    International Nuclear Information System (INIS)

    Haak, E.

    1996-01-01

    Two soils injection methods are presented. The first method consists of homogeneously labelling the whole plough layer with carrier free tracers. this is done in two treatments, (1) a reference treatment without connection with the sub-soil and (2) an experimental treatment where the sub-soil is freely accessible for root penetration. The second method, which is now under development, consists of using isotope labelled fertilizers instead of carrier free tracers. By application of the A-value concept it is possible to quantify (by the first method) the plant uptake of nutrients from plough layer and sub-soil, and from the second method, the uptake of nutrients from the applied fertilizer. A fertilizer strategy for phosphorus is discussed based on data obtained from tracer experiment in the field, and soil survey of specific field sites. (author). 7 refs, 2 figs, 1 tab

  14. Tracer methods to quantify nutrient uptake from plough layer, sub-soil and fertilizer: implications on sustainable nutrient management

    Energy Technology Data Exchange (ETDEWEB)

    Haak, E [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Radioecology

    1996-07-01

    Two soils injection methods are presented. The first method consists of homogeneously labelling the whole plough layer with carrier free tracers. this is done in two treatments, (1) a reference treatment without connection with the sub-soil and (2) an experimental treatment where the sub-soil is freely accessible for root penetration. The second method, which is now under development, consists of using isotope labelled fertilizers instead of carrier free tracers. By application of the A-value concept it is possible to quantify (by the first method) the plant uptake of nutrients from plough layer and sub-soil, and from the second method, the uptake of nutrients from the applied fertilizer. A fertilizer strategy for phosphorus is discussed based on data obtained from tracer experiment in the field, and soil survey of specific field sites. (author). 7 refs, 2 figs, 1 tab.

  15. Compilation and testing of tools and methods for sustainable coastal management at local and regional scales : Deliverable D2.5.4, Thresholds project, 6th framework programme, EU, 108 p.

    OpenAIRE

    Håkanson, Lars

    2008-01-01

    This work describes how general methods and models for sustainable coastal ecosystem management at local to regional scales may be used to address key questions in coastal management and threshold science. The general, process-based mass-balance model (CoastMab) for substances transported to, within and from for coastal areas may be used as a tool to: 1. Combat eutrophication, 2. Rank nutrient fluxes, 3. Estimate the system response related to nutrient reductions and 4. Estimate realistic val...

  16. Advances and Challenges for Nutrient Management in China in the 21st Century

    NARCIS (Netherlands)

    Sims, J.T.; Ma, L.; Oenema, O.; Dou, Z.; Zhang, F.S.

    2013-01-01

    Managing agricultural nutrients to provide a safe and secure food supply while protecting the environment remains one of the great challenges for the 21st century. The fourth International Nutrient Management Symposium (INMS), held in 2011 at the University of Delaware, addressed these issues via

  17. Post-remediation use of macrophytes as composting materials for sustainable management of a sanitary landfill.

    Science.gov (United States)

    Song, Uhram

    2017-04-03

    To increase the remediation ability and life expectancy of a leachate channel in a sanitary landfill, the plants used for remediation were composted as a post-remediation management technique. Phragmites australis or Typha angustifolia used for phytoremediation in a landfill leachate channel was harvested and used as a co-composting material with sewage sludge. The macrophyte compost was applied to the slope of a landfill on which plants were introduced for revegetation and to plants grown in pots to test for acute effects of the compost. The compost of the macrophytes successfully increased soil moisture and nutrient contents both on the landfill slope and in the soil of the pot experiment. Additionally, the rates of photosynthesis and the nutrient contents increased for plants grown in macrophyte compost. Thus, the revegetation or restoration management of the landfill would improve with the macrophyte compost used as a soil conditioner. The harvest of the macrophytes has the additional benefit of improving the remediation function of the leachate channel. Therefore, to sustainably manage both the leachate channel and the landfill, the composting of post-remediation macrophytes is an environmentally friendly and economically affordable method.

  18. 25 CFR 163.11 - Forest management planning and sustained yield management.

    Science.gov (United States)

    2010-04-01

    ... principles of sustained yield management and will not be authorized until practical methods of harvest based on sound economic and silvicultural and other forest management principles have been prescribed... period in the future. Forest management plans shall be based on the principle of sustained yield...

  19. The Application of Isotope Techniques in Nutrient Assessment and Management in Riverine Systems. Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M.; Newman, B. D. [International Atomic Energy Agency, Isotope Hydrology Section, Vienna (Austria); Hadwen, W. L. [Australian Rivers Institute, Griffith School of Environment, Griffith University - Nathan Campus, Brisbane, Queensland (Australia); Rogers, K. [National Isotope Center, GNS Science, Lower Hutt (New Zealand); Mayer, B. [Department of Geoscience, University of Calgary, Calgary, Alberta (Canada); Hein, T. [Wasser Cluster Lunz, Interuniversitary Center for Aquatic Research, Lunz-See, and University of Natural Resources and Applied Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna (Austria); Stellato, L. [Centre for Isotopic Research on Cultural and Environmental Heritage (CIRCE), Seconda Universita degli Studi di Napoli, Caserta (Italy); Ohte, N. [Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo (Japan); Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, California (United States)

    2013-05-15

    A variety of sources contribute to nutrients in rivers and nutrients may subsequently take various pathways and undergo different transformation processes. We first review representative types of isotopes and the roles of isotope techniques that have been or could be used for nutrient assessment and management. We then present technical, financial and logistical matters to be considered in selecting appropriate isotope techniques for nutrient assessment and management. Lastly we propose several approaches on the application of isotope techniques to make more effective the studies and management of nutrients in rivers in the near future. (author)

  20. Comparing Sustainable Forest Management Certifications Standards: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Michael Rawson. Clark

    2011-03-01

    Full Text Available To solve problems caused by conventional forest management, forest certification has emerged as a driver of sustainable forest management. Several sustainable forest management certification systems exist, including the Forest Stewardship Council and those endorsed by the Programme for the Endorsement of Forest Certification, such as the Canadian Standards Association - Sustainable Forestry Management Standard CAN/CSA - Z809 and Sustainable Forestry Initiative. For consumers to use certified products to meet their own sustainability goals, they must have an understanding of the effectiveness of different certification systems. To understand the relative performance of three systems, we determined: (1 the criteria used to compare the Forest Stewardship Council, Canadian Standards Association - Sustainable Forestry Management, and Sustainable Forestry Initiative, (2 if consensus exists regarding their ability to achieve sustainability goals, and (3 what research gaps must be filled to improve our understanding of how forest certification systems affect sustainable forest management. We conducted a qualitative meta-analysis of 26 grey literature references (books, industry and nongovernmental organization publications and 9 primary literature references (articles in peer-reviewed academic journals that compared at least two of the aforementioned certification systems. The Forest Stewardship Council was the highest performer for ecological health and social sustainable forest management criteria. The Canadian Standards Association - Sustainable Forestry Management and Sustainable Forestry Initiative performed best under sustainable forest management criteria of forest productivity and economic longevity of a firm. Sixty-two percent of analyses were comparisons of the wording of certification system principles or criteria; 34% were surveys of foresters or consumers. An important caveat to these results is that only one comparison was based on

  1. Contradictions Between Risk Management and Sustainable Development

    International Nuclear Information System (INIS)

    Olsen, Odd Einar; Langhelle, Oluf; Engen, Ole A.

    2006-01-01

    The aim of this paper is to discuss how risk management as a methodology and mindset influence on priorities and decisions concerning sustainable development. Management of risks and hazards often rely on partial analysis with a limited time frame. This may lead to a paradoxical situation where risk management and extended use of risk analysis could hamper long term sustainable development. The question is: Does the use of risk and vulnerability analysis (RaV-analysis) hamper or contribute to sustainable development? Because risk management and assessment has a more narrow scope and a limited time perspective based on well established methodologies, the tangible impacts of risk reducing measures in a project is easier to calculate than long-term and intangible impacts on global development. Empirical evidence is still scarce, but our preliminary conclusion is that mainstream risk management and assessments is counterproductive to sustainable development

  2. Contradictions Between Risk Management and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Odd Einar; Langhelle, Oluf; Engen, Ole A. [Univ. of Stavanger (Norway). Dept. of Media, Culture and Social Science

    2006-09-15

    The aim of this paper is to discuss how risk management as a methodology and mindset influence on priorities and decisions concerning sustainable development. Management of risks and hazards often rely on partial analysis with a limited time frame. This may lead to a paradoxical situation where risk management and extended use of risk analysis could hamper long term sustainable development. The question is: Does the use of risk and vulnerability analysis (RaV-analysis) hamper or contribute to sustainable development? Because risk management and assessment has a more narrow scope and a limited time perspective based on well established methodologies, the tangible impacts of risk reducing measures in a project is easier to calculate than long-term and intangible impacts on global development. Empirical evidence is still scarce, but our preliminary conclusion is that mainstream risk management and assessments is counterproductive to sustainable development.

  3. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  4. Sustainable wetland management and support of ecosystem services

    Science.gov (United States)

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  5. OPTIMAL CONTROL THEORY FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    Science.gov (United States)

    With growing world population, diminishing resources, and realization of the harmful effects of various pollutants, research focus in environmental management has shifted towards sustainability. The goal of a sustainable management strategy is to promote the structure and operati...

  6. Proximate and Ultimate Limiting Nutrients in the Mississippi River Plume: Implications for Hypoxia Reduction Through Nutrient Management

    Science.gov (United States)

    Fennel, K.; Laurent, A.

    2016-02-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is by how much nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable over natural variability. We have performed a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the `ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect

  7. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China

    NARCIS (Netherlands)

    Reidsma, P.; Feng, S.; Loon, van M.; Luo, X.; Kang, C.; Lubbers, M.T.M.H.; Kanellopoulos, A.; Wolf, J.; Ittersum, van M.K.; Qu, F.

    2012-01-01

    Water pollution in Chinese lakes is a major problem. To reduce nutrient pollution and enhance sustainable development in Taihu Basin, China, an integrated assessment of the impacts of agricultural land use policies has been performed, using the technical coefficient generator TechnoGIN and the

  8. Delivering Sustainable Facilities Management in Danish Housing Estates

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Jesper Ole; Jensen, Per Anker

    2009-01-01

    Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management is suppo......Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management...... is supporting social, economical and environmental sustainable development. Sustainable facility management (SFM) is as an 'umbrella' for various ways of reducing flows of energy, water and waste in the daily operation of the buildings, for instance by regular monitoring the consumption, by using 'green......-setting including the ownership of the building, the organisation of daily operation, the roles and relation between stakeholders are equally important in order to utilise the monitoring as a mean for transformation towards sustainable buildings and lifestyles....

  9. Managing for Sustainable Development Impact

    NARCIS (Netherlands)

    Kusters, C.S.L.; Batjes, Karen; Wigboldus, S.A.; Brouwers, J.H.A.M.; Dickson Baguma, Sylvester

    2017-01-01

    This guide is about managing development initiatives and organizations towardssustainable development impact. It builds on the work of Guijt and Woodhill inthe 2002 IFAD publication Managing for Impact in Rural Development: A Guide for Project M&E. Since then, the managing for sustainable

  10. Stakeholder Thinking in Sustainability Management

    DEFF Research Database (Denmark)

    Gjerdrum Pedersen, Esben Rahbek; Hove Henriksen, Morten; Frier, Claus

    2013-01-01

    Purpose – The objective of the paper is to describe and discuss how the biotech company Novozymes integrates stakeholder thinking into everyday sustainability practices. Design/methodology/approach – The paper is based on first-hand experiences as well as secondary information from Novozymes' sta...... to make sense of stakeholder thinking. Originality/value – The contribution of this paper is to provide a detailed analysis of how various stakeholder relations management methods can be used in practice to integrate sustainability in an organisation.......' stakeholder-oriented sustainability activities. Findings – The paper illustrates how a company is striving to transform the general stakeholder principles into concrete, manageable actions. Moreover, the paper describes some of the needs, challenges, and paradoxes experienced by an organisation that is trying...

  11. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    Science.gov (United States)

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Study on National Sustainable Development Strategy Management Based on Stakeholders Management Theory

    Institute of Scientific and Technical Information of China (English)

    Chen Huarong; Wang Xiaoming

    2012-01-01

    Based on the stakeholders management theory, this pa- per provides a new strategic management method for the National Sustainable Development Strategy. By taking China's National Sustainable Development Strategy Management as an example, this paper identifies all the stakeholders involved and then as- sesses stakeholders from two dimensions, namely "Importance" and "Attitude", by which all of the stakeholders are divided into six categories. On this basis, further analysis is made to work out strategic management programme by scheduling the strate- gic emphases, steps and management countermeasures for dif- ferent types of stakeholders so as to provide theortical evidence for the practice of National Sustainable Developnent Strategy management.

  13. The sustainable project management: A review and future possibilities

    Directory of Open Access Journals (Sweden)

    V.K. Chawla

    2018-06-01

    Full Text Available Sustainability in project operations such as financial, social and environmental sustainability is one of the most prominent issues of the present times to address. The increased focus on sus-tainable business operations has changed the viewpoint of researchers and corporate community towards the project management. Today sustainability in business operations along with sustain-ability of natural and environmental resources are of paramount significance which has further caused a huge impact on conception, planning, scheduling and execution of the project manage-ment activities. In this paper, a literature review between 1987 and 2018 on different issues af-fecting the sustainability in project management is carried out. The present study also identifies and discusses the future possibilities to apply computational procedures in order to estimate and optimize the sustainability issues in the management of projects, for example the computational evolutionary algorithms can be applied to formulate the multi-objective decision-making problem after considering critical factors of sustainability in the projects and then yielding optimized solu-tions for the formulated problem to achieve sustainability in the projects. A new integrated framework with the inclusion of feedback function for assessment of each decision and actions taken towards the sustainability of the projects is also identified and presented.

  14. Managing Natural Resources for Sustainable Livelihoods: Uniting ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2003-07-31

    Jul 31, 2003 ... Management of local resources has a greater chance of a ... Managing Natural Resources for Sustainable Livelihoods: Uniting Science and Participation ... innovative approaches for establishing and sustaining participation and ... A new IDRC-supported project will help improve water conservation and ...

  15. Sustainability Management in Agribusiness: Challenges, Concepts, Responsibilities and Performance

    Directory of Open Access Journals (Sweden)

    Nina Friedrich

    2012-12-01

    Full Text Available The idea of sustainable management has recently gained growing attention in the agribusiness sector. This is mainly due to a widespread discontent with the industrialization of agricultural production and food processing and growing public pressure on agribusiness firms to implement more sustainable management practices. In this paper we present the results of an explorative empirical study of sustainability management in German agribusiness firms. The study shows that agribusiness firms have developed a broad understanding of sustainability management and perceive a multi-facetted spectrum of societal demands they have to meet. The most important arguments for implementing more sustainable management practices are that companies have to make sure that they are trusted by society in the long run and that the perception of a company by external stakeholders has become more and more important. The companies surveyed know quite a number of sustainability programmes and standards, but the number of companies that actually participate in these initiatives is much smaller. Nonetheless, the majority of the respondents feels that their company is more successful with regard to sustainability management than industry average.

  16. Sustainable Management of Food

    Science.gov (United States)

    To provide information to organizations to help them implement sustainable food management, including joining the Food Recovery Challenge. To provide education and information to communities and concerned citizens.

  17. Sustaining self-management in diabetes mellitus.

    Science.gov (United States)

    Mitchell-Brown, Fay

    2014-01-01

    Successful management of diabetes depends on the individual's ability to manage and control symptoms. Self-management of diabetes is believed to play a significant role in achieving positive outcomes for patients. Adherence to self-management behaviors supports high-quality care, which reduces and delays disease complications, resulting in improved quality of life. Because self-management is so important to diabetes management and involves a lifelong commitment for all patients, health care providers should actively promote ways to maintain and sustain behavior change that support adherence to self-management. A social ecological model of behavior change (McLeroy, Bibeau, Steckler, & Glanz, 1988) helps practitioners provide evidence-based care and optimizes patients' clinical outcomes. This model supports self-management behaviors through multiple interacting interventions that can help sustain behavior change. Diabetes is a complex chronic disease; successful management must use multiple-level interventions.

  18. Development and Use of a Bioeconomic Model for Management of Mussel Fisheries under Different Nutrient Regimes in the Temperate Estuary of the Limfjord, Denmark

    Directory of Open Access Journals (Sweden)

    Karen Timmermann

    2014-03-01

    Full Text Available Coastal ecosystems worldwide are under pressure from human-induced nutrient inputs, fishing activities, mariculture, construction work, and climate change. Integrated management instruments handling one or more of these problems in combination with socioeconomic issues are therefore necessary to secure a sustainable use of resources. In the Limfjord, a temperate eutrophic estuary in Denmark, nutrient load reductions are necessary to fulfill EU regulations such as the Water Framework Directive (WFD. The expected outcome of these load reductions is an improved water quality, but also reduced production of the abundant stock of filter-feeding blue mussels, Mytilus edulis. This is expected to have significant economic consequences for the million-euro mussel fishing industry taking place in the Limfjord today. We developed a bioeconomic model that can be used to explore the consequences of load reductions for mussel fishery as practiced today, as well as potential management options, to obtain an economically and ecologically sustainable mussel fishery. Model simulations clearly demonstrate a substantial decrease in mussel production after the nutrient load reductions necessary to obtain the targets in the WFD. With today's practice, the mussel fishery in the Limfjord will not be profitable in a future, less eutrophic estuary. However, model simulations also revealed that mussel fishery can be profitable after implementation of the WFD with a reduction in the total fishing quota, fewer fishing vessels, and a higher fishing quota per vessel.

  19. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability.

    Science.gov (United States)

    Lu, Yonglong; Yuan, Jingjing; Lu, Xiaotian; Su, Chao; Zhang, Yueqing; Wang, Chenchen; Cao, Xianghui; Li, Qifeng; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, Simon; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville

    2018-08-01

    Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Managing Natural Resources for Sustainable Livelihoods: Uniting ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    31 juil. 2003 ... Management of local resources has a greater chance of a sustainable outcome when there is partnership between local people and external agencies, and agendas relevant to their aspirations and circumstances. Managing Natural Resources for Sustainable Livelihoods analyses and extends this premise ...

  1. Effects of site management operations on the nutrient capital of a ...

    African Journals Online (AJOL)

    The Karkloof Project is a case study of the effects of intensive site management operations during the interrotational period, on (a) the nutrient capital of the system, and (b) the availability of growth resources (nutrients and water) in a commercial Eucalyptus grandis stand in South Africa. This paper specifically focuses on the ...

  2. On the use of unsaturated flow and transport models in nutrient and pesticide management

    NARCIS (Netherlands)

    Vanclooster, M.; Boesten, J.J.T.I.; Tiktak, A.; Jarvis, N.; Kroes, J.G.; Muñoz-Carpena, R.; Clothier, B.E.; Green, S.R.

    2004-01-01

    In this paper, we show how flow and transport models are introduced in the nutrient and pesticide management decision-making process. Examples are given of the use of flow and transport models in (i) field-scale nutrient and pesticide management; (ii) the identification and evaluation of

  3. Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under extreme nutrient deprivation conditions.

    Science.gov (United States)

    Kim, Sang Eun; Park, Hye-Jin; Jeong, Hye Kyoung; Kim, Mi-Jung; Kim, Minyeong; Bae, Ok-Nam; Baek, Seung-Hoon

    2015-07-31

    Pancreatic ductal adenocarcinomas are an extremely aggressive and devastating type of cancer with high mortality. Given the dense stroma and poor vascularization, accessibility to nutrients is limited in the tumor microenvironment. Here, we aimed to elucidate the role of autophagy in promoting the survival of human pancreatic cancer PANC-1 cells exposed to nutrient-deprived media (NDM) lacking glucose, amino acids, and serum. NDM inhibited Akt activity and phosphorylation of p70 S6K, and induced AMPK activation and mitochondrial depolarization. NDM also time-dependently increased LC3-II accumulation, number of GFP-LC3 puncta, and colocalization between GFP-LC3 and lysosomes. These results suggested that autophagy was progressively activated through Akt- and AMPK-mTOR pathway in nutrient-deficient PANC-1 cells. Autophagy inhibitors (chloroquine and wortmannin) or silencing of Atg5 augmented PANC-1 cell death in NDM. In cells exposed to NDM, chloroquine and wortmannin induced apoptosis and Z-VAD-fmk inhibited cytotoxicity of these inhibitors. These data demonstrate that autophagy is anti-apoptotic and sustains the survival of PANC-1 cells following extreme nutrient deprivation. Autophagy modulation may be a viable therapeutic option for cancer cells located in the core of solid tumors with a nutrient-deficient microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Towards Sustainable Flow Management: Local Agenda 21 - Conclusions

    DEFF Research Database (Denmark)

    Moss, Timothy; Elle, Morten

    1998-01-01

    Concluding on the casestudies of Local Agenda 21 as an instrument of sustainable flow management......Concluding on the casestudies of Local Agenda 21 as an instrument of sustainable flow management...

  5. Sustainable Flow Management in a Danish Perspective

    DEFF Research Database (Denmark)

    Elle, Morten

    1998-01-01

    The paper discusses the basic results of the Sustainable Flow Management project in relation to future planning of energy and resource flows in municipalities......The paper discusses the basic results of the Sustainable Flow Management project in relation to future planning of energy and resource flows in municipalities...

  6. Toward A Science of Sustainable Water Management

    Science.gov (United States)

    Brown, C.

    2016-12-01

    Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. The related challenges of resolving the competition for freshwater among competing uses (so called "nexus" issues) and adapting water resources systems to climate change are prominent examples of the of sustainable water management challenges. In addition, largely untested concepts such as "integrated water resources management" have surfaced as Sustainable Development Goals. In this presentation, we argue that for research to improve water management, and for practice to inspire better research, a new focus is required, one that bridges disciplinary barriers between the water resources research focus on infrastructure planning and management, and the role of human actors, and geophysical sciences community focus on physical processes in the absence of dynamical human response. Examples drawn from climate change adaptation for water resource systems and groundwater management policy provide evidence of initial progress towards a science of sustainable water management that links improved physical understanding of the hydrological cycle with the socioeconomic and ecological understanding of water and societal interactions.

  7. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    Science.gov (United States)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  8. Sustainable energy management - a prerequisite for the realization Kyoto Protocol

    Directory of Open Access Journals (Sweden)

    Mirjana Golušin

    2012-07-01

    Full Text Available Energy management can be defined as the process of planning, directing, implementing and controlling the process of generation, transmission and energy consumption. Energy management is a kind of synthesis of phenomena and concepts of modern energy management (management, or the use of modern settings management in the energy sector. Furthermore, when outlining the basic settings for power management Modern management is based on the assumptions of sustainability and conservation of energy stability for present and future generations. Therefore, modern energy management can be seen as a kind of synthesis of three actuarial sciences: energy, sustainable development and management. Sustainable Energy Management is a unique new concept, idea and approach that require many changes in the traditional way of understanding and interpretation of energy management at all levels. Sustainable energy management concept can not therefore be construed as an adopted and defined the concept, but must be constantly modified and adjusted in accordance with changes in the three areas that define it, and in accordance with the specific country or region where applicable. Accordingly, sustainable energy management can be defined as the process of energy management that is based on fundamental principles of sustainable development.

  9. Modeling Factors with Influence on Sustainable University Management

    Directory of Open Access Journals (Sweden)

    Oana Dumitrascu

    2015-01-01

    Full Text Available The main objective of this paper is to present the factors with influence on the sustainable university management and the relationships between them. In the scientific approach we begin from a graphical model, according to which the extracurricular activities together with internal environmental factors influence students’ involvement in such activities, the university attractiveness, their academic performance and their integration into the socially-economic and natural environment (components related with sustainable development. The model emphasizes that individual performances, related to students’ participation in extracurricular activities, have a positive influence on the sustainability of university management. The results of the study have shown that the university sustainability may be influenced by a number of factors, such as students’ performance, students’ involvement in extracurricular activities or university’s attractiveness and can in turn influence implicitly also the sustainability of university management. The originality of the paper consists in the relationships study using the modeling method in general and informatics tools of modeling in particular, as well as through graphical visualization of some influences, on the sustainability university management.

  10. Nutrient imbalance in Norway spruce

    International Nuclear Information System (INIS)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  11. Nutrient imbalance in Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  12. Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters

    Directory of Open Access Journals (Sweden)

    Eva Ring

    2011-02-01

    Full Text Available Additions of nutrients, faster growing tree varieties, more intense harvest practices, and a changing climate all have the potential to increase forest production in Sweden, thereby mitigating climate change through carbon sequestration and fossil fuel substitution. However, the effects of management strategies for increased biomass production on soil resources and water quality at landscape scales are inadequately understood. Key knowledge gaps also remain regarding the sustainability of shorter rotation periods and more intensive biomass harvests. This includes effects of fertilization on the long-term weathering and supply of base cations and the consequences of changing mineral availability for future forest production. Furthermore, because soils and surface waters are closely connected, management efforts in the terrestrial landscape will potentially have consequences for water quality and the ecology of streams, rivers, and lakes. Here, we review and discuss some of the most pertinent questions related to how increased forest biomass production in Sweden could affect soils and surface waters, and how contemporary forestry goals can be met while minimizing the loss of other ecosystem services. We suggest that the development of management plans to promote the sustainable use of soil resources and water quality, while maximizing biomass production, will require a holistic ecosystem approach that is placed within a broader landscape perspective.

  13. Management innovation driving sustainable supply management

    NARCIS (Netherlands)

    Koster, Mieneke; Vos, Bart; Schroeder, Roger

    2017-01-01

    Although research in the area of sustainable supply management (SSM) has evolved over the past few decades, knowledge about the processes of emergence and innovation of SSM practices within organizations is surprisingly limited. These innovation processes are, however, important because of the

  14. Sustainability assessment in forest management based on individual preferences.

    Science.gov (United States)

    Martín-Fernández, Susana; Martinez-Falero, Eugenio

    2018-01-15

    This paper presents a methodology to elicit the preferences of any individual in the assessment of sustainable forest management at the stand level. The elicitation procedure was based on the comparison of the sustainability of pairs of forest locations. A sustainability map of the whole territory was obtained according to the individual's preferences. Three forest sustainability indicators were pre-calculated for each point in a study area in a Scots pine forest in the National Park of Sierra de Guadarrama in the Madrid Region in Spain to obtain the best management plan with the sustainability map. We followed a participatory process involving fifty people to assess the sustainability of the forest management and the methodology. The results highlighted the demand for conservative forest management, the usefulness of the methodology for managers, and the importance and necessity of incorporating stakeholders into forestry decision-making processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Important features of Sustainable Aggregate Resource Management

    Science.gov (United States)

    Solar, Slavko V.; Shields, Deborah J.; Langer, William H.

    2004-01-01

    Every society, whether developed, developing or in a phase of renewal following governmental change, requires stable, adequate and secure supplies of natural resources. In the latter case, there could be significant need for construction materials for rebuilding infrastructure, industrial capacity, and housing. It is essential that these large-volume materials be provided in a rational manner that maximizes their societal contribution and minimizes environmental impacts. We describe an approach to resource management based on the principles of sustainable developed. Sustainable Aggregate Resource Management offers a way of addressing the conflicting needs and interests of environmental, economic, and social systems. Sustainability is an ethics based concept that utilizes science and democratic processes to reach acceptable agreements and tradeoffs among interests, while acknowledging the fundamental importance of the environment and social goods. We discuss the features of sustainable aggregate resource management.

  16. Important Features of Sustainable Aggregate Resource Management

    Directory of Open Access Journals (Sweden)

    Slavko V. Šolar

    2004-06-01

    Full Text Available Every society, whether developed, developing or in a phase of renewal following governmental change, requires stable, adequate and secure supplies of natural resources. In the latter case, there could be significant need for construction materials for rebuilding infrastructure, industrial capacity, and housing. It is essential that these large-volume materials be provided in a rational manner that maximizes their societal contribution and minimizes environmental impacts. We describe an approach to resource management based on the principles of sustainable development. Sustainable Aggregate Resource Management offers a way of addressing the conflicting needs and interests of environmental, economic, and social systems. Sustainability is an ethics based concept that utilizes science and democratic processes to reach acceptable agreements and tradeoffs among interests, while acknowledging the fundamental importance of the environment and social goods. We discuss the features of sustainable aggregate resource management.

  17. Sustainable forest management in Serbia: State and potentials

    Directory of Open Access Journals (Sweden)

    Medarević Milan

    2008-01-01

    Full Text Available Starting from the internationally adopted definition of sustainable forest management, this paper points to the demands of sustainable forest management that can be satisfied by meeting the definite assumptions. The first part presents the objectives of forest and woodland management planning and utilisation, hunting management, and protection of protected areas, as well as the all-inclusive compatible goals of forest policy in Serbia. The second part presents the analysis of the present state of forests in Serbia, in relation to the Pan-European criteria for the assessment of sustainability, and the potentials of our forests to meet all the demands.

  18. Sustainability and the facilities management in Malaysia

    Directory of Open Access Journals (Sweden)

    Asbollah Asra Zaliza

    2016-01-01

    Full Text Available Facilities Management (FM in the industry of environment involves numerous expertise, especially from the management side. Other than that, technology and finance are the other factors involved as well. One essential aspect of FM, other than the emphasis on technical operation, is its performance. In parallel, the performance does impact occupant behaviour and, at the same time, this performance does affect the environment. In short, this indicates that FM is in a key position to participate in delivering a sustainable environment for the industry of built environment. Sustainable facilities Management (SFM is crucial because buildings consume more resources which will, in consequence, negatively impact the environment and generate large amounts of waste. This justifies the importance of sustainability under the umbrella of facilities management. However, FM is quite new in Malaysia’s environment. Government agencies, such as JKR, have adopted and are practicing FM at the moment. Fortunately, there has been an increasing trend and awareness of SFM adoption. Therefore, this paper aims to understand and identify the contribution and practices of Sustainable Facilities Management (SFM in Malaysia; focusing on the development taken in regards to SFM.

  19. Short-term Forecasting Tools for Agricultural Nutrient Management.

    Science.gov (United States)

    Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew

    2017-11-01

    The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Sustainability in Supply Chain Management: Aggregate Planning from Sustainability Perspective.

    Science.gov (United States)

    Türkay, Metin; Saraçoğlu, Öztürk; Arslan, Mehmet Can

    2016-01-01

    Supply chain management that considers the flow of raw materials, products and information has become a focal issue in modern manufacturing and service systems. Supply chain management requires effective use of assets and information that has far reaching implications beyond satisfaction of customer demand, flow of goods, services or capital. Aggregate planning, a fundamental decision model in supply chain management, refers to the determination of production, inventory, capacity and labor usage levels in the medium term. Traditionally standard mathematical programming formulation is used to devise the aggregate plan so as to minimize the total cost of operations. However, this formulation is purely an economic model that does not include sustainability considerations. In this study, we revise the standard aggregate planning formulation to account for additional environmental and social criteria to incorporate triple bottom line consideration of sustainability. We show how these additional criteria can be appended to traditional cost accounting in order to address sustainability in aggregate planning. We analyze the revised models and interpret the results on a case study from real life that would be insightful for decision makers.

  1. Sustainability in Supply Chain Management: Aggregate Planning from Sustainability Perspective

    Science.gov (United States)

    Türkay, Metin; Saraçoğlu, Öztürk; Arslan, Mehmet Can

    2016-01-01

    Supply chain management that considers the flow of raw materials, products and information has become a focal issue in modern manufacturing and service systems. Supply chain management requires effective use of assets and information that has far reaching implications beyond satisfaction of customer demand, flow of goods, services or capital. Aggregate planning, a fundamental decision model in supply chain management, refers to the determination of production, inventory, capacity and labor usage levels in the medium term. Traditionally standard mathematical programming formulation is used to devise the aggregate plan so as to minimize the total cost of operations. However, this formulation is purely an economic model that does not include sustainability considerations. In this study, we revise the standard aggregate planning formulation to account for additional environmental and social criteria to incorporate triple bottom line consideration of sustainability. We show how these additional criteria can be appended to traditional cost accounting in order to address sustainability in aggregate planning. We analyze the revised models and interpret the results on a case study from real life that would be insightful for decision makers. PMID:26807848

  2. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    Science.gov (United States)

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  3. Incorporating permaculture and strategic management for sustainable ecological resource management.

    Science.gov (United States)

    Akhtar, Faiza; Lodhi, Suleman A; Khan, Safdar Shah; Sarwar, Farhana

    2016-09-01

    Utilization of natural assets to the best efficient level without changing natural balance has become a critical issue for researchers as awareness on climate change takes central position in global debate. Conventional sustainable resource management systems are based on neoclassical economic approach that ignores the nature's pattern and therefore are not actually capable of sustainable management of resources. Environmentalists are lately advocating incorporation of Permaculture as holistic approach based on ethics, equitable interaction with eco-systems to obtain sustainability. The paper integrates philosophy of permaculture with strategic management frameworks to develop a pragmatic tool for policy development. The policy design tool augments management tasks by integrating recording of natural assets, monitoring of key performance indicators and integration of sectorial policies in real time, bringing out policy as a truly live document. The tool enhances the edifice process, balancing short term viewpoints and long term development to secure renewability of natural resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sustainable mining management

    International Nuclear Information System (INIS)

    Tejera Oliver, J. L.

    2009-01-01

    Mining activities are carried out by the older man and have provided resources, since ancient times, for their development and progress. With the discovery of fire will show the first metals that have marked the civilizations of copper, bronze and iron, and is the prehistory of the Stone Age tools that man has made from the exploitation of quarries first. The industrial revolution of the nineteenth century is linked to coal and steel, and could not conceiver of todays society without oil and gas, without silicon and coltan. But the mines are often aggressive and, despite their need and what they contribute to the development are answered by the societies where are made. during recent years there has been growing international efforts to try to make the minimum requirements of sustainable exploitation (European Directives, GMI, GRI, etc.) In AENOR, and within the Technical Committee of Standardization 22 Mining and Explosives, chaired by AITEMIN, was established the subcommittee 3, chaired by IGME, where, with the participation of all stake holders, have developed some standards on sustainable mining management sustainable mining that will be a tool available to mining companies to demonstrate their sustainable use to Society. (Author)

  5. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  6. Sustainable Forest Management in Cameroon Needs More than Approved Forest Management Plans

    Directory of Open Access Journals (Sweden)

    Paolo Omar. Cerutti

    2008-12-01

    Full Text Available One of the main objectives of the 1994 Cameroonian forestry law is to improve the management of production forests by including minimum safeguards for sustainability into compulsory forest management plans. As of 2007, about 3.5 million hectares (60% of the productive forests are harvested following the prescriptions of 49 approved management plans. The development and implementation of these forest management plans has been interpreted by several international organizations as long awaited evidence that sustainable management is applied to production forests in Cameroon. Recent reviews of some plans have concluded, however, that their quality was inadequate. This paper aims at taking these few analyses further by assessing the actual impacts that approved management plans have had on sustainability and harvesting of commercial species. We carry out an assessment of the legal framework, highlighting a fundamental flaw, and a thorough comparison between data from approved management plans and timber production data. Contrary to the principles adhered to by the 1994 law, we find that the government has not yet succeeded in implementing effective minimum sustainability safeguards and that, in 2006, 68% of the timber production was still carried out as though no improved management rules were in place. The existence of a number of approved management plans cannot be used a proxy for proof of improved forest management.

  7. Is environmental management an economically sustainable business?

    Science.gov (United States)

    Gotschol, Antje; De Giovanni, Pietro; Esposito Vinzi, Vincenzo

    2014-11-01

    This paper investigates whether environmental management is an economically sustainable business. While firms invest in green production and green supply chain activities with the primary purpose of reducing their environmental impact, the reciprocal relationships with economic performance need to be clarified. Would firms and suppliers adjust their environmental strategies if the higher economic value that environmental management generates is reinvested in greening actions? We found out that environmental management positively influences economic performance as second order (long term) target, to be reached conditioned by higher environmental performance; in addition, firms can increase their performance if they reinvest the higher economic value gained through environmental management in green practices: While investing in environmental management programs is a short term strategy, economic rewards can be obtained only with some delays. Consequently, environmental management is an economically sustainable business only for patient firms. In the evaluation of these reciprocal relationships, we discovered that green supply chain initiatives are more effective and more economically sustainable than internal actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The MANAGE database: nutrient load and site characteristic updates and runoff concentration data.

    Science.gov (United States)

    Harmel, Daren; Qian, Song; Reckhow, Ken; Casebolt, Pamela

    2008-01-01

    The "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database was developed to be a readily accessible, easily queried database of site characteristic and field-scale nutrient export data. The original version of MANAGE, which drew heavily from an early 1980s compilation of nutrient export data, created an electronic database with nutrient load data and corresponding site characteristics from 40 studies on agricultural (cultivated and pasture/range) land uses. In the current update, N and P load data from 15 additional studies of agricultural runoff were included along with N and P concentration data for all 55 studies. The database now contains 1677 watershed years of data for various agricultural land uses (703 for pasture/rangeland; 333 for corn; 291 for various crop rotations; 177 for wheat/oats; and 4-33 yr for barley, citrus, vegetables, sorghum, soybeans, cotton, fallow, and peanuts). Across all land uses, annual runoff loads averaged 14.2 kg ha(-1) for total N and 2.2 kg ha(-1) for total P. On average, these losses represented 10 to 25% of applied fertilizer N and 4 to 9% of applied fertilizer P. Although such statistics produce interesting generalities across a wide range of land use, management, and climatic conditions, regional crop-specific analyses should be conducted to guide regulatory and programmatic decisions. With this update, MANAGE contains data from a vast majority of published peer-reviewed N and P export studies on homogeneous agricultural land uses in the USA under natural rainfall-runoff conditions and thus provides necessary data for modeling and decision-making related to agricultural runoff. The current version can be downloaded at http://www.ars.usda.gov/spa/manage-nutrient.

  9. Nordic Management and Sustainable Business

    DEFF Research Database (Denmark)

    Preuss, Bjørn

    2017-01-01

    of the Nordics and from that wants to answer if this management approach fosters a sustainable business culture. For defining the management and cultural approach applied in Nordic companies, the method of text mining in relation with machine learning will be used. Among European companies, the Nordic companies...

  10. Sustainability issues for resource managers.

    Science.gov (United States)

    Daniel L. Bottom; Gordon H. Reeves; Martha H. Brookes

    1996-01-01

    Throughout their history, conservation science and sustainable-yield management have failed to maintain the productivity of living resources. Repeated overexploitation of economic species, loss of biological diversity, and degradation of regional environments now call into question the economic ideas and values that have formed the foundation of scientific management...

  11. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  12. An integrated decision support system for wastewater nutrient recovery and recycling to agriculture

    Science.gov (United States)

    Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.

    2017-12-01

    Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.

  13. Evaluating Water Management Practice for Sustainable Mining

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zhang

    2014-02-01

    Full Text Available To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has provided a solution to aid the identification of more sustainable mine water management practices. The solution includes a conceptual framework for forming a decision hierarchy; an evaluation method for assessing mine water management practices; and a sensitivity analysis in view of different preferences of stakeholders or managers. The solution is applied to a case study of the evaluation of sustainable water management practices in 16 mines located in the Bowen Basin in Queensland, Australia. The evaluation results illustrate the usefulness of the proposed solution. A sensitivity analysis is performed according to preference weights of stakeholders or managers. Some measures are provided for assessing sensitivity of strategy ranking outcomes if the weight of an indicator changes. Finally, some advice is given to improve the mine water management in some mines.

  14. Practical Implementation of Sustainable Urban Management Tools

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Jesper Ole; Hoffmann, Birgitte

    2006-01-01

    The paper discusses how to promote the use of decision support tools for urban sustainable development. The interest in decision support tools based on indicators is increasing among practitioners and researchers. The research has so far focused on indicator types and systems of indicators...... and goals for urban sustainability whereas less focus has been on the context of implementation and even less on what we can learn from practical experiences about the usefulness of urban sustainable indicator tools. This paper explores the practical implementation of urban sustainable management tools....... It is generally agreed that in order to make indicators and other sustainability management tools work it is necessary that they are integrated in the relevant urban organisational levels, in a way that creates commitment to the subsequent goals. This includes involvement of organisations, individuals and other...

  15. Carbon footprint of urban source separation for nutrient recovery.

    Science.gov (United States)

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sustainability in Supply Chain Management: Aggregate Planning from Sustainability Perspective.

    Directory of Open Access Journals (Sweden)

    Metin Türkay

    Full Text Available Supply chain management that considers the flow of raw materials, products and information has become a focal issue in modern manufacturing and service systems. Supply chain management requires effective use of assets and information that has far reaching implications beyond satisfaction of customer demand, flow of goods, services or capital. Aggregate planning, a fundamental decision model in supply chain management, refers to the determination of production, inventory, capacity and labor usage levels in the medium term. Traditionally standard mathematical programming formulation is used to devise the aggregate plan so as to minimize the total cost of operations. However, this formulation is purely an economic model that does not include sustainability considerations. In this study, we revise the standard aggregate planning formulation to account for additional environmental and social criteria to incorporate triple bottom line consideration of sustainability. We show how these additional criteria can be appended to traditional cost accounting in order to address sustainability in aggregate planning. We analyze the revised models and interpret the results on a case study from real life that would be insightful for decision makers.

  17. A Patent Analysis for Sustainable Technology Management

    Directory of Open Access Journals (Sweden)

    Junhyeog Choi

    2016-07-01

    Full Text Available Technology analysis (TA is an important issue in the management of technology. Most R&D (Research & Development policies have depended on diverse TA results. Traditional TA results have been obtained through qualitative approaches such as the Delphi expert survey, scenario analysis, or technology road mapping. Although they are representative methods for TA, they are not stable because their results are dependent on the experts’ knowledge and subjective experience. To solve this problem, recently many studies on TA have been focused on quantitative approaches, such as patent analysis. A patent document has diverse information of developed technologies, and thus, patent is one form of objective data for TA. In addition, sustainable technology has been a big issue in the TA fields, because most companies have their technological competitiveness through the sustainable technology. Sustainable technology is a technology keeping the technological superiority of a company. So a country as well as a company should consider sustainable technology for technological competition and continuous economic growth. Also it is important to manage sustainable technology in a given technology domain. In this paper, we propose a new patent analysis approach based on statistical analysis for the management of sustainable technology (MOST. Our proposed methodology for the MOST is to extract a technological structure and relationship for knowing the sustainable technology. To do this, we develop a hierarchical diagram of technology for finding the causal relationships among technological keywords of a given domain. The aim of the paper is to select the sustainable technology and to create the hierarchical technology paths to sustainable technology for the MOST. This contributes to planning R&D strategy for the sustainability of a company. To show how the methodology can be applied to real problem, we perform a case study using retrieved patent documents related to

  18. Community-based management: under what conditions do Sami pastoralists manage pastures sustainably?

    Directory of Open Access Journals (Sweden)

    Vera H Hausner

    Full Text Available Community-based management (CBM has been implemented in socio-ecological systems (SES worldwide. CBM has also been the prevailing policy in Sámi pastoral SES in Norway, but the outcomes tend to vary extensively among resource groups ("siidas". We asked why do some siidas self-organize to manage common pool resources sustainably and others do not? To answer this question we used a mixed methods approach. First, in the statistical analyses we analyzed the relationship between sustainability indicators and structural variables. We found that small winter pastures that are shared by few siidas were managed more sustainably than larger pastures. Seasonal siida stability, i.e., a low turnover of pastoralists working together throughout the year, and equality among herders, also contributed to more sustainable outcomes. Second, interviews were conducted in the five largest pastures to explain the relationships between the structural variables and sustainability. The pastoralists expressed a high level of agreement with respect to sustainable policies, but reported a low level of trust and cooperation among the siidas. The pastoralists requested siida tenures or clear rules and sanctioning mechanisms by an impartial authority rather than flexible organization or more autonomy for the siidas. The lack of nestedness in self-organization for managing pastures on larger scales, combined with the past economic policies, could explain why CBM is less sustainable on the largest winter pastures. We conclude that the scale mis-match between self-organization and the formal governance is a key condition for sustainability.

  19. How Does Implementation of Environmental Management System Contribute to Corporate Sustainability Management

    Directory of Open Access Journals (Sweden)

    Lucie Vnoučková

    2014-01-01

    Full Text Available Corporate sustainability management (CSM appears to be an important issue for current management. The aim of the paper is to identify what determinants of sustainability management are examined in the literature and discuss the contribution of environmental management system (EMS to CSM based on experiences of selected Czech organizations with implemented EMS according to ISO 14001. The data for the survey was gathered from 222 organizations (N = 1265 who have already implemented EMS. The results show there is a basic knowledge of sustainability concept in the surveyed Czech organizations. Perceived improvements of EMS implementation in Czech organizations are mainly in the area of environmental performance, economic performance, relationship with involved parties and social issues. Based on the implementation of EMS, the organizations take care about corporate sustainability (about the areas of environmental aspects and impacts of the organization. Improved environmental performance has been linked with process and product cost improvements and lower risk factors.

  20. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM......) is analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable...

  1. Navigating Sustainability Embeddedness in Management Decision-Making

    Directory of Open Access Journals (Sweden)

    Catherine Le Roux

    2016-05-01

    Full Text Available Sustainability is an essential theme for business. In order to compete, strategies need to be improvised and efficient and effective decisions need to be made for improved sustainability performance. Despite management’s apparent knowledge of this, it appears that challenges persist with sustainability’s embeddedness in decision-making and its implementation in practice. In this study we propose a metaphor applying an integrative view of sustainability as support for management. We offer six antecedents of sustainability embeddedness in decision-making that contribute to building and confirming theory, and also provide a better understanding of current practice around sustainability embeddedness so that strategies can be developed for improved sustainability performance. Employees on all management levels in a stock exchange listed company provided rich empirical data for the study. Through the analysis of data in a case study, antecedents were inductively identified, conceptualized, and presented as using descriptive labels, namely: A True North Destination—a vision of sustainability embeddedness; Mountains—three obstacles; Fog—confusion and complexity; Myopia—shortsightedness; Navigation Necessities—requirements for the journey; and finally, the Chosen Team—selected stakeholders. Sustainability embeddedness was found to be dependent on leadership, the strategy message and structures, performance measures, and policies that support a unified culture for sustainability embeddedness.

  2. Integrated water and nutrient management for sorghum production in semi-arid Burkina Faso

    NARCIS (Netherlands)

    Zougmoré, R.

    2003-01-01

    Loss of water and nutrients through runoff are major agriculture problems for inherent poor fertile soils in semiarid West Africa. The intensification of crop production requires an integration of soil, water and nutrient management that is locally acceptable and beneficial for smallholder farmers.

  3. A review of sustainable facilities management knowledge and practice

    Directory of Open Access Journals (Sweden)

    Baaki Timothy Kurannen

    2016-01-01

    Full Text Available Sustainability is seen as a far-reaching issue now, and one which the facilities management [FM] profession cannot overlook. This paper explores current sustainable facilities management [SFM] knowledge and practice with specific focus on performance as part of a research focus toward proposing a sustainable FM performance management framework for sustainable healthcare waste management in Malaysia. This paper utilized a review of extant literature on the subject of SFM, FM performance and FM development in Malaysia as source of information. Findings reflect the increasing recognition of the need for the strategic FM function, and how facilities managers are best positioned to drive organizations’ sustainability agendas. In Malaysian context, this recognition is barely evident as findings show FM practice is still immature and predominantly operational. Unlike developed FM markets, FM relevance in Malaysia is being driven by the public sector. Also findings show a disharmony between organizations’ sustainability priority areas and the responsibilities for facilities managers to execute them where the sustainability policy of organizations prioritize one FM service and the facilities managers’ responsibilities prioritize another. As most of SFM implementation is driven by legislation this seems to strengthen the position that, organizations continue to view support services as non-value-adding, as unavoidable liabilities. The implication of this is the pressure on the FM function to continually express its strategic relevance to organizations by tangible value-adding performance output. This creates a new perspective to measuring and managing facilities performance. This paper therefore elevates the importance of FM performance management in SFM context taking into account the peculiar position of the facilities manager. This is seen as a way forward for FM to better express its value to the organization

  4. Ecosystem services in sustainable groundwater management.

    Science.gov (United States)

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Environmental Sustainability Change Management in SMEs: Learning from Sustainability Champions

    Science.gov (United States)

    Chadee, Doren; Wiesner, Retha; Roxas, Banjo

    2011-01-01

    This study identifies the change management processes involved in undertaking environmental sustainability (ES) initiatives within Small and Medium Size Enterprises (SMEs) and relate these to the main attributes of learning organisations. Using case study techniques, the study draws from the change management experiences of a sample of 12 ES…

  6. Management of crop residues for sustainable crop production. Results of a co-ordinated research project 1996-2001

    International Nuclear Information System (INIS)

    2003-05-01

    Since ancient times, farmers have recognized the importance of organic matter inputs to enhance crop yields. Organic matter contributes to plant growth through beneficial effects on the physical, chemical, and biological properties of the soil, including (i) provision of a carbon and energy source for soil microbes, (ii) improvement of soil aggregation, thus reducing the hazard of erosion, (iii) retaining of nutrients and water, (iv) provision of nutrients through decomposition, and (v) reduction of soil compaction. The amount of soil organic matter is controlled by the balance between additions of plant and animal materials and losses by decomposition. Both additions and losses are directly affected by management practices. This CRP supported national efforts in eleven Member States to identify options managing crop residues for sustainable agricultural production and environmental preservation in a wide range of soils and cropping systems. Various options for the recycling of crop residues that are sustainable and economically attractive to farmers were examined using isotopic techniques. The specific options of this CRP were: to increase the quantity of nutrients available to crops from organic sources and for more effective recycling of those nutrients; to enhance the efficiency of use of nutrients by crops, and minimize losses through improved synchrony between process-level understanding of carbon and nutrient flow through the use of isotopic techniques so that management recommendations can be extrapolated to a wide range of environments using models. A simple mathematical model, descriptive in nature, was developed to synthesize information collected from all experimental sites, allowing comparisons between treatments and sites. Most of the fertilizer N was lost during the first cropping season and only insignificant losses occurred in the following seasons. The losses of N from applied fertilizer ranged from 45 to 85% irrespective of crop

  7. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    Science.gov (United States)

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.

  8. The implementation of sustainability principles in project management

    NARCIS (Netherlands)

    Gilbert Gilbert Silvius; Debby Goedknegt

    2012-01-01

    It is becoming clear that the project management practice must embrace sustainability in order to develop into a 'true profession' (Silvius et al., 2012). In project management, sustainability can be gained in both the product of the project and in the process of delivering the product. (Gareis et

  9. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  10. Sustainable Materials Management Challenge Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change...

  11. Forest tenure and sustainable forest management

    Science.gov (United States)

    J.P. Siry; K. McGinley; F.W. Cubbage; P. Bettinger

    2015-01-01

    We reviewed the principles and key literature related to forest tenure and sustainable forest management, and then examined the status of sustainable forestry and land ownership at the aggregate national level for major forested countries. The institutional design principles suggested by Ostrom are well accepted for applications to public, communal, and private lands....

  12. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  13. Estimated costs of Sustaining Agricultural Production Through Erosional Control and Replenishment of Nutrient Losses in Kenya

    International Nuclear Information System (INIS)

    Onyango, J.W.

    1999-01-01

    Soil erosion is one of the major causes of nutrient depletion in sub-Saharan Africa. Highlights of losses from erosion can be used to explain why agricultural production in this region is not sustainable. annual macronutrient losses were calculated from experimental results at 8 sites in Kenya between 1986 and 1990. these losses were used along with the current local prices of fertiliser to estimate the annual national budget required for there replenishment. On average, 5.72, 29.3 and 0.82 kg ha -1 yr -1 of N, P and K, respectively, were lost annually. These losses are determined by soil types, slope, crop cover characteristics and rainfall amounts. soil losses can be reduced by terracing, contour farming and intercropping to improve crop cover. These efforts reduce the adverse effects of sporadic rainfall on fragile soil types. in order to ensure sustainability however, control measures have to be supplemented by national additions of 64 000 t, 323 000 t and 10 000 t of N, P and K respectively per year. The equivalent costs of these fertilisers will be Ksh 1,408 Ksh 8721 Ksh 220 million for the respective nutrients. This would require a total of some US$256 million (Ksh 10 349 million) annually from the national budget

  14. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  15. Management of Sustainable Innovation in an Internationalized Company

    Directory of Open Access Journals (Sweden)

    Uiara Gonçalves De Menezes

    2013-04-01

    Full Text Available The main objective of this study was to identify the main forms of management of sustainable technological innovation and examine the relation of these practices with the increased competitiveness of the Brazilian chemical industry in the international market. To conduct this research, we examined the management practices of a chemical industry located in southern Brazil through the descriptive and qualitative case study, using semi-structured interviews with those responsible for the company’s innovation management and analyzing secondary data. The analyses of the survey results with respect to the relation between the sustainable technological innovation management and the increased international competitiveness of the chemical industry were not conclusive. The data only show that the management practices of sustainable innovation may represent motivations for seeking international partnerships and innovations that can be converted into business opportunities in the domestic and international market.

  16. THE INFORMATION CONTENT OF THE FARM AND UNIT LEVEL NUTRIENT BALANCES FOR THE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    T SOMOGYI

    2007-07-01

    Full Text Available The farm gate balance is well known from the environmental literature. This method is not suitable in every case to show the nutrient load for the environment of agricultural companies that is the reason why unit level internal nutrient balances are applied to express the level of nutrient pollution on the environment. These also help to determine the source of the pollution. With the survey of the nutrient flows within the farm we determine the keystones of nutrient management to control the nutrient load of the pollution sources. On the basis of the results and the controlled data of the unit level internal balances we make recommendations for the most appropriate environmental policy instrument to reduce the nutrient pollution.

  17. Sustainable Materials Management Web Academy

    Science.gov (United States)

    The Sustainable Materials Management (SMM) Web Academy series is a free resource for SMM challenge participants, stakeholders, and anyone else interested in learning more about SMM principles from experts in the field.

  18. Sustainable exploitation and management of aquatic resources

    DEFF Research Database (Denmark)

    Neuenfeldt, Stefan; Köster, Fritz

    2014-01-01

    DTU Aqua conducts research, provides advice,educates at university level and contributes toinnovation in sustainable exploitation andmanagement of aquatic resources. The vision of DTUAqua is to enable ecologically and economicallysustainable exploitation of aquatic resourcesapplying an integrated...... management. Marineecosystems aims at understanding the mechanisms that govern the interaction between individuals,species and populations in an ecosystem enabling us to determine the stability and flexibility of theecosystem.Marine living resources looks at the sustainable utilization of fish and shellfish...... stocks.Ecosystem effects expands from the ecosystem approach to fisheries management to an integratedapproach where other human activities are taken into consideration. Fisheries management developsmethods, models and tools for predicting and evaluating the effects of management measures andregulations...

  19. Sustainable Environmental Management Indicators in South African Primary Schools

    Directory of Open Access Journals (Sweden)

    Luiza O. de Sousa

    2017-05-01

    Full Text Available This research explores sustainable environmental management indicators in South African primary schools. Of key interest is the comparison of a township, farm and urban primary school that identify indicators that promote education for sustainable development in schools that implement an environmental management system. Data are drawn from one-on-one interviews, focus group interviews, observations and document analysis from 35 participants in three schools. A comparison of the three schools was done by content and thematic analysis of a within-case analysis. Data from the township school revealed that socioeconomic factors and organisational structure promote education for sustainable development. The farm school data revealed that health promotion can be managed within an environmental management system within a hierarchical school structure. The urban school data revealed that an economic inducement brings a school to realise that it can reduce its carbon footprint, gain financially and utilize its resources with innovation. A case is made that the four pillars of sustainable development (environment, society, economy, and governance endorse education for sustainable development. Furthermore, the objectives of environmental education ought to remain nested in an environmental management system to ensure that the global goal of quality education is achieved.

  20. ACTION LEVERS FOR A SUSTAINABLE FARMLAND MANAGEMENT IN NIGER

    Directory of Open Access Journals (Sweden)

    Mahamadou Roufahi Tankari

    2015-10-01

    Full Text Available This study aims to contribute to the understanding of factors influencing the sustainable farmland management in Niger. Specifically, it examines the determinants of adoption of sustainable land management practices including measures to combat erosion, and the use of manure, residues and fertilizer with a view to support the formulation of efficient land use policies based on evidences given fact that the impact of factors influencing farmland management appears to be specific to each context. The study is based on data from the National Survey of Household Living Conditions and Agriculture of 2011 (ECVMA-2011 analyzed within the framework of multivariate Probit model. The results show that there are unobservable interdependences between the decisions on farmland management practices. Furthermore, several types of factors related to access to physical, human, financial and biophysical capitals as well as infrastructure and services seem to play an important role. In addition, it appears that more security is needed in land tenure for a sustainable farmland management while farmland defragmentation can act negatively on sustainable farmland management.

  1. Sustainable agricultural water management across climates

    Science.gov (United States)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  2. Evaluation of Sustainable Practices within Project Management Methods

    Directory of Open Access Journals (Sweden)

    Shah Satya

    2017-01-01

    Full Text Available The purpose of this research study is to investigate some of the sustainable practices within projects with a focus on social projects. The different research methodologies applied through this research consisted both primary and secondary research, including literature review and through case study. The stakeholder’s behavioural needs towards acting and implementing sustainable practices led to the adoption of sustainable practices within projects which are managed across profit and non-profit organisations. Nevertheless, lack of sustainable behaviour was outlined, and henceforth the integration of sustainable development within social projects is crucially important as such projects were identified as the drivers toward educating the society in order to help to produce generations of people who would be more sustainably aware. Currently, sustainable development is very often taken into account when it comes to managing projects. Nevertheless, if the adoption of sustainable practices is well established in some sectors such as construction, literature tends to demonstrate a lack of information regarding other sectors, especially within social projects. This research aims to investigate the adoption of sustainable practices within social projects and therefore to satisfy a literature gap.

  3. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    Science.gov (United States)

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rapid and sustained cost management

    International Nuclear Information System (INIS)

    Hanson, D.

    2009-01-01

    Accenture helps clients develop comprehensive, process-driven strategies for rapid and sustained cost management that leverage deep insights and analytics. This approach enables companies to gain operating cost advantages by rationalizing, simplifying and automating current operating capabilities. It drives structural cost advantages by optimizing business mix, capital structure, organizational structure and geographic presence. This paper discussed how successful companies achieve high performance during times of economic turmoil. It also discussed the value of the winner's strategy in terms of rapid and sustained cost management (RSCM). It discussed how Accenture operates and its leveraged capabilities, improved efficiency, margins and cash flow while maintaining customer service levels. Building structural advantage and the Accenture difference were also discussed. It was concluded that RSCM is one vital way that Accenture can help companies achieve success. 4 figs

  5. Efficiency of management of sustainable development – challenges, problems, barriers

    Directory of Open Access Journals (Sweden)

    Zięba K.

    2016-06-01

    Full Text Available This paper discusses such issues as the importance of efficiency management of sustainable development. In the authors’ opinion, this matter is currently topical subject due to, among others, on the still high costs of irrational management in the field. Dynamically changing environment forces to search for new solutions for efficiency management of sustainable development, and unfortunately, in many countries it is still a significant problem. For some countries, the efficiency management of sustainable development is difficult. It should be noted that the problem with the inaction of relevant activities of the countries in the field of development of efficiency management of sustainability development will grow, because globalization makes it necessary to generate new solutions emerging to date problems. Facing each country there are so many challenges in the field. However, some countries are aware of the seriousness of the problem and therefore take a number of measures in this regard, often regardless of the amount of costs. This has an impact on their competitiveness. Apparent is also increasing incorporation of new original solutions in the field of sustainable development management.

  6. STRATEGIC MANAGEMENT OF SUSTAINABILITY AND INNOVATION

    Directory of Open Access Journals (Sweden)

    Vanessa Cuzziol Pinsky

    2013-09-01

    Full Text Available The sustainable development, global competitiveness and rapid technological change increasingly challenge companies to innovate with a focus on sustainability. The objectives of this study were to identify the critical success factors in business management and identify the challenges to implement sustainable products. This is an exploratory, descriptive and qualitative research, using the case study method. Data were collected through semi-structured and in-depth interviews with executives from the marketing and innovation departments, complemented by secondary sources, including sustainability reports, websites and other company documents. The content analysis revealed the critical success factors to implement sustainable products, highlighting the involvement of senior leadership, setting goals and long term vision, the involvement of the value chain in the search for sustainable solutions and have a area of innovation with sustainability goals. The key challenges identified are related to the involvement of the supply chain, using the principles of the life cycle assessment, marketing communication and measurement of results and environmental benefits.

  7. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  8. Proceedings of the 1999 Sustainable Forest Management Network conference: science and practice : sustaining the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Veeman, S.; Smith, D.W.; Purdy, B.G.; Salkie, F.J.; Larkin, G.A. [eds.

    1999-05-01

    The wide range and complex nature of research in sustainable forest management, supported cooperatively by the forest products industry, governments, the universities, First Nations and other groups, is reflected in the 128 papers presented at this conference. The range of topics discussed include historical perspectives of forest disturbances, including fires and harvesting, biological diversity, gaseous, liquid and solid wastes, community sustainability, public involvement, land aquatic interfaces, forest management planning tools, contaminant transfer, First Nations issues, certification, monitoring and resource trade-offs. The theme of the conference {sup S}cience and practice: sustaining the boreal forest` was selected to identify the key efforts of the Sustainable Forest Management (SFM) Network on boreal forest research. The objective of the conference was to exchange knowledge and integrate participants into a better working network for the improvement of forest management. refs., tabs., figs.

  9. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    International Nuclear Information System (INIS)

    Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex; Malsch, Ineke; McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin; Harmelen, Toon van; Ligthart, Tom; Linkov, Igor; Marcomini, Antonio

    2016-01-01

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit–risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.

  10. Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Vrishali, E-mail: vrishali.subramanian@unive.it; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy); Malsch, Ineke [Malsch TechnoValuation (Netherlands); McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin [University of Limerick, Kemmy Business School (Ireland); Harmelen, Toon van; Ligthart, Tom [TNO (Netherlands); Linkov, Igor; Marcomini, Antonio, E-mail: marcom@unive.it [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy)

    2016-04-15

    The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit–risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.

  11. Organising Sustainability Competencies through Quality Management: Integration or Specialisation

    Directory of Open Access Journals (Sweden)

    Vanajah Siva

    2018-04-01

    Full Text Available A significant step in integrating environmental sustainability into daily operations is through product development. One way to achieve such integration of environmental considerations into product development is by relating sustainability competencies to practices of Quality Management. However, practices seem to vary for how competencies within environmental sustainability are organised in order to make sustainability more actionable. This study explores two ways of organising sustainability competencies in product development: integration and specialisation. The organisation of sustainability competency is illustrated through two cases; one case in which sustainability is integrated with the quality management competency, and the other in which a new competency focusing on sustainability has been added as a separate function in product development. It is suggested that the organisation of sustainability competency influences the extent of environmental impact. Further, trade-offs, such as material source versus weight may not be exploited when sustainability is integrated as one area of responsibility for another specialty competency, suggesting a lack of sufficient competency within environmental sustainability to recognise potential trade-offs between—for example—quality and environmental impact.

  12. Achieving sustainable plant disease management through evolutionary principles.

    Science.gov (United States)

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The impact of sustainability on project management

    NARCIS (Netherlands)

    Adri Köhler; Gilbert Gilbert Silvius; Jasper van den Brink

    2011-01-01

    Chapter 11 in The Project as a Social System: Asia-Pacific Perspectives on Project Management. Sustainability is one of the most important challenges of our time. How can we develop prosperity without compromising the life of future generations? Companies are integrating ideas of sustainability in

  14. Managing for Multifunctionality in Urban Open Spaces: Approaches for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Wenzheng Shi

    Full Text Available ABSTRACT: Landscape management plays a key role in improving the quality of urban environments and enhancing the multifunctionality of green infrastructure. It works to guide the efficient and effective management of green spaces for sustainability and the well-being of users. However, while most researchers have emphasised spatial planning as a basis for developing green infrastructure to promote new strategic connections in urban green space, they have simultaneously ignored the impact of management. Against this background, this paper argues that if our towns and cities seek to maintain the well-being of citizens while also achieving sustainable environments, they must engage in effective landscape management to improve their green infrastructure. It is not enough to simply design or maintain parks and green spaces so as to keep up their physical condition; rather, green infrastructure work should be adapted to the understanding and implementation of managers, users and stakeholders in an integrated management process in order to provide more services for sustainable development. A selected study in Sheffield investigated the management planning required for sustainable development. It is beneficial to learn the experiences of management planning in Sheffield, a city which has rich management practices for green and open spaces. This study will analyse how management planning helps local authorities and managers to improve multifunctional green and open spaces in the context of sustainable development. As a result, the study also explores the framework of management planning with regard to the transferability of the existing practices in Sheffield. It also attempts to provide a primer for sustainability impact assessments in other cities with a considered knowledge exchange. KEYWORDS: Management planning, green infrastructure, multifunctionality, sustainability, knowledge exchange

  15. INTEGRATED SUSTAINABLE MANGROVE FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2015-07-01

    Full Text Available Mangrove forest as a renewable resource must be managed based on sustainable basis in which the benefits of ecological, economic and social from the forest have to equity concern in achieving the optimum forest products and services in fulfill the needs of recent generation without destruction of future generation needs and that does not undesirable effects on the physical and social environment. This Sustainable Forest Management (SFM practices needs the supporting of sustainability in the development of social, economic and environment (ecological sounds simultaneously, it should be run by the proper institutional and regulations. In operational scale, SFM need integration in terms of knowledge, technical, consultative of stakeholders, coordination among sectors and other stakeholders, and considerations of ecological inter-relationship in which mangroves as an integral part of both a coastal ecosystem and a watershed (catchment area. Some tools have been developed to measure the performent of SFM, such as initiated by ITTO at 1992 and followed by Ministry of Forestry of Indonesia (1993, CIFOR (1995, LEI (1999, FSC (1999, etc., however, the true nuance of SFM’s performance is not easy to be measured. 

  16. Limits of effective nutrient management in dairy farming: analyses of experimental farm De Marke

    NARCIS (Netherlands)

    Verloop, K.

    2013-01-01

    Key words: nutrient management, dairy, prototyping, organic matter, soil fertility, nitrogen, phosphor.

    Intensive dairy production in the Netherlands is associated with high farm nutrient (N and P) inputs and high losses to the environment. The Dutch government and the dairy sector

  17. Sustainable energy development as an integral part of hydroelectric business management

    International Nuclear Information System (INIS)

    Lee, W.; Yu, M.; Young, C.

    1996-01-01

    Elements of Ontario Hydro's strategy for sustainable energy development were discussed, highlighting key developments in the business management practices in Ontario Hydro's Hydroelectric Business Unit. Sustainable development considerations are now integral part of any business case analysis; management of the environment also has been integrated into the Utilities' business management process. Several environmental management practices intended to enhance sustainability have been introduced, including a full-fledged environmental management system based on ISO 14001 standards. Energy efficiency opportunities are aggressively pursued, including turbine upgrades, and energy efficient lighting. Experience to date indicates that business performance and progress towards sustainable energy development need not be mutually exclusive

  18. Sustainable supply chain management: Review and research opportunities

    Directory of Open Access Journals (Sweden)

    Sudheer Gupta

    2011-12-01

    Full Text Available Anthropogenic emissions likely pose serious threat to the stability of our environment; immediate actions are required to change the way the earth’s resources are consumed. Among the many approaches to mitigation of environmental deterioration being considered, the processes for designing, sourcing, producing and distributing products in global markets play a central role. Considerable research effort is being devoted to understanding how organisational initiatives and government policies can be structured to facilitate incorporation of sustainability into design and management of entire supply chain. In this paper, we review the current state of academic research in sustainable supply chain management, and provide a discussion of future direction and research opportunities in this field. We develop an integrative framework summarising the existing literature under four broad categories: (i strategic considerations; (ii decisions at functional interfaces; (iii regulation and government policies; and (iv integrative models and decision support tools. We aim to provide managers and industry practitioners with a nuanced understanding of issues and trade-offs involved in making decisions related to sustainable supply chain management. We conclude the paper by discussing environmental initiatives in India and the relevance of sustainability discussions in the context of the Indian economy.

  19. Resilience and sustainability: Similarities and differences in environmental management applications.

    Science.gov (United States)

    Marchese, Dayton; Reynolds, Erin; Bates, Matthew E; Morgan, Heather; Clark, Susan Spierre; Linkov, Igor

    2018-02-01

    In recent years there have been many disparate uses of the terms sustainability and resilience, with some framing sustainability and resilience as the same concept, and others claiming them to be entirely different and unrelated. To investigate similarities, differences, and current management frameworks for increasing sustainability and resilience, a literature review was undertaken that focused on integrated use of sustainability and resilience in an environmental management context. Sustainability was defined through the triple bottom line of environmental, social and economic system considerations. Resilience was viewed as the ability of a system to prepare for threats, absorb impacts, recover and adapt following persistent stress or a disruptive event. Three generalized management frameworks for organizing sustainability and resilience were found to dominate the literature: (1) resilience as a component of sustainability, (2) sustainability as a component of resilience, and (3) resilience and sustainability as separate objectives. Implementations of these frameworks were found to have common goals of providing benefits to people and the environment under normal and extreme operating conditions, with the best examples building on similarities and minimizing conflicts between resilience and sustainability. Published by Elsevier B.V.

  20. BIM: enabling sustainability and asset management through knowledge management.

    Science.gov (United States)

    Kivits, Robbert Anton; Furneaux, Craig

    2013-11-10

    Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry.

  1. On Farmers’ Ground: Wisconsin Dairy Farm Nutrient Management Survey Questionnaire

    Science.gov (United States)

    This questionnaire was used during quarterly, face-to-face interviews with the fifty-four Wisconsin dairy farmers who participated in the ‘On Farmers’ Ground’ nutrient management research project. It was designed to systematically and consistently compile information on herd size and composition, l...

  2. Does Sustainability Reporting have Sustenance? A Marketing Ploy or Management Tool

    OpenAIRE

    Halil D. Kaya; Julia S. Kwok; Elizabeth C. Rabe

    2015-01-01

    Sustainability efforts encompass economic, social and environmental management. After decades of promoting such causes, sustainability finally has moved up to the boardroom agenda per PricewaterhouseCooper 2012 report. As companies incorporate sustainability into business strategy, it is crucial for accountants and financial managers to capture the financial implications of those sustainable practices. This case provides an in-depth review of current reporting and measurement of sustainable p...

  3. Analysis of the Current Nutrient Management Practices in Semi-Arid Areas of Eastern Kenya: A Nutmon Approach

    International Nuclear Information System (INIS)

    Karuku, A.M.

    2002-01-01

    Declining soil fertility caused mainly by continuous cultivation without adequate replenishment of nutrients, is a major factor contributing to low crop yields in the arid and semi arid areas of Kenya. Development of appropriate nutrient management strategies for suitable agricultural production in these areas is, therefore, a priority issue. in the study reported here, analyses of the current nutrient management practices were carried out using the nutrient monitoring (NUTMON) approach in order to create farm house-hold awareness on nutrient management aspects. The procedure involved participatory soil and nutrient flow maps and soil sampling at farm level. laboratory analysis of the soil samples was later carried out. Structured questionnaires were used for systematic collection of information on farm management practices in order to quantify flows of materials with emphasis on soil nutrients and cash. Results of the laboratory soil analysis were also presented to the farmers and discussed during feedback sessions. The test was carried out in three places namely, Kibwezi, Kasikeu and Kiomo. In all the three clusters, off-farm income was an important component of the total family income. Farm net cash flow was highest in Kibwezi cluster due to horticultural crop production activities. Household net cash flow was highest in Kasikeu, largely originating from off-farm income. It was concluded that NUTMON methodology appeared a suitable tool for the diagnostic of the farming system analysis and design in the arid and semi-arid lands of Kenya

  4. Management of nutrients and water in rainfed arid and semi-arid areas. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    1998-07-01

    Sustainable food security is needed for the arid and semi-arid regions of the tropical, subtropical and warm-temperate climatic zones. In these regions the supply of locally grown food is unreliable because much of it is produced in conditions of highly variable rainfall. Even in favourable seasons, these regions re becoming increasingly dependent on imported food. The IAEA's involvement in field studies on soil-water use dates back several years. A five year Co-ordinated Research Project on ''The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects''. That project, completed in 1995, laid a solid foundation for future research. Because of a scarcity of water in many developing countries and increasing needs for sustainable food security in the face of increasing populations and lack of funds for irrigation schemes of significant dimension, research must focus on improved management of (i) the modest quantities of fertilizers that are available to farmers, (ii) the natural resources that are available to farmers for increasing soil organic matter content, and (iii) rain water. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture held a Consultants Meeting on Management of Nutrients and Water in Rainfed Arid and Semi-Arid Areas for Increasing Crop Production, 26-29 May 1997

  5. Sustainable cost reduction by lean management in metallurgical processes

    Directory of Open Access Journals (Sweden)

    A. V. Todorut

    2016-10-01

    Full Text Available This paper focuses on the need for sustainable cost reduction in the metallurgical industry by applying Lean Management (LM tools and concepts in metallurgical production processes leading to increased competitiveness of corporations in a global market. The paper highlights that Lean Management is a novel way of thinking, adapting to change, reducing waste and continuous improvement, leading to sustainable development of companies in the metallurgical industry. The authors outline the main Lean Management instruments based on recent scientific research and include a comparative analysis of other tools, such as Sort, Straighten, Shine, Standardize, Sustain (5S, Visual Management (VM, Kaizen, Total Productive Maintenance (TPM, Single-Minute Exchange of Dies (SMED, leading to a critical appraisal of their application in the metallurgical industry.

  6. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    Science.gov (United States)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and

  7. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura

    2017-03-10

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil. Results from the bench-scale experiments showed that the commercial hydroponic nutrient solution (i.e. solution containing water and essential nutrients) exhibited similar performance (i.e., water flux and reverse salt flux) to other inorganic draw solutions when treating synthetic wastewater. The use of hydroponic solution is highly advantageous since it provides all the required macro- (i.e., N, P and K) and micronutrients (i.e., Ca, Mg, S, Mn, B, Zn and Mo) in a single balanced solution and can therefore be used directly after dilution without the need to add any elements. After long-term operation (i.e. up to 75% water recovery), different physical cleaning methods were tested and results showed that hydraulic flushing can effectively restore up to 75% of the initial water flux while osmotic backwashing was able to restore the initial water flux by more than 95%; illustrating the low-fouling potential of the FDFO process. Pilot-scale studies demonstrated that the FDFO process is able to produce the required nutrient concentration and final water quality (i.e., pH and conductivity) suitable for hydroponic applications. Coupling FDFO with pressure assisted osmosis (PAO) in the later stages could help in saving operational costs (i.e., energy and membrane replacement costs). Finally, the test application of nutrient solution produced by the pilot FDFO process to hydroponic lettuce showed similar growth pattern as the control without any signs of nutrient deficiency.

  8. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  9. Managing Knowledge And Information In The Sustainable Organization

    Science.gov (United States)

    Grecu, Valentin

    2015-09-01

    Knowledge and information management are essential for the success of organizations and bring significant competitive advantages. There has been significant investments in setting up technological platforms that support business processes and increase the efficiency of operational structure in many organizations through an efficient management of knowledge and information. This research highlights the importance of using knowledge and information management in order to increase the competitiveness of organizations and to foster the transition towards the sustainable organization, as nowadays an organization that wants to be competitive needs to be sustainable.

  10. System Merits or Failures? Policies for Transition to Sustainable P and N Systems in The Netherlands and Finland

    Directory of Open Access Journals (Sweden)

    Thomas Hoppe

    2016-05-01

    Full Text Available Nitrogen (N and phosphorus (P cycles are absolutely vital in maintaining sustainable food systems. Human activities disturb the natural balance of these cycles by creating enormous additional nutrient fluxes, causing eutrophication of waterways and pollution in land systems. To tackle this problem, sustainable nutrient management is required. This paper addresses sustainable nutrient management in two countries: The Netherlands and Finland. We adopt a critical perspective on resource politics, especially towards opportunistic policy strategies for the pollutant management of N and P. Two research questions are considered. First, what are the key systemic and policy failures that occurred in the N and P systems in the Netherlands and Finland between 1970 and 2015? And second, which lessons can be drawn when addressing the policy responses in the two countries to cope with these failures? The cases are analyzed within Weber and Rohracher’s framework that addresses “failures” preventing sustainable transitions. The results show that a number of failures occurred, besides market failures (over-exploitation of the commons, externalization of costs: lack of directionality, policy coordination, institutions, capabilities, infrastructure, demand articulation, and reflexivity. Policy responses in both countries resulted in ponderous policy frameworks that were adequate to tackle nutrient problems from the industrial sector and municipalities. However, both countries provided only a moderate response in terms of system-wide integrated policy frameworks to cope with sectoral-transcending issues. The agricultural use of N and P, in contrast to detergents, has not been subjected to strong regulatory measures.

  11. Sustainable management for the eastern Mediterranean coast of Turkey.

    Science.gov (United States)

    Berberoglu, Süha

    2003-03-01

    The objective of this article is to propose a program for the integrated coastal zone management that is required to stimulate and guide sustainable development of the Mediterranean coastal zone of Turkey. Improved data collection, quality control, analysis, and data management will provide a firm basis for future scientific understanding of the East Mediterranean coast of Turkey and will support long-term management. Various innovative procedures were proposed for a promising ecosystem-based approach to manage coastal wetlands in the Mediterranean: remote data acquisition with new technologies; environmental quality monitoring program that will provide a baseline for monitoring; linking a Geographic Information System (GIS) with natural resource management decision routines in the context of operational wetlands, fisheries, tourism management system; environmental sensitivity analysis to ensure that permitted developments are environmentally sustainable; and use of natural species to restore the wetlands and coastal dunes and sustain the system processes. The proposed management scheme will benefit the scientific community in the Mediterranean and the management/planning community in Eastern Turkey.

  12. Nutrient management in substrate systems

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air

  13. The Practice of Sustainable Facilities Management: Design Sentiments and the Knowledge Chasm

    Directory of Open Access Journals (Sweden)

    Abbas Elmualim

    2009-12-01

    Full Text Available The construction industry with its nature of project delivery is very fragmented in terms of the various processes that encompass design, construction, facilities and assets management. Facilities managers are in the forefront of delivering sustainable assets management and hence further the venture for mitigation and adaptation to climate change. A questionnaire survey was conducted to establish perceptions, level of commitment and knowledge chasm in practising sustainable facilities management (FM. This has significant implications for sustainable design management, especially in a fragmented industry. The majority of questionnaire respondents indicated the importance of sustainability for their organization. Many of them stated that they reported on sustainability as part of their organization annual reporting with energy efficiency, recycling and waste reduction as the main concern for them. The overwhelming barrier for implementing sound, sustainable FM is the lack of consensual understanding and focus of individuals and organizations about sustainability. There is a knowledge chasm regarding practical information on delivering sustainable FM. Sustainability information asymmetry in design, construction and FM processes render any sustainable design as a sentiment and mere design aspiration. Skills and training provision, traditionally offered separately to designers and facilities managers, needs to be re-evaluated. Sustainability education and training should be developed to provide effective structures and processes to apply sustainability throughout the construction and FM industries coherently and as common practice. Published in the Journal AEDM - Volume 5, Numbers 1-2, 2009 , pp. 91-102(12

  14. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    Directory of Open Access Journals (Sweden)

    Stephen A Wood

    2015-03-01

    Full Text Available Tropical smallholder agriculture supports the livelihoods of over 900 million of the world’s poorest people. This form of agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.

  15. Sustainability in Supply chain management is not enough

    DEFF Research Database (Denmark)

    Haas, Henning de

    2009-01-01

    To be or not to be - sustainable, that is the question. To be sustainable or green, seems to be the new mantra in supply chain management. Nearly every conference and SCS magazine has the topic on the agenda. The topic of sustainability is not new in a supply chain context. For some years Corporate...

  16. Individual competencies for managers engaged in corporate sustainable management practices

    OpenAIRE

    Wesselink, R.; Blok, V.; Leur, van, S.; Lans, T.; Dentoni, D.

    2015-01-01

    Corporations increasingly acknowledge the importance of sustainable practices. Corporate social responsibility is therefore gaining significance in the business world. Since solving corporate social responsibility issues is not a routine job, every challenge in corporate social responsibility requires its own approach; and management competencies are crucial for designing appropriate approaches towards the realization of sustainable solutions. On the basis of seven corporate social responsibi...

  17. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  18. Sustainable Ecotourism Management in Kenya | Okech | Ethiopian ...

    African Journals Online (AJOL)

    The study of ecotourism impacts and their management offers many opportunities to reflect on the importance of sustainability and the possibilities of implementing approaches which move us in a new direction. Sustainability, then, is about the struggle for diversity in all its dimensions. The concern for biodiversity, in its ...

  19. A preliminary framework for corporate real estate sustainable management

    Directory of Open Access Journals (Sweden)

    Fauzi Nurul Sahida

    2016-01-01

    Full Text Available The global warming issue has motivated corporations to go green in their business operations including transforming from conventional real estate to green features real estate. However green CRE is more complex to manage due to a building’s significant impact on environmental, social and economic aspects. Thus the need to have a best practice guide or framework as reference is crucial. Unfortunately, no best practice guidelines on CRE management have been found to be sufficient as much uncertainty still exists on the sustainable performance measurement components. This research aims to explore and then summarize the present sustainable CREM practices and components relating to sustainable performance measurement integrating a sustainable theory that balances environmental, economic and social impacts. These act as indicators to measure the outcomes of the practice in the form of a generic model on sustainability preliminary framework for CRESM. The objectives of this research include identifying corporate real estate sustainable management (CRESM practice and components of sustainable performance measurement. The research uses content analysis method to analyse data gathered from literature and previous studies. The findings will be demonstrated in the form of a framework model on CRESM that will include14 CREM strategies and 15 components derived from analysis.

  20. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    Science.gov (United States)

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  1. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2017-06-01

    Full Text Available Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  2. Shaping a sustainable energy future for India: Management challenges

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2010-01-01

    Most of the studies on the Indian energy sector focus on the possible future scenarios of Indian energy system development without considering the management dimension to the problem-how to ensure a smooth transition to reach the desired future state. The purpose of this paper is to highlight some sector management concerns to a sustainable energy future in the country. The paper follows a deductive approach and reviews the present status and possible future energy outlooks from the existing literature. This is followed by a strategy outline to achieve long-term energy sustainability. Management challenges on the way to such a sustainable future are finally presented. The paper finds that the aspiration of becoming an economic powerhouse and the need to eradicate poverty will necessarily mean an increase in energy consumption unless a decoupling of energy and GDP growth is achieved. Consequently, the energy future of the country is eminently unsustainable. A strategy focussing on demand reduction, enhanced access, use of local resources and better management practices is proposed here. However, a sustainable path faces a number of challenges from the management and policy perspectives.

  3. Sustainable Transportation - Indicators, Frameworks, and Performance Management

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Hall, Ralph P.; Marsden, Greg

    This textbook provides an introduction to the concept of sustainability in the context of transportation planning, management, and decision-making. The book is divided into two parts. In the first part, indicators and frameworks for measuring sustainable development in the transportation sector...... are developed. In the second, the authors analyze actual planning and decision-making in transportation agencies in a variety of governance settings. This analysis of real-world case studies demonstrates the benefits and limitations of current approaches to sustainable development in transportation. The book...... concludes with a discussion on how to make sustainability count in transportation decision-making and practice....

  4. BIM: Enabling Sustainability and Asset Management through Knowledge Management

    Directory of Open Access Journals (Sweden)

    Robbert Anton Kivits

    2013-01-01

    Full Text Available Building Information Modeling (BIM is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry.

  5. BIM: Enabling Sustainability and Asset Management through Knowledge Management

    Science.gov (United States)

    2013-01-01

    Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry. PMID:24324392

  6. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    Science.gov (United States)

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.

  7. Sustainability Management Program for Industries- A Case Study

    Directory of Open Access Journals (Sweden)

    Long Su Weng Alwin

    2017-01-01

    Full Text Available This research studied the effectiveness of Sustainability Management Program in improving production efficiency of the manufacturing site with verified result using the regression analysis. For this study, a dairy manufacturing industry located in Malaysia was selected and major energy consuming equipment in the industryplant were identified. Sustainability Management Program (SMP was carried out for three years and energy consumption and product has improved regression coefficients of 0.625 in 2013, 0.826 in 2014, and 0.878 in 2015 as the manufacturing site becomes more energy efficient. This suggests that the energy management should be carried out in a continuous manner with energy management team responsible for energy saving practices.

  8. Supply Chain Management and Sustainability : Procrastinating Integration in Mainstream Research

    NARCIS (Netherlands)

    De Brito, M.P.; Van der Laan, E.A.

    2010-01-01

    Research has pointed out opportunities and research agendas to integrate sustainability issues with supply chain and operations management. However, we find that it is still not mainstream practice to systematically take a sustainability approach in tackling supply chain and operations management

  9. Design for Sustainability and Project Management Literature – A Review

    DEFF Research Database (Denmark)

    Ali, Faheem; Boks, Casper; Bey, Niki

    2016-01-01

    management literature has hardly been considered in design for sustainability research, this article attempts to review the points of intersection between these two fields, and explores the potential that knowledge from project management literature has in improving efficiency and effectiveness...... of development and implementation of design for sustainability tools.......The growing pressure on natural resources and increasing global trade have made sustainability issues a prime area of concern for all businesses alike. The increased focus on sustainability has impacted the way projects are conceived, planned, executed and evaluated in industries. Since project...

  10. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    Science.gov (United States)

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  11. Sustainable Pest Management : Achievements and Challenges

    OpenAIRE

    World Bank

    2005-01-01

    The objective of this paper is to: (a) review World Bank's pest management activities during 1999-2004; (b) assess those in view of the changes in the external and internal contexts; (c) identify appropriate opportunities of engagement on pest and pesticide issues; and (d) suggest means to further promote sound pest management in the World Bank operations. The importance of sound pest management for sustainable agricultural production is being recognized by many developing countries. Many cou...

  12. Optimal management of nutrient reserves in microorganisms under time-varying environmental conditions.

    Science.gov (United States)

    Nev, Olga A; Nev, Oleg A; van den Berg, Hugo A

    2017-09-21

    Intracellular reserves are a conspicuous feature of many bacteria; such internal stores are often present in the form of inclusions in which polymeric storage compounds are accumulated. Such reserves tend to increase in times of plenty and be used up in times of scarcity. Mathematical models that describe the dynamical nature of reserve build-up and use are known as "cell quota," "dynamic energy/nutrient budget," or "variable-internal-stores" models. Here we present a stoichiometrically consistent macro-chemical model that accounts for variable stores as well as adaptive allocation of building blocks to various types of catalytic machinery. The model posits feedback loops linking expression of assimilatory machinery to reserve density. The precise form of the "regulatory law" at the heart of such a loop expresses how the cell manages internal stores. We demonstrate how this "regulatory law" can be recovered from experimental data using several empirical data sets. We find that stores should be expected to be negligibly small in stable growth-sustaining environments, but prominent in environments characterised by marked fluctuations on time scales commensurate with the inherent dynamic time scale of the organismal system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  14. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability...... of forest utilisation under PFM, using estimates of forest condition and extraction rates based on forest inventories and 480 household surveys from 12 forests; seven under Community Based Forest Management (CBFM), three under Joint Forest Management (JFM) and two under government management (non......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  15. Conference Summary Report from ENS`95. Sustainable Resource Management

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, M [ed.

    1996-12-31

    This publication gives a survey of the ENS`95 conference held in Stavanger (Norway). The publication presents a conference summary and lists of papers for each of the main themes covering sustainable energy production and consumption (challenges and opportunities), international trade and sustainable development, sustainable resource management and economic development in the northern circumpolar region together with sustainable forestry and food production

  16. Conference Summary Report from ENS`95. Sustainable Resource Management

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, M. [ed.

    1995-12-31

    This publication gives a survey of the ENS`95 conference held in Stavanger (Norway). The publication presents a conference summary and lists of papers for each of the main themes covering sustainable energy production and consumption (challenges and opportunities), international trade and sustainable development, sustainable resource management and economic development in the northern circumpolar region together with sustainable forestry and food production

  17. Sustainable supply chain management: current debate and future directions

    Directory of Open Access Journals (Sweden)

    Bruno Silvestre

    Full Text Available Abstract This paper is a research brief on sustainable supply chain management and covers some of the key elements of literature’s past debate and trends for future directions. It highlights the growth of this research area and reinforces the importance of a full consideration of all three key dimensions of sustainability when managing sustainable supply chains, i.e., the financial, environmental and social dimensions. Therefore, supply chain decision makers need to unequivocally assess the impact of their decisions on the financial, environmental and social performances of their supply chains. This paper also argues that risks and opportunities are the key drivers for supply chain decision makers to adopt sustainability within their operations, and that barriers to sustainability adoption exist. This research highlights that, depending on the focus adopted, supply chains can evolve and shift from more traditional to more sustainable approaches over time. The paper concludes with some promising avenues for future investigation.

  18. Innovation Management for Sustainable Development Practices in the Internalization Context

    Directory of Open Access Journals (Sweden)

    Clandia Maffini Gomes

    2011-06-01

    Full Text Available To provide new inferences on the relation between the management of technology information, sustainable development and the innovative performance of firms, a survey was carried out among Brazilian industrial enterprises with innovative characteristics. The study sought to understand how technological innovation management practices that take social and environmental responsibility into account influence firms’ internationalization process. The independent and dependent variables suggest that there is a connection between managing technology for sustainable development and innovative performance. We tried to identify the main technological management practices that reflect commitment to sustainable development. The results suggest that firms’ international success and high degree of competitiveness are based on offering innovative technology solutions that show commitment to the environment. The study identifies important elements of an emerging area of knowledge in the field of management sciences.

  19. Perceptions of Sustainable Marketing Management by Export Companies in Serbia

    Directory of Open Access Journals (Sweden)

    Zoran I Čajka

    2013-07-01

    Full Text Available The present research paper deals with perceptions of sustainable marketing management in the strategies of export companies in Serbia. The objectives in this paper are manifold. They are to emphasize the importance of green marketing management in export activities of domestic companies which pursue their green management plan; to evaluate the company’s share in specific marketing segments, and to highlight the significance of successful green marketing management in modern business. Domestic green-oriented companies, which export their products to many different countries, look into the possibility of increasing their sales volumes. The findings in the paper support the hypotheses that domestic companies are perceptive of sustainable marketing issues in their business activities, and sustainable marketing management is becoming an important factor in business activities of modern companies.

  20. Decision support modeling for sustainable food logistics management

    NARCIS (Netherlands)

    Soysal, M.

    2015-01-01

    Summary

    For the last two decades, food logistics systems have seen the transition from traditional Logistics Management (LM) to Food Logistics Management (FLM), and successively, to Sustainable Food Logistics Management (SFLM). Accordingly, food industry has been subject to the recent

  1. Business Sustainability and Undergraduate Management Education: An Australian Study

    Science.gov (United States)

    Fisher, Josie; Bonn, Ingrid

    2011-01-01

    The academic literature arguing that there is an urgent requirement for businesses to become more sustainable is rapidly expanding. There is also a demonstrated need for managers to develop a better understanding of sustainability and the appropriate strategies required to improve business sustainability. In addition, there have been international…

  2. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  3. Barriers and commitment of facilities management profession to the sustainability agenda

    Energy Technology Data Exchange (ETDEWEB)

    Elmualim, Abbas; Shockley, Daniel [ICRC, The School of Construction Management and Engineering University of Reading, Whiteknights, PO BOX 219 (United Kingdom); Valle, Roberto [ICRC, The School of Construction Management and Engineering University of Reading, Whiteknights, PO BOX 219 (United Kingdom); British Institute of Facilities Management (BIFM) (United Kingdom); Ludlow, Gordon [British Institute of Facilities Management (BIFM) (United Kingdom); Shah, Sunil [Jacobs, Reading (United Kingdom)

    2010-01-15

    The practice of sustainable facilities management (FM) is rapidly evolving with the increasing interest in the discourse of sustainable development. This paper examines a recent survey of the experiences of facilities managers in the rapidly growing and evolving industry in regard to the barriers and their commitment to the sustainability agenda. The survey results show that time constraints, lack of knowledge and lack of senior management commitment are the main barriers for the implementation of consistent and comprehensive sustainable FM policy and practice. The paper concludes that the diversity of the FM role and the traditional undervaluation of the contribution it makes to the success of organisations are partially responsible for lack of success in achieving sustainable facilities. The overwhelming barrier for sustainable FM practice is the lack of understanding, focus and commitment of senior executives in appreciating the opportunities, threats and need for strategic leadership and direction in driving essential change, and hence further the sustainability agenda. (author)

  4. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    Sustainable waste management via incineration system: an Islamic outlook for conservation of the environment. ... Journal of Fundamental and Applied Sciences ... Abstract. This paper would firstly examine solid waste management currently ...

  5. Determining Nutrient Requirements For Intensively Managed Loblolly Pine Stands Using the SSAND (Soil Supply and Nutrient Demand) Model

    Science.gov (United States)

    Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros

    2002-01-01

    Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...

  6. A guideline for interpersonal capabilities enhancement to support sustainable facility management practice

    Science.gov (United States)

    Sarpin, Norliana; Kasim, Narimah; Zainal, Rozlin; Noh, Hamidun Mohd

    2018-04-01

    Facility management is the key phase in the development cycle of an assets and spans over a considerable length of time. Therefore, facility managers are in a commanding position to maximise the potential of sustainability through the development phases from construction, operation, maintenance and upgrade leading to decommission and deconstruction. Sustainability endeavours in facility management practices will contribute to reducing energy consumption, waste and running costs. Furthermore, it can also help in improving organisational productivity, financial return and community standing of the organisation. Facility manager should be empowered with the necessary knowledge and capabilities at the forefront facing sustainability challenge. However, literature studies show a gap between the level of awareness, specific knowledge and the necessary skills required to pursue sustainability in the facility management professional. People capability is considered as the key enabler in managing the sustainability agenda as well as being central to the improvement of competency and innovation in an organisation. This paper aims to develop a guidelines for interpersonal capabilities to support sustainability in facility management practice. Starting with a total of 7 critical interpersonal capabilities factors identified from previous questionnaire survey, the authors conducted an interview with 3 experts in facility management to assess the perceived importance of these factors. The findings reveal a set of guidelines for the enhancement of interpersonal capabilities among facility managers by providing what can be done to acquire these factors and how it can support the application of sustainability in their practice. The findings of this paper are expected to form the basis of a mechanism framework developed to equip facility managers with the right knowledge, to continue education and training and to develop new mind-sets to enhance the implementation of sustainability

  7. Sustainable Supply Chain Management in Small and Medium Enterprises

    Directory of Open Access Journals (Sweden)

    Sebastian Kot

    2018-04-01

    Full Text Available The sector of small and medium-sized enterprises (SMEs plays a key role in the economies of all of the countries in the world. These entities constitute the basis for the development of the national and global economies. In a contemporary complex and competitive business environment, the adaptation of appropriate strategies is a particularly important effort to furthering the development of companies from the SMEs sector. In this context, the application of the concept of sustainable supply chain management (SCM in the operation strategy of SMEs seems to be a very important function. This supply chain also covers all three aspects of sustainable development: business, environmental, and social. The purpose of this article is to present the current state of the research in sustainable development in relation to managing the supply chain of SMEs, as well as the empirical findings in this area. The results found that all of the sustainability areas were very important in the supply chain management practices of the studied SMEs, despite the imbalance described in the literature. The study also presents the most important elements in the particular sustainability areas of SCM and SMEs.

  8. Evolution of sustainability in supply chain management

    DEFF Research Database (Denmark)

    Rajeev, A.; Pati, Rupesh K.; Padhi, Sidhartha S.

    2017-01-01

    have urged several researchers and industry experts to work on Sustainable Production and Consumption issues within the context of Sustainable Supply Chain Management (SSCM). This paper comprehensively covers the exponential growth of the topic through an evolutionary lens. This article attempts...... to understand the evolution of sustainability issues by analysing trends across industries, economies, and through the use of various methodologies. A comprehensive thematic analysis was performed on 1068 filtered articles from 2000 to 2015, highlighting the development and importance of the body of knowledge....... The study proposes a conceptual framework to classify various factors along the triple bottom line pillars of sustainability issues in the context of supply chains. An in-depth study is conducted on 190 articles covering all pillars of sustainability (as per the proposed conceptual framework) on SSCM. We...

  9. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  10. Soil mapping and processes modelling for sustainable land management: a review

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B

  11. Sustainable apple breedings needs sustainable marketing and management

    OpenAIRE

    Weber, M.

    2008-01-01

    Apple breeding programmes are currently in the middle of transition in terms of ownership and management. Until now most of them were funded by the public. Breeding took place by traditional methods since decades in a very sustainable way to develop better apple varieties. Today, increasing loss of national boundaries and globalisation, less interest by national bodies and institutions and rising cost levels for high tech breeding methods entire programmes are nowadays urged to...

  12. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  13. Optimizing nutrient management for farm systems

    OpenAIRE

    Goulding, Keith; Jarvis, Steve; Whitmore, Andy

    2007-01-01

    Increasing the inputs of nutrients has played a major role in increasing the supply of food to a continually growing world population. However, focusing attention on the most important nutrients, such as nitrogen (N), has in some cases led to nutrient imbalances, some excess applications especially of N, inefficient use and large losses to the environment with impacts on air and water quality, biodiversity and human health. In contrast, food exports from the developing to the developed world ...

  14. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: How low should we reduce meat consumption?

    Science.gov (United States)

    Barré, Tangui; Perignon, Marlène; Gazan, Rozenn; Vieux, Florent; Micard, Valérie; Amiot, Marie-Josèphe; Darmon, Nicole

    2018-01-01

    Reducing the consumption of meat and other animal-based products is widely advocated to improve the sustainability of diets in high-income countries. However, such reduction may impair nutritional adequacy, since the bioavailability of key nutrients is higher when they come from animal- vs plant-based foods. Meat reduction may also affect the balance between foods co-produced within the same animal production system. The objective was to assess the impact of introducing nutrient bioavailability and co-production links considerations on the dietary changes needed - especially regarding meat ‒ to improve diet sustainability. Diet optimization with linear and non-linear programming was used to design, for each gender, three modeled diets departing the least from the mean observed French diet (OBS) while reducing by at least 30% the diet-related environmental impacts (greenhouse gas emissions, eutrophication, acidification): i) in the nutrition-environment (NE) model, the fulfillment of recommended dietary allowances for all nutrients was imposed; ii) in the NE-bioavailability (NEB) model, nutritional adequacy was further ensured by accounting for iron, zinc, protein and provitamin A bioavailability; iii) in the NEB-co-production (NEB-CP) model, two links between co-produced animal foods (milk-beef and blood sausage-pork) were additionally included into the models by proportionally co-constraining their respective quantities. The price and environmental impacts of individual foods were assumed to be constant. 'Fruit and vegetables' and 'Starches' quantities increased in all modeled diets compared to OBS. In parallel, total meat and ruminant meat quantities decreased. Starting from 110g/d women's OBS diet (168g/d for men), total meat quantity decreased by 78%, 67% and 32% for women (68%, 66% and 62% for men) in NE, NEB and NEB-CP diets, respectively. Starting from 36g/d women's OBS diet (54g/d for men), ruminant meat quantity dropped severely by 84% and 87% in NE and

  15. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: How low should we reduce meat consumption?

    Science.gov (United States)

    Gazan, Rozenn; Vieux, Florent; Micard, Valérie; Amiot, Marie-Josèphe; Darmon, Nicole

    2018-01-01

    Background Reducing the consumption of meat and other animal-based products is widely advocated to improve the sustainability of diets in high-income countries. However, such reduction may impair nutritional adequacy, since the bioavailability of key nutrients is higher when they come from animal- vs plant-based foods. Meat reduction may also affect the balance between foods co-produced within the same animal production system. Objective The objective was to assess the impact of introducing nutrient bioavailability and co-production links considerations on the dietary changes needed − especially regarding meat ‒ to improve diet sustainability. Methods Diet optimization with linear and non-linear programming was used to design, for each gender, three modeled diets departing the least from the mean observed French diet (OBS) while reducing by at least 30% the diet-related environmental impacts (greenhouse gas emissions, eutrophication, acidification): i) in the nutrition-environment (NE) model, the fulfillment of recommended dietary allowances for all nutrients was imposed; ii) in the NE-bioavailability (NEB) model, nutritional adequacy was further ensured by accounting for iron, zinc, protein and provitamin A bioavailability; iii) in the NEB-co-production (NEB-CP) model, two links between co-produced animal foods (milk–beef and blood sausage–pork) were additionally included into the models by proportionally co-constraining their respective quantities. The price and environmental impacts of individual foods were assumed to be constant. Results ‘Fruit and vegetables’ and ‘Starches’ quantities increased in all modeled diets compared to OBS. In parallel, total meat and ruminant meat quantities decreased. Starting from 110g/d women’s OBS diet (168g/d for men), total meat quantity decreased by 78%, 67% and 32% for women (68%, 66% and 62% for men) in NE, NEB and NEB-CP diets, respectively. Starting from 36g/d women’s OBS diet (54g/d for men), ruminant

  16. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: How low should we reduce meat consumption?

    Directory of Open Access Journals (Sweden)

    Tangui Barré

    Full Text Available Reducing the consumption of meat and other animal-based products is widely advocated to improve the sustainability of diets in high-income countries. However, such reduction may impair nutritional adequacy, since the bioavailability of key nutrients is higher when they come from animal- vs plant-based foods. Meat reduction may also affect the balance between foods co-produced within the same animal production system.The objective was to assess the impact of introducing nutrient bioavailability and co-production links considerations on the dietary changes needed - especially regarding meat ‒ to improve diet sustainability.Diet optimization with linear and non-linear programming was used to design, for each gender, three modeled diets departing the least from the mean observed French diet (OBS while reducing by at least 30% the diet-related environmental impacts (greenhouse gas emissions, eutrophication, acidification: i in the nutrition-environment (NE model, the fulfillment of recommended dietary allowances for all nutrients was imposed; ii in the NE-bioavailability (NEB model, nutritional adequacy was further ensured by accounting for iron, zinc, protein and provitamin A bioavailability; iii in the NEB-co-production (NEB-CP model, two links between co-produced animal foods (milk-beef and blood sausage-pork were additionally included into the models by proportionally co-constraining their respective quantities. The price and environmental impacts of individual foods were assumed to be constant.'Fruit and vegetables' and 'Starches' quantities increased in all modeled diets compared to OBS. In parallel, total meat and ruminant meat quantities decreased. Starting from 110g/d women's OBS diet (168g/d for men, total meat quantity decreased by 78%, 67% and 32% for women (68%, 66% and 62% for men in NE, NEB and NEB-CP diets, respectively. Starting from 36g/d women's OBS diet (54g/d for men, ruminant meat quantity dropped severely by 84% and 87% in NE

  17. Perspective: The challenge of ecologically sustainable water management

    CSIR Research Space (South Africa)

    Bernhardt, E

    2006-10-01

    Full Text Available Sustainable water resource management is constrained by three pervasive myths; that societal and environmental water demands always compete with one another; that technological solutions can solve all water resource management problems...

  18. Supply Chain Management and Sustainability: Procrastinating Integration in Mainstream Research

    Directory of Open Access Journals (Sweden)

    Marisa P. de Brito

    2010-03-01

    Full Text Available Research has pointed out opportunities and research agendas to integrate sustainability issues with supply chain and operations management. However, we find that it is still not mainstream practice to systematically take a sustainability approach in tackling supply chain and operations management issues. In this paper, we make use of behavioral theory to explain the current lack of integration. We conclude through abductive reasoning that the reasons for procrastinating integration of sustainability in supply chain and operations management research are the conflicting nature of the task and the inherent context, which is the focus on operations rather than environmental or social issues.

  19. Nutrient fertilizer requirements for sustainable biomass supply to meet U.S. bioenergy goal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fengxiang X.; King, Roger L.; Lindner, Jeffrey S.; Monts, David L.; Su, Yi; Luthe, John C. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd., Starkville, MS 39759 (United States); Yu, Tzu-Yi [Department of Information Management, National Chi-Nan University, 470 University Rd., Puli, Nantou, 54561 Taiwan (China); Durbha, Surya S.; Younan, Nicolas H. [GeoResources Institute, Mississippi State University, Starkville, MS 39759 (United States); Plodinec, M. John [Savannah River National Laboratory, Bldg 773-A, Aiken, SC 29808 (United States)

    2011-01-15

    The U.S. Biomass Roadmap set forth a goal that, by the year 2030, biomass will supply energy approximately equivalent to 30% of current petroleum consumption. Here we report on the amount of nutrient fertilizers required to meet the proposed 1-billion tons of sustainable bioenergy biomass production annually. To meet this goal, U.S. agriculture (assuming a scenario with high yield increase and land use change) will have net removals of 40.3, 12.7, and 36.2 Tg (million tons) of N, P{sub 2}O{sub 5}, and K{sub 2}O, respectively. The 1-billion tons of bioenergy biomass production alone will remove 16.9, 5.2, and 18.2 Tg of N, P{sub 2}O{sub 5,} and K{sub 2}O, respectively, from U.S. agricultural land. Considering the efficiencies of fertilizers in soils and the contribution of biomass residuals in fields, the overall bioenergy-focused agriculture would require 58.2, 27.3, and 31.7 Tg of N, P{sub 2}O{sub 5,} and K{sub 2}O fertilizers, respectively; this corresponds to an overall nutrient fertilizer application increase by a factor of 5.5 over the base line (1997). This study indicates an increased need for domestic and/or international production facilities for fertilizers if the goal of the Biomass Roadmap is to be attained. (author)

  20. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  1. Sustainable Human Resource Management in Religiously Diverse Regions: The Podlasie Case

    Directory of Open Access Journals (Sweden)

    Barbara Mazur

    2015-08-01

    Full Text Available The concept of sustainability seems fundamental for companies operating worldwide. Human resources are acknowledged to be among the most valuable assets for them. Even though literature shows that Sustainable Human Resource Management is an upcoming topic there is still limited research on the concept due to its initial state. Prior literature reveals a lack in the consideration of systematic links between sustainability and HRM. The purpose of the study is to present the sociological approach to Sustainable Human Resource Management. The paper contributes to the literature linking sustainability to the issues researched in HRM literature. In the introduction it discusses how the notion of sustainability has emerged and developed. Then the sociological approach to Sustainable Human Resource Management is briefly depicted. Next, Diversity Management is presented as the manifestation of the social approach to Sustainable Human Resource Management. To illustrate this approach, the empirical research is presented. It has been conducted among 32 companies operating in Podlasie region (northeastern part of Poland. The research tried to uncover the companies’ knowledge and consciousness of cultural (religious diversity. It also aimed at finding out whether this diversity was seen as an advantage and taken opportunity of or rather neglected in the companies. The results show the reception of diversity among larger and smaller enterprises in the Podlasie region. In general, smaller companies tend to know the religion of the worker more often, and therefore are able to take advantage of it. The larger companies tend to treat faith as a personal matter.

  2. THE ROLE OF SUPPLY CHAIN COLLABORATION ON SUSTAINABLE SUPPLY CHAIN MANAGEMENT PERFORMANCE

    OpenAIRE

    Ince, Huseyin; Ince, Andac Sahinbey

    2015-01-01

    Sustainable supply chain management and collaboration have taken big attention from academicians and practitioners. The extensive literature review is conducted to analyse the relationship between Sustainable Supply Chain Management and collaboration and its effects on performance of SSCM dimensions. Then, a framework is proposed to explain the relationship between sustainable supply chain management and collaboration. For further studies the proposed framework should be tested empirically.

  3. Building Theory at the Intersection of Ecological Sustainability and Strategic Management

    DEFF Research Database (Denmark)

    Borland, Helen; Ambrosini, Véronique; Lindgreen, Adam

    2016-01-01

    This article builds theory at the intersection of ecological sustainability and strategic management literature—specifically, in relation to dynamic capabilities literature. By combining industrial organization economics–based, resource-based, and dynamic capability–based views, it is possible...... to develop a better understanding of the strategies that businesses may follow, depending on their managers’ assumptions about ecological sustainability. To develop innovative strategies for ecological sustainability, the dynamic capabilities framework needs to be extended. In particular, the sensing...... sustainability. Finally, this approach offers opportunities for managers and academics to identify, categorize, and exploit business strategies for ecological sustainability....

  4. Conceptualising and managing trade-offs in sustainability assessment

    International Nuclear Information System (INIS)

    Morrison-Saunders, Angus; Pope, Jenny

    2013-01-01

    One of the defining characteristics of sustainability assessment as a form of impact assessment is that it provides a forum for the explicit consideration of the trade-offs that are inherent in complex decision-making processes. Few sustainability assessments have achieved this goal though, and none has considered trade-offs in a holistic fashion throughout the process. Recent contributions such as the Gibson trade-off rules have significantly progressed thinking in this area by suggesting appropriate acceptability criteria for evaluating substantive trade-offs arising from proposed development, as well as process rules for how evaluations of acceptability should occur. However, there has been negligible uptake of these rules in practice. Overall, we argue that there is inadequate consideration of trade-offs, both process and substantive, throughout the sustainability assessment process, and insufficient considerations of how process decisions and compromises influence substantive outcomes. This paper presents a framework for understanding and managing both process and substantive trade-offs within each step of a typical sustainability assessment process. The framework draws together previously published literature and offers case studies that illustrate aspects of the practical application of the framework. The framing and design of sustainability assessment are vitally important, as process compromises or trade-offs can have substantive consequences in terms of sustainability outcomes delivered, with the choice of alternatives considered being a particularly significant determinant of substantive outcomes. The demarcation of acceptable from unacceptable impacts is a key aspect of managing trade-offs. Offsets can be considered as a form of trade-off within a category of sustainability that are utilised to enhance preferred alternatives once conditions of impact acceptability have been met. In this way they may enable net gains to be delivered; another imperative

  5. Conceptualising and managing trade-offs in sustainability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Morrison-Saunders, Angus, E-mail: A.Morrison-Saunders@murdoch.edu.au [School of Geo and Spatial Sciences, North West University (South Africa); School of Environmental Science, Murdoch University (Australia); Pope, Jenny [School of Geo and Spatial Sciences, North West University (South Africa); Integral Sustainability (Australia); Curtin University (Australia)

    2013-01-15

    One of the defining characteristics of sustainability assessment as a form of impact assessment is that it provides a forum for the explicit consideration of the trade-offs that are inherent in complex decision-making processes. Few sustainability assessments have achieved this goal though, and none has considered trade-offs in a holistic fashion throughout the process. Recent contributions such as the Gibson trade-off rules have significantly progressed thinking in this area by suggesting appropriate acceptability criteria for evaluating substantive trade-offs arising from proposed development, as well as process rules for how evaluations of acceptability should occur. However, there has been negligible uptake of these rules in practice. Overall, we argue that there is inadequate consideration of trade-offs, both process and substantive, throughout the sustainability assessment process, and insufficient considerations of how process decisions and compromises influence substantive outcomes. This paper presents a framework for understanding and managing both process and substantive trade-offs within each step of a typical sustainability assessment process. The framework draws together previously published literature and offers case studies that illustrate aspects of the practical application of the framework. The framing and design of sustainability assessment are vitally important, as process compromises or trade-offs can have substantive consequences in terms of sustainability outcomes delivered, with the choice of alternatives considered being a particularly significant determinant of substantive outcomes. The demarcation of acceptable from unacceptable impacts is a key aspect of managing trade-offs. Offsets can be considered as a form of trade-off within a category of sustainability that are utilised to enhance preferred alternatives once conditions of impact acceptability have been met. In this way they may enable net gains to be delivered; another imperative

  6. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib; Ghaffour, NorEddine; Naceur, Mohamed Wahib; Lounici, Hakim; Drouiche, Madani

    2012-01-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing

  7. Site Specific Nutrient Management for Maize on Ultisols Lampung

    Directory of Open Access Journals (Sweden)

    Andarias Makka Murni

    2010-01-01

    Full Text Available Lampung is the third major maize producing province in Indonesia after East Java and Central Java. In Lampungmaize is cultivated mainly in upland areas with ultisols and only some cultivated on paddy field as a secondary cropin the dry season. The average maize yield in Lampung is still 3.4 Mg ha-1 bellow yield potential of 7 - 10 Mg ha-1. Toincrease the productivity of maize through site-specific nutrient management (SSNM, on-farm trials were conductedin five locations in Lampung i.e. four locations in Central Lampung District (Sidowaras, Binjai Ngagung, Watu Agungand Balai Rejo and one location in South Lampung District (Trimulyo, Tegineneng Sub District during the 2004/2005,2005/2006 and 2006/2007 rainy seasons. The experimental setup followed a standard protocol at all sites and includednutrient omission plots (PK, NK, NP to estimate indigenous nutrient supplies, an NPK plot to measure yield responseto fertilizer application, and a farmers’ fertilizer practice (FFP plot in each farmer’s field. An SSNM treatment plot wasincluded in the second and third seasons. Each of the above treatments was paralleled by a plot with improved cropmanagement practice (ICM, i.e. higher planting density, addition of lime, and addition of magnesium. Results showedthat yield response to fertilizer N, P and K application in these sites were: N = 2.3 - 4.1 Mg ha-1; P = 0.6 - 2.0 Mg ha-1;K = 0.3-2.4 Mg ha-1. Attainable yield in the three seasons on average ranged from 7.6 Mg ha-1 to 10.6 Mg ha-1. Yield inthe SSNM treatment (with or without ICM was significantly higher than the FFP indicating great opportunities forfarmers to increase productivity and profitability with improved nutrient and crop management

  8. Managing carbon sequestration and storage in northern hardwood forests

    Science.gov (United States)

    Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin

    2011-01-01

    Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.

  9. Natural Resources Management for Sustainable Food Security in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Natural Resources Management for Sustainable Food Security in the Sahel ... as well as strategies for managing the resource base with a view to improving food security. ... InnoVet-AMR grants to support development of innovative veterinary ...

  10. Waste management in a sustainable society

    International Nuclear Information System (INIS)

    Ascari, Sergio; Milan, Univ. ''Bocconi''

    1997-01-01

    This paper summarises the environmental economics debate about sustainable management of solid wastes. Sustainable levels of solid waste generation, recycling and disposal cannot be set by general criteria, but priorities are better defined locally. Preferable solutions are mostly determined by market forces once economic instruments are introduced in order to compel agents to incorporate environmental costs and benefits into their decisions. Greater care should be devoted to dangerous wastes, where schemes may be devised to subsidize not only recovery and recycling but environmentally safe disposal as well; these may be financed by raw materials levies

  11. Lean Management as an Instrument of Sustainable Development of Enterprises

    Science.gov (United States)

    Sikora, Marcin; Kwiatkowski, Maciej; Prosół, Hanna; Nowicka, Daria; Lorenc, Karolina; Pham, Laurena

    2016-03-01

    The aim of the paper is to present the philosophy of Lean Management as an instrument of improving sustainable management of enterprises. The article presents the origins, characteristics of the broadly understood concept of Lean Management and describes the idea of Sustainable Development (SD). At the same time implications for the application and development of the instruments which operationalize the assumptions of SD at the level of enterprises are discussed. The paper specifies those areas of functioning of contemporary companies in which Lean Management can be implemented and compares them with the features of traditional management in particular subjects.

  12. Sustainability of Evidence-Based Acute Pain Management Practices for Hospitalized Older Adults.

    Science.gov (United States)

    Shuman, Clayton J; Xie, Xian-Jin; Herr, Keela A; Titler, Marita G

    2017-11-01

    Little is known regarding sustainability of evidence-based practices (EBPs) following implementation. This article reports sustainability of evidence-based acute pain management practices in hospitalized older adults following testing of a multifaceted Translating Research Into Practice (TRIP) implementation intervention. A cluster randomized trial with follow-up period was conducted in 12 Midwest U.S. hospitals (six experimental, six comparison). Use of evidence-based acute pain management practices and mean pain intensity were analyzed using generalized estimating equations across two time points (following implementation and 18 months later) to determine sustainability of TRIP intervention effects. Summative Index scores and six of seven practices were sustained. Experimental and comparison group differences for mean pain intensity over 72 hours following admission were sustained. Results revealed most evidence-based acute pain management practices were sustained for 18 months following implementation. Further work is needed to identify factors affecting sustainability of EBPs to guide development and testing of sustainability strategies.

  13. Evaluating Water Management Practice for Sustainable Mining

    OpenAIRE

    Xiangfeng Zhang; Lei Gao; Damian Barrett; Yun Chen

    2014-01-01

    To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has pr...

  14. Impact of supply chain management practices on sustainability

    DEFF Research Database (Denmark)

    Govindan, Kannan; Azevedo, Susana G.; Carvalho, Helena

    2014-01-01

    elimination," "supply chain risk management" and "cleaner production." The following lean, resilient and green supply chain management practices do not have a significant impact on supply chain sustainability: "flexible transportation," "flexible sourcing," "ISO 14001 certification," and "reverse logistics...

  15. An overview of the sustainability of solid waste management at military installations

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, S.; Shore, J.; Worden, H.; Jain, R.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presented indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.

  16. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    Science.gov (United States)

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  17. Integrating Sustainability into Management Education: A Dean's Perspective

    Science.gov (United States)

    Walck, Christa

    2009-01-01

    The integration of sustainability and environmental ethics into management education has improved in the past decade. This is partly a response to external pressure, as societal concerns about sustainability grow and businesses have made greater efforts to green their processes and products. But it is also a response to internal pressure from…

  18. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    Science.gov (United States)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully

  19. Sustainability reporting in public sector organisations: Exploring the relation between the reporting process and organisational change management for sustainability.

    Science.gov (United States)

    Domingues, Ana Rita; Lozano, Rodrigo; Ceulemans, Kim; Ramos, Tomás B

    2017-05-01

    Sustainability Reporting has become a key element in different organisations. Although there have been a number of academic publications discussing the adoption of sustainability reports in the public sector, their numbers have been quite low when compared to those focussing on corporate reports. Additionally, there has been little research on the link between sustainability reporting in Public Sector Organisations (PSOs) and Organisational Change Management for Sustainability (OCMS). This paper focuses on the contribution of sustainability reporting to OCMS. A survey was sent to all PSOs that have published at least one sustainability report based on the GRI guidelines. The study provides a critical analysis of the relation between sustainability reporting and OCMS in PSOs, including the drivers for reporting, the impacts on organisation change management, and the role of stakeholders in the process. Despite still lagging in sustainability reporting journey, PSOs are starting to use sustainability reporting as a communication tool, and this could drive organisational changes for sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  1. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    Science.gov (United States)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  2. The Concept Of A Sustainable Approach To Corporate Real Estate Management

    Directory of Open Access Journals (Sweden)

    Ziemba Ewa

    2015-12-01

    Full Text Available This paper is conceptual in nature and presents the assumptions of a holistic approach to corporate real estate management. The approach is based on the imperative of sustainability, which has become a determinant of the proposed Sustainable Corporate Real Estate Management (SCREM model. Moreover, the authors indicate that in addition to the presence of the sustainability imperative, corporate real estate management requires the integration and formalization of knowledge about the concepts of corporate real estate management (CREM with those of corporate social responsibility (CSR. This approach is intended to enable the identification and improvement of real estate management processes and, as a result, contribute to more efficient and effective corporate real estate management and continuous and flexible development of enterprises, as well as boosting economic growth and building prosperity for present and future generations.

  3. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  4. Soil, water, and nutrient losses from management alternatives for degraded pasture in Brazilian Atlantic Rainforest biome.

    Science.gov (United States)

    Rocha Junior, Paulo Roberto da; Andrade, Felipe Vaz; Mendonça, Eduardo de Sá; Donagemma, Guilherme Kangussú; Fernandes, Raphael Bragança Alves; Bhattharai, Rabin; Kalita, Prasanta Kumar

    2017-04-01

    The objective of this study was to evaluate sediment, water and nutrient losses from different pasture managements in the Atlantic Rainforest biome. A field study was carried out in Alegre Espiríto Santo, Brazil, on a Xanthic Ferralsol cultivated with braquiaria (Brachiaria brizantha). The six pasture managements studied were: control (CON), chisel (CHI), fertilizer (FER), burned (BUR), plowing and harrowing (PH), and integrated crop-livestock (iCL). Runoff and sediment samples were collected and analyzed for calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P) and organic carbon contents. Soil physical attributes and above and below biomass were also evaluated. The results indicated that higher water loss was observed for iCL (129.90mm) and CON (123.25mm) managements, and the sediment losses were higher for CON (10.24tha -1 ) and BUR (5.20tha -1 ) managements when compared to the other managements. Majority of the nutrients losses occurred in dissolved fraction (99% of Ca, 99% of Mg, 96% of K, and 65% of P), whereas a significant fraction of organic carbon (80%) loss occurred in a particulate form. Except for P, other nutrients (Ca, Mg and K) and organic carbon losses were higher in coarse sediment compared to fine sediment. The greater losses of sediment, organic carbon, and nutrients were observed for CON followed by BUR management (plosses from various practices, to reduce pasture degradation, farmers should adopt edaphic practices by applying lime and fertilize to improve pasture growth and soil cover, and reducing soil erosion in the hilly Brazilian Atlantic Rainforest biome. Copyright © 2016. Published by Elsevier B.V.

  5. A Special Issue of the Journal of Forestry—Tribal Forest Management: Innovations for Sustainable Forest Management

    Science.gov (United States)

    Michael J. Dockry; Serra J. Hoagland

    2017-01-01

    Native American forests and tribal forest management practices have sustained indigenous communities, economies, and resources for millennia. These systems provide a wealth of knowledge and successful applications of long-term environmental stewardship and integrated, sustainable forest management. Tribal forestry has received an increasing amount of attention from...

  6. Environmental Education and Sustainability: Reflections in a Management Context

    Directory of Open Access Journals (Sweden)

    Leandro Petarnella

    2017-05-01

    Full Text Available This study aims to reflect and discuss on Environmental Education (EE and Sustainability Education in Management, particularly stricto sensu Postgraduate Programmes. For this, it studies the history and the subject longevity in its transience, therefore it is a review article. This study was conducted through an exploratory approach, with a qualitative method of inductive reasoning, based on literature and document review for conceptual appropriation. Its relevance addresses two inter, multi and transdisciplinary issues, which reveal and complement each other in a broader social understanding. The reflections here discussed under the administration context, point to the challenge of the respective area. This should devise and disseminate scientific knowledge from and related to management that can operate under changes in the current social paradigm in which this science is linked to the others paradigm that is expected in the future: management contextualized and articulated with the sustainability paradigm. The study’s conclusion is that the challenge of incorporating sustainability into the teaching of stricto sensu Postgraduation in Management should be addressed through environmental education.

  7. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers(OTCs) of ambient [CO2](≈ 390 μmol L-1) and elevated [CO2] environment(25% above ambient) during wet and dry seasons in 2011–2013at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer(CF), integration of chemical and organic sources, and application of increased(25% higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  8. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers (OTCs) of ambient [CO2] (≈390μmol L−1) and elevated [CO2] environment (25%above ambient) during wet and dry seasons in 2011–2013 at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer (CF), integration of chemical and organic sources, and application of increased (25%higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  9. Business Management in Sustainable Buildings: Ankara-Turkey Case

    Science.gov (United States)

    Kutay Karaca, Neşet; Burcu Gültekin, Arzuhan

    2017-10-01

    The concept of the sustainability is described as efficiently and effectively consuming of exhaustible and recyclable sources of the world. A sustainable building implements sustainability criteria in its life cycle, and business management is the process by which an organization uses its resources in the most efficient way to reach its goal. From the beginning, sustainable building proves their differences from the conventional buildings. Sustainable buildings are resource-efficient and environmentally responsible structures in terms of energy consumption, construction principles, siting, renovation and maintenance throughout its life cycle while conventional buildings are more traditional in these matters. The differences are observable especially in costs and expenditures. It is possible and feasible to compare and contrast the design, construction and management costs of both types of structures. Thence, contributions of sustainable buildings are priced favourably in terms of ecological and sociological aspects. In this context, a prospective projection can be made considering the extra costs of sustainable structures, as well as the consumption profits due to the use of less energy than conventional construction. Considering this, it is possible to project consumption savings in long term. By calculating a forward-looking net cash flow projection, it can be forecasted how much time it will take to cover the extra cost. When making decisions, investors always contemplate maximum profitability. Within the scope of this study, costs of sustainable and conventional buildings will be compared and contrasted through precedence of a sustainable building certificated and non-certificated building. It will be analysed in which time period the initial cost difference between them will be compensated totally and partially. Furthermore, an efficiency analyses will be done in the scope of the necessities and expenses of these businesses.

  10. Community participatory sustainable land management byelaw ...

    African Journals Online (AJOL)

    Widespread adoption of sustainable land management (SLM) innovations by land users is considered key in addressing the rampant land degradation in the high rainfall and densely populated highlands of eastern and southern Africa. However, absence of enabling policy environments hamperes massive adoption of SLM ...

  11. Runoff, sediment and nutrient exports from a Portuguese vineyard under integrated production

    Science.gov (United States)

    Ferreira, Carla; Abrantes, Nelson; Santos, Leisly; Serpa, Dalila; Keizer, Jacob; Ferreira, António

    2017-04-01

    Vineyard is one of the most important fruit crops in the world, and particularly in Portugal, where it represents 27% of permanent crops (INE, 2011). It has an unquestionable impact on Portuguese economy, due to direct impacts on primary sector, since it embodies 49% of drink industry sales and it is the seventh vegetable product best quoted (INE, 2015), but also due to indirect impacts on tourism. Although the economical relevance of vineyards, crop sustainability may be endangered due to land degradation. In the Mediterranean region, vineyards are reported as being the land use with highest erosion rates, threatening the long-term agricultural sustainability (Biddoccu et al., 2016). Several research studies have investigated runoff and erosion processes on vineyards, but relatively few focused on nutrient losses. This study aims to (i) quantify surface runoff, sediment and nutrient losses in a Portuguese vineyard managed under integrated production; (ii) relate these losses with rainfall pattern; and (iii) discuss the sustainability of vineyards under integrated production. The study was carried out in a commercial vineyard framed in the specialized wine region of Bairrada, in North-Central Portugal. The vineyard was managed with minimum tillage (non-inversion), performed once per year in some plant rows (changing every year), in order to maintain partial vegetation cover. Fertilization, mostly foliar, is performed twice per year (between May and July), according with integrated production regulations. The climate is Mediterranean but with a significant influence of the Atlantic Ocean. The average annual rainfall is 1077 mm and the average annual temperature is 15.7°C. The soil is a Calcaric Cambisol, with clay texture, and gentle slopes (<10%). Six runoff plots were installed (78-122 m2) in September 2012. The plots were naturally bounded by a path on the top and by plant strips on the sides. At the bottom of each plot, a collector grid was buried and connected

  12. Managing cumulative impacts: A key to sustainability?

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, C.T.

    1994-12-31

    This paper addresses how science can be more effectively used in creating policy to manage cumulative effects on ecosystems. The paper focuses on the scientific techniques that we have to identify and to assess cumulative impacts on ecosystems. The term ``sustainable development`` was brought into common use by the World Commission on Environment and Development (The Brundtland Commission) in 1987. The Brundtland Commission report highlighted the need to simultaneously address developmental and environmental imperatives simultaneously by calling for development that ``meets the needs of the present generation without compromising the needs of future generations.`` We cannot claim to be working toward sustainable development until we can quantitatively assess cumulative impacts on the environment: The two concepts are inextricibally linked in that the elusiveness of cumulative effects likely has the greatest potential of keeping us from achieving sustainability. In this paper, assessment and management frameworks relevant to cumulative impacts are discussed along with recent literature on how to improve such assessments. When possible, examples are given for marine ecosystems.

  13. Entrepreneurship And Business Management - Exploring Linkages For Sustainable Development

    Directory of Open Access Journals (Sweden)

    Dr Serah K Mbetwa

    2015-08-01

    Full Text Available Entrepreneurs have emerged as market leaders in todays business world amidst the numerous economic turmoil constantly affecting economies on a global scale. This research paper is on entrepreneurship and business management and its linkages to other business stakeholders. The research paper therefore discusses entrepreneurship and business management exploring the linkages to available financing and potential institutions for startup capital by linking entrepreneurs to the government financiers and the public clientele. It is believed that this can bring about achievement of sustainable development goals translating into sustainable development and hence economic growth. The idea of funding is echoed by Robert Rice 2016 An entrepreneur without funding is like a musician with no instruments. Sustainability and entrepreneurship sustainopreneurship is made possible with availability of information on linkages between entrepreneurs and financial lending institutions as well as government policy. It is hoped that the research will add to the existing knowledge and help entrepreneurs with funding options for their business ideas to come to life. Findings show that the government financial lending institutions and the public are the major linkages between entrepreneurship and business management and are critical for attaining sustainable development goals and achieving economic growth.

  14. The workers role in knowledge management and sustainability policies.

    Science.gov (United States)

    Bolis, Ivan; Brunoro, Claudio; Sznelwar, Laerte Idal

    2012-01-01

    Based on the concepts of sustainability and knowledge management, this article seeks to identify points of contact between the two themes through an exploratory study of existing literature. The first objective is to find, in international literature, the largest number of papers jointly related to the theme of knowledge management and sustainability. In these documents, the authors looked at the kind of relationship existing between the two themes and what the benefits introduced in organizations are. Based on an ergonomic point of view, the second objective of this article is to analyze the role of the worker (whether at the strategic or operational level) and his importance in this context. The results demonstrate that there is very little literature that addresses the two themes together. The few papers found, however, can be said to show the many advantages of introducing sustainability policies supported by adequate knowledge management. Very little has been studied with regards to the role of workers, which could be interpreted as meaning that little importance is given to the proactive role they may play. On the other hand, there is a high potential for future research in these areas, based on the high level of consideration of workers in knowledge management and sustainability literature, as well as in literature in the areas of ergonomics and sociology.

  15. An Overview of Management Education for Sustainability in Asia

    Science.gov (United States)

    Wu, Yen-Chun Jim; Shen, Ju-Peng; Kuo, Tsuang

    2015-01-01

    Purpose: This paper aims to explore the holistic picture of sustainability curricula in Asian higher education. Design/methodology/approach: Content analysis was conducted based on Asian management education for sustainability in higher education. Online courses arrangement, teaching methods, instructors' educational background and…

  16. Data-driven nutrient analysis and reality check: Human inputs, catchment delivery and management effects

    Science.gov (United States)

    Destouni, G.

    2017-12-01

    Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.

  17. Nutrient management regulations in The Netherlands

    NARCIS (Netherlands)

    Schröder, J.J.; Neeteson, J.J.

    2008-01-01

    The application of nutrients affect the quality of the environment which justifies the consideration of regulations regarding their use in agriculture. In the early 1990s The Netherlands decided to use the indicator `nutrient surplus at farm level¿ as the basis for a regulation which was called the

  18. Structural capital management creates sustainable competitiveness and prolonged first-mover advantage

    Directory of Open Access Journals (Sweden)

    C. R. Van Zyl

    2005-12-01

    Full Text Available Structural (SC capital is part of the intellectual capital that is owned by an organisation and its efficient and dedicated management is essential for the creation of shareholder value, sustainable competitive advantage, and prolonged first-mover advantage. SC consists of three types of capital, namely: innovation, organisational and process capital. Organisational capital consists of organisational culture, management philosophies etc. and has received a large amount of management attention. However, organisational capital is not as valuable towards the creation of sustainable competitiveness and first-mover advantage as innovation and process capital are. It is the purpose of this article to demonstrate how a thorough understanding and the efficient management of innovation and process capital enables organisations to achieve the afore-mentioned benefits. Innovation capital management consists primarily of patent and brand management, which are particularly important as patent management forms a high-margin justification for the implementation of organisation-wide intellectual property management, and the management of high-equity brands secures a loyal customer base and associative sustainable competitiveness and first-mover advantage benefits. Although not as obviously valuable as innovation capital, the article also explores the value that the efficient management of unique organisational processes and methodologies contribute towards the achievement of prolonged first-mover advantage and the provision of protection against competitor actions. This exploration involved an examination of contemporary literature, theories and business cases and subsequently revealed that SCM is a vital discipline/philosophy that must be implemented by any organisation wishing to achieve greater sustainable competitiveness. Innovation and process capital are of particular importance as these assets can be made tangible, leveraged and integrated into existing

  19. Human resource management for sustainable microfinance ...

    African Journals Online (AJOL)

    Microfinancing in Nigeria has developed from the traditional informal groups through direct government intervention to domination by private sector owned and managed institutions. Despite its long history, the sector has not witnessed the existence of sustainable institutions. This prompted the Obasanjo regime to adopt a ...

  20. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Said, A.; Sehlke, G.; Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T.; Glover, T.

    2006-01-01

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  1. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  2. Colonic delivery of nutrients for management of blood glucose in type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Jerzy Szewczyk

    2017-01-01

    Full Text Available Background:It is now widely accepted that bariatric surgeries such as Roux-en-Y gastric bypass (RYGB and sleeve gastrectomy (SG can resolve orimprove type 2 diabetes mellitus. Post-prandial glucagon-like peptide-1(GLP-1 increases after both RYGB and SG and blockade of the GLP-1 receptor suppresses the hypoglycemic effect post-operatively. The expedited delivery of nutrients, including L-glutamine and butyrate, to the distal small intestine and colon, where most GLP-1–secreting enteroendocrine L-cells are expressed, could explain this increase post-surgery. Pharmacological treatments that target nutrient-sensing receptors on L-cells may mimic the effects of bariatric surgeries and may ameliorate deficiencies in gut hormone responses involved in the regulation of glucose and satiety. In this study, we investigated the effects of the colonic delivery of L-glutamine and butyrate on GLP-1 secretion and glucose homeostasis in both a pre-clinical rodent model and clinical type 2 diabetes mellitus (T2DM. Results: Infusion of 4.4mg of sodium butyrate, compared to saline, into the colon of Zuckerdiabetic fatty (ZDF rats increased GLP-1secretion in response to an intra-duodenal glucose challenge. In a chronic study, oral dosing of 40mg of sodium butyrate twice a day, formulated as colon-targeted sustained-release tablets, preserved glucose tolerance and insulin sensitivity in ZDF rats. In ten T2DM patients requiring oral anti-hyperglycemic agents, infusion of 1g of L-glutamine into the colon, compared to saline, increased plasma GLP-1 (p=0.017 at 30min and insulin (p<0.01 at 90min; p=0.001 at 120min; AUC p<0.005 after an oral glucose challenge. infusion with butyrate significantly increased only insulin secretion at 120min, compared to saline (p<0.05. Neither agent had an effect on glucose disposal.Conclusion: Targeted colonic delivery of L-glutamine and butyrate augments secretion of meal-stimulated GLP-1 and insulin; L-glutamine was more efficacious in

  3. A Framework of Sustainable Service Supply Chain Management: A Literature Review and Research Agenda

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    2017-03-01

    Full Text Available In recent years, the interdisciplinary research of supply chains and sustainability has received extensive, yet gradual, attention; when compared to the rapid economic growth of the service industry, however, sustainable supply chain management has not been systematically explored yet. It has not only great theoretical significance, but also positive practical significance to provide a framework for the operation of a sustainable service supply chain from a sustainable development point of view. Based on the triple bottom line (TBL, we have analyzed related sustainable supply chain management research between 2006 and 2015, reviewed papers involving two or three bottom lines as well, and then introduced some classical frameworks for manufacturing supply chain management and service supply chain management. Afterward, by analyzing the differences between the manufacturing and service industries, we propose a framework of sustainable service supply chain management (SSSCM. Based on the impacts of sustainable development TBL on service supply chain participants, we have finally made a framework for sustainable operation facing triads service supply chain and proposed a future research agenda.

  4. Sustainable Management of Construction and Demolition Materials

    Science.gov (United States)

    This web page discusses how to sustainably manage construction and demolition materials, Information covers, what they are, and how builders, construction crews, demolition teams,and deign practitioners can divert C&D from landfills.

  5. Greening Operations Management: An Online Sustainable Procurement Course for Practitioners

    Science.gov (United States)

    Walker, Helen L.; Gough, Stephen; Bakker, Elmer F.; Knight, Louise A.; McBain, Darian

    2009-01-01

    In the Operations Management field, sustainable procurement has emerged as a way to green the purchasing and supply process. This paper explores issues in sustainable procurement training. The authors formed an interdisciplinary team to design, deliver and evaluate a training programme to promote and develop sustainable procurement in the United…

  6. Soil nutrients, aboveground productivity and vegetative diversity after 10 years of experimental acidification and base cation depletion

    Science.gov (United States)

    Mary Beth Adams; James A. Burger

    2010-01-01

    Soil acidification and base cation depletion are concerns for those wishing to manage central Appalachian hardwood forests sustainably. In this research, 2 experiments were established in 1996 and 1997 in two forest types common in the central Appalachian hardwood forests, to examine how these important forests respond to depletion of nutrients such as calcium and...

  7. Making Forest Values Work: Enhancing Multi-Dimensional Perspectives towards Sustainable Forest Management

    Directory of Open Access Journals (Sweden)

    Doni Blagojević

    2016-06-01

    Full Text Available Background and Purpose: Sustainability, sustainable development and sustainable forest management are terms that are commonly, and interchangeably used in the forest industry, however their meaning take on different connotations, relative to varying subject matter. The aim of this paper is to look at these terms in a more comprehensive way, relative to the current ideology of sustainability in forestry. Materials and Methods: This paper applies a literature review of the concepts of: i sustainable development; ii sustainable forest management; and iii economic and non-economic valuation. The concepts are viewed through a historical dimension of shifting paradigms, originating from production- to service-based forestry. Values are discussed through a review of general value theory and spatial, cultural and temporal differences in valuation. Along the evolution of these concepts, we discuss their applicability as frameworks to develop operational guidelines for forest management, relative to the multi-functionality of forests. Results and Conclusions: Potential discrepancies between the conceptual origins of sustainable development and sustainable forest management are highlighted, relative to how they have been interpreted and diffused as new perceptions on forest value for the human society. We infer the current paradigm may not reflect the various dimensions adequately as its implementation is likely to be more related to the distribution of power between stakeholders, rather than the value stakeholders’ place on the various forest attributes.

  8. Sustainable Innovation, Management Accounting and Control Systems, and International Performance

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Valeiras

    2015-03-01

    Full Text Available This study analyzes how Management Accounting and Control Systems (MACS facilitate the appropriation of the benefits of sustainable innovations in organizations. In particular, this paper examines the moderating role of different types of MACS in the relationships between sustainable innovation and international performance at an organizational level. We collected survey data from 123 Spanish and Portuguese organizations. Partial Least Square was used to analyze the data. Results show that the effect of sustainable innovations on international performance is enhanced by contemporary rather than traditional types of MACS. Overall our findings show that MACS can help managers to develop and monitor organizational activities (e.g., costumer services and distribution activities, which support the appropriation of the potential benefits from sustainable innovation. This paper responds to recent calls for in-depth studies about the organizational mechanism that may enhance the success of sustainable innovation.

  9. A Study of Sustainable Material Management Approach in Taiwan

    International Nuclear Information System (INIS)

    Su Mingchien; Chou Chenpei; Chen Yizih

    2009-01-01

    Sustainable material management (SMM) has been initiated by the Organization for Economic Cooperation and Development (OECD) in 2005. SMM is an approach to promote resource conservation, reducing negative environmental impacts and preserving the natural capital of material and the balance of economic efficiency and social equity. Life cycle assessment and material flow analysis have been widely used to estimate the environmental impacts for resource consumption, but economic development has not been taken into account. Before 1984, improper garbage disposal was not an important issue in Taiwan. But over the past three decades, the Taiwan Government has accomplished not only waste disposal but also resource recycling, which are conducive to the essence of SMM. This study is the first research project to develop a SMM conceptual model for policy and strategy in Taiwan. SMM is the suitable waste management concept for the next era. This study reviewed the policy and strategy that has been applied in Taiwan's waste management, and compares the efficiency of waste management policy in Taiwan with the concept of SMM. A case study of the waste flow will be used to prove that the sustainable material policy can be a suitable management system to achieve sustainable development. This study will open a new chapter of research on global SMM for Taiwan.

  10. Addressing Organisational Pressures as Drivers towards Sustainability in Manufacturing Projects and Project Management Methodologies

    Directory of Open Access Journals (Sweden)

    Fotios Misopoulos

    2018-06-01

    Full Text Available The concept of sustainability continues to rapidly grow in interest from disparate academic and industrial fields. This research aims to elucidate further the implications of the sustainability drivers upon project management methodological approaches specifically in the manufacturing industry. This paper studies the three prevalent dialogues in the field of sustainability, relevant to the environmental and social aspects of the Triple Bottom Line, and utilises Institutional Theory to propose organisational pressures as affecting sustainability efforts in industrial manufacturing project management. Furthermore, the literature bodies of Lean and Life Cycle Analysis in manufacturing project management guided our reflection that the various drivers of sustainability put forward that do not consider the distinctive organisational pressures fail to address institutional and systemic project management issues holistically. The authors further conduct and draw on a systematic literature review on the constructs of sustainability in the manufacturing industry and their adopted methodologies, evaluating academic articles published from the year 2001 to 2017. The findings indicate that normative pressures prevail over coercive and mimetic pressures and are seen as the main drivers of sustainability in the manufacturing industry. In an incremental reductionist approach, project management knowledge areas are analysed, and the study posits that Stakeholder and Communications Management are two of the knowledge areas that need to integrate the above pressures to achieve cohesive sustainable industrial results. The principle contribution is to offer a new conceptual perspective on integrating project management knowledge areas with Institutional Theory pressures for more sustainable project management methodologies.

  11. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management practice standard. 205.203 Section 205.203 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT...

  12. Priorities for sustainable turfgrass management

    DEFF Research Database (Denmark)

    Strandberg, M.; Blombäck, K.; Jensen, Anne Mette Dahl

    2012-01-01

    government demands for greater environmental regulation, the increasing pressure on natural resources (notably water, energy and land), the emerging role of turf management in supporting ecosystem services and enhancing biodiversity, the continued need to promote integrated pest management, and the looming...... and opportunities available for promoting and achieving more sustainable turfgrass management within the sports, landscape and amenity sectors. The analysis confirms that there are a number of key areas where a concerted research and industrial effort is required. These include responding to the pressures from...... challenges posed by a changing climate, and urgent need to adapt. Whilst many of these externalities appear to be risks to the sports turf industry, there will also be significant opportunities, for those where the labour, energy and agronomic costs are minimized and where the drive to adopt...

  13. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  14. Towards sustainable use of Wildlife Management Areas (WMAs) in ...

    African Journals Online (AJOL)

    Sustainable use of Wildlife Management Areas (WMAs) has become equated with wise exploitation of wildlife resources therein and ownership devolution of WMAs to the local people by the Government. Demand for sustainability is often driven by the severity of overexploitation of wildlife resources and perceived conflict ...

  15. Sustainable Land Management in Mining Areas in Serbia and Romania

    Directory of Open Access Journals (Sweden)

    Vesna Popović

    2015-08-01

    Full Text Available The paper analyzes the impacts of mining activities on sustainable land management in mining areas in the Republic of Serbia and Romania and discusses the main challenges related to the management of these issues in legislation and practice. Particular attention is paid to land disturbance, mine waste management and land reclamation, as well as access to land for mining purposes, the transfer of mining royalties and the partnerships of the mining industry, governments, communities and civil society for sustainable mining. Both governments are willing to provide the adequate role to mining in strengthening the national economies, but they face numerous constraints in this matter. Sustainable mining practices and consistent implementation of the mining for the closure planning approach, within an improved legislative framework and in cooperation with stakeholders at all levels, create conditions for the development of creative, profitable, environmentally-sound and socially-responsible management and reuse of mine lands.

  16. Management ethics and strategies towards sustainable tourism ...

    African Journals Online (AJOL)

    Management ethics and strategies towards sustainable tourism development in ... embark on tourism because of the huge economic benefits, which it accrues on ... The park was gazzetted in 1972 for the purposes of conservation, education ...

  17. Mathematical Methods of Managing Economic Sustainability of the Construction Company

    Science.gov (United States)

    Kostuchenko, Vasiliy; Zdanov, Andrej; Rodionov, Anatolij

    2017-10-01

    This article presents a long-term research in developing innovative mathematical techniques of managing the contractor’s economic sustainability proven by some experimental studies. The article aims at presenting some practical results of applying these techniques to the scientific community. This research presents a description of some applied mathematical models, views, and some results of their practical application in the applied field for the purposes of evaluating operational sustainability and minimizing losses in the process of managing the company. The authors have put the technology they have developed to practical use, and the article presents the results of such application. The authors have put the developed technology to practical use. Company management also means the management of power consumption, which is highly vital both for the construction and maintenance of buildings and structures. The articles also dwell on some possible improvements of managing energy consumption within the framework of the general management of company’s economic sustainability, because these phenomena have a tight organic interdependence. The authors continue researching this direction in order to improve the production efficiency of the proposed technologies as well as to eliminate some drawbacks they have spotted.

  18. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  19. Sustainability management for operating organizations of research reactors

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de

    2017-01-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  20. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  1. Asset management strategies and sustainability in Dutch social housing

    NARCIS (Netherlands)

    Nieboer, N.E.T.

    2004-01-01

    With 35% of the total housing stock in the Netherlands (Ministry of VROM, 2004), the social rented sector plays an important role in Dutch housing, and its management can be of great importance to the success or failure of sustainability programs. Although sustainable building has been high on the

  2. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  3. Urban sustainable development from public participation in urban management

    Directory of Open Access Journals (Sweden)

    L. Karimifard

    2016-04-01

    Full Text Available Urban management in any context has a different economic, social and political structure, which is in harmony with the existing models of organization. In spite of these differences, in order to reach a sustainable urban development, several different conferences should be referred to. In the “Brundtland Commission 1987” about urban sustainable development these definitions have been given: “preservation and promotion of the quality level of city life. This consists of ecology, culture, politics, economies, and social participation. However, this development should in no case weigh on and create any problems for the future generations”. In all the definitions of urban management and urban sustainable development and in any political context citizens’ participation in decision making and insistence on social justice are mentioned. The aim of this article is a descriptive, analytic, and comparative study of different models of popular participation in different developed countries. Each of these countries has different social and political structure. However they all have the same aim which is the citizens’ empowerment. To reach the ideal urban management model it is necessary to have a clear image of the place and participation of citizens in order to create a socially, economically and politically sustainable developed society.

  4. Sustainability considerations in the operation of Wastewater Treatment Plant ‘Swarzewo’

    Directory of Open Access Journals (Sweden)

    Dereszewska Alina

    2016-01-01

    Full Text Available The Wastewater Treatment Plant (WWTP ‘Swarzewo’ plays a special role in the protection of coastal waters of the Baltic Sea area and the management of solid wastes in the region. This paper discusses several options implemented in the WWTP area in order to achieve sustainability. The first one was the inclusion of WWTP into municipal waste management plan to increase the biogas production and to reduce volume of organic waste in the region. Nowadays, daily production of about 2000 m3 of biogas is gained. The energy balance shows a considerable benefit from the co-fermentation of sludge with municipal organic wastes. The next goal was to obtain a favorable economical balance of energy and high level of pollution reduction. The last one was the involvement of local communities in a conscious segregation of waste ‘at source’. For the purpose of this paper bio-energy production, nutrient elimination, composting, and research, have been selected as indicators of sustainable development. Furthermore, in this study the methods of nutrient recovery from wastewater were explored. Struvite precipitation and compost production were presented as an example of nutrient elimination with ‘end of waste’ production. Depending on the struvite precipitation conditions, recovery of 4 Mg of phosphorous and 1,8 Mg of nitrogen is possible to obtain annually.

  5. The Reputation Crisis: Risk Management Based Logical Framework to the Corporate Sustainability

    OpenAIRE

    Yilmaz, Ayse Kucuk; Kucuk, Ferziye

    2010-01-01

    Risk is a constituent part of both the business and the society in which we survive. Reputation is valuable assest for corporates in sustainable way. Integrating risk management with strategy-setting, such as an enterprise risk management (ERM) approach, helps an organization manage its risks to protect and enhance enterprise value in three ways. First, it helps to establish sustainable competitive advantage. Second, it optimizes the cost of managing risk. Third, it helps management improve b...

  6. Can we manage ecosystems in a sustainable way?

    Science.gov (United States)

    Rice, Jake

    Fisheries have often become unsustainable, despite efforts of policy, management, and science. FAO has reviewed this undesirable pattern and identified six major factors contributing to unsustainability: inappropriate incentives, high demand for limited resources, poverty and lack of alternatives, complexity and lack of knowledge, lack of effective governance, and interactions of fisheries sector with other sectors and the environment. It also identified eight classes of actions that provide pathways to addressing the factors causing unsustainability of fisheries: allocation of rights; transparent, participatory management; support for science, enforcement and planning; equitable distribution of benefits; integrated policy development; application of precaution; building capacity and public understanding; and market incentives and economic instruments. The review highlighted that "sustainability" is a multi-dimensional concept (economic, social, ecological, and institutional), and measures implemented to address problems on one dimension of sustainability will move the fishery in a negative direction in at least one other dimension. In this paper I apply the FAO framework to the whole ecosystem. For each factor of unsustainability, I consider whether redefining the sustainability problem to the greater ecosystem makes the factor more or less serious as a threat to sustainability. For each pathway to improvement I consider whether the redefinition of the problem makes the pathway more or less effective as a management response to the threat. Few of the factors of unsustainability becomes easier to address at the ecosystem scale, and several of them become much more difficult. Of the combinations of pathways of responses and factors of unsustainability, more than two thirds of them become more difficult to apply, and/or have even greater negative impacts on other dimensions of sustainability. Importantly, the most promising pathways for addressing unsustainability of

  7. Management of sustainable tourism destination through stakeholder cooperation

    Directory of Open Access Journals (Sweden)

    Božena Krce Miočić

    2016-12-01

    Full Text Available Destination presents a set of different organizations and individuals who can work towards realising the same objectives or their objectives can be diametrically opposed. Harmonisation of such objectives in a unique strategic development of the entire destination is usually taken over by destination management organization (DMO established to accomplish the mentioned objective. The opposed interests in such a system as complex as tourism result in the degradation of space and society in which tourism takes place. Therefore sustainable development in tourism represents a primary concept of development today. Tourism is a fast growing phenomenon and its sustainable development represents a necessity. Besides the positive economic outputs of tourism, we should also mention its negative impact on the particular destination, the environmental degradation to some extent, as well as socio-economic elements of local community. Accordingly, multi-stakeholder concept in destination management should include all interest and influential groups in tourism development planning. Such integrated destination management connects all stakeholders independent from influence or interest powers to participate directly or indirectly in creating and implementing the quality tourism development. This concept’s basic function is connecting and coordinating stakeholders with different interests within a tourism destination, in order to create quality product and a recognizable destination image, and to achieve a long-term sustainable competitiveness on the market. However, based on the stakeholder approach, the most emphasized issue in sustainable tourism development concept is the government that holds a key role in socio-economic development. In this paper, we analysed current involvement of stakeholders in Zadar County tourism development and examined their interest in future involvement in sustainable destination development. Based on the analysis of focus group

  8. Multifaceted Impacts of Sustainable Land Management in Drylands: A Review

    Directory of Open Access Journals (Sweden)

    Maria Jose Marques

    2016-02-01

    Full Text Available Biophysical restoration or rehabilitation measures of land have demonstrated to be effective in many scientific projects and small-scale environmental experiments. However circumstances such as poverty, weak policies, or inefficient scientific knowledge transmission can hinder the effective upscaling of land restoration and the long term maintenance of proven sustainable use of soil and water. This may be especially worrisome in lands with harsh environmental conditions. This review covers recent efforts in landscape restoration and rehabilitation with a functional perspective aiming to simultaneously achieve ecosystem sustainability, economic efficiency, and social wellbeing. Water management and rehabilitation of ecosystem services in croplands, rangelands, forests, and coastlands are reviewed. The joint analysis of such diverse ecosystems provides a wide perspective to determine: (i multifaceted impacts on biophysical and socio-economic factors; and (ii elements influencing effective upscaling of sustainable land management practices. One conclusion can be highlighted: voluntary adoption is based on different pillars, i.e. external material and economic support, and spread of success information at the local scale to demonstrate the multidimensional benefits of sustainable land management. For the successful upscaling of land management, more attention must be paid to the social system from the first involvement stage, up to the long term maintenance.

  9. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    Science.gov (United States)

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Exploring Reasons for the Resistance to Sustainable Management within Non-Profit Organizations

    Directory of Open Access Journals (Sweden)

    Claus-Heinrich Daub

    2014-05-01

    Full Text Available The numerous empirical and conceptual studies that have been conducted over recent years concerning the social responsibility of enterprises and their contributions towards sustainable development have given very little consideration to non-profit organizations (NPOs. This is surprising, because NPOs are confronted with very similar challenges to profit-orientated enterprises regarding their evolution into sustainable organizations. This paper is a preliminary conceptual study and explores the question of why the corporate social responsibility, or corporate sustainability, of NPOs has to date been both neglected by research establishments and also extensively ignored by the NPOs during their day-to-day practical management. The example of church and pastoral institutions in Germany is used to demonstrate the extent to which they take account of ecological and social aspects in their management systems and processes and, thus, implement sustainable management within their day-to-day practice. The paper concludes with some proposals for further empirical and conceptual research projects, which are designed to analyze developments within NPOs with relation to the integration of sustainability into their management systems and processes.

  11. Evolution of Sustainability in American Forest Resource Management Planning in the Context of the American Forest Management Textbook

    Directory of Open Access Journals (Sweden)

    Thomas J. Straka

    2009-10-01

    Full Text Available American forest resource management and planning goes back to the European roots of American Forestry. Timber management plans, documents based on forest regulation for timber production, were the foundation of American forestry. These types of management plans predominated until World War II. Multiple use forestry developed after World War II and issues like recreation, wildlife, water quality, and wilderness became more important. In the 1970’s harvest scheduling became part of the planning process, allowing for optimization of multiple goals. By 2001 social, environmental, and economic goals were integrated into the timber production process. American forestry experienced distinct historical periods of resource planning, ranging from classic sustained yield timber production, to multiple use-sustained yield, to sustainable human-forest systems. This article traces the historical changes in forest management planning philosophy using the forest management textbooks of the time. These textbooks provide insight into the thought process of the forestry profession as changes in the concept of sustainability occurred.

  12. Grand Fir Nutrient Management in the Inland Northwestern USA

    Directory of Open Access Journals (Sweden)

    Dennis R. Parent

    2016-11-01

    Full Text Available Grand fir (Abies grandis (Douglas ex D. Don Lindley is widely distributed in the moist forests of the Inland Northwest. It has high potential productivity, its growth being nearly equal to western white pine, the most productive species in the region. There are large standing volumes of grand fir in the region. Nutritionally, the species has higher foliage cation concentrations than associated conifers, especially potassium (K and calcium (Ca. In contrast, it has lower nitrogen (N foliage concentrations, which creates favorable nutrient balance on N-limited sites. Despite concentration differences, grand fir stores proportionally more nutrients per tree than associated species because of greater crown biomass. Although few fertilization trials have examined grand fir specifically, its response is inferred from its occurrence in many monitored mixed conifer stands. Fertilization trials including grand fir either as a major or minor component show that it has a strong diameter and height growth response ranging from 15% to 50% depending in part on site moisture availability and soil geology. Grand fir tends to have a longer response duration than other inland conifers. When executed concurrently with thinning, fertilization often increases the total response. Late rotation application of N provides solid investment returns in carefully selected stands. Although there are still challenges with the post-fertilization effects on tree mortality, grand fir will continue to be an important species with good economic values and beneficial responses to fertilization and nutrient management.

  13. Practice makes perfect: participatory innovation in soil fertility management to improve rural livelihoods in East Africa

    OpenAIRE

    Jager, de, A.

    2007-01-01

    Keywords: soil nutrient balances, soil fertility degradation, East Africa , participatory innovation, experiential learning, farmer field schools, smallholder agriculture Maintaining and improving soil fertility is crucial for Africa to attain the Millennium Development Goals. Fertile soil and balanced soil nutrient management are major foundations for sustainable food production, contribute to a sound management of natural resources and assist in controlling environmental degradation such ...

  14. Commitment to and preparedness for sustainable supply chain management in the oil and gas industry.

    Science.gov (United States)

    Wan Ahmad, Wan Nurul K; Rezaei, Jafar; Tavasszy, Lóránt A; de Brito, Marisa P

    2016-09-15

    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Intergovermental Cooperation Initiative on Sustainable Transportation Management in Jabodetabek

    Directory of Open Access Journals (Sweden)

    Hidayat Chusnul Chotimah

    2016-05-01

    Full Text Available The main issues in Jabodetabek concerning the management of transportation are related to the increased use of private vehicles and the decreased use of public transportation, overcrowding daily traffic in Jabodetabek, the high congestion followed by insecurity in traffic, environmental pollution, uncontrolled growth of and underdeveloped infrastructure, and irregularities in land use. To overcome these problems, sustainable transportation management becomes very important in which the government should be able to cope with environmental, economic and social factors under the decision making related to transportation in Jabodetabek. Therefore, through interactive planning, this study will examine intergovernmental cooperation initiatives on sustainable transportation management in Jabodetabek. This study uses qualitative and descriptive method through literature study and existing statistics as the resources to apply the interactive planning approach. The result shows that there are found a number of problems and gaps in the management of transportation in Jabodetabek that needs to be reduced because it has the same scope of other gaps. From these problems can be made further action programs and policies in accordance with the resources owned, and then, the design of implementation made and controlled whether in accordance with the purpose or not. Thus, sustainable transportation management in the Jabodetabek needs to be done jointly in an institutional or policyframework involving governments Jabodetabekpunjur, BKSP Jabodetabekpunjur, and the private sector.

  16. Barriers to sustainable water resources management : Case study in Omnogovi province, Mongolia

    OpenAIRE

    Enkhtsetseg, Mandukhai

    2017-01-01

    This study examines the barriers to sustainable water resources management in water vulnerable, yet a mining booming area. The case study is conducted in Omnogovi province of Mongolia in Nov-Dec 2016. This study presents how the Omnogovi province manages its water with increased mining and examines what hinders the province from practicing sustainable water resources management and examines the involvement of residents in the water resources management of Omnogovi province. Qualitative approa...

  17. Sustainable mining management; Gestion minera sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Tejera Oliver, J. L.

    2009-07-01

    Mining activities are carried out by the older man and have provided resources, since ancient times, for their development and progress. With the discovery of fire will show the first metals that have marked the civilizations of copper, bronze and iron, and is the prehistory of the Stone Age tools that man has made from the exploitation of quarries first. The industrial revolution of the nineteenth century is linked to coal and steel, and could not conceiver of todays society without oil and gas, without silicon and coltan. But the mines are often aggressive and, despite their need and what they contribute to the development are answered by the societies where are made. during recent years there has been growing international efforts to try to make the minimum requirements of sustainable exploitation (European Directives, GMI, GRI, etc.) In AENOR, and within the Technical Committee of Standardization 22 Mining and Explosives, chaired by AITEMIN, was established the subcommittee 3, chaired by IGME, where, with the participation of all stake holders, have developed some standards on sustainable mining management sustainable mining that will be a tool available to mining companies to demonstrate their sustainable use to Society. (Author)

  18. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  19. Human resource management in the construction industry – Sustainability competencies

    OpenAIRE

    Renard Yung Jhien Siew

    2014-01-01

    While environmental sustainability has been the subject of much debate in the last decade, it was not until recently that attention started to shift towards human resource management as an enabler for sustainability.  Yet, this is still a relatively under researched area.  Much is still unknown about the role of an individual worker in contributing towards sustainable development.  This paper addresses the gap by proposing a framework to measure sustainability competencies of employees within...

  20. Sustainability Learning in Natural Resource Use and Management

    Directory of Open Access Journals (Sweden)

    J. David Tàbara

    2007-12-01

    Full Text Available We contribute to the normative discussion on sustainability learning and provide a theoretical integrative framework intended to underlie the main components and interrelations of what learning is required for social learning to become sustainability learning. We demonstrate how this framework has been operationalized in a participatory modeling interface to support processes of natural resource integrated assessment and management. The key modeling components of our view are: structure (S, energy and resources (E, information and knowledge (I, social-ecological change (C, and the size, thresholds, and connections of different social-ecological systems. Our approach attempts to overcome many of the cultural dualisms that exist in the way social and ecological systems are perceived and affect many of the most common definitions of sustainability. Our approach also emphasizes the issue of limits within a total social-ecological system and takes a multiscale, agent-based perspective. Sustainability learning is different from social learning insofar as not all of the outcomes of social learning processes necessarily improve what we consider as essential for the long-term sustainability of social-ecological systems, namely, the co-adaptive systemic capacity of agents to anticipate and deal with the unintended, undesired, and irreversible negative effects of development. Hence, the main difference of sustainability learning from social learning is the content of what is learned and the criteria used to assess such content; these are necessarily related to increasing the capacity of agents to manage, in an integrative and organic way, the total social-ecological system of which they form a part. The concept of sustainability learning and the SEIC social-ecological framework can be useful to assess and communicate the effectiveness of multiple agents to halt or reverse the destructive trends affecting the life-support systems upon which all humans

  1. Transition Management: new mode of governance for sustainable development

    NARCIS (Netherlands)

    D.A. Loorbach (Derk)

    2007-01-01

    textabstractThis book introduces transition management as a new mode of governance for sustainable development. Transition management combines a conceptual approach on social complexity, governance and long-term structural societal change with an operational governance model to actually work

  2. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  3. Barriers in Sustainable Knowledge Management Model in Education

    Directory of Open Access Journals (Sweden)

    Gratiela Dana BOCA

    2016-12-01

    Full Text Available The paper present a comprehensive model in education using the data base collected from 101 students from Turkey. The target group was students involved in academic life system. Results are used to design a model where education transfer of knowledge it is investigated in function of possible barriers as internal, external and knowledge management factors of influence in education selection and students vision for education development. As a conclusion, the evaluation of the barriers in sustainable knowledge management in education present a cross-educational model which seems to indicate its highly effective resource for environmental education focused on sustainability, and favours the development of knowledge, attitudes and future intentions of inspiring educational environment. The model can be useful on passing of knowledge from one generation to the next generation, managing succession and distributing the competencies and responsibilities to a repetitive change.

  4. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively

    Science.gov (United States)

    Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; Vandersteen, J.

    2012-01-01

    The sustainability of crucial earth resources, such as groundwater, is a critical issue. We consider groundwater sustainability a value-driven process of intra- and intergenerational equity that balances the environment, society, and economy. Synthesizing hydrogeological science and current sustainability concepts, we emphasize three sustainability approaches: setting multigenerational sustainability goals, backcasting, and managing adaptively. As most aquifer problems are long-term problems, we propose that multigenerational goals (50 to 100 years) for water quantity and quality that acknowledge the connections between groundwater, surface water, and ecosystems be set for many aquifers. The goals should be set by a watershed- or aquifer-based community in an inclusive and participatory manner. Policies for shorter time horizons should be developed by backcasting, and measures implemented through adaptive management to achieve the long-term goals. Two case histories illustrate the importance and complexity of a multigenerational perspective and adaptive management. These approaches could transform aquifer depletion and contamination to more sustainable groundwater use, providing groundwater for current and future generations while protecting ecological integrity and resilience. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  5. Supply Chain Management and Business Sustainability Synergy: A Theoretical and Integrated Perspective

    Directory of Open Access Journals (Sweden)

    Zabihollah Rezaee

    2018-01-01

    Full Text Available Global business organizations face the challenges of adapting proper sustainability strategies and practices to effectively respond to social, ethical, environmental, and governance issues while improving financial performance in creating value for their shareholders. Business sustainability enables the integration of financial economic sustainability performance and non-financial environmental, social, ethical, and governance sustainability performance dimensions into the corporate culture, supply chain management and business models in creating shared value for all stakeholders. Business literature has provided mixed evidence of the tension, and possible link, between financial and non-financial sustainability performance dimensions and sustainability theories have yet to sufficiently address this tension. This paper attempts to fill this void by shedding light on the link between various dimensions of sustainability performance, their integrated effect on creating shared value for all stakeholders and their implications for supply chain sustainability. This paper examines the synergy between business sustainability and supply chain management by presenting a framework consisting of sustainability theories, sustainability performance dimensions, sustainability shared value concept, and sustainability best practices. Companies can use the suggested framework in integrating both financial and non-financial sustainability initiatives into their supply chain sustainability from production design, purchasing and inbound logistics, and manufacturing process to distribution and outbound logistics.

  6. Researching of green finance management to promote sustainable development in group

    International Nuclear Information System (INIS)

    Ning Jing

    2014-01-01

    The scientific development of society is the basic idea of a national development in the new period, but also on the management of the enterprise, and the new requirement sproposed by financial management. Financial management should meet the development needs of the times, pay attention to the theory and practice of innovation. In the background of the national sustainable development and environmental protection, setting up the green concept of financial management, the construction of green financial management system, will promote the enterprise development comprehensively, coordinatly, sustainably, and strive to build the core competitiveness of the future to adapt to social development of enterprise. (author)

  7. Supply Chain Management and Sustainability: Procrastinating Integration in Mainstream Research

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); E.A. van der Laan (Erwin)

    2010-01-01

    textabstractResearch has pointed out opportunities and research agendas to integrate sustainability issues with supply chain and operations management. However, we find that it is still not mainstream practice to systematically take a sustainability approach in tackling supply chain and operations

  8. A Review on Quantitative Models for Sustainable Food Logistics Management

    Directory of Open Access Journals (Sweden)

    M. Soysal

    2012-12-01

    Full Text Available The last two decades food logistics systems have seen the transition from a focus on traditional supply chain management to food supply chain management, and successively, to sustainable food supply chain management. The main aim of this study is to identify key logistical aims in these three phases and analyse currently available quantitative models to point out modelling challenges in sustainable food logistics management (SFLM. A literature review on quantitative studies is conducted and also qualitative studies are consulted to understand the key logistical aims more clearly and to identify relevant system scope issues. Results show that research on SFLM has been progressively developing according to the needs of the food industry. However, the intrinsic characteristics of food products and processes have not yet been handled properly in the identified studies. The majority of the works reviewed have not contemplated on sustainability problems, apart from a few recent studies. Therefore, the study concludes that new and advanced quantitative models are needed that take specific SFLM requirements from practice into consideration to support business decisions and capture food supply chain dynamics.

  9. Transition scenarios towards sustained Pu-management in China - 5504

    International Nuclear Information System (INIS)

    Evans, C.; Drevon, C.; Favet, D.; Avrin, A.P.; Carlier, B.

    2015-01-01

    The Chinese nuclear reactor park is growing rapidly with already some 250 GWe projected to be operational by mid-century and with even larger nuclear reactor parks during the second half of this century to match the energy demand in a sustainable way. Such a large and fast growing nuclear reactor park goes with anticipated challenges with regard to the fuel cycle with essentially a focus on the rapidly growing inventory of used nuclear fuel. China is considering various options towards a more sustainable nuclear energy park with the recycling of fissile materials in various types of reactors being the backbone towards such sustainable nuclear future. This paper briefs on an analysis of the transition towards a continued responsible and flexible management of plutonium and uranium in this Chinese nuclear reactor park highlighting the results of nuclear energy systems scenario technical-economic analysis for LWR-MOX and LWR-SFR scenarios. Preliminary analysis show that the 2 described options lead to a sustainable closed cycle system while implementing early a responsible management of fast growing generated used fuel inventory

  10. A SUSTAINABLE HEALTH CARE SYSTEM REQUIRES MANAGEMENT TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Kanellopoulos Dimitros

    2011-12-01

    Full Text Available In order to be the health care system sustainable , management transformations must be based on very precise diagnostic analysis that includes complete and current information. It is necessary to implement an information system that collects information in real time, that watches the parameters that significantly influence the sustainability of the system. Such an information system should point out a radiography(a scan of the system at some time under following aspects:: 1. An overview of system; 2 An overview of the economic situation; 3 A technical presentation ;4. A legal overview; 5. A social overview ; 6. A management overview .Based on these Xrays of the health system, it outlines a series of conclusions and recommendations together with a SWOT analysis that highlights the potential internal (strengths and weaknesses and external potential (opportunities and threats. Based on this analysis and recommendations, the management is going to redesign the system in order to be adapted to the changing environmental requirements. Management transformation is recommended to be by following steps. :1. The development of a new management system that would make a positive change in the health care system 2. Implementation of the new management system 3. Assessment of the changes

  11. How to manage sustainable supply chain? The issue of maturity

    Directory of Open Access Journals (Sweden)

    Agata Rudnicka

    2016-12-01

    Full Text Available Background: The issue of managing sustainability in supply chain seems to be more and more complex. There are many aspects that need to be taken into consideration when planning, implementing and monitoring environmental and social conditions of supply chains. Despite many works, already published, on the concept of sustainable development (SD is seems that the issue of assessment and especially the issue of maturity in the light of the SD concept is still not developed enough. Methods: The general aim of the paper is the analysis of the maturity issue in the context of sustainability. The main objective is to conceptualize the idea of maturity in sustainable supply chain. Beside the literature research the own proposition of theoretical model was described. Results: The article describes the issue of maturity as an element of managing sustainable development in the supply chain. The author presented a theoretical model of the maturity. Moreover the author gave some recommendations how to manage the sustainability issues in supply chain in more mature approach and introduced some useful tools among which are: certification, code of conduct and code of ethics, audits, projects etc. Conclusions: The issue of maturity seems to be very useful for proper understanding the idea of sustainable development in supply chain. The developed model can be used as self-assessment method to check at which level of implementation the idea of SD is analyzed in supply chain. Furthermore, the next phase of the planned research in form of practical verification of the model was advised as well as a research of identification of new factors and tools in analyzed area.

  12. AGRONOMIC MANAGEMENT PRACTICES FOR SUSTAINABILITY: CHARACTERISTICS AND MEASUREMENT IN Agave tequilana Weber IN THE SIERRA DE AMULA REGION, JALISCO

    Directory of Open Access Journals (Sweden)

    Arturo Moreno Hernández

    2010-10-01

    Full Text Available This article qualitative evaluation of the sustainable management in blue agave (Agave tequilana Weber agroecosystems, in Sierra Amula region of the Jalisco state, Mexico. Sixteen sites were evaluated in an altitudinal gradient ranging from 777 to 1345 masl. Six principles considered by Altieri (1999 as the basic elements of a sustainable management of the agroecosystem, were used to construct an Index of Agroecosystem Sustainable Management (IMSA. Four levels of this index were identified: values lower than 50 % were considered unsustainable management, 51 to 66.6 % scarcely sustainable management, 66.7 to 83.2 % mediumly sustainable management and 83.3 to 100 % highly sustainable management. Of the 16 sites evaluated, two were classified as unsustainable management, six was scarcely sustainable management, five as medially sustainable management and three as highly sustainable management.

  13. A Nutrient-In-Water Resource for Sustainable Crop

    African Journals Online (AJOL)

    sys01

    2011-09-03

    Sep 3, 2011 ... calcium in the “Acid Sands” soils of south-eastern Nigeria. Two types of .... some forty-eight perforated plastic pots and laid out in the University Teaching ..... capable of stabilizing soil reactions, availability of essential nutrients ...

  14. Assessing Sustainability in Environmental Management: A Case Study in Malaysia Industry

    Science.gov (United States)

    Turan, Faiz Mohd; Johan, Kartina; Lanang, Wan Nurul Syahirah Wan; Asmanizam, Asmadianatasha

    2017-08-01

    The scarcity in measuring the sustainability accomplishment has been restrained most of the companies in Malaysian industry. Currently, there are variety types of the measurement tools of the sustainability assessment that have been implemented. However, there are still not achieving the inclusive elements required by the worldwide claim. In fact, the contribution to the sustainability performance are only highlighted on the nature, financial along with society components. In addition, some of the companies are conducting their sustainability implementation individually. By means, this process approaching type is needed to be integrated into a systematic system approach. This paper is focussing on investigating the present sustainability tools in the environmental management system for Malaysian industry prior to the quantification of the sustainability parameters. Hence, the parameters of the sustainability have been evaluated then in order to accomplish this project. By reviewing on the methodology of this research it comprises of three phases where it starts with the analyzation of the parameters in environmental management system according to the Malaysian context of industry. Moving on to the next step is the quantification of the criterion and finally the normalisation process will be done to determine the results of this research either it is succeeded or vice versa. As a result, this research has come to the conclusion where the level of the sustainability compliance does not achieve the standard level of the targeted objectives though it has already surpassed the average level of the sustainability performance. In future, the understanding towards the sustainability assessment is acquired to be aligned unitedly in order to integrated the process approach into the systematic approach. Apart, this research will be able to help to provide a measurable framework yet finally bestowing the Malaysian industry with a continuous improvement roadmap in achieving

  15. Resource management as a key factor for sustainable urban planning

    NARCIS (Netherlands)

    Agudelo Vera, C.M.; Mels, A.R.; Keesman, K.J.; Rijnaarts, H.H.M.

    2011-01-01

    Due to fast urbanization and increasing living standards, the environmental sustainability of our global society becomes more and more questionable. In this historical review we investigate the role of resources management (RM) and urban planning (UP) and propose ways for integration in sustainable

  16. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  17. Environmental management as a pillar for sustainable development.

    Science.gov (United States)

    Mikulčić, Hrvoje; Duić, Neven; Dewil, Raf

    2017-12-01

    There is a growing concern about how to minimize the impact of human activities on the environment. Already nowadays, in some places adaptation efforts are needed in order to avoid the irreversibility of negative human activities. Due to climate changes, and corresponding environmental and social changes, there is a great need for a more sustainable development of mankind. Over the years, research studies that analyzed the sustainable development of different communities with a multi-disciplinary approach, stressed the necessity of preserving the environment for next generations. Therefore, responsible and conscientious management of the environment is a pillar of the sustainable development concept. This review introduction article provides an overview of the recent top scientific publications related to sustainable development that mostly originated from previous SDEWES conferences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. FUNCTIONING OF SUSTAINABLE EDUCATIONAL ECONOMIC MANAGEMENT IN THE ENTERPRISE

    Directory of Open Access Journals (Sweden)

    Ileana (BADULESCU ANASTASE

    2014-06-01

    Full Text Available The paper addresses issues related to education management operation that determines the principles and requires an interdisciplinary approach, studying events that occur in the decision to organize a determined pedagogical activity and the management of educational programs. Managerial leadership involves emphasis on ideas, on a systematic approach, on change, innovation strategy, proposing a method of analyzing the functioning of sustainable educational management and positive effects. In this context, the article provides the principles, functions, methods and rules that a school must comply in order to ensure a sustainable future.The teaching staff represents an inexhaustible managerial resource valued at its social ladder of the system and education program.In the content of the paper are highlighted prominent school organization management functions as steps preceding decision making of their training where are presented applied studies on financial issues facing directors of schools who seek solutions to them.

  19. Integrated weed management for sustainable rice production: concepts, perspectives and options

    International Nuclear Information System (INIS)

    Amartalingam Rajan

    2002-01-01

    Weed management has always been in some way integrated with cultural and biological methods, probably occurring more fortuitously than purposefully. Experience has shown that repeated use of any weed control technique especially in monocultures production systems results in rapid emergence of weeds more adapted to the new practice. In intensive high input farming systems, heavy selection pressure for herbicide tolerant weeds and the environmental impacts of these inputs are important tissues that require a good understanding of agroecosystem for successful integration of available options. Rice culture, in particular flooded rice culture has always employed integration through an evolution of management practices over the generations. However, a vast majority office farmers in Asia have yet to achieve the high returns realised by farmers elsewhere, where a near optimum combination of high inputs are being effectively integrated for maximum productivity. In addition to technological and management limitations, farmers in developing countries are faced with social, economic and policy constraints. On the other hand, farmers who had achieved considerable increases in productivity through labour replacing technologies, in particular direct seeding with the aid of herbicides, are now faced with issues related to environmental concerns due to high levels of these inputs. The issues facing weed scientists and farmers alike in managing weeds effectively and in a manner to ensure sustainability have become more challenging than ever before. In the last two decades, no issue has been discussed so. intensively as Sustainable Farming, Sustainable Agriculture or Alternative Agriculture within the broader global concept of Sustainable Development. To address these challenges a clear perspective of sustainable farming is essential. This paper addresses these concepts, perspectives and options for choices in weed management for sustainable rice production. (Author)

  20. Efficiencies of forestry best management practices for reducing sediment and nutrient losses in the eastern United States

    Science.gov (United States)

    Pamela Edwards; Karl W.J. Williard

    2010-01-01

    Quantifying the effects of forestry best management practices (BMPs) on sediment and nutrient loads is a critical need. Through an exhaustive literature search, three paired forested watershed studies in the eastern United States were found that permitted the calculation of BMP efficiencies--the percent reduction in sediment or nutrients achieved by BMPs. For sediment...

  1. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  2. Beyond greed and fear: sustainable financial management

    NARCIS (Netherlands)

    Boersma-de Jong, Margreet F.

    2013-01-01

    A research programme into ethical, socially responsible thought as a precondition for our financial actions.

    Speech of Dr. Margreet Boersma of Hanze University of Applied Sciences at her installation as a professor of Sustainable Financial Management.
    There is little room for what's

  3. Sustainable management indicators and implications of public policies for forestry

    International Nuclear Information System (INIS)

    Peyron, Jean-Luc; Bonheme, Ingrid

    2012-01-01

    Since 1995, in the framework of the Pan-European process of Ministerial Conferences on the Protection of Forests in Europe, every five years France establishes sustainable management indicators for forests in metropolitan France. The four successive publications now available provide information, according to the six criteria for sustainable forest management formulated in Helsinki in 1993, on developments over time in the state of French forests and the activities they generate. They also give rise to questions about the extent to which this follow-up meet the needs of forests in the area of public policies, including the fight against the greenhouse effect and adaptation to climate change. In addition, they suggest improvements for the short, medium and long term aimed at enhancing the switch from a statistical description to a strategic vision, as well as harmonisation and coherence of information, and extending the legal, political, institutional and geographic scope of sustainable forest management indicators. (authors)

  4. Meta-analysis constrained by data: Recommendations to improve relevance of nutrient management research

    Science.gov (United States)

    Five research teams received funding through the North American 4R Research Fund to conduct meta-analyses of the air and water quality impacts of on-farm 4R nutrient management practices. In compiling or expanding databases for these analyses on environmental and crop production effects, researchers...

  5. Transition management as a model for managing processes of co-evolution towards sustainable development

    NARCIS (Netherlands)

    R. Kemp (René); D.A. Loorbach (Derk); J. Rotmans (Jan)

    2007-01-01

    textabstractSustainable development requires changes in socio-technical systems and wider societal change - in beliefs, values and governance that co-evolve with technology changes. In this article we present a practical model for managing processes of co-evolution: transition management. Transition

  6. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  7. Sustainability indices as a tool for urban managers, evidence from four medium-sized Chinese cities

    International Nuclear Information System (INIS)

    Dijk, Meine Pieter van; Zhang Mingshun

    2005-01-01

    This research in four medium-sized Chinese cities aims at measuring urban sustainability in China and focuses on three issues. First, the situation in these four cities with regard to urban sustainability is evaluated. Secondly, a number of relations between different aspects of urban sustainability is explored. Finally, it is indicated how urban managers can improve with sustainability indices as tools currently ineffective urban management practices. Although all four cities are moving towards sustainable development, the current situation shows still weak sustainability in three, and even non-sustainability in one city. The social and, in particular, the economic dimensions of urban sustainability make significant positive contributions to overall urban sustainability. However, the decline of natural resources and environmental degradation are influencing it negatively. It is therefore suggested that more priority should be assigned to urban environmental protection and management in China. The fundamental reason for environmental degradation is believed to be inefficient urban management. To implement effective urban management in China, there is an urgent need to redefine the role of local government, reform local organizational structure, enhance local participatory institutional capacity, properly distribute the urban welfare, and thus integrate economic, social and environmental objectives local strategic and action plans

  8. Land Resource Management as the Ground for Mining Area Sustainable Development

    Science.gov (United States)

    Solovitskiy, Aleksander; Brel, Olga; Nikulin, Nikolai; Nastavko, Ekaterina; Meser, Tatayna

    2017-11-01

    It is established that the problem of sustainable development of Kuzbass cities is their being tied to a single production and income from other sources is not considered. Therefore, their economy is underdeveloped, depends entirely on one city-forming enterprise (singleindustry city), which causes response to the slightest changes in the economic situation. In Kuzbass, all cities, except Kemerovo, are monodependent, including Kiselevsk, which economy mainly consists of coal mining enterprises. In the circumstances, there is a need to develop a set of measures for management the urban land, primarily aimed at ensuring the sustainable development of Kiselevsk city. The development of principles and management mechanism of the urban territory land fund determines its effectiveness. Establishing the dependence of rational use of land resources and sustainable development characterizes a new level of information interaction between sciences (land management and economy). Practical use of this theory is to overcome the mono-urban development of mining cities, taking into account effective subsoil management.

  9. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-06-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a Set of Sustainability Indicators for Water Resources Management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the Basin Committee of Tietê-Jacaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  10. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-01-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a set of sustainability indicators for water resources management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the basin committee of Tietê-J acaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation, the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  11. Green knowledge management to support environmental sustainability

    International Nuclear Information System (INIS)

    Dornhoefer, Mareike-Jessica

    2017-01-01

    Sustainability, environmental management and green initiatives are topics which gradually developed into trends since the late 1980s, not only in research institutions, but also in public and private organizations. While the usage of energy and other resources are increasing, these organizations search for new possibilities to reduce the economic, ecologic and social burdens and consequences of office and production environments for employees and nature. While certified environmental management systems were established already in the 1990s, green approaches and technologies are only about 10 years old and steadily developing. Decisions about a fitting strategy and the support of suitable measures inside an organization always require knowledge provided for the decision makers. Furthermore it is of importance to record the environmental consequences of the operational business and to not only record data and information, but to create a context and deduce the knowledge for future activities. Based on this situation, the work addresses the main research question of how �classical'' knowledge management might be further developed or transformed into Green Knowledge Management and how it addresses the goals of sustainability, especially ecological sustainability, environmental management and green approaches alike? The definition of Green Knowledge Management consists of five factors, which are discussed systematically, explored conceptually and documented with the help of practical examples. Different knowledge management models and their respective building blocks are analyzed to deduce how knowledge processes might interact with environmental ones as well as green aspects. Also different types of knowledge management systems are analysed for their application possibilities. A planning and decision making tool in form of a three dimensional cube, the ''Green Knowledge Management Cube'' is introduced on a conceptual level and documented

  12. Transformation towards more sustainable soil management on Dutch arable farms

    NARCIS (Netherlands)

    Claus, Sebastien; Egdom, van Ilona; Suter, Bruno; Sarpong, Clara; Pappa, Aikaterini; Miah, Imtiaz; Luppa, Caterina; Potters, J.I.

    2017-01-01

    Currently a debate is ongoing in the Netherlands on how to increase soil sustainable management in general and specifically in short term lease. Sustainable practices may not be adopted by farmers because of an interplay between EU, national and provincial legislation, short-term land lease system,

  13. The impact of sustainability on project management

    NARCIS (Netherlands)

    Adri Köhler; Jasper van den Brink; Gilbert Gilbert Silvius

    2012-01-01

    Full text via link Chapter 11 in The Project as a Social System: Asia-Pacific Perspectives on Project Management Sustainability is one of the most important challenges of our time. How can we develop prosperity without compromising the life of future generations? Companies are integrating ideas of

  14. Towards an ecologically sustainable energy production based on forest biomass - Forest fertilisation with nutrient rich organic waste matter

    Energy Technology Data Exchange (ETDEWEB)

    Roegaard, Pia-Maria; Aakerback, Nina; Sahlen, Kenneth; Sundell, Markus [Swedish Polytechnic, Vasa (Finland)

    2006-07-15

    The project is a collaboration between Swedish Univ. of Agricultural Sciences, Faculty of Forest Sciences in Umeaa, Swedish Polytechnic, Finland in Vaasa and the Finnish Forest Research Institute in Kannus. Today there are pronounced goals within the EU that lead towards an ecologically sustainable community and there is also a global goal to decrease net carbon dioxide emissions. These goals involve among other things efforts to increase the use of renewable biofuel as energy source. This will result in an enlarged demand for biomass for energy production. Therefore, the forest resources in the Nordic countries will be required for energy production to a far greater extent in the future. One way to meet this increased tree biomass demand is to increase forest tree growth through supply of nutrients, of which nitrogen is the most important. Organic nutrient rich waste matter from the society, such as sewage sludge and mink and fox manure compost from fur farms might be used as forest fertilizer. This would result in increased supply of renewable tree biomass, decreased net carbon dioxide emissions, increased forest ecosystem carbon sequestration, decreased methane emissions from sewage sludge landfill and decreased society costs for sludge landfill or incineration. Therefore, the purpose of this project is to develop methods for forest fertilisation with nutrient rich organic waste matter from municipal wastewater, sludge and manure from mink and fox farms. The project may be divided into three main parts. The first part is the chemical composition of the fertiliser with the objective to increase the nitrogen content in sludge-based fertilisers and in compost of mink and fox manure. The second part involves the technique and logistics for forest fertilisation i.e., to develop application equipment that may be integrated in existing forest technical systems. The third part consists of field fertilisation investigations and an environmental impact assessment

  15. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.

    Science.gov (United States)

    Luo, Pei; Liu, Feng; Zhang, Shunan; Li, Hongfang; Yao, Ran; Jiang, Qianwen; Xiao, Runlin; Wu, Jinshui

    2018-06-01

    A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH 4 + -N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m -2  yr -1 ) when TN concentrations were 21.8-282 mg L -1 . The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Indigenous Practices of Water Management for Sustainable Services

    Directory of Open Access Journals (Sweden)

    Beshah M. Behailu

    2016-12-01

    Full Text Available This article explores the possibility of incorporating traditional water management experiences into modern water management. After the literature review, two case studies are presented from Borana and Konso communities in southern Ethiopia. The study was conducted through interviews, discussions, and observations. The two cases were selected due to their long existence. Both communities have their own water source types, depending on local hydrogeological conditions. Borana is known for the so-called Ella (wells and Konso for Harta (ponds, which have been managed for more than five centuries. All government and development partners strive to achieve sustainable services in water supply and sanitation. Therefore, they design various management packages to engage the communities and keep the systems sustainable. However, the management components are often designed with little attention to local customs and traditions. The cases in the two communities show that traditional knowledge is largely ignored when replaced by modern one. However, the concepts of cost recovery, ownership experience, equity, enforcement, integrity, and unity, which are highly pronounced in modern systems, can also be found in the traditional water managements of Borana and Konso. Naturally, one shoe never fits all. Borana and Konso experiences are working for their own community. This research implies that when we plan a project or a program for a particular community, the starting point should be the indigenous practices and thoughts on life.

  17. Challenges in managing and sustaining urban slum health ...

    African Journals Online (AJOL)

    Challenges in managing and sustaining urban slum health programmes in Kenya. ... These were hardly implemented in the projects, according to the data gathered. ... Conclusion: Land and income were big issues according to the responses.

  18. Sustainable Agriculture and Natural Resource Management Collaborative Research Support Program(SANREM CRSP)

    OpenAIRE

    Moore, Keith M.

    2007-01-01

    This presentation describes the history and current program of the Sustainable Agriculture and Natural Resource Management Collaborative Research Support Program (SANREM CRSP). SANREM Objectives include increasing stakeholder income generation capacity, empowering stakeholders, particularly women, enhancing decentralized resource management, strengthening local institutions, improving market access for smallholders and communities, and promoting sustainable and environmentally sound developme...

  19. Fertility management and landscape position: farmers' use of nutrient sources in western Niger and possible improvements

    NARCIS (Netherlands)

    Gandah, M.; Brouwer, J.; Duivenbooden, van N.; Hiernaux, P.

    2003-01-01

    Poor millet growth and yields in Niger are commonly attributed to rainfall deficits and low soil nutrient content. Land management by local farmers is done as a function of soil types, crops, and available resources. Farmer management practices in millet fields located on four different landscape

  20. Sustainability.

    Science.gov (United States)

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  1. Nutritional sustainability of pet foods.

    Science.gov (United States)

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.

  2. A framework for sustainable invasive species management: environmental, social and economic objectives

    Science.gov (United States)

    Larson, Diane L.; Phillips-Mao, Laura; Quiram, Gina; Sharpe, Leah; Stark, Rebecca; Sugita, Shinya; Weiler, Annie

    2011-01-01

    Applying the concept of sustainability to invasive species management (ISM) is challenging but necessary, given the increasing rates of invasion and the high costs of invasion impacts and control. To be sustainable, ISM must address environmental, social, and economic factors (or *pillars*) that influence the causes, impacts, and control of invasive species across multiple spatial and temporal scales. Although these pillars are generally acknowledged, their implementation is often limited by insufficient control options and significant economic and political constraints. In this paper, we outline specific objectives in each of these three *pillars* that, if incorporated into a management plan, will improve the plan's likelihood of sustainability. We then examine three case studies that illustrate how these objectives can be effectively implemented. Each pillar reinforces the others, such that the inclusion of even a few of the outlined objectives will lead to more effective management that achieves ecological goals, while generating social support and long-term funding to maintain projects to completion. We encourage agency directors and policy-makers to consider sustainability principles when developing funding schemes, management agendas, and policy.

  3. A simulation model "CTR Dairy" to predict the supply of nutrients in dairy cows managed under discontinuous feeding patterns.

    NARCIS (Netherlands)

    Chilibroste, P.; Dijkstra, J.; Robinson, P.H.; Tamminga, S.

    2008-01-01

    A simulation rumen model has been developed to function under non-steady state conditions in order to allow prediction of nutrient availability in dairy cows managed under discontinuous feeding systems. The model simulates availability of glycogenic, aminogenic and lipogenic nutrients to lactating

  4. SUSTAINABLE SUPPLY CHAIN MANAGEMENT: A LITERATURE REVIEW AND RESEARCH AGENDA

    OpenAIRE

    Tascioglu, Mertcan

    2015-01-01

    Sustainability has become a subject of increasing concern to academics and practitioners in recent years. Increasing demand for environmentally and socially responsible products and services encouraged supply chains to put increasing emphasis on sustainability. The purpose of this paper is to review research in Sustainable Supply Chain Management (SSCM) and to identify gaps in the current body of knowledge. Future research directions are also provided which may help to stimulate more intensiv...

  5. Market Demand for Sustainability in Management Education

    Science.gov (United States)

    Gitsham, Matthew; Clark, Timothy S.

    2014-01-01

    Purpose: This paper aims to contribute to the ongoing debate about the relevance of sustainability in management education through exploration of the needs and expectations of a key group of business schools' stakeholders--senior executives of leading corporations. Design/methodology/approach: The paper presents findings from a survey regarding…

  6. Advancing Sustainable Materials Management: Facts and Figures Report

    Science.gov (United States)

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  7. Understanding Innovation for Sustainable Business Management Capabilities and Competencies under Uncertainty

    Directory of Open Access Journals (Sweden)

    Kuo-Jui Wu

    2015-10-01

    Full Text Available In recent years, many firms have come to understand that innovation is an important issue in sustainable business management, as it helps improve firm capabilities and competencies. Because of the fiercely competitive environment in the hotel industry, innovation has become a critical factor in the process of hotel differentiation, leading to sustainable business success. However, the literature has not thoroughly examined the role of innovation or the hierarchical structure of the capabilities and competencies in sustainable business management. This study adopts interval-valued triangular fuzzy numbers and grey relational analysis to provide a competitive priority ranking for the aspects and criteria that assist firms in decision-making. The study results indicate that innovation in technology capabilities and networking and social capabilities—in addition to competencies in systemic thinking—are the most important aspects of sustainable business management. In particular, this study indicates that to succeed in building a sustainable business in the hotel industry, firms should upgrade and integrate their business technologies, collaborate with actors inside and outside the firm, build trust as well as a shared vision that includes common agreement, and develop competencies in inventive thinking to support innovation and foster changes in strategy, structure, administrative procedures, and systems when necessary.

  8. A Review on Quantitative Models for Sustainable Food Logistics Management

    NARCIS (Netherlands)

    Soysal, M.; Bloemhof, J.M.; Meuwissen, M.P.M.; Vorst, van der J.G.A.J.

    2012-01-01

    The last two decades food logistics systems have seen the transition from a focus on traditional supply chain management to food supply chain management, and successively, to sustainable food supply chain management. The main aim of this study is to identify key logistical aims in these three phases

  9. Sustainable supply chain management practices in Indian automotive industry

    DEFF Research Database (Denmark)

    Mathivathanan, Deepak; Kannan, Devika; Haq, A. Noorul

    2018-01-01

    As one of the largest manufacturing sectors, the automotive industry has a deep impact on the society and environment. Automotive products provide mobility to millions and create jobs, but also threaten the environment. Consumer pressure, government regulations, and stakeholder demands for a comp......As one of the largest manufacturing sectors, the automotive industry has a deep impact on the society and environment. Automotive products provide mobility to millions and create jobs, but also threaten the environment. Consumer pressure, government regulations, and stakeholder demands...... into the traditional supply chain and that help an industry shift towards a sustainable supply chain are called SSCM practices. Firms have difficulty identifying the most useful practices and learning how these practices impact each other. Unfortunately, no existing research has studied the interrelated influences...... stakeholder perspectives are identified. The results reveal that management commitment towards sustainability and incorporating the triple bottom line approach in strategic decision making are the most influential practices for implementing the sustainable supply chain management. This study provides...

  10. Legacy nutrient dynamics and patterns of catchment response under changing land use and management

    Science.gov (United States)

    Attinger, S.; Van, M. K.; Basu, N. B.

    2017-12-01

    Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we

  11. Understanding Economic and Management Sciences Teachers' Conceptions of Sustainable Development

    Science.gov (United States)

    America, Carina

    2014-01-01

    Sustainable development has become a key part of the global educational discourse. Education for sustainable development (ESD) specifically is pronounced as an imperative for different curricula and regarded as being critical for teacher education. This article is based on research that was conducted on economic and management sciences (EMS)…

  12. OFFSHORING FOR SUSTAINABLE VALUE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Thaddeus Oforegbunam Ebiringa

    2014-05-01

    Full Text Available This paper evaluates offshoring as a strategic value management initiative using Cadbury Nigeria Plc as a case study. Through offshoring risks associated with inventory holding are hedged. A comparative analysis of in-house and offshored cost profiles as well as critical risk factors that affect firm value are evaluated. The result shows that offshoring led to immediate costs saving, freeing of funds previously held in inventory for other working capital investments as well as profitability for vendors. However, aside financial benefits to partners, it leads to increased stakeholders awareness, shared values, partnerships, teamwork and risk mitigation. It therefore follows that for sustainability of financial benefits of offshoring, concerted effort must be made by partners to ensure that critical drivers of value management are not compromised.

  13. Patent Keyword Extraction for Sustainable Technology Management

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2018-04-01

    Full Text Available Recently, sustainable growth and development has become an important issue for governments and corporations. However, maintaining sustainable development is very difficult. These difficulties can be attributed to sociocultural and political backgrounds that change over time [1]. Because of these changes, the technologies for sustainability also change, so governments and companies attempt to predict and manage technology using patent analyses, but it is very difficult to predict the rapidly changing technology markets. The best way to achieve insight into technology management in this rapidly changing market is to build a technology management direction and strategy that is flexible and adaptable to the volatile market environment through continuous monitoring and analysis. Quantitative patent analysis using text mining is an effective method for sustainable technology management. There have been many studies that have used text mining and word-based patent analyses to extract keywords and remove noise words. Because the extracted keywords are considered to have a significant effect on the further analysis, researchers need to carefully check out whether they are valid or not. However, most prior studies assume that the extracted keywords are appropriate, without evaluating their validity. Therefore, the criteria used to extract keywords needs to change. Until now, these criteria have focused on how well a patent can be classified according to its technical characteristics in the collected patent data set, typically using term frequency–inverse document frequency weights that are calculated by comparing the words in patents. However, this is not suitable when analyzing a single patent. Therefore, we need keyword selection criteria and an extraction method capable of representing the technical characteristics of a single patent without comparing them with other patents. In this study, we proposed a methodology to extract valid keywords from

  14. Sustainable management of lakes in connection with mitigation of adverse effects of climate change, agriculture and development of green micro regions based on renewable energy production

    Directory of Open Access Journals (Sweden)

    Sandor Antal Nemethy

    2014-11-01

    Full Text Available Lake management is extremely complex and requires a coordinated effort of research institutions, community groups, individuals, landowners, and government. Lakes constitute an important group of natural resources due to their ecosystem services and often unique cultural environments. Climate change is a growing concern, which particularly strongly affects shallow lakes. The adverse impact of climate change is enhanced by extreme water level fluctuations and human factors such as environmental pollution from waste water discharge, large scale agriculture and shoreline constructions reducing or eliminating valuable wetlands. Since eutrophication is a leading cause of impairment of freshwater ecosystems, specific strategies to address a lake's nutrient enrichment must focus on activities in the watershed and, if needed, in-lake restoration techniques. Analyzing the key factors of sustainable local and regional development in the vicinity of lakes, assessing the environmental risks of pollution, large scale agriculture, waste management and energy production, we propose a complex, stakeholder based management system and holistic regional development in lake areas, which will preserve natural ecosystems without compromising the sustainable use of ecosystem services. There are available technologies to develop ecologically acceptable water level regulations, promote organic agriculture applying grey water irrigation, stop leachate from landfills and control invasive species. Regional and local production and use of renewable energy is essential both for environmental and economical sustainability. Renewable energy production should be well coordinated with agriculture, forestry, waste management and management of water resources of lakes and their watershed areas in a sustainable, holistic way through a participatory approach. This is particularly pronounced in connection with tourism as one of the main uses of lake-ecosystem services, but also an

  15. Knowledge Management for Sustainable Development: The Case ...

    African Journals Online (AJOL)

    This paper seeks to demonstrate that knowledge management (KM) is a function of sustainable development (SD). The authors define the two concepts and discuss both the factors that make for successful SD process and the challenges that characterize KM. The conclusion reached is hat KM is emerging as a powerful ...

  16. Terra Preta Sanitation: A Key Component for Sustainability in the Urban Environment

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2014-11-01

    Full Text Available Terra Preta Sanitation (TPS plays a key role in sustainable sanitation (SuSan and in the sustainable management of resources such as water, energy, soil (agriculture, liquid and solid organic waste streams as well as in the development of sustainable urban environment and infrastructure systems. This paper discusses the advantages of, and requirements for, SuSan systems, focusing on TPS. Case studies showing the stepwise extension and re-development of conventional sanitation systems (CSS using TPS technologies and system approaches are presented and discussed. Decentralized TPS systems integrated in sustainable urban resource management were implemented in the German cities of Hamburg and Berlin. The compilation of best practice examples and findings using the newest TPS systems illustrates the immense potential of this approach for the transformation from conventional to SuSan systems. For this purpose, the potential savings of drinking water resources and the recycling potential of nutrient components are quantified. The results strongly suggest the need to encourage the development and application of innovative decentralized sanitation technologies, urban infrastructures, and resource management systems that have TP as a key component.

  17. MANAGING SUSTAINABLE DEVELOPMENT OF MEAT PROCESSING PLANTS AS PART OF THE MECHANISM OF STRATEGIC PLANNING

    Directory of Open Access Journals (Sweden)

    I. S. Gusev

    2015-01-01

    Full Text Available Studies have proven that, at present one of the priority research areas as part of the Development Strategy of the Food Processing Industry of the Russian Federation until 2020 is to develop effective mechanisms for sustainable socio-economic development of industrial enterprises. This article investigated the logic of strategic planning within the framework of sustainable economic growth, analyzed the structure of strategic planning, study the subject of strategic planning in the management of sustainable development of enterprises, justified the basic principles of strategic planning for the effective management of sustainable development of industrial enterprises, as well as the complex of organizational tactical activities of operational management strategy for sustainable development of the enterprise. The observation revealed that currently there was a high need for the framework of the branch, departmental and state programs implemented in industrial management of scientific and methodological approaches of strategic planning. Studies have shown that these approaches in its conceptual entity should be based on the growth potential of the sustainable development of meat processing plants in space and time in order to achieve high competitive advantages. Conducted a systematic analysis of industry conditions proved that the problem of sustainable operation and development of meat processing enterprises as a problem of management and control is relatively new, unexplored and highly relevant. On the contrary, it is the basis of modern management strategy and management is a concept and methodology of the so-called adaptive enterprise development under the action of various external and internal factors, risks that may threaten its economic stability and sustainability.

  18. Coupling and quantifying resilience and sustainability in facilities management

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Nielsen, Susanne Balslev; Rode, Carsten

    2015-01-01

    Purpose – The purpose of this paper is to consider how to couple and quantify resilience and sustainability, where sustainability refers to not only environmental impact, but also economic and social impacts. The way a particular function of a building is provisioned may have significant repercus......Purpose – The purpose of this paper is to consider how to couple and quantify resilience and sustainability, where sustainability refers to not only environmental impact, but also economic and social impacts. The way a particular function of a building is provisioned may have significant...... repercussions beyond just resilience. The goal is to develop a decision support tool for facilities managers. Design/methodology/approach – A risk framework is used to quantify both resilience and sustainability in monetary terms. The risk framework allows to couple resilience and sustainability, so...... that the provisioning of a particular building can be investigated with consideration of functional, environmental, economic and, possibly, social dimensions. Findings – The method of coupling and quantifying resilience and sustainability (CQRS) is illustrated with a simple example that highlights how very different...

  19. Approaches to defining deltaic sustainability in the 21st century

    Science.gov (United States)

    Day, John W.; Agboola, Julius; Chen, Zhongyuan; D'Elia, Christopher; Forbes, Donald L.; Giosan, Liviu; Kemp, Paul; Kuenzer, Claudia; Lane, Robert R.; Ramachandran, Ramesh; Syvitski, James; Yañez-Arancibia, Alejandro

    2016-12-01

    Deltas are among the most productive and economically important of global ecosystems but unfortunately they are also among the most threatened by human activities. Here we discuss deltas and human impact, several approaches to defining deltaic sustainability and present a ranking of sustainability. Delta sustainability must be considered within the context of global biophysical and socioeconomic constraints that include thermodynamic limitations, scale and embeddedness, and constraints at the level of the biosphere/geosphere. The development, functioning, and sustainability of deltas are the result of external and internal inputs of energy and materials, such as sediments and nutrients, that include delta lobe development, channel switching, crevasse formation, river floods, storms and associated waves and storm surges, and tides and other ocean currents. Modern deltas developed over the past several thousand years with relatively stable global mean sea level, predictable material inputs from drainage basins and the sea, and as extremely open systems. Human activity has changed these conditions to make deltas less sustainable, in that they are unable to persist through time structurally or functionally. Deltaic sustainability can be considered from geomorphic, ecological, and economic perspectives, with functional processes at these three levels being highly interactive. Changes in this functioning can lead to either enhanced or diminished sustainability, but most changes have been detrimental. There is a growing understanding that the trajectories of global environmental change and cost of energy will make achieving delta sustainability more challenging and limit options for management. Several delta types are identified in terms of sustainability including those in arid regions, those with high and low energy-intensive management systems, deltas below sea level, tropical deltas, and Arctic deltas. Representative deltas are ranked on a sustainability range

  20. TOR Signaling and Nutrient Sensing.

    Science.gov (United States)

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  1. Water Hyacinth in China: A Sustainability Science-Based Management Framework

    Science.gov (United States)

    Lu, Jianbo; Wu, Jianguo; Fu, Zhihui; Zhu, Lei

    2007-12-01

    The invasion of water hyacinth ( Eichhornia crassipes) has resulted in enormous ecological and economic consequences worldwide. Although the spread of this weed in Africa, Australia, and North America has been well documented, its invasion in China is yet to be fully documented. Here we report that since its introduction about seven decades ago, water hyacinth has infested many water bodies across almost half of China’s territory, causing a decline of native biodiversity, alteration of ecosystem services, deterioration of aquatic environments, and spread of diseases affecting human health. Water hyacinth infestations have also led to enormous economic losses in China by impeding water flows, paralyzing navigation, and damaging irrigation and hydroelectricity facilities. To effectively control the rampage of water hyacinth in China, we propose a sustainability science-based management framework that explicitly incorporates principles from landscape ecology and Integrated Pest Management. This framework emphasizes multiple-scale long-term monitoring and research, integration among different control techniques, combination of control with utilization, and landscape-level adaptive management. Sustainability science represents a new, transdisciplinary paradigm that integrates scientific research, technological innovation, and socioeconomic development of particular regions. Our proposed management framework is aimed to broaden the currently dominant biological control-centered view in China and to illustrate how sustainability science can be used to guide the research and management of water hyacinth.

  2. Watershed management and sustainable development: Lessons learned and future directions

    Science.gov (United States)

    Karlyn Eckman; Hans M. Gregerson; Allen L. Lundgren

    2000-01-01

    Fundamental belief underlying the direction and content of this paper is that the paradigms of land and water management evolving into the 21st century increasingly favor a watershed focused approach. Underlying that approach is an appreciation of the processes of sustainable development and resource use. The increasing recognition that sustainable development and...

  3. The Sustainable Management of a Tourism Destination in Ireland: A Focus on County Clare

    OpenAIRE

    CONAGHAN, Aíne; HANRAHAN, James; McLOUGHLIN, Emmet

    2015-01-01

    Tourism destination management has significant importance in controlling many impacts of tourism, thus insuring its sustainability. Destination management requires the integration of different planning tools, approaches and concepts that help shape the management and daily operation of tourism related activities. This study examines the sustainable management of a tourism destination, focusing on County Clare, Ireland. Qualitative interviews were conducted with tourism stake...

  4. Implementing Environmental Practices for Accomplishing Sustainable Green Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Minkyun Kim

    2017-07-01

    Full Text Available With the emergence of environmental protection as a global issue, implementing environmental practices for sustaining green supply chain management (GSCM has received a lot of attention. This study investigates the impact of integration with suppliers and supply disruption risk on environmental practices. It also examines the role of supplier integration and supply disruption risk on performance. Finally, it investigates the relationship between environmental practices and performance in order to sustain green supply chains. Based on 272 survey responses from supply and purchase managers, our research results support the positive impact of integration with suppliers and the negative impact of supply disruption risk on the adoption of environmental practices. Furthermore, they provide empirical evidence that environmental practices and integration with suppliers are positively associated with performance, while supply disruption risk is negatively associated with performance. This study identifies antecedents and establishes a research framework of GSCM. More importantly, it provides meaningful insights to managers regarding the implementation of environmental practices related to other supply chain practices for sustaining green supply chains.

  5. Integrated farm sustainability assessment for the environmental management of rural activities

    International Nuclear Information System (INIS)

    Stachetii Rodrigues, Geraldo; Aparecida Rodrigues, Izilda; Almeida Buschinelli, Claudio Cesar de; Barros, Inacio de

    2010-01-01

    Farmers have been increasingly called upon to respond to an ongoing redefinition in consumers' demands, having as a converging theme the search for sustainable production practices. In order to satisfy this objective, instruments for the environmental management of agricultural activities have been sought out. Environmental impact assessment methods are appropriate tools to address the choice of technologies and management practices to minimize negative effects of agricultural development, while maximizing productive efficiency, sound usage of natural resources, conservation of ecological assets and equitable access to wealth generation means. The 'system for weighted environmental impact assessment of rural activities' (APOIA-NovoRural) presented in this paper is organized to provide integrated farm sustainability assessment according to quantitative environmental standards and defined socio-economic benchmarks. The system integrates sixty-two objective indicators in five sustainability dimensions - (i) Landscape ecology, (ii) Environmental quality (atmosphere, water and soil), (iii) Sociocultural values, (iv) Economic values, and (v) Management and administration. Impact indices are expressed in three integration levels: (i) specific indicators, that offer a diagnostic and managerial tool for farmers and rural administrators, by pointing out particular attributes of the rural activities that may be failing to comply with defined environmental performance objectives; (ii) integrated sustainability dimensions, that show decision-makers the major contributions of the rural activities toward local sustainable development, facilitating the definition of control actions and promotion measures; and (iii) aggregated sustainability index, that can be considered a yardstick for eco-certification purposes. Nine fully documented case studies carried out with the APOIA-NovoRural system, focusing on different scales, diverse rural activities/farming systems, and contrasting

  6. Choosing a sustainable demolition waste management strategy using multicriteria decision analysis

    International Nuclear Information System (INIS)

    Roussat, Nicolas; Dujet, Christiane; Mehu, Jacques

    2009-01-01

    This paper presents an application of the ELECTRE III decision-aid method in the context of choosing a sustainable demolition waste management strategy for a case study in the city of Lyon, France. This choice of waste management strategy takes into consideration the sustainable development objectives, i.e. economic aspects, environmental consequences, and social issues. Nine alternatives for demolition waste management were compared with the aid of eight criteria, taking into account energy consumption, depletion of abiotic resources, global warming, dispersion of dangerous substances in the environment, economic activity, employment, and quality of life of the local population. The case study concerned the demolition of 25 buildings of an old military camp. Each alternative was illustrated with different waste treatments, such as material recovery, recycling, landfilling, and energy recovery. The recommended solution for sustainable demolition waste management for the case study is a selective deconstruction of each building with local material recovery in road engineering of inert wastes, local energy recovery of wood wastes, and specific treatments for hazardous wastes

  7. Integrating Sustainable Development into Operations Management Courses

    Science.gov (United States)

    Fredriksson, Peter; Persson, Magnus

    2011-01-01

    Purpose: It is widely acknowledged that aspects of sustainable development (SD) should be integrated into higher level operations management (OM) education. The aim of the paper is to outline the experiences gained at Chalmers University of Technology in Sweden from integrating aspects of SD into OM courses. Design/methodology/approach: The paper…

  8. Understanding the influence of nutrients on stream ecosystems in agricultural landscapes

    Science.gov (United States)

    Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.; Black, Robert W.; Duff, John H.; Lee, Kathy E.; Maret, Terry R.; Mebane, Christopher A.; Waite, Ian R.; Zelt, Ronald B.

    2018-06-06

    Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, State, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.Excess nutrients are a pervasive problem of streams, lakes, and coastal waters. The current report, “The Quality of Our Nation’s Waters—Understanding the Effects of Nutrients on Stream Ecosystems in Agricultural Landscapes,” presents a summary of results from USGS investigations conducted from 2003 to 2011 on processes that influence nutrients and how nutrient enrichment can alter biological components of

  9. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  10. Cost benefit analysis, sustainability and long-lived radioactive waste management

    International Nuclear Information System (INIS)

    Berkhout, F.

    1994-01-01

    The objective of this paper is to examine how far the sustainability concept and the technique of cost-benefit analysis (CBA) can be applied to the problem of radioactive waste management. The paper begins with a slightly altered definition of the problem to the one carried in the Nea's background document (Nea 1994). A preliminary attempt is then be made to ascribe burdens to the various phases of long-lived radioactive waste management. The appropriateness of CBA and the sustainability concept for making decisions about long-term waste management policy is then discussed. The author ends with some conclusions about the appropriateness of systematic assessment approaches in the political process of constructing social consent for technological decisions. (O.L.). 12 refs., 1 tab

  11. Managing Sustainability with the Support of Business Intelligence Methods and Tools

    Science.gov (United States)

    Petrini, Maira; Pozzebon, Marlei

    In this paper we explore the role of business intelligence (BI) in helping to support the management of sustainability in contemporary firms. The concepts of sustainability and corporate social responsibility (CSR) are among the most important themes to have emerged in the last decade at the global level. We suggest that BI methods and tools have an important but not yet well studied role to play in helping organizations implement and monitor sustainable and socially responsible business practices. Using grounded theory, the main contribution of our study is to propose a conceptual model that seeks to support the process of definition and monitoring of socio-environmental indicators and the relationship between their management and business strategy.

  12. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Xin (Cissy Ma

    2015-09-01

    Full Text Available Urban water systems are an example of complex, dynamic human–environment coupled systems which exhibit emergent behaviors that transcend individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and stormwater have led to great improvements in public health protection, sustainable solutions for a growing global population facing increased resource constraints demand a paradigm shift based on holistic management to maximize the use and recovery of water, energy, nutrients, and materials. The objective of this review paper is to highlight the issues in traditional water systems including water demand and use, centralized configuration, sewer collection systems, characteristics of mixed wastewater, and to explore alternative solutions such as decentralized water systems, fit for purpose and water reuse, natural/green infrastructure, vacuum sewer collection systems, and nutrient/energy recovery. This review also emphasizes a system thinking approach for evaluating alternatives that should include sustainability indicators and metrics such as emergy to assess global system efficiency. An example paradigm shift design for urban water system is presented, not as the recommended solution for all environments, but to emphasize the framework of system-level analysis and the need to visualize water services as an organic whole. When water systems are designed to maximize the resources and optimum efficiency, they are more prevailing and sustainable than siloed management because a system is more than the sum of its parts.

  13. Sustainable Materials Management (SMM) Federal Green Challenge (FGC) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Federal Green Challenge (FGC) is a national effort under EPA's Sustainable Materials Management (SMM) Program, challenging EPA and other federal agencies...

  14. Greening academia: Developing sustainable waste management at Higher Education Institutions

    International Nuclear Information System (INIS)

    Zhang, N.; Williams, I.D.; Kemp, S.; Smith, N.F.

    2011-01-01

    Higher Education Institutions (HEIs) are often the size of small municipalities. Worldwide, the higher education (HE) sector has expanded phenomenally; for example, since the 1960s, the United Kingdom (UK) HE system has expanded sixfold to >2.4 million students. As a consequence, the overall production of waste at HEIs throughout the world is very large and presents significant challenges as the associated legislative, economic and environmental pressures can be difficult to control and manage. This paper critically reviews why sustainable waste management has become a key issue for the worldwide HE sector to address and describes some of the benefits, barriers, practical and logistical problems. As a practical illustration of some of the issues and problems, the four-phase waste management strategy developed over 15 years by one of the largest universities in Southern England - the University of Southampton (UoS) - is outlined as a case study. The UoS is committed to protecting the environment by developing practices that are safe, sustainable and environmentally friendly and has developed a practical, staged approach to manage waste in an increasingly sustainable fashion. At each stage, the approach taken to the development of infrastructure (I), service provision (S) and behavior change (B) is explained, taking into account the Political, Economic, Social, Technological, Legal and Environmental (PESTLE) factors. Signposts to lessons learned, good practice and useful resources that other institutions - both nationally and internationally - can access are provided. As a result of the strategy developed at the UoS, from 2004 to 2008 waste costs fell by around Pounds 125k and a recycling rate of 72% was achieved. The holistic approach taken - recognizing the PESTLE factors and the importance of a concerted ISB approach - provides a realistic, successful and practical example for other institutions wishing to effectively and sustainably manage their waste.

  15. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  16. Technology management for environmentally sound and sustainable development

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    1992-01-01

    With the evolutionary change in the production activities of human societies, the concept of development has also been changing. In the recent years the emphasis has been on the environmentally sound and sustainable development. The environmentally sound and sustainable development can be obtained through judicious use of technology. Technology as a resource transformer has emerged as the most important factor which can constitute to economic growth. But technology is not an independent and autonomous force, it is only an instrument which needs to be used carefully, properly and appropriately which necessitates technology management. (author)

  17. Innovation, Management and Sustainability - change processes in the food service sector

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine; Dahl, Astrid; Mikkelsen, Bent Egberg

    2005-01-01

    Kristensen NH, Thorsen AV, Dahl A, Engelund EH, Mikkelsen BE (2005): Innovation, Management and Sustainability - change processes in the food service sector. Chapter in "Culinary Arts and Sciences V - Global and National Perspectives". Bournemouth University. ISBN 1-85899-179-X......Kristensen NH, Thorsen AV, Dahl A, Engelund EH, Mikkelsen BE (2005): Innovation, Management and Sustainability - change processes in the food service sector. Chapter in "Culinary Arts and Sciences V - Global and National Perspectives". Bournemouth University. ISBN 1-85899-179-X...

  18. Contribution of Nuclear Science in Agriculture Sustainability

    International Nuclear Information System (INIS)

    Soliman, S.M.; Galal, Y.G.M.

    2017-01-01

    Sustainable agricultural systems employ natural processes to achieve acceptable levels of productivity and food quality while minimizing adverse environmental impacts. Sustainable agriculture must, by definition, be ecologically sound, economically viable, and socially responsible. Sustainable agriculture must nurture healthy co systems and support the sustainable management of land, water and natural resources, while ensuring world food security. To be sustainable, agriculture must meet the needs of present and future generations for its products and services, while ensuring profitability, environmental health and social and economic equity. The global transition to sustainable food and agriculture will require major improvements in the efficiency of resource use, in environmental protection and in systems resilience. In Mediterrane an environments, crops are grown mainly in the semiarid and sub-humid are as. In arid and semiarid are as dry land farming, techniques are of renewed interest in the view of sustain ability. They are aimed to increase water accumulation in the soil, reduce runoff and soil evaporation losses, choose species and varieties able to make better use of rainwater, and rationalize fertilization plans, sowing dates, and weed and pest control. Fertilization plans should be based on well-defined principles of plant nutrition, soil chemistry, and chemistry of the fertilizer elements. Starting from the calculation of nutrient crop uptake (based on the actually obtainable yield), dose calculation must be corrected by considering the relation ship between the availability of the trace elements in soil and the main physical and chemical parameters of the soil (ph, organic matter content, mineralization rate, C/N, ratio of solubilization of phosphorus, active lime content, presence of antagonist ions, etc.). In the Egyptian Atomic Energy Authority, Soil and Water Research Department, nuclear techniques including radio and stable isotopes in addition to

  19. Managing uncertainty for sustainability of complex projects

    DEFF Research Database (Denmark)

    Brink, Tove

    2017-01-01

    Purpose – The purpose of this paper is to reveal how management of uncertainty can enable sustainability of complex projects. Design/methodology/approach – The research was conducted from June 2014 to May 2015 using a qualitative deductive approach among operation and maintenance actors in offshore...... wind farms. The research contains a focus group interview with 11 companies, 20 individual interviews and a seminar presenting preliminary findings with 60 participants. Findings – The findings reveal the need for management of uncertainty through two different paths. First, project management needs...... to join efforts. Research limitations/implications – Further research is needed to reveal the generalisability of the findings in other complex project contexts containing “unknown unknowns”. Practical implications – The research leads to the development of a tool for uncertainty management...

  20. Participatory scenario development for integrated assessment of nutrient flows in a Catalan river catchment

    Directory of Open Access Journals (Sweden)

    F. Caille

    2007-11-01

    Full Text Available Rivers in developed regions are under significant stress due to nutrient enrichment generated mainly by human activities. Excess nitrogen and phosphorus emissions are the product of complex dynamic systems influenced by various factors such as demographic, socio-economic and technological development. Using a Catalan river catchment, La Tordera (North-East of Spain, as a case study of an integrated and interdisciplinary environmental assessment of nutrient flows, we present and discuss the development of narrative socio-economic scenarios through a participatory process for the sustainable management of the anthropogenic sources of nutrients, nitrogen and phosphorus. In this context, scenarios are an appropriate tool to assist nutrient emissions modelling, and to assess impacts, possible pathways for socio-economic development and associated uncertainties. Evaluated against the 1993–2003 baseline period, scenarios target the 2030 horizon, i.e. through the implementation process of the Water Framework Directive (Directive 2000/60/EC. After a critical examination of the methodology used in the participatory development of socio-economic scenarios, we present four possible futures (or perspectives for the Catalan river catchment conceived by stakeholders invited to a workshop. Keys to the success of such a participatory process were trust, which enhanced openness, and disagreements, which fostered the group's creativity for scenario development. The translation of narrative socio-economic scenarios into meaningful nutrient emission scenarios is also discussed. By integrating findings of natural sciences and socio-economic analysis, we aim to assist decision makers and stakeholders in evaluating optimal management strategies for the anthropogenic sources of nitrogen and phosphorus.

  1. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  2. Nutrient Management in Aquaponics: Comparison of Three Approaches for Cultivating Lettuce, Mint and Mushroom Herb

    Directory of Open Access Journals (Sweden)

    Valentina Nozzi

    2018-03-01

    Full Text Available Nutrients that are contained in aquaculture effluent may not supply sufficient levels of nutrients for proper plant development and growth in hydroponics; therefore, they need to be supplemented. To determine the required level of supplementation, three identical aquaponic systems (A, B, and C and one hydroponic system (D were stocked with lettuce, mint, and mushroom herbs. The aquaponic systems were stocked with Nile tilapia. System A only received nutrients derived from fish feed; system B received nutrients from fish feed as well as weekly supplements of micronutrients and Fe; system C received the same nutrients as B, with weekly supplements of the macronutrients, P and K; in system D, a hydroponic inorganic solution containing N, Ca, and the same nutrients as system C was added weekly. Lettuce achieved the highest yields in system C, mint in system B, and mushroom herb in systems A and B. The present study demonstrated that the nutritional requirements of the mint and mushroom herb make them suitable for aquaponic farming because they require low levels of supplement addition, and hence little management effort, resulting in minimal cost increases. While the addition of supplements accelerated the lettuce growth (Systems B, C, and even surpassed the growth in hydroponic (System C vs. D, the nutritional quality (polyphenols, nitrate content was better without supplementation.

  3. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  4. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  5. Sustainable operations management and benchmarking in brewing: A factor weighting approach

    Directory of Open Access Journals (Sweden)

    Daniel P. Bumblauskas

    2017-06-01

    Full Text Available The brewing industry has been moving towards more efficient use of energy, water reuse and stewardship, and the tracking of greenhouse gas (GHG emissions to better manage environmental and social responsibility. Commercial breweries use a great deal of water and energy to convert one gallon (liter of water into one gallon (liter of beer. An analysis was conducted on sustainable operations and supply chain management at various United States and international breweries, specifically Europe, to benchmark brewery performance and establish common metrics for sustainability in the beer supply chain. The primary research questions explored in this article are whether water reclamation and GHG emissions can be properly monitored and measured and if processes can be created to help control waste (lean and emissions. Additional questions include how we can use operations management strategies and techniques such as the Factor-Weighted Method (FWM in industries such as brewing to develop sustainability scorecards.

  6. Sustainable water management under future uncertainty with eco-engineering decision scaling

    Science.gov (United States)

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  7. Managing product returns to achieve supply chain sustainability

    DEFF Research Database (Denmark)

    Shaharudin, Mohd Rizaimy; Govindan, Kannan; Zailani, Suhaiza

    2015-01-01

    returns management as part of a comprehensive sustainability effort. The study is exploratory in nature based on five case studies of participating manufacturers in the automotive, and electrical and electronics industry in Malaysia. The interview results reveal that the five participating companies...

  8. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  9. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  10. Modelling management process of key drivers for economic sustainability in the modern conditions of economic development

    Directory of Open Access Journals (Sweden)

    Pishchulina E.S.

    2017-01-01

    Full Text Available The text is about issues concerning the management of driver for manufacturing enterprise economic sustainability and manufacturing enterprise sustainability assessment as the key aspect of the management of enterprise economic sustainability. The given issues become topical as new requirements for the methods of manufacturing enterprise management in the modern conditions of market economy occur. An economic sustainability model that is considered in the article is an integration of enterprise economic growth, economic balance of external and internal environment and economic sustainability. The method of assessment of economic sustainability of a manufacturing enterprise proposed in the study allows to reveal some weaknesses in the enterprise performance, and untapped reserves, which can be further used to improve the economic sustainability and efficiency of the enterprise. The management of manufacturing enterprise economic sustainability is one of the most important factors of business functioning and development in modern market economy. The relevance of this trend is increasing in accordance with the objective requirements of the growing volumes of production and sale, the increasing complexity of economic relations, changing external environment of an enterprise.

  11. Nutritional Sustainability of Pet Foods12

    Science.gov (United States)

    Swanson, Kelly S.; Carter, Rebecca A.; Yount, Tracy P.; Aretz, Jan; Buff, Preston R.

    2013-01-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530

  12. Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part...

  13. Incentivizing secondary raw material markets for sustainable waste management.

    Science.gov (United States)

    Schreck, Maximilian; Wagner, Jeffrey

    2017-09-01

    Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  15. Urban sustainable development from public participation in urban management

    OpenAIRE

    L. Karimifard

    2016-01-01

    Urban management in any context has a different economic, social and political structure, which is in harmony with the existing models of organization. In spite of these differences, in order to reach a sustainable urban development, several different conferences should be referred to. In the “Brundtland Commission 1987” about urban sustainable development these definitions have been given: “preservation and promotion of the quality level of city life. This consists of ecology, culture, polit...

  16. Assessment of the indicator of sustainable development for radioactive waste management

    International Nuclear Information System (INIS)

    Jung, J. H.; Park, W. J.

    2003-01-01

    As a follow up to the agenda 21's policy statement for safe management of radioactive waste adopted at Rio Conference held in 1992, the UN invited the IAEA to develop and implement indicators of sustainable development for the management of radioactive waste. The IAEA finalized the indicators in 2002, and is planning to calculate the member states' values of indicator in connection with operation of its Net-Enabled Waste Management Database system. In this paper, the basis for introducing the indicators into the radioactive waste management was analyzed, and calculation methodology and standard assessment procedure were simply depicted. According to the proposed standard procedure, the indicators for some countries including Korea were calculated and compared, by use of each country's radioactive waste management framework and its practices. In addition, a series of measures increasing the values of the indicators was derived so as to enhance the sustainability of domestic radioactive waste management program

  17. [Inventory of regional surface nutrient balance and policy recommendations in China].

    Science.gov (United States)

    Chen, Min-Peng; Chen, Ji-Ning

    2007-06-01

    By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.

  18. Sustainable management measures for healthcare waste in China

    International Nuclear Information System (INIS)

    Chen Yang; Li Peijun; Lupi, Carlo; Sun Yangzhao; Xu Diandou; Feng Qian; Fu Shasha

    2009-01-01

    This paper discusses actions aimed at sustainable management of healthcare wastes (HCW) in China, taking into account the current national situation in this field, as well as the requirements deriving from the Stockholm Convention on Persistent Organic Pollutants and the WHO recommendations. By the end of 2005, there were 149 low-standard HCW disposal facilities in operation in China, distributed throughout different areas. According to the National Hazardous Waste and Healthcare Waste Disposal Facility Construction Plan, 331 modern, high-standard, centralized facilities will be built up in China in municipal level cities. Although incineration is still the main technical option for HCW disposal in China, it is expected that, especially for medium and small size facilities, non-incineration technologies will develop quickly and will soon become the main technical option. The basic management needs - both from the point of view of pollution control and final disposal - have been defined, and a system of technical and environmental standards has been formulated and implemented; however, there are still some shortages. This is particularly true when considering the best available techniques and best environmental practices developed under the Stockholm Convention, with which the present technological and managing situations are not completely compliant. In this framework, the lifecycle (from generation to final disposal of wastes) of HCW and holistic approaches (technology verification, facilities operation, environmental supervision, environmental monitoring, training system, financial mechanism, etc.) towards HCW management are the most important criteria for the sustainable and reliable management of HCW in China.

  19. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun

    2016-03-01

    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  20. Our nutrient world. The challenge to produce more food & energy with less pollution

    NARCIS (Netherlands)

    Sutton, M.A.; Bleeker, A.; Howard, C.M.; Erisman, J.W.; Abrol, Y.P.; Bekunda, M.; Datta, A.; Davidson, E.; Vries, de W.; Oenema, O.; Zhang, F.S.

    2013-01-01

    The message of this overview is that everyone stands to benefit from nutrients and that everyone can make a contribution to promote sustainable production and use of nutrients. Whether we live in a part of the world with too much or too little nutrients, our daily decisions can make a difference.

  1. International symposium on nuclear techniques in integrated plant nutrient, water and soil management. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-10-01

    This document contains extended synopsis of 92 papers presented at the International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water, and Soil Management held in Vienna, Austria, 16-20 October 2000. The efficient use of plant nutrient and fertilizer using carbon 13 and nitrogen 15 tracers; plant water use using oxygen 18 and moisture gauges, as well as soil and plant radioactivity monitoring, are some of the major subjects covered by these papers

  2. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  3. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  4. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  5. Nuclear waste management and sustainable development: the complexity of a decision in a controversial universe

    International Nuclear Information System (INIS)

    Le Dars, A.

    2002-01-01

    This PhD dissertation intends to demonstrate in what extent the concept of sustainable development applied to nuclear waste management requires a novel scientific approach. High-level and long-lived radioactive waste management needs to make decisions in taking into account multiple dimensions, characterised by uncertainty, irreversibility, and long term, and which are much debated. These scientific controversies often induce social conflicts due to the divergence in stakeholders point of views, values or interests. Therefore, nuclear waste management in a sustainable development constitutes a complex decision-making problem. This thesis focuses on high-level and long-lived radioactive waste management in the French context because this country is confronted with the most severe conflicts. Researches are operating in the 30 December 1991 law framework, and in 2006 a Parliament decision could be made concerning the choice of a long-term nuclear waste management solution. This survey studies in what extent economics can open to other scientific disciplines in using evaluation tools and decision-making procedures which better integrate several conflicting criteria. This work deals with the criticism of the epistemological and methodological foundations of economic evaluation, notably in questioning the realism of its hypothesis, and a qualitative survey directly made close to stakeholders goes deeper into the analysis of their complex relationships. The first part of this thesis puts in evidence the complexity of a sustainable nuclear waste management. Chapter 1 shows that sustainable nuclear waste management is a health and ecological problem irreducible to a technical solution, and Chapter 2 explains why sustainable nuclear waste management constitutes a social choice problem irreducible to an economic evaluation. The second part of this thesis shows that a concerted decision-making process seems to be a good procedure to overcome this complexity. Chapter 3 analyses

  6. A Risk Management Approach for a Sustainable Cloud Migration

    Directory of Open Access Journals (Sweden)

    Alifah Aida Lope Abdul Rahman

    2017-11-01

    Full Text Available Cloud computing is not just about resource sharing, cost savings and optimisation of business performance; it also involves fundamental concerns on how businesses need to respond on the risks and challenges upon migration. Managing risks is critical for a sustainable cloud adoption. It includes several dimensions such as cost, practising the concept of green IT, data quality, continuity of services to users and clients, guarantee tangible benefits. This paper presents a risk management approach for a sustainable cloud migration. We consider four dimensions of sustainability, i.e., economic, environmental, social and technology to determine the viability of cloud for the business context. The risks are systematically identified and analysed based on the existing in house controls and the cloud service provider offerings. We use Dempster Shafer (D-S theory to measure the adequacy of controls and apply semi-quantitative approach to perform risk analysis based on the theory of belief. The risk exposure for each sustainability dimension allows us to determine the viability of cloud migration. A practical migration use case is considered to determine the applicability of our work. The results identify the risk exposure and recommended control for the risk mitigation. We conclude that risks depend on specific migration case and both Cloud Service Provider (CSP and users are responsible for the risk mitigation. Inherent risks can evolve due to the cloud migration.

  7. Measures and metrics of sustainable diets with a focus on milk, yogurt, and dairy products

    Science.gov (United States)

    Drewnowski, Adam

    2018-01-01

    The 4 domains of sustainable diets are nutrition, economics, society, and the environment. To be sustainable, foods and food patterns need to be nutrient-rich, affordable, culturally acceptable, and sparing of natural resources and the environment. Each sustainability domain has its own measures and metrics. Nutrient density of foods has been assessed through nutrient profiling models, such as the Nutrient-Rich Foods family of scores. The Food Affordability Index, applied to different food groups, has measured both calories and nutrients per penny (kcal/$). Cultural acceptance measures have been based on relative food consumption frequencies across population groups. Environmental impact of individual foods and composite food patterns has been measured in terms of land, water, and energy use. Greenhouse gas emissions assess the carbon footprint of agricultural food production, processing, and retail. Based on multiple sustainability metrics, milk, yogurt, and other dairy products can be described as nutrient-rich, affordable, acceptable, and appealing. The environmental impact of dairy farming needs to be weighed against the high nutrient density of milk, yogurt, and cheese as compared with some plant-based alternatives. PMID:29206982

  8. The sustainable management of a productive natural capital

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier

    is relevant, among other examples, to the case of naturebased tourism. I study the sustainable management of a productive natural capital: the conditions under which its exploitation generates maximum long-run social benefits; the various ways in which a regulator can implement such an exploitation; the rent...

  9. Sustainable Water Management under Climate Change in Small ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sustainable Water Management under Climate Change in Small Island States of the Caribbean. In the Caribbean islands, climate change is affecting freshwater availability and other ecosystem services in complex ways. For example, freshwater supply is diminished by droughts and affected by saline intrusion due to sea ...

  10. The Sustainable Management of a Tourism Destination in Ireland: A Focus on County Clare

    Directory of Open Access Journals (Sweden)

    Aine CONAGHAN

    2015-06-01

    Full Text Available Tourism destination management has significant importance in controlling many impacts of tourism, thus insuring its sustainability. Destination management requires the integration of different planning tools, approaches and concepts that help shape the management and daily operation of tourism related activities. This study examines the sustainable management of a tourism destination, focusing on County Clare, Ireland. Qualitative interviews were conducted with tourism stakeholders. Additionally a theoretical framework incorporating the various elements that emerged from the theory was also utilised to examine existing tourism strategies and plans. Stakeholders all agreed it would be an advantage to have a Destination Management Office (DMO lead that would coordinate destination management. However, it was found many tourism visions lack consistency and a timeframe with only a few addressing sustainability itself. Also the multiple regulations and guidelines identified by the framework were not communicated effectively to both stakeholders and policy makers when managing tourism in County Clare.

  11. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    Science.gov (United States)

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  12. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Directory of Open Access Journals (Sweden)

    Xinpeng Xu

    Full Text Available Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L. were collected in four maize agro-ecological regions of China, and the optimal management (OPT, farmers' practice (FP, a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N, phosphorus (P, and potassium (K were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  13. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Science.gov (United States)

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  14. Alocação de nutrientes em plantios de eucalipto no Brasil Nutrient allocation in eucalypt plantations in Brazil

    Directory of Open Access Journals (Sweden)

    Reynaldo Campos Santana

    2008-12-01

    Full Text Available Práticas de manejo florestal podem alterar a exportação de nutrientes do sítio. Este trabalho teve por objetivo estimar o conteúdo de nutrientes em árvores de eucalipto, em diferentes regiões do Brasil. Avaliou-se a influência de algumas características climáticas na produção e no conteúdo de nutrientes na biomassa, utilizando-se o banco de dados do Programa de Pesquisa em Solos e Nutrição de Eucalipto do Departamento de Solos - UFV. As características climáticas foram um importante componente dos modelos. A produção de biomassa e o conteúdo de nutrientes foram positivamente relacionados entre si e ambos foram menores nas regiões com menor disponibilidade de água. As estimativas apontaram que até à idade de 4,5 anos pós-plantio acumulam-se as maiores proporções de nutrientes (68 % do N, 69 % do P, 67 % do K, 63 % do Ca e 68 % do Mg para a idade de corte de 6,5 anos. Isto indica que, após 4,5 anos, o potencial de resposta à aplicação de fertilizantes é menor. O conteúdo estimado de nutrientes acumulados na copa e na casca representou 65, 70, 64, 79 e 79 %, de N, P, K, Ca e Mg, respectivamente, até 6,5 anos de idade. Assim, a colheita apenas do lenho representa expressiva redução na exportação desses nutrientes proporcionando maior sustentabilidade da produção nas plantações de eucalipto.Forest management practices can alter nutrient exportation from the site. The purpose of this study was to estimate nutrient contents in the aboveground biomass of eucalyptus plantations in Brazil. The influence of key climatic variables on eucalypt productivity and nutrient content was evaluated, using the database from the Reserch Programa on Soil and Eucalyptus Nutrition of the Soil Science, Departament - Federal University of Viçosa, Minas Gerais State, Brazil. Climatic characteristics were an important component of the models. In regions with low water availability the nutrient accumulation in aboveground biomass as

  15. Major ecosystems in China: dynamics and challenges for sustainable management.

    Science.gov (United States)

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.

  16. Beyond Magnet® Designation: Perspectives From Nurse Managers on Factors of Sustainability and High-Performance Programming.

    Science.gov (United States)

    Hayden, Margaret A; Wolf, Gail A; Zedreck-Gonzalez, Judith F

    2016-10-01

    The aim of this study was to identify patterns of high-performing behaviors and nurse manager perceptions of the factors of Magnet® sustainability at a multidesignated Magnet organization. The Magnet program recognizes exemplary professional nursing practice and is challenging to achieve and sustain. Only 10% (n = 42) of Magnet hospitals sustained designation for 12 years or longer. This study explored the perspectives of Magnet nurse managers regarding high-performing teams and the sustainability of Magnet designation. A qualitative study of nurse managers was conducted at 1 multidesignated Magnet organization (n = 13). Interview responses were analyzed using pattern recognition of Magnet model domains and characteristics of high-performing teams and then related to factors of Magnet sustainability. Transformational leadership is both an essential factor for sustainability and a potential barrier to sustainability of Magnet designation. Transformational nursing leaders lead high-performing teams and should be in place at all levels as an essential factor in sustaining Magnet redesignation.

  17. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  18. Specification aggregate quarry expansion: a case study demonstrating sustainable management of natural aggregate resources

    Science.gov (United States)

    Langer, William H.; Tucker, M.L.

    2003-01-01

    Many countries, provinces, territories, or states in the European Union, Australia, Canada, the United States, and elsewhere have begun implementing sustainability programs, but most of those programs stop short of sustainable management of aggregate resources. Sustainable practices do not always have to be conducted under the title of sustainability. This case study describes how Lafarge, a large multinational construction materials supplier, implemented the principles of sustainability even though there was an absence of existing local government policies or procedures addressing sustainable resource management. Jefferson County, Colorado, USA, is one of three counties in the six-county Denver, Colorado, region that has potentially available sources of crushed stone. Crushed stone comprises 30 percent of the aggregate produced in the area and plays a major role in regional aggregate resource needs. Jefferson County is home to four of the five crushed stone operations in the Denver region. Lafarge operates one of those four quarries. Lafarge recently proposed to expand its reserves by exchanging company-owned land for existing dedicated open space land adjacent to their quarry but owned by Jefferson County. A similar proposal submitted about 10 years earlier had been denied. Contrary to the earlier proposal, which was predicated on public relations, the new proposal was predicated on public trust. Although not explicitly managed under the moniker of sustainability, Lafarge used basic management principles that embody the tenets of sustainability. To achieve the goals of sustainable aggregate management where no governmental policies existed, Lafarge not only assumed their role of being a responsible corporate and environmental member of the community, but also assumed the role of facilitator to encourage and enable other stakeholders to responsibly resolve legitimate concerns regarding the Lafarge quarry proposal. Lafarge successfully presented an enlightened

  19. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    International Nuclear Information System (INIS)

    2013-05-01

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  20. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  1. Sustainable supply chain management implementation-enablers and barriers in the textile industry

    OpenAIRE

    Oelze, Nelly

    2017-01-01

    The distinct definition of accordance in the perceived barriers and enablers for sustainable supply chain management (SSCM) policy implementation has been the subject of various research studies, but a distinct focus on the textile sector has been the object of limited previous attention. However, it has been found that it affects the approach to developments in company approaches to sustainable supply chain management within that industry. This article presents the results of an in-depth com...

  2. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  3. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  4. Dependence of the endangered black-capped vireo on sustained cowbird management

    Science.gov (United States)

    Conservation-reliant species depend on active management for sustained protection from persistent threats. For species that are listed as threatened or endangered under the U.S. Endangered Species Act, being conservation-reliant means that they require continued management even ...

  5. Science to Improve Nutrient Management Practices, Metrics of Benefits, Accountability, and Communication (Project SSWR 4.03)

    Science.gov (United States)

    This project will demonstrate transferable modeling techniques and monitoring approaches to enable water resource professionals to make comparisons among nutrient reduction management scenarios across urban and agricultural areas. It will produce the applied science to allow bett...

  6. Sustainable forest management in Poland – theory and practice

    Directory of Open Access Journals (Sweden)

    Kruk Hanna

    2014-03-01

    Full Text Available The conception of sustainable development has been implemented into practice in numerous economic sectors, including forestry. Forest ecosystems are extremely important in the global ecological system, therefore maintenance and appropriate management of forest resources according to sustainable development principles have engaged a great deal of attention. The concept of sustainable forest management (SFM encompasses three dimensions: ecological, economic and social. A powerful tool to promote SFM are criteria and indicators. The aim of the article was evaluation of SFM in Poland, using one of the methods proposed by the Food and Agriculture Organization (FAO. According to data available, Polish forestry has a number of advantages: Poland has avoided the problem of deforestation, forest area has been permanently increasing, there has been observed improvement of forest health and vitality as well as a significant share of forests has carried out protective functions with no impact on timber production. Poland’s model of SFM is an adaptive process of balancing the ever-changing set of economic, environmental and social expectations. Such a complicated undertaking requires constant assessing and adjusting forest practices, in response to new circumstances, scientific advances and societal input

  7. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  8. Levee Setbacks: An Innovative, Cost Effective, and Sustainable Solution for Improved Flood Risk management

    Science.gov (United States)

    2017-06-30

    ER D C/ EL S R- 17 -3 Levee Setbacks: An Innovative , Cost-Effective, and Sustainable Solution for Improved Flood Risk Management En vi...EL SR-17-3 June 2017 Levee Setbacks: An Innovative , Cost-Effective, and Sustainable Solution for Improved Flood Risk Management David L. Smith...alternative view point is necessary. ERDC/EL SR-17-3 4 Levee setbacks are a relatively recent innovation in Corps flood risk management practice

  9. Using Quality Management as a Bridge in Educating for Sustainability in a Business School

    Science.gov (United States)

    Rusinko, Cathy A.

    2005-01-01

    Purpose: To demonstrate how quality management (QM), a widely accepted management paradigm, can be used to advance education for sustainability in the business curriculum. Design/methodology/approach: The assumptions of QM and environmental sustainability are explored. A class exercise is developed that uses QM tools--and in particular, Deming's…

  10. Sustainable Supply Chain Management Programs in the 21st Century

    Science.gov (United States)

    Neureuther, Brian D.; O'Neill, Kevin

    2011-01-01

    One of the most difficult challenges for an undergraduate supply chain management program at smaller universities is to create an environment of sustainability. Supply chain management is not at the tip of tongue for many graduating high school students and few undergraduate curriculums require a course in the content area. This research addresses…

  11. Opportunities to enhance and interpret nutrient fluxes and imbalances in animal production systems by use of stable isotopes

    International Nuclear Information System (INIS)

    Jarvis, S.C.

    2002-01-01

    Full text: The flows and transfers of nutrients within agricultural systems are complex and the presence of livestock increases the complexity. Few, if any, systems are in equilibrium with respect to nutrients inputs and outputs and all are 'leaky' to some extent or other: the presence of animals inevitably increases the opportunity for inefficiency. Whilst there is still much need to enhance nutrient use in many parts of the world in order to promote crop/food production particularly in resource-poor environments, there has been considerable recent research which re- examine nutrient behaviour because of pollution effects. Understanding nutrients fluxes and budgets/balances of inputs and outputs within a system and its component parts, provides the means to assess (i) current status, (ii) extent of losses and (iii) potential options for change to reduce losses, increase nutrient use efficiency and sustain or enhance production at minimum cost. Increasingly, nutrient accounting is being used at field, farm and national scales to aid decision making and planning. To do this effectively, requires that the sources and transfers of nutrients to, from and within the system be known. The paper discusses the way in which systems and farm gate balances can be used to promote efficiency of nutrient use in relation to required production levels and to optimise (i) investment in purchased nutrients, (ii) opportunities to capitalise on internal recycling and (iii) other farming activities which influence nutrient balance, surplus and loss. A major challenge for the future will be to balance the on- and off-farm needs of supplying and utilising nutrients in order to maintain long-term sustainability of farming systems, food production and rural resources. The paper concentrates on aspects of N in livestock systems as this provides one of the main opportunities to increase effectiveness of nutrient use in agriculture throughout the world with the aim of demonstrating some of the

  12. From conventional drainage to sustainable stormwater management: Beyond the technical challenges.

    Science.gov (United States)

    Goulden, Shula; Portman, Michelle E; Carmon, Naomi; Alon-Mozes, Tal

    2018-08-01

    Countries and cities are increasingly recognizing the value of adopting Sustainable Stormwater Management (SSWM) goals and measures. SSWM serves multiple hydrological, ecological, social and economic goals and can replace substantial parts of conventional drainage infrastructure. Following international experience in the socio-technical nature of transitions in stormwater management, this research investigates how socio-institutional factors enable the transition from conventional to sustainable stormwater management over time. The research is based on analysing available relevant documents, semi-structured interviews and focus groups, all in a single country case study (Israel). We found significant changes in professional awareness and discourse, some advances in professional standards of work and changes to the regulative system, supporting infiltration practices in particular. We concluded that the three-pillared socio-institutional framework, composed of cultural-cognitive, normative and regulative changes, was insightful for mapping factors supporting transition from conventional drainage to SSWM. Elements within the three pillars can work simultaneously and synergistically to achieve widespread change. At the same time, while SSWM always strives to achieve multiple goals, the order of priority of the various goals may differ from place to place and may change over time. Thus the transition process across the socio-institutional pillars should be renewed if and when the priority of goals changes. The urban and regional planning system can play a crucial role in enhancing the transition process from conventional to sustainable stormwater management. These conclusions may be relevant to other localities and countries that are struggling with such transitions to sustainability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sustainable Management of Natural Resources for Socio-Economic ...

    African Journals Online (AJOL)

    This paper studies sustainable management of natural resources for socio economic development in Imo state. This it does with the aim to determine the extent to which the exploration and exploitation of natural resources has affected the ecological and environmental conditions of the area. The research also tends to ...

  14. The importance of an alternative for sustainability of agriculture around the periphery of the Amazon rainforest.

    Science.gov (United States)

    Moura, Emanoel G; Sena, Virley G L; Corrêa, Mariana S; Aguiar, Alana das C F

    2013-04-01

    The unsustainable use of the soil of the deforested area at the Amazonian border is one of the greatest threats to the rainforest, because it is the predominant cause of shifting cultivation in the region. The sustainable management of soils with low natural fertility is a major challenge for smallholder agriculture in the humid tropics. In the periphery of Brazilian Amazonia, agricultural practices that are recommended for the Brazilian savannah, such as saturating soils with soluble nutrients do not ensure the sustainability of agroecosystems. Improvements in the tilled topsoil cannot be maintained if deterioration of the porous soil structure is not prevented and nutrient losses in the root zone are not curtailed. The information gleaned from experiments affirms that in the management of humid tropical agrosystems, the processes resulting from the interaction between climatic factors and indicators of soil quality must be taken into consideration. It must be remembered that these interactions manifest themselves in ways that cannot be predicted from the paradigm established in the other region like the southeast of Brazil, which is based only on improving the chemical indicators of soil quality. The physical indicators play important role in the sustainable management of the agrosystems of the region and for these reasons must be considered. Therefore, alley cropping is a potential substitute for slash and burn agriculture in the humid tropics with both environmental and agronomic advantages, due to its ability to produce a large amount of residues on the soil surface and its effect on the increase of economic crop productivity in the long term. The article presents some promising patents on the importance of an alternative for sustainability of agriculture.

  15. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    Science.gov (United States)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  16. Purchasing & supply management for a sustainable world: Introduction to the IPSERA 2013 conference special issue

    DEFF Research Database (Denmark)

    Johnsen, T. E.; Giannakis, M.; Miemczyk, J.

    2014-01-01

    Special issue of best papers of the 22nd annual IPSERA conference 2013: Purchasing & Supply Management for a Sustainable World......Special issue of best papers of the 22nd annual IPSERA conference 2013: Purchasing & Supply Management for a Sustainable World...

  17. Recovery of agricultural nutrients from biorefineries.

    Science.gov (United States)

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach

    DEFF Research Database (Denmark)

    Rostamzadeh, Reza; Ghorabaee, Mehdi Keshavarz; Govindan, Kannan

    2018-01-01

    Supply chain risk management research has mainly mistreated the important of sustainability issues. Moreover, there is little knowledge about sustainable management of risk and supply chain and the way they impose losses for firms. Risk management's duty in the supply chain is to identify, analyze......, and provide solutions for accountability, control and monitor the risks in the economic and production cycle. This study aims to develop a framework for the sustainable supply chain risk management (SSCRM) evaluation. To this end, an integrated fuzzy multi-criteria decision-making (MCDM) approach is proposed...... based on the technique in order of preference by similarity to ideal solution (TOPSIS) and criteria importance through inter-criteria correlation (CRITIC) methods. The literature was reviewed and the potential criteria were identified. Through an expert panel the criteria were filtered. Seven main...

  19. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  20. Institutional Sustainability Barriers of Community Conservation Agreement as a Collaboration Management in Lore Lindu National Park

    Directory of Open Access Journals (Sweden)

    Sudirman Daeng Massiri

    2015-12-01

    Full Text Available The main problem of forest institutional arrangement is the issue of institutional sustainability in achieving sustainable forest ecosystem. This study aimed to explain the barriers of institutional sustainability Community Conservation Agreement (CCA designed in Lore Lindu National Park (LLNP, in Indonesia, as a collaborative management of national parks. This study is of descriptive which used qualitative approach, i.e. asking open-ended questions, reviewing documentation and analyzing textual of community conservation agreements. We found that the institutional sustainability barriers of CCA were the local decisions on collective-choice level and that the rules at operational level arranged in CCA were not in line with formal rules of national park management at the constitutional level. Furthermore, the low capacity of local institutions in heterogeneous villages with many migrants in controlling and regulating the forest use, especially in rehabilitation zone areas, also became a barrier to institutional sustainability of CCA. Therefore, institutional sustainability of CCA requires support of national park management policy that accommodates the sustainability of livelihoods of local communities in national parks, strengthening local institution's capacity, and ultimately integrating institution of CCA as part of LLNP management.

  1. Sustainable management of natural forests in pantanal region, Brazil.

    Directory of Open Access Journals (Sweden)

    Patricia Póvoa de Mattos

    2010-08-01

    Full Text Available The Pantanal region in Brazil has an area of 140,000 km², with approximately 30 % of natural forests distributed as deciduous, semideciduous, and forested savannas. The subregion of Nhecolandia represents 19 % of this area. There is constant concern about the sustainability of these forested areas, as there is a constant demand for wood for farm maintenance, mainly for making fence poles. The objective of this article is to indicate sustainable forest management practices in the Pantanal region of Nhecolandia. The methodology of this novel approach consisted of the recovery and organization of the available information to calculate the sustainable allowable cut per hectare, considering: cutting cycle, wood stock, periodic annual increment (PAI in percentage of volume from the commercial or interesting species and the stand structure. For forested savannas, the diameter at breast height (DBH of 529 trees per hectare were estimated as follows: 28 % with a DBH lower than 10 cm, 36 % from 10 to 20 cm, 21 % from 20 to 30 cm, 10 % from 30 to 40 cm and only 4 % greater than 40 cm. The estimated total volume per hectare was 84.2 m³ and the estimated basal area was 18.6 m². The forested areas of the Pantanal region present potential for sustainable use. However, due to regional characteristics and the lack of available information, an enhancement in research is recommended to establish a basic management guide to ensure its perpetuation for future generations.

  2. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  3. Quantitative models for sustainable supply chain management

    DEFF Research Database (Denmark)

    Brandenburg, M.; Govindan, Kannan; Sarkis, J.

    2014-01-01

    and directions of this research area, this paper provides a content analysis of 134 carefully identified papers on quantitative, formal models that address sustainability aspects in the forward SC. It was found that a preponderance of the publications and models appeared in a limited set of six journals......Sustainability, the consideration of environmental factors and social aspects, in supply chain management (SCM) has become a highly relevant topic for researchers and practitioners. The application of operations research methods and related models, i.e. formal modeling, for closed-loop SCM...... and reverse logistics has been effectively reviewed in previously published research. This situation is in contrast to the understanding and review of mathematical models that focus on environmental or social factors in forward supply chains (SC), which has seen less investigation. To evaluate developments...

  4. sustainable management of nigeria's oil wealth: legal challenges ...

    African Journals Online (AJOL)

    RAYAN_

    link that may exist between oil resource and economic development, there is the .... examine the impact of revenue allocation on the sustainable management of ... Nigeria, the biggest oil exporter with the largest natural gas reserves in. Africa24 and ..... Issues' (PhD dissertation, the Law of the Sea and Maritime Law Institute,.

  5. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    Science.gov (United States)

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Environmental and legislative drivers for sustainable music festival management : why Finnish music festivals should "go green"

    OpenAIRE

    Okolo-Kulak, Aleksandra

    2015-01-01

    The purpose of this study was to investigate why Finnish music festivals should "go green". The research was conducted from the aspect of environmental and legal drivers for sustainability. Academic sources on event management, sustainability as well as sustainable event management (SEM) were used to collect information on the subject. Furthermore, secondary sources were used to grasp a deep understanding on the environmental issues as well as legislative drivers for sustainability. The r...

  7. An Integrated Diagnostic Framework to Manage Organization Sustainable Growth: An Empirical Case

    Directory of Open Access Journals (Sweden)

    Jingxiao Zhang

    2016-03-01

    Full Text Available This research aims to develop a quantitative diagnostic framework by combining the Weisbord six-box model with the growth management model to focus on an organization’s internally driven sustainable management system. The research adopted an instrument developed by Preziosi and an extended Weisbord six-box model. The research employed a survey to collect 180 samples in a Chinese petrol company and applied the comparative method: (a the average score method; and (b the entropy method to confirm the growth level of the company. The survey also attempted to identify corresponding top growth influence factors using the obstacle degree formula. The results showed that the integrated diagnostic framework worked well to diagnose a regional but large Chinese petroleum company. In other words, the research successfully quantified the growth position and top influence factors and helped put forward specific suggestions to drive the organization of sustainable development. The method confirmed this organization during the fourth phase of five phases. In addition, top influence factors hindering the internal growth were (a the lack of task engagement with energy and time; (b the lack of personal work units; and (c a poor division of labor for reaching sustainable growth rates. The research provides a generic theoretical framework support to incorporate growth management models into an organizational diagnosis to obtain sustainable growth. It further highlights and practices guidelines in examining actual growth management levels in companies and discusses top influence factors to design efficient management systems to pursue organizational growth in a multitude of industrial contexts.

  8. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  9. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain

  10. Nutrient Management in Pine Forests

    Science.gov (United States)

    Allan E. Tiarks

    1999-01-01

    Coastal plain soils are naturally low in fertility and many pine stands will give an economic response to fertilization, especially phosphorus. Maintaining the nutrients that are on the site by limiting displacement of logging slash during and after the harvest can be important in maintaining the productivity of the site and reducing the amount of fertilizer required...

  11. Sustainable sludge management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Barrios, J.A.; Mendez, J.M.; Diaz, J.

    2003-07-01

    Worldwide, unsanitary conditions are responsible of more than three million deaths annually. One of the reasons is the low level of sanitation in developing countries. Particularly, sludge from these regions has a high parasite concentration and low heavy metal content even though the available information is limited. Different issues needed to achieve a sustainable sludge management in developing nations are analysed. Based on this analysis some conclusions arise: sludge management plays an important role in sanitation programs by helping reduce health problems and associated risks; investments in sanitation should consider sludge management within the overall projects; the main restriction for reusing sludge is the high microbial concentration, which requires a science-based decision of the treatment process, while heavy metals are generally low; the adequate sludge management needs the commitment of those sectors involved in the development and enforcement of the regulations as well as those that are directly related to its generation, treatment, reuse or disposal; current regulations have followed different approaches, based mainly on local conditions, but they favour sludge reuse to fight problems like soil degradation, reduced crop production, and the increased use of inorganic fertilizers. This paper summarises an overview of theses issues. (author)

  12. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    Science.gov (United States)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  13. Nutritional management of breastfeeding infants for the prevention of common nutrient deficiencies and excesses

    Directory of Open Access Journals (Sweden)

    Jin Soo Moon

    2011-07-01

    Full Text Available Breastfeeding is the best source of nutrition for every infant, and exclusive breastfeeding for 6 months is usually optimal in the common clinical situation. However, inappropriate complementary feeding could lead to a nutrient-deficient status, such as iron deficiency anemia, vitamin D deficiency, and growth faltering. The recent epidemic outbreak of obesity in Korean children emphasizes the need for us to control children’s daily sedentary life style and their intakes of high caloric foods in order to prevent obesity. Recent assessment of breastfeeding in Korea has shown that the rate is between 63% and 89%; thus, up-to-dated evidence-based nutritional management of breastfeeding infants to prevent common nutrient deficiencies or excesses should be taught to all clinicians and health care providers.

  14. Challenges for Sustainable Land Management through Climate-Smart Agriculture

    Science.gov (United States)

    Dougill, Andrew; Stringer, Lindsay

    2017-04-01

    There are increasing pushes for agricultural land management to be both sustainable and climate-smart (in terms of increasing productivity, building resilience to climate change and enhancing carbon storage). Climate-smart agriculture initiatives include conservation agriculture, based on minimum soil disturbance, permanent soil cover and crop rotation, and agroforestry. Such efforts address key international goals of the United Nations Convention to Combat Desertification (UNCCD) and United Nations Framework Convention on Climate Change (UNFCCC), but as yet have not seen widespread uptake. Based on analyses of different project interventions from across a range of southern African countries, we outline the inter-related challenges that are preventing adoption of climate-smart agriculture initiatives. We then identify routes to building multi-stakeholder partnerships and empowering communities through participatory monitoring with the aim of increasing uptake of such sustainable land management practices. Good practice examples remain largely restricted to local-level project interventions with significant donor (or private-sector) support, aligned to short-term community priorities relating to access to inputs or reduced labour requirements. Scaling-up to district- and national-level initiatives is yet to be widely successful due to problems of: limited policy coherence; a lack of communication between stakeholders at different levels; and limited understanding of long-term benefits associated with changes in agricultural practices. We outline opportunities associated with improved communication of climate information, empowerment of district-level adaptation planning and diversification of agricultural livelihood strategies as key routes to guide farmers towards more sustainable, and climate-smart, land management practices. Recent experiences in Malawi, which has experienced significant floods and an El Niño drought year in the last two years, are used to

  15. Natural Resources Management and Food Security in the Context of Sustainable Development

    International Nuclear Information System (INIS)

    John, H.

    2011-01-01

    This paper elaborates on the inseparable link between sustain ability of natural resources and food security. A strategic framework that envisages conservation, improvement and sustainable uses of natural resources is proposed which meets the essential requirements for food security. Sustainability has traditionally been accepted as encompassing three dimensions, namely environment, economics and society but it is necessary to widen this approach for a more complete understanding of this term. Environmental degradation curtails ecosystem services, leading to impoverishment of vulnerable communities and insecurity. Food, whether derived from land or sea, is a product of complex environmental linkages, and biodiversity has a pivotal role to play in producing it. Technology, production methods and management requirements are different for food derived from land and sea, but essentially all foodstuffs utilize environmental resources whose sustain ability is crucial for food security. This analysis necessitates consideration of the basic concepts of sustainable development and food security, the strength of the link between these and differences in the patterns of sustainable management of agriculture, fisheries and aquaculture. The growing role of genetically engineered organisms has been included because of the immense possibilities these offer for maximizing food production despite the environmental and ethical concerns raised. (author)

  16. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    Science.gov (United States)

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Limitation of multi-elemental fingerprinting of wheat grains: Effect of cultivar, sowing date, and nutrient management

    DEFF Research Database (Denmark)

    Suarez-Tapia, Alfonso; Kucheryavskiy, Sergey V.; Christensen, Bent Tolstrup

    2017-01-01

    Multi-element fingerprinting demonstrates some potential for tracing the origin of agricultural products but not for discriminating among crop cultivars and nutrient management (source, rate). With principal component analysis (PCA) and univariate statistics, we examined 19 elements in grains from...... two winter wheat cultivars (Hereford, Mariboss) grown with different rates of animal manure (AM) or mineral fertilisers (NPK) in a long-term field experiment and two sowing dates (early, timely). Nitrogen, Cd and Mn related to NPK, and Mo and Na to AM. Barium, Fe, and P reflected nutrient rate......; these elements increased with nutrient rate regardless of source. Unmanured grains were enriched in Cu. Mariboss was characterized by higher concentrations of Sr, Ba and Sc compared to Hereford with Sr in grain as the main separator. Univariate statistics showed higher concentrations of N, P, Mg, Ba, Cu, Mo...

  18. Significance of social networks in sustainable land management in ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    multi-stakeholder Innovation Platforms (IPs) necessary for catalysing wide adoption of SLM innovations. This paper analyses the significance of SNs in sustainable land management (SLM), focusing on stakeholders' characteristics and their association among agricultural rural communities in central Ethiopia and eastern ...

  19. Improving water management practices to reduce nutrient export from rice paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying

    2011-01-01

    Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.

  20. Interactions between biomass energy technologies and nutrient and carbon balances at the farm level

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Molt Petersen, B. [Danish Inst. of Agricultural Science, Dept. of Agroecology, Tjele (Denmark)

    2006-08-15

    Biomass energy is by far the largest renewable energy source in the world (IEA Renewable information (www.iea.org)). Biomass utilisation is closely linked to management and sustainability issues of forestry and agriculture. Carbon is extracted from forests and agriculture to bioenergy facilities, from where it is partly or fully emitted as CO{sub 2} and thus no longer available for sustaining soil organic matter content. Nutrients are extracted as well and, depending of the conversion technology, they may be recycled to farmland or lost as gaseous emissions. Thus, we must be able to describe these effects, and to suggest strategies to alleviate adverse effects on farm sustainability and on the environment. By choosing intelligent combinations of cropping systems and energy conversion technologies, win-win solutions may be achieved. This paper illustrates, via three cases, some agricultural impacts of choice of biomass technology and describes an intriguing possibility for recycling municipal or industrial wastes through the bioenergy chain. (au)