WorldWideScience

Sample records for sustainable nuclear regulatory

  1. Sustaining Nuclear Safety: Upholding the Core Regulatory Values

    International Nuclear Information System (INIS)

    Kumar, S.

    2016-01-01

    Nuclear Energy and management of safety therein, has a somewhat distinct streak in that from its early days it has had the privilege of being shaped and supervised by the eminent scientists and engineers, in fact it owes its very origin to them. This unique engagement has resulted in culmination of the several safety elements like defence-in-depth in the form of multiple safety layers, redundancy, diversity and physical separation of components, protection against single failures as well as common cause failures right at the beginning of designing a nuclear reactor. The fundamental principles followed by regulators across the globe have many similarities such as, creation of an organization which has a conflict-free primary responsibility of safety supervision, laying down the safety criteria and requirements for the respective industry and developing and using various tools and regulatory methodology to ensure adherence to the laid down regulatory requirements. Yet the regulatory regimes in different States have evolved differently and therefore, has certain attributes which are unique to these and confer on them their identity.

  2. International Conference on Effective Nuclear Regulatory Systems: Sustaining Improvements Globally. Book of Abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    The objective of this conference is to review and assess ways of further improving the effectiveness of regulatory systems for nuclear facilities and activities for both nuclear safety and nuclear security. The action items in the summary presented by the President of the conference held in 2013 in Ottawa, the lessons of the Fukushima Daiichi accident, the discussions at other international conferences and at international experts’ meetings conducted within the framework of the IAEA Action Plan on Nuclear Safety, as well as the CNS and the principles outlined in the Vienna Declaration on Nuclear Safety, will continue to have a significant impact on regulatory systems. All the aforementioned need to be taken into account to sustain improvements to regulatory systems. The expected outcomes of the conference are: - Enhanced safety and security of nuclear installations worldwide; - Challenges in regulating radiation sources and radioactive waste addressed; - Enhanced international cooperation for sustaining regulatory effectiveness; - Strengthened and sustained regulatory competence for nuclear safety and security; and - Strategies and actions for the future identified, as well as issues for consideration by governments, regulatory bodies and international organizations.

  3. Future nuclear regulatory challenges

    International Nuclear Information System (INIS)

    Royen, J.

    1998-01-01

    In December 1996, the NEA Committee on Nuclear Regulatory Activities concluded that changes resulting from economic deregulation and other recent developments affecting nuclear power programmes have consequences both for licensees and regulatory authorities. A number of potential problems and issues which will present a challenge to nuclear regulatory bodies over the next ten years have been identified in a report just released. (author)

  4. Improving nuclear regulatory effectiveness

    International Nuclear Information System (INIS)

    2001-01-01

    Ensuring that nuclear installations are operated and maintained in such a way that their impact on public health and safety is as low as reasonably practicable has been and will continue to be the cornerstone of nuclear regulation. In the past, nuclear incidents provided the main impetus for regulatory change. Today, economic factors, deregulation, technological advancements, government oversight and the general requirements for openness and accountability are leading regulatory bodies to review their effectiveness. In addition, seeking to enhance the present level of nuclear safety by continuously improving the effectiveness of regulatory bodies is seen as one of the ways to strengthen public confidence in the regulatory systems. This report covers the basic concepts underlying nuclear regulatory effectiveness, advances being made and future requirements. The intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  5. Creating a comprehensive, efficient, and sustainable nuclear regulatory structure. A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Davis, Gregory E.; Brownell, Lorilee; Wright, Troy L.; Tuttle, John D.; Cunningham, Mitchel E.; O'Brien, Patricia E.

    2006-01-01

    This paper describes the strategies and process used by the U.S. Department of Energy's (DOE) nuclear Material Protection, Control and Accounting (MPC and A) Regulatory Development Project (RDP) to restructure its support for MPC and A regulations in the Russian Federation. The RDP adopted a project management approach to defining, implementing, and managing an effective nuclear regulatory structure. This approach included defining and developing the regulatory documents necessary to provide the Russian Federation with a comprehensive regulatory structure that supports an effective and sustainable MPC and A Program in Russia. This effort began in February 2005, included a series of three multi-agency meetings in April, June, and July, and culminated in August 2005 in a mutually agreed-upon plan to define and populate the nuclear regulatory system in the Russian Federation for non-military, weapons-usable material. This nuclear regulatory system will address all non-military Category I and II nuclear material at the Russian Federal Atomic Energy Agency (Rosatom), the Russian Agency for Industry (Rosprom), and the Federal Agency for Marine and River Transport (FAMRT) facilities; nuclear material in transport and storage; and nuclear material under the oversight of the Federal Environmental, Industrial and Nuclear Supervisory Service of Russia (Rostechnadzor). The Russian and U.S. MPC and A management teams approved the plan, and the DOE National Nuclear Security Administration's (NNSA) NA-255, Office of Infrastructure and Sustainability (ONIS), is providing funding. The Regulatory Development Project is managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's (DOE) NNSA

  6. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure: A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Wright, Troy L.; O'Brien, Patricia E.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Schlegel, Steven C.

    2010-01-01

    With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy's (DOE) Nuclear Material Protection, Control and Accounting (MPC and A) program to complete its transition of MPC and A responsibility to the Russian Federation, National Nuclear Security Administration (NNSA) management directed its MPC and A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC and A regulatory foundation. This paper describes the systematic process used by DOE's MPC and A Regulatory Development Project (RDP) to develop an effective and sustainable MPC and A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy 'Rosatom,' the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE's project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: (1) Define MPC and A Structural Elements; (2) Analyze the existing regulatory documents using the identified Structural Elements; (3) Validate the analysis with Russian colleagues and define the list of documents to be

  7. Nuclear Regulatory legislation

    International Nuclear Information System (INIS)

    1984-06-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 97th Congress, 2nd Session, has been prepared by the Office of the Executive Legal Director, U.S. Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document

  8. Nuclear Regulatory Legislation

    International Nuclear Information System (INIS)

    1989-08-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 100th Congress, 2nd Session, has been prepared by the Office of the General Counsel, US Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document. Persons using this document are placed on notice that it may not be used as an authoritative citation in lieu of the primary legislative sources. Furthermore, while every effort has been made to ensure the completeness and accuracy of this material, neither the United States Government, the Nuclear Regulatory Commission, nor any of their employees makes any expressed or implied warranty or assumes liability for the accuracy or completeness of the material presented in this compilation

  9. Nuclear Regulatory Commission information digest

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  10. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    2005-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants at all times in an acceptably safe manner. In meeting this objective, the regulatory body should strive to ensure that its regulatory decisions are technically sound, consistent from case to case, and timely. In addition, the regulator must be aware that its decisions and the circumstances surrounding those decisions can affect how its stakeholders, such as government policy makers, the industry it regulates, and the public, view it as an effective and credible regulator. In order to maintain the confidence of those stakeholders, the regulator should make sure that its decisions are transparent, have a clear basis in law and regulations, and are seen by impartial observers to be fair to all parties. Based on the work of a Nuclear Energy Agency (NEA) expert group, this report discusses some of the basic principles and criteria that a regulatory body should consider in making decisions and describes the elements of an integrated framework for regulatory decision making. (author)

  11. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  12. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    Wieland, Patricia; Almeida, Ivan Pedro Salati de

    2011-01-01

    The scientific considerations upon which the nuclear regulations are based provide objective criteria for decisions on nuclear safety matters. However, the decisions that a regulatory agency takes go far beyond granting or not an operating license based on assessment of compliance. It may involve decisions about hiring experts or research, appeals, responses to other government agencies, international agreements, etc.. In all cases, top management of the regulatory agency should hear and decide the best balance between the benefits of regulatory action and undue risks and other associated impacts that may arise, including issues of credibility and reputation. The establishment of a decision framework based on well established principles and criteria ensures performance stability and consistency, preventing individual subjectivity. This article analyzes the challenges to the decision-making by regulatory agencies to ensure coherence and consistency in decisions, even in situations where there is uncertainty, lack of reliable information and even divergence of opinions among experts. The article explores the basic elements for a framework for regulatory decision-making. (author)

  13. Nuclear Regulatory Commission Issuances

    International Nuclear Information System (INIS)

    1992-01-01

    This is the thirty-sixth volume of issuances (1-396) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from July 1, 1992-December 31, 1992. Atomic Safety and Licensing Boards are authorized by Section 191 of the Atomic Energy Act of 1954. These Boards, comprised of three members conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. Boards are drawn from the Atomic Safety and Licensing Board Panel, comprised of lawyers, nuclear physicists and engineers, environmentalists, chemists, and economists. The Atomic Energy Commission first established Licensing Boards in 1962 and the Panel in 1967

  14. Nuclear regulatory developments in Canada

    International Nuclear Information System (INIS)

    Binder, M.

    2012-01-01

    This paper from CNSC discusses nuclear regulatory developments in Canada. It starts with the Fukushima accident and the effect on the nuclear sector. It summarises what CNSC has done, what it has learned and their plans going forward. It has made recommendations to IAEA for international enhancements to regulatory procedures. It outline the activities of Canada's nuclear power plants, Canada's uranium projects, deep geological repository and waste management as well as nuclear research in Canada.

  15. Nuclear and sustainable development

    International Nuclear Information System (INIS)

    Audebert, P.; Balle, St.; Barandas, Ch.; Basse-Cathalinat, B.; Bellefontaine, E.; Bernard, H.; Bouhand, M.H.; Bourg, D.; Bourgoignon, F.; Bourlat, Y.; Brunet, F.; Buclet, N.; Buquet, N.; Caron, P.; Cartier, M.; Chagneau, E.; Charles, D.; Chateau, G.; Collette, P.; Collignon, A.; Comtesse, Ch.; Crammer, B.; Dasnias, J.; Decroix, G.; Defoy, B.; Delafontaine, E.; Delcroix, V.; Delerue, X.; Demet, M.; Dimmers, G.; Dodivers, S.; Dubigeon, O.; Eimer, M.; Fadin, H.; Foos, J.; Ganiage, D.; Garraud, J.; Girod, J.P.; Gourod, A.; Goussot, D.; Guignard, C.; Heloury, J.; Hondermarck, B.; Hurel, S.; Jeandron, C.; Josse, A.; Lagon, Ch.; Lalleron, Ch.; Laurent, M.; Legrand, H.; Leveau, E.

    2006-01-01

    On September 15. and 16., 2004, at Rene Delcourt invitation, President of the C.L.I. of Paluel and Penly, took place the 4. colloquium of the A.N.C.L.I.. Jean Dasnias, new President of the C.L.I., welcomed the colloquium. Hundred of persons participated. The place of the nuclear power in the energy perspectives of tomorrow, its assets and its weaknesses in front of the other energies and within the framework of a sustainable development, are so many subjects which were discussed. The different tackled subjects are: the stakes in the sustainable development; energy perspectives; the reactors of the fourth generation; nuclear power and transparency; sustainable development and I.R.S.N. (N.C.)

  16. Application of Resource Portfolio Concept in Nuclear Regulatory Infrastructure Support

    International Nuclear Information System (INIS)

    Lee, Y. E.; Ha, J. T.; Chang, H. S.; Kam, S. C.; Ryu, Y. H.

    2010-01-01

    As the new entrants in the global nuclear construction market are increasing and the establishment of an effective and sustainable regulatory infrastructure becomes more important, they have requested international assistance from the international nuclear communities with mature nuclear regulatory programmes. It needs to optimize the use of limited resources from regulatory organization providing support to regulatory infrastructure of new comers. This paper suggests the resource portfolio concept like a GE/Mckinsey Matrix used in business management and tries to apply it to the current needs considered in the regulatory support program in Korea as the case study

  17. Transparency of nuclear regulatory activities

    International Nuclear Information System (INIS)

    2007-01-01

    One of the main missions of nuclear regulators is to protect the public, and this cannot be completely achieved without public confidence. The more a regulatory process is transparent, the more such confidence will grow. Despite important cultural differences across countries, a number of common features characterise media and public expectations regarding any activity with an associated risk. A common understanding of transparency and main stakeholders' expectations in the field of nuclear safety were identified during this workshop, together with a number of conditions and practices aimed at improving the transparency of nuclear regulatory activities. These conditions and practices are described herein, and will be of particular interest to all those working in the nuclear regulatory field. Their implementation may, however, differ from one country to another depending on national context. (authors)

  18. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    nuclear heat. With more than 20% of the total energy generated by nuclear energy, even its most adamant adversaries could not pretend its role is marginal for sustainable development. The niche is there: will we be able to fill it?

  19. Nuclear Regulatory Commission issuances

    International Nuclear Information System (INIS)

    1996-03-01

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company's petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director's decision pertaining to the Yankee Nuclear Power Station

  20. Nuclear Regulatory Commission 1989 Information Digest

    International Nuclear Information System (INIS)

    1989-03-01

    The Nuclear Regulatory Commission 1989 Information Digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the Commission. This is the first of an annual publication for the general use of the NRC staff and is available to the public. The Digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  1. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    Blidaru, Valentin

    2008-01-01

    The paper presents the structure, missions and organizational aspects of the CNCAN, the National Commission for the control of nuclear activities in Romania. The paper addresses the following main issues: 1.General aspects; 2.Organizational structure of the NRA in Romania; 3.General description of the Division for Nuclear Safety Assessments; 4.Specific activities; 5.Regulatory approaches and practices. Under the title of 'General aspects' the following three basic statements are highlighted: 1.CNCAN is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and the licensing of nuclear facilities; 2.CNCAN is the national authority competent in exercising the regulatory activity, authorization and control in the nuclear field provided by the law No. 111/ 1996 republished in 1998; 3.The Commission exercises its functions independently of the ministries and other authorities of the public control administration being subordinated to the Romanian Government. The organizational structure is as follows: - President, the Managerial Council and the Advisory Council coordinating the four General Divisions that are responsible for: - Nuclear Safety with Division of Nuclear Safety Assessment and Division of Nuclear Objectives Surveillance; - Radiological Safety with Division of Radiological Safety Assessment and Division of Operational Radiation Protection; - Surveillance of Environmental Radioactivity with Division of Assessment and Analysis and Division of National Network; - Development and Resource with the Division of Economy and Division of Human Resources. In addition under direct coordination of the President operate the Division of Radiation Protection, Transport and Radioactive Waste and the Division of International Cooperation and Communication. Specific activities are listed describing among others the issues of: - Safety of nuclear installation; - Evaluation relating to licensing of nuclear

  2. Nuclear Regulatory Commission issuances

    International Nuclear Information System (INIS)

    1996-04-01

    This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors' Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services

  3. Nuclear Regulatory Commission issuances

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services.

  4. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2016-09-01

    Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems.

  5. Nuclear regulatory regime in Lithuania

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    The Law on Nuclear Energy establishes the legal basis for nuclear safety in the Republic of Lithuania. It assigns the responsibility for safety to the operating organization of a nuclear facility and outlines the tasks of the operator and the regulatory authority. According to this Law, the Nuclear Power Safety Inspectorate (VATESI) shall implement state regulation of nuclear safety. Standards and rules, guides and regulations of nuclear safety and radiation protection approved by the Government or by the institutions authorised. It is mandatory for all public and local authorities, enterprises, institutions, organisations, their associations, the officials and other persons whose activities are related to the operation of nuclear facilities, to the use and management of nuclear and radioactive materials therein. Safety guarantee in nuclear energy based on the requirements of the laws and regulations of the Republic of Lithuania, on the requirements of the international treaties to which the Republic of Lithuania is a party, also on the recommendations of the IAEA and other international organisations and authorities

  6. Welcome Address by H. Liu [4. International Conference on Effective Nuclear Regulatory Systems: Sustaining Improvements Globally, Vienna (Austria), 11-15 April 2016

    International Nuclear Information System (INIS)

    Liu, H.

    2017-01-01

    In his opening remarks, Mr. Liu Hua, the President of the conference, noted that the presence of so many attendees at the conference indicated a high level of interest in effective nuclear regulation. He added that effective regulatory systems are very important in maintaining and improving global nuclear safety, and that the first conference on this topic, held ten years ago, created a valuable platform for achieving that goal. In the intervening decade, through the conferences held in Moscow, Cape Town, Ottawa and Vienna, the importance of effective regulation has become more widely recognized and key elements, including independence, transparency, openness, competence and wider international cooperation, have been identified. Mr. Liu Hua pointed to specific actions proposed for governments, regulatory bodies and stakeholders, and highlighted that many of the actions had already achieved fruitful outcomes. He also noted that many lessons had been learned and many improvements had been made in the light of the Fukushima Daiichi accident: 1. To further improve government infrastructure; 2. To further improve nuclear safety standards; 3. To further develop regulation capacity building and human resource; 4. To further enhance knowledge and experience management and transition, 5. To further foster and strengthen nuclear safety culture; 6. To further improve and rebuild public confidence

  7. Nuclear energy - some regulatory aspects

    International Nuclear Information System (INIS)

    Jennekens, Jon.

    1980-03-01

    The nuclear industry is often perceived by the public as being uniquely hazardous. As a consequence, the demands placed upon a nuclear regulatory agency invariably include sorting out the valid from the invalid. As the public becomes better informed, more time should become available for regulating the industry. The Canadian nuclear safety philosophy relies upon fundamental principle and basic criteria which licensees must show they are meeting at all stages in the development of a nuclear facility. In reactors, the concept of defence in depth involves the use of well-qualified personnel, compliance with national and international engineering codes and standards, the separation of process and safety systems, frequent testing of safety systems, redundancy in monitoring, control and initiation systems, multiple barriers against fission product release, and strict enforcement of compliance measurements. The Atomic Energy Control Board is writing a set of licensing guides to cover the whole nuclear fuel cycle; however, these will not lead to the impsition of a 'design by regulation' approach in Canada. (LL)

  8. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  9. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  10. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  11. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  12. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  13. Nuclear transport - The regulatory dimension

    International Nuclear Information System (INIS)

    Green, L.

    2002-01-01

    is important that regulators and operators comprehend each others positions. There is a clear determination on industry and the key international organisations to maintain dialogue. Through the World Nuclear Transport Institute, industry has a dedicated channel through which it can develop consolidated positions on nuclear transport matters and represent industry's collective views in the key bodies where the regulatory regime is discussed. WNTI provides the nuclear transport industry, with the collective voice in the key intergovernmental agencies which are so important to it. (author)

  14. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Grimston, M.C.

    1994-01-01

    The United Kingdom Government's strategy aimed at securing sustainable development has recently been published, and is analysed here by the Energy Issues Adviser, for the British Nuclear Industry Forum. The energy framework aims to ensure secure supplies of energy at competitive prices and to minimise possible adverse environmental impacts of energy use. It is argued here that both of these aims will be promoted by the continued and growing use of nuclear power in the United Kingdom. As the cost of nuclear electricity depends chiefly on the price of uranium, which is likely to stabilize due to increased supplies from nuclear weapons destruction, uranium recycling and mixed oxide fuel reprocessing, it is unlikely that world fuel price inflation will affect these costs. Secondly, nuclear power is not associated with acid rain or the threat of global warming, so its environment protection claims can be substantiated. Indeed, unlike other fuel sources, nuclear power already pays for its waste and decommissioning procedures. (UK)

  15. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2006-04-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  16. Nuclear for Sustainable Future

    International Nuclear Information System (INIS)

    Wambani, S.

    2017-01-01

    Since 2010, Male and female Kenyan life expectancy has gone up from 55 to 57 and 56 to 59 respectively (A United Nations Population Fund report released Wednesday ( 27th Nov 2011). In Kenya, for example CT scanners have increased by over 80% in the last decade resulting in over seventy facilities. Although the benefit from a radiological procedure to the patient outweighs the potential radiation risk, the total number of patients was large and increasing. Therefore, small individual radiation risk, multiplied by the large number of patient, adds up resulting in a major public health problem that may not become clearly evident for many years under inadequate quality assurance program. Most examinations are relatively infrequent, contributing less than 5% each to the total number of x-ray examinations in Kenya. The procedures are arranged in descending order of their collective dose. In setting optimization strategy for a country, it is important that the choice of examinations be based on collective dose contribution and the frequency of the examination to maximize the overall benefit to a given population. According to Grid Radiography - Optimization of patient protection in Kenya is possible. Capacity building and developing technical capabilities in quality assurance (QA) & control (QC) is required. Networking and research data exchange of African Nuclear Scientists in developing African Standards in Nuclear Applications

  17. Compliance of national radiation protection regulatory infrastructure with international norms: a prerequisite for self-sustainability of technical support organization in a small 'non-nuclear' country: example of Montenegro

    International Nuclear Information System (INIS)

    Jovanovic, Slobodan

    2008-01-01

    to government, regulators, users or public. These items are defined in much detail by international norms/standards. Respecting them on national regulatory level, particularly in daily practice, creates conditions for TSO self-sustainability, contributing, thus, significantly (even decisively in some situations) to strengthening RP in the country. The opposite may lead to TSO collapse due to lack of contracts/revenues and consequently to a serious RP deterioration. Montenegro is a small, non-nuclear country (no NPP 's or fuel cycle segments) the use of radiation sources is limited to ordinary medical applications and a few industrial ones. Being declared an ecological state, environmental aspects of radiation are of special interest. Example of local TSO, Centre for Eco-toxicological Research, is given. (author)

  18. Achieving Nuclear Sustainability through Innovation

    International Nuclear Information System (INIS)

    2013-01-01

    In 2000, the IAEA Member States recognized that concerted and coordinated research and development is needed to drive innovation that ensures that nuclear energy can help meet energy needs sustainably in the 21st century. Following an IAEA General Conference resolution, an international 'think tank' and dialogue forum were established. The resulting organization, the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), helps nuclear technology holders and users coordinate the national and international studies, research and other activities needed to achieve innovations in nuclear reactor designs and fuel cycles. Currently, 38 countries plus the European Commission are participating in the project. This group includes both developing and developed economies that represent more than 75% of the world's population and 85% of its gross domestic product. INPRO undertakes collaborative projects among IAEA Member States, which analyse development scenarios and examine how nuclear energy can support the United Nations' goals for sustainable development in the 21st century. The results of these projects can be applied by IAEA Member States in their national nuclear energy strategies and can lead to international cooperation resulting in beneficial innovations in nuclear energy technology and its deployment. For example, INPRO studies the 'back end' of the fuel cycle, including recycling of spent fuel to increase resource use efficiency and to reduce the waste disposal burdens.

  19. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Science.gov (United States)

    2010-03-10

    ... the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission March 2, 2010. The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold...

  20. Nuclear buildings and sustainable development

    International Nuclear Information System (INIS)

    Gomah, A.M.H

    2009-01-01

    The main proposal of this thesis based on some practical notes and the theoretical readings, the mathematical equations which led to existing a shared relationship between the nuclear institutions and the economical development with preserving the environment and its recourses which achieves the concept of the sustainable development. The thesis aims also at recognizing the most important characteristics of the nuclear institutions , as the study interests in understanding how the nuclear energy can be distinguished from the other energy resources. Furthermore, the study in its intellectual framework interests in comparing a number of the nuclear institutions that the study finds them related to the research topic and assists in achieving the study goals, which represent in the environmental evaluation of the nuclear institutions inside its biological surroundings. The study consists of four main chapters in addition to the introduction and the conclusion as follows: The first chapter: Recognizing the nuclear institutions and their effect on the environment. The second chapter: Recognizing planning and generalizing the nuclear institutions. The third chapter: Recognizing the limits and standards of the planning and the designing of a nuclear institution. The fourth chapter: The nuclear institutions inside the suburban places.

  1. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2009-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  2. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2008-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  3. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  4. Nuclear Regulatory Commission: more aggressive leadership needed

    International Nuclear Information System (INIS)

    Staats, E.B.

    1980-01-01

    The Energy Reorganization Act of 1974 which established the Nuclear Regulatory Commission required GAO to evaluate the Commission's performance by January 18, 1980. This report responds to that requirement. GAO concluded that, although improvements have been made, the Commission's nuclear regulatory performance can be characterized best as slow, indecisive, cautious - in a word, complacent. This has largely resulted from a lack of aggressive leadership as evidenced by the Commissioners' failure to establish regulatory goals, control policymaking, and most importantly, clearly define their roles in nuclear regulation

  5. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made

  6. Sustainable development and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made. Figs, tabs.

  7. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  8. Annual Report 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2010. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  9. Annual Report 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2011. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  10. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Rosen, M.

    2000-01-01

    The substantial increase in global energy consumption in coming decades will be driven principally by the developing world. Although there is some awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favored option in a sustainable energy future. This paper, after discussion of rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  11. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  12. Nuclear Regulatory Commission Issuances, November 1980

    International Nuclear Information System (INIS)

    1980-11-01

    Contents: Issuances of the Nuclear Regulatory Commission; Issuances of the Atomic Safety and Licensing Appeal Boards; Issuances of the Atomic Safety and Licensing Boards; and Issuances of the Directors Denial

  13. Nuclear Regulatory Commission Issuances, December 1980

    International Nuclear Information System (INIS)

    1980-12-01

    Contents: Issuances of the Nuclear Regulatory Commission; Issuances of the Atomic Safety and Licensing Appeal Boards; Issuances of the Atomic Safety and Licensing Boards; and Issuances of the Directors Denial

  14. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  15. Diagnosis of the Brazilian Nuclear Regulatory body

    International Nuclear Information System (INIS)

    Santos Gomes, Rogerio dos; Magalhaes Ennes Ennes, Edson Carlos

    2008-01-01

    This work has the objective to present the diagnosis of the existing structure in the Brazilian Government to ensure the radioprotection and nuclear safety in the country, being compared the current situation with the conclusions presented in another studies, carried through in last 30 years, with special attention in the existence of the necessary available to support and independence of the national regulatory body for the development of the regulatory inspections activities in the radioprotection and nuclear safety. (author)

  16. Nuclear Regulatory Commission Information Digest 1992 edition

    International Nuclear Information System (INIS)

    Olive, K.

    1992-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. This digest is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and industry it regulates. In general, the data cover 1975 through 1991, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed

  17. 78 FR 44165 - Nuclear Regulatory Commission Enforcement Policy

    Science.gov (United States)

    2013-07-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0159] Nuclear Regulatory Commission Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Enforcement policy; request for comment. SUMMARY: The U.S... Policy. In SRM-SECY-12-0047, ``Revisions to the Nuclear Regulatory Commission Enforcement Policy,'' dated...

  18. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  19. Annual Report 2013. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across seven parts and eight annexes the activities developed by the organism during 2013. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication has annexes with the following content: regulatory documents; inspections to medical; presentations of publications from ARN staff; measurement and evaluation of the drinking water of Ezeiza; international expert report on the implementation of international standards on radiation protection in the Ezeiza Atomic Center; Code of Ethics of the Nuclear Regulatory Authority.

  20. US Nuclear Regulatory Commission 1983 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The thirteen chapters of this annual report are titled: 1983 highlights/1984 planning; reactor regulation; cleanup at TMI-2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement and emergency preparedness; cooperation with the states; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  1. Nuclear Buildings And Sustainable Development

    International Nuclear Information System (INIS)

    Gomah, A.El.M.H.

    2009-01-01

    The main proposal of this Thesis based on some practical notes and the theoretical readings, the mathematical equations which led to existing a shared relationship between the nuclear institutions and the economical development with preserving the environment and its recourses which achieves the concept of the sustainable development. The Thesis aims also at recognizing the most important characteristics of the nuclear institutions, as the study interests in understanding how the nuclear energy can be distinguished from the other energy resources. Furthermore, the study in its intellectual framework interests in comparing a number of the nuclear institutions that the study finds them related to the research topic and assists in achieving the study goals ,which represent in the environmental evaluation of the nuclear institutions inside its biological surroundings. The study consists of four main chapters in addition to the introduction and the conclusion as follows: The first chapter: recognizing the nuclear institutions and their effect on the environment. This chapter includes studying the characteristics of the nuclear institutions in the frame of its existence in the atmospheric surroundings and this chapter includes: 1- The kinds of the nuclear institutions, the troubles and incidents resulting in them and comparing between it and the study of the nuclear fuel. 2- The economical importance of the nuclear institutions and participating it in the process of developing. The role of the agency of preserving the environment and the extent of its ability to deal with the nuclear incidents and training and guiding the inhabitants how to deal with these incidents.The second chapter: recognizing planning and generalizing the nuclear institutions.This chapter handles by the study and analysis the nature of the nuclear institutions and the development in their designs according to the development in the designs of the nuclear institutions and this chapter includes:1- The

  2. Papers on the nuclear regulatory dilemma

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Freeman, S.D.; Weinberg, A.M.

    1985-10-01

    The four papers contained in this report are titled: (1) From Prescriptive to Performance-Based Regulation of Nuclear Power; (2) Nuclear Regulatory Reform: A Technology-Forcing Approach; (3) Improving the Regulation of Nuclear Power; and (4) Science and Its Limits: The Regulators' Dilemma. These four papers investigate issues relating to the long-term regulation of nuclear energy. They were prepared as part of the Institute for Energy Analysis' project on Nuclear Regulation funded by a grant from the Mellon Foundation and a smaller grant by the MacArthur Foundation. Originally this work was to be supplemented by contributions from the Nuclear Regulatory Commission and from the Department of Energy. These contributions were not forthcoming, and as a result the scope of our investigations was more restricted than we had originally planned

  3. Papers on the nuclear regulatory dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, J.N.; Freeman, S.D.; Weinberg, A.M.

    1985-10-01

    The four papers contained in this report are titled: (1) From Prescriptive to Performance-Based Regulation of Nuclear Power; (2) Nuclear Regulatory Reform: A Technology-Forcing Approach; (3) Improving the Regulation of Nuclear Power; and (4) Science and Its Limits: The Regulators' Dilemma. These four papers investigate issues relating to the long-term regulation of nuclear energy. They were prepared as part of the Institute for Energy Analysis' project on Nuclear Regulation funded by a grant from the Mellon Foundation and a smaller grant by the MacArthur Foundation. Originally this work was to be supplemented by contributions from the Nuclear Regulatory Commission and from the Department of Energy. These contributions were not forthcoming, and as a result the scope of our investigations was more restricted than we had originally planned.

  4. Nuclear Regulatory Commission issuances, March 1975

    International Nuclear Information System (INIS)

    1975-04-01

    Reactor licensing actions taken by the Nuclear Regulatory Commission, the Atomic Safety and Licensing Appeal Board and the Atomic Safety and Licensing Boards for March 1975 are presented. Action was included for the following reactors: Big Rock Point Nuclear Plant; West Valley Reprocessing Plant; Limerick Generating Station, Units 1 and 2; Midland Plants, Units 1 and 2; Wolf Creek Generating Station, Unit 1; Monticello Nuclear Generating Plant, Unit 1; Douglas Point Nuclear Generating Station, Units 1 and 2; Seabrook Station, Units 1 and 2; Vermont Yankee Nuclear Power Station; and WPPSS Hanford Units 1 and 4. (U.S.)

  5. Nuclear Regulatory Commission: 1981 annual report

    International Nuclear Information System (INIS)

    1981-01-01

    This seventh annual report of the US Nuclear Regulatory Commission covers major actions, events and planning that occurred during fiscal year 1981, with some coverage of later events, where appropriate. Chapters of the report address the agency's various functions or areas of activity: regulating nuclear power plants; evaluating reactor operating experience; licensing nuclear materials and their transportation; safeguarding nuclear plants and materials; managing nuclear wastes; inspection and enforcement; cooperation with state governments; international activities; research and standards development; hearings; decisions and litigation; and administrative and public communications matters. Each chapter presents a detailed review of program accomplishments during the report period, fiscal year 1981

  6. Strengthening Regulatory Competence in a Changing Nuclear Regulatory Environment

    International Nuclear Information System (INIS)

    Illizastigui, P.F.

    2016-01-01

    The paper addresses the approach followed by the Cuban National Center for Nuclear Safety for the management of current and new competences of its regulatory staff with the aim of allowing those staff to effectively fulfill their core regulatory functions. The approach is realized through an Integrated System for Competence Building, which is based on the IAEA recommendations, shown to be effective in ensuring the necessary competence in the relevant areas. In the author’s opinion, competence of the regulatory staff in the area of human and organizational factors is of paramount importance and needs to be further strengthened in order to be able to assess safety performance at the facilities and detect early signs of deteriorating safety performance. The former is defined by the author as the core regulatory function “Analysis” which covers the entire spectrum of assessment tasks carried out by the regulatory staff to: a) detect declining safety performance, b) diagnose latent weaknesses (root causes) and c) make effective safety culture interventions. The author suggests that competence associated with the fulfillment of the analysis function is distinctly identified and dealt with separately in the current system of managing regulatory competence. (author)

  7. Nuclear Regulatory Commission Information Digest: 1993 edition

    International Nuclear Information System (INIS)

    1993-03-01

    The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the U.S. Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. The digest, published annually, is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1992, with exceptions noted. Information on generating capacity and average capacity factor for operating U.S. commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed. Comments and/or suggestions on the data presented are welcomed and should be directed to Karen Olive, United States Nuclear Regulatory Commission, Office of the Controller, Division of Budget and Analysis, Washington, D.C. 20555. For detailed and complete information about tables and figures, refer to the source publications

  8. Nuclear Regulatory Commission Information Digest, 1991 edition

    International Nuclear Information System (INIS)

    Olive, K.L.

    1991-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs

  9. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  10. Regulatory aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Caoui, A.

    1988-01-01

    The legislative systems used in different countries insist on requiring the license of the nuclear installations exploitation and on providing a nuclear safety report. For obtaining this license, the operators have to consider all situations of functioning (normal, incidental and accidental) to make workers and the public secure. The licensing procedures depend on the juridical and administrative systems of the country. Usually, protection of people against ionzing radiation is the responsibility of the ministry of health and the ministry of industry. In general, the regulations avoid to fix a definite technical standards by reason of technological development. An emergency plan is normally designed in the stage of the installation project planification. This plan contains the instructions and advices to give to populations in case of accident. The main lesson learnt from the nuclear accidents that happened is to enlarge the international cooperation in the nuclear safety field. 4 refs. (author)

  11. Communication planning by the nuclear regulatory body

    International Nuclear Information System (INIS)

    2002-01-01

    The national regulatory body, whose primary mission is to exercise regulatory control over nuclear facilities and the use of radiation sources, but not to promote their use, may be the most credible source of neutral, balanced and accurate information about issues relating to nuclear and radiation safety. It is therefore important for a regulatory body to establish and exercise an effective communication programme to acquaint the public with its oversight functions, capabilities and effectiveness. If the regulatory body is to maintain credibility and to deal promptly and effectively with nuclear or radiological accidents and any other events that may give rise to significant public concerns, and is to communicate clearly and effectively with the public, it must have adequate resources, including experts in nuclear safety. And if maintaining public confidence in the authorities and avoiding unnecessary concerns are among its principal objectives, it must be able to communicate understandably and truthfully about the known extent of any accident, the actions taken in response to it and its implications. In the past, psychological effects as a result of certain severe nuclear and radiological accidents have been compounded by a lack of candour with the public on the part of the authorities and an absence of an appropriate programme of public information. This publication describes good practices and gives practical examples of how the regulatory body can establish a systematic and structured programme for enhancing effective communication with various parties and under various circumstances. The report presupposes an adequate national infrastructure, including an independent regulatory body with sufficient authority and resources to discharge its responsibilities for the regulation of safety. This Safety Report covers the elements of a regulatory body's programme for communication with various audiences and under the different circumstances that may be encountered

  12. IAEA Mission Concludes Peer Review of Slovenia's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an eight-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety at the Slovenian Nuclear Safety Administration (SNSA). The team reviewed measures taken to address the recommendations and suggestions made during an earlier Integrated Regulatory Review Service (IRRS) mission conducted in 2011. The IRRS team said in its preliminary findings that Slovenia had made significant progress since the review in 2011. The team identified a good practice in the country's nuclear regulatory system additional to those identified in 2011 and made new recommendations and suggestions to SNSA and the Government to strengthen the effectiveness of the country's regulatory framework in line with IAEA Safety Standards. ''By hosting a follow-up mission, Slovenia demonstrated its commitment to enhance its regulatory programmes, including by implementing the recommendations of the 2011 mission,'' said Petr Krs, mission leader and Vice Chairman of the Czech Republic's State Office for Nuclear Safety. SNSA's Director, Andrej Stritar, welcomed the progress noted by the team, while also emphasizing that the mission highlighted important future nuclear safety challenges for Slovenia. The five-member review team, comprising experts from Belgium, the Czech Republic, France and Romania, as well as four IAEA staff members, conducted the mission at the request of the Slovenian Government from 9 to 16 September 2014. The main observations of the IRRS Review team included the following: SNSA has made significant progress in addressing the findings of the 2011 IRRS mission and has demonstrated commitment to effective implementation of the IRRS programme; The economic situation in Slovenia might in the short and long term affect SNSA's ability to maintain its capacity and competence; and A radioactive waste disposal project is stalled and the licensing

  13. RAF/9/049: Enhancing and Sustaining the National Regulatory Bodies for safety

    International Nuclear Information System (INIS)

    Keter, C.J.

    2017-01-01

    The main objective of this project is to enhance regulatory infrastructure, sustainability and cooperation among national regulatory bodies. This will support strengthening of the existing regulatory framework and capacity building in the region. Self-Assessment using the Self-Assessment Regulatory Infrastructure for Safety (SARIS) was completed on 26th May 2016. Changes made to the legislation is ongoing. The Nuclear Regulatory Bill 2017 is at an advanced stage and about to be tabled to Cabinet. The project objectives shall be addressed under a new project, RAF/9/058 – Improving the Regulatory Framework for the Control of Radiation Sources in Member States. Two major tasks for Kenya to focus include Review of regulations on waste safety, radiation sources and on safety of NPP and advising on drafting of radiation safety guides

  14. Regulatory problems in nuclear medicine

    International Nuclear Information System (INIS)

    Vandergrift, J.F.

    1987-01-01

    Governmental involvement in the practice of medicine has increased sharply within the past few years. The impact on health care has, for the most part, been in terms of financial interactions between health care facilities and federally funded health services programs. One might say that this type of governmental involvement has indirect impact on the medical and/or technical decisions in the practice of nuclear medicine. In other areas, however, governmental policies and regulations have had a more direct and fundamental impact on nuclear medicine than on any other medical specialty. Without an understanding and acceptance of this situation, the practice of nuclear medicine can be very frustrating. This chapter is thus written in the hope that potential frustration can be reduced or eliminated

  15. The Romanian nuclear regulatory body as a nuclear communicator

    International Nuclear Information System (INIS)

    Cluculescu, Cristina

    2000-01-01

    A comprehensive nuclear law environment could be a relevant tool to promote greater confidence in the nuclear energy. Romania has had laws in place governing the regulation of nuclear activities since 1974, which remained in force throughout and subsequent to the national constitutional changes. Up to December 1996, the CNCAN activities were based on Law No. 61/1974 for the development of the nuclear activities in Romania and Law No. 61982 on the quality assurance of the nuclear facilities and nuclear power plants. The Nuclear Safety legislation has been enacted in November 1974 (Law No. 61/1974) and it followed as closely as possible (for that time) the US Atomic Energy Act of 1954, as amended subsequently. The Romanian nuclear regulatory body, called National Commission for Nuclear Activities Control (CNCAN) is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and for the licensing of nuclear facilities. An important issue of CNCAN is to provide the correct and reasoning information to the public. The most important topics focused on nuclear activities for the interest of mass media in Romania are: Radioactive waste management; The cost and benefit of nuclear energy compared by conventional energy; The conditions for transportation of radioactive materials; The consequences of a suppositional nuclear accidents; The safety in operation for nuclear installations. The information provided to press and public by regulatory body is clearly and well structured. The target is to clearly explain to mass media and the public should understand very well the difference between the meaning of a nuclear accident, nuclear incident or nuclear event. CNCAN monitories and surveys the operation in safe conditions the nuclear facilities and plants, the protection against nuclear radiation of the professionally exposed personnel, of the population, of the environment and the material goods. It is also

  16. Transfer of Canadian nuclear regulatory technology

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1985-10-01

    This paper discusses the Canadian approach to the regulation of nuclear power reactors, and its possible application to CANDU reactors in other countries. It describes the programs which are in place to transfer information on licensing matters to egulatory agencies in other countries, and to offer training on nuclear safety regulation as it is practised in Canada. Experience to date in the transfer of regulatory technology is discussed. 5 refs

  17. Technical Memory 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The technical memory 2010 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety presented in journals, technical reports, congress or meetings of these subjects by the ARN personnel during 2010. In this edition the documents are presented on: environmental protection; safety transport of radioactive materials; regulations; licensing of medical installations; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; radioactive waste management [es

  18. Nuclear Regulatory Authority Act, 2015 (Act 895)

    International Nuclear Information System (INIS)

    2015-04-01

    An Act to establish a Nuclear Regulatory Authority in Ghana. This Act provides for the regulation and management of activities and practices for the peaceful use of nuclear material or energy, and to provide for the protection of persons and the environment against the harmful effects of radiation; and to ensure the effective implementation of the country’s international obligations and for related matters. This Act replaced the Radiation Protection Instrument, of 1993 (LI 1559).

  19. Technical Memory 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The technical memory 2011 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety presented in journals, technical reports, congress or meetings of these subjects by the ARN personnel during 2011. In this edition the documents are presented on: environmental protection; safety transport of radioactive materials; regulations; licensing of medical installations; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; radioactive waste management [es

  20. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Gonzalez, E.

    2005-01-01

    To sustain decent environmental conditions, it is essential to contain the emission of greenhouse gases. to a great extent, this can be achieved by reducing the almost exclusive dependence of fossil fuels for producing electricity and by championing nuclear energy and the renewable, which in the end are the least contaminating. Specifically, operation of the European nuclear fleet avoids the yearly emission of 700 million tons of CO 2 to the atmosphere. The need to combat climate change is very serious and increasingly imminent, especially if we remember that the World Health Organization has said that climate change could eventually cause 300,000 deaths. The different social players are aware of the problem. In fact, the European Union's Cabinet of Ministers approved the post-kyoto Environmental Strategy, which underlines the need to reduce CO e missions by 80% by the year 2050. It seems obvious that, in the long run, technological research and development will be fundamental pieces in the battle against environmental change and in the effort to one day provide 2,000 million people with access to electricity. (Author)

  1. Regulatory framework for nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez Alcaniz, T.; Esteban Barriendos, M.

    1995-01-01

    As the framework of standards and requirements covering each phase of nuclear power plant project and operation developed, plant owners defined their licensing commitments (codes, rules and design requirements) during the project and construction phase before start-up and incorporated regulatory requirements imposed by the regulatory Body during the licensing process prior to operation. This produces a regulatory framework for operating a plant. It includes the Licensing Basis, which is the starting point for analyzing and incorporating new requirements, and for re-evaluation of existing ones. This presentation focuses on the problems of applying this regulatory framework to new operating activities, in particular to new projects, analyzing new requirements, and reconsidering existing ones. Clearly establishing a plant's licensing basis allows all organizations involved in plant operation to apply the requirements in a more rational way. (Author)

  2. Nuclear Regulatory Commission Issuances, September 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Contents include: Issuances of the Nuclear Regulatory Commission--Commonwealth Edison Company (Dresden Nuclear Power Station, Unit 1), Consolidated Edison Company of New York (Indian Point, Unit 2), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit 1), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Power Authority of the State of New York (Indian Point, Unit 3), Texas Utilities Generating Company, et al. (Comanche Peak Steam Electric Station, Units 1 and 2); Issuances of Atomic Safety and Licensing Appeal Boards--Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Philadelphia Electric Company, et al. (Peach Bottom Atomic Power Statin, Units 2 and 3), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Statin, Unit No. 2), Public Service Electric and Gas Company (Hope Creek Generating Station, Units 1 and 2), The Toledo Edison Company, et al. (Davis-Besse Nuclear Power Station, Units 2 and 3); Issuances of the Atomic Safety Licensing Boards--Cleveland Electric Illuminating Company, et al. (Perry Nuclear Power Plant, Units 1 and 2), Commonwealth Edison Company (Dresden Station, Units 2 and 3), Houston Lighting and Power Company (Allens Creek Nuclear Generating Station, Unit 1), Southern California Edison Company, et al. (San Onofre Nuclear Generating Station, Units 2 and 3), Texas Utilities Generating Company, et al. (Comanche Peak Steam Electric Station, Units 1 and 2), Texas Utilities Generating Company, et al

  3. Nuclear regulatory legislation: 102d Congress

    International Nuclear Information System (INIS)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  4. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  5. Nuclear regulatory legislation, 102d Congress

    International Nuclear Information System (INIS)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  6. Nuclear regulatory legislation, 101st Congress

    International Nuclear Information System (INIS)

    1991-06-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 101st Congress, 2nd Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended: Energy Reorganization Act of 1974, as amended; Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statues and treaties on export licensing, nuclear non-proliferation, and environmental protection

  7. Technical Memory 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The technical memory 2008 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety, and presented in journals, technical reports, congress or meetings of these specialties by personnel of the mentioned institution during 2008. In this edition the documents are presented on: environmental protection; transport of radioactive materials; regulations; research reactors and nuclear power plants; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; physical dosimetry; knowledge management; radioactive waste management. [es

  8. Hybrid nuclear cycles for nuclear fission sustainability

    International Nuclear Information System (INIS)

    Piera, M.; Martinez-Val, M. M.

    2007-01-01

    Nuclear fission can play and must play an important role in paving the road to Energy Sustainability. Nuclear Fission does not produce CO 2 emissions, and it is already exploited at commercial level with the current NPP (Nuclear Power Plants). Most of them are based on LWR reactors, which have a very good safety record. It must be noted, however, that all LWR (including the advanced or evolutionary ones) have some drawbacks, particularly their very poor efficiency in exploiting the natural resources of nuclear fuels. In this paper, an analysis is presented on how to maximize the energy actually generated from the potential contents of fission natural resources. The role of fertile-to-fissile breeding is highlighted, as well as the need of attaining a very high safety performance in the reactors and other installations of the fuel cycle. The proposal presented in this paper is to use advanced and evolutionary LWR as energy producing reactors, and to use subcritical fast assemblies as breeders. The main result would be to increase by two orders of magnitude the percentage of energy effectively exploited from fission natural resources, while keeping a very high level of safety standards in the full fuel cycle. Breeders would not be intended for energy production, so that safety standards could rely on very low values of the thermal magnitudes, so allowing for very large safety margins for emergency cooling. Similarly, subcriticality would offer a very large margin for not to reach prompt criticality in any event. The main drawback of this proposal is that a sizeable fraction of the energy generated in the cycle (about 1/3, maybe a little more) would not be useful for the thermodynamic cycle to produce electricity. Besides that, a fraction of the generated electricity, between 5 and 10 %, would have to be recirculated to feed the accelerator activating the neutron source. Even so, the overall result would be very positive, because more than 50 % of the natural

  9. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  10. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.

  11. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  12. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  13. Regulatory challenges in using nuclear operating experience

    International Nuclear Information System (INIS)

    2006-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants in an acceptably safe manner at all times. Learning from experience has been a key element in meeting this objective. It is therefore very important for nuclear power plant operators to have an active programme for collecting, analysing and acting on the lessons of operating experience that could affect the safety of their plants. NEA experts have noted that almost all of the recent, significant events reported at international meetings have occurred earlier in one form or another. Counteractions are usually well-known, but information does not always seem to reach end users, or corrective action programmes are not always rigorously applied. Thus, one of the challenges that needs to be met in order to maintain good operational safety performance is to ensure that operating experience is promptly reported to established reporting systems, preferably international in order to benefit from a larger base of experience, and that the lessons from operating experience are actually used to promote safety. This report focuses on how regulatory bodies can ensure that operating experience is used effectively to promote the safety of nuclear power plants. While directed at nuclear power plants, the principles in this report may apply to other nuclear facilities as well. (author)

  14. Nuclear Regulatory Commission Issuances, August 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Contents include: Issuances of the Nuclear Regulatory Commission--Metropolitan Edison Company (Three Mile Island Nuclear Station, Unit No. 1), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit 1), Westinghouse Electric Corp. (Export of LEU to the Philippines); Issuances of Atomic Safety and Licensing Appeal Boards--Duke Power Company (Amendment to Materials License SNM-1773--Transportation of Spent Fuel from Oconee Nuclear Station for Storage at McGuire Nuclear Station); Issuances of the Atomic Safety Licensing Boards--Commonwealth Edison Company (Byron Station, Units 1 and 2), Dairyland Power Cooperative (La Crosse Boiling Water Reactor, Operating License and Show Cause), Florida Power and Light Company (St. Lucie Plant, Unit No. 2), Florida Power and Light Company (Turkey Point Nuclear Generating, Units 3 and 4), Metropolitan Edison Company (Three Mile Island Nuclear Station, Unit 1) Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), The Regents of the University of California (UCLA Research Reactor), The Toledo Edison Company, et al. (Davis-Besse Nuclear Power Station, Units 2 and 3: Terminiation of Proceedings); Issuances of the Directors Denial--Florida Power and Light Company

  15. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  16. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2016 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  17. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2013

    International Nuclear Information System (INIS)

    2014-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2013 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Nuclear Materials in SR; (5) Building Authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public communication; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) (12) Abbreviations.

  18. Nuclear energy's future: lifting the regulatory cloud

    International Nuclear Information System (INIS)

    Walske, C.

    1983-01-01

    Nuclear energy provides 13% of US and 10% of world electricity, with an exemplary safety record and less insult to the environment than any other power source. Walske argues that nuclear power is 15% cheaper than coal despite the high capital and regulatory costs, but regulatory delays in the construction and licensing periods have increased 70% to 10 to 14 years, more than twice the lead time in France and Japan. The long lead time exaggerates the difficulty in forecasting demand, and allows interruptions for fundamental design changes after construction has begun. Walske outlines new legislation for site pre-approval, plant standardization, combined construction and operating licenses, and hybrid procedures for public hearings that would make regulation less uncertain

  19. Regulatory oversight on nuclear safety in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T-T. [Atomic Energy Council, New Taipei City, Taiwan (China)

    2014-07-01

    Taiwan is a densely populated island and over 98% of its energy is imported, 16.5% of which is nuclear, in the form of materials and services. Ensuring that the most stringent nuclear safety standards are met therefore remains a priority for the government and the operator, Taiwan power Company (Taipower). There are eight nuclear power reactors in Taiwan, six of which are in operation and two are under construction. The first began operating nearly 40 years ago. For the time being the issue of whether to decommission or extend life of the operating units is also being discussed and has no conclusion yet. Nuclear energy has been a hot issue in debate over the past decades in Taiwan. Construction of Lungmen nuclear power plant, site selection of a final low-level waste disposal facility, installation of spent fuel dry storage facilities and safety of the currently operating nuclear power reactors are the issues that all Taiwanese are concerned most. In order to ensure the safety of nuclear power plant, the Atomic Energy Council (AEC) has implemented rigorous regulatory work over the past decades. After the Fukushima accident, AEC has conducted a reassessment program to re-evaluate all nuclear power plants in Taiwan, and asked Taipower to follow the technical guidelines, which ENSREG has utilized to implement stress test over nuclear power plants in Europe. In addition, AEC has invited two expert teams from OECD/NEA and ENSREG to conduct peer reviews of Taiwan's stress test national report in 2013. My presentation will focus on activities regulating safety of nuclear power programs. These will cover (A) policy of nuclear power regulation in Taiwan, (B)challenges of the Lungmen Plant, (C) post-Fukushima safety re-assessment, and (D)radioactive waste management. (author)

  20. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  1. Upgrading nuclear regulatory infrastructure in Armenia

    International Nuclear Information System (INIS)

    Martirosyan, A.; Amirjanyan, A.; Kacenelenbogen, S.

    2010-01-01

    Armenia is contemplating an upgrade to its national power generation capacity to meet replacement and future energy needs. Unit 2 of ANPP is scheduled for shutdown after replacement power generation capacities are in place. A recent alternative energy study indicates viability of the nuclear option to replace this capacity. Some technology-specific proposals are being considered by the Ministry of Energy of Armenia. It is likely that the reactor technology decision will be made in the not too distant future. The existing reactor continues to be operated in the regulatory framework developed in the Soviet Union and adopted in Armenia. Given the interest in the new reactor, Armenia launched a project to review the existing system of regulation and to bring it into harmony with modern practice in preparation for the new reactor project development. The new regulatory framework will be needed as a basis for any potential tendering process. The US NRC and ANRA have agreed to perform a review and update nuclear legislation and the system of regulation in this area. The first step in this process was to develop an action plan for such program. The action plan describes the overall strategy of ANRA to modify existing or develop new processes and requirements, identifies the major Laws that need to be reviewed given practical legal considerations to construct and operate the reactor and Armenia's international obligations under various conventions. This work included review of existing models of regulation in different countries with 'small' nuclear program, including IAEA recommendations as well as existing legislation in Armenia in this area and development of a strategy for the regulatory model development. In addition, the plan to develop requirements for ANRA staffing and training needs to meet its regulatory obligations under the new reactor development process was developed

  2. Regulatory aspects for nuclear and radiation applications

    International Nuclear Information System (INIS)

    Duraisamy, S.

    2014-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB was constituted on November 15, 1983 and derives its regulatory power from the rules and notifications promulgated under the Atomic Energy Act, 1962 and the Environment (Protection) Act, 1986. AERB is provided with the necessary powers and mandate to frame safety policies, lay down safety standards and requirements for monitoring and enforcing the safety provisions. AERB follows multi-tier system for its review and assessment, safety monitoring, surveillance and enforcement. While regulating various nuclear and radiation facilities, AERB adopts a graded approach taking into account the hazard potential associated with the facilities being regulated. The regulatory process has been continuous evolving to cater to the new developments in reactor and radiation technologies. The regulatory effectiveness and efficiency of AERB have grown over the last three decades to make it into a robust organization. The radiation protection infrastructure in the country is on a sound footing and is constantly being strengthened based on experience and continued research and development. As one of its mandates AERB prescribes radiation dose limits for the occupational workers and the public, in line with the IAEA Safety Standard and ICRP recommendations. The current dose limits and the radiation safety requirements are more stringent than past. To meet the current safety standards, it is important for the facilities to have state of art radiation monitoring system and programme in place. While recognizing the current system in place, this presentation also highlights certain key radiation protection challenges associated with the implementation of radiation protection standards in the nuclear and radiation facilities especially in the areas of

  3. First Conference on African Youth Nuclear Summit 2017: Nuclear for a Sustainable Future

    International Nuclear Information System (INIS)

    2017-03-01

    Kenyan Young Generation in Nuclear (KYGN) hosted the inaugural African Youth Nuclear Summit, dubbed AYNS2017 that took place on the 27th to 30th March, 2017, Nairobi, Kenya. The participants were drawn from academia, research and development institutes, radiation services providers, health institutions, nuclear facilities and regulatory bodies. They shared experiences, exchanged ideas and built networks on issues related to safe application of nuclear science and technology. The theme of the summit was ''Nuclear for a Sustainable future'', which centered on three thematic areas: Nuclear powering Africa, Radiation Protection and safety culture; and application of nuclear science and technology for a sustainable future. The Director General, World Nuclear Association who pointed out that nuclear energy had made a major contribution to world energy output and was set to increase by two and half time by 2040. The importance of nuclear science and technology for a sustainable socio-economic development in Africa shared and highlight on many areas IAEA has helped member states in improving the life of its populations. The main activities of project 60 whose focus is to strengthen the nuclear security culture in East and Central Africa through improved regulation, training, capacity and awareness were highlighted

  4. Services of the Nuclear Regulatory Authority Library

    International Nuclear Information System (INIS)

    Carregado, M.A.; Wallingre, G.V.

    2011-01-01

    Full text; The main of this work is to present the services and activities of the ARN (Autoridad Regulatoria Nuclear) Library to potential users from the biological dosimetry area in the framework of the intercomparison Meeting of the Latin American Biological Dosimetry Network held in Buenos Aires from October 27-30 of 2008. It makes a short chronology of the library; the services offered to each type of users and the tasks related to technical and international cooperation with other organizations such as: the terminology Committee of IRAM (Instituto Argentino de Normalizacion y Certificacion); the input of national literature to the INIS Database of the IAEA; the retrospective digitalisation, indexing and bibliographic description of institutional publications to be submitted to the repository of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations and the participation in nuclear information networks. Finally it shown some relevant data from the internal statistics. (authors)

  5. Nuclear Regulatory Commission issuances, May 1993

    International Nuclear Information System (INIS)

    1993-05-01

    This report contains the issuances received during the specified period (May 1993) from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM). The summaries and headnotes preceding the opinions reported herein are not deemed a part of these opinions or have any independent legal significance. Contents of this document include an Issuance of the Nuclear Regulatory Commission with respect to the Sacramento Municipal Utility District and Issuances of Directors' Decisions concerning the Interstate Nuclear Service Corporation; Niagara Mohawk Power Corporation; and Texas Utilities Electric Company, et al. and All Nuclear Power Plants with Thermo-Lag Fire Barriers

  6. Categorization and selection of regulatory approaches for nuclear power plants

    International Nuclear Information System (INIS)

    Sugaya, Junko; Harayama, Yuko

    2009-01-01

    Several new regulatory approaches have been introduced to Japanese nuclear safety regulations, in which a prescriptive and deterministic approach had traditionally predominated. However, the options of regulatory approaches that can possibly be applied to nuclear safety regulations as well as the methodology for selecting the options are not systematically defined. In this study, various regulatory approaches for nuclear power plants are categorized as prescriptive or nonprescriptive, outcome-based or process-based, and deterministic or risk-informed. 18 options of regulatory approaches are conceptually developed and the conditions for selecting the appropriate regulatory approaches are identified. Current issues on nuclear regulations regarding responsibilities, transparency, consensus standards and regulatory inspections are examined from the viewpoints of regulatory approaches to verify usefulness of the categorization and selection concept of regulatory approaches. Finally, some of the challenges at the transitional phase of regulatory approaches are discussed. (author)

  7. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2015 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  8. Nuclear Regulatory Infrastructure in the Philippines

    International Nuclear Information System (INIS)

    Leonin, Teofilo V. Jr.

    2015-01-01

    Regulating the use of radioactive materials in the Philippines involves the adherence to legislation, regulations, standards and regulatory guides. It is based on a detailed review and assessment of the radiation safety program of owners and users of these materials and associated equipment against safety requirements and on additional verification of the operating practices and procedures. Republic Acts 5207 and 2067, both as amended, are implemented through the regulations which are titled Code of PNRI Regulations or CPRs are developed and issued together with supporting regulatory guides, Bulletins and other documents detailing the safety requirements. These issuance adhere to internationally accepted requirements on radiation protection, and nuclear safety and security, as well as safeguards. Design documents and technical Specifications of important radioactive materials, equipment and components are required to be submitted and reviewed by the PNRI before the issuance of an authorization in the form of a license Verification of adherence to regulations and safety requirements are periodically checked through the implementation of an inspection and enforcement program. The ISO certified regulatory management system of PNRI is documented in a QMS manual that provides guidance on all work processes. It involves systematic planning and evaluation of activities, multiple means of getting feedback on the work processes, and continuous efforts to improve its effectiveness. Efforts are implemented in order to strengthen the transparency openness, independence, technical competence and effectiveness of the regulatory body. (author)

  9. Nuclear Regulatory Commission Issuances, May 81

    International Nuclear Information System (INIS)

    1981-05-01

    Contents: Issuances of the Nuclear Regulatory Commission--Consolidated Edison Company of New York, Inc. (Indian Point, Unit No. 2), Power Authority of the State of New York (Indian Point, No. 3 Nuclear Power Plant), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Statement of Policy on Conduct of Licensing Proceedings, Uranium Mill Licensing Requirements; Issuances of Atomic Safety and Licensing Appeal Boards--Houston Lighting and Power Company, et al. (South Texas Project, Units 1 and 2), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit No. 2), Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc. (Susquehanna Steam Electric Station, Units 1 and 2), Philadelphia Electric Company et al. (Peach Bottom Atomic Power Station, Units 2 and 3), Public Service Electric and Gas Company (Hope Creek Generating Station, Units 1 and 2); Issuances of the Atomic Safety and Licensing Boards--Duke Power Company (William B. McGuire Nuclear Station, Units 1 and 2), Florida Light and Power Company (Turkey Point Nuclear Generating, Units 3 and 4), Illinois Power Company, et al. (Clinton Power Station, Units 1 and 2), Sacramento Municipal Utility District (Rancho Seco Nuclear Generating Station); Issuances of the Directors Denial--Commonwealth Edison Company (Byron Station, Units 1 and 2), Consolidated Edison Company of New York, Inc. (Indian Point Unit No. 2), Gulf States Utilities Company (River Bend Station Units 1 and 2), Petition to Suspend All Operating Licenses for Pressurized Water Reactors (River Bend Station Units 1 and 2), Portland General Electric Company (Trojan Nuclear

  10. 1992 Nuclear Regulatory Commission Annual Report

    International Nuclear Information System (INIS)

    1993-01-01

    This is the 18th annual report of the US Nuclear Regulatory Commission (NRC), covering events and activities occurring in fiscal year 1992 (the year ending September 30, 1992), with some treatment of events from the last quarter of calendar year 1992. The NRC was created by enactment in the Congress of the Energy Reorganization Act of 1974. It is an independent agency of the Federal Government. The five NRC Commissioners are nominated by the President and confirmed by the United States Senate. The Chairman of the Commission is appointed by the President from among the Commissioners confirmed

  11. US Nuclear Regulatory Commission annual report, 1985. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The decisions and actions of the Nuclear Regulatory Commission (NRC) during fiscal year 1985 are reported. Areas covered include reactor regulation, cleanup at Three Mile Island, analysis and evaluation of operational experience, nuclear materials, waste management, safeguards, inspection, enforcement, quality assurance, emergency preparedness, and nuclear regulatory research. Also, cooperation with the states, international programs, proceedings and litigation, and management are discussed

  12. Sustainable development and nuclear liability

    International Nuclear Information System (INIS)

    Schwartz, J.

    2001-01-01

    Although the high safety standards of the nuclear industry mean that the risk of an accident is low, the magnitude of damage that could result to third parties from such an accident is considerable. It was thus recognised from the very inception of the nuclear power industry that a special legal regime would need to be established to provide for the compensation of victims of a nuclear accident. The ordinary rules of tort and contract law were simply not suited to addressing such a situation in an efficient and effective manner. (authors)

  13. Sustainable Markets Investment Briefings: the regulatory taking doctrine

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo

    2007-08-15

    This is the third of a series of briefings which discuss the sustainable development issues raised by legal arrangements for the protection of foreign investment. The briefings are based on legal research by IIED and its partners. The goal is to provide accessible but accurate information for human rights, development and environmental organisations working on issues raised by foreign investment in low- and middle-income countries. Briefing 3 introduces one of the most controversial legal doctrines of investment law – 'regulatory taking' – and sets out its implications for sustainable development.

  14. Regulatory challenges in using nuclear operating experience

    International Nuclear Information System (INIS)

    2006-01-01

    There can be no doubt that the systematic evaluation of operating experience by the operator and the regulator is essential for continued safe operation of nuclear power plants. Recent concerns have been voiced that the operating experience information and insights are not being used effectively to promote safety. If these concerns foreshadow a real trend in OECD countries toward complacency in reporting and analysing operating events and taking corrective actions, then past experience suggests that similar or even more serious events will recur. This report discusses how the regulator can take actions to assure that operators have effective programmes to collect and analyse operating experience and, just as important, for taking steps to follow up with actions to prevent the events and conditions from recurring. These regulatory actions include special inspections of an operator operating experience programme and discussion with senior plant managers to emphasize the importance of having an effective operating experience programme. In addition to overseeing the operator programmes, the regulator has the broader responsibility for assuring that industry-wide trends, both national and international are monitored. To meet these responsibilities, the regulatory body must have its own operating experience programme, and this report discusses the important attributes of such regulatory programmes. It is especially important for the regulator to have the capability for assessing the full scope of operating experience issues, including those that may not be included in an operator operating experience programme, such as new research results, international operating experience, and broad industry trend information. (author)

  15. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  16. The role of effective communications in Nuclear Regulatory Commission licensing

    International Nuclear Information System (INIS)

    Counsil, W.G.

    1991-01-01

    Communications are essential to the licensing and general regulatory program of the Nuclear Regulatory Commission. This paper attempts to identify and address certain aspects of, and approaches to, maintaining effective and efficient communications. It considers, from the perspective of the high-level radioactive waste repository program, both internal communication within the DOE itself and external communication with the Nuclear Regulatory Commission and interested parties. Many of the points presented are based on lessons learned from electric utility experience with nuclear plants

  17. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  18. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    2000-01-01

    The concept of sustainable development, which emerged from the report of the 1987 World Commission on Environment and Development (the Brundtland report), is of increasing interest to policy makers and the public. In the energy sector, sustainable development policies need to rely on a comparative assessment of alternative options, taking into account their economic, health, environmental and social aspects, at local, regional and global levels. This publication by the OECD Nuclear Energy Agency investigates nuclear energy from a sustainable development perspective, and highlights the opportunities and challenges that lie ahead in this respect. It provides data and analyses that may help in making trades-off and choices in the energy and electricity sectors at the national level, taking into account country-specific circumstances and priorities. It will be of special interest to policy makers in the nuclear and energy fields

  19. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  20. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  1. Nuclear energy and sustainability in Latin America

    International Nuclear Information System (INIS)

    Sterner, Thomas

    1991-01-01

    The concept of sustainability has been given numerous interpretations, some overlapping or complementary, some contradictory. Thus it is difficult to judge whether the nuclear industry does, or does not, meet sustainability criteria; particularly as the present nuclear technologies are not renewable. Uranium resources appear to be of the same order of magnitude as oil and gas resources. This implies that they are a transitional source of energy. There are also other potential arguments against the sustainability of nuclear power: its pollution, risks and costs. Environmental damage may come from various parts of the nuclear fuel cycle. Two types of risk will be discussed: first the risk of major accidents and thereby exceptional environmental damage, and second the risks associated with the proliferation of nuclear weapons. Each of these factors, as well as the pure economic cost of nuclear electricity, ought to be compared to the environmental damage, risks and costs of the available alternatives. Only the Latin American experience will be considered. For example, the need for Mexico to use nuclear power when it has large oil and gas supplies, is considered. (author)

  2. Sustainable development and peaceful use of nuclear energy in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2004-01-01

    The concept of sustainable development was elaborated in the late 1980s and was defined as a development that fulfills the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also many arguments in favor of nuclear energy as a reliable source such as: the large size of the nuclear power plants, their long periods of operation and the existent experience for operation. The risks associated with radiation are among the most extensively studied hazards known by man, but several factors are preserving public anxiety about radiation. Radiation is inaccessible to human senses, difficult to understand, and probabilistic in its effects, which to the public means uncertainty. Hence, radiological protection is essential to ensure that nuclear energy is compatible with sustainable development. Nuclear energy has, in normal operation, a low impact on health and environment. In order to meet the sustainable development goals, it is necessary to maintain its high standards of safety in spite of increasing competition in the electricity sector and reactors ageing in order to achieve a higher level of public acceptance. The complex technologies used by nuclear fuel cycle facilities are controlled and regulated by international and national institutions. A framework of regulatory, institutional and technical measures is already in place ensuring that the use of nuclear energy does not significantly modify

  3. Nuclear technology for sustainable development

    International Nuclear Information System (INIS)

    2001-01-01

    Introduces three of the IAEA's current programmes: Promoting food security - use of the sterile insect technique to eradicate the tsetse fly in Sub-Saharan Africa; Managing water resources - use of isotope hydrology to check water for traces of arsenic in Bangladesh; Improving human health - use of nuclear techniques for diagnosis, imaging and cancer treatment in developing countries

  4. Future nuclear regulatory challenges. A report by the NEA Committee on Nuclear Regulatory Activities

    International Nuclear Information System (INIS)

    1998-01-01

    Future challenges are considered that may arise from technical, socio-economic and political issues; organizational, management and human aspects; and international issues. The perceived challenges have been grouped into four categories, each covered by a chapter. Technical issues are addressed that many present regulatory challenges in the future: ageing nuclear power plants. External changes to industry are considered next that have an effect on regulators, privatization, cost reduction consequences, commercialization etc. It is followed by the impacts of internal changes: organizational, managerial, human-resources, licensing, staff training etc. Finally, international issues are discussed with potential regulatory impact. (R.P.)

  5. Regulatory Oversight of Safety Culture in Nuclear Installations

    International Nuclear Information System (INIS)

    2013-03-01

    Experience across the international nuclear industry and in other technical fields over the past few decades has demonstrated the importance of a healthy safety culture in maintaining the safety of workers, the public and the environment. Both regulators and the nuclear industry recognize the need for licensees to develop a strong safety culture in order to support successful and sustainable nuclear safety performance. Progress over recent years can be observed in the rapid development of approaches to overseeing licensees' safety culture. This publication follows on and complements earlier publications on safety culture, from the publication Safety Culture (Safety Series No. 75-INSAG-4 (1991)), published after the Chernobyl accident, to the more recently published Safety Requirements on The Management System for Facilities and Activities (IAEA Safety Standards Series No. GS-R-3 (2006)), which states that the management system is to be used to promote and support a strong safety culture. A number of attempts have been made at both the international and national levels to establish practical approaches to regulatory oversight of safety culture. During 2010 and 2011, two projects were conducted by the IAEA under the scope of the Safe Nuclear Energy - Regional Excellence Programme within the Norwegian Cooperation Programme with Bulgaria and Romania. These projects were implemented at the Bulgarian and Romanian regulatory bodies. They encompassed the development of a specific process to oversee licensees' safety culture, and involved 30 experts from 17 countries and 22 organizations. The IAEA continues to support Member States in the area of safety culture through its projects on safety management and capacity building. This publication addresses the basics of regulatory oversight of safety culture, describes the approaches currently implemented at several regulatory bodies around the world and, based on these examples, proposes a path to developing such a process

  6. Technical Support Organization Knowledge Management for Nuclear Regulatory Support

    International Nuclear Information System (INIS)

    Kohut, P.; Ramsey, J.; Katsenelenbogen, S.

    2016-01-01

    Full text: Knowledge management awareness has increased through the nuclear industrial and regulatory community leading to better understanding of the handling of critical information. Utilizing, managing and regulating the application of nuclear power require an extensive system of expertise and associated research through established organizations. The long term maintenance of the specific expertise is only viable by using scientific knowledge management principles all through the national nuclear infrastructure involving regulatory, industrial, academic and other research institutions. National governments in countries operating or planning to establish nuclear facilities have instituted regulatory regimes on the use of nuclear materials and facilities to insure a high level of operational safety. (author

  7. Nuclear Power and Sustainable Development (French Edition)

    International Nuclear Information System (INIS)

    2008-01-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [fr

  8. Nuclear Power and Sustainable Development (Spanish Edition)

    International Nuclear Information System (INIS)

    2008-02-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [es

  9. Regulatory inspection of nuclear facilities and enforcement by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on the inspection of nuclear facilities, regulatory enforcement and related matters. The objective is to provide the regulatory body with a high level of confidence that operators have the processes in place to ensure compliance and that they do comply with legal requirements, including meeting the safety objectives and requirements of the regulatory body. However, in the event of non-compliance, the regulatory body should take appropriate enforcement action. This Safety Guide covers regulatory inspection and enforcement in relation to nuclear facilities such as: enrichment and fuel manufacturing plants; nuclear power plants; other reactors such as research reactors and critical assemblies; spent fuel reprocessing plants; and facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Section 2 sets out the objectives of regulatory inspection and enforcement. Section 3 covers the management of regulatory inspections. Section 4 covers the performance of regulatory inspections, including internal guidance, planning and preparation, methods of inspection and reports of inspections. Section 5 deals with regulatory enforcement actions. Section 6 covers the assessment of regulatory inspections and enforcement activities. The Appendix provides further details on inspection areas for nuclear facilities

  10. System engineering in the Nuclear Regulatory Commission licensing process: Program architecture process and structure

    International Nuclear Information System (INIS)

    Romine, D.T.

    1989-01-01

    In October 1987, the U.S. Nuclear Regulatory Commission (NRC) established the Center for Nuclear Waste Regulatory Analyses at Southwest Research Institute in San Antonio, Texas. The overall mission of the center is to provide a sustained level of high-quality research and technical assistance in support of NRC regulatory responsibilities under the Nuclear Waste Policy Act (NWPA). A key part of that mission is to assist the NRC in the development of the program architecture - the systems approach to regulatory analysis for the NRC high-level waste repository licensing process - and the development and implementation of the computer-based Program Architecture Support System (PASS). This paper describes the concept of program architecture, summarizes the process and basic structure of the PASS relational data base, and describes the applications of the system

  11. Nuclear power for sustainable development

    International Nuclear Information System (INIS)

    Corpuz, Antonio T.

    1997-01-01

    The need for stable and reliable energy supply was clearly illustrated by the Philippine experience of the last five years where the bleak energy supply situation caused massive losses in productivity. Indigenous energy resources even if exploited to full capacity is not sufficient to support the progress needed to give our growing population the quality of life it deserves. Important too is the fact that world energy resources especially oil and natural gas is estimated to last up to the first half of the next century. Thus the entry of nuclear power as a vital contributor to a safe, reliable, competitive and cost effective source of energy supply become a necessity. (author)

  12. Nuclear energy sustainable development and public awareness

    International Nuclear Information System (INIS)

    Murty, G.S.

    2001-01-01

    This paper provides the latest information about the importance of energy needs and its growth in the years to come, the role of the nuclear energy and the need for public awareness and acceptability of the programs to achieve sustainable development

  13. KWOC [Key-Word-Out-of-Context] Index of US Nuclear Regulatory Commission Regulatory Guide Series

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-04-01

    To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE ''KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series

  14. Assessing the effectiveness of nuclear regulatory system in India

    International Nuclear Information System (INIS)

    Gandhia, Sonal; Choi, Kwang Sik

    2012-01-01

    The Fukushima accident brought up the issue of regulatory effectiveness in the fore. One of the causes of the accident has been attributed to the problems in effectiveness of the Japanese regulatory system. Regulatory reform is underway in Japan and in other countries many efforts have also been made to improve the effectiveness and independence of the regulatory bodies. It is important that the regulatory bodies make self-assessment of their weaknesses and strengths, to achieve the ultimate regulatory goal of assuring acceptable level of nuclear safety. In this paper an assessment has been done for the effectiveness of Indian nuclear regulatory system as implemented by the Atomic Energy Regulatory board (AERB). A number of good practices of AERB have been found and some areas have been identified where improvements are necessary

  15. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  16. 77 FR 34379 - Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory...

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD06-6-000] Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold a joint meeting...

  17. Responsibilities of nuclear regulatory authority and overview of nuclear safety regulations in Slovakia

    International Nuclear Information System (INIS)

    Misak, J.

    1996-01-01

    The paper describes the organizational structure of the Nuclear Regulatory Authority of the Slovak Republic, its rights and duties, the status of nuclear legislation with emphasis on nuclear activities completely or partially covered, and licensing procedures

  18. Nuclear Weapons Enterprise Transformation - A Sustainable Approach

    International Nuclear Information System (INIS)

    O'Brien, K H

    2005-01-01

    Nuclear weapons play an essential role in United States (U.S.) National Security Policy and a succession of official reviews has concluded that nuclear weapons will continue to have a role for the foreseeable future. Under the evolving U.S. government policy, it is clear that role will be quite different from what it was during the Cold War. The nuclear-weapons stockpile as well as the nuclear-weapons enterprise needs to continue to change to reflect this evolving role. Stockpile reductions in the early 1990s and the Stockpile Stewardship Program (SSP), established after the cessation of nuclear testing in 1992, began this process of change. Further evolution is needed to address changing security environments, to enable further reductions in the number of stockpiled weapons, and to create a nuclear enterprise that is cost effective and sustainable for the long term. The SSP has successfully maintained the U.S. nuclear stockpile for more than a decade, since the end of nuclear testing. Current plans foresee maintaining warheads produced in the 1980s until about 2040. These warheads continue to age and they are expensive to refurbish. The current Life Extension Program plans for these legacy warheads are straining both the nuclear-weapons production and certification infrastructure making it difficult to respond rapidly to problems or changes in requirements. Furthermore, refurbishing and preserving Cold-War-era nuclear weapons requires refurbishing and preserving an infrastructure geared to support old technology. Stockpile Stewardship could continue this refurbishment approach, but an alternative approach could be considered that is more focused on sustainable technologies, and developing a more responsive nuclear weapons infrastructure. Guided by what we have learned from SSP during the last decade, the stewardship program can be evolved to address this increasing challenge using its computational and experimental tools and capabilities. This approach must start

  19. Nuclear regulatory communication with the public: 10 years of progress

    International Nuclear Information System (INIS)

    Gauvain, J.; Jorle, A.; Chanial, L.

    2008-01-01

    The NEA has an acknowledged role to assist its member countries in maintaining and developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy. In this context, the NEA Committee on Nuclear Regulatory Activities (CNRA) provides a forum for senior representatives from nuclear regulatory bodies to exchange information and experience on nuclear regulatory policies and practices in NEA member countries and to review developments which could affect regulatory requirements. Public confidence in government and in risk management structures is important to all developed countries with an open society. The use of nuclear power in a democracy is built upon a certain trust in the political system and the national authorities. To foster and maintain such trust in a period of greater public scrutiny of nuclear activities, a number of nuclear regulatory organisations (NROs) initiated various processes to pro-actively inform the public about their supervision and control of nuclear activities, or when appropriate to involve the public in decision making. In 1998 the question was raised within the CNRA of whether public trust in the regulator might be very different from one country to another, and an activity was started among member countries to exchange experience and best practices and to learn lessons about NRO communication with their publics. Three workshops were organised by the NEA, and a Working Group on Public Communication of Nuclear Regulatory Organisations was set up in 2001. The activities and findings are summarised below. (author)

  20. Let nuclear technology create new brilliancy for china's sustainable development

    International Nuclear Information System (INIS)

    Du Xiangwan

    2008-01-01

    This paper summarizes the development and application directions of nuclear technology, including five aspects: nuclear technology and energy nuclear technology and medicine, nuclear anclear analysis technology, nuclear radiation technology, astronautics and voyage's nuclear power, etc. The paper discusses the importance of them to sustainable development and generalizes the development trilogy of nuclear science and technology and its prospect. (authors)

  1. Safety Culture Implementation in Indonesian Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.; Dewanto, P.

    2016-01-01

    The Indonesia Nuclear Energy Act no. 10 of 1997 clearly stated that Nuclear Energy Regulatory Agency (BAPETEN) is the Nuclear Regulatory Body. This is the legal basis of BAPETEN to perform regulatory functions on the use of nuclear energy in Indonesia, including regulation, authorisation, inspection and enforcement. The Independent regulatory functions are stipulated in Article 4 and Article 14 of the Nuclear Energy Act no. 10 (1997) which require the government to establish regulatory body that is reporting directly to the president and has responsibility to control of the use of nuclear energy. BAPETEN has been start fully its functioning on January 4, 1999. In it roles as a regulatory body, the main aspect that continues and always to be developed is the safety culture. One of the objectives of regulatory functions is “to increase legal awareness of nuclear energy of the user to develop safety culture” (Article 15, point d), while in the elucidation of article 15 it is stipulated that “safety culture is that of characteristics and attitudes in organizations and individual that emphasise the importance of safety”.

  2. Nuclear Regulatory Commission issuances, January 1997. Volume 45, Number 1

    International Nuclear Information System (INIS)

    1997-01-01

    This book contains issuances of the Atomic Safety and Licensing Board, Nuclear Regulatory Commission and Director's Decision for January 1997. The issuances concern Sequoyah Fuels Corporation and General Atomics Gore, Oklahoma Site decontamination and decommissioning funding; Louisiana Energy Services, Claiborne Enrichment Center denies appeal to review emergency planning; General Public Utilities Nuclear Corporation, Oyster Creek Nuclear Generating station, challenges to technical specifications concerning spent fuel pool; and Consumers Power Company, Palisades Nuclear Plant dry cask storage of spent nuclear fuel

  3. Improving nuclear regulation. Compilation of Nea regulatory guidance booklets

    International Nuclear Information System (INIS)

    2009-01-01

    A common theme throughout the series of NEA regulatory guidance reports, or 'green booklets', is the premise that the fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are operated at all times and later decommissioned in an acceptably safe manner. In meeting this objective the regulator must keep in mind that it is the operator that has responsibility for safely operating a nuclear facility; the role of the regulator is to oversee the operator's activities as related to assuming that responsibility. For the first time, the full series of these reports have been brought together in one edition. As such, it is intended to serve as a knowledge management tool both for current regulators and the younger generation of nuclear experts entering the regulatory field. While the audience for this publication is primarily nuclear regulators, the information and ideas may also be of interest to nuclear operators, other nuclear industry organisations and the general public. (author)

  4. Regulatory control, nuclear safety regulation and waste management in Spain

    International Nuclear Information System (INIS)

    Martin, A.

    2000-01-01

    This article presents the challenges that faces the spanish regulatory authority. The deregulation of electricity industry imposes severe changes in nuclear power economics and forces nuclear power to compete with other sources of electricity. A pressure is perceived for regulatory effectiveness primarily since the cost of regulation is a component of the cost of the product. This effectiveness gain in regulatory control will be reached through systematic strategic analysis, formulation and implementation. The regulatory aspects of plant life extension and of waste management are examined

  5. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 1999

    International Nuclear Information System (INIS)

    Seliga, M.

    2000-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 1999 is presented. These activities are reported under the headings: (1) Foreword; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of safety at nuclear installations; (4) Safety analyses; (5) Nuclear materials; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Conclusions; (13) Appendices: Economic and personnel data; Abbreviations; The International nuclear event scales - INES

  6. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2000

    International Nuclear Information System (INIS)

    Seliga, M.

    2001-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2000 is presented. These activities are reported under the headings: (1) Foreword and organisation structure; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of nuclear installations; (5) Safety analyses; (6) Nuclear materials and physical protection of nuclear installations; (7) Radioactive waste; (8) Quality assurance; (9) Personnel qualification and training; (10) Emergency preparedness; (11) International co-operation; (12) Public information; (13) Personnel and economic data of the UJD; (14) Conclusion; (15) Attachments: Abbreviations; Radiation safety

  7. Nuclear regulatory organisations: Learning from stakeholders to enhance communication

    International Nuclear Information System (INIS)

    Lorin, Aurelie

    2015-01-01

    Since its creation 15 years ago, the NEA Committee on Nuclear Regulatory Activities (CNRA) Working Group on Public Communication of Nuclear Regulatory Organisations (WGPC) has been addressing a broad range of communication issues, with two reports recently issued on Nuclear Regulatory Organisations, the Internet and Social Media: The What, How and Why of Their Use as Communication Tools and on Nuclear Regulatory Organisations and Communication Strategies. After the Fukushima Daiichi nuclear power plant accident in 2011, nuclear regulatory organisations around the world reaffirmed the need to strengthen stakeholder outreach and communication, and to create more robust avenues for stakeholder involvement in regulatory matters. The WGPC proposed a means for stakeholders to play a more active role in the group by holding one-day workshops in conjunction with regular meetings. These workshops offer a platform for stakeholder exchange with communication experts from nuclear regulatory organisations (NROs). The objective is to stimulate co-operation and improve communication by better understanding stakeholder perceptions, needs and expectations, and by discussing how to use traditional and social media more effectively. While nuclear regulatory organisations may have a common willingness to improve their communication methods and to build constructive relationships with stakeholders, every country has its own practices and cultural background, and thus its own challenges. Following the first workshop in Paris, which brought together European stakeholders, and the second in North America, the NEA is now organising a third workshop in Asia (Japan) to be held in April 2016. This third workshop will enable the NEA to gather stakeholder views from a third continent. A report on the workshops' findings will be issued after the completion of this third workshop, thus giving a broader idea of how to improve the overall communication methods of nuclear regulatory

  8. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  9. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  10. Regulatory regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    Main elements of nuclear regulatory regime in general is presented. These elements are: national rules and safety regulations, system of nuclear facility licensing, activities of regulatory body. Regulatory body is needed to specify the national safety regulations, review and assess the safety documentation presented to support license application, make inspections to verify fulfilment of safety regulations and license conditions, monitor the quality of work processes of user organization, and to assess whether these processes provide a high safety level, promote high safety culture, promote maintenance and development of national infrastructure relevant to nuclear safety, etc

  11. Regulatory control of maintenance activities in Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Calvo, J.C.; Caruso, G.

    2000-01-01

    The main maintenance objective is to assure that the safety features of structures, components and systems of nuclear power plants are kept as designed. Therefore, there is a direct relationship between safety and maintenance. Owing to the above mentioned, maintenance activities are considered a relevant regulatory issue for the Argentine Nuclear Regulatory Authority (ARN). This paper describes the regulatory control to maintenance activities of Argentine nuclear power plants. It also addresses essential elements for maintenance control, routine inspections, special inspections during planned outages, audits and license conditions and requirements. (author)

  12. Contribution of Nuclear Science in Agriculture Sustainability

    International Nuclear Information System (INIS)

    Soliman, S.M.; Galal, Y.G.M.

    2017-01-01

    Sustainable agricultural systems employ natural processes to achieve acceptable levels of productivity and food quality while minimizing adverse environmental impacts. Sustainable agriculture must, by definition, be ecologically sound, economically viable, and socially responsible. Sustainable agriculture must nurture healthy co systems and support the sustainable management of land, water and natural resources, while ensuring world food security. To be sustainable, agriculture must meet the needs of present and future generations for its products and services, while ensuring profitability, environmental health and social and economic equity. The global transition to sustainable food and agriculture will require major improvements in the efficiency of resource use, in environmental protection and in systems resilience. In Mediterrane an environments, crops are grown mainly in the semiarid and sub-humid are as. In arid and semiarid are as dry land farming, techniques are of renewed interest in the view of sustain ability. They are aimed to increase water accumulation in the soil, reduce runoff and soil evaporation losses, choose species and varieties able to make better use of rainwater, and rationalize fertilization plans, sowing dates, and weed and pest control. Fertilization plans should be based on well-defined principles of plant nutrition, soil chemistry, and chemistry of the fertilizer elements. Starting from the calculation of nutrient crop uptake (based on the actually obtainable yield), dose calculation must be corrected by considering the relation ship between the availability of the trace elements in soil and the main physical and chemical parameters of the soil (ph, organic matter content, mineralization rate, C/N, ratio of solubilization of phosphorus, active lime content, presence of antagonist ions, etc.). In the Egyptian Atomic Energy Authority, Soil and Water Research Department, nuclear techniques including radio and stable isotopes in addition to

  13. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to Member States for the development, or improvement of nuclear security systems and measures for the detection of criminal or unauthorized acts with nuclear security implications involving nuclear and other radioactive material out of regulatory control. It describes the elements of an effective nuclear security detection architecture which is composed of an integrated set of nuclear security systems and measures, and is based on an appropriate legal and regulatory framework for the implementation of the national detection strategy. The publication is an implementing guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, legislative bodies, competent authorities, institutions, and individuals involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control

  14. Synopsis of sustainability and nuclear power

    International Nuclear Information System (INIS)

    Ahmad, Ishfaq

    2001-01-01

    Full text: World population is steadily increasing and yet one-third of them - over two billion people - lack access to electricity. Development depends on energy, including electricity, and the alternative to development is poverty, disease, misery, and death. This is a recipe for chaos, instability and widespread violence. During the next fifty years energy demand is expected to triple while the demand for electricity will grow nearly five-fold; a substantial portion of the demand coming from developing countries. It will be an immense challenge to meet the increased demand in energy without sustaining long term damage to the environment including the surface and air pollution as well as global warming and associated ecological disasters. While most of world's energy is derived from fossil fuels and hydroelectric power, still with 434 nuclear reactors operating worldwide, nuclear power is meeting 16% of the world's annual electricity needs and providing it to more than a billion people. Nuclear power has the potential for meeting a substantial portion of the world's growing energy needs in an environment friendly and sustainable manner contributing to a prosperous and safe world for posterity. The problems that developing countries face in imbibing nuclear technology and promoting the use of nuclear power are daunting. However, as nuclear technology is a proven technology, then in a shrinking world a sharing of knowledge and technology should make it much easier. If the world has to move towards shared political values and a global economy it is imperative that there should be a global access to civilian nuclear technology. (author)

  15. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  16. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in nuclear and other radioactive material; national response plans; and contingency measures. Within its nuclear security programme, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking; and to detect and respond to nuclear security events. This is an Implementing Guide on nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control. The objective of the publication is to provide guidance to Member States for the

  17. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha-Vinh, Phuong

    1975-01-01

    Broad definition of the scope of enabling legislation, identification of branches of laws involved in the licensing and regulatory control, overview of some typical licensing practices and provisions, some specific legislative or regulatory requirements including financial security to over nuclear liability. (HP) [de

  18. Nuclear regulatory challenges arising from competition in electricity markets

    International Nuclear Information System (INIS)

    2001-01-01

    In recent years a world-wide trend has been developing to introduce competition in electricity markets. As market competition unfolds, it produces a wide range of safety challenges for nuclear power plant operators and regulators. Nuclear regulators must be aware of the potential safety challenges produced and consider whether new regulatory response strategies are warranted. This report describes many of these challenges, their implications and possible regulatory response strategies. The intended audience is primarily nuclear safety regulators, although government authorities, nuclear power plant operators and the general public may also be interested. (author)

  19. Safety and regulatory requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Kumar, S.V.; Bhardwaj, S.A.

    2000-01-01

    A pre-requisite for a nuclear power program in any country is well established national safety and regulatory requirements. These have evolved for nuclear power plants in India with participation of the regulatory body, utility, research and development (R and D) organizations and educational institutions. Prevailing international practices provided a useful base to develop those applicable to specific system designs for nuclear power plants in India. Their effectiveness has been demonstrated in planned activities of building up the nuclear power program as well as with unplanned activities, like those due to safety related incidents etc. (author)

  20. Building Nuclear Safety and Security Culture Within Regulatory Body

    International Nuclear Information System (INIS)

    Huda, K.

    2016-01-01

    To achieve a higher level of nuclear safety and security, it needs to develop the safety and security culture not only in the facility but also in the regulatory body. The regulatory body, especially needs to develop the safety and security culture within the organization, because it has a function to promote and oversee the culture in the facilities. In this sense, the regulatory body should become a role model. Development of the nuclear safety and security culture should be started by properly understanding its concept and awakening the awareness of individual and organization on the importance of nuclear safety and security. For effectiveness of the culture development in the regulatory body, the following steps are suggested to be taken: setting up of the regulatory requirements, self-assessment, independent assessment review, communication with the licensee, oversight of management system implementation, and integration with regulatory activities. The paper discusses those steps in the framework of development of nuclear safety and security culture in the regulatory body, as well as some important elements in building of the culture in the nuclear facilities. (author)

  1. Experience Transformed into Nuclear Regulatory Improvements in Russia

    International Nuclear Information System (INIS)

    Sapozhnikov, A.

    2016-01-01

    The third International Conference on Effective Nuclear Regulatory Systems (Canada, 2013) identified the main action items that should be addressed, implemented and followed up. The key technical and organizational areas important to strengthening reactor and spent fuel safety have been determined as following: • Regulatory lessons learned and actions taken (since the accident at the Fukushima Daiichi NPP); • Waste management and spent fuel safety; • Emergency management; • Emerging programmes; • Human and organizational factors, safety and security culture. Over time many activities based on results of the IAEA Integrated Regulatory Review Service in the Russian Federation, 2019, and post-mission, 2013, have been implemented. At present there is progress for the national action plan on nuclear safety, preparation and conducting of long term spent fuel management, complementary reviews for nuclear facilities other than Nuclear Power Plants, emergency exercises with the regulatory body participation, improving communication, development of national regulations and improvement of regulatory system in the whole. The regulatory body ensures assistance in development of national regulatory infrastructure, safety culture to the countries planning to construct Russian design facilities (NPPs, RRs). The report outlines the results and future actions to improve nuclear regulation based on systematic approach to safety and particularly reflects the specificity of taking measures for the research reactors. (author)

  2. Regulatory Regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    A leading internationally agreed principle is that the prime responsibility for nuclear safety rests with each user of nuclear energy. A proper regulatory regime is needed to ensure that this responsibility is met. In the first place it provides a verification that all relevant safety issues are understood and taken into account in the practical measures by the users but it is equally important that the regulatory regime supports the users in their strive to achieve an adequate level of safety (author)

  3. South African Regulatory Framework for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Mbebe, B.Z.

    2012-01-01

    The paper presents the regulatory approach to plant life management (PLiM) adopted by the National Nuclear Regulator (NNR) in South Africa, the licensing basis and regulatory requirements for Koeberg Nuclear Power Station (KNPS),operational programmes ensuring continued safe operation, issues related to the ageing of the plant, and the requirements for spent fuel as well as radioactive waste management. The paper will further present insights from the Periodic Safety Review (PSR) and Long Term Asset Management. (author)

  4. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2003

    International Nuclear Information System (INIS)

    Seliga, M.

    2004-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2003 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Radiation safety

  5. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  6. Nuclear technology for a sustainable future

    International Nuclear Information System (INIS)

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  7. SWOT of nuclear power plant sustainable development

    International Nuclear Information System (INIS)

    Abbaspour, M.; Ghazi, S.

    2008-01-01

    SWOT Analysis is a Useful tool that can he applied to most projects or business ventures. In this article we are going to examine major strengths, weaknesses, opportunities and threats of nuclear power plants in view of sustainable development. Nuclear power plants have already attained widespread recognition for its benefits in fossil pollution abatement, near-zero green house gas emission, price stability and security of energy supply. The impressive new development is that these virtues are now a cost -free bonus, because, in long run, nuclear energy has become an inexpensive way to generate electricity. Nuclear energy's pre-eminence economically and environmentally has two implications for government policy. First, governments should ensure that nuclear licensing and safety oversight arc not only rigorous but also efficient in facilitating timely development of advanced power plants. Second, governments should be bold incentivizing the transformation to clean energy economics, recognizing that such short-term stimulus will, in the case of nuclear plants, simply accelerate desirable changes that now have their own long-term momentum. The increased competitiveness of nuclear power plant is the result of cost reductions in all aspects of nuclear economics: Construction, financing, operations, waste management and decommissioning. Among the cost-lowering factors are the evolution to standardized reactor designs, shorter construction periods, new financing techniques, more efficient generation technologies, higher rates of reactor utilization, and longer plant lifetimes. U.S World Nuclear Association report shows that total electricity costs for power plant construction and operation were calculated at two interest rates. At 10%, midrange generating costs per kilowatt-hour are nuclear at 4 cents, coal at 4.7 cents and natural gas at 5.1 cent. At a 5% interest rate, mid-range costs per KWh fall to nuclear at 2.6 cents, coal at 3.7 cents and natural gas at 4.3 cents

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Luxembourg

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General; 2. Mining; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency measures); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. General Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister of Labour; Other Ministers competent); 2. Advisory bodies (Higher Health Council)

  9. Innovative global architecture for sustainable nuclear power

    International Nuclear Information System (INIS)

    Wheeler, John; Kagramanyan, Vladimir; Poplavskaya, Elena; Edwards, Geoffrey; Dixon, Brent; Usanov, Vladimir; Hayashi, Hideyuki; Beatty, Randall

    2011-01-01

    The INPRO collaborative project 'Global architecture of innovative nuclear energy systems based on thermal and fast reactors with the inclusion of a closed nuclear fuel cycle (GAINS)' was one of several scenario studies implemented in the IAEA in recent years. The objective of GAINS was to develop a standard framework for assessing future nuclear energy systems (NESs) taking into account sustainable development, and to validate the results through sample analyses. Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, USA, the European Commission and Argentina as an observer participated in the project. The results received are discussed in the paper, including: development of a heterogeneous multi-group model of a global NES, estimation of nuclear energy demand, identification of a representative set of reactors and fuel cycles, evaluation capability of available analytical and modelling tools, and quantitative analysis of the different options of the global architecture. It was shown that the approach used contributes to development of a coherent vision of driving forces for nuclear energy system development and deployment. (author)

  10. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  11. Challenges in developing TSO to provide technical support in nuclear safety and security to Pakistan Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Mallick, Shahid A.; Sherwani, Uzman Habib; Mehdi, M. Ammar

    2010-01-01

    This paper highlights the needs for the establishment of a technical support organization (TSO) in Pakistan Nuclear Regulatory Authority (PNRA), challenges faced during its development, application of training need assessment required for the competency development of its technical manpower and difficulties encountered after its evolution. Key issues addressed include recruitment of technical manpower and enhancing their competencies, acquisition of proper tools required for safety review and assessment, development of a sustainable education and training program consistent with the best international practices and taking the measures to get confidence of the regulatory body. (author)

  12. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  13. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  14. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  15. Regulatory Risk Management of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    George, Glenn R.

    2002-01-01

    Regulatory risk reflects both the likelihood of adverse outcomes during regulatory interactions and the severity of those outcomes. In the arena of advanced nuclear power plant licensing and construction, such adverse outcomes may include, for example, required design changes and construction delays. These, in turn, could significantly affect the economics of the plant and the generation portfolio in which it will operate. In this paper, the author addresses these issues through the lens of risk management. The paper considers various tools and techniques of regulatory risk management, including design diversity and hedging strategies. The effectiveness of alternate approaches is weighed and recommendations are made in several regulatory contexts. (author)

  16. Risk acceptance criteria of the Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Felizia, Eduardo R.

    2005-01-01

    This report describes some of the regulatory and control functions legally conferred upon the Argentine Nuclear Regulatory Authority concerning radiological risks, as well as a critical analysis of the radiological risk acceptance criteria contained in the Argentine regulatory system. A summary of the application of regulatory standards AR 3.1.3. - 'Radiological criteria related to accidents in nuclear power reactors' and AR 4.1.3. - 'Radiological criteria related to accidents in research reactors' to concrete cases is made, while the favourable and unfavourable aspects of the risk acceptance criteria are discussed. The conclusion is that the Argentine regulatory system contains adequate radiological risk acceptance criteria, that the latter are consistent with the radiological protection principles applicable to man and that, for the moment, there is no need to perform any modifications that would broaden the conceptual framework on which such criteria are based. (author) [es

  17. Nuclear Waste, Risks and Sustainable Development

    International Nuclear Information System (INIS)

    Karlsson, Mikael; Swahn, Johan

    2006-01-01

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We believe it is possible

  18. Nuclear Waste, Risks and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Swedish Society for Nature Conservation, Stockholm (Sweden); Swahn, Johan [Swedish NGO Office for Nuclear Waste Review (MKG), Goeteborg (Sweden)

    2006-09-15

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We

  19. Regulatory issues in the maintenance of Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Castro, E.; Caruso, G.

    1997-01-01

    The influence of maintenance activities upon nuclear safety and their relevance as means to detect and prevent aging make them play an outstanding role among the fields of interest of the Argentine nuclear regulatory body (ENREN). Such interest is reinforced by the fact that the data obtained during maintenance are used - among other - as inputs in the Probabilistic Safety Analyses required for those nuclear power plants. This paper provides a brief description of the original requirements by the regulatory body concerning maintenance, of the factors that led to review the criteria involved in such requirements and of the key items identified during the reviewing process. The latter shall be taken into account in the maintenance regulatory policy, for the consequent issue of new requirements from the utilities and for the eventual publication of a specific regulatory standard. (author)

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  1. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Iceland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health and Social Security; Icelandic Radiation Protection Institute)

  2. United States Nuclear Regulatory Commission staff practice and procedure digest

    International Nuclear Information System (INIS)

    1990-03-01

    This document contains procedures for review by US Nuclear Regulatory Commission for reviewing and deciding on matters pertaining to nuclear power plant licensing. Also, contained within the document are decisions the Commission has made between July 1972 to September 1989. (F.S.D.)

  3. Nuclear knowledge management system in the regulatory activity

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Klevtsov, A.L.; Kravchenko, N.A.

    2010-01-01

    Important issues on collection, storage and spread of knowledge among organisation dealing with the use of nuclear technologies, role of close cooperation between enterprises and organizations in developing knowledge management, general requirements for creating a nuclear knowledge management system are considered. Recommendations and the main mechanisms are identified to create the knowledge management system in technical support organizations of the regulatory authority.

  4. IAEA Mission Concludes Peer Review of Jordan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an 11-day International Atomic Energy Agency (IAEA) Integrated Regulatory Review Service (IRRS) mission to review the regulatory framework for nuclear and radiation safety in Jordan. The mission team said in its preliminary findings that Jordan's nuclear regulator, the Energy and Minerals Regulatory Commission (EMRC), faces challenges because it is a relatively new body that handles a high workload while also working to recruit, train and keep competent staff. The team also noted that a recent merger provided the regulator with more of the resources it needs to perform its duty. The team made recommendations and suggestions to the regulatory body and the Government to help them strengthen the effectiveness of Jordan's regulatory framework and functions in line with IAEA Safety Standards. The main observations of the IRRS Review team comprised the following: The regulatory body, founded in 2007 and merged with other regulators in April 2014 to form EMRC, faces large challenges in terms of its regulatory workload, management system building and staff recruitment and training; The new EMRC structure and revision of the radiation and nuclear safety law represents an important opportunity to strengthen Jordan's radiation and nuclear safety infrastructure; The Government has shown commitment to radiation and nuclear safety through measures including becoming party to international conventions. It could further demonstrate its commitment by adopting a formal national policy and strategy for safety that defines the role of the Minister of Energy in relation to EMRC and protects the independence of regulatory decision-making

  5. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    International Nuclear Information System (INIS)

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director's Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director's Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant

  6. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act

  7. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director`s Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director`s Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant.

  8. US Nuclear Regulatory Commission, 1984 annual report. Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    This is the 10th annual report of the US Nuclear Regulatory Commission (NRC). This report covers the major activities, events, decisions and planning that took place during fiscal year 1984 (October 1983 through September 1984) within the NRC or involving the NRC. Information is presented concerning 1984 highlights and planning for 1985; reactor regulation; cleanup at Three Mile Island Unit 2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement, quality assurance, and emergency preparedness; cooperation with the States; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  9. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act.

  10. Competencies Setup for Nuclear Regulatory Staff in Thailand

    International Nuclear Information System (INIS)

    Pingish, Panupong; Siripirom, Lopchai; Nakkaew, Pongpan; Manuwong, Theerapatt; Wongsamarn, Vichian

    2010-01-01

    Competencies setup for regulatory bodies oversee a research reactor and nuclear power reactors in Thailand, concentrating on staff development in areas of review and assessment, inspection and enforcement, authorization, and development of regulations and guides. The regulatory body in Thailand is the Bureau of Nuclear Safety Regulation (BNSR) which belongs to the Office of Atoms for Peace (OAP). The BNSR is divided into 4 groups according to the International Atomic Energy Agency (IAEA). These groups are the nuclear safety administration group, nuclear safety technical support group, nuclear safety assessment and licensing group, and the nuclear installations inspection group. Each group is divided into senior and junior positions. The competencies model was used for implementation of staff qualification, career planning and professional progression by BNSR. Competencies are related to knowledge, skills and attitudes (KSAs) needed to perform their job. A key issue is obtaining competencies for the regulatory bodies. The systematic approach to training (SAT) has been used in several countries for improvement regulator performance. The SAT contains 5 steps, including analysis, design, development, implementation and evaluation, to achieve competencies. The SAT provides a logical progression from the identification of competencies required to perform a job to the design, development and implementation of training using the competencies model. In the first step, BNSR performs an operating analysis of training needs assessment (TNA) by using gap analysis technique, as suggested by IAEA. Individual regulatory bodies address the gap using appropriate training program, after comparing the actual and desired competency profiles to determine the gap. This paper examines competencies setup for regulatory staff of BNSR as a result of gaps analysis to establish a scheme for design characteristics of regulatory staff and training courses, thereby enhancing the regulatory

  11. Westinghouse electric company, LLC regulatory trends in the USA nuclear power industry

    International Nuclear Information System (INIS)

    Molnar, C. M.; Cheung, A. C.; Gresham, J. A.

    2007-01-01

    The United States (US) nuclear industry is in a dynamic, exciting, and challenging time. On one hand, since the mid 90s, the US nuclear utilities have continued to demonstrate improved safety, efficient and reliable operation for the whole nuclear fleet, thus making generation costs for nuclear energy extremely attractive. On the other hand the US utilities are projecting the need to add significant new generation capacities to replace the aging fleet and to sustain the expected economic growth. In addition to the demonstrated improved operation and financial performance, the financial incentives offered in the federal energy bill passed in 2005 enticed many utilities to actively consider the purchase of new nuclear power plants. This paper will highlight the regulatory trends in the USA, the major initiatives and improvements undertaken as well as other operation support issues faced by the US nuclear power industry

  12. Regulatory practices for nuclear power plants in India

    International Nuclear Information System (INIS)

    Bajaj, S.S.

    2013-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB is responsible for the stipulation and enforcement of rules and regulations pertaining to nuclear and radiological safety. This paper describes the regulatory process followed by AERB for ensuring the safety of nuclear power plants (NPPs) during their construction as well as operation. This regulatory process has been continuously evolving to cater to the new developments in reactor technology. Some of the recent initiatives taken by AERB in this direction are briefly described. Today, AERB faces new challenges like simultaneous review of a large number of new projects of diverse designs, a fast growing nuclear power program and functioning of operating plants in a competitive environment. This paper delineates how AERB is gearing up to meet these challenges in an effective manner. (author)

  13. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  14. Romanian regulatory requirements on nuclear field specific education needs

    International Nuclear Information System (INIS)

    Biro, L.; Velicu, O.

    2004-01-01

    This work is intended as a general presentation of the educational system and research field, with reference to nuclear sciences, and the legal system, with reference to requirements established by the regulatory body for the professional qualification and periodic training of personnel involved in different activities in the nuclear field. Thus, part 2 and 3 of the work present only public information regarding the education in nuclear sciences and nuclear research in Romania; in part 4 the CNCAN requirements for the personnel training, specific to nuclear activities are slightly detailed; part 5 consists of few words about the public information activities in Romania; and part 6 tries to draw a conclusion. (authors)

  15. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2004

    International Nuclear Information System (INIS)

    Seliga, M.

    2005-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2004 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear power plants; (3.1) Assessment and inspection of other nuclear installations; (3.2) Safety analyses; (4) Nuclear materials and physical protection of nuclear installations; (5) Radioactive waste; (6) Quality assurance; (7) Personnel qualification and training; (8) Emergency preparedness; (9) International co-operation; (10) Public information; (11) Personnel and economy data; Appendix: Abbreviations; INES

  16. The Safety Culture of an Effective Nuclear Regulatory Body

    International Nuclear Information System (INIS)

    Carlsson, Lennart; Bernard, Benoit; Lojk, Robert; Koskinen, Kaisa; Rigail, Anne-Cecile; Stoppa, Gisela; Lorand, Ferenc; Aoki, Masahiro; Fujita, Kenichi; Takada, Hiroko; Kurasaki, Takaaki; Choi, Young Sung; Smit, Martin; Bogdanova, Tatiana; Sapozhnikov, Alexander; Smetnik, Alexander; Cid Campo, Rafael; Axelsson, Lars; Carlsson, Lennart; Edland, Anne; Ryser, Cornelia; Cohen, Miriam; Ficks, Ben; Valentin, Andrea; Nicic, Adriana; Lorin, Aurelie; Nezuka, Takayoshi; Creswell, Len

    2016-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that activities related to the peaceful use of nuclear energy are carried out in a safe manner within their respective countries. In order to effectively achieve this objective, the nuclear regulatory body requires specific characteristics, one of which is a healthy safety culture. This regulatory guidance report describes five principles that support the safety culture of an effective nuclear regulatory body. These principles concern leadership for safety, individual responsibility and accountability, co-operation and open communication, a holistic approach, and continuous improvement, learning and self-assessment. The report also addresses some of the challenges to a regulatory body's safety culture that must be recognised, understood and overcome. It provides a unique resource to countries with existing, mature regulators and can be used for benchmarking as well as for training and developing staff. It will also be useful for new entrant countries in the process of developing and maintaining an effective nuclear safety regulator. (authors)

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities. Japan

    International Nuclear Information System (INIS)

    2017-01-01

    The NEA has updated, in coordination with the Permanent Delegation of Japan to the OECD, the report on the Regulatory and Institutional Framework for Nuclear Activities in Japan. This country report provides comprehensive information on the regulatory and institutional framework governing nuclear activities in Japan. It provides a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. Content: I - General Regulatory Regime: Introduction; Mining regime; Radioactive substances and equipment; Nuclear installations (Reactor Regulation, Emergency response); Trade in nuclear materials and equipment; Radiological protection; Radioactive waste management; Nuclear safeguards and nuclear security; Transport; Nuclear third party liability. II - Institutional Framework: Regulatory and supervisory authorities (Cabinet Office, Nuclear Regulation Authority (NRA), Ministry of Economy, Trade and Industry (METI), The Agency for Natural Resources and Energy (ANRE), Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Ministry of Education, Culture, Sports, Science and Technology (MEXT)); Advisory bodies (Atomic Energy Commission (AEC), Reactor Safety Examination Committee, Nuclear Fuel Safety Examination Committee, Radiation Council, Other advisory bodies); Public and semi-public agencies (Japan Atomic Energy Agency (JAEA), National Institutes for Quantum and Radiological Science and Technology (QST), Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), Nuclear Waste Management Organisation (NUMO))

  18. Directions in U. S. nuclear regulatory policy

    International Nuclear Information System (INIS)

    Rogers, Kenneth C.

    1991-01-01

    The future of nuclear power is optimistic, but only if we each learn from our past mistakes - and from each other's past mistakes and take corrective actions. Only if we apply the highest standard of performance to every nuclear activity. I believe meetings such as this are an important forum for exchanging information that can result in improved standards of performance throughout the world.

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    International Nuclear Information System (INIS)

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  20. Major nuclear safety and regulatory issues in Korea

    International Nuclear Information System (INIS)

    Chang, Soon Heung

    2004-01-01

    Recently the value of nuclear energy is being re-considered due to the increase of oil price, the lack of energy supply, and the competition with renewable energy source. In Unites States, Europe, and East Asia, the prospects for continuous nuclear energy development or the policy for retaining nuclear energy have been announced. According to the nuclear energy promotion plan in Korea, there are 19 operating nuclear plants currently and more 7 plants will be constructed in the future. Until now, qualitative as well as quantitative growth is remarkable. Korean nuclear power plants achieved world-best level of capacity factor. However, because of the various nuclear industrial activities, we have a lot of regulatory issues for operating plants, building new plants, and other nuclear related facilities such as research reactors or radioactive waste storage facility. In this article, important regulatory issues which are emerging in Korea will be reviewed and the approaches to solve the issues including public acceptance will be presented. Especially, I will go into detail of two special case studies: The one is the thermal sleeve separation incident in Younggwang nuclear units 5 and 6 whose outage lasts about 80 days and 90 days respectively, which is not common in worldwide nuclear history. The other is about consensus meeting of Korea nuclear energy policy which was managed by a non-governmental organization. (author)

  1. Regulatory control of nuclear safety in Finland. Annual report 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-08-01

    The report describes regulatory control of the use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in Finland in 1997. Nuclear regulatory control ascertained that the operation of Finnish NPPs was in compliance with the conditions set out in operating licences and current regulations. In addition to NPP normal operation, STUK oversaw projects at the plant units relating to power uprating and safety improvements. STUK prepared statements for the Ministry of Trade and Industry about the applications for renewing the operating licenses of Loviisa and Olkiluoto NPPs. The most important items of supervision in nuclear waste management were studies relating to the final disposal of spent fuel from NPPs and the review of the licence application for a repository for low- and intermediate-level reactor waste from Loviisa NPP. Preparation of general safety regulations for the final disposal of spent nuclear fuel, to be published in the form of a Council of State Decision, was started. By safeguards control, the use of nuclear materials was verified to be in compliance with current regulations and that the whereabouts of every batch of nuclear material were always known. Nuclear material safeguards were stepped up to prevent illicit trafficking of nuclear materials and other radioactive materials. In co-operation with the Ministry for Foreign Affairs and the Institute of Seismology (University of Helsinki), preparations were undertaken to implement the Comprehensive Nuclear Test Ban Treaty (CTBT). For enforcement of the Treaty and as part of the international regulatory approach, STUK is currently developing laboratory analyses relating to airborne radioactivity measurements. The focus of co-operation funded by external sources was as follows: improvement of the safety of Kola and Leningrad NPPs, improvement of nuclear waste management in North-West Russia, development of the organizations of nuclear safety authorities in Eastern Europe and development

  2. Nuclear regulatory review of licensee self-assessment (LSA)

    International Nuclear Information System (INIS)

    2003-01-01

    Licensee self-assessment (LSA) by nuclear power plant operators is described as all the activities that a licensee performs in order to identify opportunities for improvements. An LSA is part of an organisation's holistic management system, which must include other process elements. Particularly important elements are: a process for choosing which identified potential improvements should be implemented and a process of project management for implementing the improvements chosen. Nuclear regulators expect the licensee to run an effective LSA programme, which reflects the licensee's 'priority to safety'. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of the current regulatory philosophy on and approaches to LSA as performed by licensees. The publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  3. Sustainable training for customs officer involved in illicit nuclear trafficking detection: national solutions

    International Nuclear Information System (INIS)

    Paredes Gilisman, Jorge Luis; Lopez Forteza, Yamil

    2008-01-01

    Full text: The illicit nuclear trafficking detection capabilities demand adequate training, cooperation and equipment. Often customs personnel changing takes place in our countries. A sustainable training strategy should be implemented for avoiding forfeit on detection capabilities. Cuba, not excluded from this particular, designed an Action Plan to provide Customs authorities with basic tools for their own training. The Nuclear Regulatory Authority developed three main addresses: initial training, development of e-tools and preparation of train-of-trainers. Experiences, outcomes and challenges are shown in the present paper. In a simple, quick and not expensive way answer has been given to a national sustainable training strategy. (author)

  4. The United States nuclear regulatory commission license renewal process

    International Nuclear Information System (INIS)

    Holian, B.E.

    2009-01-01

    The United States (U.S.) Nuclear Regulatory Commission (NRC) license renewal process establishes the technical and administrative requirements for the renewal of operating power plant licenses. Reactor ope-rating licenses were originally issued for 40 years and are allowed to be renewed. The review process for license renewal applications (L.R.A.) provides continued assurance that the level of safety provided by an applicant's current licensing basis is maintained for the period of extended operation. The license renewal review focuses on passive, long-lived structures and components of the plant that are subject to the effects of aging. The applicant must demonstrate that programs are in place to manage those aging effects. The review also verifies that analyses based on the current operating term have been evaluated and shown to be valid for the period of extended operation. The NRC has renewed the licenses for 52 reactors at 30 plant sites. Each applicant requested, and was granted, an extension of 20 years. Applications to renew the licenses of 20 additional reactors at 13 plant sites are under review. As license renewal is voluntary, the decision to seek license renewal and the timing of the application is made by the licensee. However, the NRC expects that, over time, essentially all U.S. operating reactors will request license renewal. In 2009, the U.S. has 4 plants that enter their 41. year of ope-ration. The U.S. Nuclear Industry has expressed interest in 'life beyond 60', that is, requesting approval of a second renewal period. U.S. regulations allow for subsequent license renewals. The NRC is working with the U.S. Department of Energy (DOE) on research related to light water reactor sustainability. (author)

  5. U.S. Nuclear Regulatory Commission natural analogue research program

    International Nuclear Information System (INIS)

    Kovach, L.A.; Ott, W.R.

    1995-01-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process

  6. Nuclear power - an inevitable component of a sustainable energy mix

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2000-01-01

    Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)

  7. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  8. The nuclear regulatory challenge of judging safety back fits

    International Nuclear Information System (INIS)

    2002-01-01

    The economic pressures of electricity market competition have led nuclear power plant operators to seek ways to increase electricity production and to reduce operating costs at their plants. Corresponding pressures on the regulatory bodies include operator demand to reduce regulatory burdens perceived as unnecessary and general resistance to consider safety back-fits sought by the regulator. The purpose of this report is to describe potential situations giving rise to safety back-fit questions and to discuss regulatory approaches for judging the back-fits. The intended audience for this report is primarily nuclear regulators, although the information and ideas may also be of interest to nuclear operating organisations, other industry organisations and the general public. (author)

  9. Nuclear power - Sustainable development - Professional skill

    International Nuclear Information System (INIS)

    Comsa, Olivia; Paraschiva, M.V.; Banutoiu, Maria

    2002-01-01

    Sustainable development of society implies taking political decisions integrating harmoniously ingredients like these: - technological maturity; - socio-economic efficiency; - rational and equitable use of natural resources; - compliance with requirements concerning the environment and population; - professional ethics; - communications with the public and media; - professional skill; - public opinion acceptance. A rational analysis of these factors shows clearly that nuclear power appears to be an optimal ground for a sustainable power source besides the hydro and thermo-electric systems. Such a conclusion was confirmed by all types of analyses, methodologies or programs like for instance: MAED, WASP, FINPLAN, DECADES, ENPEP and more recently MESSAGE. The paper describes applications of these analytical methodologies for two scenarios of Cernavoda NPP future development. To find the optimal development strategy for the electric system, implying minimal costs the optimization analysis mode of the ELECSAM analysis module was used. The following conclusions were reached: - the majority of Romania's classical electrical stations are old; consequently, part of them should be decommissioned while others will be refurbished. Instead of installing new power groups these options will result in lowering the investment cost, as well as, in reduction of noxious gas emission; - the nuclear power system developed in Romania upon the CANDU technology appears to be one of the most performing and safe technology in the world. Cernavoda NPP Unit 1 commissioned on December 2, 1996 covers about 10% to 12% of the energy demand of the country. The CANDU systems offers simultaneously secure energy supply, safe operation, low energy costs and practically a zero impact upon the environment. The case study for Romania by means of DECADES project showed that the development program with minimal cost for electrical stations implies construction of new 706.5 MW nuclear units and new 660 MW

  10. Status of nuclear regulatory research and its future perspectives

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Finland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Trade and Industry - KTM; Ministry of Social Affairs and Health; Ministry of the Interior; Ministry of the Environment; Ministry of Foreign Affairs); 2. Advisory bodies (Advisory Committee on Nuclear Energy; Advisory Committee on Nuclear Safety); 3. Public and semi-public agencies (Finnish Radiation and Nuclear Safety Authority - STUK; State Nuclear Waste Management Fund)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  14. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2001

    International Nuclear Information System (INIS)

    Seliga, M.

    2002-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste (RAW); (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; (13) Conclusion; (14) Appendix: Abbreviations; Radiation safety

  15. Crisis Communication of Nuclear Regulatory Organisations: Towards global thinking

    International Nuclear Information System (INIS)

    Martell, Meritxell; Menendez, Susan; Calvo, Marina

    2013-01-01

    The OECD Nuclear Energy Agency (NEA) Committee on Nuclear Regulatory Activities (CNRA) Working Group on Public Communication of Nuclear Regulatory Organisations (WGPC) organised the workshop 'Crisis communication: facing the challenges' on 9-10 May 2012 in Madrid to address the international dimension of the communicative responses to crises by assessing the experience of Nuclear Regulatory Organisations of the NEA member countries and their stakeholders. The CNRA/WGPC also prepared in 2011, before the Fukushima-Daiichi nuclear accident occurred, a Road Map for Crisis Communication of Nuclear Regulatory Organisations which focused only on national aspects. This 'road map' had not considered the international dimension. CNRA mandated the WGPC to expand the Road Map so as to conclude the follow-up activity on crisis communication. The objective of the present document is to firstly, identify the key messages which can be extracted from three surveys carried out among the WGPC members after Fukushima-Daiichi's accident (Appendices II, III and IV), and incorporate them into the Road Map for Crisis Communication. Secondly, the good practices on public communication of NROs, which were presented during the OECD/NEA Workshop on Crisis Communication: Facing the Challenges, are reported. Following the structure of the road map for public communication responses during crisis included in the NEA report entitled 'Road Map for Crisis Communication of Nuclear Regulatory Organisations - National aspects', the good practices on communication before, during and after a crisis are provided. Overall, the emphasis of this report is on the international aspects of crisis communication, rather than the national dimension. (authors)

  16. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  17. Annual Report 2007. Nuclear Regulatory Authority; Informe Anual 2007. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  18. Annual Report 2008. Nuclear Regulatory Authority; Informe Anual 2008. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  19. Annual Report 2009. Nuclear Regulatory Authority; Informe Anual 2009. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  20. Regulatory aspects of radiation protection in Indian nuclear plants

    International Nuclear Information System (INIS)

    Chander, Vipin; Pawar, S.K.; Duraisamy, S.

    2012-01-01

    Atomic Energy Act of 1962 covers the radiation safety aspects in the development, control and use of atomic energy. To carry out certain regulatory and safety functions under this act, Atomic Energy Regulatory Board (AERB) was constituted in November 15, 1983. Operating Nuclear Power Plants (NPPs) account for about 60% of occupational collective dose and about 65% of the number of radiation workers in the nuclear fuel cycle facilities. Therefore radiation protection aspects in NPPs are of prime importance. In 1970s and 1980s the high radiation exposures in NPPs was an issue with TAPS-1 and 2 reaching annual collective dose of 50 Person-Sv. In response to this, AERB constituted an expert committee to investigate the possibility of reducing collective doses in NPPs in 1988. Subsequently the recommendations of this committee were implemented in all NPPs. In 1990, International Commission on Radiological Protection (ICRP) recommended a downward revision of occupational dose limit to 20 mSv/yr from the earlier limit of 50 mSv/yr. Regulatory body endorsed these recommendations and gradually brought down the annual dose limits from 40 mSv in 1991 to 30 mSv in 1994 with the limit of 100 mSv averaged over a five year period in line with ICRP recommendations. Over the years, the regulatory body has put in place a sound regulatory frame work and mechanism to ensure adequate protection of occupational workers, members of public and environment due to operation of NPPs. Vast experiences in the field of radiation protection vis-à-vis stringent regulatory requirements such as review of exposure cases and special regulatory inspections during Biennial Shut Down (BSD) has helped in downward trends in occupational and public doses. This paper highlights the role of regulatory body in controlling the radiation doses to both occupational workers and members of public in the NPPs through a three-tier review system. The regulatory oversight, inspections and reviews has resulted in

  1. Improving nuclear regulation. NEA regulatory guidance booklets volumes 1-14

    International Nuclear Information System (INIS)

    2011-01-01

    A common theme throughout the series of NEA regulatory guidance reports, or 'green booklets', is the premise that the fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are continuously maintained and operated in an acceptably safe manner. In meeting this objective the regulator must bear in mind that it is the operator that has responsibility for safely operating the nuclear facility; the role of the regulator is to assess and to provide assurance regarding the operator's activities in terms of assuming that responsibility. The full series of these reports was brought together in one edition for the first time in 2009 and was widely found to be a useful resource. This second edition comprises 14 volumes, including the latest on The Nuclear Regulator's Role in Assessing Licensee Oversight of Vendor and Other Contracted Services. The reports address various challenges that could apply throughout the lifetime of a nuclear facility, including design, siting, manufacturing, construction, commissioning, operation, maintenance and decommissioning. The compilation is intended to serve as a knowledge management tool both for current regulators and the new nuclear professionals and organisations entering the regulatory field. Contents: Executive Summary; Regulatory Challenges: 1. The Role of the Nuclear Regulator in Promoting and Evaluating Safety Culture; 2. Regulatory Response Strategies for Safety Culture Problems; 3. Nuclear Regulatory Challenges Related to Human Performance; 4. Regulatory Challenges in Using Nuclear Operating Experience; 5. Nuclear Regulatory Review of Licensee Self-assessment (LSA); 6. Nuclear Regulatory Challenges Arising from Competition in Electricity Markets; 7. The Nuclear Regulatory Challenge of Judging Safety Back-fits; 8. The Regulatory Challenges of Decommissioning Nuclear Reactors; 9. The Nuclear Regulator's Role in Assessing Licensee Oversight of Vendor and Other Contracted Services

  2. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2002

    International Nuclear Information System (INIS)

    Seliga, M.

    2003-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2002 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Special Enclosure: 10. Years of the Nuclear Regulation Authority of the Slovak Republic. An independent and professional state regulatory authority supervising the nuclear safety is one of prerequisites of the safe operation of nuclear installations in each country. In the Slovak Republic this role has been fulfilled by the Nuclear Regulatory Authority (UJD) since 1993. The main mission of UJD set down by the law is to guarantee for the Slovak citizens as well as for international society that the nuclear power on the territory of the Slovak Republic will be used exclusively for peaceful purposes and that the Slovak nuclear installations are designed, constructed, operated and decommissioned in compliance with relevant legal documents. The mission of UJD is also to tender the operation of nuclear installations so that their operation would not jeopardise the nuclear power plant staff or public and would not cause detrimental effects to the environment or property. UJD prepares laws or comments to the laws and issues decrees in the area of its competencies, issues authorisations for operators of nuclear facilities, reviews and evaluates the safety documentation of nuclear installations, performs the inspections at nuclear installations comparing whether the legal requirements are fulfilled and whether the real status of nuclear installations and their operation is or not in compliance with

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Australia

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Bilateral safeguards agreements; International Atomic Energy Agency Safeguards Agreement; The South Pacific Nuclear Free Zone Treaty Act; The Comprehensive Nuclear Test-Ban Treaty Act; The Nuclear Non-Proliferation (Safeguards) Act); 9. Transport; 10. Nuclear third party liability; II) - Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Health and Ageing; Minister for Foreign Affairs; Minister for the Environment, Heritage and the Arts; Minister for, Resources, Energy and Tourism); 2. Advisory bodies (Radiation Health and Safety Advisory Council; Advisory Committees); 3. Public and semi-public agencies (Australian Radiation Protection and Nuclear Safety Agency (ARPANSA); Australian Safeguards and Non-Proliferation Office; Australian Nuclear Science and Technology Organisation (ANSTO); Supervising Scientist)

  4. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    1996-01-01

    This study is part of a series of analytical studies on nuclear legislation in OECD Member countries, prepared with the co-operation of the countries concerned. Each study has been organised on the basis of a standardised format for all countries, thus facilitating the comparison of information. The studies are intended to be updated periodically, taking into account modifications to the nuclear legislation in each country. This is the first update to the 1995 Edition. Unfortunately, due to the constraints of the OECD Publications Service, it covers only those legislative and institutional changes which, in our view, are of the greatest significance for our readers. Thus, you will find new chapters on Finland, Greece, Italy, Japan, Mexico, the Netherlands, Portugal and the United States. Changes to the nuclear legislation and institutions of the remaining countries will be incorporated into the next Update which is expected to be published at the end of 1997. (author)

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction (Licensing system; Offences, compliance and enforcement; Regulatory documents; Other relevant legislation); 2. Mining regime; 3. Nuclear substances and radiation devices; 4. Nuclear facilities; 5. Trade in nuclear materials and equipment (Exports, Other imports); 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Governor in council; Minister of natural resources; Other Ministerial authorities; Canadian Nuclear Safety Commission - CNSC); 2. Public and semi-public agencies (National Research Council - NRC; Natural Sciences and Engineering Research Council; Atomic Energy of Canada Ltd. - AECL)

  6. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  7. Creating a National Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Way, R.

    2010-01-01

    For a number of reasons, countries throughout the world are now considering the development of new nuclear power programs. Whether it is to meet increased power requirements, lack of indigenous resources or environmental concerns, these countries are looking at nuclear power as a solution to their increasing energy needs. Such an undertaking will require a concerted effort by national industrial firms and several branches of government. This paper will look the various phases that encompass the development of a nuclear power program from the perspective of the human resources development. In short it will consider the following issues: Planning a Human Resource Development strategy; Establishing organization, roles and responsibilities; Establishing an Human Resource Development vision, mission, goals and objectives; Collecting and evaluating data for an HRD needs and resource assessment; Conducting a Human Resource Development needs and resource assessment; Determining short-, medium-, and long-term needs; Developing an implementation plan to address education, training, recruitment, retention and knowledge management; Establishing systems that monitor, evaluate and anticipate HRD needs as the nuclear program evolves; Funding and financing short- and long-term Human Resource Development efforts

  8. Regulatory practices and safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The International Symposium on Regulatory Practices and Safety Standards for Nuclear Power Plants was jointly organized by the International Atomic Energy Agency (IAEA), for Nuclear Energy Agency of the OECD and the Government of the Federal Republic of Germany with the objective of providing an international forum for the exchange of information on regulatory practices and safety standards for nuclear power plants. The Symposium was held in Munich, Federal Republic of Germany, from 7 to 10 November 1988. It was attended by 201 experts from some 32 Member States and 4 international organizations. Fifty-one papers from 19 Member States and 2 international organizations were presented and discussed in 5 technical sessions covering the following subjects: National Regulatory Practices and Safety Standards (14 papers); Implementation of Regulatory Practices - Technical Issues (8 papers); Implementation of Regulatory Practices - Operational Aspects (8 papers); Developments and Trends in Safety Standards and Practices (11 papers); International Aspects (10 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  9. Regulatory inspection of nuclear power plants in NEA member countries

    International Nuclear Information System (INIS)

    Gronow, W.S.; Ilani, O.

    1977-01-01

    The increasing use of nuclear power and public interest in the safety controls led to the proposal by the sub-Committe on Licensing of the NEA Committee on the Safety of Nuclear Installations for a specialist meeting on regulatory inspection practices. This report which was prepared at the request of the sub-Committee to assist in the exchange of views and experience at the meeting reviews the response to a questionnaire on the systems employed, the scope and objectives and the effort involved in regulatory inspection throughout all stages of the life of a nuclear power plant. Other aspects of regulatory inspection activities are discussed including documentation, procedures for changes in technical specification and modifications to plant, powers and duties of regulatory inspection personnel and actions to be taken in the event of an accident or emergency. The report concludes with some comments on those aspects of regulatory inspection practices where further information and an exchange of experience might prove to be beneficial to Member countries. (author)

  10. Regulatory Inspection of Nuclear Power Plants in NEA Member Countries

    International Nuclear Information System (INIS)

    1978-01-01

    Based on the replies to a questionnaire, this report gives a description and comparative evaluation of the regulatory inspection activities in several NEA Member countries. The questionnaire which was circulated to all Member countries requested details on the organisation, system, scope and objectives of nuclear regulatory inspection and the effort required throughout all stages of the life of a nuclear plant including the use of independent bodies or consultants. Additional information was requested on the documentation concerned with regulatory inspections, incident and accident reporting procedures, and the duties, powers and bases for recruitment of regulatory personnel with the object of covering all related aspects. However, because of the differences in national practices and perhaps in the interpretation of the questionnaire, it proved to be extremely difficult to make an evaluation and comparison of inspection activities and effort involved in these Member countries. This report, which includes a section on the nuclear power programme in Member countries, should therefore only be regarded as an initial review but it provides a useful contribution to the exchange of experience and views on regulatory inspection practices

  11. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  12. Quality management of the nuclear regulatory body. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    2001-09-01

    This report is the outcome of the ninth series of peer discussions on regulatory practices entitled Nuclear Regulatory Body Quality Management, held in March and May 2001, and which involved the participation of senior nuclear regulators from 23 IAEA Member States. This report conveys the essence of two peer group discussions and highlights some good practices identified by the participating senior regulators. The objective of the discussions was to share experiences of regulatory bodies in implementing QM systems in their own work so as to ensure that the regulatory control over the licensees is effective and efficient and is commensurate with the mandate assigned by their governments. The shared experiences and good practices presented in the report, however, do not necessarily reflect the views of and good practices endorsed by the governments of the nominating Member States, the organizations to which the regulators belong, or the IAEA. The report sets down the peer group's experience in developing, implementing and evaluating QM within their regulatory bodies and identifies points to bear in mind when introducing such a system. This report is structured so that it covers the subject matter under the main headings of: application of quality management to regulatory work; development and implementation of quality management; assessment and improvement of performance; and good practices

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Mexico

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Nuclear terrorism; II. Institutional Framework - The federal government: 1. Regulatory and supervisory authorities (Ministry of Energy; Ministry of Health; Ministry of Labour and Social Security; Ministry of the Environment and Natural Resources; Ministry of Communications and Transport); 2. Public and semi-public agencies: (National Nuclear Safety and Safeguards Commission; National Nuclear Research Institute)

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovenia

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Safeguards for nuclear material; 7. Radiation protection; 8. Radioactive waste management; 9. Nuclear security; 10. Transport; 11. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Slovenian Nuclear Safety Administration - SNSA; Slovenian Radiation Protection Administration - SRPA); 2. Advisory bodies; 3. Public and semi-public agencies; 4. Technical support organisations - approved experts

  15. Renewability and sustainability aspects of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Sümer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 İncek, Gölbaşı, Ankara (Turkey)

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission

  16. Nuclear facilities and environment - an overview of regulatory aspects

    International Nuclear Information System (INIS)

    Chande, S.K.

    2007-01-01

    The Department of Atomic Energy (DAE) operates the entire range of nuclear fuel cycle facilities in the country. The radioactive wastes generated in these facilities have to be disposed into the environment without any adverse effect. In doing so, utmost care is taken to ensure the highest level of safety to the environment, the general public and the occupational workers. Atomic Energy Regulatory Board (AERB) is entrusted with the responsibility of protecting workers, public and environment against undue hazards from ionising radiations. To achieve this objective, AERB exercises regulatory control on the disposal of radioactive wastes from nuclear facilities. The disposal of radioactive effluents into the environment is governed by the Atomic Energy (Safe Disposal of Radioactive Wastes) Rules, 1987. The regulatory aspects with respect to disposal of radioactive wastes are discussed in this paper. (author)

  17. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  18. Quality manual. Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    2006-03-01

    This quality manual of the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. Basic characteristics of the UJD, Quality manual operative control, and Quality management system (QMS) are described. Management responsibility, Processes realization, Measurement, analysis (assessment) and improvement of the quality management system, Cancellation provision as well as abbreviations used in the Quality Manual are presented.

  19. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances.

  20. US Nuclear Regulatory Commission organization charts and functional statements

    International Nuclear Information System (INIS)

    1997-01-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed

  1. Nuclear Regulatory Commission issuances: August 1994. Volume 40, Number 2

    International Nuclear Information System (INIS)

    1994-08-01

    This report contains the collected issuances of the US Nuclear Regulatory Commission for the month of August, 1994. The report includes issuances of the Commission, the Atomic Safety and Licensing Boards, and the Directors' Decisions. Some of the entities involved include Gulf States Utility company, Sequoyah Fuels Corporation and General Atomics, Georgia Power Company, and Arizona Public Service Company

  2. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances

  3. US Nuclear Regulatory Commission organization charts and functional statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  4. Key regulatory challenges for future nuclear power plants

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2001-01-01

    Key regulatory challenges for future nuclear power plants are concerned with fuel and cladding materials taken to higher burnup and operated at higher temperatures. Particular challenges are related to reduction in waste toxicity, understanding and control of coolant corrosion, qualification of fuel particles, new maintenance practices

  5. Regulatory oversight of maintenance activities at nuclear power plants

    International Nuclear Information System (INIS)

    Pape, M.

    1997-01-01

    Regulation of nuclear safety in the UK is based on monitoring of compliance with licence conditions. This paper discusses legislation aspects, license conditions, license requirements for maintenance and maintenance activities in the UK. It also addresses the regulator utility interaction, the regulatory inspection of maintenance and the trends in maintenance. (author)

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovak Republic

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances and Equipment; 4. Nuclear Installations (Licensing and Inspection, including Nuclear Safety; Emergency Response); 5. Trade in Nuclear Materials and Equipment; 6. Radiological Protection; 7. Radioactive Waste Management; 8. Non-proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Nuclear Regulatory Authority of the Slovak Republic - UJD; Ministry of Health; Ministry of the Environment; Ministry of the Interior; Ministry of Economy; Ministry of Labour and National Labour Inspectorate); 2. Public and Semi-Public Agencies

  7. Nuclear security recommendations on nuclear and other radioactive material out of regulatory control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this publication is to provide guidance to States in strengthening their nuclear security regimes, and thereby contributing to an effective global nuclear security framework, by providing: - Recommendations to States and their competent authorities on the establishment or improvement of the capabilities of their nuclear security regimes, for carrying out effective strategies to deter, detect and respond to a criminal act, or an unauthorized act, with nuclear security implications, involving nuclear or other radioactive material that is out of regulatory control; - Recommendations to States in support of international cooperation aimed at ensuring that any nuclear or other radioactive material that is out of regulatory control, whether originating from within the State or from outside that State, is placed under regulatory control and the alleged offenders are, as appropriate, prosecuted or extradited

  8. US Nuclear Regulatory Commission region IV

    International Nuclear Information System (INIS)

    Vanderburch, C.

    1996-01-01

    The NRC has established a policy to provide for the timely through and systematic inspection of significant operational events at nuclear power plants. This includes the use of an Augmented Inspection Team to determine the causes, conditions, and circumstances relevant to an event and to communicate its findings and conclusions to NRC management. In accordance with NRC Inspection Manual Chapter 0325. The Region IV Regional Administrator dispatched an Augmented Inspection Team to the Wolf Creek Nuclear Generating Station to review the circumstances surrounding a manual reactor trip on January 30, 1996, with the failure of five control rods to fully insert into the core, a failure of the turbine-driven auxiliary feedwater pump, and the subsequent loss of one train of the essential service water system

  9. Regulatory control of nuclear safety in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final disposal facility for

  10. Regulatory control of nuclear safety in Finland. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final

  11. Sustainability and acceptance - new challenges for nuclear energy

    International Nuclear Information System (INIS)

    Lensa, W. von

    2001-01-01

    This paper discusses the concept of sustainability in relation to acceptance of nuclear energy. Acceptance is viewed in terms of public acceptance, industrial acceptance, and internal acceptance/consensus within the nuclear community. It addresses sustainability criteria, the need for innovation, and the different levels of acceptability. The mechanisms of risk perception are discussed along with the technological consequences from risk perception mechanisms leading to specific objections against nuclear energy. (author)

  12. Nuclear energy-the strategic role and sustainability in china

    International Nuclear Information System (INIS)

    Pan Ziqiang; Shen Wenquan

    2007-01-01

    By analyzing the challenges of China's energy supply, an excellent perspective of nuclear power development in china has been described. Taking into account the mid-long term development requirements, a comprehensive, coordinated and sustainable nuclear power strategic consideration and proposal is put forward.Thus our national nuclear industry can not only catch up with the world advanced level in proper time, but also possess the enough stamina of sustainability. (authors)

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Japan

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Cabinet Office; Minister of Economy, Trade and Industry - METI; Minister of Land, Infrastructure and Transport - MLIT; Minister of Education, Culture, Sports, Science and Technology - MEXT); 2. Advisory bodies (Atomic Energy Commission - AEC; Nuclear Safety Commission - NSC; Radiation Council; Special Committee on Energy Policy; Other advisory bodies); 3. Public and Semi-Public Agencies (Japan Atomic Energy Agency - JAEA)

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Norway

    International Nuclear Information System (INIS)

    2001-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment (Trade governed by nuclear energy legislation; Trade governed by radiation protection legislation; Trade governed by export/import control legislation); 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Ministerial Level (Ministry of Health and Social Affairs; Ministry of Trade and Industry; Ministry of Foreign Affairs; Other Ministries); B. Subsidiary Level: (The Norwegian Radiation Protection Authority - NRPA; The Norwegian Nuclear Emergency Organisation); 2. Public and Semi-Public Agencies - Institute for Energy Technology - IFE

  15. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    International Nuclear Information System (INIS)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  16. Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  17. Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  18. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  19. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  20. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  1. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    International Nuclear Information System (INIS)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  2. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.

    2015-09-01

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  3. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2012

    International Nuclear Information System (INIS)

    2013-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2012 is presented. These activities are reported under the headings: Foreword; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Stress tests on the nuclear power plants; (5) Nuclear Materials in SR; (6) Building Authority; (7) Emergency planning and preparedness; (8) International activities; (9) Public communication; (10) Nuclear Regulatory Authority of the Slovak Republic; (11) Attachments; (12) Abbreviations used.

  4. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  5. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties

  6. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties.

  7. International conference on strengthening of nuclear safety in Eastern Europe. Armenian Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Nersesyan, V.

    1999-01-01

    The status of the Armenian Nuclear Regulatory Authority (ANRA) are described in detail with its main task and responsibilities concerning regulations and surveillance of nuclear and radiation safety. The following issues are presented: nuclear legislation; inspection activities; licensing of significant safety related modifications and modernization of NPPs; incidents at NPPs; personnel training; emergency planning; surveillance of nuclear materials; radioactive waste management; and plan of the ANRA perspective development

  8. Internal communication within the Slovak Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    2000-01-01

    One of the primary objectives of the Slovak Nuclear Regulatory Authority (UJD) Public Relations Program is to make available to the public full and complete information on UJD activities to assist the public in making informed judgments regarding UJD activities. The primary means of keeping the public informed about the regulatory activities and programs of the UJD is through the news media. A central state administration body, the UJD provides on request within its province in particular information on operational safety of nuclear energy installations independently of those responsible for the nuclear programme, thereby allowing the public and the media to control data and information on nuclear installations. A major element of providing information is the demonstration that the area of nuclear energy uses has its binding rules in the Slovak Republic and the observance thereof is controlled by the state through an independent institution - UJD. As early as 1995 were laid on the UJD the foundations of the concept of broadly keeping the public informed on UJD activity and the safety of nuclear installations by opening the UJD Information Centre. Information Centre provides by its activity communications with the public and mass media, which is instrumental in creating in the public a favourable picture of the independent state nuclear regulation. Internal and external communications are equally important

  9. Assessment of nuclear energy sustainability index using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Aly, Naguib; Nagy, Mohammad; Agamy, Saeed

    2010-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions. In this paper, the nuclear energy, whose sustainability will be assessed, is governed by the dynamics of three subsystems: environmental, economic, and sociopolitical. The overall sustainability is then a non-linear function of the individual sustainabilities. Each subsystem is evaluated by means of many components (pressure, status, and response). The combination of each group of indicators by means of fuzzy logic provides a measurement of sustainability for each subsystem.

  10. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  11. The Role of Nuclear Energy in Establishing Sustainable Energy Paths

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.; Van der Zwaan, B.C.C.

    2001-10-01

    This study juxtaposes the major facts and arguments about nuclear energy and its potential role in establishing sustainable energy paths. The notion of sustainability has a strong normative character and can be interpreted in a variety of ways. Therefore, also the sustainability of energy supply technologies possesses a normative nature. This paper analyses what the major dimensions are that ought to be addressed when nuclear energy technology is compared, in sustainability terms, with its fossil-fuelled and renewable counterparts. It is assessed to what extent energy supply portfolios including nuclear energy are more, or less, sustainable in comparison to those that exclude this technology. It is indicated what this inventory of collected facts and opinions means for both policy and research regarding nuclear energy in the case of the Netherlands. 32 refs

  12. Regulatory control of nuclear safety in Finland. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of

  13. Regulatory control of nuclear safety in Finland. Annual report 1998

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of Kola and

  14. U.S. Nuclear Regulatory Commission Process for Risk-Informing the Nuclear Waste Arena

    International Nuclear Information System (INIS)

    Leslie, B. W.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is increasing the use of risk insights and information in its regulation of nuclear materials and waste. The objective of this risk-informed regulatory effort is to improve the effectiveness and efficiency of the agency, while maintaining or increasing its focus on safety. The agency's Office of Nuclear Material Safety and Safeguards (NMSS) proposed a five-step process to carry out a framework for increasing the use of risk information and insights in its regulation of nuclear materials and waste. The office is carrying out the five-step process to risk-inform the nuclear materials and waste arenas. NMSS's actions included forming a Risk Task Group and the use of case studies to test and complete screening criteria for identifying candidate regulatory applications amenable for risk-informing. Other actions included involving stakeholders through enhanced public participation, developing safety goals for materials and waste regulatory applications, and establishing a risk training program for staff. Through the case studies, NRC staff found the draft screening criteria to be effective in deciding regulatory areas that may be amenable to an increased use of risk insights. NRC staff also found that risk information may have the potential to reduce regulatory burden and improve staff's efficiency in making decisions, while maintaining safety. Finally, staff found that it would be possible to develop safety goals for the nuclear materials and waste arenas

  15. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Netherlands

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Fissionable materials, ores, radioactive materials and equipment (Fissionable materials and ores; Radioactive materials and equipment); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection (Protection of workers; Protection of the public; Protection of individuals undergoing medical exposure); 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Housing, Spatial Planning and the Environment; Minister for Economic Affairs; Minister for Social Affairs and Employment; Minister for Health, Welfare and Sports; Minister for Finance; Minister for Foreign Affairs); 2. Advisory body - Health Council of the Netherlands; 3. Public and semi-public agencies (Nuclear Research and Consultancy Group - NRG; Central Organisation for Radioactive Waste - COVRA)

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Spain

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trading in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Safeguards and non-proliferation; Physical protection); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Industry, Tourism and Trade - MITYC; Ministry of the Interior - MIR; Ministry of Economy and the Exchequer - MEH; Ministry of the Environment and Rural and Marine Affairs - MARM); 2. Public and semi-public agencies (Nuclear Safety Council - CSN; Centre for Energy-related, Environmental and Technological Research - CIEMAT; National Energy Commission - CNE; 3. Public capital companies (Enusa Industrias Avanzadas, s.a. - ENUSA; Empresa Nacional de Residuos Radiactivos, s.a. - ENRESA)

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Portugal

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Health; Minister of Science, Technology and Higher Education; Ministry of Economy and Innovation; Ministry of Environment and Territorial Planning; Other authorities); 2. Advisory bodies (Independent Commission for Radiological Protection and Nuclear Safety - CIPRSN; National Radiation Protection Commission - CNPCR; National Commission for Radiological Emergencies - CNER; Other advisory bodies); 3. Public and semi-public agencies

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Hungary

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Atomic Energy Co-ordination Council; Hungarian Atomic Energy Authority - HAEA; Minister for Health; Minister for Local Government and Regional Development and Minister for Justice and Law Enforcement; Minister for Agriculture and Rural Development; Minister for Economy and Transport; Minister of Environment Protection and Water Management; Minister for Defence; Minister for Education; President of the Hungarian Mining and Geological Authority; Governmental Co-ordination Committee); 2. Advisory bodies (Scientific Board); 3. Public and semi-public agencies (Institute for Electric Power Research - VEIKI; Atomic Energy Research Institute - AEKI; Institute of Isotopes; Department of Physical Chemistry of the University of Pannon; Hungarian Power Companies Ltd - MVM Zrt.)

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Denmark

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister for the Environment/Minister of Transport and Energy; Minister of Justice; Minister of Defence; National Board of Health; Emergency Management Agency); 2. Advisory bodies (The Danish Ministry of Energy, Supply and Climate and the Danish Energy Agency); 3. Public and semi-public agencies (Risoe National Laboratory)

  20. State Office for Nuclear Safety - New Regulatory Body in Croatia

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Valcic, I.; Cizmek, A.

    2006-01-01

    The Act on Nuclear Safety was adopted by the Croatian Parliament on 15 October 2003, and it is published in the Official Gazette No. 173/03. This Act regulates safety and protective measures for using nuclear materials and specified equipment and performing nuclear activities, and establishes the State Office for Nuclear Safety. Provisions of this Act apply on nuclear activities, nuclear materials and specified equipment. Also, by accession to international conventions and agreements, Croatia took the responsibility of implementing the provisions of those international treaties. In the process of European and international integrations, Croatia has to make harmonization with European and international standards also in the field of nuclear safety. The State Office for Nuclear Safety as an independent regulatory authority started its work on 1st June 2005 by taking over responsibility for activities relating to nuclear safety and cooperation with the International Atomic Energy Agency from the Ministry of the Economy, Labour and Entrepreneurship. In this paper responsibilities, organization and projects of the State Office for Nuclear Safety will be presented, with the accent on development of regulations and international cooperation. (author)

  1. IAEA Mission Concludes Peer Review of Pakistan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    An international team of senior nuclear safety experts today concluded a nine-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for the safety of operating nuclear power plants in the United States of America (USA). The Integrated Regulatory Review Service (IRRS) mission was a follow-up to the IRRS mission to the US Nuclear Regulatory Commission (NRC) that was conducted in 2010, with the key additional aim of reviewing whether the response of the US regulatory regime to the implications of the accident at TEPCO's Fukushima Daiichi Plant had been timely and effective. The mission team concluded that the recommendations and suggestions made by the 2010 IRRS mission have been taken into account systematically under the NRC's subsequent action plan, with significant progress in many areas and many improvements carried out. One of two recommendations and 19 out of 20 suggestions made by the 2010 IRRS mission have been effectively addressed and can therefore be considered closed. The outstanding recommendation relates to the NRC's review of its Management System, which is in the process of being finalised. The IRRS team also found that the NRC acted promptly and effectively after the Fukushima accident in the interests of public health and safety, and that the report of its Near-Term Task Force represents a sound and ample basis for taking into account the lessons learned from the accident

  2. Sustainability indicators for the assessment of nuclear power

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2011-01-01

    Electricity supplies an increasing share of the world's total energy demand and that contribution is set to increase. At the same time, there is increasing socio-political will to mitigate impacts of climate change as well as to improve energy security. This, in combination with the desire to ensure social and economic prosperity, creates a pressing need to consider the sustainability implications of future electricity generation. However, approaches to sustainability assessment differ greatly in their scope and methodology as currently there is no standardised approach. With this in mind, this paper reviews sustainability indicators that have previously been used to assess energy options and proposes a new sustainability assessment methodology based on a life cycle approach. In total, 43 indicators are proposed, addressing the techno-economic, environmental and social sustainability issues associated with energy systems. The framework has been developed primarily to address concerns associated with nuclear power in the UK, but is applicable to other energy technologies as well as to other countries. -- Highlights: → New framework for life cycle sustainability assessment of nuclear power developed. → The framework comprises 43 indicators addressing techno-economic, environmental and social sustainability. → Completely new indicators developed to address different sustainability issues, including nuclear proliferation, energy supply diversity and intergenerational equity. → The framework enables sustainability comparisons of nuclear and other electricity technologies. → Indicators can be used by various stakeholders, including industry, policy makers and NGOs to help identify more sustainable electricity options.

  3. Sustainable promotion nuclear power enterprise procurement bidding risk management

    International Nuclear Information System (INIS)

    Wu Yimin

    2014-01-01

    Nuclear power enterprise procurement bidding work faced with certain risk in recent years, the domestic nuclear power enterprises in the bidding work never stop research and explore the effective ways to guard against legal risks, and has made considerable progress, the eighteenth big country advocates the safety and efficiency of nuclear power development policy, in the face of the subsequent nuclear power construction projects have started, nuclear power enterprise bidding risk management work shoulder heavy responsibilities article through nuclear power enterprise procurement bidding risk management present situation, proposed the sustainable promotion nuclear power enterprise procurement bidding risk management countermeasures. (author)

  4. Accountability feedback assessments for improving efficiency of nuclear regulatory institutions

    International Nuclear Information System (INIS)

    Lavarenne, Jean; Shwageraus, Eugene; Weightman, Michael

    2016-01-01

    The Fukushima-Daiichi Accident demonstrated the need of assessing and strengthening institutions involved in nuclear safety, including the accountability of regulators. There are a few problems hindering the path towards a greater understanding of accountability systems, the ensemble of mechanisms holding to account the nuclear regulator on behalf of the public. There is no consensus on what it should deliver and no systematic assessment method exists. This article proposes a method of assessing institutions based on defence in depth concepts and inspired from risk-assessment techniques used for nuclear safety. As a first step in testing the proposal, it presents a simple Monte-Carlo simulation, illustrating some of the workings of the method of assessment and demonstrating the kind of results it will be able to supply. This on-going work will assist policy-makers take better informed decisions about the size, structure and organisation of a nuclear regulator and the cost-effective funding of its accountability system. It will assist in striking a balance between efficiency and resilience of regulatory decision-making processes. It will also promote the involvement of stakeholders and allow them to have a more meaningful impact on regulatory decisions, thereby enhancing the robustness of the regulatory system and potentially trust and confidence. - Highlights: •A general introduction to regulatory accountability is given. •A definition of an effective accountability system is proposed. •A method to assess accountability systems is proposed. •A simplified simulation of a regulatory system demonstrates the method’s capabilities.

  5. Regulatory trends and practices related to nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Cantor, R.A.

    1984-01-01

    In the next several decades, the electric utility industry will be faced with the retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this paper is to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers

  6. Sustainability, Ethics and Nuclear Energy: Escaping the Dichotomy

    Directory of Open Access Journals (Sweden)

    Céline Kermisch

    2017-03-01

    Full Text Available In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions, namely: (i what should be sustained; (ii why should we sustain it; and (iii for whom should we sustain it. This leads us to conceptualize the notion of sustainability as a set of values, including safety, security, environmental benevolence, resource durability, and economic viability of the technology. The practical usefulness of sustainability as a moral framework is highlighted by demonstrating how it is applicable for understanding intergenerational dilemmas—between present and future generations, but also among different future generations—related to nuclear fuel cycles and radioactive waste management.

  7. Nuclear energy–Any solution for sustainability and climate protection?

    International Nuclear Information System (INIS)

    Mez, Lutz

    2012-01-01

    For the future of nuclear power it will be decisive whether or not nuclear fission technologies offer a sustainable solution to global energy problems. The impressive expansion of nuclear reactors in the 1960s and 1970 slowed down after the meltdown in Harrisburg and the nuclear explosion in Chernobyl. Since the end of the 1980s installed nuclear capacity has stagnated, and in Europe declined. However, a nuclear revival or renaissance has been predicted for 30 years. This article reviews global scenarios and national nuclear programmes and analyses problems in the nuclear industry. Special attention is given to nuclear power and global warming and the nexus between nuclear power and nuclear proliferation. - Highlights: ► The status of nuclear programmes in the world is examined. ► Nuclear power has taken a nose-dive in Western industrialised countries. ► The nuclear renaissance has been announced since 1981 but never materialised. ► Share of nuclear power is 15.7% of global electricity but only 2.3% of global FEC. ► Nuclear energy is no sustainable solution and cannot avoid global warming.

  8. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    International Nuclear Information System (INIS)

    Murphy, E.L.; Sullivan, E.J.

    1997-01-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with

  9. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  10. The bibliographical documentation in the Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Carregado, M.A.

    1998-01-01

    Full text: The presentation of the following work serves to display the recourses which the Information Center (I.C.) - Ezeiza Sector of the Nuclear Regulatory Authority of the Argentine Republic possesses. These recourses help the investigation and application of the regulatory subject as well as the scientific technical community, which uses the information about radiation protection and nuclear safety. Periodical publications, reports, books, standards, etc., are specified quantitatively in detail. Mainly, the automated means are emphasized in order to get to safe ways of information. Data bases in CD-ROM are also enumerated. These are now essential in order to track down the expert information on each theme. The most outstanding ones among these data bases are: INIS, Nuclear Science Abstracts, Nuclear Regulatory Library, Medline and Poltox. Some recourses for obtaining important documents are mentioned, e.g.: The British Library, HMSO and NTIS, as well as addresses of institutions, catalogues of publication on Internet, etc., which allow an easy access to the bibliography required. An evaluation of periodical publications by the Information Center is carried out, as well as information about users connected to the request of bibliographical searches and documents. (author) [es

  11. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  12. IAEA Mission Concludes Peer Review of UK's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Senior international nuclear safety and radiation protection experts today concluded a ten-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in the United Kingdom (UK). The Integrated Regulatory Review Service (IRRS) mission team said in its preliminary findings that the UK had made considerable progress since reviews in 2006 and 2009. It also identified good practices in the country's nuclear regulatory system. In addition to following up previous missions, a key objective was to review the effectiveness of the role of the Office of Nuclear Regulation (ONR), the UK's nuclear regulator, in ensuring the safety of radioactive waste management and decommissioning, occupational radiation protection, and public and environmental exposures, including emergency planning and response. The mission also considered the response of the UK's regulatory regime to the implications of the Fukushima Daichi accident had been timely and effective. Recommendations and suggestions were made to the ONR and the Government aimed at strengthening the effectiveness of the country's regulatory framework and functions in line with IAEA Safety Standards, the control of radioactive discharges and environmental monitoring. 'The staff of ONR is clearly dedicated to their mission to secure the protection of people and society from the hazards of the nuclear industry. I am confident that ONR will use the results of this mission to further enhance their regulatory programs', said Bill Borchardt, mission leader and former Executive Director of the United States Nuclear Regulatory Commission (NRC). 'The staff were open and cooperative in their discussions; they provided the fullest practicable assistance, and accepted advice from the Team for continuous improvement in their regulatory work'. ONR's Chief Executive, John Jenkins, said that the full report of the IRRS mission will enhance regulatory effectiveness in the UK

  13. Decommissioning of Australian nuclear facilities - a regulatory perspective

    International Nuclear Information System (INIS)

    Diamond, T.V.; Mabbott, P.E.; Lawrence, B.R.

    2000-01-01

    Decommissioning has been a key political, economic and technical issue for the nuclear industry in recent years as older nuclear facilities have been retired. The management of decommissioning is an important part of nuclear safety as the potential exists for occupational exposures that are several times those expected during normal operation. It involves pre-planning and preparatory measures, procedures and instructions, technical and safety assessments, technology for handling large volumes of radioactive material, cost analyses, and a complex decision process. A challenge for the Commonwealth Government regulatory body, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), is to allow the Commonwealth entities that operate nuclear facilities ample freedom to address the above, at the same time ensuring that international best practice is invoked to ensure safety. Accordingly, ARPANSA has prepared a regulatory guideline, first drafted by the Nuclear Safety Bureau in March 1997, that documents the process and the criteria that it uses when assessing an application from an operating organisation for a decommissioning licence. Copyright (2000) Australasian Radiation Protection Society Inc

  14. Adaptation of existent thermal park to the new regulatory frame sustainable

    International Nuclear Information System (INIS)

    Lopez Alvarez, L.

    2010-01-01

    In the last decade 2000-2010), both energy demand and peak capacity needs have experienced an important increase. Moratorium on new nuclear units and the reduced potential for new hydro projects have led to new installed capacity being basically covered by thermal power plants. Also in these latest years, the regulatory frame has developed different initiative destined to get a more environmentally sustainable energy sector. to name a few, the strong support to renewable energy, the drastic reduction in acid emissions to atmosphere (NO x , SO x and particulate matter) and carbon emissions reduction policies have had a great impact on operation profiles and requirements on thermal plants, leading to investment on new equipment and on the existing assets. Along this period, electric utilities have added these sustainability criteria to the development and management of their thermal portfolio, taking some decisions that have shaped the current generation map in Spain. Nonetheless, in the short and mid term, utilities are facing new challenges such as greater operation flexibility to allow the increasing market share of non-manageable energies or the applicability of more ambitious goals in the global reduction of acid an carbon emissions. (Author)

  15. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Turkey

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Prime Minister; Ministry of Energy and Natural Resources; Ministry of Health; Ministry of the Environment and Forestry); 2. Public and semi-public agencies (Turkish Atomic Energy Authority - TAEK; General Directorate for Mineral Research and Exploration - MTA; ETI Mine Works General Management; Turkish Electric Generation and Transmission Corporation - TEAS; Turkish Electricity Distribution Corporation - TEDAS)

  16. Evolution of nuclear security regulatory activities in Brazil

    International Nuclear Information System (INIS)

    Mello, Luiz A. de; Monteiro Filho, Joselio S.; Belem, Lilia M.J.; Torres, Luiz F.B.

    2009-01-01

    The changing of the world scenario in the last 15 years has increased worldwide the concerns about overall security and, as a consequence, about the nuclear and radioactive material as well as their associated facilities. Considering the new situation, in February 2004, the Brazilian National Nuclear Energy Commission (CNEN), decided to create the Nuclear Security Office. This Office is under the Coordination of Nuclear Safeguards and Security, in the Directorate for Safety, Security and Safeguards (Regulatory Directorate). Before that, security regulation issues were dealt in a decentralized manner, within that Directorate, by different licensing groups in specific areas (power reactors, fuel cycle facilities, radioactive facilities, transport of nuclear material, etc.). This decision was made in order to allow a coordinated approach on the subject, to strengthen the regulation in nuclear/radioactive security, and to provide support to management in the definition of institutional security policies. The CNEN Security Office develops its work based in the CNEN Physical Protection Regulation for Nuclear Operational Units - NE-2.01, 1996, the Convention on the Physical Protection of Nuclear Material and the IAEA Nuclear Security Series . This paper aims at presenting the activities developed and the achievements obtained by this new CNEN office, as well as identifying the issues and directions for future efforts. (author)

  17. Regulatory system for control of nuclear facilities in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2005-01-01

    All human activities have associated risks. Nuclear programme is no exception. The Bangladesh Atomic Energy Commission (BAEC), constituted in February 1973 through the promulgation of the Presidential order 15 of 1973. Functions of BAEC include research and development in peaceful application of atomic energy, generation of electricity and promotion of international relations congenial to implementation of its programmes and projects. In 1993 the Government of Bangladesh promulgated the law on Nuclear Safety and Radiation Control. Considering the human resources, expertise and facilities needed for implementation of the provisions of the NSRC law, BAEC was entrusted with the responsibility to enforce it. The responsibilities of the BAEC cover nuclear and radiological safety within the installations of BAEC and radiological safety in the manifold applications of radioisotopes and radiation sources within the country. An adequate and competent infrastructure has been built to cater to the diverse nuclear and radiation protection requirements of all nuclear facilities in Bangladesh, arising at different stages from site selection to day-to-day operation. In addition, periodic inspections of the nuclear facilities are carried out. The licensing and regulatory inspection systems for controlling of nuclear installations and radiation sources are established. The paper describes the legal provisions, responsibilities and organization of BAEC with special emphasis on nuclear safety and radiation protection of nuclear facilities in Bangladesh. (author)

  18. Communications in the Nuclear Regulatory Authority of the Slovakia

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    1998-01-01

    Full text: The Nuclear Regulatory Authority of the Slovak Republic (UJD SR) as the state authority provides information related to its competence, namely information on safety operation of nuclear installations, independently from nuclear operators and it enables the public and media to examine information on nuclear facilities. The important aspect is proving that the nuclear energy in the Slovak Republic is due to obligatory rules acceptable and its operation is regulated by the State through the independent institution - UJD SR. UJD SR considers the whole area of public relations as essential component of its activity. UJD SR intends to serve the public true, systematic, qualified, understandable and independent information regarding nuclear safety of nuclear power plants, as well as regarding methods and results of UJD SR work. Communication on reactor incidents or more broadly on operational events at nuclear power plants represents a substantial part of public information- Generally, public information is considered as significant contribution to creation of confidence into the regulatory work. A communication programme must be tested in practice. Our communication programme is regularly evaluated in emergency exercises held at the UJD SR. Inviting journalists to participate in or observe the exercises has intensified this, or by having staff members simulate the mass media and the public. The communication means, tools and channels developed and enhanced during the recent years has increased the UJD SR's functional capability to carry out its information policy. However, communication cannot achieve its goals unless the receiver is willing to accept the message. If the receiver is suspicious about the sender's intentions, good communication is almost impossible. Maintaining the trust with the media and the public as well as increasing radiation and nuclear safety knowledge in the society is therefore essential. UJD SR communication and information activities

  19. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    McCarthy, K.; Romanello, V.; Schwenk-Ferrero, A.; Vezzoni, B.; Gabrielli, F.; Maschek, W.; Rineiski, A.; Salvatores, M.

    2013-01-01

    . In this respect, it is considered that the potential future scarcity of uranium resources is not at all unreasonable, but it is a very serious perspective for the regions of the world where the energy demand growth is and will very probably continue to be significant with the use of nuclear energy to meet at least partially that demand. In fact, despite the seriousness of the recent Fukushima Daiichi accident, only a few countries (essentially in the OECD region) have reacted with an abrupt decision to phase out nuclear power. Most countries, where the energy demand growth corresponds to an urgent need to achieve widely improved living standards, have launched or completed extensive reviews of their nuclear programmes, but are also continuing with ongoing construction projects. The results of this study are very much related to the hypotheses made, in particular in terms of energy demand growth. However, some general trends seem to be of a general value and can motivate further studies. It was confirmed in this investigation that a rapid development of fast reactors, especially in areas with expanding economies and strong energy demand growth, is essential for nuclear energy sustainability, for saving natural uranium resources worldwide and for reducing high-level waste generation requiring disposal. A key parameter is the fast reactor doubling time which has to be chosen appropriately in order to meet energy requirements. In the case of an open cycle, a potential increase in pressure on the uranium market could be expected towards the end of the current century. Moreover, the increase in mining needs of unequally distributed resources can be a factor of uncertainty with an impact potentially even more important of uranium cost considerations. It would, however, be a very significant challenge to develop suitable fuel cycle infrastructure especially in the world regions that presently have a limited number of (or no) nuclear power plants. In fact, the needed fuel

  20. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  1. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Ireland

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection (Radiation protection standards; Emergency response); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for the Environment, Heritage and Local Government; Minister for Agriculture and Food; Minister for Communications, Marine and Natural Resources; Minister for Finance; Minister for Health and Children; Minister for Defence); 2. Public and semi-public agencies (Radiological Protection Institute of Ireland; Food Safety Authority of Ireland)

  2. Regulatory issues for nuclear power plant life management

    International Nuclear Information System (INIS)

    Roe, J.

    2000-01-01

    The workshop of 26-27 june 2000, on nuclear power Plant LIfe Management (PLIM), also included working groups in which major issues facing PLIM activities for nuclear power plants were identified and discussed. The second group was on Regulation. The Regulatory Working Group will attempt to identify some of the more pertinent issues affecting nuclear plant regulation in a changing PLIM environment, to identify some possible actions to be taken to address these issues, and to identify some of the parties responsible for taking these actions. Some preliminary regulatory issues are noted below. This is not intended to be a comprehensive list of such issues but rather is intended to stimulate discussion among the experts attending this Workshop. One of the concerns in the regulatory arena is how the structural integrity of the plants can be assured for an extended lifetime. Technological advances directed toward the following are likely to be important factors in the regulatory process of life extension. - Preventive and corrective maintenance (e.g., water chemistry control, pressure vessel annealing, and replacement of core internals). - Ageing and degradation mechanisms and evaluation (e.g., embrittlement, wear, corrosion/erosion, fatigue, and stress corrosion). - Monitoring, surveillance, and inspection (e.g., fatigue monitoring and non-destructive testing). - Optimisation of maintenance (e.g., using risk-based analysis). On the business side, there is concern about technical support by manufacturers, fuel companies, and construction companies. Maintaining a strong technical base and skilled workers in a potentially declining environment is another concern in the regulatory community. Waste management and decommissioning remain significant issue regarding PLIM. These issues affect all three areas of concern - technology, business, and regulation. It is against this background, that the issues put forth in this paper are presented. The objective of presenting these

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Sweden

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects (The Environmental Code, Environmental impact statement, Permit under the Environmental Code)); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability (The Nuclear Liability Act; Chernobyl legislation); II. Institutional Framework: 1. Ministries with responsibilities concerning nuclear activities (Ministry of the Environment; Ministry of Enterprise, Energy and Communications; Ministry of Justice; Ministry of Foreign Affairs); 2. Swedish Radiation Safety Authority

  4. A regulatory view of nuclear containment on UK licensed sites

    International Nuclear Information System (INIS)

    Bradford, P.M.; McNair, I.J.

    1997-01-01

    Members of the UK regulatory body, HM Nuclear Installations Inspectorate (NII) have previously presented conference papers and official reports which have dealt separately with either reactor applications or chemical plant applications. The objective of this paper is to draw together a brief overview of the role of containment in protecting against potential radiological and related hazards, and to describe the factors which influence the NII's assessment of containment safety cases. It draws upon the NII's experience of regulating many types of nuclear facility, from those designed in the late 1940s through to the modern plants, such as Sizewell 'B' and THORP. The paper reviews the legislative and regulatory background within which the facilities exist and are operated. Finally, the paper reviews recent, ongoing and planned research in the field of containment, which has been designed to behave under challenge. (author)

  5. Nuclear technology for sustainable development and FNCA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    2004-01-01

    Nuclear techniques have been contributing to sustainable development and human welfare through their applications in agriculture, health care, food supply, industry, water resources and environmental conservation. Nuclear techniques are more advantageous and/or complementary with other techniques to achieve goals. For many applications nuclear technique is more environmentally friendly because it does not need chemical agents to induce necessary reactions. This paper also illustrates successful applications of nuclear techniques and activities of the regional nuclear cooperation in Asia, FNCA (Forum for Nuclear Cooperation in Asia) to achieve common goals with limited resources. (author)

  6. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  7. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  8. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the ? field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  9. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  10. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Russian Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  11. Upgrading Atucha 1 nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Caruso, G.

    1998-01-01

    Atucha 1 nuclear power plant has unique design and its commercial operation started in 1974. The upgrading decisions, the basis for an upgrading program and its status of implementation are presented. Regulatory decisions derived from the performance-based approach have the advantage that they enable balancing of the overall plant risk and identifying at different plant levels the areas where improvements are necessary. (author)

  12. Regulatory requirement of the Juragua nuclear Power Plant PSA

    International Nuclear Information System (INIS)

    Valhuerdi Debesa, C.

    1996-01-01

    Probabilistic Safety Assessment has proved to be a powerful tool for improving the knowledge of the safety insides of Nuclear Power Plants and increasing the efficiency of the safety measures adopted by both operators and regulators. In this paper the regulatory approach adopted in Cuba with regard to the PSA , the scope of the requirement and the basis and proposal of this decision are presented

  13. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-05-01

    Legislation and regulations giving birth to the Atomic Energy Control Board (AECB) are outlined, as well as current licencing procedures. The AECB bases its health and safety criteria on ICRP recommendations. R and D is funded to aid regulatory activity. Licencing activities cover uranium resource management, uranium mining and milling, nuclear generating stations, heavy water plants, and radioactive waste management. Safeguards, physical security, and international controls are also concerns of the AECB. (E.C.B.)

  14. Roadmap to sustainable textiles and clothing regulatory aspects and sustainability standards of textiles and the clothing supply chain

    CERN Document Server

    2015-01-01

    This book covers the elements involved in achieving sustainability in textiles and clothing sector. The chapters covered in three volumes of this series title cover all the distinctive areas earmarked for achieving sustainable development in textiles and clothing industry. This third volume highlights the areas pertaining to the regulatory aspects and sustainability standards applicable to textiles and clothing supply chain. There are various standards earmarked for measuring the environmental impacts and sustainability of textile products. There are also plenty of certification schemes available along with the index systems applicable to textile sector. Brands and manufactures are also venturing into new developments to achieve sustainable development in textile sector. This third volume addresses all these important aspects.

  15. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Switzerland

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Nuclear fuels; Radioactive substances and equipment generating ionising radiation); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Environmental protection; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Council; Federal Assembly; Federal Department of the Environment, Transport, Energy and Communications - DETEC; Federal Office of Energy - SFOE; Swiss Federal Nuclear Safety Inspectorate - IFSN; Federal Department of Home Affairs - FDHA; Federal Office of Public Health - FOPH; State Secretariat for Education and Research - SER; Other authorities); 2. Advisory bodies (Swiss Federal Nuclear Safety Commission - KNS; Federal Commission for Radiological Protection and Monitoring of the Radioactivity in the Environment; Federal Emergency Organisation on Radioactivity); 3. Public and semi-public agencies (Paul-Scherrer Institute - PSI; Fund for the decommissioning of nuclear installations and for the waste disposal; National Co-operative for the

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Belgium

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Nuclear facilities (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response; Decommissioning); 4. Trade in nuclear materials and equipment; 5. Radiological protection; 6. Radioactive waste management; 7. Non-proliferation of nuclear weapons and physical protection of nuclear material (International aspects; National control and security measures); 8. Transport; 9. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Agency for Nuclear Control - FANC; Federal Public Service for Home Affairs; Federal Public Service for Economy, SME's, Self-Employed and Energy; Federal Public Service for Employment, Labour and Social Dialogue; Federal Public Service for Defence; Federal Public Service for Foreign Affairs, Foreign Trade and Development Co-operation; Federal Public Planning Service for Science Policy); 2. Advisory bodies (Scientific Council for Ionizing Radiation of the Federal Agency for Nuclear Control; Superior Health Council; Superior Council for Safety, Hygiene and Enhancement of Workplaces; Advisory Committee for the Non-Proliferation of Nuclear Weapons; Commission for Electricity and Gas Regulation - CREG)

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Italy

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment (General provisions; Patents); 6. Radiation Protection (Protection of workers; Protection of the public; Protection of the environment); 7. Radioactive Waste Management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Interdepartmental Committee for Economic Planning; Nuclear Safety Agency; Prime Minister; Minister for Economic Development; Minister for Labour and Social Security; Minister for Health; Minister for the Environment; Minister for the Interior; Minister for Transport and Navigation; Minister for Foreign Trade (now incorporated in Ministry for Economic Development); Minister for Education; Treasury Minister; Minister for Universities and for Scientific and Technical Research; Minister for Foreign Affairs; State Advocate General); 2. Advisory bodies (Inter-ministerial Council for Consultation and Co-ordination; Coordinating Committee for Radiation Protection of Workers and the Public; Regional and Provincial Commissions for Public Health Protection

  19. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  20. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  1. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  2. Application of nuclear technology for sustainable development, and IAEA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    1998-01-01

    The role of radiation and isotopes for sustainable development in improving agriculture, industry and environmental conservation is presented. The radiation and isotope technology can increase productivity in a sustainable way. The IAEA programmes encompass mutation breeding, soil fertility and crop production, animal production, food irradiation, agrochemicals and insect pest control using nuclear technology

  3. Sustainability, Ethics and Nuclear Energy : Escaping the Dichotomy

    NARCIS (Netherlands)

    Kermisch, C.F.N.; Taebi, B.

    2017-01-01

    In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions,

  4. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  5. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  6. Is Nuclear Energy Sustainable - A Comparative Perspective

    International Nuclear Information System (INIS)

    Hirschberg, S.

    2002-01-01

    The electric utility sector is of central importance for economic growth and social development. While numerous societal and economic benefits arise from electricity production, it can also have impacts which may not be fully and unanimously reconciled with the concept of sustainability. Moving the electricity sector towards sustainable development calls for the integration of environmental, social and economic aspects in the decision-making process. As an input to such a process, one needs to assess how the different options perform with respect to specific sustainability criteria. As a part of the ''Comprehensive Assessment of Energy Systems'', carried out by the Paul Scherrer Institute (PSI), the electricity and heat supply systems are examined in view of sustainability criteria and the associated indicators, thus allowing operationalization of the sustainability concept

  7. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0203] Ultimate Heat Sink for Nuclear Power Plants; Draft... (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and...

  8. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  9. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  10. Methodology for the Systematic Assessment of the Regulatory Competence Needs (SARCoN) for Regulatory Bodies of Nuclear Installations

    International Nuclear Information System (INIS)

    2015-03-01

    A regulatory body’s competence is dependent, among other things, on the competence of its staff. A necessary, but not sufficient, condition for a regulatory body to be competent is that its staff can perform the tasks related to the functions of the regulatory body. In 2001, the IAEA published TECDOC 1254, Training the Staff of the Regulatory Body for Nuclear Facilities: A Competency Framework, which examines the manner in which the recognized regulatory functions of a nuclear regulatory body results in competence needs. Using the internationally recognized systematic approach to training, TECDOC 1254 provides a framework for regulatory bodies for managing training and developing, and maintaining the competence of its staff. It has been successfully used by many regulatory bodies all over the world, including States embarking on a nuclear power programme. The IAEA has also introduced a methodology and an assessment tool — Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) — which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2013, the IAEA published Safety Reports Series No. 79, Managing Regulatory Body Competence, which provides generic guidance based on IAEA safety requirements in the development of a competence management system within a regulatory body’s integrated management system. An appendix in the Safety Report deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an embarking State’s regulatory system. This publication provides guidance for the analysis of required and existing competences to identify those required by the regulatory body to perform its functions and therefore associated needs for acquiring competences. Hence, it is equally applicable to the needs of States embarking on nuclear power

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Austria

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime - General Outline: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II) - Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Federal Authorities - Bund (The Federal Chancellery; The Federal Minister for Women's Affairs and Consumer Protection; The Federal Minister of the Interior; The Federal Minister for Economic Affairs; The Federal Minister of Finance; The Federal Minister of Labour, Health and Social Affairs; The Federal Minister of Science and Transport; The Federal Minister of Justice; The Federal Minister for the Environment; The Federal Minister for Foreign Affairs) B. Regional Authorities - Laender; C. District Authorities - Bezirksverwaltungsbehorden; 2. Advisory Bodies (Forum for Nuclear Questions, Radiation Protection Commission - SSK); 3. Public and Semi-Public Agencies (The Seibersdorf Austrian Research Centre; The Graz Nuclear Institute; The Nuclear Institute of the Austrian Universities; The Institute of Risk Research, University of Vienna)

  12. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-01-01

    The mining of pitchblende for the extraction of radium some four decades ago resulted in a largely unwanted by-product, uranium, which set the stage for Canada to be one of the first countires in the world to embark upon a nuclear energy program. From this somewhat unusual beginning, the Canadian program expanded beyond mining of uranium-bearing ores to include extensive research and development in the field of radio-isotope applications, research and power reactors, nuclear-fuel conversion and fabrication facilities, heavy-water production plants and facilities for the management of radioactive wastes. As in the case of any major technological development, nuclear energy poses certain risks on the part of those directly engaged in the industry and on the part of the general public. What characterizes these risks is not so much their physical nature as the absence of long-term experience and the confidence resulting from it. The early development of regulatory controls in the nuclear field in Canada was very much influenced by security considerations but subsequently evolved to include radiological protection and safety requirements commensurate with the expanding application of nuclear energy to a wide spectrum of peaceful uses. A review of Canadian nuclear regulatory experience will reveal that the risks posed by the peaceful uses of nuclear energy can be controlled in such a manner as to ensure a high level of safety. Recent events and development have shown however that emphasis on the risks associated with low-probability, high-consequence events must not be allowed to mask the importance of health and safety measures covering the entire fuel cycle

  13. Canada's regulatory framework: The Canadian Nuclear Safety Commission's regulatory framework

    International Nuclear Information System (INIS)

    Howard, D.

    2011-01-01

    This paper will discuss the Canadian Nuclear Safety Commission and Canada's Regulatory Framework with respect to Low- and Intermediate-Level Radioactive Waste. The management of low and intermediate level radioactive waste must be ensured in a consistent, environmentally responsible and economical manner throughout its lifecycle -- from its production to the final disposal option. Radioactive waste has been produced in Canada since the early 1930s when the first radium/uranium mine began operating at Port Radium in the Northwest Territories. Pitchblende ore was transported from the Port Radium mine to Port Hope, Ontario where it was refined to produce radium for medical purposes. At present, radioactive waste is generated in Canada from the various stages and uses associated with the nuclear fuel cycle from uranium mining/milling to nuclear reactor operations to radioisotope manufacture and use. The Canadian Nuclear Safety Commission (CNSC regulates the use of nuclear energy and materials to protect the health, safety and security of Canadians and the environment; and to implement Canada's international commitments on the peaceful use of nuclear energy. The CNSC was established in 2000 under the Nuclear Safety and Control Act and reports to Parliament through the Minister of Natural Resources. The CNSC was created to replace the former Atomic Energy Control Board (AECB), which was founded in 1946. Under the Nuclear Safety and Control Act, CNSC's mandate involves four major areas: regulation of the development, production and use of nuclear energy in Canada to protect health, safety and the environment; regulation of the production, possession, use and transport of nuclear substances, and the production, possession and use of prescribed equipment and prescribed information; implementation of measures respecting international control of the development, production, transport and use of nuclear energy and substances, including measures respecting the

  14. Regulatory Endorsement Activities for ASME Nuclear Codes and Standards

    International Nuclear Information System (INIS)

    West, Raymond A.

    2006-01-01

    The ASME Board on Nuclear Codes and Standards (BNCS) has formed a Task Group on Regulatory Endorsement (TG-RE) that is currently in discussions with the United States Nuclear Regulatory Commission (NRC) to look at suggestions and recommendations that can be used to help with the endorsement of new and revised ASME Nuclear Codes and Standards (NC and S). With the coming of new reactors in the USA in the very near future we need to look at both the regulations and all the ASME NC and S to determine where we need to make changes to support these new plants. At the same time it is important that we maintain our operating plants while addressing ageing management needs of our existing reactors. This is going to take new thinking, time, resources, and money. For all this to take place the regulations and requirements that we use must be clear concise and necessary for safety and to that end both the NRC and ASME are working together to make this happen. Because of the influence that the USA has in the world in dealing with these issues, this paper is written to inform the international nuclear engineering community about the issues and what actions are being addressed under this effort. (author)

  15. Contribution of nuclear techniques towards a sustainable agriculture

    International Nuclear Information System (INIS)

    Muniz Ugarte, O.

    1997-01-01

    The papers mentions the main nuclear techniques applied in order to achieve a sustainable agriculture, the technical support given to Cuba by the IAEA mainly in training and in the creation of a infrastructure (Laboratories) to enable the application of nuclear techniques to agricultural research related to soil fertility, plant nutrition and water usage

  16. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United Kingdom

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Department of Trade and Industry - DTI; Secretary of State for Environment, Food and Rural Affairs and the Secretary of State for Health; Secretary of State for Transport; Secretary of State for Education); 2. Advisory Bodies (Medical Research Council - MRC; Nuclear Safety Advisory Committee; Radioactive Waste Management Advisory Committee); 3. Public and Semi-Public Agencies (United Kingdom Atomic Energy Authority - UKAEA; Health and Safety Commission and Executive - HSC/HSE; National Radiological Protection Board - NRPB; Environment Agencies; British Nuclear Fuels plc. - BNFL; Amersham International plc.; The National Nuclear Corporation Ltd. - NNC; United Kingdom Nirex Ltd.; Magnox Electric plc.; British Energy Generation Ltd.; Scottish Electricity Generator Companies; British Energy Generation Ltd.; Regional Electricity Companies in England and Wales)

  18. Sustaining the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khaer bin Ibrahim.

    1989-01-01

    This paper describes the approach taken to establish the information base required prior to a decision on a nuclear power programme, and the strategy adopted and the rationale behind the development of the basic core expertise on nuclear reactor technology. The effect of a lack of decision on the question of nuclear power generation on efforts to build this core technical expertise is also described. (author)

  19. EU Activities for Training and Tutoring of Nuclear Regulatory Authorities and Technical Support Organisations Outside EU

    International Nuclear Information System (INIS)

    Pauwels, Henri; Daures, Pascal; Stockmann, Ynte

    2014-01-01

    Aim of Training and Tutoring Projects: Transfer of European Union nuclear safety regulatory experience and best practices. The following courses are listed: Courses in Nuclear Safety Regulation, Licensing and Enforcement; Nuclear Safety Assessment and Inspection

  20. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  1. Transportation of nuclear material in France: regulatory and technical aspects

    International Nuclear Information System (INIS)

    Flory, D.; Renard, C.

    1995-01-01

    Legislative and regulatory documentation define responsibilities in the field of security and physical protection for transportation of nuclear material. Any transportation activity has to conform to an advance authorization regime delivered by the Ministry of Industry. Responsibility for physical protection of nuclear material rests with the carrier under control of the public authority. Penalties reinforce this administrative regime. Operational responsibility for management and control of transport operations has been entrusted by the ministry to the operational transport unit (Echelon Operationnel des Transports - EOT) of IPSN (Institute for Nuclear Protection and Safety). To guarantee en efficient protection of transport operations, the various following means are provided for: -specialized transport means; - devices for real time tracking of road vehicles; - administrative authorization and declaration procedures; -intervention capacities in case of sabotage... This set of technical means and administrative measures is completed by the existence of a body of inspectors who may control every step of the operations. (authors). 3 tabs

  2. U.S. Nuclear Regulatory Commission human factors program plan

    International Nuclear Information System (INIS)

    1986-04-01

    The purpose of the U.S. Nuclear Regulatory Commission (NRC) Human Factors Program Plan is to ensure that proper consideration is given to human factors in the design and operation of nuclear facilities. This revised plan addresses human factors issues related to the operation of nuclear power plants (NPPs). The three issues of concern are (1) the activities planned to provide the technical bases to resolve the remaining tasks related to human factors as described in NUREG-0660, The NRC Action Plan Developed as a Result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements; (2) the need to address the additional human factors efforts that were identified during implementation of the Action Plan; and (3) the actual fulfillment of those developmental activities specified in Revision 1 of this plan. The plan represents a systematic approach for addressing high priority human factors concerns important to NPP safety in FY 1986 through 1987

  3. Regulatory considerations for extending the life of nuclear plants

    International Nuclear Information System (INIS)

    Feinroth, H.; Rowden, M.

    1987-01-01

    This study provides the nuclear industry with its first systematic evaluation of the regulatory implications of nuclear plant life extension. The report recommends courses of action that might be followed by the industry and its regulators to ensure the development of a process that is both reasonable and predictable. The study holds that ''license renewal should be a reaffirmation of the ongoing and continuous process of hardware renewal that is already an integral part of every nuclear power plant's operating program.'' The report's findings can be used by the new AIF Subcommittee on License Renewal, by other industry groups, and by individual licensees in making constructive recommendations to NRC for the development of a workable license renewal policy. No such policy now exists, and the establishment of one is preferable to allowing the consideration of life extension matters on a case-by-case basis

  4. New nuclear projects in the world. Sustainable Nuclear Energy; Nuevos proyectos nucleares en el mundo. energia nuclear sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Leon, P. T.

    2011-07-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO{sub 2} emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  5. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  6. Enhancement of Nuclear Safety in Korea: A Regulatory Perspective

    International Nuclear Information System (INIS)

    Chung, K.Y.

    2016-01-01

    In the aftermath of Fukushima Daiichi accident in 2011 Korean regulatory body immediately performed special inspections on nuclear power plants (NPPs) and a research reactor in Korea, and issued an enforcement order for the licensees to implement fifty Fukushima action items to address the safety issues identified by the inspections. Subsequently, the licensees have established the implementation plans for resolution of the action items. By the implementation of the action items, the possibility of severe accident due to the extreme hazards has been greatly reduced and the capabilities to mitigate the severe accident, should it occur, have been upgraded. To improve the consistency and predictability of the regulation on severe accidents, Nuclear Safety and Security Commission (NSSC) the regulatory body in Korea, is revising the regulatory framework for severe accidents. The new framework will require the licensee to enhance the capabilities for prevention and mitigation of severe accidents in view of the defence in depth principle, to assess the radiological effects from the severe accidents, and to improve current accident management procedures and guidelines necessary for the prevention and mitigation of severe accidents. This rulemaking also considers the safety principles provided by the IAEA Vienna Declaration in 2015, which require new NPPs to prevent large radioactive releases. (author)

  7. Innovative training techniques in the Canadian nuclear regulatory environment

    International Nuclear Information System (INIS)

    Martin, D.J.

    1996-01-01

    One of the contributors to the safety of nuclear installations is properly-trained personnel. This applies equally to the staff of a regulatory agency, as they are charged with the task of evaluating the safety of installations and operations involving radioactive materials. In 1990, the nuclear regulatory agency of Canada, the Atomic Energy Control Board, set up a Training Center to train AECB staff and to provide assistance to foreign regulatory agencies who had asked for such assistance. In setting up the Training Centre, the authors considered factors which adversely affect the efficacy of training courses. The technical content must, of course, be of sufficiently high quality, but there are other, significant factors which are independent of the content: consider a presentation in which the lecturer shows a slide which is unreadable from the back of the room. The training value of this slide is zero, even though the content may be sound. Pursuing this thought, they decided to examine the mechanics of presentations and the form of training materials, with a view to optimizing their effectiveness in training. The results of this examination were that they decided to use three technologies as the basis for production of training, support and presentation materials. This paper briefly describes these technologies and their advantages. The technologies are: desktop publishing, video and multimedia

  8. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  9. Sustained attention in infancy as a longitudinal predictor of self-regulatory functions.

    Science.gov (United States)

    Johansson, Maria; Marciszko, Carin; Gredebäck, Gustaf; Nyström, Pär; Bohlin, Gunilla

    2015-11-01

    Previous literature suggests that attention processes such as sustained attention would constitute a developmental foundation for the self-regulatory functions executive functioning and effortful control (e.g., Garon, Bryson, & Smith, 2008; Rothbart, Derryberry, & Posner, 1994). Our main aim was to test this hypothesis by studying whether sustained attention at age 1 year can predict individual differences in self-regulatory functions at age 2 years. Longitudinal data from 66 infants and their parents were included in the study. Sustained attention was assessed during free play at age 1 year; executive functioning, measured using an eye-tracking version of the A-not-B task, and effortful control, measured using parental ratings, were assessed at both age 1 and age 2 years. The results did support a longitudinal prediction of individual differences in 2-year-olds' self-regulatory functions as a function of sustained attention at age 1 year. We also found significant improvement in both executive functioning and effortful control over time, and the two self-regulatory constructs were related in toddlerhood but not in infancy. The study helps increase our understanding of the early development of self-regulatory functions necessary for identifying developmental risks and, in the future, for developing new interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Activities of Nuclear Regulatory Authority and safety of nuclear facilities in the Slovak Republic in 1993

    International Nuclear Information System (INIS)

    1994-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1993 is presented. These activities are reported under the headings: (1) Introduction; (2) Regulatory activities at nuclear power plants units in operation; (2.1) Nuclear power plant SEP-EBO V-1; (4) Selected operation events and safety assessment in NPP SEP-EBO V-1; (2.2) Safety assessment of NPP SEP-EBO V-2; (3) Results of regulatory activities at the decommissioning of NPP A-1; (4) Regulatory activities at units under construction SEP-EMO - NPP Mochovce; (5) Further regulatory activities. (5.1) Preparation of designated personnel; (5.2) Inspection and accountancy of nuclear material; (5.3) Security provisions; (5.4) Accounted items and double use items; (5.5) Problem of radioactive wastes; (6.1) International co-operation activities of NRA; (6.2) Emergency planning; (6.3) International activities for quality enhancement of national supervision; (7) Conclusion [sk

  11. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    Present energy policy is required to ensure a balance between security of supply, competitiveness and environmental requirements. Recent changes involved by deregulation and liberalization of electricity and natural gas markets even strengthen such a policy. However, dependency on external energy sources carries risks that have to be managed since a large proportion of both oil and gas reserves are found in politically unstable regions. Electrical energy is a fundamental prerequisite for a civilized life and an essential commodity, but it cannot be stored and this restricts the extent to which there can be a real free market for electricity. Therefore, relying on imports of electricity to a large extent may prove unsecure because this requires a true, completely open market in which the opportunities for cross-border trade are effective and balanced and transport connections are adequate. This is equally applied to the countries in the South-Eastern Europe, despite very good prospects for development of the regional electricity market there. In this regard, the use of nuclear energy has not any risk associated with external dependency because there are abundant quantities of uranium available world-wide from many diverse sources. The inherent mitigation of supply risk associated with the use of uranium should act as an incentive to the further use of nuclear energy. In addition, already very large stocks of fuel assemblies and fuel-making materials available, especially when these are measured in terms of power generating capacity per year at current production rates. It is, therefore, very important for any country to recognize such strategic aspect of nuclear energy when addressing the issue of security of power supply. Nuclear option is in a unique position to restore its original role of the main source of energy with an increased attention paid to the security of electricity supply as well as regulatory changes affecting fossil fuels, particularly with due

  12. 75 FR 54917 - Criteria for Nominating Materials Licensees for the U.S. Nuclear Regulatory Commission's Agency...

    Science.gov (United States)

    2010-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0294] Criteria for Nominating Materials Licensees for the U.S. Nuclear Regulatory Commission's Agency Action Review Meeting AGENCY: Nuclear Regulatory Commission. ACTION: Request for comment. SUMMARY: It is the policy of the U.S. Nuclear Regulatory Commission...

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United States

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Special nuclear material; Source material; By-product material; Agreement state programmes); 4. Nuclear installations (Initial licensing; Operation and inspection, including nuclear safety; Operating licence renewal; Decommissioning; Emergency response); 5. Radiological protection (Protection of workers; Protection of the public); 6. Radioactive waste management (High-level waste; Low-level waste; Disposal at sea; Uranium mill tailings; Formerly Utilized Sites Remedial Action Program - FUSRAP); 7. Non-proliferation and exports (Exports of source material, special nuclear material, production or utilisation facilities and sensitive nuclear technology; Exports of components; Exports of by-product material; Exports and imports of radiation sources; Conduct resulting in the termination of exports or economic assistance; Subsequent arrangements; Technology exports; Information and restricted data); 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Nuclear Regulatory Commission - NRC; Department of Energy - DOE; Department of Labor - DOL; Department of Transportation - DOT; Environmental Protection Agency - EPA); 2. Public and semi-public agencies: A. Cabinet-level departments (Department of

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - France

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General (The French nuclear power programme and its main players; French nuclear law); 2. Mining Regime; 3. Radioactive Substances and Nuclear Equipment (Regulatory diversity; Radioactive sources; Medical activities); 4. Trade in Nuclear Materials and Equipment (Basic nuclear installations - INB; Tax on basic nuclear installations, Additional taxes, Funding nuclear costs; Installations classified for environmental protection purposes (ICPE) using radioactive substances; Nuclear pressure equipment - ESPN; Defence-related nuclear installations and activities - IANID; Emergency plans); 5. Trade in Nuclear Materials and Equipment (General provisions; Patents); 6. Radiation protection (Protection of the public; Protection of workers; Radiation protection inspectors; Labour inspectors; Protection of individuals in a radiological emergency); 7. Radioactive Waste Management (General regulations; Radioactive waste regulations; Discharge of effluents); 8. Non-proliferation and physical protection (Materials not used for the nuclear deterrent; Materials used for the nuclear deterrent); 9. Transport (Licensing and notification regime: Transport of radioactive materials, Transport of nuclear materials, Transport of radioactive substances between member states of the European Union; Methods of transport: Land transport, Sea transport, Air transport, Transport by post); 10

  15. Knowledge management in the Argentine Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Chahab, Martin

    2006-01-01

    In 2006, the Argentine Nuclear Regulatory Authority has initiated a regulatory knowledge management process to face the loss of knowledge resulting from retiring experts, the generation gap, and the existing need to train new human resources. A number of projects have been started together with the technical assistance of the National Public Administration Institute to preserve knowledge and render it explicit for the coming generations. These projects include 'The History of the Expert's Learning Process' in which the majority of the most critical experts have been interviewed so far. The results of this project help envision a training structure and prospective projects. An Internet Site has also been created on the Intranet in order to render knowledge explicit and facilitate the tools for knowledge management initiatives. Furthermore, ARN's knowledge map project has also been started. (author) [es

  16. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  17. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2008-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on

  18. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  19. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  20. Sustainable nuclear power - the human dimension

    International Nuclear Information System (INIS)

    Peddicorda, K.L.; Poston, John W. Sr.; Sayko, Tami Davis; Porter, Jay; Reece, W. Dan; Earl, Beth; Ostroskaya, Natela; Lagoudas, Magdalini; Crenshaw, John; Jump, Will; Fenner, Clarence; Lowery, Kirby; Sieben, Steve; Jones, Larry; Ridge, Douglas; Robertson, Dale; Hyde, Carliss; Kuruvilla, John; Kinnison, Wayne; Harris, Kendall; Aghara, Sukesh; Pezold, Frank; Bird, Bobby; Rice, Bill

    2008-01-01

    The availability of a well-prepared workforce is fundamental to the increased use of nuclear energy. Significant numbers of new employees will be needed not only for the new plants, but to replace retirees at the existing plants. In addition, a wide variety of disciplines and levels of educational backgrounds are needed. The Nuclear Power Institute is a partnership of industry, higher education, secondary and middle schools, state government and civic and community leadership that has come together to meet the challenge of attracting and preparing the nuclear workforce. (authors)

  1. Tritium : health risks, regulatory issues and the nuclear future

    International Nuclear Information System (INIS)

    Chambers, D. B.; Garva, A.

    2010-10-01

    The refurbishment of existing reactors and proposed new build reactors in Canada has resulted in increased public opposition to nuclear power. This opposition has been fuelled by information provided to local groups by highly motivated national and international anti-nuclear groups who foster overstated and often incorrect views on the risks of low doses of radiation. Over the past several years, there has been increased scientific and public interest in the risks of low exposures to tritium. Scientific aspects which have received considerable attention include amongst others, behaviour in the environment, the possibility of increasing the relative biological effectiveness for tritium, the importance of organically bound tritium, and tritium dosimetry. In Canada at least, the perception of harm from exposures to low levels of tritium has been enhanced in the public mind by a proposal in one Province to lower the drinking water standard for tritium from 7,000 Bq/L to 20 Bq/L, which certain non-governmental organizations use to suggest the risks have been greatly underestimated in the past. Actually regulatory environment, the approval of local public of often a requirement for licensing a nuclear facility and thus it is important to ensure that correct information is not only available but available in a technically correct but easily understood form. This paper reviews the currently available scientific information on the risks from exposure to tritium and provides a context of the implications for regulatory actions and communications with the public. (Author)

  2. Regulatory challenges facing the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Lyman, Edwin S.

    2007-01-01

    In January 2006 the Department of Energy (DOE) announced the creation of the Global Nuclear Energy Partnership (GNEP), an ambitious plan to reshape the nuclear energy production sector both in the United States and worldwide. If fully realized in the United States, GNEP would entail the construction of a large number of sodium-cooled fast reactors utilizing actinide-based fuels, multiple commercial-scale reprocessing plants for both light-water and fast reactors, and fast reactor fuel fabrication plants. It appears likely that the first commercial-scale GNEP facilities, as well as a future full-scale GNEP complex, would fall under the licensing jurisdiction of the Nuclear Regulatory Commission (NRC). This will be a challenging endeavor for the NRC, primarily because the proposed GNEP facilities will in large part be based on novel and untested designs and processes that have not been developed on a commercial scale. In order to effectively regulate the GNEP complex, the NRC will have to quickly address the many technical and policy questions that will arise in any GNEP licensing scheme. This paper identifies some difficult issues that will be encountered in GNEP licensing by examining the potential implications of NRC's current policies and regulatory requirements, and analyzing the impacts of some emerging post-9/11 security issues. (author)

  3. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  4. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  5. Sustainable nuclear development and public confidence

    International Nuclear Information System (INIS)

    Gagarinski, A.

    2000-01-01

    This report discusses the objective preconditions, which would lead the world community to acceptance of nuclear energy. The following conditions deserve special emphasis: (a) Demographic growth, resulting in the increase of energy demand and promoting the understanding of the fact, that the world energy resources are limited and all possible energy sources, including nuclear ones, should be used. (b) Development of the 'third-world' countries, creating additional energy demand, which cannot be met without nuclear power. (c) Global (and influencing the plans of each country) need of availability and acceptable costs together with reliability and safety of energy supply, and, consequently, the interest to energy sources diversification in order to eliminate the dependence of fossil fuels import. The paper considers the ways to solve this strategic task. Its solution could take a long time (several decades) and should be properly perceived by the generation of specialists now starting their career in nuclear science and industry. Now it is a good time for the new generation of nuclear specialists to solve this problem - the large-scale NPP development is not yet needed, there is a large accumulated experience and perspective ideas, and there is enough time to analyze the problems in detail, propose and prepare the solutions and convince the general public, that these solutions are correct. And then the next phase of nuclear energy development would be based not only on correct technical solutions, but also on a favourable social environment. (authors)

  6. Outreach: Key to Sustainable Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Segovia, V.

    2016-01-01

    Full text: With the numerous nuclear power plants being built globally and the prospects for many more, the challenge of the timely availability of a well-prepared, qualified, knowledgeable workforce is a key element in the “critical path” to commissioning these plants. All of these individuals will need quality education and training that is rooted in safety and established in experience. In addition, because many of these new plants are typically being built in developing countries, education, training, recruiting and retaining operations staff can be a significant challenge. Attracting sources of qualified employees for these nuclear power plants in local communities is paramount which implies a strong focus on the science and math education outreach programmes at all levels. This paper will highlight the Nuclear Power Institute’s integration of human resource development outreach strategies, education and training systems, and international cooperation to demonstrate how working in particular with the education sector can not only create interest in future careers in nuclear technology and capture valuable knowledge, but can also build community based support for nuclear power programmes with an emphasis of developing competent workers through education and training, mentoring and apprenticeships. Outreach has also become an important element of all nuclear knowledge management endeavours. (author

  7. Nuclear Regulatory Commission Issuances: February 1995. Volume 41, Number 2

    International Nuclear Information System (INIS)

    1995-02-01

    This book contains an issuance of the Nuclear Regulatory Commission and a Director's Decision. The issuance concerns consideration by the Commission of appeals from both the Initial Decision and a Reconsideration Order issued by the Presiding Officer involving two materials license amendment applications filed by the University of Missouri. The Director's Decision from the Office of Enforcement denies petitions filed by Northeast Utilities employees requesting that accelerated enforcement action be taken against Northeast Utilities for activities concerned with NU's fitness-for-duty program

  8. Indexes to Nuclear Regulatory Commission issuances, July--September 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This digest and index lists the Nuclear Regulatory Commission (NRC) issuances for July to September 1997. Issuances are from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors' Decisions, and the Decisions on Petitions for Rulemaking. There are five sections to this index: (1) case name index, (2) headers and digests, (3) legal citations index, (4) subject index, and (5) facility index. The digest provides a brief narrative of the issue, including the resolution of the issue and any legal references used for resolution

  9. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  10. Organizational Learning, Building and Sustaining Core Competencies: Knowledge Management Initiatives on Inspection and Regulatory Enforcement in BAPETEN Indonesia

    International Nuclear Information System (INIS)

    Daeng Beta, W. P.; Nurwidi Astuti, Y. H.; Hermawan, A. S.; Syaifulloh, S.

    2016-01-01

    Full text: Regulatory inspection and law enforcement are among the core competencies of the Indonesia Nuclear Energy Regulatory Agency (BAPETEN). Knowledge management (KM) initiatives are based on strategic planning of BAPETEN. KM in BAPETEN is in its early stage, it is realized since 2015–2016, although its elements have stayed in service for 18 years. Its architecture and performance-information are: to conduct risk based inspection for medical, industrial and research facilities; to plan, monitor and evaluate of effective inspection, including standard operating procedures (SOPs); to utilize inspectors for safety security of radiation sources along with coordination with related stakeholders; to enforce the safety and security facilities report to users; to optimize reliable data communication, processing and information technology (B@LIS); to perform regulatory enforcement along with other related stakeholders. KM processes are performed through the “Socialization, Externalization, Combination, Internalization” (SECI) model. Technical knowledge for inspectors are based on the IAEA–TECDOC–1526 plus supporting knowledge. With KM, innovation products can easily be used, because they are documented, distributed in a KM portal, knowledge is shared through the BAPETEN website, B@LIS database and others. Our challenge is that KM initiatives still need a tremendous effort, not only internally, but also externally, especially in coordination and collaboration. Information access brings about not only positive but also negative impacts. Innovations in regulatory inspection and law enforcement in BAPETEN are planned innovations, sustained, and systematically performed. (author

  11. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  12. Key elements of a sustainable nuclear business case

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, D [Nuclear Consultants International - South Africa and AMEC Nuclear - United Kingdom, 20-35th Avenue, Umhlatuzana, Chatsworth, Durban (South Africa)

    2008-07-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  13. Key elements of a sustainable nuclear business case

    International Nuclear Information System (INIS)

    Naidoo, D

    2008-01-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  14. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  15. Nuclear energy an asset for sustainable development

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The energy issue is now a worldwide concern. It is showed that nuclear energy combined with renewable energies are the only efficient response to face the challenge of climate warming by cutting drastically the emission of greenhouse gases in the electricity production. The second asset of nuclear energy is to be able to meet the growing need for electric power of developing countries. Energy conservation is a good thing to do in western countries but it is far to be sufficient. The success of France's nuclear energy program has enabled the country to be independent from other countries concerning its electricity production, to produce electricity at moderate and stable costs even on the long term, and to develop nuclear industry operators that are world leaders. According to the 28 june 2006 bill that clarifies the management of radioactive wastes, the disposal of high-level radioactive wastes in deep geological layers, will be put into service in 2025. The law has let the possibility of recovering the waste containers during a certain period after their burial if new solutions will have emerged. In the context of an expected renaissance of nuclear energy, the EPR (European Pressurized Reactor) is a valuable offer that must be developed. The construction of an EPR unit on the Flamanville site is necessary to perfect its design. (A.C.)

  16. Regulatory Activities on Civil Nuclear Safety Equipment in China

    International Nuclear Information System (INIS)

    Gaoshang, Lu; Choi, Kwang Sik

    2011-01-01

    It is stipulated in IAEA Fundamental Safety Principles (SF1) that the fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. The fundamental safety objective applies for all facilities and activities and for all stages over the lifetime of a facility or radiation source, including planning, sitting, design, manufacturing, construction, commissioning and operation, as well as decommissioning and closure. So, according to the requirement, the related activities such as design, manufacturing, installation and non-destructive test that conducted on civil nuclear equipment should be well controlled by the vendors, the owner of the nuclear power plants and the regulatory body. To insure the quality of those equipment, Chinese government had taken a series of measures to regulate the related activities on them

  17. WWER nuclear waste management regulatory experience in Finland

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2000-01-01

    About 30% of all electricity produced in Finland is generated by nuclear power. Four reactors, with a total capacity of 2 656 MW e (net), are currently in operation. At Loviisa, there are two 488 MW e WWER units (recently upgraded 440-units) and at Olkiluoto two 840 MW e BWR units. At the Loviisa plant conditioning, storage and final disposal of low-and intermediate-level wastes from reactor operation will take place at the NPP sites. Intermediate level ion exchange resins and evaporation concentrates are currently stored in tanks. However, a license application for constructing a solidification plant based on cementation is currently under STUKs regulatory review. The construction of the final repository for I/LLW at the Loviisa site was started in 1993 and the Government granted the operating license in 1998. The nuclear legislation requires disposal of spent fuel into the Finnish bedrock. (Authors)

  18. Regulatory fit effects for injunctive versus descriptive social norms: Evidence from the promotion of sustainable products

    NARCIS (Netherlands)

    Melnyk, V.; Herpen, van E.; Fischer, A.R.H.; Trijp, van J.C.M.

    2013-01-01

    Consumers face marketing messages using social norms in many situations where different goals are dominant. This research examines moderating effects of regulatory focus for descriptive and injunctive norms in the promotion of sustainable products. More specifically, it shows that descriptive norms

  19. The role of women in nuclear - attracting public participation in regulatory decision-making process

    Science.gov (United States)

    Mohamad Jais, Azlina; Hassan, Najwa

    2018-01-01

    Public participation is vital in demonstrating transparency and enhancing effectiveness of a nuclear regulatory process. As such, it is necessary for nuclear practitioners to involve the public in key nuclear delivery milestones. This paper specifically discusses challenges faced in attracting public participation throughout the nuclear regulatory decision-making process, and highlights the roles of women in nuclear (WiN) in initiating the said public discourse.

  20. Common Practices of Transparency in the Nuclear Regulatory Organizations

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Hah, Yeon Hee; Oh, Kju Myeng

    2010-01-01

    Along with greater access to information, particularly through the Internet, there is the increasing demand of the public for transparency, particularly in matters and decisions affecting their lives. The public demands to know more about Nuclear Regulatory Organization's (NROs) and their activities resulting in more interactions with the public to help make nuclear safety activities more understandable and transparent. As a general concept, 'transparency' means literally that something can be seen through. The definition tells us that it is, more actively, to provide the public with factual information about our activities, and to respond promptly to 'the public's right to know' about the information acquired by NROs. NROs around the world recognize the importance of openness and transparency to the success of their programs to protect public health and safety. All agree that good practice in transparency and being proactive with information help to protect against perceptions of secrecy and to instil public confidence and accountability in what they do. On the other hand, NROs face many challenges in their quest to be open and transparent with their stakeholders. government, nuclear operators, NGOs, media, our colleagues, and particularly with the general public. The most frequently identified challenge was striking the right balance between openness and security-related considerations with many responders citing the need to protect proprietary information whilst still accommodating the public's desire to be well informed. Other challenges include deciding how much transparency is needed to satisfy the public and how information, that is often highly technical and complex, can be presented in a meaningful way through the use of clear and simple language. In this paper, we summarize the survey results done by WGPC on relevant practices of NRO's flux of work concerning public communication matters. By comprehensively searching the international status, we may have

  1. Nuclear fuel cycle and sustainable development: strategies for the future

    International Nuclear Information System (INIS)

    Bouchard, J.

    2004-01-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  2. First update to the US Nuclear Regulatory Commission's regulatory strategy for the high-level waste repository program

    International Nuclear Information System (INIS)

    Johnson, R.L.; Linehan, J.J.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) staff has updated its initial regulatory strategy for the High-Level Waste Repository Licensing Program. The update describes changes to the initial strategy and summarizes progress and future activities. This paper summarizes the first update of the regulatory strategy. In general the overall strategy of identifying and reducing uncertainties is unchanged. Identifying regulatory and institutional uncertainties is essentially complete, and therefore, the current and future emphasis is on reducing those regulatory and institutional uncertainties identified to date. The NRC staff has improved the methods of reducing regulatory uncertainties by (1) enhancing the technical basis preparation process for potential rulemakings and guidance and (2) designing a new guidance document, called a staff position, for clarifying regulatory uncertainties. For guiding the US DOE's reduction of technical uncertainties, the NRC staff will give more emphasis to prelicense application reviews and less emphasis on preparing staff technical positions

  3. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  4. Knowledge Management Implementation In Indonesia Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.

    2016-01-01

    Full text: Indonesian Nuclear Energy Regulatory Agency (BAPETEN) acquires the task and function to control the safety, security and safeguards in the field of nuclear energy through the development of legislation, licensing services, inspection and enforcement. Which is supported by review and assessment, emergency preparedness. Knowledge Management (KM) is importance for BAPETEN to achieve the Regulatory body effectiveness and product innovation. The Chairman of BAPETEN has set policies statement for KM implementation. To implement a knowledge management program, BAPETEN creates KM guidelines that includes blueprint and roadmap KM programme based on a KM readiness survey. The KM readiness survey involves 20% of staff who represent each unit and discussions with the senior manager of BAPETEN, and the result of readiness survey produce 13 KM BAPETEN initiatives strategic. After the initiative strategic has been obtained, BAPETEN creates the Roadmap of BAPETEN Knowledge Management for 2015–2019 programme for KM People with the activity sozialization of KM Guidebook, workshop SMART knowledge worker, nurture Community of practices (COP) and develop social network analysis (SNE). KM Process with activity focus group discussion, KM Readyness survey, KM Statement, KM Bapeten Guidebook, knowledge mapping, knowledge harvesting. KM Technology with activity develop knowledge system or portal, e-learning. (author

  5. Strengthening of the nuclear safety regulatory body. Field evaluation review

    International Nuclear Information System (INIS)

    1996-10-01

    As a result of a request from the Preparation Committee of the Nuclear Regulatory Authority (NRA) in 1992, and as recommended by the CEC/RAMG (Commission of European Communities/Regulatory Assistance Management Group) and the Agency mission in July 1993 to the Slovak Republic, the project SLR/9/005 was approved in 1993 as a model project for the period 1994-1996. Current budge is $401,340 and disbursements to date amount to $312,873. The project time schedule has been extended to 1997. The major conclusions of this evaluation are as follows: The project responded to an urgent national need, as well as to a statutory mandate of the Agency, and was adequately co-ordinated with other international assistance programmes to NRA. The project was designed as a structured programme of assistance by means of expert missions, scientific visits and a limited amount of equipment, acting upon several key areas of NRA regulatory responsibilities. Agency assistance was provided in a timely manner. A high concentration of expert missions was noticed at the initial stages of the project, which posed some managements problems. This was corrected to some extent in the course of implementation. Additionally, some overlapping of expert mission recommendations suggests that improvements are needed in the design of such missions. The exposure to international regulatory practice and expertise has resulted in substantial developments of NRA, both in organizational and operational terms. The project can claim to have contributed to NRA having gained governmental and international confidence. NRA's role in the safety assessment of Bohunice V1 reconstruction, as well as in Bohunice V2 safety review, Bohunice A1 decommissioning and in informing the public, also points at the success achieved by the project. The institutional and financial support of the Government contributed decisively to the project achievements. (author). Figs, tabs

  6. Nuclear reactor decommissioning: an analysis of the regulatory environments

    International Nuclear Information System (INIS)

    Cantor, R.

    1986-08-01

    In the next several decades, the electric utility industry will be faced withthe retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this study was to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers. To identify significant trends and practices among regulatory bodies and utilities, a reviw of these factors was undertaken at various levels in the regulatory hierarchy. The technical policies were examined in reference to their treatment of allowed technical modes, restoration of the plant site including any specific recognition of the residual radioactivity levels, and planning requirements. The financial policies were examined for specification of acceptable financing arrangements, mechanisms which adjust for changes in the important parameters used to establish the fund, tax and rate-base treatments of the payments to and earnings on the fund, and whether or not escalation and/or discounting were considered in the estimates of decommissioning costs. The attitudes of regulators toward financial risk, the tax treatment of the decommissioning fund, and the time distribution of the technical mode were found to have the greatest effect on the discounted revenue requirements. Under plausible assumptions, the cost of a highly restricted environment is about seven times that of the minimum revenue requirement environment for the plants that must be decommissioned in the next three decades

  7. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers). The conference proceedings where divided into two parts. This item refers particularly to the second part

  8. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers)

  9. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  10. The reform of the Moldovan nuclear and radiological regulatory infrastructure

    International Nuclear Information System (INIS)

    Buzdugan, Artur

    2008-01-01

    Establishment of an independent and efficient regulatory body was recognized as a high level state priority in the last years. On May 11, 2006, the Parliament approved the new Law 111-XVI 'On safe deployment of nuclear and radiological activities'. According to the Law, there is being established a single regulatory body - National Agency for Regulation of Nuclear and Radiological Activities (further 'Regulator') and replaced those four domestic domestic regulatory bodies, being earlier in force. On february 28, 2007, the government has approved its Regulation and structure. The Regulator is established under the Ministry of Ecology and Natural Resources, but having the necessary financial and decision independence, The Director General of the Regulator is appointed by the Prime-Minister upon the recommendation of the respective Minister. The Regulator is responsible for the authorization, review and assessment on regulation, norms, inspection and enforcement. The mains kinds of activities with ionizing radiation sources are subjects of authorization by licensing of registration. The authorizations are issued if the user respects fully the conditions of legal norms forwarded by the Regulator. Authorizations are delivered under the form of license or certificates of registration, respective for I-III or IV-V categories of used ionizing radiation sources. For the first time, it is introduced in practice the categorization of radioactive sources, based on IAEA recommendations. Certificates of registration are issued by the Regulator, contrary to the licenses, which are issued or revoked by the Chamber of Licensing, on the base of the Regulator written notification. All services of the Regulator are free of charge. The Inspectorate is established as the subdivision of the Regulator. It is subordinated directly to the Director General of the Regulator, who is the Main State Inspector from the office. The inspectors have the right to perform inspections independent or

  11. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  12. A Conceptual Study on the Sustainability of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Choi, Hang Bok; Lim, Chae Young; Yoon, Ji Sup; Park, Seong Won

    2007-06-15

    Due to the current population growth and industrialization, energy consumption is increasing continuously. The world population and energy consumption were 2.5 billion and 1.5 billion tons of equivalent oil in 1950, but they are expected to be 9.2 billion and 60 tons, respectively, in 2100. This amount of energy consumption will result in an exhaustion of fossil resources and cause a serious environmental problem such as global warming. Therefore it is necessary to develop sustainable energy resources that maintain current economic growth and social welfare level without burdening a next generation's life style. Nuclear energy has an excellent competitiveness from the viewpoint of a sustainability. Especially nuclear power can effectively reduce greenhouse gas emissions and can be developed in a complementary way with a new and renewable energy, such as solar and wind power, and hydrogen energy. It is expected that nuclear power will maintain its sustainability in the following directions: Implementation of a fast reactor fuel cycle with a high uranium utilization efficiency, Implementation of a pyro-process with an excellent proliferation-resistance, Activity on the enhancement of a domestic social acceptance for nuclear power, International cooperation and joint research for the enhancement of an international nuclear transparency, Optimization of a nuclear grid structure through an accommodation of new and renewable energy resources, Application to a mass production of hydrogen energy.

  13. Nuclear Regulatory Commission issuances. Volume 44, Number 3

    International Nuclear Information System (INIS)

    1996-09-01

    This report includes issuances received during September 1996. After reviewing in detail each of the claims made in this informal proceeding the presiding officer sustained the staff of the USNRC in its determination that the applicant did not pass the written portion of his examination to become a licensed operator of a nuclear power plant. In the proceeding concerning citizen group challenges to the decommissioning plan for the Rowe Yankee power station, the licensing board grants licensee Yankee Atomic Electric Company's motion for summary disposition

  14. Nuclear Regulatory Commission issuances. Volume 44, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report includes issuances received during September 1996. After reviewing in detail each of the claims made in this informal proceeding the presiding officer sustained the staff of the USNRC in its determination that the applicant did not pass the written portion of his examination to become a licensed operator of a nuclear power plant. In the proceeding concerning citizen group challenges to the decommissioning plan for the Rowe Yankee power station, the licensing board grants licensee Yankee Atomic Electric Company`s motion for summary disposition.

  15. 77 FR 70846 - Regulatory Guide 1.182, “Assessing and Managing Risk Before Maintenance Activities at Nuclear...

    Science.gov (United States)

    2012-11-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0285] Regulatory Guide 1.182, ``Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... withdrawing Regulatory Guide (RG)1.182, Revision (Rev.) 0, ``Assessing and Managing Risk Before Maintenance...

  16. Nuclear Power Plants and Sustainable Development on a Liberalized Market

    International Nuclear Information System (INIS)

    Androcec, I.; Stanic, Z.; Tomsic, Z.

    2002-01-01

    Finding a way to generate electricity so as to satisfy the terms of sustainable development of the entire society is the only way which will secure safe energy future. If we talk about energy in the context of sustainable development, one of the most important element is environmental protection. Since CO 2 emissions stemming from electricity generation have predominant impact on climate change, one of the options for reducing emissions is the use of fuels without carbon, such as e.g. nuclear fuel. The future of nuclear power plants was considered in view of: nuclear fuel supply; potential impact of fuel cycle on environment, power plant operation, decommissioning and secondary products from electricity generation; and the entire nuclear power plant economy. Nuclear power plants were also examined in the context of the Kyoto Protocol stipulating reduction of greenhouse gases emissions. Nuclear power plants can not reduce CO 2 emissions in a short-term because they already operate with maximum output, but in a long-run they can play a significant role. This paper is aiming to analyse the role of nuclear power plants in long term environmental sustainability in electricity sector reform (liberalisation, deregulation, privatisation) in small or medium sized power supply systems. Nuclear power plants are associated with certain environmental aspects which will be taken into account. A comparison will be made through externalities with other energy resources, especially fossil fuels, which are prevailing energy resources, considering possible use of nuclear power plants in the countries with small and medium-size grids. It will be given an example of the role of NPP Krsko on air emissions reduction in Croatia. (author)

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Germany

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Definitions; Licensing requirements); 4. Nuclear installations (Licensing regime; Protection of the environment against radiation effects; Emergency response; Surveillance of installations and activities); 5. Trade in nuclear materials and equipment; 6. Radiation protection (General; Principal elements of the Radiation Protection Ordinance; Additional radiation protection norms); 7. Radioactive waste management (Atomic Energy Act 2002; Radiation Protection Ordinance; International obligations); 8. Non-proliferation and physical protection (Non-proliferation regime; Physical protection regime); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities: Federal authorities (Federal Minister for the Environment, Nature Conservation and Nuclear Safety, Federal Minister for Education and Research, Federal Minister of Finance, Federal Minister of Transport, Building and Urban Affairs, Federal Minister for Economy and Technology, Federal Minister of Defence, Federal Office for Radiation Protection - BfS, Federal Office of Economics and Export Control); Authorities of the Laender; 2. Advisory bodies (Reactor Safety Commission - RSK; Radiation Protection Commission - SSK; Disposal Commission - ESK; Nuclear Technology

  18. Banquet speech: nuclear power, competition and sustainable development

    International Nuclear Information System (INIS)

    Strong, M.F.

    1995-01-01

    The essential ingredients of sustainable development are economics and efficiency in the use of energy and materials, and in the prevention, disposal and recycling of wastes. Nuclear power will continue to be an important means of electricity generation for the foreseeable future but the extent to which this will be the case depends on the nuclear industry resolving public concerns over environmental, health and safety risks, and competing successfully with other generating technologies. In the final analysis, the future of nuclear power will be determined primarily by economic considerations. (UK)

  19. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  20. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  1. Nuclear Regulatory Commission issuances, April 1995. Volume 41, Number 4

    International Nuclear Information System (INIS)

    1995-04-01

    This book contains issuances of the Nuclear Regulatory Commission and of the Atomic Safety and Licensing Boards, and an issuance of the Director's decision. The issuances concern a petition filed by Dr. James E Bauer seeking interlocutory Commission review of the Atomic Safety and Licensing Board's order imposing several restrictions on Dr. Bauer; a denial of an Interveners' Petition for Review addressing the application of Babcock and Wilcox for a renewal of its Special Nuclear Materials License; granting a motion for a protective order, by Sequoyah Fuel Corporation and General Atomics, limiting the use of the protected information to those individuals participating in the litigation and for the purposes of the litigation only; granting a Petitioner's petition for leave to intervene and request for a hearing concerning Georgia Institute of Technology (Georgia Tech Research Reactor) renewal of a facility license; and a denial of a petition filed by Mr. Ted Dougherty requesting a shutdown of the San Onofre Nuclear Generating Station based on concerns regarding the vulnerability of the plant to earthquakes and defensibility of the plant to a terrorist threat

  2. Nuclear Regulatory Commission issuances, April 1995. Volume 41, Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This book contains issuances of the Nuclear Regulatory Commission and of the Atomic Safety and Licensing Boards, and an issuance of the Director`s decision. The issuances concern a petition filed by Dr. James E Bauer seeking interlocutory Commission review of the Atomic Safety and Licensing Board`s order imposing several restrictions on Dr. Bauer; a denial of an Interveners` Petition for Review addressing the application of Babcock and Wilcox for a renewal of its Special Nuclear Materials License; granting a motion for a protective order, by Sequoyah Fuel Corporation and General Atomics, limiting the use of the protected information to those individuals participating in the litigation and for the purposes of the litigation only; granting a Petitioner`s petition for leave to intervene and request for a hearing concerning Georgia Institute of Technology (Georgia Tech Research Reactor) renewal of a facility license; and a denial of a petition filed by Mr. Ted Dougherty requesting a shutdown of the San Onofre Nuclear Generating Station based on concerns regarding the vulnerability of the plant to earthquakes and defensibility of the plant to a terrorist threat.

  3. Sustainable development - the potential contribution of nuclear energy

    International Nuclear Information System (INIS)

    Bourdier, Jean-Pierre; Barre, Bertrand; Durret, Louis-Francois

    1998-01-01

    Sustainable development combines development, durability and sustainability. Energy is crucial for development: it brings work, nutrition, health, security, community, etc. Electrical energy offers the most possibilities for the consumer, particularly as regards the problems of pollution on the site of consumption. Nuclear generation is one of the best ways of producing electricity. Midway between stock energies and flow energies, it has several advantages: low consumption of resources, safety, compactness and cleanliness. Waste is not a specifically nuclear problem: it should be considered in terms of a life cycle analysis; construction, dismantling and functioning have to be assessed. The size of certain energies' contribution to the greenhouse effect is therefore made clear. Reprocessing represents a saving of energy, without environmental or health damage. It contributes to energy control, and therefore to sustainable development

  4. Nuclear and sustainable development; Nucleaire et developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, P.; Balle, St.; Barandas, Ch.; Basse-Cathalinat, B.; Bellefontaine, E.; Bernard, H.; Bouhand, M.H.; Bourg, D.; Bourgoignon, F.; Bourlat, Y.; Brunet, F.; Buclet, N.; Buquet, N.; Caron, P.; Cartier, M.; Chagneau, E.; Charles, D.; Chateau, G.; Collette, P.; Collignon, A.; Comtesse, Ch.; Crammer, B.; Dasnias, J.; Decroix, G.; Defoy, B.; Delafontaine, E.; Delcroix, V.; Delerue, X.; Demet, M.; Dimmers, G.; Dodivers, S.; Dubigeon, O.; Eimer, M.; Fadin, H.; Foos, J.; Ganiage, D.; Garraud, J.; Girod, J.P.; Gourod, A.; Goussot, D.; Guignard, C.; Heloury, J.; Hondermarck, B.; Hurel, S.; Jeandron, C.; Josse, A.; Lagon, Ch.; Lalleron, Ch.; Laurent, M.; Legrand, H.; Leveau, E

    2006-07-01

    On September 15. and 16., 2004, at Rene Delcourt invitation, President of the C.L.I. of Paluel and Penly, took place the 4. colloquium of the A.N.C.L.I.. Jean Dasnias, new President of the C.L.I., welcomed the colloquium. Hundred of persons participated. The place of the nuclear power in the energy perspectives of tomorrow, its assets and its weaknesses in front of the other energies and within the framework of a sustainable development, are so many subjects which were discussed. The different tackled subjects are: the stakes in the sustainable development; energy perspectives; the reactors of the fourth generation; nuclear power and transparency; sustainable development and I.R.S.N. (N.C.)

  5. Sustainable operations in nuclear research reactors. A bibliographical study

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  6. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  7. Overview of maintenance principles and regulatory supervision of maintenance activities at nuclear power plants in Slovakia

    International Nuclear Information System (INIS)

    Rohar, S.; Cepcek, S.

    1997-01-01

    The maintenance represents one of the most important tools to ensure safe and reliable operation of nuclear power plants. The emphasis of Nuclear Regulatory Authority of the Slovak Republic to the maintenance issue is expressed by requirements in the regulations. The current practice of maintenance management in operated nuclear power plants in Slovak Republic is presented. Main aspects of maintenance, as maintenance programme, organization of maintenance, responsibilities for maintenance are described. Activities of nuclear regulatory authority in maintenance process are presented too. (author)

  8. International Expert Team Concludes IAEA Peer Review of Finland's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: International safety experts today concluded a two-week International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in Finland. In its preliminary report, the Integrated Regulatory Review Service (IRRS) mission team found that the Radiation and Nuclear Safety Authority of Finland (STUK) is a competent and highly credible regulator that is open and transparent and derives great strength from the technical competence of its staff. ''Finland's comprehensive regulatory framework allows STUK to operate in practice as an independent regulatory body,'' said team leader Philippe Jamet, a commissioner of the French regulatory body ASN. The mission was conducted at the request of the Government of Finland from 15-26 October. The team interviewed members of STUK and officials from various ministries, as well as key players in the Finnish safety framework. Such IRRS missions are peer reviews based on IAEA Safety Standards, not inspections or audits. The team was made up of 18 members from Bulgaria, Canada, the Czech Republic, France, Germany, Iceland, Ireland, Romania, the Russian Federation, South Africa, Slovakia, Slovenia, Spain, Sweden, the United Arab Emirates, the United Kingdom and the United States, as well as six IAEA staff members. 'The IRRS mission and preparation for it was a unique occasion that involved the whole organization, provided motivation for improvement of the safety framework in Finland and assists STUK review its mission', said Tero Varjoranta, Director General of STUK. The IRRS team identified a number of good practices and achievements, including: - STUK's excellence in its safety assessment of nuclear power plants and waste repositories, in particular its demonstration that long-term political commitment is a necessity to sustain the creation of a waste repository as well as its regulatory oversight of medical applications of radiation sources; and - STUK's excellent record in

  9. Sustainable Nuclear Energy for the 21st Century

    International Nuclear Information System (INIS)

    2010-09-01

    Concerns over energy resource availability, energy security and climate change suggest an important role for nuclear power in supplying sustainable energy in the 21st century. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000 by a resolution of the IAEA General Conference to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. It is a mechanism for IAEA Member States that have joined the project as INPRO members to collaborate on topics of joint interest. By 2010, INPRO membership had grown to 30 countries and the European Commission. The results of INPRO's activities, however, are made available to all IAEA Member States

  10. On nuclear power, population and sustainable global civilization

    International Nuclear Information System (INIS)

    Ishiguro, Yuji

    2007-01-01

    Humanity is facing a multitude of difficult problems that threaten not only human development but the very continuity of civilization. The fundamental cause is the size of the human population but at present the subject is not discussed in international fora. It is not clear if it is wishfully avoided or if it is not recognized as the fundamental problem. Without limiting fertility and population globally, there will be no future for civilization as we know it and there will be no need for nuclear power as a source of energy. Instead, nuclear power will be the principal agent of the end. The nuclear community is in a position to point out the problem and propose a solution. Principles of sustainability and a path to a sustainable global civilization are shown. (author)

  11. Development of Checklist for Self-Assessment of Regulatory Capture in Nuclear Safety Regulation

    International Nuclear Information System (INIS)

    Choi, K. S.; Lee, Y. E.; Chang, H. S.; Jung, S. J.

    2011-01-01

    Regulatory body performs its mission on behalf of the general public. As for nuclear industries, the public delegates the authority to the regulatory body for monitoring the safety in nuclear facilities and for ensuring that it is maintained in the socially and globally acceptable level. However, when the situation that a regulatory body behaves in the interests of industries happens, not working primarily for protecting public health and safety on behalf of the public, it is charged that regulatory body acts as an encouragement for industries which produce negative externalities such as radiation risk or radiation hazards. In this case, the regulatory body is called as 'Captured' or it is called that 'Regulatory Capture' happened. Regulatory capture is important as it may cause regulatory failure, one form of government failure, which is very serious phenomenon: severe nuclear accident at Fukushima nuclear power plants recently occurred in March, 2011. This paper aims to introduce the concept of regulatory capture into nuclear industry field through the literature survey, and suggest the sample checklist developed for self-assessment on the degree of regulatory capture within regulatory body

  12. The role of risk assessment in the nuclear regulatory process

    International Nuclear Information System (INIS)

    Levine, S.

    1979-01-01

    Since the publication of the Reactor Safety Study in the USA, the basic tasks of which are summarised, the use of quantitative risk-assessment techniques for the safety of nuclear power plants has increased considerably. Some of the viewpoints expressed on the use of these techniques are examined, and their limitations are discussed. Areas where risk-assessment techniques are applied by the NRC are listed and some recent examples are discussed. Risk assessment has also been used as a criteria for deciding the topics for the NRC's recommendations for research programs. It is concluded that the major contribution of risk assessment techniques should be in the form of background analyses that will aid decision making and could also significantly affect the scope and content of regulatory reviews. (UK)

  13. Nuclear Regulatory Commission issuances: Volume 39, Number 6

    International Nuclear Information System (INIS)

    1994-06-01

    This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM). Issuances of the Nuclear Regulatory Commission include: (1) Advanced Medical Systems, Inc.; (2) Henry Allen, Diane Marrone, and Susan Settino; and (3) Westinghouse Electric Corporation. Issuances of the Atomic Safety and Licensing Boards include: (1) Sequoyah Fuels Corporation and General Atomics Corporation and (2) Umetco Minerals Corporation. Issuances of Director's Decisions include: (1) Advanced Medical Systems, Inc., and (2) Boston Edison Company and all boiling water reactors. The summaries and headnotes preceding the opinions reported herein are not to be deemed a part of those opinions or have any independent legal significance

  14. Nuclear Regulatory Commission staff approaches to improving the integration of regulatory guidance documents and prelicensing reviews

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1994-01-01

    The Nuclear Regulatory Commission staff is conducting numerous activities to improve the integration of its regulatory guidance documents (i.e., License Application Review Plan (LARP) and open-quotes Format and Content for the License Application for the High-Level Waste repositoryclose quotes (FCRG)) and pre-license application (LA) reviews. Those activities related to the regulatory guidance documents consist of: (1) developing an hierarchy of example evaluation findings for LARP; (2) identifying LARP review plan interfaces; (3) conducting an integration review of LARP review strategies; (4) correlating LARP to the ongoing technical program; and (5) revising the FCRG. Some of the more important strategies the staff is using to improve the integration of pre-LA reviews with the LA review include: (1) use of the draft LARP to guide the staff's pre-LA reviews; (2) focus detailed pre-LA reviews on key technical uncertainties; (3) identify and track concerns with DOE's program; and (4) use results of pre-LA reviews in LA reviews. The purpose of this paper is to describe these ongoing activities and strategies and discuss some of the new work that is planned to be included in LARP Revision 1 and the final FCRG, which are scheduled to be issued in late 1994. These activities reflect both the importance the staff has placed on integration and the staff's approach to improving integration in these areas. The staff anticipates that the results of these activities, when incorporated in the FCRG, LARP, and pre-LA reviews, will improve its guidance for DOE's ongoing site characterization program and LA annotated outline development

  15. Nuclear Regulatory Commission and its role in environmental standards

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1976-01-01

    The NRC and its predecessors in the Atomic Energy Commission represent considerable experience in environmental standards setting. The Atomic Energy Act of 1954, the 1970 Supreme Court decision on Federal pre-emption of radiation standards, the Calvert Cliffs decision of 1971, the Energy Reorganization Act of 1974, and the Appendix I ''as low as reasonably achievable'' decision of 1975, to name a few of our landmarks, are representative of the scars and the achievements of being in a role of national leadership in radiation protection. The NRC, through a variety of legislative authorities, administrative regulations, regulatory guides, and national consensus standards regulates the commercial applications of nuclear energy. The purposes of regulation are the protection of the environment, public health and safety, and national security. To understand NRC's responsibilities relative to those of other Federal and state agencies concerned with environmental protection, we will briefly review the legislative authorities which underlie our regulatory program. Then we will examine the intent or the spirit of that program as embodied in our system of regulations, guides, and standards. Finally we will speak to what's happening today and what we see in the future for environmental standards

  16. Emergency management in nuclear power plants: a regulatory view

    International Nuclear Information System (INIS)

    Shukla, Vikas; Chander, Vipin; Vijayan, P.; Nair, P.S.; Krishnamurthy, P.R.

    2011-01-01

    The nuclear power plants in India adopts a high level of defence in depth concept in design and operates at highest degree of safety, however the possibility of nuclear accidents cannot be ruled out. The safety and regulatory review of Nuclear Power Plants (NPPs) in India are carried out by Atomic Energy Regulatory Board (AERB). Section 33 of Atomic Energy (Radiation Protection) Rules-2004 provides the basic requirements of emergency preparedness aspects for a nuclear facility. Prior to the issuance of a license for the operation of NPPs, AERB ensures that the site specific emergency response manuals are in place and tested. The emergency response plan includes the emergency response organization, their responsibilities, the detailed scheme of emergency preparedness, response, facilities, equipments, coordination and support of various organizations and other technical aspects. These emergency preparedness plans are tested at periodic interval to check the overall effectiveness. The plant and site emergency exercise is handled by the plant authorities as per the site emergency plan. The events with off-site consequences are handled by the district authorities according to the off-site emergency plan. In off-site emergency exercises, observers from AERB and other associated organizations participate. Observations of the participants are discussed in the feedback session of the exercise for their disposition. This paper reviews the current level of emergency planning and preparedness, statistics of emergency exercises conducted and their salient findings. The paper highlights improvement in the emergency management programme over the years including development of advance technical support systems. The major challenges in off-site emergency management programme such as industrial growth and increase in population within the sterilized zone, frequent transfer of district officials and the floating population around the NPPs are outlined. The areas for improvement in

  17. Conformance to Regulatory Guide 1.97, Arkansas Nuclear One, Unit No. 1

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-08-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 1 of Arkansas Nuclear One and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  18. Virtual private networks application in Nuclear Regulatory Authority of Argentina

    International Nuclear Information System (INIS)

    Glidewell, Donnie D.; Smartt, Heidi A.; Caskey, Susan A.; Bonino, Anibal D.; Perez, Adrian C.; Pardo, German R.; Vigile, Rodolfo S.; Krimer, Mario

    2004-01-01

    As the result of the existence of several regional delegations all over the country, a requirement was made to conform a secure data interchange structure. This would make possible the interconnection of these facilities and their communication with the Autoridad Regulatoria Nuclear (ARN) headquarters. The records these parts exchange are often of classified nature, including sensitive data by the local safeguards inspectors. On the other hand, the establishment of this network should simplify the access of authorized nuclear and radioactive materials users to the ARN databases, from remote sites and with significant trust levels. These requirements called for a network that should be not only private but also secure, providing data centralization and integrity assurance with a strict user control. The first proposal was to implement a point to point link between the installations. This proposal was deemed as economically not viable, and it had the disadvantage of not being easily reconfigurable. The availability of new technologies, and the accomplishment of the Action Sheet 11 under an agreement between Argentine Nuclear Regulatory Authority and the United States Department of Energy (DOE), opened a new path towards the resolution of this problem. By application of updated tunneling security protocols it was possible to project a manageable and secure network through the use of Virtual Private Networking (VPN) hardware. A first trial installation of this technology was implemented between ARN headquarters at Buenos Aires and the Southern Region Office at Bariloche, Argentina. This private net is at the moment under test, and it is planned to expand to more sites in this country, reaching for example to nuclear power plants. The Bariloche installation had some interesting peculiarities. The solutions proposed to them revealed to be very useful during the development of the network expansion plans, as they showed how to adapt the VPN technical requisites to the

  19. U.S. Nuclear Regulatory Commission nuclear safety assistance to the CEE and NIS countries

    International Nuclear Information System (INIS)

    Blaha, J.

    2001-01-01

    NRC participates in bilateral and multilateral efforts to strengthen the regulatory authorities of countries in which Soviet design NPPs are operated. Countries involved are the New Independent States of the Soviet Union (Armenia, Kazakhstan, Russia and Ukraine) and of Central and Eastern Europe (Bulgaria, Czech Republic, Hungary, Lithuania and Slovak Republic). NRC's goal is to see that its counterparts receive the basic tools, knowledge and understanding needed to exercise effective regulatory oversight, consistent with internationally accepted norms and standards. The bilateral assistance started in 1991. $44 mill. are provided to the countries. The multilateral activities NRC participates in include: H-7 Nuclear Safety Working Group, EBRD - Administered Nuclear Safety Account and Chernobyl Sarcophagus Fund and IAEA

  20. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment.... SUMMARY: The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), in cooperation with the Electric Power Research Institute (EPRI), will hold a joint workshop on the Treatment of...

  1. 76 FR 61402 - Draft Nuclear Regulatory Commission Fiscal Year 2012-2016 Strategic Plan

    Science.gov (United States)

    2011-10-04

    ...-2016 Strategic Plan AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment... comment on draft NUREG-1614, Volume 5. ``U.S. Nuclear Regulatory Commission, FY 2012-2016 Strategic Plan,'' dated September 2011. The NRC's draft FY 2012-2016 strategic plan describes the agency's mission and...

  2. 77 FR 15142 - Updated Nuclear Regulatory Commission Fiscal Years 2008-2013 Strategic Plan

    Science.gov (United States)

    2012-03-14

    ... 2008-2013 Strategic Plan AGENCY: Nuclear Regulatory Commission. ACTION: Strategic plan. SUMMARY: The U...-1614, Volume 5, ``U.S. Nuclear Regulatory Commission, Fiscal Years [FY] 2008-2013 Strategic Plan,'' dated February 2012. The updated FY 2008-2013 strategic plan describes the agency's mission and...

  3. Comparison of ISO 9000 and recent software life cycle standards to nuclear regulatory review guidance

    International Nuclear Information System (INIS)

    Preckshot, G.G.; Scott, J.A.

    1998-01-01

    Lawrence Livermore National Laboratory is assisting the Nuclear Regulatory Commission with the assessment of certain quality and software life cycle standards to determine whether additional guidance for the U.S. nuclear regulatory context should be derived from the standards. This report describes the nature of the standards and compares the guidance of the standards to that of the recently updated Standard Review Plan

  4. Regulatory and administrative requirements for practice of nuclear medicine in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    1998-01-01

    In order to ensure safety of the patients, staff and public in the practice of nuclear medicine, including in-vivo diagnostic investigations, radionuclide therapy and in research using unsealed radioactive substances a number of administrative and regulatory procedures are adopted. The salient features of regulatory and administrative requirements for practice of nuclear medicine in India are discussed

  5. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-07-29

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  6. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  7. New regulatory pathways and incentives for sustainable antibiotics: Recent European & US Initiatives

    DEFF Research Database (Denmark)

    Minssen, Timo

    2014-01-01

    ) and the COMBACTE and TRANSLOCATION projects under NewDrugs4BadBugs program, involving the EU Commission and the pharma industry. But also national initiatives, such as the successful Danish ban and regulations on antibiotic use in animal production, as well as educational efforts (the European Antibiotic Awareness......New regulatory pathways and incentives for sustainable antibiotics: Recent European & US Initiatives Posted on March 19, 2014 by Timo Minssen Please find attached a ppt presentation on “New regulatory pathways and incentives for sustainable antibiotics: Recent European & US Initiatives” given...... on March 7, 2014 at the Broad Institute of MIT and Harvard. The presentation was followed by a discussion moderated by US patent attorney Melissa Hunter-Ensor, Partner at Saul Ewing, Boston I started out by emphasizing increasing problems of antimicrobial resistance (AMR) on a global level, providing new...

  8. Sustainability, natural and organic cosmetics: consumer, products, efficacy, toxicological and regulatory considerations

    Directory of Open Access Journals (Sweden)

    Bruno Fonseca-Santos

    2015-03-01

    Full Text Available The interest in sustainable products has increased along the years, since the choice of products, packaging and production processes have a great impact on the environment. These products are classified by regulatory agencies in different categories, aggregating advantages to the product and increasing the demand by consumers. However, there is no harmonization in guidelines of these certifying agencies and each cosmetic industry formulates their product and packaging in a more rational way, which causes less damage to the environment. Many cosmetic products have in their formulation natural products that perform a specific biological function, but these products should be evaluated on efficacy and toxicological aspects. The aim of this article is to approach sustainability, natural and organic cosmetics, considering the consumer and the efficacy, toxicological and regulatory aspects.

  9. Strategic considerations for the sustainable remediation of nuclear installations.

    Science.gov (United States)

    Mobbs, S; Orr, P; Weber, I

    2017-08-05

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable the sites or parts of the sites to be reused. Although this is relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic detriments and benefits that should be taken into account. Recent experience of OECD Nuclear Energy Agency (NEA) member countries in the remediation of contaminated land, predominantly contaminated soil and groundwater, on nuclear sites during decommissioning has been assessed by an NEA task group. The experience was used to identify strategic considerations for nuclear site remediation, to consider the application of sustainability principles to nuclear site remediation, to describe good practice, and to make recommendations for further research and development. The key aspects that were identified were that 1) site remediation should be sustainable by resulting in an overall net benefit; and 2) an adaptive approach is essential in order to take into account the inherent uncertainty associated with the decommissioning and site remediation timescales. A report describing the findings was published by OECD/NEA in 2016. The conclusions provide insights to decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so that they can achieve sustainable remediation of nuclear sites, now and in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. British Columbia's fish health regulatory framework's contribution to sustainability goals related to salmon aquaculture.

    Science.gov (United States)

    Stephen, Craig; Dicicco, Emiliano; Munk, Brandon

    2008-12-01

    Salmon farming is a significant contribution to the global seafood market to which the goal of sustainability is often applied. Diseases related to farms are perhaps the most contentious issues associated with sustainable salmon farming. We reviewed literature and policies in British Columbia, Canada, as well as interviewed key informants to examine how fish health regulations do or could support sustainability goals. We found four main obstacles to the development and application of a sustainability-based health management system. First, salmon farming faced the same challenges as other industries when trying to establish an operational definition of sustainability that captures all stakeholders' interests. Second, there was no program responsible for integrating the various regulations, responsible departments, and monitoring efforts to develop a comprehensive view of sustainability. Third, there was inadequate research base and social consensus on the criteria that should be used to track health outcomes for sustainability purposes. Fourth, the regulatory and management paradigm for salmon farming has been focused on diseases and pathogens as opposed to embracing a more inclusive health promotion model that includes biotic, abiotic, and social determinants of health. A transparent and inclusive participatory process that effectively links expert views with community and industry concerns should serve as the foundation for the next generation of health management regulations for salmon farming.

  11. Regulator's role in sustainability of nuclear power

    International Nuclear Information System (INIS)

    Bansal, Parikshat; Sinha, Soumen; Bhattacharya, Ramdas

    2015-01-01

    A development which is environmentally benign, economically viable as well socially acceptable is regarded as sustainable development. Nuclear power scores extremely well with the first two parameters: i.e its cost of production is competitive with that of other power sources and is considered a clean source of power as the greenhouse gas emissions and discharge of other hazardous pollutants are insignificant. However, when it comes to acceptability by the society at large, there are issues. Early shutting down of power plants like Superphénix at France, abandonment of Yucca mountain project, agitation during commissioning of KKNPP etc. are few examples where the public perception was the main reason for such actions. These events tell us about the importance of public perception in sustainability of a project or nuclear power as a whole. In this backdrop, the role of regulator to present the safety aspects in correct perspective assumes enormous significance and goes in a long way in clearing unwarranted apprehensions, thereby playing a pivotal role in sustainability of nuclear power. The nuclear regulator needs to build long lasting trust and confidence with stakeholders. Therefore it needs to be continuously in touch with public, not only during crisis but also during peace time, disseminating information on safe use of ionizing radiation and atomic energy without undue risk to the health of the people and environment. (author)

  12. Strategic Considerations for the Sustainable Remediation of Nuclear Installations

    International Nuclear Information System (INIS)

    Miller, Susan; Wilson, Ian; Decung, Fabien; Ollivier Dehaye, Catherine; Pellenz, Gilles; Palut-Laurent, Odile; Nitzsche, Olaf; Rehs, Bernd; Altavilla, Massimo; Osimani, Celso; Florya, Sergey; Revilla, Jose-Luis; Efraimsson, Henrik; Baines, Kim; Clark, Anna; Cruickshank, Julian; Mitchell, Nick; Mobbs, Shelly; Orr, Peter; Abu-Eid, Rateb Boby; Durham, Lisa; Morse, John; Walker, Stuart; Weber, Inge; ); Monken-Fernandes, Horst; )

    2016-01-01

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable sites, or parts of sites, to be reused. Although such activities are relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic drawbacks and benefits. Site remediation should thus be sustainable and result in an overall net benefit. This report draws on recent experience of NEA member countries in nuclear site remediation during decommissioning in order to identify strategic considerations for the sustainable remediation of subsurface contamination - predominantly contaminated soil and groundwater - to describe good practice, and to make recommendations for further research and development. It provides insights for the decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so as to ensure the sustainable remediation of nuclear sites, now and in the future. (authors)

  13. Regulatory Body Safety Culture in Non-nuclear HROs: Lessons for Nuclear Regulators

    International Nuclear Information System (INIS)

    Fleming, M.; Bowers, K.

    2016-01-01

    Regulator safety culture is a relatively new area of investigation, even though deficiencies in regulatory oversight have been identified in a number of public inquiries (e.g., Piper Alpha, Deep Water Horizon). More recently the IAEA report into the Fukushima disaster specifically identified the need for regulatory bodies to have a positive safety culture. While there are clear parallels between duty holder safety culture and regulator safety culture there are also likely to be differences. To date they have been no published studies investigating regulator safety culture. In order to develop a framework to understand regulator safety culture we conducted a literature review and interviewed safety culture subject matter experts from a range of HRO domains (e.g., offshore oil and gas). There was general consensus among participants that regulatory safety culture was an important topic that was worthy of further investigation. That there was general agreement that regulatory safety culture was multi-dimensional and that some of the elements of existing safety culture models applied to regulator culture (e.g., learning and leadership). The participants also identified unique dimensions of regulator safety culture including commitment to high standards and ethics, transparency and perceived role of the regulator. In this paper we will present the results of the interviews and present a model of regulator safety culture. This model will be contrasted with models being used in the nuclear industry. Implications for assessing regulatory safety culture will be discussed. (author)

  14. Leak testing United States Nuclear Regulatory Commission type b packaging

    International Nuclear Information System (INIS)

    Lacy, K.A.

    1995-01-01

    The Waste Isolation Pilot Plant (WTPP) is a one of its kind research and development facility operated by the Department of Energy, Carlsbad Area Office. Located in southeastern New Mexico, the WTPP is designed to demonstrate the safe, permanent disposal of transuranic (TRU) radioactive nuclear waste, accumulated from 40 years of nuclear weapons production. Before the waste can be disposed of, it must first be safely transported from generator storage sites to the WIPP. To accomplish this, the TRUPACT-II was designed and fabricated. This double containment, non-vented waste packaging successfully completed a rigorous testing program, and in 1989 received a Certificate of Compliance (C of C) from the Nuclear Regulatory Commission (NRC). Currently, the TRUPACT-II is in use at Idaho National Engineering Laboratory to transport waste on site for characterization. The DOE/CAO is responsible for maintaining the TRUPACT-II C of C. The C of C requires performance of nondestructive examination (NDE), e.g., visual testing (VT), dimensional inspections, Liquid Dye Penetrant testing (PT), and Helium Leak Detection (HLD). The Waste Isolation Division (WID) uses HLD for verification of the containment integrity. The following HLD tests are performed on annual basis or when required, i.e. repairs or component replacement: (1) fabrication verification leak tests on both the outer containment vessel (OCV) and the inner containment vessel (ICV); (2) assembly verification leak tests on the OCV and ICV upper main o-rings; and (3) assembly verification leak tests on the OCV and the ICV vent port plugs. These tests are addressed in detail as part of this presentation

  15. Nuclear power in the frame of sustainable development

    International Nuclear Information System (INIS)

    Constantin, M.

    2003-01-01

    Nuclear energy is treated taking into account the three dimensions of sustainable development: economic, environmental and social. Some nuclear energy relevant indicators are identified and used in the analysis. The economic efficiency is a relevant indicator insofar as market prices reflect the full costs for society of a given product or activity. For nuclear energy the economic criteria applicable to market competition and subsidies are used. The core indicators for the environmental dimension of sustainable development include criteria related to natural resource management, climate change, air and water quality, biodiversity and landscaping. The nuclear electricity generation chain does not release gases or particles that acidify rains, contribute to urban smog or deplete of the ozone layer. The human and social dimension comprises human capital in the form of knowledge, education and employment opportunities, human welfare, equity and participation, social capital in the form of effective institutions and voluntary associations, the rule of law, and social cohesion. From this point of view the nuclear energy is characterized by a net contribution to human and social capital and a challenge in terms of public acceptability and widely varying perceptions of the risks and benefits. (authors)

  16. Sustainable Development in India - A case for Nuclear Power - 189

    International Nuclear Information System (INIS)

    Thakur, S.

    2010-01-01

    India needs a sustained high economic growth to realize its objectives of poverty alleviation and improving the standard of living of its population. Energy/ Electricity being the key driver for economic growth, there is a pressing need for large augmentation in generation capacity, infrastructure and enhancement of energy efficiency to ensure that there is equity amongst population as far as energy availability is concerned. India is not very energy rich and has limited resources of fossil fuels. India's nuclear power resources profile comprises of very modest uranium but abundant thorium resources. A unique three stage programme, based on optimum utilization of indigenous resources, offers a solution for the country's long term energy security and sustainability. India's nuclear power programme is based on a closed fuel cycle. The philosophy, apart from increasing the energy potential of the resource manifold, reduces the amount waste considerably. There is also the benefit of nuclear power being clean free. While the indigenous nuclear power programme is robust and on course, a much faster nuclear capacity addition in the near term, to meet the rising demand and mitigating existing energy shortages, is contemplated through additionalities based on international cooperation. (authors)

  17. Romanian nuclear power in the context of sustainable development

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Bilegan, Iosif C.

    2003-01-01

    Energy use is a vital force for the economic welfare. It drives many aspects of the economic activity and is essential to a high quality life. However, the unwanted side-effects of energy use, including local pollution and the global warming due mainly to release of greenhouse gases such as carbon dioxide (CO 2 ), are detrimental to life quality and may induce climate changes at a large-scale. The nuclear power has a lot of economical, social and environmental benefits. The paper deals with aspects referring to the CANDU nuclear technology that is developed in Romania, within the sustainable development framework. (authors)

  18. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  19. Sustainability of nuclear energy in Mexico: comparison with other sources

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J. L.

    2006-01-01

    Because of the importance of energy to sustainable development of Mexico, it is necessary to develop a tool which permits to make a comparative assessment of energy alternative options. This tool must take into a count their characteristics in terms of their economic, health, environmental and social impacts, both, positive and negative, local, regional and global. This paper describes a methodology to measure the sustainability of nuclear and other different sources for electricity generation. The first step consists on the search of common indicators to be compared. These indicators take into account the great variety of economic, social, and environmental impacts to be considered in the specific Mexican country. A total of fourteen indicators were considered grouped in three dimensions: economic, environmental and social. The second step is to obtain the values of all the indicators for each of the alternative options being compared. These values must be calculated taking into account the economic and technological characteristics of the country. The third step is to utilize an aggregation method to integrate all the indicators in an overall sustainable qualification. Fuzzy Logic was applied for the aggregation of indicators and was used to make sensitive analyses. Finally this paper presents the results for the case of the Mexican power system generation. The main result of the comparison is that nuclear energy in Mexico is an option more sustainable than gas, coal, and hydroelectric. Some sensitive analyses were also made to investigate the implication of the uncertainties in the indicator's values. Coal was in all cases the least sustainable option with largest environmental impacts. Wind energy was also included in a study case, the results of this assessment comparison showed that wind option in Mexico has an overall qualification very close to nuclear option when a backup power system is not included

  20. Development of digital library system on regulatory documents for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, K. H.; Kim, K. J.; Yoon, Y. H.; Kim, M. W.; Lee, J. I.

    2001-01-01

    The main objective of this study is to establish nuclear regulatory document retrieval system based on internet. With the advancement of internet and information processing technology, information management patterns are going through a new paradigm. Getting along the current of the time, it is general tendency to transfer paper-type documents into electronic-type documents through document scanning and indexing. This system consists of nuclear regulatory documents, nuclear safety documents, digital library, and information system with index and full text

  1. Sustainable Transformation & Effective Competency Management Practices in Nuclear Organizations

    International Nuclear Information System (INIS)

    Gardelliano, S.

    2016-01-01

    Full text: Managing essential knowledge as a strategic organizational asset is a factor of upmost relevance in today’s nuclear organizations. The author considers evident that competencies are critical carriers of knowledge. As such the use of an appropriate competency model could be the most effective way to capture the present reservoir of explicit and tacit Knowledge of specific functions or organizational areas. Besides, we could use them for new or other redesigned functions or determine the needs of specific competencies for future positions. Therefore, appropriate competency models or systems have to be developed or updated in each nuclear organization since these are fundamental for managing more effectively and efficiently the present nuclear human capital and to forecast the evolving competence required in management, technical, scientific and safety areas to continuously ensure a highly competent nuclear workforce. On the other hand, competency based management models or systems would not achieve the expected results if they are not fully designed and integrated within the strategic organizational infrastructure of the related nuclear organization. This paper is expected to provide a wider view and practical reflections on organizational transformation issues and the benefits of using an integrative competency model in the nuclear industry. Particularly, the paper give an insight of an empiric model for strategic organizational transformation processes and integrative management practices, and on how to realign strategic issues with top management processes and build organizational capacity through effective competency based management for the sustainable transformation of nuclear organizations. (author

  2. Uranium as a nuclear fuel: availability, economy, sustainability

    International Nuclear Information System (INIS)

    2010-01-01

    In the context of the much cited nuclear renaissance, the presence of the resource uranium not only raises questions about availability, but also places the central demand for sustainability in the limelight. Consideration of economic and environmental aspects of uranium production, e.g. through mining, provides the basis for a possible assessment of this resource. In addition to the crucial question of resource availability, this conference will also discuss its economic aspects and environmental risks.

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Republic of Korea

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection) (Protection of workers; Protection of the public); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Education, Science and Technology, including the Nuclear Energy Bureau; Minister of Knowledge Economy); 2. Advisory bodies (Atomic Energy Commission; Atomic Energy Safety Commission); 3. Public and semi-public agencies (Korean Atomic Energy Research Institute - KAERI; Korean Institute for Nuclear Safety - KINS; Korean Electric Power Company - KEPCO; Korean Hydro and Nuclear Power - KHNP)

  4. Evaluation Indicators for Analysis of Nuclear Fuel Cycle Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Ko, Won Il; Chang, Hong Lae

    2008-01-15

    In this report, an attempt was made to derive indicators for the evaluation of the sustainability of the nuclear fuel cycle, using the methodologies developed by the INPRO, OECD/NEA and Gen-IV. In deriving the indicators, the three main elements of the sustainability, i.e., economics, environmental impact, and social aspect, as well as the technological aspect of the nuclear fuel cycle, considering the importance of the safety, were selected as the main criteria. An evaluation indicator for each criterion was determined, and the contents and evaluation method of each indicator were proposed. In addition, a questionnaire survey was carried out for the objectivity of the selection of the indicators in which participated some experts of the Korea Energy Technology and Emergency Management Institute (KETEMI) . Although the proposed indicators do not satisfy the characteristics and requirements of general indicators, it is presumed that they can be used in the analysis of the sustainability of the nuclear fuel cycle because those indicators incorporate various expert judgment and public opinions. On the other hand, the weighting factor of each indicator should be complemented in the future, using the AHP method and expert advice/consultations.

  5. Challenges in Strengthening Regulatory Infrastructure in a Non-Nuclear Country

    International Nuclear Information System (INIS)

    Bosnjak, J.

    2016-01-01

    The State Regulatory Agency for Radiation and Nuclear Safety (SRARNS) is established as the effectively independent regulatory body for radiation and nuclear safety based on the Law on Radiation and Nuclear Safety in Bosnia and Herzegovina promulgated in November 2007. After its complete reorganization in the last few years, the regulatory system is compatible with relevant IAEA Safety Standards and Guides for safety and security of radioactive sources. The paper gives an overview of the new regulatory framework in Bosnia and Herzegovina, with special focus on challenges faced by Bosnia and Herzegovina, which are actually typical challenges for regulator in small non-nuclear country in strengthening regulatory infrastructure in regulating radiation sources and radioactive waste. (author)

  6. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  7. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  8. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha Vinh Phuong

    1977-01-01

    General remarks on objectives and scope of enabling legislation, on the regulatory body and on the IAEA activities and assistance in regulatory matters e.g. the IAEA Safety Guides which are in preparation. (HP) [de

  9. United States Nuclear Regulatory Commission staff practice and procedure digest

    International Nuclear Information System (INIS)

    1991-02-01

    This Revision 9 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1990 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 9 replaces in part earlier editions and revisions and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1990. This edition of the Digest was prepared by attorneys from Aspen Systems Corporation pursuant to Contract number 18-89-346. Persons using this Digest are placed on notice that it may not be used as an authoritative citation in support of any position before the Commission or any of its adjudicatory tribunals. Persons using this Digest are also placed on notice that it is intended for use only as an initial research tool, that it may, and likely does, contain errors, including errors in analysis and interpretation of decisions, and that the user should not rely on the Digest analyses and interpretations but must read, analyze and rely on the user's own analysis of the actual Commission, Appeal Board and Licensing Board decisions cited. Further, neither the United States, the Nuclear Regulatory Commission, Aspen Systems Corporation, nor any of their employees makes any expressed or implied warranty or assumes liability or responsibility for the accuracy, completeness or usefulness of any material presented in the Digest. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on general matters. Where appropriate, particular decisions are indexed under more than one heading. (JF)

  10. Regulatory challenges for independent organization and licensing procedures for Egypt first nuclear power program

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2012-01-01

    In March 2010 the Government of Egypt issued an Ordinance creating an independent regulatory body the Egypt Nuclear and Radiological Regulatory Authority (NRRA) reporting directly to the Prime Minister and responsible for matters dealing with protection of the radiation worker, public and environment from the harmful effects of ionizing radiation. A little more than 2 years have elapsed since this date. Some of the challenges faced by NRRA to its regulatory independence are given below. This paper will discuss the major challenges relating to Egyptian nuclear power program and specially the regulatory effectiveness and licensing procedures compared to international comparison.

  11. Climate change, nuclear risks and nuclear disarmament. From security threats to sustainable peace

    Energy Technology Data Exchange (ETDEWEB)

    Scheffran, Juergen [Hamburg Univ. (Germany). Research Group Climate Change and Security

    2009-07-01

    In the future, nuclear and climate risks may interfere with each other in a mutually enforcing way. Con-flicts induced by climate change could contribute to global insecurity and create more incentives for states to rely on military force, including nuclear weapons. Rather than being a direct cause of war, cli-mate change significantly affects the delicate balance between social and environmental systems in a way that could undermine human security and societal stability with potentially grave consequences for international security. Increased reliance on nuclear energy to reduce carbon emissions will contribute to the risks of nuclear proliferation. A renewed nuclear arms race would consume considerable resources and undermine the conditions for tackling the problem of climate change in a cooperative manner. Nuclear war itself would severely destabilize human societies and the environment, not to speak of the possibility of a nuclear winter that would disrupt the atmosphere. On the other hand, finding solutions to one problem area could help to find solutions in the other. Pre-venting the dangers of climate change and nuclear war requires an integrated set of strategies that ad-dress the causes as well as the impacts on the natural and social environment. Institutions are needed to strengthen common, ecological and human security, build and reinforce conflict-resolution mechanisms and low-carbon energy alternatives, and create sustainable lifecycles that respect the capabilities of the living world. This article examines the linkages between nuclear and climate risks, identifies areas where both threats converge, and offers an approach to move from living under these security threats to building sustain-able peace. By bringing to light the multidimensional interplay between climate change, nuclear risks and nuclear disarmament, this study aims to help the reader grasp their interconnectedness and recognize its critical implications for the strategic security

  12. Climate change, nuclear risks and nuclear disarmament. From security threats to sustainable peace

    International Nuclear Information System (INIS)

    Scheffran, Juergen

    2009-01-01

    In the future, nuclear and climate risks may interfere with each other in a mutually enforcing way. Con-flicts induced by climate change could contribute to global insecurity and create more incentives for states to rely on military force, including nuclear weapons. Rather than being a direct cause of war, cli-mate change significantly affects the delicate balance between social and environmental systems in a way that could undermine human security and societal stability with potentially grave consequences for international security. Increased reliance on nuclear energy to reduce carbon emissions will contribute to the risks of nuclear proliferation. A renewed nuclear arms race would consume considerable resources and undermine the conditions for tackling the problem of climate change in a cooperative manner. Nuclear war itself would severely destabilize human societies and the environment, not to speak of the possibility of a nuclear winter that would disrupt the atmosphere. On the other hand, finding solutions to one problem area could help to find solutions in the other. Pre-venting the dangers of climate change and nuclear war requires an integrated set of strategies that ad-dress the causes as well as the impacts on the natural and social environment. Institutions are needed to strengthen common, ecological and human security, build and reinforce conflict-resolution mechanisms and low-carbon energy alternatives, and create sustainable lifecycles that respect the capabilities of the living world. This article examines the linkages between nuclear and climate risks, identifies areas where both threats converge, and offers an approach to move from living under these security threats to building sustain-able peace. By bringing to light the multidimensional interplay between climate change, nuclear risks and nuclear disarmament, this study aims to help the reader grasp their interconnectedness and recognize its critical implications for the strategic security

  13. Health physics self-assessment and the nuclear regulatory oversight process at a nuclear power plant

    International Nuclear Information System (INIS)

    Schofield, R.S.

    2003-01-01

    The U.S. Nuclear Regulatory Commission has developed improvements in their Nuclear Power Plant inspection, assessment and enforcement practices. The objective of these changes was to link regulatory action with power plant performance through a risk- informed process which is intended to enhance objectivity. One of the Strategic Performance Areas of focus by the U.S. NRC is radiation safety. Two cornerstones, Occupational Radiation Safety and Public Radiation Safety, make up this area. These cornerstones are being evaluated through U.S. NRC Performance Indicators (PI) and baseline site inspections. Key to the U.S. NRC's oversight program is the ability of the licensee to implement a self-assessment program which pro-actively identifies potential problems and develops improvements to enhance management's effectiveness. The Health Physics Self-Assessment Program at San Onofre Nuclear Generating Station (SONGS) identifies radiation protection-related weakness or negative trends. The intended end result is improved performance through rapid problem identification, timely evaluation, corrective action and follow-up effectiveness reviews. A review of the radiation protection oversight process and the SONGS Health Physics Self-Assessment Program will be presented. Lessons learned and management tools, which evaluate workforce and Health Physics (HP) staff performance to improve radiological practices, are discussed. (author)

  14. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  15. Provincial nuclear regulatory authority?: The case of the province of Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo; Ocana, F.; Scoles, R.

    1999-01-01

    The evolution of social and political events in the province of Cordoba after the Law 8157 of 1992, that establishes the provincial nuclear policy, are analysed as well as the recent sanction and veto of the Law 8775, which creates the provincial Nuclear Regulatory Authority. The authors conclude that is necessary and convenient to enforce provincial nuclear regulations and controls

  16. The functions and organization of the regulatory authority for nuclear energy in Turkey

    International Nuclear Information System (INIS)

    Aybers, Nejat

    1979-01-01

    Following a description of the legislative and regulatory provisions governing nuclear activities in Turkey, this paper analyses the licensing system for nuclear installations. Special emphasis is placed on the problems of setting up a nuclear power plant project in a developing country and on the need for codes of practice on safe design and operation of such plants at the national level. (NEA) [fr

  17. NRC [Nuclear Regulatory Commission] safety research in support of regulation, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report, the third in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1987. The goal of this office is to ensure that research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  18. Regulatory theory: commercially sustainable markets rely upon satisfying the public interest in obtaining credible goods.

    Science.gov (United States)

    Warren-Jones, Amanda

    2017-10-01

    Regulatory theory is premised on the failure of markets, prompting a focus on regulators and industry from economic perspectives. This article argues that overlooking the public interest in the sustainability of commercial markets risks markets failing completely. This point is exemplified through health care markets - meeting an essential need - and focuses upon innovative medicines as the most desired products in that market. If this seemingly invulnerable market risks failure, there is a pressing need to consider the public interest in sustainable markets within regulatory literature and practice. Innovative medicines are credence goods, meaning that the sustainability of the market fundamentally relies upon the public trusting regulators to vouch for product quality. Yet, quality is being eroded by patent bodies focused on economic benefits from market growth, rather than ensuring innovatory value. Remunerative bodies are not funding medicines relative to market value, and market authorisation bodies are not vouching for robust safety standards or confining market entry to products for 'unmet medical need'. Arguably, this failure to assure quality heightens the risk of the market failing where it cannot be substituted by the reputation or credibility of providers of goods and/or information such as health care professionals/institutions, patient groups or industry.

  19. NRC [Nuclear Regulatory Commission] perspective of software QA [quality assurance] in the nuclear history

    International Nuclear Information System (INIS)

    Weiss, S.H.

    1988-01-01

    Computer technology has been a part of the nuclear industry since its inception. However, it is only recently that computers have been integrated into reactor operations. During the early history of commercial nuclear power in the United States, the US Nuclear Regulatory Commission (NRC) discouraged the use of digital computers for real-time control and monitoring of nuclear power plant operation. At the time, this position was justified since software engineering was in its infancy, and horror stories on computer crashes were plentiful. Since the advent of microprocessors and inexpensive computer memories, significant advances have been made in fault-tolerant computer architecture that have resulted in highly reliable, durable computer systems. The NRC's requirement for safety parameter display system (SPDS) stemmed form the results of studies and investigations conducted on the Three Mile Island Unit 2 (TMI-2) accident. An NRC contractor has prepared a handbook of software QA techniques applicable to the nuclear industry, published as NUREG/CR-4640 in August 1987. Currently, the NRC is considering development of an inspection program covering software QA. Future efforts may address verification and validation as applied to expert systems and artificial intelligence programs

  20. Nuclear power and sustainable energy supply for Europe

    International Nuclear Information System (INIS)

    Hilden, W.

    2006-01-01

    Developing and promoting a farsighted energy policy is a key aspect in achieving sustainable development in the European Union. Factors to be coped with in this context are the Union's increasing dependence on energy imports, and the threats facing the climate. Moreover, it is imperative that the Lisbon strategy be pursued, according to which Europe is to be made the world's most dynamic knowledge-based economic region by 2010. As early as in 2000, the EU Commission published its Green Paper, ''Towards a European Strategy of Continuity in Power Supply.'' Continuity of supply, in this context, not only stands for maximized self-sufficiency or minimized dependencies. What is at stake is a reduction of the risks stemming from dependence on imports and from changes in the environment. This goal can be achieved through a balanced and diverse structure both of energy resources and of the geographic origins of fuels. The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig.)

  1. Degree of Sustainability of Various Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Brogli, R.; Krakowski, R.A.

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a similar evaluation

  2. Degree of Sustainability of Various Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A. [Los Alamos National Laboratory, New Mexico (United States)

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a

  3. Nuclear energy and opportunity to strengthen the sustainable electricity sector

    International Nuclear Information System (INIS)

    Robles N, A. G.

    2016-09-01

    The beginning of electricity in Mexico was through the use and exploitation of natural resources; as the demand grew, more generation power plants were required with great capacity and at the same time the fuels used varied, although, oil continued to be the main fuel. At present, due to the effects of climate change, the Conference of the Parties has proposed to reduce the consumption of fossil fuels to give way to clean energy (wind, solar, geothermal, nuclear, etc.), which entails gradually modifying the energy matrix of the electricity sector. The National Development Plan and the National Electricity Sector Development Program, this coordinated by the Energy Secretariat in Mexico, establish policies to promote sustainable development, increasing electricity generation through clean energy sources, including nuclear energy. However, such plans are not accurate in the strategy to be followed to ensure compliance with the increased participation of nuclear energy. This article proposes a nuclear program for the Mexican electricity sector, under the terms of a State policy, aimed at crystallizing a sustainable electricity development 2015-2036; considering that the application to the electricity sector constitutes a representative and justified example of the incorporation of environmental aspects in decision processes for the preservation of the environment. In order to determine the quantity and type of reactors, as well as the number of nuclear power plants and increase of the installed capacity, the general planning scheme of the electric sector was used, taking as reference the modeling criteria of the WASP planning system. Finally, is concluded that the electricity generated by fission of radioactive elements is an opportunity to fulfill the commitments made by Mexico at COP 21 and to meet in an environmentally friendly way the energy requirement that our country needs. (Author)

  4. Proceedings of the specialists' meeting on regulatory inspection practices in nuclear power plants

    International Nuclear Information System (INIS)

    1977-01-01

    The sessions and contributions of this conference are dealing with: the general problems of regulatory inspection of nuclear power plants and overall national practices (in Canada, France, Germany, Italy, Spain, the United States), specific problems and practical experience of regulatory inspection during site study, evaluation, design, manufacturing and construction of nuclear plants (in Finland, Germany, Spain, Sweden, Great-Britain, United States), quality insurance issues, pressure component regulations, specific problems and practical experience of regulatory inspection during commissioning (in Spain, Sweden, Great-Britain and United States), specific problems and practical experience of regulatory inspection during operation (in Spain, Great-Britain, Unites States, Italy and Sweden), special aspects of regulatory inspection (notably public information issues in Sweden and in Great-Britain, inspection of nuclear fuel transportation in Spain, enforcement programme in the USA)

  5. Sustainable minireactors: A framework for decentralized nuclear energy systems

    International Nuclear Information System (INIS)

    Harms, A.A.; Sassin, W.W.

    1983-01-01

    The concept of a nuclear energy system consisting of numerous small, specialized nuclear reactors providing heat or electricity for localized/regional purposes is considered. It is envisaged that a ''parent'' nuclear facility would sustain the fuel needs of many small nuclear energy ''satellites'' and possibly provide other fuel-management services. The choice of fuel cycle and the operational features of these satellites may be determined by the form of energy required, public and social preferences, and institutional factors. Three distinct classes of distributed systems, each based on extensions of existing nuclear technology, are identified and discussed. In addition to the points emphasized concerning the types of minireactors and the fuel cycles chosen, it is important to recognize the potential for mass-production of these smaller facilities. Also, if the fuel-consuming part of the system is widely distributed geographically and if the fuel can be stored, the simultaneous failure of substantial parts of the energy supply system seems unlikely. Finally, if there were a local need for medium-power facilities, provision for the stacking of minireactors to attain a specified power level could be introduced

  6. Promoting nuclear power, achieving sustainable development of nuclear industry in China

    International Nuclear Information System (INIS)

    Kang, R.

    2006-01-01

    The past 5 decades witnessed the rapid growth of China's nuclear industry. The sustained and rapid economic growth and continuous improvement of people's living standards have placed higher requirements for energy and power supplies. As a safe and clean energy source, nuclear energy has been gradually and widely accepted by the Chinese government and the public. The Chinese government has adopted the policy a ctively pushing forward the nuclear power development , set up the target to reach 40GWe of nuclear power installed capacity by 2020, accounting for about 4% of the total installed capacity in China. In this regard, this paper presents the China's nuclear program to illustrate how China is going to achieve the target. The paper is composed of 3 parts. The first part gives a review of the achievements in nuclear power in the last 20 years. The second part presents China's ''three approach'' strategy for furthering the nuclear power development: carrying out duplication projects at the existing plant sites; introducing GUI technology via international bidding; developing the brand C NP1000 , i.e. Chinese Nuclear Power lOOOMwe class, with China's own intellectual property. This part also explores the ways of securing the fuel supply for nuclear power development. The third part concludes with CNNC's ''3221'' strategy which aims at building a world class conglomerate, and expresses its sincere wish to work with the nuclear community to push the nuclear industry worldwide by strengthening international cooperation

  7. Role of the Regulatory Body in Implementing Defence in Depth in Nuclear Installations - Regulatory Oversight in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, B. M., E-mail: badawymel@yahoo.com [Egyptian Nuclear and Radiological Regulatory Authority Cairo (Egypt)

    2014-10-15

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are operated at all times in an acceptably safe manner including the safe conduct of decommissioning activities. Defence in depth is recognized as one of the fundamental safety principles that underlie the safety of nuclear power plants. Defence in depth is implemented to provide a graded protection against a wide variety of transients, incidents and accidents, including equipment failures and human errors within nuclear power plants and events initiated outside plants. The Regulator Body plays an important role in implementing defence in depth in nuclear installations in the context of a clear allocation of responsibilities with an operating organization. This role starting with setting safety objectives and by its own independent review and technical assessment of the safety justifications provided by the operating organization in addition to safety culture investigating within relevant organizations. This paper briefly reviews this role in normal operation and post accidents, and its effects on overall nuclear safety in nuclear installations with reference to Egyptian regulatory oversight. (author)

  8. Sustainability and the Fixed Bed Nuclear Reactor (FBNR

    Directory of Open Access Journals (Sweden)

    Farhang Sefidvash

    2012-08-01

    Full Text Available Sustainability as a multifaceted and holistic concept is analyzed. Sustainability involves human relationship with elements such as natural environment, economy, power, governance, education and technology with the ultimate purpose of carrying forward an ever-advancing civilization. The Fixed Bed Nuclear Reactor (FBNR is an innovative, small, simple in design, inherently safe, non-proliferating, and environmentally friendly concept that its deployment can generate energy in a sustainable manner contributing to the prosperity of humanity. The development of FBNR will provide electricity as well as desalinated water through a simple but advanced technology for the developing, as well as developed countries. FBNR is environmentally friendly due to its inherent safety and the convenience of using its spent fuel as the source of radiation for irradiation purposes in agriculture, industry, and medicine. Politically, if a ping pong game brought peace between China and USA, a program of development of FBNR supported by the peace loving international community can become a more mature means to bring peace among certain apparently hostile nations who crave sustainable energy, desalinated water and simple advanced technology.

  9. CNCAN Knowledge Management Process and Tools in Support of Sustainable Development of Regulatory Competences

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea, C.; Oprisescu, M.; Liutiev, C.; Ghinea, P.

    2016-01-01

    Full text: The paper presents the knowledge management process and the knowledge management portal developed by CNCAN, in the framework of the Regional Excellence Project on Regulatory Capacity Building in Nuclear and Radiological Safety, Emergency Preparedness and Response in Romania. The activities of this project started in 2014. The general process for knowledge management is presented, together with its sub-processes: identification of the necessary knowledge; identification of the risk of knowledge loss; acquisition and/or creation of knowledge; knowledge retention (capture, collect, store and organize knowledge); knowledge utilization; review of the effectiveness of the knowledge management process; identification of opportunities for improving the knowledge management process. The paper also presents a set of indicators of the effectiveness of the knowledge management process and the artifacts, espoused values and basic assumptions supporting an effective knowledge management process. The necessary knowledge has been identified using the IAEA recommendations on managing regulatory body competence and the SARCoN methodology. The knowledge management process has been developed based on the IAEA publications on knowledge management in the nuclear industry and in regulatory bodies. The implementation of the process and the development of the portal are ongoing, with more than 20% of the staff using the portal. (author

  10. The regulatory system of nuclear safety in Russia

    International Nuclear Information System (INIS)

    Mizoguchi, Shuhei

    2013-01-01

    This article explains what type of mechanism the nuclear system has and how nuclear safety is regulated in Russia. There are two main organizations in this system : ROSATOM and ROSTEKHADZOR. ROSATOM, which was founded in 2007, incorporates all the nuclear industries in Russia, including civil nuclear companies as well as nuclear weapons complex facilities. ROSTEKHNADZOR is the federal body that secures and supervises the safety in using atomic energy. This article also reviews three laws on regulating nuclear safety. (author)

  11. The contribution of nuclear science and technology to sustainable development

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1997-01-01

    The United Nations and many individual States and organisations have given increasing attention to the topic of sustainable development in recent years. This has arisen because of concerns about the increasing population of the planet, increasing levels of carbon dioxide in the atmosphere and other pollutants in the biosphere, and the need for increasing amounts of food, water and energy. The paper will use the recent reports of these organisations as background and give an overview of the perceived problems needed to be addressed in the 21st Century to allow sustainable development. The ways in which nuclear science and technology is already contributing to the solution of these problems will then be summarised and comments made on how it can contribute even more in the future

  12. Pakistan - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Ahmad, Mohammad; Jalal, A.I.; Mumtaz, A.; Latif, M.

    2000-01-01

    Although Pakistan's contribution to global GHG emissions is very small (currently only 0.3% of world-wide emissions), it shares with the world community the concerns of climate change due to the build-up of GHGs. Pakistan is committed to co-operating with global efforts to avert the potential threat of global warming and is already working towards its own socio-economic development in a sustainable manner. However, due to the country's limited technical and financial capabilities, its efforts are diluted and limited to only high priority areas of national interest. There is a large potential for expanding these efforts, if the necessary technical and financial support can be made available, and such an expansion would contribute significantly to the collective global objective of sustainable development. One such step is the reduction of GHG emissions from Pakistan's power sector by introducing advanced cleaner technologies. Nuclear power is one such technology

  13. Role of IAEA in sustainable development of the nuclear industry

    International Nuclear Information System (INIS)

    Mourogov, V. M.

    1997-01-01

    Demand for energy, in particular electricity, will continue to grow in the coming decades in order to satisfy the needs of an increasing world population. Nuclear power, currently contributing 17% of the total world electricity production, is one of the significant long term sources of electricity without negative impacts such as the green house effect and acid rain. Trends of privatization, deregulation of electricity markets and minimization of government support are promoting short term goals at the expense of potential long term benefits of developing advanced nuclear technologies, which can now be achieved only through international cooperation and pooling of resources both financial and human. The Agency's efforts will be focussed on the contribution of nuclear energy to sustainable development, with emphasis on measures directed to sage and economic development of nuclear power. The Agency will also continue to provide a forum for the review of information on the development of newly emerging and special purpose nuclear energy systems such as accelerator driven concepts and hybrid fusion/fission concepts, liquid metal reactors, thorium fueled reactors, ship propulsion and space nuclear power systems. Another important issue to be addressed is the comparative assessment of different options for development of the fuel cycle and the management of spent fuel and plutonium. There is an increasing interest in additional international measures to address issues related to the production, transport, storage and disposal of separated plutonium. This year, implementation of a new programme has commenced on the development and dissemination of databases and methodologies for comparative assessment of nuclear power and other energy sources in terms of their economic, health and environmental impacts. (author)

  14. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  15. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-01-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  16. January 1978 monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1978-01-01

    Highlights of technical progress during January 1978 are presented for sixteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  17. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, March 1977

    International Nuclear Information System (INIS)

    Fee, G.G.

    1977-01-01

    Highlights of technical progress during March 1977 are presented for thirteen separate program activities which comprise the ORNL research program for the Office of Nuclear Regulatory Research's Division of Reactor Safety Research

  18. An overview of the licensing approach of the South African nuclear regulatory authority

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Hill, T.F.; Henderson, N.R.; Keenan, N.H.; Metcalf, P.E.; Mysenkov, A.

    1997-01-01

    This paper describes the approach adopted by the South African Nuclear Regulatory Authority, the Council for Nuclear Safety (CNS) in licensing nuclear installations in South Africa. An introduction to the current South African legislation and the CNS philosophy pertaining to the licensing of nuclear installations is discussed. A typical process for granting a nuclear licence is then presented. The risk assessment process, which is used to verify compliance with the fundamental safety standards and to establish licensing requirements for a specific nuclear installation, is discussed. Based on the outcome of this assessment process, conditions of licence are set down. The generic content of a nuclear licence and mechanisms to ensure ongoing compliance with the risk criteria are presented. The regulatory process discussed in this paper, based on such a fundamental approach, may be adapted to any type of nuclear installation taking into account plant specific designs and characteristics. (author)

  19. The role of the Nuclear Regulatory Commission in the management of nuclear waste

    International Nuclear Information System (INIS)

    Thompson, H.L. Jr.

    1988-01-01

    In general, the US Nuclear Regulatory Commission (NRC) is responsible for reviewing and making licensing decisions to ensure that the US Department of Energy's (DOE's) high-level waste repository is designed, constructed, and operated without unreasonable risk to public health and safety. In implementing this responsibility, however, the commission's guidance to the staff is that, in the absence of unresolved safety concerns, the NRC regulatory program will not delay the executive branch's program as set forth in the DOE project decision schedule. The NRC role for the next several years will be to develop its licensing framework and to consult with DOE on its plans. An essential ingredient in the success of both NRC's and DOE's respective missions is the need for free and open exchange of information, which will assure us that the concerns of all parties are addressed. With regard to low-level radioactive waste, the states have the lead responsibility for disposal. The NRC also provides assistance to the states and compacts on such items as regulatory programs, site characterization, and mixed waste disposal. Another of the NRC's roles is in the management of uranium mill tailings. Currently, most of the NRC's attention is focused on ensuring adequate long-term stabilization of tailings

  20. Bim nuclear translocation and inactivation by viral interferon regulatory factor.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2010-08-01

    Full Text Available Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8 uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1-4, which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFbeta receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control

  1. Opening Address [International Conference on Effective Nuclear Regulatory Systems: Further Enhancing the Global Nuclear Safety and Security Regime, Cape Town (South Africa), 14-18 December 2009

    International Nuclear Information System (INIS)

    Peters, Elizabeth Dipuo

    2010-01-01

    Nuclear energy is seen by many countries as providing a sustainable solution to energy security challenges. In this context, many developing countries are considering the establishment of nuclear power build programmes, while countries with mature nuclear programmes are considering the possibility of further expansion. The challenges facing countries that are embarking on this new venture include, inter alia, the development of policies, legislation as well as the establishment of appropriate institutions such as regulatory bodies with effective independence to take regulatory decisions. Regional and international cooperation and coordination are therefore of critical importance. Accordingly, the establishment of the Forum of Regulatory Bodies in Africa is a welcome initiative. We are pleased that the national nuclear programme in post-apartheid South Africa places us in a position to become active global participants in the safe use of nuclear energy for peaceful purposes. However, we all have an obligation to ensure that the presence of a plethora of cooperation mechanisms such as this body are as inclusive and as supportive as possible. This will help the global community of nations in reaping maximum benefits that surely should arise from these initiatives to ensure security of energy supply. We do not have the luxury to duplicate such bodies. The role of the International Atomic Energy Agency in nuclear safety and security cannot be over-emphasized. That alone is the reason that drove the liberation movement of the people of our country, and now the ruling party, fully to conform to all the treaties and conventions that have been drafted by this reputable institution of the peoples of the world. The same goes for the facilitation of cooperation and the sharing of knowledge and experience. The IAEA is invariably trusted to provide independent views and advice in order to strengthen safety and security while preserving the sovereignty, authority and

  2. Role of the Nuclear Regulatory Authority in the final disposal of radioactive wastes in Argentina

    International Nuclear Information System (INIS)

    Petraitis, E.J.; Siraky, G.; Novo, R.G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. The activities of the Nuclear Regulatory Authority (ARN) and the applied approaches in relation to inspection of facilities, safety assessments of associated systems and collaboration in the matter with international agencies are also exposed. (author) [es

  3. Nuclear Regulatory Commission issuances. Volume 17, No. 3

    International Nuclear Information System (INIS)

    1983-03-01

    This report contains the Issuances received during March 1983 from the Commission (CLI), the Atomic Safety and Licensing Appeal Boards (ALAB), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judge (ALJ), the Directors Decisions (DD), and the Denials of Petition for Rulemaking (DPRM). The Issuances concerned the following facilities: Three Mile Island Nuclear Station, Unit No. 1; Comanche Peak Steam Electric Station, Units 1 and 2; Vallecitos Nuclear Center; Floating Nuclear Power Plants; San Onofre Nuclear Generating Station, Units 2 and 3; Point Beach Nuclear Plant, Unit 1; Perry Nuclear Power Plant, Units 1 and 2; Shoreham Nuclear Power Station, Unit 1; Western New York Nuclear Service Center; Limerick Generating Station, Units 1 and 2; Seabrook Station, Units 1 and 2; Black Fox Station, Units 1 and 2; WmH Zimmer Nuclear Power Station, Unit 1; WPPSS Nuclear Project No. 1; Zion Nuclear Plant, Units 1 and 2; and South Texas Project, Units 1 and 2

  4. Investigation of the sustainability of nuclear power use

    International Nuclear Information System (INIS)

    Gottschalk-Mazouz, N.; Hubig, C.; Mazous, N.

    2001-01-01

    The report reviews the sustainability discussion, specifically for the energy sector. Definitions, rules and indicators are gone into. Publications speaking against nuclear power are analysed: Brundtland, UBA, SRU, UNCSD, HGF. The main section analyzed positive publications, i.e. Voss, Kessler, and the NEA study. 11 central argumentation strategies are identified and analyzed. They are shown to be faulty, based on selective argumentations which omit either important comparative arguments relevant to the whole energy sector, or alternative options, or additional risks caused by changes in boundary conditions. Further, aspects of human and social acceptability are left out of account as well as problems of institutionalisation. (orig.) [de

  5. Methodology used by the spanish nuclear regulatory body in the radiological impact assessment

    International Nuclear Information System (INIS)

    Diaz de la Cruz, F.

    1979-01-01

    The radiological risk assessment derived from the operation of a nuclear power plant is done in Spain with methods taken basically from the U.S.N.R.C. regulatory guides. This report presents the way followed by the Spanish Regulatory Body in order to arrive to an official decision on the acceptability of a nuclear plant in the different steps of the licensing. (author)

  6. Legislative and regulatory aspects of nuclear power reactor licensing in the U.S.A

    International Nuclear Information System (INIS)

    Malsch, M.G.

    1976-01-01

    An explanation of the origins, statutory basis and development of the present regulatory system in the US. A description of the various actions which must be taken by a license applicant and by the USNRC before a nuclear power plant can be constructed and placed on-line. Account of the current regulatory practices followed by the USNRC in licensing nuclear power reactors. (orig./HP) [de

  7. Importance of loss-of-benefits considerations in nuclear regulatory decision-making

    International Nuclear Information System (INIS)

    Buehring, W.A.; Peerenboom, J.P.

    1982-01-01

    This paper identifies and discusses some of the important consequences of nuclear power plant unavailability, and quantifies a number of technical measures of loss of benefits that may help the Nuclear Regulatory Commission make decisions involving nuclear power plant licensing and operation. The loss-of-benefits analysis presented here is based on the results of a series of case studies developed by Argonne National Laboratory in cooperation with four electric utilities on hypothetical nuclear plant shutdowns

  8. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic and on Safety of Nuclear Installations in the Slovak Republic in 2011

    International Nuclear Information System (INIS)

    2012-05-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2011 is presented. These activities are reported under the headings: Foreword; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Nuclear Materials in SR; (5) Nuclear materials and physical protection of nuclear materials; (6) Scope of powers of the office building; (7) Emergency planning and preparedness; (8) International activities; (9) Public communication; (10) Nuclear Regulatory Authority of the Slovak Republic; (11) UJD SR organization chart; The International Nuclear Event Scale (INES); (12) Abbreviations.

  9. Nuclear and sustainable development - A trans-disciplinary approach

    International Nuclear Information System (INIS)

    Meskens, Gaston

    2001-01-01

    Never before in history has society been so thoroughly permeated by Science and Technology in all aspects of human life, ranging from economic progress to warfare, often resulting in huge environmental problems. Nuclear science can easily be seen as an exponent of this evolution. Numerous beneficial technologies for medicine and energy were developed, but mostly against the background of the Cold War culture of military secrecy - thus contaminating the public perception of nuclear technology as a whole from the early beginning. Moreover, these developments were accompanied by the threat of cancer risks. Gradually, the contours of a new societal paradigm seem to materialise, driven by the often cited dynamics of social change: globalisation, the pace of technological change (notably biotechnology and information technology), changing social identities, mistrust in 'big science' and expert systems and often, an alienation from politics. In 'the age of risk', people feel insecure about the future. In this social context of uncertainty, a new concept for policy making at the global and local level has emerged : Sustainable Development. At present, the nuclear expert is struggling with society, and he paradoxically lacks a scientific approach and insight in complex human behaviour and societal interaction. The restoration of trust will require the integration of humanities and social sciences in a transdisciplinary problem solving approach, far beyond the technical dimension. The Belgian Nuclear Research Centre SCK-CEN already built up experience with multidisciplinary projects (e.g. extending the research on nuclear complexity to economics and liability), but in 1998 the board of directors decided to integrate social sciences in a more co-ordinated way. The four existing projects are: Legal Aspects and Liability, Sustainability and Nuclear Development, Transgenerational Ethics related to the Disposal of long-lived Rad waste, and Emergency Communication and Risk

  10. Proceedings of NUCLEAR 2009 international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2009-01-01

    The proceedings of the NUCLEAR 2009 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 27 - 29 2009 contain 92 communications presented in two plenary sessions (6 and 4 talks, respectively) and three sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (8 papers); Section 1.2 - Nuclear reactors (15 papers); Section 1.3 - Nuclear technologies and materials (32 papers); Section 2.1 - Radioactive waste management (18 papers; Section 2.2 and Section 2.3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Education, continuous formation and knowledge transfer (9 papers); Section 3.2 -Strategies in energy (Round table) (5 papers). A number of 17 papers although programmed have not actually been presented within these proceedings. These papers are presented as abstracts in 'Nuclear 2009 - BOOK of ABSTRACTS', separately processed

  11. IAEA Mission Concludes Peer Review of Viet Nam's Radiation and Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded a 10-day International Atomic Energy Agency (IAEA) mission to review how Viet Nam's regulatory framework for nuclear and radiation safety has incorporated recommendations and suggestions from an earlier review, conducted in 2009. The Integrated Regulatory Review Service (IRRS) follow-up mission, requested by the Viet Nam Agency for Radiation and Nuclear Safety (VARANS), also reviewed the development of the regulatory safety infrastructure to support Viet Nam's nuclear power programme. The eight-member team comprised senior regulatory experts from Canada, France, Pakistan, Slovenia, United Arab Emirates and the United States of America, as well as three IAEA staff members. The IRRS team said in its preliminary assessment that Viet Nam had made progress since 2009, but that some key recommendations still needed to be addressed. Particular strengths identified by the team included: The commitment of VARANS staff to develop legislation and regulations in the field of nuclear and radiation safety; VARANS' efforts to implement practices that are in line with IAEA Safety Standards and internationally recognized good practices; A willingness to receive feedback regarding the efforts to establish and implement a regulation programme; and Progress made in developing the regulatory framework to support the introduction of nuclear power. The team identified the following areas as high-priority steps to further strengthen radiation and nuclear safety in Viet Nam: The effective independence of the regulatory decision-making process needs to be urgently addressed; Additional resources are needed to regulate existing radiation facilities and activities, as well as the country's research reactor; Efforts to increase the capacity of VARANS to regulate the developing nuclear power programme should continue; The draft Master Plan for the Development of Nuclear Power Infrastructure should be finalized

  12. Nuclear energy - the global solution for sustainable development in Romania

    International Nuclear Information System (INIS)

    Gorea, Valica; Popescu, Dan; Cristescu, Catalin

    2006-01-01

    The global population growth of the planet during the next 50 years will be accompanied by a dramatic increase in the demand for energy. Almost two-thirds of the world's population today has no access to electricity in developing countries. Without energy, the entire infrastructure would collapse: agriculture, transportation, waste collection. Developing and industrialized nations alike must address - both individually and collectively - how they can achieve sustainable growth. To date about 16 % of the world's electricity is produced by 443 reactors in 31 countries. They have a combined total capacity of 362 GW of electricity and produced a combined total of 2618 TWh in 2004, according to the International Atomic Energy Agency statistics. These reactors produce electricity for their respective countries safely, reliably and with the lowest environmental impact of any major energy source. Nuclear power provides steady energy at a consistent price without competing for resources from other countries. Some deficient in fossil fuels large countries (like France) rely on nuclear power up to about 80 % of their power necessities. United States (US) has the greatest number of commercial reactors in operation, but the share of nuclear power doesn't exceed 20 %, because of their abundant oil resources. On a percentage basis, Romania is one of the smaller users of nuclear energy. In Romania, according to the official data of the Romanian Ministry of Economy and Trade, nuclear energy share is only 10% of the gross power generation structure, with 5.560 GWh during the year 2004. Construction of the first unit of the Nuclear Power Plant (NPP) Cernavoda started in 1980 and of units 2-5 in 1982. Unit 1 was connected to the grid in mid of 1996 and entered commercial operation in December 1996. The state nuclear power corporation, Societatea Nationala Nuclearelectrica (SNN), established in 1998, operates Cernavoda NPP. Its capacity factor has averaged over 86 % so far and

  13. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  14. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2014-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acting as the regulatory body of the Swiss Federation assesses and monitors nuclear facilities in Switzerland: these include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the overview required concerning nuclear safety. It ensures that the facilities comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes operational experience, systems technology, radiological protection and management in all the nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2013, the five nuclear power plants in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were all operated safely and had complied with their approved operating conditions. The nuclear safety at all plants was rated as being good. 34 events were reported. During operation, no reactor scrams were recorded. On the INES scale, ranging from 0-7, ENSI rated all reportable events as Level 0. The ENSI safety evaluation reflects both reportable events and the results of the approximately 460 inspections conducted during 2013. ZWILAG consists of several storage halls, a conditioning plant and a plasma plant. At the end of 2013, the cask storage hall

  15. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2015-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI), acting as the regulatory body of the Swiss Federation, assesses and monitors nuclear facilities in Switzerland: the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety. It ensures that they comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes the operational experience, systems technology, radiological protection and management in all nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2014, all five nuclear power plants in Switzerland (Beznau Units I and 2, Muehleberg, Goesgen and Leibstadt) were operated safely. The nuclear safety at all plants was rated as good. 38 events were reported. There was one reactor scram at the Leibstadt nuclear power plant. On the International Event Scale (INES), ranging from 0--7, 37 events were rated as Level 0; one event was rated as INES 1: drill holes had penetrated the steel wall of the containment to secure two hand-held fire extinguishers. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant. At the end of 2014, the cask storage hall contained 42

  16. Lessons Learned and Regulatory Countermeasures of Nuclear Safety Issues Last Year

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    Competitiveness of nuclear as the electric resource in terms of the least cost and the carbon abatement has been debated. Some institutions insist that the radioactive wastes management cost, nuclear accident cost and cheap shale gas would make the nuclear energy less competitive, while others still address the ability of nuclear energy as economical and low-carbon electric resource. This situation reminds that ensuring nuclear safety is the most important prerequisite to use of nuclear energy. Therefore, this paper will compare the different views on future nuclear competitiveness discussed right after the Fukushima accident and summarize the lessons learned and regulatory countermeasures from nuclear safety issues last year. Korea has improved the effectiveness of safety regulation up to now and still has been making efforts on further enhancing nuclear safety. The outcomes of these efforts have resulted in a high level of safety in Korean NPPs and contributing largely to the global nuclear safety through sharing and exchanging the information and knowledge of our nuclear experiences. However, now we are faced with the new challenges such as decreasing the public. Additionally, public criticism of the regulatory activities demands more clear regulatory guides and transparent process. Recently, new president announced the 'Priority to Safety and Public Trust' as the precondition to utilize the nuclear energy. We will continue to make much more efforts for the improvement of the quality of regulatory activities and effectiveness of regulatory decision making process than we have done so far. Competence through effective capacity building would be a helpful pathway to build up the public trust and ensure the acceptable level of nuclear safety. We are set to prepare the action items to be taken in the near future for improving the technical competency and transparency as the essential components of the national safety and will make efforts to implement them

  17. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Vassilaros, M.G.

    1998-01-01

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  18. Economics of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2006-01-01

    The paper is based on a recent OECD study on projected costs of generating electricity and other NEA studies on external costs including carbon emissions and global climate change risks. The overall objective of the analysis is to provide key elements for assessing nuclear energy in a sustainable development perspective, taking into account social and environmental aspects. Levelised lifetime costs of generating electricity are presented and compared for nuclear power plants and alternative generation technologies including gas-fired, coal-fired and wind power plants. The data presented refer to state-of-the-art power plants that could be commissioned by 2015 or earlier. Cost drivers and their variability from country to country and technology to technology are analysed. The paper also addresses external costs and benefits of nuclear energy as compared with those of alternative options. In particular, it provides insights regarding the impact of policy measures to reduce greenhouse gas emissions on the relative competitiveness of fossil-fuelled power plants and nearly carbon-free technologies (e.g., nuclear or wind). Other external costs such as social concerns, environmental impacts of residual emissions and contribution to security of energy supply are discussed

  19. Assuring Competency in Nuclear Power Plants: Regulatory Policy and Practice

    International Nuclear Information System (INIS)

    Durbin, Nancy E.; Melber, Barbara

    2004-06-01

    This report provides descriptive and comparative information on competency regulation and oversight in selected countries and identifies issues concerning competency. Interviews with competency experts in five countries: Sweden, Finland, Spain, Canada, and the United Kingdom were conducted and analyzed. The report provides a summary and comparison of the regulations used in these five countries. Regulations and policies in four areas are discussed: Licensing, certification and approvals; Educational qualifications; Training; Experience. Methods and tools used by regulators in the five countries are discussed with regard to how regulators: Assure that licensees determine the competencies needed for the safe operation of nuclear facilities and fill positions with competent staff; Oversee training and examinations in the areas of operations, engineering and maintenance; Assure competence of contractors; Oversee work group performance; Assure competency of managers; Assure competency of other personnel; Assure competency when modifications and other changes occur. Competency experts identified the following as the biggest challenges in regulating competency: The continued availability of qualified personnel; Determining appropriate criteria for competency and assuring those criteria are met. Determining whether licensees have adequately identified and met training needs, especially evaluating systematic approaches to training (SAT); Overseeing contractors. The following issues related to competency are discussed in the report: The sufficiency of qualified personnel; The evaluation of personnel requirements (determining appropriate criteria for competency and assuring those criteria are met); The effects of major organizational changes, including downsizing; Assurance of competency of contractors; International competency issues; The historical and current focus on technical and hardware issues over human factors issues; Selected examples illustrate regulatory

  20. United States Nuclear Regulatory Commission information digest: 1997 edition. Volume 9

    International Nuclear Information System (INIS)

    1997-05-01

    The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general information on domestic and world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1996, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed