WorldWideScience

Sample records for sustainable nuclear regulatory

  1. International Conference on Effective Nuclear Regulatory Systems: Sustaining Improvements Globally. Book of Abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    The objective of this conference is to review and assess ways of further improving the effectiveness of regulatory systems for nuclear facilities and activities for both nuclear safety and nuclear security. The action items in the summary presented by the President of the conference held in 2013 in Ottawa, the lessons of the Fukushima Daiichi accident, the discussions at other international conferences and at international experts’ meetings conducted within the framework of the IAEA Action Plan on Nuclear Safety, as well as the CNS and the principles outlined in the Vienna Declaration on Nuclear Safety, will continue to have a significant impact on regulatory systems. All the aforementioned need to be taken into account to sustain improvements to regulatory systems. The expected outcomes of the conference are: - Enhanced safety and security of nuclear installations worldwide; - Challenges in regulating radiation sources and radioactive waste addressed; - Enhanced international cooperation for sustaining regulatory effectiveness; - Strengthened and sustained regulatory competence for nuclear safety and security; and - Strategies and actions for the future identified, as well as issues for consideration by governments, regulatory bodies and international organizations.

  2. Creating a comprehensive, efficient, and sustainable nuclear regulatory structure. A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Davis, Gregory E.; Brownell, Lorilee; Wright, Troy L.; Tuttle, John D.; Cunningham, Mitchel E.; O'Brien, Patricia E.

    2006-01-01

    This paper describes the strategies and process used by the U.S. Department of Energy's (DOE) nuclear Material Protection, Control and Accounting (MPC and A) Regulatory Development Project (RDP) to restructure its support for MPC and A regulations in the Russian Federation. The RDP adopted a project management approach to defining, implementing, and managing an effective nuclear regulatory structure. This approach included defining and developing the regulatory documents necessary to provide the Russian Federation with a comprehensive regulatory structure that supports an effective and sustainable MPC and A Program in Russia. This effort began in February 2005, included a series of three multi-agency meetings in April, June, and July, and culminated in August 2005 in a mutually agreed-upon plan to define and populate the nuclear regulatory system in the Russian Federation for non-military, weapons-usable material. This nuclear regulatory system will address all non-military Category I and II nuclear material at the Russian Federal Atomic Energy Agency (Rosatom), the Russian Agency for Industry (Rosprom), and the Federal Agency for Marine and River Transport (FAMRT) facilities; nuclear material in transport and storage; and nuclear material under the oversight of the Federal Environmental, Industrial and Nuclear Supervisory Service of Russia (Rostechnadzor). The Russian and U.S. MPC and A management teams approved the plan, and the DOE National Nuclear Security Administration's (NNSA) NA-255, Office of Infrastructure and Sustainability (ONIS), is providing funding. The Regulatory Development Project is managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's (DOE) NNSA

  3. Sustaining Nuclear Safety: Upholding the Core Regulatory Values

    International Nuclear Information System (INIS)

    Kumar, S.

    2016-01-01

    Nuclear Energy and management of safety therein, has a somewhat distinct streak in that from its early days it has had the privilege of being shaped and supervised by the eminent scientists and engineers, in fact it owes its very origin to them. This unique engagement has resulted in culmination of the several safety elements like defence-in-depth in the form of multiple safety layers, redundancy, diversity and physical separation of components, protection against single failures as well as common cause failures right at the beginning of designing a nuclear reactor. The fundamental principles followed by regulators across the globe have many similarities such as, creation of an organization which has a conflict-free primary responsibility of safety supervision, laying down the safety criteria and requirements for the respective industry and developing and using various tools and regulatory methodology to ensure adherence to the laid down regulatory requirements. Yet the regulatory regimes in different States have evolved differently and therefore, has certain attributes which are unique to these and confer on them their identity.

  4. Application of Resource Portfolio Concept in Nuclear Regulatory Infrastructure Support

    International Nuclear Information System (INIS)

    Lee, Y. E.; Ha, J. T.; Chang, H. S.; Kam, S. C.; Ryu, Y. H.

    2010-01-01

    As the new entrants in the global nuclear construction market are increasing and the establishment of an effective and sustainable regulatory infrastructure becomes more important, they have requested international assistance from the international nuclear communities with mature nuclear regulatory programmes. It needs to optimize the use of limited resources from regulatory organization providing support to regulatory infrastructure of new comers. This paper suggests the resource portfolio concept like a GE/Mckinsey Matrix used in business management and tries to apply it to the current needs considered in the regulatory support program in Korea as the case study

  5. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure: A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Wright, Troy L.; O'Brien, Patricia E.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Schlegel, Steven C.

    2010-01-01

    With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy's (DOE) Nuclear Material Protection, Control and Accounting (MPC and A) program to complete its transition of MPC and A responsibility to the Russian Federation, National Nuclear Security Administration (NNSA) management directed its MPC and A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC and A regulatory foundation. This paper describes the systematic process used by DOE's MPC and A Regulatory Development Project (RDP) to develop an effective and sustainable MPC and A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy 'Rosatom,' the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE's project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: (1) Define MPC and A Structural Elements; (2) Analyze the existing regulatory documents using the identified Structural Elements; (3) Validate the analysis with Russian colleagues and define the list of documents to be

  6. Improving nuclear regulatory effectiveness

    International Nuclear Information System (INIS)

    2001-01-01

    Ensuring that nuclear installations are operated and maintained in such a way that their impact on public health and safety is as low as reasonably practicable has been and will continue to be the cornerstone of nuclear regulation. In the past, nuclear incidents provided the main impetus for regulatory change. Today, economic factors, deregulation, technological advancements, government oversight and the general requirements for openness and accountability are leading regulatory bodies to review their effectiveness. In addition, seeking to enhance the present level of nuclear safety by continuously improving the effectiveness of regulatory bodies is seen as one of the ways to strengthen public confidence in the regulatory systems. This report covers the basic concepts underlying nuclear regulatory effectiveness, advances being made and future requirements. The intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  7. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  8. Future nuclear regulatory challenges

    International Nuclear Information System (INIS)

    Royen, J.

    1998-01-01

    In December 1996, the NEA Committee on Nuclear Regulatory Activities concluded that changes resulting from economic deregulation and other recent developments affecting nuclear power programmes have consequences both for licensees and regulatory authorities. A number of potential problems and issues which will present a challenge to nuclear regulatory bodies over the next ten years have been identified in a report just released. (author)

  9. Nuclear Regulatory Commission information digest

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  10. First Conference on African Youth Nuclear Summit 2017: Nuclear for a Sustainable Future

    International Nuclear Information System (INIS)

    2017-03-01

    Kenyan Young Generation in Nuclear (KYGN) hosted the inaugural African Youth Nuclear Summit, dubbed AYNS2017 that took place on the 27th to 30th March, 2017, Nairobi, Kenya. The participants were drawn from academia, research and development institutes, radiation services providers, health institutions, nuclear facilities and regulatory bodies. They shared experiences, exchanged ideas and built networks on issues related to safe application of nuclear science and technology. The theme of the summit was ''Nuclear for a Sustainable future'', which centered on three thematic areas: Nuclear powering Africa, Radiation Protection and safety culture; and application of nuclear science and technology for a sustainable future. The Director General, World Nuclear Association who pointed out that nuclear energy had made a major contribution to world energy output and was set to increase by two and half time by 2040. The importance of nuclear science and technology for a sustainable socio-economic development in Africa shared and highlight on many areas IAEA has helped member states in improving the life of its populations. The main activities of project 60 whose focus is to strengthen the nuclear security culture in East and Central Africa through improved regulation, training, capacity and awareness were highlighted

  11. Nuclear Regulatory legislation

    International Nuclear Information System (INIS)

    1984-06-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 97th Congress, 2nd Session, has been prepared by the Office of the Executive Legal Director, U.S. Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document

  12. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.

  13. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  14. RAF/9/049: Enhancing and Sustaining the National Regulatory Bodies for safety

    International Nuclear Information System (INIS)

    Keter, C.J.

    2017-01-01

    The main objective of this project is to enhance regulatory infrastructure, sustainability and cooperation among national regulatory bodies. This will support strengthening of the existing regulatory framework and capacity building in the region. Self-Assessment using the Self-Assessment Regulatory Infrastructure for Safety (SARIS) was completed on 26th May 2016. Changes made to the legislation is ongoing. The Nuclear Regulatory Bill 2017 is at an advanced stage and about to be tabled to Cabinet. The project objectives shall be addressed under a new project, RAF/9/058 – Improving the Regulatory Framework for the Control of Radiation Sources in Member States. Two major tasks for Kenya to focus include Review of regulations on waste safety, radiation sources and on safety of NPP and advising on drafting of radiation safety guides

  15. Nuclear Regulatory Legislation

    International Nuclear Information System (INIS)

    1989-08-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 100th Congress, 2nd Session, has been prepared by the Office of the General Counsel, US Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document. Persons using this document are placed on notice that it may not be used as an authoritative citation in lieu of the primary legislative sources. Furthermore, while every effort has been made to ensure the completeness and accuracy of this material, neither the United States Government, the Nuclear Regulatory Commission, nor any of their employees makes any expressed or implied warranty or assumes liability for the accuracy or completeness of the material presented in this compilation

  16. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to Member States for the development, or improvement of nuclear security systems and measures for the detection of criminal or unauthorized acts with nuclear security implications involving nuclear and other radioactive material out of regulatory control. It describes the elements of an effective nuclear security detection architecture which is composed of an integrated set of nuclear security systems and measures, and is based on an appropriate legal and regulatory framework for the implementation of the national detection strategy. The publication is an implementing guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, legislative bodies, competent authorities, institutions, and individuals involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control

  17. Nuclear Regulatory Commission 1989 Information Digest

    International Nuclear Information System (INIS)

    1989-03-01

    The Nuclear Regulatory Commission 1989 Information Digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the Commission. This is the first of an annual publication for the general use of the NRC staff and is available to the public. The Digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  18. System engineering in the Nuclear Regulatory Commission licensing process: Program architecture process and structure

    International Nuclear Information System (INIS)

    Romine, D.T.

    1989-01-01

    In October 1987, the U.S. Nuclear Regulatory Commission (NRC) established the Center for Nuclear Waste Regulatory Analyses at Southwest Research Institute in San Antonio, Texas. The overall mission of the center is to provide a sustained level of high-quality research and technical assistance in support of NRC regulatory responsibilities under the Nuclear Waste Policy Act (NWPA). A key part of that mission is to assist the NRC in the development of the program architecture - the systems approach to regulatory analysis for the NRC high-level waste repository licensing process - and the development and implementation of the computer-based Program Architecture Support System (PASS). This paper describes the concept of program architecture, summarizes the process and basic structure of the PASS relational data base, and describes the applications of the system

  19. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  20. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    2005-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants at all times in an acceptably safe manner. In meeting this objective, the regulatory body should strive to ensure that its regulatory decisions are technically sound, consistent from case to case, and timely. In addition, the regulator must be aware that its decisions and the circumstances surrounding those decisions can affect how its stakeholders, such as government policy makers, the industry it regulates, and the public, view it as an effective and credible regulator. In order to maintain the confidence of those stakeholders, the regulator should make sure that its decisions are transparent, have a clear basis in law and regulations, and are seen by impartial observers to be fair to all parties. Based on the work of a Nuclear Energy Agency (NEA) expert group, this report discusses some of the basic principles and criteria that a regulatory body should consider in making decisions and describes the elements of an integrated framework for regulatory decision making. (author)

  1. 78 FR 44165 - Nuclear Regulatory Commission Enforcement Policy

    Science.gov (United States)

    2013-07-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0159] Nuclear Regulatory Commission Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Enforcement policy; request for comment. SUMMARY: The U.S... Policy. In SRM-SECY-12-0047, ``Revisions to the Nuclear Regulatory Commission Enforcement Policy,'' dated...

  2. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  3. Nuclear regulatory developments in Canada

    International Nuclear Information System (INIS)

    Binder, M.

    2012-01-01

    This paper from CNSC discusses nuclear regulatory developments in Canada. It starts with the Fukushima accident and the effect on the nuclear sector. It summarises what CNSC has done, what it has learned and their plans going forward. It has made recommendations to IAEA for international enhancements to regulatory procedures. It outline the activities of Canada's nuclear power plants, Canada's uranium projects, deep geological repository and waste management as well as nuclear research in Canada.

  4. Regulatory Oversight of Safety Culture in Nuclear Installations

    International Nuclear Information System (INIS)

    2013-03-01

    Experience across the international nuclear industry and in other technical fields over the past few decades has demonstrated the importance of a healthy safety culture in maintaining the safety of workers, the public and the environment. Both regulators and the nuclear industry recognize the need for licensees to develop a strong safety culture in order to support successful and sustainable nuclear safety performance. Progress over recent years can be observed in the rapid development of approaches to overseeing licensees' safety culture. This publication follows on and complements earlier publications on safety culture, from the publication Safety Culture (Safety Series No. 75-INSAG-4 (1991)), published after the Chernobyl accident, to the more recently published Safety Requirements on The Management System for Facilities and Activities (IAEA Safety Standards Series No. GS-R-3 (2006)), which states that the management system is to be used to promote and support a strong safety culture. A number of attempts have been made at both the international and national levels to establish practical approaches to regulatory oversight of safety culture. During 2010 and 2011, two projects were conducted by the IAEA under the scope of the Safe Nuclear Energy - Regional Excellence Programme within the Norwegian Cooperation Programme with Bulgaria and Romania. These projects were implemented at the Bulgarian and Romanian regulatory bodies. They encompassed the development of a specific process to oversee licensees' safety culture, and involved 30 experts from 17 countries and 22 organizations. The IAEA continues to support Member States in the area of safety culture through its projects on safety management and capacity building. This publication addresses the basics of regulatory oversight of safety culture, describes the approaches currently implemented at several regulatory bodies around the world and, based on these examples, proposes a path to developing such a process

  5. Transparency of nuclear regulatory activities

    International Nuclear Information System (INIS)

    2007-01-01

    One of the main missions of nuclear regulators is to protect the public, and this cannot be completely achieved without public confidence. The more a regulatory process is transparent, the more such confidence will grow. Despite important cultural differences across countries, a number of common features characterise media and public expectations regarding any activity with an associated risk. A common understanding of transparency and main stakeholders' expectations in the field of nuclear safety were identified during this workshop, together with a number of conditions and practices aimed at improving the transparency of nuclear regulatory activities. These conditions and practices are described herein, and will be of particular interest to all those working in the nuclear regulatory field. Their implementation may, however, differ from one country to another depending on national context. (authors)

  6. IAEA Mission Concludes Peer Review of Slovenia's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an eight-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety at the Slovenian Nuclear Safety Administration (SNSA). The team reviewed measures taken to address the recommendations and suggestions made during an earlier Integrated Regulatory Review Service (IRRS) mission conducted in 2011. The IRRS team said in its preliminary findings that Slovenia had made significant progress since the review in 2011. The team identified a good practice in the country's nuclear regulatory system additional to those identified in 2011 and made new recommendations and suggestions to SNSA and the Government to strengthen the effectiveness of the country's regulatory framework in line with IAEA Safety Standards. ''By hosting a follow-up mission, Slovenia demonstrated its commitment to enhance its regulatory programmes, including by implementing the recommendations of the 2011 mission,'' said Petr Krs, mission leader and Vice Chairman of the Czech Republic's State Office for Nuclear Safety. SNSA's Director, Andrej Stritar, welcomed the progress noted by the team, while also emphasizing that the mission highlighted important future nuclear safety challenges for Slovenia. The five-member review team, comprising experts from Belgium, the Czech Republic, France and Romania, as well as four IAEA staff members, conducted the mission at the request of the Slovenian Government from 9 to 16 September 2014. The main observations of the IRRS Review team included the following: SNSA has made significant progress in addressing the findings of the 2011 IRRS mission and has demonstrated commitment to effective implementation of the IRRS programme; The economic situation in Slovenia might in the short and long term affect SNSA's ability to maintain its capacity and competence; and A radioactive waste disposal project is stalled and the licensing

  7. The Romanian nuclear regulatory body as a nuclear communicator

    International Nuclear Information System (INIS)

    Cluculescu, Cristina

    2000-01-01

    A comprehensive nuclear law environment could be a relevant tool to promote greater confidence in the nuclear energy. Romania has had laws in place governing the regulation of nuclear activities since 1974, which remained in force throughout and subsequent to the national constitutional changes. Up to December 1996, the CNCAN activities were based on Law No. 61/1974 for the development of the nuclear activities in Romania and Law No. 61982 on the quality assurance of the nuclear facilities and nuclear power plants. The Nuclear Safety legislation has been enacted in November 1974 (Law No. 61/1974) and it followed as closely as possible (for that time) the US Atomic Energy Act of 1954, as amended subsequently. The Romanian nuclear regulatory body, called National Commission for Nuclear Activities Control (CNCAN) is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and for the licensing of nuclear facilities. An important issue of CNCAN is to provide the correct and reasoning information to the public. The most important topics focused on nuclear activities for the interest of mass media in Romania are: Radioactive waste management; The cost and benefit of nuclear energy compared by conventional energy; The conditions for transportation of radioactive materials; The consequences of a suppositional nuclear accidents; The safety in operation for nuclear installations. The information provided to press and public by regulatory body is clearly and well structured. The target is to clearly explain to mass media and the public should understand very well the difference between the meaning of a nuclear accident, nuclear incident or nuclear event. CNCAN monitories and surveys the operation in safe conditions the nuclear facilities and plants, the protection against nuclear radiation of the professionally exposed personnel, of the population, of the environment and the material goods. It is also

  8. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in nuclear and other radioactive material; national response plans; and contingency measures. Within its nuclear security programme, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking; and to detect and respond to nuclear security events. This is an Implementing Guide on nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control. The objective of the publication is to provide guidance to Member States for the

  9. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Science.gov (United States)

    2010-03-10

    ... the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission March 2, 2010. The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold...

  10. Regulatory inspection of nuclear facilities and enforcement by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on the inspection of nuclear facilities, regulatory enforcement and related matters. The objective is to provide the regulatory body with a high level of confidence that operators have the processes in place to ensure compliance and that they do comply with legal requirements, including meeting the safety objectives and requirements of the regulatory body. However, in the event of non-compliance, the regulatory body should take appropriate enforcement action. This Safety Guide covers regulatory inspection and enforcement in relation to nuclear facilities such as: enrichment and fuel manufacturing plants; nuclear power plants; other reactors such as research reactors and critical assemblies; spent fuel reprocessing plants; and facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Section 2 sets out the objectives of regulatory inspection and enforcement. Section 3 covers the management of regulatory inspections. Section 4 covers the performance of regulatory inspections, including internal guidance, planning and preparation, methods of inspection and reports of inspections. Section 5 deals with regulatory enforcement actions. Section 6 covers the assessment of regulatory inspections and enforcement activities. The Appendix provides further details on inspection areas for nuclear facilities

  11. Improving nuclear regulation. NEA regulatory guidance booklets volumes 1-14

    International Nuclear Information System (INIS)

    2011-01-01

    A common theme throughout the series of NEA regulatory guidance reports, or 'green booklets', is the premise that the fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are continuously maintained and operated in an acceptably safe manner. In meeting this objective the regulator must bear in mind that it is the operator that has responsibility for safely operating the nuclear facility; the role of the regulator is to assess and to provide assurance regarding the operator's activities in terms of assuming that responsibility. The full series of these reports was brought together in one edition for the first time in 2009 and was widely found to be a useful resource. This second edition comprises 14 volumes, including the latest on The Nuclear Regulator's Role in Assessing Licensee Oversight of Vendor and Other Contracted Services. The reports address various challenges that could apply throughout the lifetime of a nuclear facility, including design, siting, manufacturing, construction, commissioning, operation, maintenance and decommissioning. The compilation is intended to serve as a knowledge management tool both for current regulators and the new nuclear professionals and organisations entering the regulatory field. Contents: Executive Summary; Regulatory Challenges: 1. The Role of the Nuclear Regulator in Promoting and Evaluating Safety Culture; 2. Regulatory Response Strategies for Safety Culture Problems; 3. Nuclear Regulatory Challenges Related to Human Performance; 4. Regulatory Challenges in Using Nuclear Operating Experience; 5. Nuclear Regulatory Review of Licensee Self-assessment (LSA); 6. Nuclear Regulatory Challenges Arising from Competition in Electricity Markets; 7. The Nuclear Regulatory Challenge of Judging Safety Back-fits; 8. The Regulatory Challenges of Decommissioning Nuclear Reactors; 9. The Nuclear Regulator's Role in Assessing Licensee Oversight of Vendor and Other Contracted Services

  12. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    Wieland, Patricia; Almeida, Ivan Pedro Salati de

    2011-01-01

    The scientific considerations upon which the nuclear regulations are based provide objective criteria for decisions on nuclear safety matters. However, the decisions that a regulatory agency takes go far beyond granting or not an operating license based on assessment of compliance. It may involve decisions about hiring experts or research, appeals, responses to other government agencies, international agreements, etc.. In all cases, top management of the regulatory agency should hear and decide the best balance between the benefits of regulatory action and undue risks and other associated impacts that may arise, including issues of credibility and reputation. The establishment of a decision framework based on well established principles and criteria ensures performance stability and consistency, preventing individual subjectivity. This article analyzes the challenges to the decision-making by regulatory agencies to ensure coherence and consistency in decisions, even in situations where there is uncertainty, lack of reliable information and even divergence of opinions among experts. The article explores the basic elements for a framework for regulatory decision-making. (author)

  13. Challenges in developing TSO to provide technical support in nuclear safety and security to Pakistan Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Mallick, Shahid A.; Sherwani, Uzman Habib; Mehdi, M. Ammar

    2010-01-01

    This paper highlights the needs for the establishment of a technical support organization (TSO) in Pakistan Nuclear Regulatory Authority (PNRA), challenges faced during its development, application of training need assessment required for the competency development of its technical manpower and difficulties encountered after its evolution. Key issues addressed include recruitment of technical manpower and enhancing their competencies, acquisition of proper tools required for safety review and assessment, development of a sustainable education and training program consistent with the best international practices and taking the measures to get confidence of the regulatory body. (author)

  14. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    Blidaru, Valentin

    2008-01-01

    The paper presents the structure, missions and organizational aspects of the CNCAN, the National Commission for the control of nuclear activities in Romania. The paper addresses the following main issues: 1.General aspects; 2.Organizational structure of the NRA in Romania; 3.General description of the Division for Nuclear Safety Assessments; 4.Specific activities; 5.Regulatory approaches and practices. Under the title of 'General aspects' the following three basic statements are highlighted: 1.CNCAN is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and the licensing of nuclear facilities; 2.CNCAN is the national authority competent in exercising the regulatory activity, authorization and control in the nuclear field provided by the law No. 111/ 1996 republished in 1998; 3.The Commission exercises its functions independently of the ministries and other authorities of the public control administration being subordinated to the Romanian Government. The organizational structure is as follows: - President, the Managerial Council and the Advisory Council coordinating the four General Divisions that are responsible for: - Nuclear Safety with Division of Nuclear Safety Assessment and Division of Nuclear Objectives Surveillance; - Radiological Safety with Division of Radiological Safety Assessment and Division of Operational Radiation Protection; - Surveillance of Environmental Radioactivity with Division of Assessment and Analysis and Division of National Network; - Development and Resource with the Division of Economy and Division of Human Resources. In addition under direct coordination of the President operate the Division of Radiation Protection, Transport and Radioactive Waste and the Division of International Cooperation and Communication. Specific activities are listed describing among others the issues of: - Safety of nuclear installation; - Evaluation relating to licensing of nuclear

  15. Annual Report 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2010. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  16. Annual Report 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2011. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  17. Annual Report 2013. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across seven parts and eight annexes the activities developed by the organism during 2013. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication has annexes with the following content: regulatory documents; inspections to medical; presentations of publications from ARN staff; measurement and evaluation of the drinking water of Ezeiza; international expert report on the implementation of international standards on radiation protection in the Ezeiza Atomic Center; Code of Ethics of the Nuclear Regulatory Authority.

  18. Sustainable training for customs officer involved in illicit nuclear trafficking detection: national solutions

    International Nuclear Information System (INIS)

    Paredes Gilisman, Jorge Luis; Lopez Forteza, Yamil

    2008-01-01

    Full text: The illicit nuclear trafficking detection capabilities demand adequate training, cooperation and equipment. Often customs personnel changing takes place in our countries. A sustainable training strategy should be implemented for avoiding forfeit on detection capabilities. Cuba, not excluded from this particular, designed an Action Plan to provide Customs authorities with basic tools for their own training. The Nuclear Regulatory Authority developed three main addresses: initial training, development of e-tools and preparation of train-of-trainers. Experiences, outcomes and challenges are shown in the present paper. In a simple, quick and not expensive way answer has been given to a national sustainable training strategy. (author)

  19. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2009-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  20. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2008-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  1. Nuclear Regulatory Commission: more aggressive leadership needed

    International Nuclear Information System (INIS)

    Staats, E.B.

    1980-01-01

    The Energy Reorganization Act of 1974 which established the Nuclear Regulatory Commission required GAO to evaluate the Commission's performance by January 18, 1980. This report responds to that requirement. GAO concluded that, although improvements have been made, the Commission's nuclear regulatory performance can be characterized best as slow, indecisive, cautious - in a word, complacent. This has largely resulted from a lack of aggressive leadership as evidenced by the Commissioners' failure to establish regulatory goals, control policymaking, and most importantly, clearly define their roles in nuclear regulation

  2. Nuclear Regulatory Commission Information Digest: 1993 edition

    International Nuclear Information System (INIS)

    1993-03-01

    The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the U.S. Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. The digest, published annually, is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1992, with exceptions noted. Information on generating capacity and average capacity factor for operating U.S. commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed. Comments and/or suggestions on the data presented are welcomed and should be directed to Karen Olive, United States Nuclear Regulatory Commission, Office of the Controller, Division of Budget and Analysis, Washington, D.C. 20555. For detailed and complete information about tables and figures, refer to the source publications

  3. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  4. Nuclear Regulatory Commission Information Digest 1992 edition

    International Nuclear Information System (INIS)

    Olive, K.

    1992-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. This digest is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and industry it regulates. In general, the data cover 1975 through 1991, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed

  5. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  6. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2016-09-01

    Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems.

  7. Experience Transformed into Nuclear Regulatory Improvements in Russia

    International Nuclear Information System (INIS)

    Sapozhnikov, A.

    2016-01-01

    The third International Conference on Effective Nuclear Regulatory Systems (Canada, 2013) identified the main action items that should be addressed, implemented and followed up. The key technical and organizational areas important to strengthening reactor and spent fuel safety have been determined as following: • Regulatory lessons learned and actions taken (since the accident at the Fukushima Daiichi NPP); • Waste management and spent fuel safety; • Emergency management; • Emerging programmes; • Human and organizational factors, safety and security culture. Over time many activities based on results of the IAEA Integrated Regulatory Review Service in the Russian Federation, 2019, and post-mission, 2013, have been implemented. At present there is progress for the national action plan on nuclear safety, preparation and conducting of long term spent fuel management, complementary reviews for nuclear facilities other than Nuclear Power Plants, emergency exercises with the regulatory body participation, improving communication, development of national regulations and improvement of regulatory system in the whole. The regulatory body ensures assistance in development of national regulatory infrastructure, safety culture to the countries planning to construct Russian design facilities (NPPs, RRs). The report outlines the results and future actions to improve nuclear regulation based on systematic approach to safety and particularly reflects the specificity of taking measures for the research reactors. (author)

  8. Papers on the nuclear regulatory dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, J.N.; Freeman, S.D.; Weinberg, A.M.

    1985-10-01

    The four papers contained in this report are titled: (1) From Prescriptive to Performance-Based Regulation of Nuclear Power; (2) Nuclear Regulatory Reform: A Technology-Forcing Approach; (3) Improving the Regulation of Nuclear Power; and (4) Science and Its Limits: The Regulators' Dilemma. These four papers investigate issues relating to the long-term regulation of nuclear energy. They were prepared as part of the Institute for Energy Analysis' project on Nuclear Regulation funded by a grant from the Mellon Foundation and a smaller grant by the MacArthur Foundation. Originally this work was to be supplemented by contributions from the Nuclear Regulatory Commission and from the Department of Energy. These contributions were not forthcoming, and as a result the scope of our investigations was more restricted than we had originally planned.

  9. Papers on the nuclear regulatory dilemma

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Freeman, S.D.; Weinberg, A.M.

    1985-10-01

    The four papers contained in this report are titled: (1) From Prescriptive to Performance-Based Regulation of Nuclear Power; (2) Nuclear Regulatory Reform: A Technology-Forcing Approach; (3) Improving the Regulation of Nuclear Power; and (4) Science and Its Limits: The Regulators' Dilemma. These four papers investigate issues relating to the long-term regulation of nuclear energy. They were prepared as part of the Institute for Energy Analysis' project on Nuclear Regulation funded by a grant from the Mellon Foundation and a smaller grant by the MacArthur Foundation. Originally this work was to be supplemented by contributions from the Nuclear Regulatory Commission and from the Department of Energy. These contributions were not forthcoming, and as a result the scope of our investigations was more restricted than we had originally planned

  10. Nuclear regulatory organisations: Learning from stakeholders to enhance communication

    International Nuclear Information System (INIS)

    Lorin, Aurelie

    2015-01-01

    Since its creation 15 years ago, the NEA Committee on Nuclear Regulatory Activities (CNRA) Working Group on Public Communication of Nuclear Regulatory Organisations (WGPC) has been addressing a broad range of communication issues, with two reports recently issued on Nuclear Regulatory Organisations, the Internet and Social Media: The What, How and Why of Their Use as Communication Tools and on Nuclear Regulatory Organisations and Communication Strategies. After the Fukushima Daiichi nuclear power plant accident in 2011, nuclear regulatory organisations around the world reaffirmed the need to strengthen stakeholder outreach and communication, and to create more robust avenues for stakeholder involvement in regulatory matters. The WGPC proposed a means for stakeholders to play a more active role in the group by holding one-day workshops in conjunction with regular meetings. These workshops offer a platform for stakeholder exchange with communication experts from nuclear regulatory organisations (NROs). The objective is to stimulate co-operation and improve communication by better understanding stakeholder perceptions, needs and expectations, and by discussing how to use traditional and social media more effectively. While nuclear regulatory organisations may have a common willingness to improve their communication methods and to build constructive relationships with stakeholders, every country has its own practices and cultural background, and thus its own challenges. Following the first workshop in Paris, which brought together European stakeholders, and the second in North America, the NEA is now organising a third workshop in Asia (Japan) to be held in April 2016. This third workshop will enable the NEA to gather stakeholder views from a third continent. A report on the workshops' findings will be issued after the completion of this third workshop, thus giving a broader idea of how to improve the overall communication methods of nuclear regulatory

  11. KWOC [Key-Word-Out-of-Context] Index of US Nuclear Regulatory Commission Regulatory Guide Series

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-04-01

    To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE ''KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series

  12. Building Nuclear Safety and Security Culture Within Regulatory Body

    International Nuclear Information System (INIS)

    Huda, K.

    2016-01-01

    To achieve a higher level of nuclear safety and security, it needs to develop the safety and security culture not only in the facility but also in the regulatory body. The regulatory body, especially needs to develop the safety and security culture within the organization, because it has a function to promote and oversee the culture in the facilities. In this sense, the regulatory body should become a role model. Development of the nuclear safety and security culture should be started by properly understanding its concept and awakening the awareness of individual and organization on the importance of nuclear safety and security. For effectiveness of the culture development in the regulatory body, the following steps are suggested to be taken: setting up of the regulatory requirements, self-assessment, independent assessment review, communication with the licensee, oversight of management system implementation, and integration with regulatory activities. The paper discusses those steps in the framework of development of nuclear safety and security culture in the regulatory body, as well as some important elements in building of the culture in the nuclear facilities. (author)

  13. Safety Culture Implementation in Indonesian Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.; Dewanto, P.

    2016-01-01

    The Indonesia Nuclear Energy Act no. 10 of 1997 clearly stated that Nuclear Energy Regulatory Agency (BAPETEN) is the Nuclear Regulatory Body. This is the legal basis of BAPETEN to perform regulatory functions on the use of nuclear energy in Indonesia, including regulation, authorisation, inspection and enforcement. The Independent regulatory functions are stipulated in Article 4 and Article 14 of the Nuclear Energy Act no. 10 (1997) which require the government to establish regulatory body that is reporting directly to the president and has responsibility to control of the use of nuclear energy. BAPETEN has been start fully its functioning on January 4, 1999. In it roles as a regulatory body, the main aspect that continues and always to be developed is the safety culture. One of the objectives of regulatory functions is “to increase legal awareness of nuclear energy of the user to develop safety culture” (Article 15, point d), while in the elucidation of article 15 it is stipulated that “safety culture is that of characteristics and attitudes in organizations and individual that emphasise the importance of safety”.

  14. Categorization and selection of regulatory approaches for nuclear power plants

    International Nuclear Information System (INIS)

    Sugaya, Junko; Harayama, Yuko

    2009-01-01

    Several new regulatory approaches have been introduced to Japanese nuclear safety regulations, in which a prescriptive and deterministic approach had traditionally predominated. However, the options of regulatory approaches that can possibly be applied to nuclear safety regulations as well as the methodology for selecting the options are not systematically defined. In this study, various regulatory approaches for nuclear power plants are categorized as prescriptive or nonprescriptive, outcome-based or process-based, and deterministic or risk-informed. 18 options of regulatory approaches are conceptually developed and the conditions for selecting the appropriate regulatory approaches are identified. Current issues on nuclear regulations regarding responsibilities, transparency, consensus standards and regulatory inspections are examined from the viewpoints of regulatory approaches to verify usefulness of the categorization and selection concept of regulatory approaches. Finally, some of the challenges at the transitional phase of regulatory approaches are discussed. (author)

  15. Westinghouse electric company, LLC regulatory trends in the USA nuclear power industry

    International Nuclear Information System (INIS)

    Molnar, C. M.; Cheung, A. C.; Gresham, J. A.

    2007-01-01

    The United States (US) nuclear industry is in a dynamic, exciting, and challenging time. On one hand, since the mid 90s, the US nuclear utilities have continued to demonstrate improved safety, efficient and reliable operation for the whole nuclear fleet, thus making generation costs for nuclear energy extremely attractive. On the other hand the US utilities are projecting the need to add significant new generation capacities to replace the aging fleet and to sustain the expected economic growth. In addition to the demonstrated improved operation and financial performance, the financial incentives offered in the federal energy bill passed in 2005 enticed many utilities to actively consider the purchase of new nuclear power plants. This paper will highlight the regulatory trends in the USA, the major initiatives and improvements undertaken as well as other operation support issues faced by the US nuclear power industry

  16. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  17. 77 FR 34379 - Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory...

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD06-6-000] Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold a joint meeting...

  18. Sustainable development and peaceful use of nuclear energy in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2004-01-01

    The concept of sustainable development was elaborated in the late 1980s and was defined as a development that fulfills the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also many arguments in favor of nuclear energy as a reliable source such as: the large size of the nuclear power plants, their long periods of operation and the existent experience for operation. The risks associated with radiation are among the most extensively studied hazards known by man, but several factors are preserving public anxiety about radiation. Radiation is inaccessible to human senses, difficult to understand, and probabilistic in its effects, which to the public means uncertainty. Hence, radiological protection is essential to ensure that nuclear energy is compatible with sustainable development. Nuclear energy has, in normal operation, a low impact on health and environment. In order to meet the sustainable development goals, it is necessary to maintain its high standards of safety in spite of increasing competition in the electricity sector and reactors ageing in order to achieve a higher level of public acceptance. The complex technologies used by nuclear fuel cycle facilities are controlled and regulated by international and national institutions. A framework of regulatory, institutional and technical measures is already in place ensuring that the use of nuclear energy does not significantly modify

  19. Competencies Setup for Nuclear Regulatory Staff in Thailand

    International Nuclear Information System (INIS)

    Pingish, Panupong; Siripirom, Lopchai; Nakkaew, Pongpan; Manuwong, Theerapatt; Wongsamarn, Vichian

    2010-01-01

    Competencies setup for regulatory bodies oversee a research reactor and nuclear power reactors in Thailand, concentrating on staff development in areas of review and assessment, inspection and enforcement, authorization, and development of regulations and guides. The regulatory body in Thailand is the Bureau of Nuclear Safety Regulation (BNSR) which belongs to the Office of Atoms for Peace (OAP). The BNSR is divided into 4 groups according to the International Atomic Energy Agency (IAEA). These groups are the nuclear safety administration group, nuclear safety technical support group, nuclear safety assessment and licensing group, and the nuclear installations inspection group. Each group is divided into senior and junior positions. The competencies model was used for implementation of staff qualification, career planning and professional progression by BNSR. Competencies are related to knowledge, skills and attitudes (KSAs) needed to perform their job. A key issue is obtaining competencies for the regulatory bodies. The systematic approach to training (SAT) has been used in several countries for improvement regulator performance. The SAT contains 5 steps, including analysis, design, development, implementation and evaluation, to achieve competencies. The SAT provides a logical progression from the identification of competencies required to perform a job to the design, development and implementation of training using the competencies model. In the first step, BNSR performs an operating analysis of training needs assessment (TNA) by using gap analysis technique, as suggested by IAEA. Individual regulatory bodies address the gap using appropriate training program, after comparing the actual and desired competency profiles to determine the gap. This paper examines competencies setup for regulatory staff of BNSR as a result of gaps analysis to establish a scheme for design characteristics of regulatory staff and training courses, thereby enhancing the regulatory

  20. Communication planning by the nuclear regulatory body

    International Nuclear Information System (INIS)

    2002-01-01

    The national regulatory body, whose primary mission is to exercise regulatory control over nuclear facilities and the use of radiation sources, but not to promote their use, may be the most credible source of neutral, balanced and accurate information about issues relating to nuclear and radiation safety. It is therefore important for a regulatory body to establish and exercise an effective communication programme to acquaint the public with its oversight functions, capabilities and effectiveness. If the regulatory body is to maintain credibility and to deal promptly and effectively with nuclear or radiological accidents and any other events that may give rise to significant public concerns, and is to communicate clearly and effectively with the public, it must have adequate resources, including experts in nuclear safety. And if maintaining public confidence in the authorities and avoiding unnecessary concerns are among its principal objectives, it must be able to communicate understandably and truthfully about the known extent of any accident, the actions taken in response to it and its implications. In the past, psychological effects as a result of certain severe nuclear and radiological accidents have been compounded by a lack of candour with the public on the part of the authorities and an absence of an appropriate programme of public information. This publication describes good practices and gives practical examples of how the regulatory body can establish a systematic and structured programme for enhancing effective communication with various parties and under various circumstances. The report presupposes an adequate national infrastructure, including an independent regulatory body with sufficient authority and resources to discharge its responsibilities for the regulation of safety. This Safety Report covers the elements of a regulatory body's programme for communication with various audiences and under the different circumstances that may be encountered

  1. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2016 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  2. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2013

    International Nuclear Information System (INIS)

    2014-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2013 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Nuclear Materials in SR; (5) Building Authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public communication; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) (12) Abbreviations.

  3. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  4. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  5. Technical Support Organization Knowledge Management for Nuclear Regulatory Support

    International Nuclear Information System (INIS)

    Kohut, P.; Ramsey, J.; Katsenelenbogen, S.

    2016-01-01

    Full text: Knowledge management awareness has increased through the nuclear industrial and regulatory community leading to better understanding of the handling of critical information. Utilizing, managing and regulating the application of nuclear power require an extensive system of expertise and associated research through established organizations. The long term maintenance of the specific expertise is only viable by using scientific knowledge management principles all through the national nuclear infrastructure involving regulatory, industrial, academic and other research institutions. National governments in countries operating or planning to establish nuclear facilities have instituted regulatory regimes on the use of nuclear materials and facilities to insure a high level of operational safety. (author

  6. U.S. Nuclear Regulatory Commission Process for Risk-Informing the Nuclear Waste Arena

    International Nuclear Information System (INIS)

    Leslie, B. W.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is increasing the use of risk insights and information in its regulation of nuclear materials and waste. The objective of this risk-informed regulatory effort is to improve the effectiveness and efficiency of the agency, while maintaining or increasing its focus on safety. The agency's Office of Nuclear Material Safety and Safeguards (NMSS) proposed a five-step process to carry out a framework for increasing the use of risk information and insights in its regulation of nuclear materials and waste. The office is carrying out the five-step process to risk-inform the nuclear materials and waste arenas. NMSS's actions included forming a Risk Task Group and the use of case studies to test and complete screening criteria for identifying candidate regulatory applications amenable for risk-informing. Other actions included involving stakeholders through enhanced public participation, developing safety goals for materials and waste regulatory applications, and establishing a risk training program for staff. Through the case studies, NRC staff found the draft screening criteria to be effective in deciding regulatory areas that may be amenable to an increased use of risk insights. NRC staff also found that risk information may have the potential to reduce regulatory burden and improve staff's efficiency in making decisions, while maintaining safety. Finally, staff found that it would be possible to develop safety goals for the nuclear materials and waste arenas

  7. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction (Licensing system; Offences, compliance and enforcement; Regulatory documents; Other relevant legislation); 2. Mining regime; 3. Nuclear substances and radiation devices; 4. Nuclear facilities; 5. Trade in nuclear materials and equipment (Exports, Other imports); 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Governor in council; Minister of natural resources; Other Ministerial authorities; Canadian Nuclear Safety Commission - CNSC); 2. Public and semi-public agencies (National Research Council - NRC; Natural Sciences and Engineering Research Council; Atomic Energy of Canada Ltd. - AECL)

  8. Annual Report 2007. Nuclear Regulatory Authority; Informe Anual 2007. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  9. Annual Report 2008. Nuclear Regulatory Authority; Informe Anual 2008. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  10. Challenges in Strengthening Regulatory Infrastructure in a Non-Nuclear Country

    International Nuclear Information System (INIS)

    Bosnjak, J.

    2016-01-01

    The State Regulatory Agency for Radiation and Nuclear Safety (SRARNS) is established as the effectively independent regulatory body for radiation and nuclear safety based on the Law on Radiation and Nuclear Safety in Bosnia and Herzegovina promulgated in November 2007. After its complete reorganization in the last few years, the regulatory system is compatible with relevant IAEA Safety Standards and Guides for safety and security of radioactive sources. The paper gives an overview of the new regulatory framework in Bosnia and Herzegovina, with special focus on challenges faced by Bosnia and Herzegovina, which are actually typical challenges for regulator in small non-nuclear country in strengthening regulatory infrastructure in regulating radiation sources and radioactive waste. (author)

  11. Nuclear and sustainable development

    International Nuclear Information System (INIS)

    Audebert, P.; Balle, St.; Barandas, Ch.; Basse-Cathalinat, B.; Bellefontaine, E.; Bernard, H.; Bouhand, M.H.; Bourg, D.; Bourgoignon, F.; Bourlat, Y.; Brunet, F.; Buclet, N.; Buquet, N.; Caron, P.; Cartier, M.; Chagneau, E.; Charles, D.; Chateau, G.; Collette, P.; Collignon, A.; Comtesse, Ch.; Crammer, B.; Dasnias, J.; Decroix, G.; Defoy, B.; Delafontaine, E.; Delcroix, V.; Delerue, X.; Demet, M.; Dimmers, G.; Dodivers, S.; Dubigeon, O.; Eimer, M.; Fadin, H.; Foos, J.; Ganiage, D.; Garraud, J.; Girod, J.P.; Gourod, A.; Goussot, D.; Guignard, C.; Heloury, J.; Hondermarck, B.; Hurel, S.; Jeandron, C.; Josse, A.; Lagon, Ch.; Lalleron, Ch.; Laurent, M.; Legrand, H.; Leveau, E.

    2006-01-01

    On September 15. and 16., 2004, at Rene Delcourt invitation, President of the C.L.I. of Paluel and Penly, took place the 4. colloquium of the A.N.C.L.I.. Jean Dasnias, new President of the C.L.I., welcomed the colloquium. Hundred of persons participated. The place of the nuclear power in the energy perspectives of tomorrow, its assets and its weaknesses in front of the other energies and within the framework of a sustainable development, are so many subjects which were discussed. The different tackled subjects are: the stakes in the sustainable development; energy perspectives; the reactors of the fourth generation; nuclear power and transparency; sustainable development and I.R.S.N. (N.C.)

  12. The Safety Culture of an Effective Nuclear Regulatory Body

    International Nuclear Information System (INIS)

    Carlsson, Lennart; Bernard, Benoit; Lojk, Robert; Koskinen, Kaisa; Rigail, Anne-Cecile; Stoppa, Gisela; Lorand, Ferenc; Aoki, Masahiro; Fujita, Kenichi; Takada, Hiroko; Kurasaki, Takaaki; Choi, Young Sung; Smit, Martin; Bogdanova, Tatiana; Sapozhnikov, Alexander; Smetnik, Alexander; Cid Campo, Rafael; Axelsson, Lars; Carlsson, Lennart; Edland, Anne; Ryser, Cornelia; Cohen, Miriam; Ficks, Ben; Valentin, Andrea; Nicic, Adriana; Lorin, Aurelie; Nezuka, Takayoshi; Creswell, Len

    2016-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that activities related to the peaceful use of nuclear energy are carried out in a safe manner within their respective countries. In order to effectively achieve this objective, the nuclear regulatory body requires specific characteristics, one of which is a healthy safety culture. This regulatory guidance report describes five principles that support the safety culture of an effective nuclear regulatory body. These principles concern leadership for safety, individual responsibility and accountability, co-operation and open communication, a holistic approach, and continuous improvement, learning and self-assessment. The report also addresses some of the challenges to a regulatory body's safety culture that must be recognised, understood and overcome. It provides a unique resource to countries with existing, mature regulators and can be used for benchmarking as well as for training and developing staff. It will also be useful for new entrant countries in the process of developing and maintaining an effective nuclear safety regulator. (authors)

  13. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  14. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  15. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  16. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  17. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2015 is presented. These activities are reported under the headings: Foreword by the Chairperson; (1) Legislative activities; (2) Regulatory Activities; (3) Safety of nuclear installations; (4) Nuclear Materials; (5) Competence of the building authority; (6) Emergency planning and preparedness; (7) International activities; (8) Public relations; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Annexes; (11) Abbreviations.

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Iceland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health and Social Security; Icelandic Radiation Protection Institute)

  19. Annual Report 2009. Nuclear Regulatory Authority; Informe Anual 2009. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  20. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  1. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  2. Sustained attention in infancy as a longitudinal predictor of self-regulatory functions.

    Science.gov (United States)

    Johansson, Maria; Marciszko, Carin; Gredebäck, Gustaf; Nyström, Pär; Bohlin, Gunilla

    2015-11-01

    Previous literature suggests that attention processes such as sustained attention would constitute a developmental foundation for the self-regulatory functions executive functioning and effortful control (e.g., Garon, Bryson, & Smith, 2008; Rothbart, Derryberry, & Posner, 1994). Our main aim was to test this hypothesis by studying whether sustained attention at age 1 year can predict individual differences in self-regulatory functions at age 2 years. Longitudinal data from 66 infants and their parents were included in the study. Sustained attention was assessed during free play at age 1 year; executive functioning, measured using an eye-tracking version of the A-not-B task, and effortful control, measured using parental ratings, were assessed at both age 1 and age 2 years. The results did support a longitudinal prediction of individual differences in 2-year-olds' self-regulatory functions as a function of sustained attention at age 1 year. We also found significant improvement in both executive functioning and effortful control over time, and the two self-regulatory constructs were related in toddlerhood but not in infancy. The study helps increase our understanding of the early development of self-regulatory functions necessary for identifying developmental risks and, in the future, for developing new interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  4. Nuclear security recommendations on nuclear and other radioactive material out of regulatory control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this publication is to provide guidance to States in strengthening their nuclear security regimes, and thereby contributing to an effective global nuclear security framework, by providing: - Recommendations to States and their competent authorities on the establishment or improvement of the capabilities of their nuclear security regimes, for carrying out effective strategies to deter, detect and respond to a criminal act, or an unauthorized act, with nuclear security implications, involving nuclear or other radioactive material that is out of regulatory control; - Recommendations to States in support of international cooperation aimed at ensuring that any nuclear or other radioactive material that is out of regulatory control, whether originating from within the State or from outside that State, is placed under regulatory control and the alleged offenders are, as appropriate, prosecuted or extradited

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovenia

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Safeguards for nuclear material; 7. Radiation protection; 8. Radioactive waste management; 9. Nuclear security; 10. Transport; 11. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Slovenian Nuclear Safety Administration - SNSA; Slovenian Radiation Protection Administration - SRPA); 2. Advisory bodies; 3. Public and semi-public agencies; 4. Technical support organisations - approved experts

  6. Regulatory regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    Main elements of nuclear regulatory regime in general is presented. These elements are: national rules and safety regulations, system of nuclear facility licensing, activities of regulatory body. Regulatory body is needed to specify the national safety regulations, review and assess the safety documentation presented to support license application, make inspections to verify fulfilment of safety regulations and license conditions, monitor the quality of work processes of user organization, and to assess whether these processes provide a high safety level, promote high safety culture, promote maintenance and development of national infrastructure relevant to nuclear safety, etc

  7. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities. Japan

    International Nuclear Information System (INIS)

    2017-01-01

    The NEA has updated, in coordination with the Permanent Delegation of Japan to the OECD, the report on the Regulatory and Institutional Framework for Nuclear Activities in Japan. This country report provides comprehensive information on the regulatory and institutional framework governing nuclear activities in Japan. It provides a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. Content: I - General Regulatory Regime: Introduction; Mining regime; Radioactive substances and equipment; Nuclear installations (Reactor Regulation, Emergency response); Trade in nuclear materials and equipment; Radiological protection; Radioactive waste management; Nuclear safeguards and nuclear security; Transport; Nuclear third party liability. II - Institutional Framework: Regulatory and supervisory authorities (Cabinet Office, Nuclear Regulation Authority (NRA), Ministry of Economy, Trade and Industry (METI), The Agency for Natural Resources and Energy (ANRE), Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Ministry of Education, Culture, Sports, Science and Technology (MEXT)); Advisory bodies (Atomic Energy Commission (AEC), Reactor Safety Examination Committee, Nuclear Fuel Safety Examination Committee, Radiation Council, Other advisory bodies); Public and semi-public agencies (Japan Atomic Energy Agency (JAEA), National Institutes for Quantum and Radiological Science and Technology (QST), Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), Nuclear Waste Management Organisation (NUMO))

  9. Assessing the effectiveness of nuclear regulatory system in India

    International Nuclear Information System (INIS)

    Gandhia, Sonal; Choi, Kwang Sik

    2012-01-01

    The Fukushima accident brought up the issue of regulatory effectiveness in the fore. One of the causes of the accident has been attributed to the problems in effectiveness of the Japanese regulatory system. Regulatory reform is underway in Japan and in other countries many efforts have also been made to improve the effectiveness and independence of the regulatory bodies. It is important that the regulatory bodies make self-assessment of their weaknesses and strengths, to achieve the ultimate regulatory goal of assuring acceptable level of nuclear safety. In this paper an assessment has been done for the effectiveness of Indian nuclear regulatory system as implemented by the Atomic Energy Regulatory board (AERB). A number of good practices of AERB have been found and some areas have been identified where improvements are necessary

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovak Republic

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances and Equipment; 4. Nuclear Installations (Licensing and Inspection, including Nuclear Safety; Emergency Response); 5. Trade in Nuclear Materials and Equipment; 6. Radiological Protection; 7. Radioactive Waste Management; 8. Non-proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Nuclear Regulatory Authority of the Slovak Republic - UJD; Ministry of Health; Ministry of the Environment; Ministry of the Interior; Ministry of Economy; Ministry of Labour and National Labour Inspectorate); 2. Public and Semi-Public Agencies

  11. Diagnosis of the Brazilian Nuclear Regulatory body

    International Nuclear Information System (INIS)

    Santos Gomes, Rogerio dos; Magalhaes Ennes Ennes, Edson Carlos

    2008-01-01

    This work has the objective to present the diagnosis of the existing structure in the Brazilian Government to ensure the radioprotection and nuclear safety in the country, being compared the current situation with the conclusions presented in another studies, carried through in last 30 years, with special attention in the existence of the necessary available to support and independence of the national regulatory body for the development of the regulatory inspections activities in the radioprotection and nuclear safety. (author)

  12. US Nuclear Regulatory Commission annual report, 1985. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The decisions and actions of the Nuclear Regulatory Commission (NRC) during fiscal year 1985 are reported. Areas covered include reactor regulation, cleanup at Three Mile Island, analysis and evaluation of operational experience, nuclear materials, waste management, safeguards, inspection, enforcement, quality assurance, emergency preparedness, and nuclear regulatory research. Also, cooperation with the states, international programs, proceedings and litigation, and management are discussed

  13. Nuclear regulatory communication with the public: 10 years of progress

    International Nuclear Information System (INIS)

    Gauvain, J.; Jorle, A.; Chanial, L.

    2008-01-01

    The NEA has an acknowledged role to assist its member countries in maintaining and developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy. In this context, the NEA Committee on Nuclear Regulatory Activities (CNRA) provides a forum for senior representatives from nuclear regulatory bodies to exchange information and experience on nuclear regulatory policies and practices in NEA member countries and to review developments which could affect regulatory requirements. Public confidence in government and in risk management structures is important to all developed countries with an open society. The use of nuclear power in a democracy is built upon a certain trust in the political system and the national authorities. To foster and maintain such trust in a period of greater public scrutiny of nuclear activities, a number of nuclear regulatory organisations (NROs) initiated various processes to pro-actively inform the public about their supervision and control of nuclear activities, or when appropriate to involve the public in decision making. In 1998 the question was raised within the CNRA of whether public trust in the regulator might be very different from one country to another, and an activity was started among member countries to exchange experience and best practices and to learn lessons about NRO communication with their publics. Three workshops were organised by the NEA, and a Working Group on Public Communication of Nuclear Regulatory Organisations was set up in 2001. The activities and findings are summarised below. (author)

  14. Nuclear Regulatory Commission Information Digest, 1991 edition

    International Nuclear Information System (INIS)

    Olive, K.L.

    1991-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs

  15. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2006-04-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  16. Safety and regulatory requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Kumar, S.V.; Bhardwaj, S.A.

    2000-01-01

    A pre-requisite for a nuclear power program in any country is well established national safety and regulatory requirements. These have evolved for nuclear power plants in India with participation of the regulatory body, utility, research and development (R and D) organizations and educational institutions. Prevailing international practices provided a useful base to develop those applicable to specific system designs for nuclear power plants in India. Their effectiveness has been demonstrated in planned activities of building up the nuclear power program as well as with unplanned activities, like those due to safety related incidents etc. (author)

  17. Improving nuclear regulation. Compilation of Nea regulatory guidance booklets

    International Nuclear Information System (INIS)

    2009-01-01

    A common theme throughout the series of NEA regulatory guidance reports, or 'green booklets', is the premise that the fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are operated at all times and later decommissioned in an acceptably safe manner. In meeting this objective the regulator must keep in mind that it is the operator that has responsibility for safely operating a nuclear facility; the role of the regulator is to oversee the operator's activities as related to assuming that responsibility. For the first time, the full series of these reports have been brought together in one edition. As such, it is intended to serve as a knowledge management tool both for current regulators and the younger generation of nuclear experts entering the regulatory field. While the audience for this publication is primarily nuclear regulators, the information and ideas may also be of interest to nuclear operators, other nuclear industry organisations and the general public. (author)

  18. IAEA Mission Concludes Peer Review of Jordan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an 11-day International Atomic Energy Agency (IAEA) Integrated Regulatory Review Service (IRRS) mission to review the regulatory framework for nuclear and radiation safety in Jordan. The mission team said in its preliminary findings that Jordan's nuclear regulator, the Energy and Minerals Regulatory Commission (EMRC), faces challenges because it is a relatively new body that handles a high workload while also working to recruit, train and keep competent staff. The team also noted that a recent merger provided the regulator with more of the resources it needs to perform its duty. The team made recommendations and suggestions to the regulatory body and the Government to help them strengthen the effectiveness of Jordan's regulatory framework and functions in line with IAEA Safety Standards. The main observations of the IRRS Review team comprised the following: The regulatory body, founded in 2007 and merged with other regulators in April 2014 to form EMRC, faces large challenges in terms of its regulatory workload, management system building and staff recruitment and training; The new EMRC structure and revision of the radiation and nuclear safety law represents an important opportunity to strengthen Jordan's radiation and nuclear safety infrastructure; The Government has shown commitment to radiation and nuclear safety through measures including becoming party to international conventions. It could further demonstrate its commitment by adopting a formal national policy and strategy for safety that defines the role of the Minister of Energy in relation to EMRC and protects the independence of regulatory decision-making

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Luxembourg

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General; 2. Mining; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency measures); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. General Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister of Labour; Other Ministers competent); 2. Advisory bodies (Higher Health Council)

  20. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  1. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  2. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  3. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  4. Crisis Communication of Nuclear Regulatory Organisations: Towards global thinking

    International Nuclear Information System (INIS)

    Martell, Meritxell; Menendez, Susan; Calvo, Marina

    2013-01-01

    The OECD Nuclear Energy Agency (NEA) Committee on Nuclear Regulatory Activities (CNRA) Working Group on Public Communication of Nuclear Regulatory Organisations (WGPC) organised the workshop 'Crisis communication: facing the challenges' on 9-10 May 2012 in Madrid to address the international dimension of the communicative responses to crises by assessing the experience of Nuclear Regulatory Organisations of the NEA member countries and their stakeholders. The CNRA/WGPC also prepared in 2011, before the Fukushima-Daiichi nuclear accident occurred, a Road Map for Crisis Communication of Nuclear Regulatory Organisations which focused only on national aspects. This 'road map' had not considered the international dimension. CNRA mandated the WGPC to expand the Road Map so as to conclude the follow-up activity on crisis communication. The objective of the present document is to firstly, identify the key messages which can be extracted from three surveys carried out among the WGPC members after Fukushima-Daiichi's accident (Appendices II, III and IV), and incorporate them into the Road Map for Crisis Communication. Secondly, the good practices on public communication of NROs, which were presented during the OECD/NEA Workshop on Crisis Communication: Facing the Challenges, are reported. Following the structure of the road map for public communication responses during crisis included in the NEA report entitled 'Road Map for Crisis Communication of Nuclear Regulatory Organisations - National aspects', the good practices on communication before, during and after a crisis are provided. Overall, the emphasis of this report is on the international aspects of crisis communication, rather than the national dimension. (authors)

  5. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Finland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Trade and Industry - KTM; Ministry of Social Affairs and Health; Ministry of the Interior; Ministry of the Environment; Ministry of Foreign Affairs); 2. Advisory bodies (Advisory Committee on Nuclear Energy; Advisory Committee on Nuclear Safety); 3. Public and semi-public agencies (Finnish Radiation and Nuclear Safety Authority - STUK; State Nuclear Waste Management Fund)

  7. The role of effective communications in Nuclear Regulatory Commission licensing

    International Nuclear Information System (INIS)

    Counsil, W.G.

    1991-01-01

    Communications are essential to the licensing and general regulatory program of the Nuclear Regulatory Commission. This paper attempts to identify and address certain aspects of, and approaches to, maintaining effective and efficient communications. It considers, from the perspective of the high-level radioactive waste repository program, both internal communication within the DOE itself and external communication with the Nuclear Regulatory Commission and interested parties. Many of the points presented are based on lessons learned from electric utility experience with nuclear plants

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  9. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  10. Regulatory practices for nuclear power plants in India

    International Nuclear Information System (INIS)

    Bajaj, S.S.

    2013-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB is responsible for the stipulation and enforcement of rules and regulations pertaining to nuclear and radiological safety. This paper describes the regulatory process followed by AERB for ensuring the safety of nuclear power plants (NPPs) during their construction as well as operation. This regulatory process has been continuously evolving to cater to the new developments in reactor technology. Some of the recent initiatives taken by AERB in this direction are briefly described. Today, AERB faces new challenges like simultaneous review of a large number of new projects of diverse designs, a fast growing nuclear power program and functioning of operating plants in a competitive environment. This paper delineates how AERB is gearing up to meet these challenges in an effective manner. (author)

  11. Quality management of the nuclear regulatory body. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    2001-09-01

    This report is the outcome of the ninth series of peer discussions on regulatory practices entitled Nuclear Regulatory Body Quality Management, held in March and May 2001, and which involved the participation of senior nuclear regulators from 23 IAEA Member States. This report conveys the essence of two peer group discussions and highlights some good practices identified by the participating senior regulators. The objective of the discussions was to share experiences of regulatory bodies in implementing QM systems in their own work so as to ensure that the regulatory control over the licensees is effective and efficient and is commensurate with the mandate assigned by their governments. The shared experiences and good practices presented in the report, however, do not necessarily reflect the views of and good practices endorsed by the governments of the nominating Member States, the organizations to which the regulators belong, or the IAEA. The report sets down the peer group's experience in developing, implementing and evaluating QM within their regulatory bodies and identifies points to bear in mind when introducing such a system. This report is structured so that it covers the subject matter under the main headings of: application of quality management to regulatory work; development and implementation of quality management; assessment and improvement of performance; and good practices

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Turkey

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Prime Minister; Ministry of Energy and Natural Resources; Ministry of Health; Ministry of the Environment and Forestry); 2. Public and semi-public agencies (Turkish Atomic Energy Authority - TAEK; General Directorate for Mineral Research and Exploration - MTA; ETI Mine Works General Management; Turkish Electric Generation and Transmission Corporation - TEAS; Turkish Electricity Distribution Corporation - TEDAS)

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Mexico

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Nuclear terrorism; II. Institutional Framework - The federal government: 1. Regulatory and supervisory authorities (Ministry of Energy; Ministry of Health; Ministry of Labour and Social Security; Ministry of the Environment and Natural Resources; Ministry of Communications and Transport); 2. Public and semi-public agencies: (National Nuclear Safety and Safeguards Commission; National Nuclear Research Institute)

  14. Strengthening Regulatory Competence in a Changing Nuclear Regulatory Environment

    International Nuclear Information System (INIS)

    Illizastigui, P.F.

    2016-01-01

    The paper addresses the approach followed by the Cuban National Center for Nuclear Safety for the management of current and new competences of its regulatory staff with the aim of allowing those staff to effectively fulfill their core regulatory functions. The approach is realized through an Integrated System for Competence Building, which is based on the IAEA recommendations, shown to be effective in ensuring the necessary competence in the relevant areas. In the author’s opinion, competence of the regulatory staff in the area of human and organizational factors is of paramount importance and needs to be further strengthened in order to be able to assess safety performance at the facilities and detect early signs of deteriorating safety performance. The former is defined by the author as the core regulatory function “Analysis” which covers the entire spectrum of assessment tasks carried out by the regulatory staff to: a) detect declining safety performance, b) diagnose latent weaknesses (root causes) and c) make effective safety culture interventions. The author suggests that competence associated with the fulfillment of the analysis function is distinctly identified and dealt with separately in the current system of managing regulatory competence. (author)

  15. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Ireland

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection (Radiation protection standards; Emergency response); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for the Environment, Heritage and Local Government; Minister for Agriculture and Food; Minister for Communications, Marine and Natural Resources; Minister for Finance; Minister for Health and Children; Minister for Defence); 2. Public and semi-public agencies (Radiological Protection Institute of Ireland; Food Safety Authority of Ireland)

  17. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Japan

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Cabinet Office; Minister of Economy, Trade and Industry - METI; Minister of Land, Infrastructure and Transport - MLIT; Minister of Education, Culture, Sports, Science and Technology - MEXT); 2. Advisory bodies (Atomic Energy Commission - AEC; Nuclear Safety Commission - NSC; Radiation Council; Special Committee on Energy Policy; Other advisory bodies); 3. Public and Semi-Public Agencies (Japan Atomic Energy Agency - JAEA)

  18. Nuclear regulatory challenges arising from competition in electricity markets

    International Nuclear Information System (INIS)

    2001-01-01

    In recent years a world-wide trend has been developing to introduce competition in electricity markets. As market competition unfolds, it produces a wide range of safety challenges for nuclear power plant operators and regulators. Nuclear regulators must be aware of the potential safety challenges produced and consider whether new regulatory response strategies are warranted. This report describes many of these challenges, their implications and possible regulatory response strategies. The intended audience is primarily nuclear safety regulators, although government authorities, nuclear power plant operators and the general public may also be interested. (author)

  19. Risk acceptance criteria of the Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Felizia, Eduardo R.

    2005-01-01

    This report describes some of the regulatory and control functions legally conferred upon the Argentine Nuclear Regulatory Authority concerning radiological risks, as well as a critical analysis of the radiological risk acceptance criteria contained in the Argentine regulatory system. A summary of the application of regulatory standards AR 3.1.3. - 'Radiological criteria related to accidents in nuclear power reactors' and AR 4.1.3. - 'Radiological criteria related to accidents in research reactors' to concrete cases is made, while the favourable and unfavourable aspects of the risk acceptance criteria are discussed. The conclusion is that the Argentine regulatory system contains adequate radiological risk acceptance criteria, that the latter are consistent with the radiological protection principles applicable to man and that, for the moment, there is no need to perform any modifications that would broaden the conceptual framework on which such criteria are based. (author) [es

  20. Regulatory control of maintenance activities in Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Calvo, J.C.; Caruso, G.

    2000-01-01

    The main maintenance objective is to assure that the safety features of structures, components and systems of nuclear power plants are kept as designed. Therefore, there is a direct relationship between safety and maintenance. Owing to the above mentioned, maintenance activities are considered a relevant regulatory issue for the Argentine Nuclear Regulatory Authority (ARN). This paper describes the regulatory control to maintenance activities of Argentine nuclear power plants. It also addresses essential elements for maintenance control, routine inspections, special inspections during planned outages, audits and license conditions and requirements. (author)

  1. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Portugal

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Health; Minister of Science, Technology and Higher Education; Ministry of Economy and Innovation; Ministry of Environment and Territorial Planning; Other authorities); 2. Advisory bodies (Independent Commission for Radiological Protection and Nuclear Safety - CIPRSN; National Radiation Protection Commission - CNPCR; National Commission for Radiological Emergencies - CNER; Other advisory bodies); 3. Public and semi-public agencies

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Denmark

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister for the Environment/Minister of Transport and Energy; Minister of Justice; Minister of Defence; National Board of Health; Emergency Management Agency); 2. Advisory bodies (The Danish Ministry of Energy, Supply and Climate and the Danish Energy Agency); 3. Public and semi-public agencies (Risoe National Laboratory)

  3. Nuclear Regulatory Commission issuances, March 1975

    International Nuclear Information System (INIS)

    1975-04-01

    Reactor licensing actions taken by the Nuclear Regulatory Commission, the Atomic Safety and Licensing Appeal Board and the Atomic Safety and Licensing Boards for March 1975 are presented. Action was included for the following reactors: Big Rock Point Nuclear Plant; West Valley Reprocessing Plant; Limerick Generating Station, Units 1 and 2; Midland Plants, Units 1 and 2; Wolf Creek Generating Station, Unit 1; Monticello Nuclear Generating Plant, Unit 1; Douglas Point Nuclear Generating Station, Units 1 and 2; Seabrook Station, Units 1 and 2; Vermont Yankee Nuclear Power Station; and WPPSS Hanford Units 1 and 4. (U.S.)

  4. The nuclear regulatory challenge of judging safety back fits

    International Nuclear Information System (INIS)

    2002-01-01

    The economic pressures of electricity market competition have led nuclear power plant operators to seek ways to increase electricity production and to reduce operating costs at their plants. Corresponding pressures on the regulatory bodies include operator demand to reduce regulatory burdens perceived as unnecessary and general resistance to consider safety back-fits sought by the regulator. The purpose of this report is to describe potential situations giving rise to safety back-fit questions and to discuss regulatory approaches for judging the back-fits. The intended audience for this report is primarily nuclear regulators, although the information and ideas may also be of interest to nuclear operating organisations, other industry organisations and the general public. (author)

  5. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  6. Regulatory control, nuclear safety regulation and waste management in Spain

    International Nuclear Information System (INIS)

    Martin, A.

    2000-01-01

    This article presents the challenges that faces the spanish regulatory authority. The deregulation of electricity industry imposes severe changes in nuclear power economics and forces nuclear power to compete with other sources of electricity. A pressure is perceived for regulatory effectiveness primarily since the cost of regulation is a component of the cost of the product. This effectiveness gain in regulatory control will be reached through systematic strategic analysis, formulation and implementation. The regulatory aspects of plant life extension and of waste management are examined

  7. Regulatory practices and safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The International Symposium on Regulatory Practices and Safety Standards for Nuclear Power Plants was jointly organized by the International Atomic Energy Agency (IAEA), for Nuclear Energy Agency of the OECD and the Government of the Federal Republic of Germany with the objective of providing an international forum for the exchange of information on regulatory practices and safety standards for nuclear power plants. The Symposium was held in Munich, Federal Republic of Germany, from 7 to 10 November 1988. It was attended by 201 experts from some 32 Member States and 4 international organizations. Fifty-one papers from 19 Member States and 2 international organizations were presented and discussed in 5 technical sessions covering the following subjects: National Regulatory Practices and Safety Standards (14 papers); Implementation of Regulatory Practices - Technical Issues (8 papers); Implementation of Regulatory Practices - Operational Aspects (8 papers); Developments and Trends in Safety Standards and Practices (11 papers); International Aspects (10 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Responsibilities of nuclear regulatory authority and overview of nuclear safety regulations in Slovakia

    International Nuclear Information System (INIS)

    Misak, J.

    1996-01-01

    The paper describes the organizational structure of the Nuclear Regulatory Authority of the Slovak Republic, its rights and duties, the status of nuclear legislation with emphasis on nuclear activities completely or partially covered, and licensing procedures

  9. Activities of Nuclear Regulatory Authority and safety of nuclear facilities in the Slovak Republic in 1993

    International Nuclear Information System (INIS)

    1994-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1993 is presented. These activities are reported under the headings: (1) Introduction; (2) Regulatory activities at nuclear power plants units in operation; (2.1) Nuclear power plant SEP-EBO V-1; (4) Selected operation events and safety assessment in NPP SEP-EBO V-1; (2.2) Safety assessment of NPP SEP-EBO V-2; (3) Results of regulatory activities at the decommissioning of NPP A-1; (4) Regulatory activities at units under construction SEP-EMO - NPP Mochovce; (5) Further regulatory activities. (5.1) Preparation of designated personnel; (5.2) Inspection and accountancy of nuclear material; (5.3) Security provisions; (5.4) Accounted items and double use items; (5.5) Problem of radioactive wastes; (6.1) International co-operation activities of NRA; (6.2) Emergency planning; (6.3) International activities for quality enhancement of national supervision; (7) Conclusion [sk

  10. Future nuclear regulatory challenges. A report by the NEA Committee on Nuclear Regulatory Activities

    International Nuclear Information System (INIS)

    1998-01-01

    Future challenges are considered that may arise from technical, socio-economic and political issues; organizational, management and human aspects; and international issues. The perceived challenges have been grouped into four categories, each covered by a chapter. Technical issues are addressed that many present regulatory challenges in the future: ageing nuclear power plants. External changes to industry are considered next that have an effect on regulators, privatization, cost reduction consequences, commercialization etc. It is followed by the impacts of internal changes: organizational, managerial, human-resources, licensing, staff training etc. Finally, international issues are discussed with potential regulatory impact. (R.P.)

  11. Development of Checklist for Self-Assessment of Regulatory Capture in Nuclear Safety Regulation

    International Nuclear Information System (INIS)

    Choi, K. S.; Lee, Y. E.; Chang, H. S.; Jung, S. J.

    2011-01-01

    Regulatory body performs its mission on behalf of the general public. As for nuclear industries, the public delegates the authority to the regulatory body for monitoring the safety in nuclear facilities and for ensuring that it is maintained in the socially and globally acceptable level. However, when the situation that a regulatory body behaves in the interests of industries happens, not working primarily for protecting public health and safety on behalf of the public, it is charged that regulatory body acts as an encouragement for industries which produce negative externalities such as radiation risk or radiation hazards. In this case, the regulatory body is called as 'Captured' or it is called that 'Regulatory Capture' happened. Regulatory capture is important as it may cause regulatory failure, one form of government failure, which is very serious phenomenon: severe nuclear accident at Fukushima nuclear power plants recently occurred in March, 2011. This paper aims to introduce the concept of regulatory capture into nuclear industry field through the literature survey, and suggest the sample checklist developed for self-assessment on the degree of regulatory capture within regulatory body

  12. Sustainable Markets Investment Briefings: the regulatory taking doctrine

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo

    2007-08-15

    This is the third of a series of briefings which discuss the sustainable development issues raised by legal arrangements for the protection of foreign investment. The briefings are based on legal research by IIED and its partners. The goal is to provide accessible but accurate information for human rights, development and environmental organisations working on issues raised by foreign investment in low- and middle-income countries. Briefing 3 introduces one of the most controversial legal doctrines of investment law – 'regulatory taking' – and sets out its implications for sustainable development.

  13. Regulatory control of nuclear safety in Finland. Annual report 2008

    International Nuclear Information System (INIS)

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Norway

    International Nuclear Information System (INIS)

    2001-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment (Trade governed by nuclear energy legislation; Trade governed by radiation protection legislation; Trade governed by export/import control legislation); 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Ministerial Level (Ministry of Health and Social Affairs; Ministry of Trade and Industry; Ministry of Foreign Affairs; Other Ministries); B. Subsidiary Level: (The Norwegian Radiation Protection Authority - NRPA; The Norwegian Nuclear Emergency Organisation); 2. Public and Semi-Public Agencies - Institute for Energy Technology - IFE

  15. Nuclear Regulatory Commission Issuances, November 1980

    International Nuclear Information System (INIS)

    1980-11-01

    Contents: Issuances of the Nuclear Regulatory Commission; Issuances of the Atomic Safety and Licensing Appeal Boards; Issuances of the Atomic Safety and Licensing Boards; and Issuances of the Directors Denial

  16. Nuclear Regulatory Commission Issuances, December 1980

    International Nuclear Information System (INIS)

    1980-12-01

    Contents: Issuances of the Nuclear Regulatory Commission; Issuances of the Atomic Safety and Licensing Appeal Boards; Issuances of the Atomic Safety and Licensing Boards; and Issuances of the Directors Denial

  17. Adaptation of existent thermal park to the new regulatory frame sustainable

    International Nuclear Information System (INIS)

    Lopez Alvarez, L.

    2010-01-01

    In the last decade 2000-2010), both energy demand and peak capacity needs have experienced an important increase. Moratorium on new nuclear units and the reduced potential for new hydro projects have led to new installed capacity being basically covered by thermal power plants. Also in these latest years, the regulatory frame has developed different initiative destined to get a more environmentally sustainable energy sector. to name a few, the strong support to renewable energy, the drastic reduction in acid emissions to atmosphere (NO x , SO x and particulate matter) and carbon emissions reduction policies have had a great impact on operation profiles and requirements on thermal plants, leading to investment on new equipment and on the existing assets. Along this period, electric utilities have added these sustainability criteria to the development and management of their thermal portfolio, taking some decisions that have shaped the current generation map in Spain. Nonetheless, in the short and mid term, utilities are facing new challenges such as greater operation flexibility to allow the increasing market share of non-manageable energies or the applicability of more ambitious goals in the global reduction of acid an carbon emissions. (Author)

  18. Deliberations on nuclear safety regulatory system in a changing industrial environment

    International Nuclear Information System (INIS)

    Kim, H.J.

    2001-01-01

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries that restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for a regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power. (author)

  19. Nuclear energy and sustainability in Latin America

    International Nuclear Information System (INIS)

    Sterner, Thomas

    1991-01-01

    The concept of sustainability has been given numerous interpretations, some overlapping or complementary, some contradictory. Thus it is difficult to judge whether the nuclear industry does, or does not, meet sustainability criteria; particularly as the present nuclear technologies are not renewable. Uranium resources appear to be of the same order of magnitude as oil and gas resources. This implies that they are a transitional source of energy. There are also other potential arguments against the sustainability of nuclear power: its pollution, risks and costs. Environmental damage may come from various parts of the nuclear fuel cycle. Two types of risk will be discussed: first the risk of major accidents and thereby exceptional environmental damage, and second the risks associated with the proliferation of nuclear weapons. Each of these factors, as well as the pure economic cost of nuclear electricity, ought to be compared to the environmental damage, risks and costs of the available alternatives. Only the Latin American experience will be considered. For example, the need for Mexico to use nuclear power when it has large oil and gas supplies, is considered. (author)

  20. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 1999

    International Nuclear Information System (INIS)

    Seliga, M.

    2000-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 1999 is presented. These activities are reported under the headings: (1) Foreword; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of safety at nuclear installations; (4) Safety analyses; (5) Nuclear materials; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Conclusions; (13) Appendices: Economic and personnel data; Abbreviations; The International nuclear event scales - INES

  1. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  2. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  3. Nuclear Regulatory Commission: 1981 annual report

    International Nuclear Information System (INIS)

    1981-01-01

    This seventh annual report of the US Nuclear Regulatory Commission covers major actions, events and planning that occurred during fiscal year 1981, with some coverage of later events, where appropriate. Chapters of the report address the agency's various functions or areas of activity: regulating nuclear power plants; evaluating reactor operating experience; licensing nuclear materials and their transportation; safeguarding nuclear plants and materials; managing nuclear wastes; inspection and enforcement; cooperation with state governments; international activities; research and standards development; hearings; decisions and litigation; and administrative and public communications matters. Each chapter presents a detailed review of program accomplishments during the report period, fiscal year 1981

  4. Crisis, criticism, change: Regulatory reform in the wake of nuclear accidents

    International Nuclear Information System (INIS)

    Sexton, Kimberly A.; )

    2015-01-01

    Accidents are a forcing function for change in the nuclear industry. While these events can shed light on needed technical safety reforms, they can also shine a light on needed regulatory system reforms. The TEPCO Fukushima Daiichi nuclear power plant (NPP) accident in Japan is the most recent example of this phenomenon, but it is not the only one. In the wake of the three major accidents that have occurred in the nuclear power industry - Three Mile Island (TMI) in the United States; Chernobyl in Ukraine, in the former Soviet Union; and the Fukushima Daiichi NPP accident in Japan - a commission or committee of experts issued a report (or reports) with harsh criticism of the countries' regulatory system. And each of these accidents prompted changes in the respective regulatory systems. In looking at these responses, however, one must ask if this crisis, criticism, change approach is working and whether regulatory bodies around the world should instead undertake their own systematic reviews, un-prompted by crisis, to better ensure safety. This article will attempt to analyse the issue of regulatory reform in the wake of nuclear accidents by first providing a background in nuclear regulatory systems, looking to international and national legal frameworks. Next, the article will detail a cross-section of current regulatory systems around the world. Following that, the article will analyse the before and after of the regulatory systems in the United States, the Soviet Union and Japan in relation to the TMI, Chernobyl and Fukushima accidents. Finally, taking all this together, the article will address some of the international and national efforts to define exactly what makes a good regulator and provide conclusions on regulatory reform in the wake of nuclear accidents. (author)

  5. US Nuclear Regulatory Commission 1983 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The thirteen chapters of this annual report are titled: 1983 highlights/1984 planning; reactor regulation; cleanup at TMI-2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement and emergency preparedness; cooperation with the states; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  6. Nuclear regulatory regime in Lithuania

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    The Law on Nuclear Energy establishes the legal basis for nuclear safety in the Republic of Lithuania. It assigns the responsibility for safety to the operating organization of a nuclear facility and outlines the tasks of the operator and the regulatory authority. According to this Law, the Nuclear Power Safety Inspectorate (VATESI) shall implement state regulation of nuclear safety. Standards and rules, guides and regulations of nuclear safety and radiation protection approved by the Government or by the institutions authorised. It is mandatory for all public and local authorities, enterprises, institutions, organisations, their associations, the officials and other persons whose activities are related to the operation of nuclear facilities, to the use and management of nuclear and radioactive materials therein. Safety guarantee in nuclear energy based on the requirements of the laws and regulations of the Republic of Lithuania, on the requirements of the international treaties to which the Republic of Lithuania is a party, also on the recommendations of the IAEA and other international organisations and authorities

  7. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications

  8. Regulatory inspection of nuclear power plants in NEA member countries

    International Nuclear Information System (INIS)

    Gronow, W.S.; Ilani, O.

    1977-01-01

    The increasing use of nuclear power and public interest in the safety controls led to the proposal by the sub-Committe on Licensing of the NEA Committee on the Safety of Nuclear Installations for a specialist meeting on regulatory inspection practices. This report which was prepared at the request of the sub-Committee to assist in the exchange of views and experience at the meeting reviews the response to a questionnaire on the systems employed, the scope and objectives and the effort involved in regulatory inspection throughout all stages of the life of a nuclear power plant. Other aspects of regulatory inspection activities are discussed including documentation, procedures for changes in technical specification and modifications to plant, powers and duties of regulatory inspection personnel and actions to be taken in the event of an accident or emergency. The report concludes with some comments on those aspects of regulatory inspection practices where further information and an exchange of experience might prove to be beneficial to Member countries. (author)

  9. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  10. Lessons Learned and Regulatory Countermeasures of Nuclear Safety Issues Last Year

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    Competitiveness of nuclear as the electric resource in terms of the least cost and the carbon abatement has been debated. Some institutions insist that the radioactive wastes management cost, nuclear accident cost and cheap shale gas would make the nuclear energy less competitive, while others still address the ability of nuclear energy as economical and low-carbon electric resource. This situation reminds that ensuring nuclear safety is the most important prerequisite to use of nuclear energy. Therefore, this paper will compare the different views on future nuclear competitiveness discussed right after the Fukushima accident and summarize the lessons learned and regulatory countermeasures from nuclear safety issues last year. Korea has improved the effectiveness of safety regulation up to now and still has been making efforts on further enhancing nuclear safety. The outcomes of these efforts have resulted in a high level of safety in Korean NPPs and contributing largely to the global nuclear safety through sharing and exchanging the information and knowledge of our nuclear experiences. However, now we are faced with the new challenges such as decreasing the public. Additionally, public criticism of the regulatory activities demands more clear regulatory guides and transparent process. Recently, new president announced the 'Priority to Safety and Public Trust' as the precondition to utilize the nuclear energy. We will continue to make much more efforts for the improvement of the quality of regulatory activities and effectiveness of regulatory decision making process than we have done so far. Competence through effective capacity building would be a helpful pathway to build up the public trust and ensure the acceptable level of nuclear safety. We are set to prepare the action items to be taken in the near future for improving the technical competency and transparency as the essential components of the national safety and will make efforts to implement them

  11. US Nuclear Regulatory Commission, 1984 annual report. Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    This is the 10th annual report of the US Nuclear Regulatory Commission (NRC). This report covers the major activities, events, decisions and planning that took place during fiscal year 1984 (October 1983 through September 1984) within the NRC or involving the NRC. Information is presented concerning 1984 highlights and planning for 1985; reactor regulation; cleanup at Three Mile Island Unit 2; operational experience; nuclear materials; safeguards; waste management; inspection, enforcement, quality assurance, and emergency preparedness; cooperation with the States; international programs; nuclear regulatory research; proceedings and litigation; and management and communication

  12. Nuclear regulatory review of licensee self-assessment (LSA)

    International Nuclear Information System (INIS)

    2003-01-01

    Licensee self-assessment (LSA) by nuclear power plant operators is described as all the activities that a licensee performs in order to identify opportunities for improvements. An LSA is part of an organisation's holistic management system, which must include other process elements. Particularly important elements are: a process for choosing which identified potential improvements should be implemented and a process of project management for implementing the improvements chosen. Nuclear regulators expect the licensee to run an effective LSA programme, which reflects the licensee's 'priority to safety'. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of the current regulatory philosophy on and approaches to LSA as performed by licensees. The publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  13. Assessment of nuclear energy sustainability index using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Aly, Naguib; Nagy, Mohammad; Agamy, Saeed

    2010-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions. In this paper, the nuclear energy, whose sustainability will be assessed, is governed by the dynamics of three subsystems: environmental, economic, and sociopolitical. The overall sustainability is then a non-linear function of the individual sustainabilities. Each subsystem is evaluated by means of many components (pressure, status, and response). The combination of each group of indicators by means of fuzzy logic provides a measurement of sustainability for each subsystem.

  14. NRC [Nuclear Regulatory Commission] safety research in support of regulation, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report, the third in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1987. The goal of this office is to ensure that research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  15. Nuclear Regulatory Commission Issuances

    International Nuclear Information System (INIS)

    1992-01-01

    This is the thirty-sixth volume of issuances (1-396) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from July 1, 1992-December 31, 1992. Atomic Safety and Licensing Boards are authorized by Section 191 of the Atomic Energy Act of 1954. These Boards, comprised of three members conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. Boards are drawn from the Atomic Safety and Licensing Board Panel, comprised of lawyers, nuclear physicists and engineers, environmentalists, chemists, and economists. The Atomic Energy Commission first established Licensing Boards in 1962 and the Panel in 1967

  16. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2000

    International Nuclear Information System (INIS)

    Seliga, M.

    2001-01-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2000 is presented. These activities are reported under the headings: (1) Foreword and organisation structure; (2) Mission of the Nuclear Regulatory Authority; (3) Legislation; (4) Assessment and inspection of nuclear installations; (5) Safety analyses; (6) Nuclear materials and physical protection of nuclear installations; (7) Radioactive waste; (8) Quality assurance; (9) Personnel qualification and training; (10) Emergency preparedness; (11) International co-operation; (12) Public information; (13) Personnel and economic data of the UJD; (14) Conclusion; (15) Attachments: Abbreviations; Radiation safety

  17. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-01-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  18. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  19. Sustainability indicators for the assessment of nuclear power

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2011-01-01

    Electricity supplies an increasing share of the world's total energy demand and that contribution is set to increase. At the same time, there is increasing socio-political will to mitigate impacts of climate change as well as to improve energy security. This, in combination with the desire to ensure social and economic prosperity, creates a pressing need to consider the sustainability implications of future electricity generation. However, approaches to sustainability assessment differ greatly in their scope and methodology as currently there is no standardised approach. With this in mind, this paper reviews sustainability indicators that have previously been used to assess energy options and proposes a new sustainability assessment methodology based on a life cycle approach. In total, 43 indicators are proposed, addressing the techno-economic, environmental and social sustainability issues associated with energy systems. The framework has been developed primarily to address concerns associated with nuclear power in the UK, but is applicable to other energy technologies as well as to other countries. -- Highlights: → New framework for life cycle sustainability assessment of nuclear power developed. → The framework comprises 43 indicators addressing techno-economic, environmental and social sustainability. → Completely new indicators developed to address different sustainability issues, including nuclear proliferation, energy supply diversity and intergenerational equity. → The framework enables sustainability comparisons of nuclear and other electricity technologies. → Indicators can be used by various stakeholders, including industry, policy makers and NGOs to help identify more sustainable electricity options.

  20. The bibliographical documentation in the Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Carregado, M.A.

    1998-01-01

    Full text: The presentation of the following work serves to display the recourses which the Information Center (I.C.) - Ezeiza Sector of the Nuclear Regulatory Authority of the Argentine Republic possesses. These recourses help the investigation and application of the regulatory subject as well as the scientific technical community, which uses the information about radiation protection and nuclear safety. Periodical publications, reports, books, standards, etc., are specified quantitatively in detail. Mainly, the automated means are emphasized in order to get to safe ways of information. Data bases in CD-ROM are also enumerated. These are now essential in order to track down the expert information on each theme. The most outstanding ones among these data bases are: INIS, Nuclear Science Abstracts, Nuclear Regulatory Library, Medline and Poltox. Some recourses for obtaining important documents are mentioned, e.g.: The British Library, HMSO and NTIS, as well as addresses of institutions, catalogues of publication on Internet, etc., which allow an easy access to the bibliography required. An evaluation of periodical publications by the Information Center is carried out, as well as information about users connected to the request of bibliographical searches and documents. (author) [es

  1. Methodology for the Systematic Assessment of the Regulatory Competence Needs (SARCoN) for Regulatory Bodies of Nuclear Installations

    International Nuclear Information System (INIS)

    2015-03-01

    A regulatory body’s competence is dependent, among other things, on the competence of its staff. A necessary, but not sufficient, condition for a regulatory body to be competent is that its staff can perform the tasks related to the functions of the regulatory body. In 2001, the IAEA published TECDOC 1254, Training the Staff of the Regulatory Body for Nuclear Facilities: A Competency Framework, which examines the manner in which the recognized regulatory functions of a nuclear regulatory body results in competence needs. Using the internationally recognized systematic approach to training, TECDOC 1254 provides a framework for regulatory bodies for managing training and developing, and maintaining the competence of its staff. It has been successfully used by many regulatory bodies all over the world, including States embarking on a nuclear power programme. The IAEA has also introduced a methodology and an assessment tool — Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) — which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2013, the IAEA published Safety Reports Series No. 79, Managing Regulatory Body Competence, which provides generic guidance based on IAEA safety requirements in the development of a competence management system within a regulatory body’s integrated management system. An appendix in the Safety Report deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an embarking State’s regulatory system. This publication provides guidance for the analysis of required and existing competences to identify those required by the regulatory body to perform its functions and therefore associated needs for acquiring competences. Hence, it is equally applicable to the needs of States embarking on nuclear power

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Netherlands

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Fissionable materials, ores, radioactive materials and equipment (Fissionable materials and ores; Radioactive materials and equipment); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection (Protection of workers; Protection of the public; Protection of individuals undergoing medical exposure); 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Housing, Spatial Planning and the Environment; Minister for Economic Affairs; Minister for Social Affairs and Employment; Minister for Health, Welfare and Sports; Minister for Finance; Minister for Foreign Affairs); 2. Advisory body - Health Council of the Netherlands; 3. Public and semi-public agencies (Nuclear Research and Consultancy Group - NRG; Central Organisation for Radioactive Waste - COVRA)

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Spain

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trading in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Safeguards and non-proliferation; Physical protection); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Industry, Tourism and Trade - MITYC; Ministry of the Interior - MIR; Ministry of Economy and the Exchequer - MEH; Ministry of the Environment and Rural and Marine Affairs - MARM); 2. Public and semi-public agencies (Nuclear Safety Council - CSN; Centre for Energy-related, Environmental and Technological Research - CIEMAT; National Energy Commission - CNE; 3. Public capital companies (Enusa Industrias Avanzadas, s.a. - ENUSA; Empresa Nacional de Residuos Radiactivos, s.a. - ENRESA)

  4. International Nuclear Safety Experts Conclude IAEA Peer Review of Korea's Regulatory System

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of senior nuclear safety experts concluded today a two-week mission to review the regulatory framework for nuclear safety in the Republic of Korea. The team identified good practices and gave advice on areas for future improvements. The IAEA has conveyed the team's main conclusions to the Government of Korea, while the final report will be submitted by the end of summer 2011. At the request of the Korean Government, the IAEA assembled a team of 16 senior regulatory experts from 14 nations to conduct the Integrated Regulatory Review Service (IRRS) mission involving the Korean Ministry for Education, Science and Technology (MEST) and the Korean Institute for Nuclear Safety (KINS). The mission is a peer-review based on the IAEA Safety Standards. ''This was the first IRRS mission organized after Japan's Fukushima Daiichi nuclear accident and it included a review of the regulatory implications of that event,' explains Denis Flory, IAEA Deputy Director General and Head of the Department of Nuclear Safety and Security. William Borchardt, Executive Director of Operations from the US Nuclear Regulatory Commission and Team Leader of this mission commended the Korean authorities for their openness and commitment to sharing their experience with the world's nuclear safety community. ''IRRS missions such as the one that was just concluded here in the Republic of Korea are crucial to the enhancement of nuclear safety worldwide,'' he said. The IRRS team reviewed Korea's current regulatory framework while acknowledging the fact that the country's Government has already decided to establish, as of October 2011, a new independent regulatory body to be called Nuclear Safety Commission (NSC). As a consequence, KINS role will be as a regulatory expert organization reporting to the NSC, while MEST's role will be restricted to promoting the utilization of nuclear energy. The IRRS team identified particular strengths in the Korean regulatory system

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Australia

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Bilateral safeguards agreements; International Atomic Energy Agency Safeguards Agreement; The South Pacific Nuclear Free Zone Treaty Act; The Comprehensive Nuclear Test-Ban Treaty Act; The Nuclear Non-Proliferation (Safeguards) Act); 9. Transport; 10. Nuclear third party liability; II) - Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Health and Ageing; Minister for Foreign Affairs; Minister for the Environment, Heritage and the Arts; Minister for, Resources, Energy and Tourism); 2. Advisory bodies (Radiation Health and Safety Advisory Council; Advisory Committees); 3. Public and semi-public agencies (Australian Radiation Protection and Nuclear Safety Agency (ARPANSA); Australian Safeguards and Non-Proliferation Office; Australian Nuclear Science and Technology Organisation (ANSTO); Supervising Scientist)

  6. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  7. Regulatory issues in the maintenance of Argentine nuclear power plants

    International Nuclear Information System (INIS)

    Castro, E.; Caruso, G.

    1997-01-01

    The influence of maintenance activities upon nuclear safety and their relevance as means to detect and prevent aging make them play an outstanding role among the fields of interest of the Argentine nuclear regulatory body (ENREN). Such interest is reinforced by the fact that the data obtained during maintenance are used - among other - as inputs in the Probabilistic Safety Analyses required for those nuclear power plants. This paper provides a brief description of the original requirements by the regulatory body concerning maintenance, of the factors that led to review the criteria involved in such requirements and of the key items identified during the reviewing process. The latter shall be taken into account in the maintenance regulatory policy, for the consequent issue of new requirements from the utilities and for the eventual publication of a specific regulatory standard. (author)

  8. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  9. Technical Memory 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The technical memory 2008 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety, and presented in journals, technical reports, congress or meetings of these specialties by personnel of the mentioned institution during 2008. In this edition the documents are presented on: environmental protection; transport of radioactive materials; regulations; research reactors and nuclear power plants; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; physical dosimetry; knowledge management; radioactive waste management. [es

  10. Canada's regulatory framework: The Canadian Nuclear Safety Commission's regulatory framework

    International Nuclear Information System (INIS)

    Howard, D.

    2011-01-01

    This paper will discuss the Canadian Nuclear Safety Commission and Canada's Regulatory Framework with respect to Low- and Intermediate-Level Radioactive Waste. The management of low and intermediate level radioactive waste must be ensured in a consistent, environmentally responsible and economical manner throughout its lifecycle -- from its production to the final disposal option. Radioactive waste has been produced in Canada since the early 1930s when the first radium/uranium mine began operating at Port Radium in the Northwest Territories. Pitchblende ore was transported from the Port Radium mine to Port Hope, Ontario where it was refined to produce radium for medical purposes. At present, radioactive waste is generated in Canada from the various stages and uses associated with the nuclear fuel cycle from uranium mining/milling to nuclear reactor operations to radioisotope manufacture and use. The Canadian Nuclear Safety Commission (CNSC regulates the use of nuclear energy and materials to protect the health, safety and security of Canadians and the environment; and to implement Canada's international commitments on the peaceful use of nuclear energy. The CNSC was established in 2000 under the Nuclear Safety and Control Act and reports to Parliament through the Minister of Natural Resources. The CNSC was created to replace the former Atomic Energy Control Board (AECB), which was founded in 1946. Under the Nuclear Safety and Control Act, CNSC's mandate involves four major areas: regulation of the development, production and use of nuclear energy in Canada to protect health, safety and the environment; regulation of the production, possession, use and transport of nuclear substances, and the production, possession and use of prescribed equipment and prescribed information; implementation of measures respecting international control of the development, production, transport and use of nuclear energy and substances, including measures respecting the

  11. Transfer of Canadian nuclear regulatory technology

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1985-10-01

    This paper discusses the Canadian approach to the regulation of nuclear power reactors, and its possible application to CANDU reactors in other countries. It describes the programs which are in place to transfer information on licensing matters to egulatory agencies in other countries, and to offer training on nuclear safety regulation as it is practised in Canada. Experience to date in the transfer of regulatory technology is discussed. 5 refs

  12. Status of nuclear regulatory research and its future perspectives

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  13. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    International Nuclear Information System (INIS)

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  15. Upgrading nuclear regulatory infrastructure in Armenia

    International Nuclear Information System (INIS)

    Martirosyan, A.; Amirjanyan, A.; Kacenelenbogen, S.

    2010-01-01

    Armenia is contemplating an upgrade to its national power generation capacity to meet replacement and future energy needs. Unit 2 of ANPP is scheduled for shutdown after replacement power generation capacities are in place. A recent alternative energy study indicates viability of the nuclear option to replace this capacity. Some technology-specific proposals are being considered by the Ministry of Energy of Armenia. It is likely that the reactor technology decision will be made in the not too distant future. The existing reactor continues to be operated in the regulatory framework developed in the Soviet Union and adopted in Armenia. Given the interest in the new reactor, Armenia launched a project to review the existing system of regulation and to bring it into harmony with modern practice in preparation for the new reactor project development. The new regulatory framework will be needed as a basis for any potential tendering process. The US NRC and ANRA have agreed to perform a review and update nuclear legislation and the system of regulation in this area. The first step in this process was to develop an action plan for such program. The action plan describes the overall strategy of ANRA to modify existing or develop new processes and requirements, identifies the major Laws that need to be reviewed given practical legal considerations to construct and operate the reactor and Armenia's international obligations under various conventions. This work included review of existing models of regulation in different countries with 'small' nuclear program, including IAEA recommendations as well as existing legislation in Armenia in this area and development of a strategy for the regulatory model development. In addition, the plan to develop requirements for ANRA staffing and training needs to meet its regulatory obligations under the new reactor development process was developed

  16. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  17. Decommissioning of Australian nuclear facilities - a regulatory perspective

    International Nuclear Information System (INIS)

    Diamond, T.V.; Mabbott, P.E.; Lawrence, B.R.

    2000-01-01

    Decommissioning has been a key political, economic and technical issue for the nuclear industry in recent years as older nuclear facilities have been retired. The management of decommissioning is an important part of nuclear safety as the potential exists for occupational exposures that are several times those expected during normal operation. It involves pre-planning and preparatory measures, procedures and instructions, technical and safety assessments, technology for handling large volumes of radioactive material, cost analyses, and a complex decision process. A challenge for the Commonwealth Government regulatory body, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), is to allow the Commonwealth entities that operate nuclear facilities ample freedom to address the above, at the same time ensuring that international best practice is invoked to ensure safety. Accordingly, ARPANSA has prepared a regulatory guideline, first drafted by the Nuclear Safety Bureau in March 1997, that documents the process and the criteria that it uses when assessing an application from an operating organisation for a decommissioning licence. Copyright (2000) Australasian Radiation Protection Society Inc

  18. United States Nuclear Regulatory Commission information digest: 1997 edition. Volume 9

    International Nuclear Information System (INIS)

    1997-05-01

    The Nuclear Regulatory Commission Information Digest (digest) provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general information on domestic and world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1996, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed

  19. Nuclear energy's future: lifting the regulatory cloud

    International Nuclear Information System (INIS)

    Walske, C.

    1983-01-01

    Nuclear energy provides 13% of US and 10% of world electricity, with an exemplary safety record and less insult to the environment than any other power source. Walske argues that nuclear power is 15% cheaper than coal despite the high capital and regulatory costs, but regulatory delays in the construction and licensing periods have increased 70% to 10 to 14 years, more than twice the lead time in France and Japan. The long lead time exaggerates the difficulty in forecasting demand, and allows interruptions for fundamental design changes after construction has begun. Walske outlines new legislation for site pre-approval, plant standardization, combined construction and operating licenses, and hybrid procedures for public hearings that would make regulation less uncertain

  20. 75 FR 54917 - Criteria for Nominating Materials Licensees for the U.S. Nuclear Regulatory Commission's Agency...

    Science.gov (United States)

    2010-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0294] Criteria for Nominating Materials Licensees for the U.S. Nuclear Regulatory Commission's Agency Action Review Meeting AGENCY: Nuclear Regulatory Commission. ACTION: Request for comment. SUMMARY: It is the policy of the U.S. Nuclear Regulatory Commission...

  1. International nuclear safety experts conclude IAEA peer review of China's regulatory system

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: An international team of senior experts on nuclear safety regulation today completed a two-week International Atomic Energy Agency (IAEA) review of the governmental and regulatory framework for nuclear safety in the People's Republic of China. The team identified good practices within the system and gave advice on areas for future improvements. The IAEA has conveyed the team's main conclusions to the Government of the People's Republic of China. The final report will be submitted to China by Autumn 2010. At the request of Chinese authorities, the IAEA assembled a team of 22 experts to conduct an Integrated Regulatory Review Service (IRRS) mission. This mission is a peer review based on the IAEA Safety Standards . It is not an inspection, nor an audit. The experts came from 15 different countries: Australia, Canada, the Czech Republic, Finland, France, Hungary, Japan, Pakistan, the Republic of Korea, Slovenia, South Africa, Sweden, the United Kingdom, Ukraine and the United States. Mike Weightman, the United Kingdom's Head of Nuclear Directorate, HSE and HM Chief Inspector of Nuclear Installations said: ''I was honoured and pleased to lead such a team of senior regulatory experts from around the world, and I was impressed by their commitment, experience and hard work to provide their best advice possible. We had very constructive interactions with the Chinese authority to maximize the beneficial impact of the mission.'' The scope of the mission included the regulation of nuclear and radiation safety of the facilities and activities regulated by the Ministry of Environmental Protection (MEP) National Nuclear Safety Administration (NNSA). The mission was conducted from 18 to 30 July, mainly in Beijing. To observe Chinese regulatory activities, the IRRS team visited several nuclear facilities, including a nuclear power plant, a manufacturer of safety components for nuclear power plants, a research reactor, a fuel cycle facility, a waste management facility

  2. Regulatory Inspection of Nuclear Power Plants in NEA Member Countries

    International Nuclear Information System (INIS)

    1978-01-01

    Based on the replies to a questionnaire, this report gives a description and comparative evaluation of the regulatory inspection activities in several NEA Member countries. The questionnaire which was circulated to all Member countries requested details on the organisation, system, scope and objectives of nuclear regulatory inspection and the effort required throughout all stages of the life of a nuclear plant including the use of independent bodies or consultants. Additional information was requested on the documentation concerned with regulatory inspections, incident and accident reporting procedures, and the duties, powers and bases for recruitment of regulatory personnel with the object of covering all related aspects. However, because of the differences in national practices and perhaps in the interpretation of the questionnaire, it proved to be extremely difficult to make an evaluation and comparison of inspection activities and effort involved in these Member countries. This report, which includes a section on the nuclear power programme in Member countries, should therefore only be regarded as an initial review but it provides a useful contribution to the exchange of experience and views on regulatory inspection practices

  3. Regulatory aspects of radiation protection in Indian nuclear plants

    International Nuclear Information System (INIS)

    Chander, Vipin; Pawar, S.K.; Duraisamy, S.

    2012-01-01

    Atomic Energy Act of 1962 covers the radiation safety aspects in the development, control and use of atomic energy. To carry out certain regulatory and safety functions under this act, Atomic Energy Regulatory Board (AERB) was constituted in November 15, 1983. Operating Nuclear Power Plants (NPPs) account for about 60% of occupational collective dose and about 65% of the number of radiation workers in the nuclear fuel cycle facilities. Therefore radiation protection aspects in NPPs are of prime importance. In 1970s and 1980s the high radiation exposures in NPPs was an issue with TAPS-1 and 2 reaching annual collective dose of 50 Person-Sv. In response to this, AERB constituted an expert committee to investigate the possibility of reducing collective doses in NPPs in 1988. Subsequently the recommendations of this committee were implemented in all NPPs. In 1990, International Commission on Radiological Protection (ICRP) recommended a downward revision of occupational dose limit to 20 mSv/yr from the earlier limit of 50 mSv/yr. Regulatory body endorsed these recommendations and gradually brought down the annual dose limits from 40 mSv in 1991 to 30 mSv in 1994 with the limit of 100 mSv averaged over a five year period in line with ICRP recommendations. Over the years, the regulatory body has put in place a sound regulatory frame work and mechanism to ensure adequate protection of occupational workers, members of public and environment due to operation of NPPs. Vast experiences in the field of radiation protection vis-à-vis stringent regulatory requirements such as review of exposure cases and special regulatory inspections during Biennial Shut Down (BSD) has helped in downward trends in occupational and public doses. This paper highlights the role of regulatory body in controlling the radiation doses to both occupational workers and members of public in the NPPs through a three-tier review system. The regulatory oversight, inspections and reviews has resulted in

  4. Achieving Nuclear Sustainability through Innovation

    International Nuclear Information System (INIS)

    2013-01-01

    In 2000, the IAEA Member States recognized that concerted and coordinated research and development is needed to drive innovation that ensures that nuclear energy can help meet energy needs sustainably in the 21st century. Following an IAEA General Conference resolution, an international 'think tank' and dialogue forum were established. The resulting organization, the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), helps nuclear technology holders and users coordinate the national and international studies, research and other activities needed to achieve innovations in nuclear reactor designs and fuel cycles. Currently, 38 countries plus the European Commission are participating in the project. This group includes both developing and developed economies that represent more than 75% of the world's population and 85% of its gross domestic product. INPRO undertakes collaborative projects among IAEA Member States, which analyse development scenarios and examine how nuclear energy can support the United Nations' goals for sustainable development in the 21st century. The results of these projects can be applied by IAEA Member States in their national nuclear energy strategies and can lead to international cooperation resulting in beneficial innovations in nuclear energy technology and its deployment. For example, INPRO studies the 'back end' of the fuel cycle, including recycling of spent fuel to increase resource use efficiency and to reduce the waste disposal burdens.

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Switzerland

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Nuclear fuels; Radioactive substances and equipment generating ionising radiation); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Environmental protection; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Council; Federal Assembly; Federal Department of the Environment, Transport, Energy and Communications - DETEC; Federal Office of Energy - SFOE; Swiss Federal Nuclear Safety Inspectorate - IFSN; Federal Department of Home Affairs - FDHA; Federal Office of Public Health - FOPH; State Secretariat for Education and Research - SER; Other authorities); 2. Advisory bodies (Swiss Federal Nuclear Safety Commission - KNS; Federal Commission for Radiological Protection and Monitoring of the Radioactivity in the Environment; Federal Emergency Organisation on Radioactivity); 3. Public and semi-public agencies (Paul-Scherrer Institute - PSI; Fund for the decommissioning of nuclear installations and for the waste disposal; National Co-operative for the

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Belgium

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Nuclear facilities (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response; Decommissioning); 4. Trade in nuclear materials and equipment; 5. Radiological protection; 6. Radioactive waste management; 7. Non-proliferation of nuclear weapons and physical protection of nuclear material (International aspects; National control and security measures); 8. Transport; 9. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Agency for Nuclear Control - FANC; Federal Public Service for Home Affairs; Federal Public Service for Economy, SME's, Self-Employed and Energy; Federal Public Service for Employment, Labour and Social Dialogue; Federal Public Service for Defence; Federal Public Service for Foreign Affairs, Foreign Trade and Development Co-operation; Federal Public Planning Service for Science Policy); 2. Advisory bodies (Scientific Council for Ionizing Radiation of the Federal Agency for Nuclear Control; Superior Health Council; Superior Council for Safety, Hygiene and Enhancement of Workplaces; Advisory Committee for the Non-Proliferation of Nuclear Weapons; Commission for Electricity and Gas Regulation - CREG)

  7. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0203] Ultimate Heat Sink for Nuclear Power Plants; Draft... (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and...

  8. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  9. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Hungary

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Atomic Energy Co-ordination Council; Hungarian Atomic Energy Authority - HAEA; Minister for Health; Minister for Local Government and Regional Development and Minister for Justice and Law Enforcement; Minister for Agriculture and Rural Development; Minister for Economy and Transport; Minister of Environment Protection and Water Management; Minister for Defence; Minister for Education; President of the Hungarian Mining and Geological Authority; Governmental Co-ordination Committee); 2. Advisory bodies (Scientific Board); 3. Public and semi-public agencies (Institute for Electric Power Research - VEIKI; Atomic Energy Research Institute - AEKI; Institute of Isotopes; Department of Physical Chemistry of the University of Pannon; Hungarian Power Companies Ltd - MVM Zrt.)

  10. Major nuclear safety and regulatory issues in Korea

    International Nuclear Information System (INIS)

    Chang, Soon Heung

    2004-01-01

    Recently the value of nuclear energy is being re-considered due to the increase of oil price, the lack of energy supply, and the competition with renewable energy source. In Unites States, Europe, and East Asia, the prospects for continuous nuclear energy development or the policy for retaining nuclear energy have been announced. According to the nuclear energy promotion plan in Korea, there are 19 operating nuclear plants currently and more 7 plants will be constructed in the future. Until now, qualitative as well as quantitative growth is remarkable. Korean nuclear power plants achieved world-best level of capacity factor. However, because of the various nuclear industrial activities, we have a lot of regulatory issues for operating plants, building new plants, and other nuclear related facilities such as research reactors or radioactive waste storage facility. In this article, important regulatory issues which are emerging in Korea will be reviewed and the approaches to solve the issues including public acceptance will be presented. Especially, I will go into detail of two special case studies: The one is the thermal sleeve separation incident in Younggwang nuclear units 5 and 6 whose outage lasts about 80 days and 90 days respectively, which is not common in worldwide nuclear history. The other is about consensus meeting of Korea nuclear energy policy which was managed by a non-governmental organization. (author)

  11. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  12. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  13. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Austria

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime - General Outline: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II) - Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Federal Authorities - Bund (The Federal Chancellery; The Federal Minister for Women's Affairs and Consumer Protection; The Federal Minister of the Interior; The Federal Minister for Economic Affairs; The Federal Minister of Finance; The Federal Minister of Labour, Health and Social Affairs; The Federal Minister of Science and Transport; The Federal Minister of Justice; The Federal Minister for the Environment; The Federal Minister for Foreign Affairs) B. Regional Authorities - Laender; C. District Authorities - Bezirksverwaltungsbehorden; 2. Advisory Bodies (Forum for Nuclear Questions, Radiation Protection Commission - SSK); 3. Public and Semi-Public Agencies (The Seibersdorf Austrian Research Centre; The Graz Nuclear Institute; The Nuclear Institute of the Austrian Universities; The Institute of Risk Research, University of Vienna)

  14. European Union International Cooperation to Improve Regulatory Effectiveness in Nuclear Safety

    International Nuclear Information System (INIS)

    Stockmann, Y.

    2016-01-01

    The European Union (EU) promotes a high level of nuclear safety worldwide, through the ''Instrument for Nuclear Safety Cooperation'' (INSC) since 2007. The INSC builds on the experience gained under the completed ''Technical Assistance to the Commonwealth of Independent States'' Programme (TACIS) from 1991. Development and strengthening of national Regulatory Authorities’ capabilities is a key activity in achieving the INSC goals, in particular in countries with or embarking on nuclear power. Specific partner countries under INSC include countries of all types of maturity in the nuclear technology, with mature countries such as Brazil, Mexico and Ukraine, countries with waste and mining issues, but no direct intention of embarking on nuclear power such as Georgia, Mongolia, Tajikistan, Kyrgyzstan and Tanzania and countries planning to embark on nuclear power such as Belarus, Egypt, Jordan and Vietnam. For new projects, the main focus is on the neighbourhood of the EU. The EU cooperation within INSC encompasses measures to support the promotion of high standards in radiation protection, radioactive waste management, decommissioning, remediation of contaminated sites, and efficient and effective safeguards of nuclear material. The INSC regulatory support is aimed at continuous assistance to Nuclear Regulatory Authorities (NRAs), including their technical support organisations (TSOs), in order to reinforce the regulatory framework, notably concerning licensing activities.

  15. Sustainability and acceptance - new challenges for nuclear energy

    International Nuclear Information System (INIS)

    Lensa, W. von

    2001-01-01

    This paper discusses the concept of sustainability in relation to acceptance of nuclear energy. Acceptance is viewed in terms of public acceptance, industrial acceptance, and internal acceptance/consensus within the nuclear community. It addresses sustainability criteria, the need for innovation, and the different levels of acceptability. The mechanisms of risk perception are discussed along with the technological consequences from risk perception mechanisms leading to specific objections against nuclear energy. (author)

  16. New nuclear projects in the world. Sustainable Nuclear Energy; Nuevos proyectos nucleares en el mundo. energia nuclear sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Leon, P. T.

    2011-07-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO{sub 2} emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  17. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  18. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Republic of Korea

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection) (Protection of workers; Protection of the public); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Education, Science and Technology, including the Nuclear Energy Bureau; Minister of Knowledge Economy); 2. Advisory bodies (Atomic Energy Commission; Atomic Energy Safety Commission); 3. Public and semi-public agencies (Korean Atomic Energy Research Institute - KAERI; Korean Institute for Nuclear Safety - KINS; Korean Electric Power Company - KEPCO; Korean Hydro and Nuclear Power - KHNP)

  19. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Sweden

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects (The Environmental Code, Environmental impact statement, Permit under the Environmental Code)); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability (The Nuclear Liability Act; Chernobyl legislation); II. Institutional Framework: 1. Ministries with responsibilities concerning nuclear activities (Ministry of the Environment; Ministry of Enterprise, Energy and Communications; Ministry of Justice; Ministry of Foreign Affairs); 2. Swedish Radiation Safety Authority

  20. Regulatory challenges in using nuclear operating experience

    International Nuclear Information System (INIS)

    2006-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants in an acceptably safe manner at all times. Learning from experience has been a key element in meeting this objective. It is therefore very important for nuclear power plant operators to have an active programme for collecting, analysing and acting on the lessons of operating experience that could affect the safety of their plants. NEA experts have noted that almost all of the recent, significant events reported at international meetings have occurred earlier in one form or another. Counteractions are usually well-known, but information does not always seem to reach end users, or corrective action programmes are not always rigorously applied. Thus, one of the challenges that needs to be met in order to maintain good operational safety performance is to ensure that operating experience is promptly reported to established reporting systems, preferably international in order to benefit from a larger base of experience, and that the lessons from operating experience are actually used to promote safety. This report focuses on how regulatory bodies can ensure that operating experience is used effectively to promote the safety of nuclear power plants. While directed at nuclear power plants, the principles in this report may apply to other nuclear facilities as well. (author)

  1. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United States

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Special nuclear material; Source material; By-product material; Agreement state programmes); 4. Nuclear installations (Initial licensing; Operation and inspection, including nuclear safety; Operating licence renewal; Decommissioning; Emergency response); 5. Radiological protection (Protection of workers; Protection of the public); 6. Radioactive waste management (High-level waste; Low-level waste; Disposal at sea; Uranium mill tailings; Formerly Utilized Sites Remedial Action Program - FUSRAP); 7. Non-proliferation and exports (Exports of source material, special nuclear material, production or utilisation facilities and sensitive nuclear technology; Exports of components; Exports of by-product material; Exports and imports of radiation sources; Conduct resulting in the termination of exports or economic assistance; Subsequent arrangements; Technology exports; Information and restricted data); 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Nuclear Regulatory Commission - NRC; Department of Energy - DOE; Department of Labor - DOL; Department of Transportation - DOT; Environmental Protection Agency - EPA); 2. Public and semi-public agencies: A. Cabinet-level departments (Department of

  3. Regulatory Regime and its influence in the nuclear safety

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1999-01-01

    A leading internationally agreed principle is that the prime responsibility for nuclear safety rests with each user of nuclear energy. A proper regulatory regime is needed to ensure that this responsibility is met. In the first place it provides a verification that all relevant safety issues are understood and taken into account in the practical measures by the users but it is equally important that the regulatory regime supports the users in their strive to achieve an adequate level of safety (author)

  4. International Nuclear Safety Experts Conclude IAEA Peer Review of Swiss Regulatory Framework

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international nuclear safety experts today completed a two-week International Atomic Energy Agency (IAEA) review of the regulatory framework for nuclear safety in Switzerland. The Integrated Regulatory Review Service (IRRS) mission noted good practices in the Swiss system and also made recommendations for the nation's nuclear regulatory authority, the Swiss Federal Nuclear Safety Inspectorate (ENSI). ''Our team developed a good impression of the independent Swiss regulator - ENSI - and the team considered that ENSI deserves particular credit for its actions to improve Swiss safety capability following this year's nuclear accident in Japan,'' said IRRS Team Leader Jean-Christophe Niel of France. The mission's scope covered the Swiss nuclear regulatory framework for all types of nuclear-related activities regulated by ENSI. The mission was conducted from 20 November to 2 December, mainly at ENSI headquarters in Brugg. The team held extensive discussions with ENSI staff and visited many Swiss nuclear facilities. IRRS missions are peer reviews, not inspections or audits, and are conducted at the request of host nations. For the Swiss review, the IAEA assembled a team of 19 international experts from 14 countries. The experts came from Belgium, Brazil, the Czech Republic, Finland, France, Germany, Italy, the Republic of Korea, Norway, Russia, Slovakia, Sweden, the United Kingdom, and the United States. ''The findings of the IRRS mission will help us to further improve our work. That is part of our safety culture,'' said ENSI Director General Hans Wanner. ''As Switzerland argued at international nuclear safety meetings this year for a strengthening of the international monitoring of nuclear power, we will take action to fulfil the recommendations.'' The IRRS team highlighted several good practices of the Swiss regulatory system, including the following: ENSI requires Swiss nuclear operators to back-fit their facilities by continuously upgrading

  5. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  6. Nuclear Power and Sustainable Development (French Edition)

    International Nuclear Information System (INIS)

    2008-01-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [fr

  7. Nuclear Power and Sustainable Development (Spanish Edition)

    International Nuclear Information System (INIS)

    2008-02-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [es

  8. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2008-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on

  9. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act

  10. Nuclear regulatory legislation, 104th Congress, Volume 1, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the first of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Atomic Energy Act, Energy Reorganization Act, Low-Level Radioactive Waste Policy Amendments Act, and Nuclear Waste Policy Act. Other information included in this volume pertains to NRC user fees, NRC authorizations, the Inspector General Act, and the Administrative Procedure Act.

  11. Technical Memory 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The technical memory 2010 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety presented in journals, technical reports, congress or meetings of these subjects by the ARN personnel during 2010. In this edition the documents are presented on: environmental protection; safety transport of radioactive materials; regulations; licensing of medical installations; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; radioactive waste management [es

  12. Technical Memory 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The technical memory 2011 of the Nuclear Regulatory Authority of Argentine Republic, compile the papers published in the subject on radiation protection and nuclear safety presented in journals, technical reports, congress or meetings of these subjects by the ARN personnel during 2011. In this edition the documents are presented on: environmental protection; safety transport of radioactive materials; regulations; licensing of medical installations; biological radiation effects; therapeutic uses of ionizing radiation and radioprotection of patients; internal dosimetry; radioactive waste management [es

  13. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    2000-01-01

    The concept of sustainable development, which emerged from the report of the 1987 World Commission on Environment and Development (the Brundtland report), is of increasing interest to policy makers and the public. In the energy sector, sustainable development policies need to rely on a comparative assessment of alternative options, taking into account their economic, health, environmental and social aspects, at local, regional and global levels. This publication by the OECD Nuclear Energy Agency investigates nuclear energy from a sustainable development perspective, and highlights the opportunities and challenges that lie ahead in this respect. It provides data and analyses that may help in making trades-off and choices in the energy and electricity sectors at the national level, taking into account country-specific circumstances and priorities. It will be of special interest to policy makers in the nuclear and energy fields

  14. Nuclear Regulatory Commission probabilistic risk assessment implementation program: A status report

    International Nuclear Information System (INIS)

    Rubin, M.P.; Caruso, M.A.

    1996-01-01

    The US Nuclear Regulatory Commission (NRC) is undertaking a number of activities intended to increase the consideration of risk significance in its decision processes and the effective use of risk-based technologies in its regulatory activities. Although the NRC is moving toward risk-informed regulation throughout its areas of responsibilities, this paper focuses primarily on those issues associated with reactor regulation. As the NRC completed significant milestones in its development of probabilistic risk assessment (PRA) methodology and gained considerable experience in the limited application of risk assessment to selected regulatory activities, it became evident that a much broader use of risk informed approaches offered advantages to both the NRC and the US commercial nuclear industry. This desire to enhance the use of risk assessment is driven by the clear belief that application of PRA methods will result in direct improvements in nuclear power plant operational safety from the perspective of both the regulator and the plant operator. The NRC believed that an overall policy on the use of PRA methods in nuclear regulatory activities should be established so that the many potential applications of PRA could be implemented in a consistent and predictable manner that would promote regulatory stability and efficiency. This paper describes the key activities that the NRC has undertaken to implement the initial stages of an integrated risk-informed regulatory framework

  15. Sustainability, Ethics and Nuclear Energy: Escaping the Dichotomy

    Directory of Open Access Journals (Sweden)

    Céline Kermisch

    2017-03-01

    Full Text Available In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions, namely: (i what should be sustained; (ii why should we sustain it; and (iii for whom should we sustain it. This leads us to conceptualize the notion of sustainability as a set of values, including safety, security, environmental benevolence, resource durability, and economic viability of the technology. The practical usefulness of sustainability as a moral framework is highlighted by demonstrating how it is applicable for understanding intergenerational dilemmas—between present and future generations, but also among different future generations—related to nuclear fuel cycles and radioactive waste management.

  16. Nuclear regulatory legislation: 102d Congress

    International Nuclear Information System (INIS)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  17. Nuclear regulatory legislation, 102d Congress

    International Nuclear Information System (INIS)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  18. Nuclear regulatory legislation, 101st Congress

    International Nuclear Information System (INIS)

    1991-06-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 101st Congress, 2nd Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended: Energy Reorganization Act of 1974, as amended; Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statues and treaties on export licensing, nuclear non-proliferation, and environmental protection

  19. International nuclear safety experts complete IAEA peer review of German regulatory system

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: An international expert team has today completed a two-week IAEA review of Germany's nuclear regulatory system. The team identified good practices within the system and gave advice on some areas for further improvement. The IAEA has conveyed the initial findings to German authorities but the final report will be submitted within two months. At the request of the Government of the Federal Republic of Germany, the International Atomic Energy Agency (IAEA) assembled a team of 14 experts to conduct an Integrated Regulatory Review Service (IRRS) mission. This is a peer review based on IAEA Standards. It is not an inspection, nor an audit. The scope of the mission was limited to the safety regulation of nuclear power plants. Experts from Canada, the Czech Republic, Finland, France, Japan, the Netherlands, Republic of Korea, Spain, Switzerland, the UK, the US and from the IAEA took part in the mission, which was conducted from 7 to 19 September in Bonn, Stuttgart and Berlin. The main basis for the review was a well-prepared self-assessment made by the Federal Ministry of Environment, Nature Conservation and Nuclear Safety (BMU) and the Ministry of Environment of the federal state of Baden-Wuerttemberg (UM BW). 'The team members were impressed by the extensive preparation and dedication of the staff both at BMU and UM BW to excellence in nuclear safety,' said Mike Weightman, IRRS Team Leader and Chief Inspector of the UK nuclear regulatory body, the Nuclear Directorate of the Health and Safety Executive. 'We hope the IRRS mission will facilitate further improvements in the safety regulation of nuclear power in Germany and throughout the world.' 'Germany's invitation to undergo such a detailed review is a clear demonstration of its openness and commitment to continuously improve nuclear safety regulation,' said Philippe Jamet, Director of the IAEA's Nuclear Installation Safety Division. Among the particular strengths of BMU and UM BW associated with their

  20. Safety experts complete second IAEA regulatory review of UK nuclear regulator

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Nuclear safety experts today concluded a 10-day mission to peer-review the UK Nuclear Regulator: Health and Safety Executive (HSE), Nuclear Directorate (ND). At the request of the UK Government, the International Atomic Energy Agency assembled a team of ten high-level regulatory experts from eight nations to conduct the Integrated Regulatory Review Service (IRRS) mission. The mission was the second of three planned IRRS missions for the United Kingdom. The first was held in March 2006 to begin a process to assess the nation's readiness to regulate and license new reactor designs, considered as a result of the Energy Policy review initiated by the British Prime Minister and the Secretary of State for Trade and Industry (DTI) in 2005. The IRRS team leader Mr. William Borchardt, Executive Director of Operations from the US Nuclear Regulatory Commission, stated, ''The IAEA IRRS serves an important role in both benchmarking against its safety standards and in promoting dialogue between nuclear safety regulators from around the world.'' During the 2nd mission the IRRS the team reviewed HSE/ND progress since the first IRRS mission and recent regulatory developments, the regulation of operating power plants and fuel cycle facilities, the inspection and enforcement programme for nuclear power plants and fuel cycle facilities, and the emergency preparedness and response programme. The IAEA found that HSE/ND has made significant progress toward improving its effectiveness in regulating existing nuclear power plants and in preparing to license new nuclear reactors designs. Many of the findings identified in the 2006 report had been fully addressed and therefore could be considered closed, the others are being addressed in accordance with a comprehensive action plan. IRRS team members visited the Heysham 1 Nuclear Power Plant near Lancaster, the Sellafield site at Cumbria and the Strategic Control Centre at Hutton, and they met senior managers from HSE and a UK

  1. Nuclear energy - some regulatory aspects

    International Nuclear Information System (INIS)

    Jennekens, Jon.

    1980-03-01

    The nuclear industry is often perceived by the public as being uniquely hazardous. As a consequence, the demands placed upon a nuclear regulatory agency invariably include sorting out the valid from the invalid. As the public becomes better informed, more time should become available for regulating the industry. The Canadian nuclear safety philosophy relies upon fundamental principle and basic criteria which licensees must show they are meeting at all stages in the development of a nuclear facility. In reactors, the concept of defence in depth involves the use of well-qualified personnel, compliance with national and international engineering codes and standards, the separation of process and safety systems, frequent testing of safety systems, redundancy in monitoring, control and initiation systems, multiple barriers against fission product release, and strict enforcement of compliance measurements. The Atomic Energy Control Board is writing a set of licensing guides to cover the whole nuclear fuel cycle; however, these will not lead to the impsition of a 'design by regulation' approach in Canada. (LL)

  2. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  3. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the ? field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  4. Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control: Recommendations (Russian Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  5. The Role of Nuclear Energy in Establishing Sustainable Energy Paths

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.; Van der Zwaan, B.C.C.

    2001-10-01

    This study juxtaposes the major facts and arguments about nuclear energy and its potential role in establishing sustainable energy paths. The notion of sustainability has a strong normative character and can be interpreted in a variety of ways. Therefore, also the sustainability of energy supply technologies possesses a normative nature. This paper analyses what the major dimensions are that ought to be addressed when nuclear energy technology is compared, in sustainability terms, with its fossil-fuelled and renewable counterparts. It is assessed to what extent energy supply portfolios including nuclear energy are more, or less, sustainable in comparison to those that exclude this technology. It is indicated what this inventory of collected facts and opinions means for both policy and research regarding nuclear energy in the case of the Netherlands. 32 refs

  6. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  7. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.

    2015-09-01

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  8. Inspection and enforcement by the regulatory body for nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Code of Practice on Governmental Organization for the Regulation of Nuclear Power Plants, IAEA Safety Series No.50-C-G and should be used in conjunction with that document. The purpose of this Guide is to provide information, guidance and recommendations to assist Member States in (1) establishing and conducting a regulatory inspection programme for nuclear power plants, (2) establishing requirements for the applicant/licensee in regard to regulatory inspection, (3) establishing a system for enforcing compliance with the requirements and decisions of the regulatory body

  9. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  10. Compliance of national radiation protection regulatory infrastructure with international norms: a prerequisite for self-sustainability of technical support organization in a small 'non-nuclear' country: example of Montenegro

    International Nuclear Information System (INIS)

    Jovanovic, Slobodan

    2008-01-01

    to government, regulators, users or public. These items are defined in much detail by international norms/standards. Respecting them on national regulatory level, particularly in daily practice, creates conditions for TSO self-sustainability, contributing, thus, significantly (even decisively in some situations) to strengthening RP in the country. The opposite may lead to TSO collapse due to lack of contracts/revenues and consequently to a serious RP deterioration. Montenegro is a small, non-nuclear country (no NPP 's or fuel cycle segments) the use of radiation sources is limited to ordinary medical applications and a few industrial ones. Being declared an ecological state, environmental aspects of radiation are of special interest. Example of local TSO, Centre for Eco-toxicological Research, is given. (author)

  11. Regulatory and administrative requirements for practice of nuclear medicine in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    1998-01-01

    In order to ensure safety of the patients, staff and public in the practice of nuclear medicine, including in-vivo diagnostic investigations, radionuclide therapy and in research using unsealed radioactive substances a number of administrative and regulatory procedures are adopted. The salient features of regulatory and administrative requirements for practice of nuclear medicine in India are discussed

  12. Regulatory Risk Management of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    George, Glenn R.

    2002-01-01

    Regulatory risk reflects both the likelihood of adverse outcomes during regulatory interactions and the severity of those outcomes. In the arena of advanced nuclear power plant licensing and construction, such adverse outcomes may include, for example, required design changes and construction delays. These, in turn, could significantly affect the economics of the plant and the generation portfolio in which it will operate. In this paper, the author addresses these issues through the lens of risk management. The paper considers various tools and techniques of regulatory risk management, including design diversity and hedging strategies. The effectiveness of alternate approaches is weighed and recommendations are made in several regulatory contexts. (author)

  13. The effects of the Brazilian regulatory inspection programme on nuclear medicine facilities

    Energy Technology Data Exchange (ETDEWEB)

    Alves, C E G R; Azevedo, E M; Mendes, L C G; Franca, W F L; Gutterres, R F; Goncalves, M [Comissao Nacional de Energia Nuclear-CGMI/CNEN, Rua General Severiano 90, 22290-901, Rio de Janeiro (Brazil); De Sa, L V; Da Rosa, L A R [Instituto de Radioprotecao e Dosimetria-IRD/CNEN, Avenida Salvador Allende s/n, 22780-160, Rio de Janeiro (Brazil)], E-mail: telo@xexeu.org

    2009-12-01

    This paper aims to demonstrate the importance of the regulatory inspections carried out by the Brazilian regulatory body in the area of nuclear medicine. The main aspects observed during the inspections are presented as well as the time evolution of the non-compliances, according to their occurrence by type. We also evaluate factors concerning the working of the nuclear medicine facility responsible for solving the non-compliances. The results suggest a decrease of occurrence of non-compliances with time that can be related to the strictness of the inspections and the awareness of the personnel in the nuclear medicine facilities. An analysis of radiation dose exposure levels for the professionals involved in nuclear medicine was carried out; although dose values are below regulatory dose limits, their occurrence is not decreasing satisfactorily. Results indicate the need for staff training and commitment of the responsible nuclear medicine facility staff to the radiological protection procedures. Our results also emphasise the importance of continuous coercive actions to improve the level of radiological protection in nuclear medicine facilities in compliance with the standards established by the national regulatory authority and international recommendations.

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United Kingdom

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Department of Trade and Industry - DTI; Secretary of State for Environment, Food and Rural Affairs and the Secretary of State for Health; Secretary of State for Transport; Secretary of State for Education); 2. Advisory Bodies (Medical Research Council - MRC; Nuclear Safety Advisory Committee; Radioactive Waste Management Advisory Committee); 3. Public and Semi-Public Agencies (United Kingdom Atomic Energy Authority - UKAEA; Health and Safety Commission and Executive - HSC/HSE; National Radiological Protection Board - NRPB; Environment Agencies; British Nuclear Fuels plc. - BNFL; Amersham International plc.; The National Nuclear Corporation Ltd. - NNC; United Kingdom Nirex Ltd.; Magnox Electric plc.; British Energy Generation Ltd.; Scottish Electricity Generator Companies; British Energy Generation Ltd.; Regional Electricity Companies in England and Wales)

  15. Nuclear power - an inevitable component of a sustainable energy mix

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2000-01-01

    Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)

  16. Training the staff of the regulatory body for nuclear facilities: A competency framework

    International Nuclear Information System (INIS)

    2001-11-01

    The uncertainties about the future of nuclear power in many countries, the ageing of the existing work force, and the consequential lack of interest of new professionals to engage in the nuclear field represent developments of major current international concern. The situation is compounded by the great reduction in higher education opportunities in the field of nuclear engineering and the elimination of nuclear engineering departments and research reactors in many universities and the loss of nuclear research facilities generally. Competence of regulatory staff is one of the prerequisites for the safety of nuclear facilities in the IAEA Member States. Recruitment of competent regulatory staff is difficult in many countries. Also, replacement of retiring staff members requires active efforts from the management of regulatory bodies for establishing staff qualification and training programmes. International support is needed in this domain. In 2000, the General Conference resolution GC(44)IRES/13 on education and training in radiation protection, nuclear safety and waste management urged the secretariat to 'strengthen, within available financial resources, its current efforts in this area' Several elements required for the implementation of the above resolution are already in place. A strategy paper on training in nuclear, radiation and waste safety, including specialized training courses for specific target groups, has been developed at the IAEA. The international working group on training and qualification recommended in its March meeting in 2000 that a technical document be produced on good training practices of regulatory bodies with advanced training programmes. Such a technical document would be of considerable value to many bodies. The technical document would address how training programmes for regulatory staff have been developed and implemented and include examples of training currently available. Of particular interest to regulatory agencies that have

  17. Training the staff of the regulatory body for nuclear facilities: A competency framework

    International Nuclear Information System (INIS)

    2002-11-01

    The uncertainties about the future of nuclear power in many countries, the ageing of the existing work force, and the consequential lack of interest of new professionals to engage in the nuclear field represent developments of major current international concern. The situation is compounded by the great reduction in higher education opportunities in the field of nuclear engineering and the elimination of nuclear engineering departments and research reactors in many universities and the loss of nuclear research facilities generally. Competence of regulatory staff is one of the prerequisites for the safety of nuclear facilities in the IAEA Member States. Recruitment of competent regulatory staff is difficult in many countries. Also, replacement of retiring staff members requires active efforts from the management of regulatory bodies for establishing staff qualification and training programmes. International support is needed in this domain. In 2000, the General Conference resolution GC(44)IRES/13 on education and training in radiation protection, nuclear safety and waste management urged the secretariat to 'strengthen, within available financial resources, its current efforts in this area' Several elements required for the implementation of the above resolution are already in place. A strategy paper on training in nuclear, radiation and waste safety, including specialized training courses for specific target groups, has been developed at the IAEA. The international working group on training and qualification recommended in its March meeting in 2000 that a technical document be produced on good training practices of regulatory bodies with advanced training programmes. Such a technical document would be of considerable value to many bodies. The technical document would address how training programmes for regulatory staff have been developed and implemented and include examples of training currently available. Of particular interest to regulatory agencies that have

  18. Nuclear Regulatory Commission issuances, May 1993

    International Nuclear Information System (INIS)

    1993-05-01

    This report contains the issuances received during the specified period (May 1993) from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM). The summaries and headnotes preceding the opinions reported herein are not deemed a part of these opinions or have any independent legal significance. Contents of this document include an Issuance of the Nuclear Regulatory Commission with respect to the Sacramento Municipal Utility District and Issuances of Directors' Decisions concerning the Interstate Nuclear Service Corporation; Niagara Mohawk Power Corporation; and Texas Utilities Electric Company, et al. and All Nuclear Power Plants with Thermo-Lag Fire Barriers

  19. Roadmap to sustainable textiles and clothing regulatory aspects and sustainability standards of textiles and the clothing supply chain

    CERN Document Server

    2015-01-01

    This book covers the elements involved in achieving sustainability in textiles and clothing sector. The chapters covered in three volumes of this series title cover all the distinctive areas earmarked for achieving sustainable development in textiles and clothing industry. This third volume highlights the areas pertaining to the regulatory aspects and sustainability standards applicable to textiles and clothing supply chain. There are various standards earmarked for measuring the environmental impacts and sustainability of textile products. There are also plenty of certification schemes available along with the index systems applicable to textile sector. Brands and manufactures are also venturing into new developments to achieve sustainable development in textile sector. This third volume addresses all these important aspects.

  20. Internal communication within the Slovak Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    2000-01-01

    One of the primary objectives of the Slovak Nuclear Regulatory Authority (UJD) Public Relations Program is to make available to the public full and complete information on UJD activities to assist the public in making informed judgments regarding UJD activities. The primary means of keeping the public informed about the regulatory activities and programs of the UJD is through the news media. A central state administration body, the UJD provides on request within its province in particular information on operational safety of nuclear energy installations independently of those responsible for the nuclear programme, thereby allowing the public and the media to control data and information on nuclear installations. A major element of providing information is the demonstration that the area of nuclear energy uses has its binding rules in the Slovak Republic and the observance thereof is controlled by the state through an independent institution - UJD. As early as 1995 were laid on the UJD the foundations of the concept of broadly keeping the public informed on UJD activity and the safety of nuclear installations by opening the UJD Information Centre. Information Centre provides by its activity communications with the public and mass media, which is instrumental in creating in the public a favourable picture of the independent state nuclear regulation. Internal and external communications are equally important

  1. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers)

  2. Is nuclear power environmentally sustainable? Paper no. IGEC-1-121

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2005-01-01

    The sustainability of nuclear energy is discussed in terms of its environmental impacts and its utilization of resources. The reactors in the present generation of fission reactors extract only a small percentage of the energy available from uranium. A solution to the long-term management of highly radioactive used reactor fuel is also a key factor in fission's sustainability. Recycling used fuel for enhanced energy production in advanced reactors and the mitigation of the long-term management of the remaining wastes, ideally with their ultimate destruction by nuclear transmutation are technologies that need to be developed in order to ensure the long term sustainability of nuclear fission. In contrast nuclear fusion, while not yet available for power production, promises to be inherently sustainable. (author)

  3. Nuclear safety and security culture - an integrated approach to regulatory oversight

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea Ercau, C.

    2013-01-01

    The paper presents the development and implementation of regulatory guidelines for the oversight of safety and security culture within licensees organizations. CNCAN (the National Commission for Nuclear Activities of Romania) has used the International Atomic Energy Agency (IAEA) attributes for a strong safety culture as the basis for its regulatory guidelines providing support to the reviewers and inspectors for recognizing and gathering information relevant to safety culture. These guidelines are in process of being extended to address also security culture, based on the IAEA Nuclear Security Series No. 7 document Nuclear Security Culture: Implementing Guide. Recognizing that safety and security cultures coexist and need to reinforce each other because they share the common objective of limiting risk and that similar regulatory review and inspection processes are in place for nuclear security oversight, an integrated approach is considered justified, moreover since the common elements of these cultures outweigh the differences. (authors)

  4. 77 FR 70846 - Regulatory Guide 1.182, “Assessing and Managing Risk Before Maintenance Activities at Nuclear...

    Science.gov (United States)

    2012-11-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0285] Regulatory Guide 1.182, ``Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... withdrawing Regulatory Guide (RG)1.182, Revision (Rev.) 0, ``Assessing and Managing Risk Before Maintenance...

  5. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  6. IAEA Mission Concludes Peer Review of UK's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Senior international nuclear safety and radiation protection experts today concluded a ten-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in the United Kingdom (UK). The Integrated Regulatory Review Service (IRRS) mission team said in its preliminary findings that the UK had made considerable progress since reviews in 2006 and 2009. It also identified good practices in the country's nuclear regulatory system. In addition to following up previous missions, a key objective was to review the effectiveness of the role of the Office of Nuclear Regulation (ONR), the UK's nuclear regulator, in ensuring the safety of radioactive waste management and decommissioning, occupational radiation protection, and public and environmental exposures, including emergency planning and response. The mission also considered the response of the UK's regulatory regime to the implications of the Fukushima Daichi accident had been timely and effective. Recommendations and suggestions were made to the ONR and the Government aimed at strengthening the effectiveness of the country's regulatory framework and functions in line with IAEA Safety Standards, the control of radioactive discharges and environmental monitoring. 'The staff of ONR is clearly dedicated to their mission to secure the protection of people and society from the hazards of the nuclear industry. I am confident that ONR will use the results of this mission to further enhance their regulatory programs', said Bill Borchardt, mission leader and former Executive Director of the United States Nuclear Regulatory Commission (NRC). 'The staff were open and cooperative in their discussions; they provided the fullest practicable assistance, and accepted advice from the Team for continuous improvement in their regulatory work'. ONR's Chief Executive, John Jenkins, said that the full report of the IRRS mission will enhance regulatory effectiveness in the UK

  7. South African Regulatory Framework for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Mbebe, B.Z.

    2012-01-01

    The paper presents the regulatory approach to plant life management (PLiM) adopted by the National Nuclear Regulator (NNR) in South Africa, the licensing basis and regulatory requirements for Koeberg Nuclear Power Station (KNPS),operational programmes ensuring continued safe operation, issues related to the ageing of the plant, and the requirements for spent fuel as well as radioactive waste management. The paper will further present insights from the Periodic Safety Review (PSR) and Long Term Asset Management. (author)

  8. Nuclear Regulatory Commission Issuances, August 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Contents include: Issuances of the Nuclear Regulatory Commission--Metropolitan Edison Company (Three Mile Island Nuclear Station, Unit No. 1), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit 1), Westinghouse Electric Corp. (Export of LEU to the Philippines); Issuances of Atomic Safety and Licensing Appeal Boards--Duke Power Company (Amendment to Materials License SNM-1773--Transportation of Spent Fuel from Oconee Nuclear Station for Storage at McGuire Nuclear Station); Issuances of the Atomic Safety Licensing Boards--Commonwealth Edison Company (Byron Station, Units 1 and 2), Dairyland Power Cooperative (La Crosse Boiling Water Reactor, Operating License and Show Cause), Florida Power and Light Company (St. Lucie Plant, Unit No. 2), Florida Power and Light Company (Turkey Point Nuclear Generating, Units 3 and 4), Metropolitan Edison Company (Three Mile Island Nuclear Station, Unit 1) Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), The Regents of the University of California (UCLA Research Reactor), The Toledo Edison Company, et al. (Davis-Besse Nuclear Power Station, Units 2 and 3: Terminiation of Proceedings); Issuances of the Directors Denial--Florida Power and Light Company

  9. Regulatory framework for nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez Alcaniz, T.; Esteban Barriendos, M.

    1995-01-01

    As the framework of standards and requirements covering each phase of nuclear power plant project and operation developed, plant owners defined their licensing commitments (codes, rules and design requirements) during the project and construction phase before start-up and incorporated regulatory requirements imposed by the regulatory Body during the licensing process prior to operation. This produces a regulatory framework for operating a plant. It includes the Licensing Basis, which is the starting point for analyzing and incorporating new requirements, and for re-evaluation of existing ones. This presentation focuses on the problems of applying this regulatory framework to new operating activities, in particular to new projects, analyzing new requirements, and reconsidering existing ones. Clearly establishing a plant's licensing basis allows all organizations involved in plant operation to apply the requirements in a more rational way. (Author)

  10. Accountability feedback assessments for improving efficiency of nuclear regulatory institutions

    International Nuclear Information System (INIS)

    Lavarenne, Jean; Shwageraus, Eugene; Weightman, Michael

    2016-01-01

    The Fukushima-Daiichi Accident demonstrated the need of assessing and strengthening institutions involved in nuclear safety, including the accountability of regulators. There are a few problems hindering the path towards a greater understanding of accountability systems, the ensemble of mechanisms holding to account the nuclear regulator on behalf of the public. There is no consensus on what it should deliver and no systematic assessment method exists. This article proposes a method of assessing institutions based on defence in depth concepts and inspired from risk-assessment techniques used for nuclear safety. As a first step in testing the proposal, it presents a simple Monte-Carlo simulation, illustrating some of the workings of the method of assessment and demonstrating the kind of results it will be able to supply. This on-going work will assist policy-makers take better informed decisions about the size, structure and organisation of a nuclear regulator and the cost-effective funding of its accountability system. It will assist in striking a balance between efficiency and resilience of regulatory decision-making processes. It will also promote the involvement of stakeholders and allow them to have a more meaningful impact on regulatory decisions, thereby enhancing the robustness of the regulatory system and potentially trust and confidence. - Highlights: •A general introduction to regulatory accountability is given. •A definition of an effective accountability system is proposed. •A method to assess accountability systems is proposed. •A simplified simulation of a regulatory system demonstrates the method’s capabilities.

  11. Nuclear Regulatory Authority Act, 2015 (Act 895)

    International Nuclear Information System (INIS)

    2015-04-01

    An Act to establish a Nuclear Regulatory Authority in Ghana. This Act provides for the regulation and management of activities and practices for the peaceful use of nuclear material or energy, and to provide for the protection of persons and the environment against the harmful effects of radiation; and to ensure the effective implementation of the country’s international obligations and for related matters. This Act replaced the Radiation Protection Instrument, of 1993 (LI 1559).

  12. Proceedings of the specialists' meeting on regulatory inspection practices in nuclear power plants

    International Nuclear Information System (INIS)

    1977-01-01

    The sessions and contributions of this conference are dealing with: the general problems of regulatory inspection of nuclear power plants and overall national practices (in Canada, France, Germany, Italy, Spain, the United States), specific problems and practical experience of regulatory inspection during site study, evaluation, design, manufacturing and construction of nuclear plants (in Finland, Germany, Spain, Sweden, Great-Britain, United States), quality insurance issues, pressure component regulations, specific problems and practical experience of regulatory inspection during commissioning (in Spain, Sweden, Great-Britain and United States), specific problems and practical experience of regulatory inspection during operation (in Spain, Great-Britain, Unites States, Italy and Sweden), special aspects of regulatory inspection (notably public information issues in Sweden and in Great-Britain, inspection of nuclear fuel transportation in Spain, enforcement programme in the USA)

  13. Opening Address [International Conference on Effective Nuclear Regulatory Systems: Further Enhancing the Global Nuclear Safety and Security Regime, Cape Town (South Africa), 14-18 December 2009

    International Nuclear Information System (INIS)

    Peters, Elizabeth Dipuo

    2010-01-01

    Nuclear energy is seen by many countries as providing a sustainable solution to energy security challenges. In this context, many developing countries are considering the establishment of nuclear power build programmes, while countries with mature nuclear programmes are considering the possibility of further expansion. The challenges facing countries that are embarking on this new venture include, inter alia, the development of policies, legislation as well as the establishment of appropriate institutions such as regulatory bodies with effective independence to take regulatory decisions. Regional and international cooperation and coordination are therefore of critical importance. Accordingly, the establishment of the Forum of Regulatory Bodies in Africa is a welcome initiative. We are pleased that the national nuclear programme in post-apartheid South Africa places us in a position to become active global participants in the safe use of nuclear energy for peaceful purposes. However, we all have an obligation to ensure that the presence of a plethora of cooperation mechanisms such as this body are as inclusive and as supportive as possible. This will help the global community of nations in reaping maximum benefits that surely should arise from these initiatives to ensure security of energy supply. We do not have the luxury to duplicate such bodies. The role of the International Atomic Energy Agency in nuclear safety and security cannot be over-emphasized. That alone is the reason that drove the liberation movement of the people of our country, and now the ruling party, fully to conform to all the treaties and conventions that have been drafted by this reputable institution of the peoples of the world. The same goes for the facilitation of cooperation and the sharing of knowledge and experience. The IAEA is invariably trusted to provide independent views and advice in order to strengthen safety and security while preserving the sovereignty, authority and

  14. Nuclear energy-the strategic role and sustainability in china

    International Nuclear Information System (INIS)

    Pan Ziqiang; Shen Wenquan

    2007-01-01

    By analyzing the challenges of China's energy supply, an excellent perspective of nuclear power development in china has been described. Taking into account the mid-long term development requirements, a comprehensive, coordinated and sustainable nuclear power strategic consideration and proposal is put forward.Thus our national nuclear industry can not only catch up with the world advanced level in proper time, but also possess the enough stamina of sustainability. (authors)

  15. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    International Nuclear Information System (INIS)

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director's Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director's Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant

  16. Nuclear Regulatory Commission issuances, September 1995. Volume 42, Number 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This book contains an issuance of the Atomic Safety and Licensing Board and a Director`s Decision, both of the US Nuclear Regulatory Commission. The issuance concerns the dismissal of a case by adopting a settlement reached by the Staff of the Nuclear Regulatory Commission and a Radiation Safety Officer of a hospital in which the safety officer pled guilty to deliberate misconduct. The Director`s Decision was to deny a petition to impose a fine on Tennessee Valley Authority concerning alleged harassment of the petitioner and to appoint an independent arbitration board to review all past complaints filed against TVA concerning the Watts Bar Nuclear Plant.

  17. Collective statement on the role of research in a nuclear regulatory context

    International Nuclear Information System (INIS)

    2001-01-01

    In the present context of deregulation and privatisation of the nuclear industry, maintaining an adequate level of nuclear safety research is a primary concern for nuclear regulators, researchers and nuclear power plant licensees, as well as for government officials and the public. While these different stakeholders may have common concerns and interests, there may also be differences. At the international level, it is important to understand that divisions exist both within and among countries, not only in national cultures but also in the way regulators, researchers and licensees view the rote of research. An international gathering under the auspices of the OECD Nuclear Energy Agency (NEA) took place in June 2001, bringing together heads of nuclear regulatory bodies of NEA Member countries, senior regulators, senior executives of research organisations and leaders from the nuclear industry to discuss their perceptions of the rote of research in a nuclear regulatory context. This collective statement represents an international consensus on a rationale for regulatory research for currently operating nuclear reactors and for future reactors, and sets forth specific recommendations to NEA standing technical committees and Member countries. The intended audience is primarily nuclear safety regulators, senior researchers and industry leaders. Government authorities, nuclear power plant operators and the general public may also be interested. (author)

  18. Regulatory control of nuclear safety in Finland. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final

  19. Regulatory control of nuclear safety in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    2000-06-01

    This report concerns the regulatory control of nuclear energy in Finland in 1999. Its submission to the Ministry of Trade and Industry by the Finnish Radiation and Nuclear Safety Authority (STUK) is stipulated in section 121 of the Nuclear Energy Decree. STUK's regulatory work was focused on the operation of the Finnish nuclear power plants as well as on nuclear waste management and safeguards of nuclear materials. The operation of the Finnish nuclear power plants was in compliance with the conditions set out in their operating licences and with current regulations, with the exception of some inadvertent deviations from the Technical Specifications. No plant events endangering the safe use of nuclear energy occurred. The individual doses of all nuclear power plant workers remained below the dose threshold. The collective dose of the workers was low, compared internationally, and did not exceed STUK's guidelines at either nuclear power plant. The radioactive releases were minor and the dose calculated on their basis for the most exposed individual in the vicinity of the plant was well below the limit established in a decision of the Council of State at both Loviisa and Olkiluoto nuclear power plants. STUK issued statements to the Ministry of Trade and Industry about the environmental impact assessment programme reports on the possible nuclear power plant projects at Olkiluoto and Loviisa and about the continued operation of the research reactor in Otaniemi, Espoo. A Y2k-related safety assessment of the Finnish nuclear power plants was completed in December. In nuclear waste management STUK's regulatory work was focused on spent fuel storage and final disposal plans as well as on the treatment, storage and final disposal of reactor waste. No events occurred in nuclear waste management that would have endangered safety. A statement was issued to the Ministry of Trade and Industry about an environmental impact assessment report on a proposed final disposal facility for

  20. International conference on strengthening of nuclear safety in Eastern Europe. Armenian Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Nersesyan, V.

    1999-01-01

    The status of the Armenian Nuclear Regulatory Authority (ANRA) are described in detail with its main task and responsibilities concerning regulations and surveillance of nuclear and radiation safety. The following issues are presented: nuclear legislation; inspection activities; licensing of significant safety related modifications and modernization of NPPs; incidents at NPPs; personnel training; emergency planning; surveillance of nuclear materials; radioactive waste management; and plan of the ANRA perspective development

  1. IAEA Mission Concludes Peer Review of Viet Nam's Radiation and Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded a 10-day International Atomic Energy Agency (IAEA) mission to review how Viet Nam's regulatory framework for nuclear and radiation safety has incorporated recommendations and suggestions from an earlier review, conducted in 2009. The Integrated Regulatory Review Service (IRRS) follow-up mission, requested by the Viet Nam Agency for Radiation and Nuclear Safety (VARANS), also reviewed the development of the regulatory safety infrastructure to support Viet Nam's nuclear power programme. The eight-member team comprised senior regulatory experts from Canada, France, Pakistan, Slovenia, United Arab Emirates and the United States of America, as well as three IAEA staff members. The IRRS team said in its preliminary assessment that Viet Nam had made progress since 2009, but that some key recommendations still needed to be addressed. Particular strengths identified by the team included: The commitment of VARANS staff to develop legislation and regulations in the field of nuclear and radiation safety; VARANS' efforts to implement practices that are in line with IAEA Safety Standards and internationally recognized good practices; A willingness to receive feedback regarding the efforts to establish and implement a regulation programme; and Progress made in developing the regulatory framework to support the introduction of nuclear power. The team identified the following areas as high-priority steps to further strengthen radiation and nuclear safety in Viet Nam: The effective independence of the regulatory decision-making process needs to be urgently addressed; Additional resources are needed to regulate existing radiation facilities and activities, as well as the country's research reactor; Efforts to increase the capacity of VARANS to regulate the developing nuclear power programme should continue; The draft Master Plan for the Development of Nuclear Power Infrastructure should be finalized

  2. Regulatory risks associated with nuclear safety legislation after Fukushima Daiichi Nuclear Accident in Japan. Focus on legal structure of the nuclear reactor regulation act

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki; Maruyama, Masahiro

    2016-01-01

    Nuclear safety regulations enforced after Fukushima Daiichi Nuclear Accident under the Nuclear Reactor Regulation Act face the following regulatory problems that involve potential risk factors for nuclear businesses; 1) 'entity based regulation' unable to cope with business cessation or bankruptcy of the entity subject of regulation, 2) potential risk of the Nuclear Regulation Authority's inappropriate involvement in nuclear industry policy beyond their duty, and 3) compliance of backfits under vague regulations. In order to alleviate them, this report, through analyzing these regulatory problems from the view point of sound development of the nuclear industry, proposes the following regulatory reforms; (1) To clarify the rule for industry policy in nuclear regulations and enable the authority, Ministry of Economy, Trade and Industry, to choose most appropriate industrial policy measure. (2) Through establishing safety goals as measures to promote continuous improvement of nuclear safety regulations, to stimulate timely adjustments of the regulations, and to introduce a legal mechanism into the nuclear regulation systems under which validity of administrative law and its application can be checked. (author)

  3. Sustainable development and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made. Figs, tabs.

  4. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Italy

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment (General provisions; Patents); 6. Radiation Protection (Protection of workers; Protection of the public; Protection of the environment); 7. Radioactive Waste Management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Interdepartmental Committee for Economic Planning; Nuclear Safety Agency; Prime Minister; Minister for Economic Development; Minister for Labour and Social Security; Minister for Health; Minister for the Environment; Minister for the Interior; Minister for Transport and Navigation; Minister for Foreign Trade (now incorporated in Ministry for Economic Development); Minister for Education; Treasury Minister; Minister for Universities and for Scientific and Technical Research; Minister for Foreign Affairs; State Advocate General); 2. Advisory bodies (Inter-ministerial Council for Consultation and Co-ordination; Coordinating Committee for Radiation Protection of Workers and the Public; Regional and Provincial Commissions for Public Health Protection

  6. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  7. The role of women in nuclear - attracting public participation in regulatory decision-making process

    Science.gov (United States)

    Mohamad Jais, Azlina; Hassan, Najwa

    2018-01-01

    Public participation is vital in demonstrating transparency and enhancing effectiveness of a nuclear regulatory process. As such, it is necessary for nuclear practitioners to involve the public in key nuclear delivery milestones. This paper specifically discusses challenges faced in attracting public participation throughout the nuclear regulatory decision-making process, and highlights the roles of women in nuclear (WiN) in initiating the said public discourse.

  8. Nuclear facilities and environment - an overview of regulatory aspects

    International Nuclear Information System (INIS)

    Chande, S.K.

    2007-01-01

    The Department of Atomic Energy (DAE) operates the entire range of nuclear fuel cycle facilities in the country. The radioactive wastes generated in these facilities have to be disposed into the environment without any adverse effect. In doing so, utmost care is taken to ensure the highest level of safety to the environment, the general public and the occupational workers. Atomic Energy Regulatory Board (AERB) is entrusted with the responsibility of protecting workers, public and environment against undue hazards from ionising radiations. To achieve this objective, AERB exercises regulatory control on the disposal of radioactive wastes from nuclear facilities. The disposal of radioactive effluents into the environment is governed by the Atomic Energy (Safe Disposal of Radioactive Wastes) Rules, 1987. The regulatory aspects with respect to disposal of radioactive wastes are discussed in this paper. (author)

  9. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  10. 10 CFR 30.12 - Persons using byproduct material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...

  11. Program plan for future regulatory activity in nuclear-power-plant maintenance

    International Nuclear Information System (INIS)

    Badalamente, R.V.

    1982-10-01

    The intent of this paper is to describe the results of a study of nuclear power plant (NPP) maintenance conducted by Battelle's Pacific Northwest Laboratories (PNL) for the Nuclear Regulatory Commission (NRC). The purpose of the study for the NRC was to determine problems affecting human performance in NPP maintenance, pinpoint those which adversely affect public health and safety, review strategies for overcoming the problems, and suggest the direction that regulatory activities should take. Results of the study were presented to the NRC (Division of Human Factors Safety) in the form of a recommended program plan for future regulatory activity in NPP maintenance

  12. Nuclear knowledge management system in the regulatory activity

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Klevtsov, A.L.; Kravchenko, N.A.

    2010-01-01

    Important issues on collection, storage and spread of knowledge among organisation dealing with the use of nuclear technologies, role of close cooperation between enterprises and organizations in developing knowledge management, general requirements for creating a nuclear knowledge management system are considered. Recommendations and the main mechanisms are identified to create the knowledge management system in technical support organizations of the regulatory authority.

  13. Welcome Address by H. Liu [4. International Conference on Effective Nuclear Regulatory Systems: Sustaining Improvements Globally, Vienna (Austria), 11-15 April 2016

    International Nuclear Information System (INIS)

    Liu, H.

    2017-01-01

    In his opening remarks, Mr. Liu Hua, the President of the conference, noted that the presence of so many attendees at the conference indicated a high level of interest in effective nuclear regulation. He added that effective regulatory systems are very important in maintaining and improving global nuclear safety, and that the first conference on this topic, held ten years ago, created a valuable platform for achieving that goal. In the intervening decade, through the conferences held in Moscow, Cape Town, Ottawa and Vienna, the importance of effective regulation has become more widely recognized and key elements, including independence, transparency, openness, competence and wider international cooperation, have been identified. Mr. Liu Hua pointed to specific actions proposed for governments, regulatory bodies and stakeholders, and highlighted that many of the actions had already achieved fruitful outcomes. He also noted that many lessons had been learned and many improvements had been made in the light of the Fukushima Daiichi accident: 1. To further improve government infrastructure; 2. To further improve nuclear safety standards; 3. To further develop regulation capacity building and human resource; 4. To further enhance knowledge and experience management and transition, 5. To further foster and strengthen nuclear safety culture; 6. To further improve and rebuild public confidence

  14. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha-Vinh, Phuong

    1975-01-01

    Broad definition of the scope of enabling legislation, identification of branches of laws involved in the licensing and regulatory control, overview of some typical licensing practices and provisions, some specific legislative or regulatory requirements including financial security to over nuclear liability. (HP) [de

  15. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  16. Nuclear Experts Complete IAEA Follow-up Review of German Regulatory System

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Nuclear safety experts concluded a seven-day mission to review the German Regulatory System, conducted from 4-10 September in Bonn, Stuttgart and Berlin. At the request of the Government of the Federal Republic of Germany, the International Atomic Energy Agency assembled a peer-review team of six high-level regulatory experts from six nations (Finland, France, the Netherlands, Switzerland, the UK, the US and three IAEA senior staff members) to conduct a follow-up assessment of an Integrated Regulatory Review Service (IRRS) mission conducted in 2008. This follow-up IRRS mission examined the progress in acting upon the recommendations and suggestions made during the 2008 IRRS mission and reviewed the areas of significant regulatory changes since that review at both the Federal Ministry of Environment, Nature Conservation and Nuclear Safety (BMU) and the Ministry of Environment of the federal state of Baden-Wurttemberg (UM BW). The first mission reviewed Germany's regulatory framework against IAEA Safety Standards and fostered the exchange of information and experience on safety regulation. This is a peer review based on IAEA Standards. It is not an inspection, nor an audit. The scope of the mission was limited to the safety regulation of nuclear power plants. IRRS team leader, Mr. McCree, of the US Nuclear Safety Commission (USNRC), said, ''This was an important IRRS mission, particularly given the recent Fukushima Daiichi Nuclear Power Plant accident and the related insights which underscore the importance of having an independent, credible nuclear safety regulator.'' ''The IRRS team identified several strengths of the German nuclear safety regulators, including the prompt and coordinated incident response activities of BMU and UM BW to the Fukushima accident. Some suggestions were also made to further strengthen nuclear safety regulations concerning the future work of BMU,'' he said. The review team found that important progress has been made toward

  17. Role of the Regulatory Body in Implementing Defence in Depth in Nuclear Installations - Regulatory Oversight in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, B. M., E-mail: badawymel@yahoo.com [Egyptian Nuclear and Radiological Regulatory Authority Cairo (Egypt)

    2014-10-15

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear facilities are operated at all times in an acceptably safe manner including the safe conduct of decommissioning activities. Defence in depth is recognized as one of the fundamental safety principles that underlie the safety of nuclear power plants. Defence in depth is implemented to provide a graded protection against a wide variety of transients, incidents and accidents, including equipment failures and human errors within nuclear power plants and events initiated outside plants. The Regulator Body plays an important role in implementing defence in depth in nuclear installations in the context of a clear allocation of responsibilities with an operating organization. This role starting with setting safety objectives and by its own independent review and technical assessment of the safety justifications provided by the operating organization in addition to safety culture investigating within relevant organizations. This paper briefly reviews this role in normal operation and post accidents, and its effects on overall nuclear safety in nuclear installations with reference to Egyptian regulatory oversight. (author)

  18. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  19. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  20. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2012

    International Nuclear Information System (INIS)

    2013-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2012 is presented. These activities are reported under the headings: Foreword; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Stress tests on the nuclear power plants; (5) Nuclear Materials in SR; (6) Building Authority; (7) Emergency planning and preparedness; (8) International activities; (9) Public communication; (10) Nuclear Regulatory Authority of the Slovak Republic; (11) Attachments; (12) Abbreviations used.

  1. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers). The conference proceedings where divided into two parts. This item refers particularly to the second part

  2. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  3. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  4. PRA research and the development of risk-informed regulation at the U.S. nuclear regulatory commission

    International Nuclear Information System (INIS)

    Siu, Nathan; Collins, Dorothy

    2008-01-01

    Over the years, Probabilistic Risk Assessment (PRA) research activities conducted at the U.S. Nuclear Regulatory Commission (NRC) have played an essential role in support of the agency's move towards risk-informed regulation. These research activities have provided the technical basis for NRC's regulatory activities in key areas; provided PRA methods, tools, and data enabling the agency to meet future challenges; supported the implementation of NRC's 1995 PRA Policy Statement by assessing key sources of risk; and supported the development of necessary technical and human resources supporting NRC's risk-informed activities. PRA research aimed at improving the NRC's understanding of risk can positively affect the agency's regulatory activities, as evidenced by three case studies involving research on fire PRA, Human Reliability Analysis (HRA), and Pressurized Thermal Shock (PTS) PRA. These case studies also show that such research can take a considerable amount of time, and that the incorporation of research results into regulatory practice can take even longer. The need for sustained effort and appropriate lead time is an important consideration in the development of a PRA research program aimed at helping the agency address key sources of risk for current and potential future facilities

  5. Reliability programs for nuclear power plants. Regulatory standard S-98 revision 1

    International Nuclear Information System (INIS)

    2005-07-01

    The purpose of this regulatory standard is to help assure, in accordance with the purpose of the Nuclear Safety and Control Act (NSCA), that a licensee who constructs or operates a nuclear power plant (NPP) develops and implements a reliability program that assures that the systems important to safety at the plant can and will meet their defined design and performance specifications at acceptable levels of reliability throughout the lifetime of the facility. This regulatory standard describes the requirements of a reliability program for a nuclear power plant. The licensee shall implement the requirements described in this regulatory standard when a condition of a licence or other legally enforceable instrument so requires.(author)

  6. Safety Experts Complete IAEA Nuclear Regulatory Review of the United States

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: An international team of senior nuclear safety experts today completed a two-week International Atomic Energy Agency (IAEA) review of the governmental and regulatory framework for nuclear safety in the United States. The team identified good practices within the U.S. system and offered suggestions for ways the U.S. Nuclear Regulatory Commission (NRC) could improve. The IAEA has conveyed the team's main conclusions to the NRC, and a final report will be submitted to the NRC in about two months. At the request of the United States, the IAEA assembled a team of 19 international experts to conduct an Integrated Regulatory Review Service (IRRS) mission. This mission was a peer review based on the IAEA Safety Standards. It was not an inspection, nor an audit. The experts came from 14 different countries: Canada, China, the Czech Republic, Finland, France, Italy, Japan, Mexico, the Republic of Korea, Slovenia, Spain, Sweden, Switzerland, and the United Kingdom. Team leader Jukka Laaksonen of Finland said: ''We found a comprehensive, consistent, and mature regulatory system run by the NRC, which has a strong drive for continuous improvement.' The scope of the mission included the U.S. regulatory framework and the regulation of the nuclear plant operation. The mission was conducted from 18 to 29 October, mainly at NRC headquarters outside of Washington, D.C. To study U.S. regulatory activities, the mission conducted a series of interviews and discussions with NRC staff and other organizations to help assess the effectiveness of the regulatory system. In addition, the team observed regulatory activities at two operating nuclear power reactors and an emergency preparedness exercise. The IAEA's IRRS coordinator Gustavo Caruso said, ''This mission represents a milestone for the IRRS program because the U.S. regulatory system is the largest in the world and many nations look to it. The IRRS is a useful tool that allows host nations to gain guidance from experienced

  7. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  8. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  9. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  10. Experts Complete IAEA Follow-up Review of Spanish Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Nuclear safety experts today concluded an eight-day mission to review Spain's nuclear regulator, the Nuclear Safety Council (CSN). At the request of the Spanish Government, the International Atomic Energy Agency assembled a peer-review team of five high-level regulatory experts from four nations and two IAEA staff members to conduct a follow-up assessment of an Integrated Regulatory Review Service (IRRS) mission conducted in 2008. This follow-up IRRS mission examined CSN's progress in acting upon the recommendations and suggestions made during the 2008 IRRS mission and reviewed the areas of significant regulatory changes since that review. Both reviews covered safety and security regulatory aspects of all facilities and activities in Spain. The first mission reviewed Spain's regulatory framework against IAEA Safety Standards and fostered the exchange of information and experience on safety regulation. The mission also included a peer review of the security activities within the regulatory framework. IRRS team leader Luis Reyes, Senior Executive of the US Nuclear Regulatory Commission, said today, 'In 2008, the mission found particular strengths in CSN's policy, its regulatory framework and its regulatory activities. We made a number of suggestions and recommendations for further improvement of the regulatory framework. CSN should be commended for the significant amount of efforts in addressing all the findings identified in 2008 mission.' The review team found that CSN has made significant progress toward improving its regulatory activities. Most of the findings identified in the 2008 report have been effectively addressed and therefore can be considered closed. Additional findings are being addressed in accordance with a comprehensive and systematic action plan, in particular efforts to revise the CSN Statute. Complementing the CSN strengths identified during the 2008 mission, the 2011 IRRS team noted the following strengths: Improvements in regulatory

  11. Use of PRA in the nuclear regulatory field in South Africa

    International Nuclear Information System (INIS)

    Hill, T.F.

    1994-01-01

    The nuclear regulatory authority in South Africa (since 1988 the Council for Nuclear Safety (CNS)), established in 1973 nuclear safety criteria against which to assess the level of safety of any facility using radioactive material. It is a regulatory requirement in South Africa to develop and maintain a living PRA for each facility and thereby to provide the necessary information to demonstrate compliance against these criteria. All safety submissions to the CNS must include at least a risk statement based on an accepted PRA study. The function of the CNS is to regulate all activities in South Africa involving the use of radioactive material and posing a significant risk to the public or plant personnel. This includes most aspects of the nuclear fuel cycle and the Koeberg NPS (two 2775 MW(th) PWRs). A PRA study including source terms for the two Koeberg units was presented by the contractor in 1979. This included the risk due to power and shutdown states and non reactor related accidents involving spent fuel storage, fuel handling and waste treatment related activities. At least 20 PRA studies have been performed for other nuclear facilities in the country. The CNS maintains an in-house PRA capability to perform independent assessments of licensee submission, to participate in developments of PRA methodology in the regulatory field, to perform pro-active safety work and to assist in regulatory decision making. Present ongoing work includes the development of a risk monitor, a risk management system, improvement in PRA codes, models, data collection and analysis, off-site risk assessment methodology and associated regulatory policy. (author). 1 fig

  12. 77 FR 15142 - Updated Nuclear Regulatory Commission Fiscal Years 2008-2013 Strategic Plan

    Science.gov (United States)

    2012-03-14

    ... 2008-2013 Strategic Plan AGENCY: Nuclear Regulatory Commission. ACTION: Strategic plan. SUMMARY: The U...-1614, Volume 5, ``U.S. Nuclear Regulatory Commission, Fiscal Years [FY] 2008-2013 Strategic Plan,'' dated February 2012. The updated FY 2008-2013 strategic plan describes the agency's mission and...

  13. Nuclear Weapons Enterprise Transformation - A Sustainable Approach

    International Nuclear Information System (INIS)

    O'Brien, K H

    2005-01-01

    Nuclear weapons play an essential role in United States (U.S.) National Security Policy and a succession of official reviews has concluded that nuclear weapons will continue to have a role for the foreseeable future. Under the evolving U.S. government policy, it is clear that role will be quite different from what it was during the Cold War. The nuclear-weapons stockpile as well as the nuclear-weapons enterprise needs to continue to change to reflect this evolving role. Stockpile reductions in the early 1990s and the Stockpile Stewardship Program (SSP), established after the cessation of nuclear testing in 1992, began this process of change. Further evolution is needed to address changing security environments, to enable further reductions in the number of stockpiled weapons, and to create a nuclear enterprise that is cost effective and sustainable for the long term. The SSP has successfully maintained the U.S. nuclear stockpile for more than a decade, since the end of nuclear testing. Current plans foresee maintaining warheads produced in the 1980s until about 2040. These warheads continue to age and they are expensive to refurbish. The current Life Extension Program plans for these legacy warheads are straining both the nuclear-weapons production and certification infrastructure making it difficult to respond rapidly to problems or changes in requirements. Furthermore, refurbishing and preserving Cold-War-era nuclear weapons requires refurbishing and preserving an infrastructure geared to support old technology. Stockpile Stewardship could continue this refurbishment approach, but an alternative approach could be considered that is more focused on sustainable technologies, and developing a more responsive nuclear weapons infrastructure. Guided by what we have learned from SSP during the last decade, the stewardship program can be evolved to address this increasing challenge using its computational and experimental tools and capabilities. This approach must start

  14. Nuclear energy–Any solution for sustainability and climate protection?

    International Nuclear Information System (INIS)

    Mez, Lutz

    2012-01-01

    For the future of nuclear power it will be decisive whether or not nuclear fission technologies offer a sustainable solution to global energy problems. The impressive expansion of nuclear reactors in the 1960s and 1970 slowed down after the meltdown in Harrisburg and the nuclear explosion in Chernobyl. Since the end of the 1980s installed nuclear capacity has stagnated, and in Europe declined. However, a nuclear revival or renaissance has been predicted for 30 years. This article reviews global scenarios and national nuclear programmes and analyses problems in the nuclear industry. Special attention is given to nuclear power and global warming and the nexus between nuclear power and nuclear proliferation. - Highlights: ► The status of nuclear programmes in the world is examined. ► Nuclear power has taken a nose-dive in Western industrialised countries. ► The nuclear renaissance has been announced since 1981 but never materialised. ► Share of nuclear power is 15.7% of global electricity but only 2.3% of global FEC. ► Nuclear energy is no sustainable solution and cannot avoid global warming.

  15. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the Comprehensive Nuclear-Test-Ban Treaty. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Okko, O [ed.

    2012-07-01

    The regulatory control of nuclear materials (i.e. nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. Safeguards are required for Finland to comply with international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). The results of STUK's nuclear safeguards inspection activities in 2011 continued to demonstrate that the Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations.

  16. Regulatory control of nuclear safety in Finland. Annual report 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-08-01

    The report describes regulatory control of the use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in Finland in 1997. Nuclear regulatory control ascertained that the operation of Finnish NPPs was in compliance with the conditions set out in operating licences and current regulations. In addition to NPP normal operation, STUK oversaw projects at the plant units relating to power uprating and safety improvements. STUK prepared statements for the Ministry of Trade and Industry about the applications for renewing the operating licenses of Loviisa and Olkiluoto NPPs. The most important items of supervision in nuclear waste management were studies relating to the final disposal of spent fuel from NPPs and the review of the licence application for a repository for low- and intermediate-level reactor waste from Loviisa NPP. Preparation of general safety regulations for the final disposal of spent nuclear fuel, to be published in the form of a Council of State Decision, was started. By safeguards control, the use of nuclear materials was verified to be in compliance with current regulations and that the whereabouts of every batch of nuclear material were always known. Nuclear material safeguards were stepped up to prevent illicit trafficking of nuclear materials and other radioactive materials. In co-operation with the Ministry for Foreign Affairs and the Institute of Seismology (University of Helsinki), preparations were undertaken to implement the Comprehensive Nuclear Test Ban Treaty (CTBT). For enforcement of the Treaty and as part of the international regulatory approach, STUK is currently developing laboratory analyses relating to airborne radioactivity measurements. The focus of co-operation funded by external sources was as follows: improvement of the safety of Kola and Leningrad NPPs, improvement of nuclear waste management in North-West Russia, development of the organizations of nuclear safety authorities in Eastern Europe and development

  17. Nuclear regulatory policy concept on safety, security, safeguards and emergency preparedness (3S+EP)

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2009-01-01

    Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. By undertaking proper regulatory oversight on Safety, Security and Emergency Preparedness (3S+EP) as an integrated and comprehensive system, safe and secure use of nuclear energy can be assured. Licence requirements and conditions should fulfil regulatory requirements pertaining to 3S+EP for nuclear installation as an integrated system. An effective emergency capacity that can be immediately mobilized is important. The capacity in protecting the personnel before, during and after the disaster should also be planned. Thus, proper emergency preparedness should be supported by adequate resources. The interface between safety, security, safeguards and emergency preparedness has to be set forth in nuclear regulations, such as regulatory requirements; 3S+EP; components, systems and structures of nuclear installations and human resources. Licensing regulations should stipulate, among others, DIQ, installations security system, safety analysis report, emergency preparedness requirements and necessary human resources that meet the 3S+EP requirements.

  18. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  19. Sustainability, natural and organic cosmetics: consumer, products, efficacy, toxicological and regulatory considerations

    Directory of Open Access Journals (Sweden)

    Bruno Fonseca-Santos

    2015-03-01

    Full Text Available The interest in sustainable products has increased along the years, since the choice of products, packaging and production processes have a great impact on the environment. These products are classified by regulatory agencies in different categories, aggregating advantages to the product and increasing the demand by consumers. However, there is no harmonization in guidelines of these certifying agencies and each cosmetic industry formulates their product and packaging in a more rational way, which causes less damage to the environment. Many cosmetic products have in their formulation natural products that perform a specific biological function, but these products should be evaluated on efficacy and toxicological aspects. The aim of this article is to approach sustainability, natural and organic cosmetics, considering the consumer and the efficacy, toxicological and regulatory aspects.

  20. Development of digital library system on regulatory documents for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, K. H.; Kim, K. J.; Yoon, Y. H.; Kim, M. W.; Lee, J. I.

    2001-01-01

    The main objective of this study is to establish nuclear regulatory document retrieval system based on internet. With the advancement of internet and information processing technology, information management patterns are going through a new paradigm. Getting along the current of the time, it is general tendency to transfer paper-type documents into electronic-type documents through document scanning and indexing. This system consists of nuclear regulatory documents, nuclear safety documents, digital library, and information system with index and full text

  1. 76 FR 61402 - Draft Nuclear Regulatory Commission Fiscal Year 2012-2016 Strategic Plan

    Science.gov (United States)

    2011-10-04

    ...-2016 Strategic Plan AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment... comment on draft NUREG-1614, Volume 5. ``U.S. Nuclear Regulatory Commission, FY 2012-2016 Strategic Plan,'' dated September 2011. The NRC's draft FY 2012-2016 strategic plan describes the agency's mission and...

  2. Experts Complete IAEA Follow-up Review of Australia's Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Nuclear and radiation safety experts today concluded an eight-day mission to review the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the country's nuclear regulator. At the request of the Australian Government, the International Atomic Energy Agency (IAEA) assembled a peer-review team of five regulatory experts from as many nations and three IAEA staff members to conduct a follow-up assessment of an Integrated Regulatory Review Service (IRRS) mission conducted in 2007. This follow-up IRRS mission examined ARPANSA's progress in acting upon the recommendations and suggestions made during the 2007 IRRS mission and reviewed the areas of significant regulatory changes since that review. Both reviews covered safety regulatory aspects of all facilities and activities regulated by ARPANSA. IRRS team leader Kaare Ulbak, Chief Advisor of Denmark's National Institute of Radiation Protection, said: ''ARPANSA should be commended for the significant amount of efforts in addressing all the findings identified in the 2007 mission and for inviting this follow-up review.'' The review team found that ARPANSA has made significant progress toward improving its regulatory activities, as most of the findings identified in the 2007 report have been effectively addressed and therefore can be considered closed. Complementing the ARPANSA strengths identified during the 2007 mission, the 2011 IRRS team noted the following strengths: Response to the Tepco Fukushima Dai-ichi accident; High level of in-house technical expertise in radiation safety; Recognition of the need and willingness to re-organize ARPANSA; Timely development of the national sealed source register in good coordination with other relevant organizations; and Creation of the Australian clinical dosimetry service and the national dose reference levels database. The 2011 IRRS team also made recommendations and suggestions to further strengthen ARPANSA's regulatory system, including: Making full

  3. The role of the US regulatory process in public acceptance of nuclear power

    International Nuclear Information System (INIS)

    Rowden, M.A.

    1977-01-01

    This paper focuses, on NRC's regulatory responsibilities in relation to public acceptance of nuclear power. Since public attitudes in the United States may influence reaction to nuclear power in other nations, it is fair to say that the credibility of our regulatory program has international significance. Stated simply, unless the public is convinced that the regulatory process is effective in assuring safety, safeguarding nuclear facilities and materials, and protecting the environment, the use of nuclear power could be curtailed or even brought to a halt. Not only must the regulatory process be effective, it must at the same time be recognized by the public as being effective. Opinion polls in the United States have shown consistently that a majority of Americans believe it is important to develop nuclear power to help meet our future energy needs. The direction of public concern has shifted from year to year. Most recently, public apprehension has been expressed about the potential hazards of long-term storage of the high-level wastes from spent fuel reprocessing, and about the risks that nuclear materials and facilities may be subject to theft or diversion or sabotage. Uppermost in the public mind is the question whether the regulatory process can cope with these potential threats to public health and safety. The licensing process of the NRC is conducted in full public view. Issues of a generic nature are aired in rulemaking hearings, while each proposal to construct and operate a nuclear power plant or a facility such as fuel reprocessing plant is the subject of public hearings, which are held near the site of the proposed plant. During the last two years, we have noted that some persons who object to nuclear power plants have indicated that they believe that decisions to permit construction of such plants should be made at the State government level, rather than by a Federal agency. As a result, there now are movements to enact State laws and to set up State

  4. Survey of extreme load design regulatory agency licensing requirements for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J D

    1976-04-01

    Since 1965, when extreme load requirements began to be considered explicitly in nuclear power plant design, there has been a gradual divergence in requirements imposed by national regulatory agencies. However, nuclear plant safety is an international problem because of the potential international effects of any postulated plant failure. For this reason this paper has been prepared in an attempt to highlight the differences in national criteria currently used in the extreme load design of nuclear plant facilities. No attempt has been made to evaluate the relative merit of the criteria established by the various national regulatory agencies. This paper presents the results of a recent survey made of national atomic energy regulatory agencies and major nuclear steam supply design agencies, which requested a summary of current licensing criteria associated with earthquake, extreme wind (tornado), flood, airplane crash and accident (pipe break) loads applicable within the various national jurisdictions. Also presented are a number of comparisons which are meant to illustrate the differences in national regulatory criteria.

  5. Survey of extreme load design regulatory agency licensing requirements for nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1976-01-01

    Since 1965, when extreme load requirements began to be considered explicitly in nuclear power plant design, there has been a gradual divergence in requirements imposed by national regulatory agencies. However, nuclear plant safety is an international problem because of the potential international effects of any postulated plant failure. For this reason this paper has been prepared in an attempt to highlight the differences in national criteria currently used in the extreme load design of nuclear plant facilities. No attempt has been made to evaluate the relative merit of the criteria established by the various national regulatory agencies. This paper presents the results of a recent survey made of national atomic energy regulatory agencies and major nuclear steam supply design agencies, which requested a summary of current licensing criteria associated with earthquake, extreme wind (tornado), flood, airplane crash and accident (pipe break) loads applicable within the various national jurisdictions. Also presented are a number of comparisons which are meant to illustrate the differences in national regulatory criteria. (Auth.)

  6. Regulatory aspects for nuclear and radiation applications

    International Nuclear Information System (INIS)

    Duraisamy, S.

    2014-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB was constituted on November 15, 1983 and derives its regulatory power from the rules and notifications promulgated under the Atomic Energy Act, 1962 and the Environment (Protection) Act, 1986. AERB is provided with the necessary powers and mandate to frame safety policies, lay down safety standards and requirements for monitoring and enforcing the safety provisions. AERB follows multi-tier system for its review and assessment, safety monitoring, surveillance and enforcement. While regulating various nuclear and radiation facilities, AERB adopts a graded approach taking into account the hazard potential associated with the facilities being regulated. The regulatory process has been continuous evolving to cater to the new developments in reactor and radiation technologies. The regulatory effectiveness and efficiency of AERB have grown over the last three decades to make it into a robust organization. The radiation protection infrastructure in the country is on a sound footing and is constantly being strengthened based on experience and continued research and development. As one of its mandates AERB prescribes radiation dose limits for the occupational workers and the public, in line with the IAEA Safety Standard and ICRP recommendations. The current dose limits and the radiation safety requirements are more stringent than past. To meet the current safety standards, it is important for the facilities to have state of art radiation monitoring system and programme in place. While recognizing the current system in place, this presentation also highlights certain key radiation protection challenges associated with the implementation of radiation protection standards in the nuclear and radiation facilities especially in the areas of

  7. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Grimston, M.C.

    1994-01-01

    The United Kingdom Government's strategy aimed at securing sustainable development has recently been published, and is analysed here by the Energy Issues Adviser, for the British Nuclear Industry Forum. The energy framework aims to ensure secure supplies of energy at competitive prices and to minimise possible adverse environmental impacts of energy use. It is argued here that both of these aims will be promoted by the continued and growing use of nuclear power in the United Kingdom. As the cost of nuclear electricity depends chiefly on the price of uranium, which is likely to stabilize due to increased supplies from nuclear weapons destruction, uranium recycling and mixed oxide fuel reprocessing, it is unlikely that world fuel price inflation will affect these costs. Secondly, nuclear power is not associated with acid rain or the threat of global warming, so its environment protection claims can be substantiated. Indeed, unlike other fuel sources, nuclear power already pays for its waste and decommissioning procedures. (UK)

  8. Regulatory issues for nuclear power plant life management

    International Nuclear Information System (INIS)

    Roe, J.

    2000-01-01

    The workshop of 26-27 june 2000, on nuclear power Plant LIfe Management (PLIM), also included working groups in which major issues facing PLIM activities for nuclear power plants were identified and discussed. The second group was on Regulation. The Regulatory Working Group will attempt to identify some of the more pertinent issues affecting nuclear plant regulation in a changing PLIM environment, to identify some possible actions to be taken to address these issues, and to identify some of the parties responsible for taking these actions. Some preliminary regulatory issues are noted below. This is not intended to be a comprehensive list of such issues but rather is intended to stimulate discussion among the experts attending this Workshop. One of the concerns in the regulatory arena is how the structural integrity of the plants can be assured for an extended lifetime. Technological advances directed toward the following are likely to be important factors in the regulatory process of life extension. - Preventive and corrective maintenance (e.g., water chemistry control, pressure vessel annealing, and replacement of core internals). - Ageing and degradation mechanisms and evaluation (e.g., embrittlement, wear, corrosion/erosion, fatigue, and stress corrosion). - Monitoring, surveillance, and inspection (e.g., fatigue monitoring and non-destructive testing). - Optimisation of maintenance (e.g., using risk-based analysis). On the business side, there is concern about technical support by manufacturers, fuel companies, and construction companies. Maintaining a strong technical base and skilled workers in a potentially declining environment is another concern in the regulatory community. Waste management and decommissioning remain significant issue regarding PLIM. These issues affect all three areas of concern - technology, business, and regulation. It is against this background, that the issues put forth in this paper are presented. The objective of presenting these

  9. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    International Nuclear Information System (INIS)

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties

  10. Nuclear regulatory legislation, 104th Congress. Volume 2, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document is the second of two volumes compiling statutes and material pertaining to nuclear regulatory legislation through the 104th Congress, 2nd Session. It is intended for use as a U.S. Nuclear Regulatory Commission (NRC) internal resource document. Legislative information reproduced in this document includes portions of the Paperwork Reduction Act, various acts pertaining to low-level radioactive waste, the Clean Air Act, the Federal Water Pollution Control Act, the National Environmental Policy Act, the Hazardous Materials Transportation Act, the West Valley Demonstration Project Act, Nuclear Non-Proliferation and Export Licensing Statutes, and selected treaties, agreements, and executive orders. Other information provided pertains to Commissioner tenure, NRC appropriations, the Chief Financial Officers Act, information technology management reform, and Federal civil penalties.

  11. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the Comprehensive Nuclear-Test-Ban Treaty. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Okko, O. (ed.)

    2012-07-01

    The regulatory control of nuclear materials (i.e. nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. Safeguards are required for Finland to comply with international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). The results of STUK's nuclear safeguards inspection activities in 2011 continued to demonstrate that the Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations.

  12. Nuclear buildings and sustainable development

    International Nuclear Information System (INIS)

    Gomah, A.M.H

    2009-01-01

    The main proposal of this thesis based on some practical notes and the theoretical readings, the mathematical equations which led to existing a shared relationship between the nuclear institutions and the economical development with preserving the environment and its recourses which achieves the concept of the sustainable development. The thesis aims also at recognizing the most important characteristics of the nuclear institutions , as the study interests in understanding how the nuclear energy can be distinguished from the other energy resources. Furthermore, the study in its intellectual framework interests in comparing a number of the nuclear institutions that the study finds them related to the research topic and assists in achieving the study goals, which represent in the environmental evaluation of the nuclear institutions inside its biological surroundings. The study consists of four main chapters in addition to the introduction and the conclusion as follows: The first chapter: Recognizing the nuclear institutions and their effect on the environment. The second chapter: Recognizing planning and generalizing the nuclear institutions. The third chapter: Recognizing the limits and standards of the planning and the designing of a nuclear institution. The fourth chapter: The nuclear institutions inside the suburban places.

  13. Synopsis of sustainability and nuclear power

    International Nuclear Information System (INIS)

    Ahmad, Ishfaq

    2001-01-01

    Full text: World population is steadily increasing and yet one-third of them - over two billion people - lack access to electricity. Development depends on energy, including electricity, and the alternative to development is poverty, disease, misery, and death. This is a recipe for chaos, instability and widespread violence. During the next fifty years energy demand is expected to triple while the demand for electricity will grow nearly five-fold; a substantial portion of the demand coming from developing countries. It will be an immense challenge to meet the increased demand in energy without sustaining long term damage to the environment including the surface and air pollution as well as global warming and associated ecological disasters. While most of world's energy is derived from fossil fuels and hydroelectric power, still with 434 nuclear reactors operating worldwide, nuclear power is meeting 16% of the world's annual electricity needs and providing it to more than a billion people. Nuclear power has the potential for meeting a substantial portion of the world's growing energy needs in an environment friendly and sustainable manner contributing to a prosperous and safe world for posterity. The problems that developing countries face in imbibing nuclear technology and promoting the use of nuclear power are daunting. However, as nuclear technology is a proven technology, then in a shrinking world a sharing of knowledge and technology should make it much easier. If the world has to move towards shared political values and a global economy it is imperative that there should be a global access to civilian nuclear technology. (author)

  14. United States Nuclear Regulatory Commission staff practice and procedure digest

    International Nuclear Information System (INIS)

    1990-03-01

    This document contains procedures for review by US Nuclear Regulatory Commission for reviewing and deciding on matters pertaining to nuclear power plant licensing. Also, contained within the document are decisions the Commission has made between July 1972 to September 1989. (F.S.D.)

  15. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  16. Nuclear Waste, Risks and Sustainable Development

    International Nuclear Information System (INIS)

    Karlsson, Mikael; Swahn, Johan

    2006-01-01

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We believe it is possible

  17. Nuclear Waste, Risks and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Swedish Society for Nature Conservation, Stockholm (Sweden); Swahn, Johan [Swedish NGO Office for Nuclear Waste Review (MKG), Goeteborg (Sweden)

    2006-09-15

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We

  18. Regulatory Activities for Licensee's Safety Culture

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Kwang Sik

    2008-01-01

    Weaknesses in safety culture have contributed to a number of incidents/accidents in the nuclear and other high hazard sectors worldwide in the past. These events have fostered an increasing awareness of the need for licensees to develop a strong safety culture to support successful and sustainable nuclear safety performance. Regulatory bodies are taking a growing interest in this issue, and several are actively working to develop and implement approaches to maintaining regulatory oversight of licensee safety culture. However, these approaches are not yet well-established, and it was considered prudent to share experiences and developing methodologies in order to disseminate good practices and avoid potential pitfalls. This paper presents the findings, conclusions and recommendations of international meetings and other countries' activities on safety culture and gives some suggestions for regulators to consider when planning regulatory oversight for licensee's safety culture

  19. U.S. Nuclear Regulatory Commission natural analogue research program

    International Nuclear Information System (INIS)

    Kovach, L.A.; Ott, W.R.

    1995-01-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process

  20. Nuclear and sustainable development; Nucleaire et developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, P.; Balle, St.; Barandas, Ch.; Basse-Cathalinat, B.; Bellefontaine, E.; Bernard, H.; Bouhand, M.H.; Bourg, D.; Bourgoignon, F.; Bourlat, Y.; Brunet, F.; Buclet, N.; Buquet, N.; Caron, P.; Cartier, M.; Chagneau, E.; Charles, D.; Chateau, G.; Collette, P.; Collignon, A.; Comtesse, Ch.; Crammer, B.; Dasnias, J.; Decroix, G.; Defoy, B.; Delafontaine, E.; Delcroix, V.; Delerue, X.; Demet, M.; Dimmers, G.; Dodivers, S.; Dubigeon, O.; Eimer, M.; Fadin, H.; Foos, J.; Ganiage, D.; Garraud, J.; Girod, J.P.; Gourod, A.; Goussot, D.; Guignard, C.; Heloury, J.; Hondermarck, B.; Hurel, S.; Jeandron, C.; Josse, A.; Lagon, Ch.; Lalleron, Ch.; Laurent, M.; Legrand, H.; Leveau, E

    2006-07-01

    On September 15. and 16., 2004, at Rene Delcourt invitation, President of the C.L.I. of Paluel and Penly, took place the 4. colloquium of the A.N.C.L.I.. Jean Dasnias, new President of the C.L.I., welcomed the colloquium. Hundred of persons participated. The place of the nuclear power in the energy perspectives of tomorrow, its assets and its weaknesses in front of the other energies and within the framework of a sustainable development, are so many subjects which were discussed. The different tackled subjects are: the stakes in the sustainable development; energy perspectives; the reactors of the fourth generation; nuclear power and transparency; sustainable development and I.R.S.N. (N.C.)

  1. Nuclear energy-the strategic role and sustain ability in china

    International Nuclear Information System (INIS)

    Pan Ziqiang; Shen Wenquan

    2008-01-01

    By analyzing the challenges of China's energy supply, an excellent perspective of nuclear power development in china has been described. Taking into account the mid-long term development requirements, a comprehensive, coordinated and sustainable nuclear power strategic consideration and proposal is put forward. National nuclear industry can not only catch up with the world advanced level in proper time, but also possess the enough stamina of sustainability. (authors)

  2. International Expert Team Concludes IAEA Peer Review of Finland's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: International safety experts today concluded a two-week International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in Finland. In its preliminary report, the Integrated Regulatory Review Service (IRRS) mission team found that the Radiation and Nuclear Safety Authority of Finland (STUK) is a competent and highly credible regulator that is open and transparent and derives great strength from the technical competence of its staff. ''Finland's comprehensive regulatory framework allows STUK to operate in practice as an independent regulatory body,'' said team leader Philippe Jamet, a commissioner of the French regulatory body ASN. The mission was conducted at the request of the Government of Finland from 15-26 October. The team interviewed members of STUK and officials from various ministries, as well as key players in the Finnish safety framework. Such IRRS missions are peer reviews based on IAEA Safety Standards, not inspections or audits. The team was made up of 18 members from Bulgaria, Canada, the Czech Republic, France, Germany, Iceland, Ireland, Romania, the Russian Federation, South Africa, Slovakia, Slovenia, Spain, Sweden, the United Arab Emirates, the United Kingdom and the United States, as well as six IAEA staff members. 'The IRRS mission and preparation for it was a unique occasion that involved the whole organization, provided motivation for improvement of the safety framework in Finland and assists STUK review its mission', said Tero Varjoranta, Director General of STUK. The IRRS team identified a number of good practices and achievements, including: - STUK's excellence in its safety assessment of nuclear power plants and waste repositories, in particular its demonstration that long-term political commitment is a necessity to sustain the creation of a waste repository as well as its regulatory oversight of medical applications of radiation sources; and - STUK's excellent record in

  3. New regulatory pathways and incentives for sustainable antibiotics: Recent European & US Initiatives

    DEFF Research Database (Denmark)

    Minssen, Timo

    2014-01-01

    ) and the COMBACTE and TRANSLOCATION projects under NewDrugs4BadBugs program, involving the EU Commission and the pharma industry. But also national initiatives, such as the successful Danish ban and regulations on antibiotic use in animal production, as well as educational efforts (the European Antibiotic Awareness......New regulatory pathways and incentives for sustainable antibiotics: Recent European & US Initiatives Posted on March 19, 2014 by Timo Minssen Please find attached a ppt presentation on “New regulatory pathways and incentives for sustainable antibiotics: Recent European & US Initiatives” given...... on March 7, 2014 at the Broad Institute of MIT and Harvard. The presentation was followed by a discussion moderated by US patent attorney Melissa Hunter-Ensor, Partner at Saul Ewing, Boston I started out by emphasizing increasing problems of antimicrobial resistance (AMR) on a global level, providing new...

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Germany

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Definitions; Licensing requirements); 4. Nuclear installations (Licensing regime; Protection of the environment against radiation effects; Emergency response; Surveillance of installations and activities); 5. Trade in nuclear materials and equipment; 6. Radiation protection (General; Principal elements of the Radiation Protection Ordinance; Additional radiation protection norms); 7. Radioactive waste management (Atomic Energy Act 2002; Radiation Protection Ordinance; International obligations); 8. Non-proliferation and physical protection (Non-proliferation regime; Physical protection regime); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities: Federal authorities (Federal Minister for the Environment, Nature Conservation and Nuclear Safety, Federal Minister for Education and Research, Federal Minister of Finance, Federal Minister of Transport, Building and Urban Affairs, Federal Minister for Economy and Technology, Federal Minister of Defence, Federal Office for Radiation Protection - BfS, Federal Office of Economics and Export Control); Authorities of the Laender; 2. Advisory bodies (Reactor Safety Commission - RSK; Radiation Protection Commission - SSK; Disposal Commission - ESK; Nuclear Technology

  5. U.S. Nuclear Regulatory Commission nuclear safety assistance to the CEE and NIS countries

    International Nuclear Information System (INIS)

    Blaha, J.

    2001-01-01

    NRC participates in bilateral and multilateral efforts to strengthen the regulatory authorities of countries in which Soviet design NPPs are operated. Countries involved are the New Independent States of the Soviet Union (Armenia, Kazakhstan, Russia and Ukraine) and of Central and Eastern Europe (Bulgaria, Czech Republic, Hungary, Lithuania and Slovak Republic). NRC's goal is to see that its counterparts receive the basic tools, knowledge and understanding needed to exercise effective regulatory oversight, consistent with internationally accepted norms and standards. The bilateral assistance started in 1991. $44 mill. are provided to the countries. The multilateral activities NRC participates in include: H-7 Nuclear Safety Working Group, EBRD - Administered Nuclear Safety Account and Chernobyl Sarcophagus Fund and IAEA

  6. Development of safety-related regulatory requirements for nuclear power in developing countries. Key issue paper no. 4

    International Nuclear Information System (INIS)

    Han, K.I.

    2000-01-01

    In implementing a national nuclear power program, balanced regulatory requirements are necessary to ensure nuclear safety and cost competitive nuclear power, and to help gain public acceptance. However, this is difficult due to the technology-intensive nature of the nuclear regulatory requirements, the need to reflect evolving technology and the need for cooperation among multidisciplinary technical groups. This paper suggests approaches to development of balanced nuclear regulatory requirements in developing countries related to nuclear power plant safety, radiation protection and radioactive waste management along with key technical regulatory issues. It does not deal with economic or market regulation of electric utilities using nuclear power. It suggests that national regulatory requirements be developed using IAEA safety recommendations as guidelines and safety requirements of the supplier country as a main reference after careful planning, manpower buildup and thorough study of international and supplier country's regulations. Regulation making is not recommended before experienced manpower has been accumulated. With an option that the supplier country's regulations may be used in the interim, the lack of complete national regulatory requirements should not deter introduction of nuclear power in developing countries. (author)

  7. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  8. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic and on Safety of Nuclear Installations in the Slovak Republic in 2011

    International Nuclear Information System (INIS)

    2012-05-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2011 is presented. These activities are reported under the headings: Foreword; (1) Legislative activities; (2) Regulatory Activities; (3) Nuclear safety of nuclear power plants; (4) Nuclear Materials in SR; (5) Nuclear materials and physical protection of nuclear materials; (6) Scope of powers of the office building; (7) Emergency planning and preparedness; (8) International activities; (9) Public communication; (10) Nuclear Regulatory Authority of the Slovak Republic; (11) UJD SR organization chart; The International Nuclear Event Scale (INES); (12) Abbreviations.

  9. Nuclear Regulatory Commission issuances, January 1997. Volume 45, Number 1

    International Nuclear Information System (INIS)

    1997-01-01

    This book contains issuances of the Atomic Safety and Licensing Board, Nuclear Regulatory Commission and Director's Decision for January 1997. The issuances concern Sequoyah Fuels Corporation and General Atomics Gore, Oklahoma Site decontamination and decommissioning funding; Louisiana Energy Services, Claiborne Enrichment Center denies appeal to review emergency planning; General Public Utilities Nuclear Corporation, Oyster Creek Nuclear Generating station, challenges to technical specifications concerning spent fuel pool; and Consumers Power Company, Palisades Nuclear Plant dry cask storage of spent nuclear fuel

  10. Technology Platform on Sustainable Nuclear Energy - a report on the vision

    International Nuclear Information System (INIS)

    Potocnik, J.

    2008-01-01

    The aim of the report is to prepare the establishment of the Technology Platform on Sustainable Nuclear Energy (SNP-TP). The report puts forth a version of the short-term, medium-term and long-term development of nuclear fission technologies, whose goal it is to achieve sustainable nuclear power generation, significant improvement of its economic indices, and continuous safety improvement, and to prevent it from abuse. The document includes proposals for timescales and milestones of the development and deployment of potentially sustainable nuclear technologies and provisions for a harmonization of educational and training activities in all EU Member States and for innovation of their research infrastructures. For the development of nuclear it is vital that it gains public acceptance. Therefore it is necessary to support research in the safety of nuclear facilities, staff and public protection from ionizing radiation, handling of all kinds of nuclear waste, and inspection methods involving the public. The time plans proposed will form the backbone of the Strategic Research Agenda (SRA), which should help Europe keep its leadership position in nuclear power, both in the research domain and in the industrial domain. The report emphasizes that nuclear will hold a key position among European energy sources, and calls upon European countries to make all efforts to meet the vision for a sustainable nuclear energy in line with European Commission's Strategic Plan for Energy Technologies. (author)

  11. IAEA Mission Concludes Peer Review of Pakistan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    An international team of senior nuclear safety experts today concluded a nine-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for the safety of operating nuclear power plants in the United States of America (USA). The Integrated Regulatory Review Service (IRRS) mission was a follow-up to the IRRS mission to the US Nuclear Regulatory Commission (NRC) that was conducted in 2010, with the key additional aim of reviewing whether the response of the US regulatory regime to the implications of the accident at TEPCO's Fukushima Daiichi Plant had been timely and effective. The mission team concluded that the recommendations and suggestions made by the 2010 IRRS mission have been taken into account systematically under the NRC's subsequent action plan, with significant progress in many areas and many improvements carried out. One of two recommendations and 19 out of 20 suggestions made by the 2010 IRRS mission have been effectively addressed and can therefore be considered closed. The outstanding recommendation relates to the NRC's review of its Management System, which is in the process of being finalised. The IRRS team also found that the NRC acted promptly and effectively after the Fukushima accident in the interests of public health and safety, and that the report of its Near-Term Task Force represents a sound and ample basis for taking into account the lessons learned from the accident

  12. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  13. Regulatory control of nuclear safety in Finland. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of

  14. Regulatory control of nuclear safety in Finland. Annual report 1998

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-10-01

    The report describes regulatory control of the safe use of nuclear energy by the Radiation and Nuclear Safety Authority (STUK) in 1998. STUK is the Finnish nuclear safety authority. The submission of this report to the Ministry of Trade and Industry is stipulated in Section 121 of the Nuclear Energy Decree. It was verified by regulatory control that the operation of Finnish NPPs was in compliance with conditions set out in the operating licences of the plants and with regulations currently in force. In addition to supervising the normal operation of the plants, STUK oversaw projects carried out at the plant units, which related to the uprating of their power and the improvement of their safety. STUK issued to the Ministry of Trade and Industry a statement about applications for the renewal of the operating licences of Loviisa and Olkiluoto NPPs, which had been submitted by Imatran Voima Oy and Teollisuuden Voima Oy. Regulatory activities in the field of nuclear waste management were focused on the storage and final disposal of spent fuel as well as the treatment, storage and final disposal of reactor waste. STUK issued a statement to the Ministry of Trade and Industry about an environmental impact assessment programme pertaining to a spent fuel repository project, which had been submitted by Posiva Oy, as well as on Imatran Voima Oy's application concerning the operation of a repository for medium- and low-level reactor waste from Loviisa NPP. The use of nuclear materials was in compliance with the regulations currently in force and also the whereabouts of every batch of nuclear material were ensured by safeguards control. In international safeguards, important changes took place, which were reflected also in safeguards activities at national level. International co-operation continued based on financing both from STUK's budget and from additional sources. The focus of co-operation funded from outside sources was as follows: improvement of the safety of Kola and

  15. International Nuclear and Radiation Safety Experts Conclude IAEA Peer Review of Slovenia's Regulatory System

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of senior nuclear safety experts today concluded a 10-day mission to review the regulatory framework for nuclear and radiation safety in Slovenia. The team identified good practices and gave advice on areas for future improvements. The IAEA has conveyed the team's main conclusions to the Government of Slovenia and a final report will be submitted by the end of 2011. At the request of the Slovenian Government, the IAEA assembled a team of 10 senior regulatory experts from nine nations to conduct the Integrated Regulatory Review Service (IRRS) mission involving the Slovenian Nuclear Safety Administration (SNSA). The mission is a peer review based on the IAEA Safety Standards. Andrej Stritar, Director of Slovenian Nuclear Safety Administration, stressed ''how important it is for a small country like Slovenia to tightly follow international standards in the area of nuclear safety.'' He also expressed his gratitude to the IAEA, and the countries from which team members came, for their support and for their intensive work during the last ten days. Mission Team Leader Colin Patchett, Deputy Chief Inspector from the UK's Office for Nuclear Regulation commended ''the Slovenian authorities for their commitment to nuclear and radiation safety regulation and for sharing their experience.'' The IRRS team reviewed Slovenia's current regulatory framework and all SNSA-regulated facilities and activities, as well as the regulatory implications of the TEPCO Fukushima Daiichi accident. The IRRS team identified particular strengths in the Slovenian regulatory system, including: Through its legal framework, the Slovenian government has appointed SNSA to regulate its nuclear safety program and SNSA has in place an effective process for carrying out this responsibility; and Slovenia's response to the accident at the TEPCO Fukushima Daiichi power plant has been prompt and effective. Communications with the public, development of actions for improvement

  16. Regulation of the life cycle of nuclear installations. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    1999-06-01

    This report arises from the sixth series of peer discussions on regulatory practices entitled 'Regulation of Life Cycle of Nuclear Installations'. Senior regulators from 18 Member States participated in three peer group discussions during 1997-1998. This report presents the outcome of these meetings and recommendations of good practices identified by senior regulators, which do not necessarily reflect those of the governments of the nominating Member States, the nominating organizations, or the IAEA. The purpose of this report is to disseminate the views which the senior regulators presented at the meetings relating to the policies, principles and requirements imposed by regulatory bodies for the safe management of the life cycle of a nuclear installation. The intention of doing this is to assist Member States in the formulation and enhancement of their regulatory control over PLCM by identifying commonly accepted good practices. This report is structured to cover the subject matter under the following main headings: Policies and Principles for the Life Cycle Management of Nuclear Installations; Responsibilities of the Regulatory Body and the Operating Organization; Requirements and Criteria Imposed by the Regulatory Body; Licensing and Regulatory Assessment for Plant Life Cycle Management; and Good Practices

  17. Nuclear Regulatory Commission Issuances, September 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Contents include: Issuances of the Nuclear Regulatory Commission--Commonwealth Edison Company (Dresden Nuclear Power Station, Unit 1), Consolidated Edison Company of New York (Indian Point, Unit 2), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit 1), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Power Authority of the State of New York (Indian Point, Unit 3), Texas Utilities Generating Company, et al. (Comanche Peak Steam Electric Station, Units 1 and 2); Issuances of Atomic Safety and Licensing Appeal Boards--Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Philadelphia Electric Company, et al. (Peach Bottom Atomic Power Statin, Units 2 and 3), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Statin, Unit No. 2), Public Service Electric and Gas Company (Hope Creek Generating Station, Units 1 and 2), The Toledo Edison Company, et al. (Davis-Besse Nuclear Power Station, Units 2 and 3); Issuances of the Atomic Safety Licensing Boards--Cleveland Electric Illuminating Company, et al. (Perry Nuclear Power Plant, Units 1 and 2), Commonwealth Edison Company (Dresden Station, Units 2 and 3), Houston Lighting and Power Company (Allens Creek Nuclear Generating Station, Unit 1), Southern California Edison Company, et al. (San Onofre Nuclear Generating Station, Units 2 and 3), Texas Utilities Generating Company, et al. (Comanche Peak Steam Electric Station, Units 1 and 2), Texas Utilities Generating Company, et al

  18. International Expert Team Concludes IAEA Peer Review of Slovakia's Regulatory Framework for Nuclear Safety

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of senior nuclear safety and radiation protection experts today concluded an 11-day mission to review the regulatory framework for nuclear safety in Slovakia. At the request of the Slovak Government, the IAEA assembled a team of 12 senior regulatory experts from 12 nations to conduct the Integrated Regulatory Review Service (IRRS) mission involving the Nuclear Regulatory Authority of the Slovak Republic (UJD SR). The international experts also met officials from the Public Health Authority of the Slovak Republic (UVZ SR) regarding the regulation of occupational radiation protection in nuclear facilities. The mission is a peer review based on the IAEA Safety Standards. Marta Ziakova, Chairperson of the Nuclear Regulatory Authority of Slovak Republic, declared that ''The IRRS mission has a great value for the future development and orientation of the UJD SR.'' ''Slovakia has established a regulatory framework for nuclear safety which is in line with international standards and practice,'' said Mission Team Leader Andrej Stritar, Director of the Slovenian Nuclear Safety Administration. The main observations of the IRRS Review team included: UJD SR operates with independence and transparency; UJD SR has developed and implemented a systematic training approach to meet its competence needs; and in response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station, UJD SR has reacted and communicated to interested parties, including the public. The good practices identified by the IRRS Review Team include: UJD SR has a comprehensive and well-formalized strategic approach to informing and consulting interested parties; UJD SR has developed and implemented a structured approach to training and developing its staff; and Detailed legal requirements provide a solid basis for on-site and off-site response in nuclear emergencies coordinated with local authorities. The IRRS Review team identified areas for further improvement and believes

  19. The regulatory approach for spent nuclear storage and conditioning facility: The Hanford example

    International Nuclear Information System (INIS)

    Sellers, E.D.; Mooers, G.C. III; Daschke, K.D.; Driggers, S.A.; Timmins, D.C.

    1996-01-01

    Hearings held before the House Subcommittee on Energy and Mineral Resources in March 1994, requested that officials of federal agencies and other experts explore options for providing regulatory oversight of the US Department of Energy (DOE) facilities and operations. On January, 25, 1995, the DOE, supported by the White House Office of Environmental Quality and the Office of Management and Budget, formally initiated an Advisory Committee on External Regulation of DOE Nuclear Safety. In concert with this initiative and public opinion, the DOE Richland Operations Office has initiated the K Basin Spent Nuclear Fuel Project -- Regulatory Policy. The DOE has established a program to move the spent nuclear fuel presently stored in the K Basins to a new storage facility located in the 200 East Area of the Hanford Site. New facilities will be designed and constructed for safe conditioning and interim storage of the fuel. In implementing this Policy, DOE endeavors to achieve in these new facilities ''nuclear safety equivalency'' to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. The DOE has established this Policy to take a proactive approach to better align its facilities to the requirements of the NRC, anticipating the future possibility of external regulation. The Policy, supplemented by other DOE rules and directives, form the foundation of an enhanced regulatory, program that will be implemented through the DOE K Basin Spent Nuclear Fuel Project (the Project)

  20. Sustainability, Ethics and Nuclear Energy : Escaping the Dichotomy

    NARCIS (Netherlands)

    Kermisch, C.F.N.; Taebi, B.

    2017-01-01

    In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions,

  1. Proceedings of NUCLEAR 2009 international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2009-01-01

    The proceedings of the NUCLEAR 2009 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 27 - 29 2009 contain 92 communications presented in two plenary sessions (6 and 4 talks, respectively) and three sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (8 papers); Section 1.2 - Nuclear reactors (15 papers); Section 1.3 - Nuclear technologies and materials (32 papers); Section 2.1 - Radioactive waste management (18 papers; Section 2.2 and Section 2.3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Education, continuous formation and knowledge transfer (9 papers); Section 3.2 -Strategies in energy (Round table) (5 papers). A number of 17 papers although programmed have not actually been presented within these proceedings. These papers are presented as abstracts in 'Nuclear 2009 - BOOK of ABSTRACTS', separately processed

  2. Regulatory assessment of safety culture in nuclear organisations - current trends and challenges

    International Nuclear Information System (INIS)

    Tronea, M.

    2010-01-01

    The paper gives an overview of the current practices in the area of regulatory assessment of safety culture in nuclear organisations and of the associated challenges. While the assessment and inspection procedures currently in use by regulatory authorities worldwide are directed primarily at verifying compliance with the licensing basis, there is a recognised need for a more systematic approach to the identification, collection and review of data relevant to the safety culture in licensees' organisations. The paper presents a proposal for using the existing regulatory inspection practices for gathering information relevant to safety culture and for assessing it in an integrated manner. The proposal is based on the latest requirements and guidance issued by the International Atomic Energy Agency (IAEA) on management systems for nuclear facilities and activities, particularly as regards the attributes needed for a strong nuclear safety culture. (author)

  3. Conformance to Regulatory Guide 1.97, Arkansas Nuclear One, Unit No. 1

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-08-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 1 of Arkansas Nuclear One and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  4. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    International Nuclear Information System (INIS)

    2009-06-01

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  5. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  6. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  7. Sustainable Nuclear Energy for the 21st Century

    International Nuclear Information System (INIS)

    2010-09-01

    Concerns over energy resource availability, energy security and climate change suggest an important role for nuclear power in supplying sustainable energy in the 21st century. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000 by a resolution of the IAEA General Conference to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. It is a mechanism for IAEA Member States that have joined the project as INPRO members to collaborate on topics of joint interest. By 2010, INPRO membership had grown to 30 countries and the European Commission. The results of INPRO's activities, however, are made available to all IAEA Member States

  8. Different regulatory strategies in regulation of nuclear power projects: An Indian experience

    International Nuclear Information System (INIS)

    Khan, Sohail Ahmad

    2002-01-01

    Regulatory strategy needed for management of safety and safety culture involves careful planning and use of engineering concepts keeping in mind feasibility to implement certain safety requirements. It also requires adequate attention on working environment and mental conditions of designers, operating and maintenance staff and regulators. Different strategies followed during safety review and regulatory inspection of nuclear power projects for improving status of safety management and safety cultures have given certain results. The present paper brings out certain experience gained during regulation of Indian Nuclear Power Projects by Atomic Energy Regulatory Board of India in the area of management of safety and safety culture. (author)

  9. Strengthening Regulatory Competence in Pakistan

    International Nuclear Information System (INIS)

    Sadiq, M.

    2016-01-01

    Capacity building of Pakistan Nuclear Regulatory Authority is considered an essential element in pursuit of its vision to become a world class regulatory body. Since its inception in 2001, PNRA has continuously endeavoured to invest in its people, develop training infrastructure and impart sound knowledge and professional skills with the aim to improve its regulatory effectiveness. The use of nuclear and radioactive material in Pakistan has increased manifold in recent years, thus induction of more manpower was needed for regulatory oversight. PNRA adopted two pronged approach for meeting the manpower demand (a) employment of university graduates through fast track recruitment drive and (b) induction of graduates by offering fellowships for Master degree programs. Although, the newly employed staff was selected on the basis of their excellent academic qualifications in basic and applied sciences, but they required rigorous knowledge and skills in regulatory perspectives. In order to implement a structured training program, PNRA conducted Training Needs Assessment (TNA) and identified competency gaps of the regulatory staff in legal, technical, regulatory practice and behavioural domains. PNRA took several initiatives for capacity building which included establishment of a training centre for sustainability of trainings, initiation of a fellowship scheme for Master program, attachment of staff at local institutes for on-the-job training and placement at foreign regulatory bodies and organizations for technical development with the assistance of IAEA. The above strategies have been very beneficial in competence building of the PNRA staff to perform all regulatory activities indigenously for nuclear power plants, research reactors and radiation facilities. Provision of vibrant technical support to IAEA and Member States in various programs by PNRA is a landmark of these competence development efforts. This paper summarizes PNRA initiatives and the International Atomic

  10. Challenges in long-term operation of nuclear power plants - Implications for regulatory bodies

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Van Wonterghem, Frederik; Khouaja, Hatem; Vilpas, Martti; Osouf, Nicolas; Harikumar, S.; Ishigaki, Hiroki; Osaki, Toru; Yamada, Tomoho; Carlsson, Lennart; Shepherd, David; Galloway, Melanie; Liszka, Ervin; Svab, Miroslav; Pereira, Ken; Huerta, Alejandro

    2012-01-01

    Nuclear power reactors have become a major source of electricity supply in many countries in the past half a century. Based on this experience, many operators have sought and have received authorisation for long-term operation, whereby plant operation continues beyond the period considered in the design of the plant. Acceptance of a nuclear power plant for extended service should be based on assurance of the fitness of the plant and the operator for safe and reliable operation over the entire period considered for long-term operation. This assurance may be obtained by establishment of appropriate regulatory requirements, specification of goals and safety levels and regulatory assessment and oversight of the operator's programme for long-term operation. The operators and regulators should ensure that operating experience continues to be evaluated during long-term operation to ensure that any relevant lessons are effectively applied. Other considerations for assurance of safe operation are effective management of ageing, possible need for safety improvements, application of lessons learnt from operating experience, evaluation of environmental impacts, adequate staff resources and performance, review of security at the plant, action in response to emerging issues, and openness and transparency in the transition to long-term operation. Even though most of these considerations are addressed under the regulatory framework that applies to the initial operating period, additional regulatory activities in these areas may be necessary for long-term operation. Although there can be significant differences in regulatory approaches used by different countries for evaluating acceptability of long-term operation, there is general agreement on the purposes and goals of the regulatory reviews. An authorisation of long-term operation could involve a licence renewal or a periodic safety review or an approach that melds elements of both. This report presents guidance that is intended

  11. As to achieve regulatory action, regulatory approaches

    International Nuclear Information System (INIS)

    Cid, R.; Encinas, D.

    2014-01-01

    The achievement of the effectiveness in the performance of a nuclear regulatory body has been a permanent challenge in the recent history of nuclear regulation. In the post-Fukushima era this challenge is even more important. This article addresses the subject from two complementary points of view: the characteristics of an effective regulatory body and the regulatory approaches. This work is based on the most recent studies carried out by the Committee on Nuclear Regulatory Activities, CNRA (OECD/NEA), as well as on the experience of the Consejo de Seguridad Nuclear, CSN, the Spanish regulatory body. Rafael Cid is the representative of CSN in these project: Diego Encinas has participated in the study on regulatory approaches. (Author)

  12. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2004

    International Nuclear Information System (INIS)

    Seliga, M.

    2005-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2004 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear power plants; (3.1) Assessment and inspection of other nuclear installations; (3.2) Safety analyses; (4) Nuclear materials and physical protection of nuclear installations; (5) Radioactive waste; (6) Quality assurance; (7) Personnel qualification and training; (8) Emergency preparedness; (9) International co-operation; (10) Public information; (11) Personnel and economy data; Appendix: Abbreviations; INES

  13. Strategic Considerations for the Sustainable Remediation of Nuclear Installations

    International Nuclear Information System (INIS)

    Miller, Susan; Wilson, Ian; Decung, Fabien; Ollivier Dehaye, Catherine; Pellenz, Gilles; Palut-Laurent, Odile; Nitzsche, Olaf; Rehs, Bernd; Altavilla, Massimo; Osimani, Celso; Florya, Sergey; Revilla, Jose-Luis; Efraimsson, Henrik; Baines, Kim; Clark, Anna; Cruickshank, Julian; Mitchell, Nick; Mobbs, Shelly; Orr, Peter; Abu-Eid, Rateb Boby; Durham, Lisa; Morse, John; Walker, Stuart; Weber, Inge; ); Monken-Fernandes, Horst; )

    2016-01-01

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable sites, or parts of sites, to be reused. Although such activities are relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic drawbacks and benefits. Site remediation should thus be sustainable and result in an overall net benefit. This report draws on recent experience of NEA member countries in nuclear site remediation during decommissioning in order to identify strategic considerations for the sustainable remediation of subsurface contamination - predominantly contaminated soil and groundwater - to describe good practice, and to make recommendations for further research and development. It provides insights for the decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so as to ensure the sustainable remediation of nuclear sites, now and in the future. (authors)

  14. Nuclear technology for sustainable development and FNCA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    2004-01-01

    Nuclear techniques have been contributing to sustainable development and human welfare through their applications in agriculture, health care, food supply, industry, water resources and environmental conservation. Nuclear techniques are more advantageous and/or complementary with other techniques to achieve goals. For many applications nuclear technique is more environmentally friendly because it does not need chemical agents to induce necessary reactions. This paper also illustrates successful applications of nuclear techniques and activities of the regional nuclear cooperation in Asia, FNCA (Forum for Nuclear Cooperation in Asia) to achieve common goals with limited resources. (author)

  15. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  16. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2003

    International Nuclear Information System (INIS)

    Seliga, M.

    2004-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2003 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Radiation safety

  17. Sustainable development - the potential contribution of nuclear energy

    International Nuclear Information System (INIS)

    Bourdier, Jean-Pierre; Barre, Bertrand; Durret, Louis-Francois

    1998-01-01

    Sustainable development combines development, durability and sustainability. Energy is crucial for development: it brings work, nutrition, health, security, community, etc. Electrical energy offers the most possibilities for the consumer, particularly as regards the problems of pollution on the site of consumption. Nuclear generation is one of the best ways of producing electricity. Midway between stock energies and flow energies, it has several advantages: low consumption of resources, safety, compactness and cleanliness. Waste is not a specifically nuclear problem: it should be considered in terms of a life cycle analysis; construction, dismantling and functioning have to be assessed. The size of certain energies' contribution to the greenhouse effect is therefore made clear. Reprocessing represents a saving of energy, without environmental or health damage. It contributes to energy control, and therefore to sustainable development

  18. Regulatory challenges for independent organization and licensing procedures for Egypt first nuclear power program

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2012-01-01

    In March 2010 the Government of Egypt issued an Ordinance creating an independent regulatory body the Egypt Nuclear and Radiological Regulatory Authority (NRRA) reporting directly to the Prime Minister and responsible for matters dealing with protection of the radiation worker, public and environment from the harmful effects of ionizing radiation. A little more than 2 years have elapsed since this date. Some of the challenges faced by NRRA to its regulatory independence are given below. This paper will discuss the major challenges relating to Egyptian nuclear power program and specially the regulatory effectiveness and licensing procedures compared to international comparison.

  19. Climate change, nuclear risks and nuclear disarmament. From security threats to sustainable peace

    Energy Technology Data Exchange (ETDEWEB)

    Scheffran, Juergen [Hamburg Univ. (Germany). Research Group Climate Change and Security

    2009-07-01

    In the future, nuclear and climate risks may interfere with each other in a mutually enforcing way. Con-flicts induced by climate change could contribute to global insecurity and create more incentives for states to rely on military force, including nuclear weapons. Rather than being a direct cause of war, cli-mate change significantly affects the delicate balance between social and environmental systems in a way that could undermine human security and societal stability with potentially grave consequences for international security. Increased reliance on nuclear energy to reduce carbon emissions will contribute to the risks of nuclear proliferation. A renewed nuclear arms race would consume considerable resources and undermine the conditions for tackling the problem of climate change in a cooperative manner. Nuclear war itself would severely destabilize human societies and the environment, not to speak of the possibility of a nuclear winter that would disrupt the atmosphere. On the other hand, finding solutions to one problem area could help to find solutions in the other. Pre-venting the dangers of climate change and nuclear war requires an integrated set of strategies that ad-dress the causes as well as the impacts on the natural and social environment. Institutions are needed to strengthen common, ecological and human security, build and reinforce conflict-resolution mechanisms and low-carbon energy alternatives, and create sustainable lifecycles that respect the capabilities of the living world. This article examines the linkages between nuclear and climate risks, identifies areas where both threats converge, and offers an approach to move from living under these security threats to building sustain-able peace. By bringing to light the multidimensional interplay between climate change, nuclear risks and nuclear disarmament, this study aims to help the reader grasp their interconnectedness and recognize its critical implications for the strategic security

  20. Climate change, nuclear risks and nuclear disarmament. From security threats to sustainable peace

    International Nuclear Information System (INIS)

    Scheffran, Juergen

    2009-01-01

    In the future, nuclear and climate risks may interfere with each other in a mutually enforcing way. Con-flicts induced by climate change could contribute to global insecurity and create more incentives for states to rely on military force, including nuclear weapons. Rather than being a direct cause of war, cli-mate change significantly affects the delicate balance between social and environmental systems in a way that could undermine human security and societal stability with potentially grave consequences for international security. Increased reliance on nuclear energy to reduce carbon emissions will contribute to the risks of nuclear proliferation. A renewed nuclear arms race would consume considerable resources and undermine the conditions for tackling the problem of climate change in a cooperative manner. Nuclear war itself would severely destabilize human societies and the environment, not to speak of the possibility of a nuclear winter that would disrupt the atmosphere. On the other hand, finding solutions to one problem area could help to find solutions in the other. Pre-venting the dangers of climate change and nuclear war requires an integrated set of strategies that ad-dress the causes as well as the impacts on the natural and social environment. Institutions are needed to strengthen common, ecological and human security, build and reinforce conflict-resolution mechanisms and low-carbon energy alternatives, and create sustainable lifecycles that respect the capabilities of the living world. This article examines the linkages between nuclear and climate risks, identifies areas where both threats converge, and offers an approach to move from living under these security threats to building sustain-able peace. By bringing to light the multidimensional interplay between climate change, nuclear risks and nuclear disarmament, this study aims to help the reader grasp their interconnectedness and recognize its critical implications for the strategic security

  1. First update to the US Nuclear Regulatory Commission's regulatory strategy for the high-level waste repository program

    International Nuclear Information System (INIS)

    Johnson, R.L.; Linehan, J.J.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) staff has updated its initial regulatory strategy for the High-Level Waste Repository Licensing Program. The update describes changes to the initial strategy and summarizes progress and future activities. This paper summarizes the first update of the regulatory strategy. In general the overall strategy of identifying and reducing uncertainties is unchanged. Identifying regulatory and institutional uncertainties is essentially complete, and therefore, the current and future emphasis is on reducing those regulatory and institutional uncertainties identified to date. The NRC staff has improved the methods of reducing regulatory uncertainties by (1) enhancing the technical basis preparation process for potential rulemakings and guidance and (2) designing a new guidance document, called a staff position, for clarifying regulatory uncertainties. For guiding the US DOE's reduction of technical uncertainties, the NRC staff will give more emphasis to prelicense application reviews and less emphasis on preparing staff technical positions

  2. Let nuclear technology create new brilliancy for china's sustainable development

    International Nuclear Information System (INIS)

    Du Xiangwan

    2008-01-01

    This paper summarizes the development and application directions of nuclear technology, including five aspects: nuclear technology and energy nuclear technology and medicine, nuclear anclear analysis technology, nuclear radiation technology, astronautics and voyage's nuclear power, etc. The paper discusses the importance of them to sustainable development and generalizes the development trilogy of nuclear science and technology and its prospect. (authors)

  3. Key regulatory challenges for future nuclear power plants

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2001-01-01

    Key regulatory challenges for future nuclear power plants are concerned with fuel and cladding materials taken to higher burnup and operated at higher temperatures. Particular challenges are related to reduction in waste toxicity, understanding and control of coolant corrosion, qualification of fuel particles, new maintenance practices

  4. A Conceptual Study on the Sustainability of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Choi, Hang Bok; Lim, Chae Young; Yoon, Ji Sup; Park, Seong Won

    2007-06-15

    Due to the current population growth and industrialization, energy consumption is increasing continuously. The world population and energy consumption were 2.5 billion and 1.5 billion tons of equivalent oil in 1950, but they are expected to be 9.2 billion and 60 tons, respectively, in 2100. This amount of energy consumption will result in an exhaustion of fossil resources and cause a serious environmental problem such as global warming. Therefore it is necessary to develop sustainable energy resources that maintain current economic growth and social welfare level without burdening a next generation's life style. Nuclear energy has an excellent competitiveness from the viewpoint of a sustainability. Especially nuclear power can effectively reduce greenhouse gas emissions and can be developed in a complementary way with a new and renewable energy, such as solar and wind power, and hydrogen energy. It is expected that nuclear power will maintain its sustainability in the following directions: Implementation of a fast reactor fuel cycle with a high uranium utilization efficiency, Implementation of a pyro-process with an excellent proliferation-resistance, Activity on the enhancement of a domestic social acceptance for nuclear power, International cooperation and joint research for the enhancement of an international nuclear transparency, Optimization of a nuclear grid structure through an accommodation of new and renewable energy resources, Application to a mass production of hydrogen energy.

  5. A Review on the Regulatory Strategy of Human Factors Engineering Consideration in Pakistan Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sohail, Sabir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Seong Nam [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the legal and regulatory infrastructure available in Pakistan for HFE requirements is assessed, and the methodology for strengthening of legal infrastructure is presented. The regulatory strategy on evaluation of HFE consideration should provide reviewers with guidance on review process. Therefore, the suggested methodology is based on preparation of guidance documents such as checklist, working procedures, S and Gs etc.; incorporation of PRM elements in regulatory system; and finally the development of PRM implementation criteria. Altogether, the scheme provide the enhancement in regulatory infrastructure and also the effective and efficient review process. The Three Mile Island (TMI) accident brought the general consensus among the nuclear community on the integration of human factors engineering (HFE) principles in all phases of nuclear power. This notion has further strengthened after the recent Fukushima nuclear accident. Much effort has been put over to incorporate the lesson learned and continuous technical evolution on HFE to device different standards. The total of 174 ergonomics standards are alone identified by Dul et al. (2004) published by International Organization for Standardization (ISO) and the European Committee for Standardization (CEN) and number of standards and HFE guidelines (S and Gs) are also published by organizations like Institute for Electrical and Electronics Engineering (IEEE), International Electrotechnical Commission (IEC), International Atomic Energy Agency (IAEA), United States Nuclear Regulatory Commission (USNRC), etc. The ambition of effective review on HFE integration in nuclear facility might be accomplished through the development of methodology for systematic implementation of S and Gs. Such kind of methodology would also be beneficial for strengthening the regulatory framework and practices for countries new in the nuclear arena and with small scale nuclear program. The objective of paper is to review the

  6. Methodology used by the spanish nuclear regulatory body in the radiological impact assessment

    International Nuclear Information System (INIS)

    Diaz de la Cruz, F.

    1979-01-01

    The radiological risk assessment derived from the operation of a nuclear power plant is done in Spain with methods taken basically from the U.S.N.R.C. regulatory guides. This report presents the way followed by the Spanish Regulatory Body in order to arrive to an official decision on the acceptability of a nuclear plant in the different steps of the licensing. (author)

  7. Romanian regulatory requirements on nuclear field specific education needs

    International Nuclear Information System (INIS)

    Biro, L.; Velicu, O.

    2004-01-01

    This work is intended as a general presentation of the educational system and research field, with reference to nuclear sciences, and the legal system, with reference to requirements established by the regulatory body for the professional qualification and periodic training of personnel involved in different activities in the nuclear field. Thus, part 2 and 3 of the work present only public information regarding the education in nuclear sciences and nuclear research in Romania; in part 4 the CNCAN requirements for the personnel training, specific to nuclear activities are slightly detailed; part 5 consists of few words about the public information activities in Romania; and part 6 tries to draw a conclusion. (authors)

  8. On nuclear power, population and sustainable global civilization

    International Nuclear Information System (INIS)

    Ishiguro, Yuji

    2007-01-01

    Humanity is facing a multitude of difficult problems that threaten not only human development but the very continuity of civilization. The fundamental cause is the size of the human population but at present the subject is not discussed in international fora. It is not clear if it is wishfully avoided or if it is not recognized as the fundamental problem. Without limiting fertility and population globally, there will be no future for civilization as we know it and there will be no need for nuclear power as a source of energy. Instead, nuclear power will be the principal agent of the end. The nuclear community is in a position to point out the problem and propose a solution. Principles of sustainability and a path to a sustainable global civilization are shown. (author)

  9. Summary of the financial and ratepayer impacts of nuclear power plant regulatory reform

    International Nuclear Information System (INIS)

    Turpin, A.Y.

    1985-05-01

    This report estimates the financial impact on utilities and ratepayers of nuclear power plant regulatory reforms. Three situations are investigated: (1) no reform, (2) combined early-site-permit and preapproval-of-design reforms, and (3) total reform. Also, two types of capacity additions are evaluated using two utility companies as case studies: (1) nuclear plus generic capacity, and (2) all-nuclear capacity. Results indicate that both the shorter construction lead-time afforded by nuclear regulatory reform and the timing of new capacity additions are extremely important in enabling a utility to remain in a healthy financial position while adding capacity to meet future demand and at the same time reducing the price of electricity to the ratepayers. The lower added capital costs and fuel cost savings obtained from reformed nuclear units allow a utility dependent on oil and gas steam generation to experience price decreases as these new units begin commercial operation. The study also points out that in simulations excluding the shorter lead-time generic capacity, price increases were greater and financial performance was worse for both utilities. These facts indicate the importance of shortening the construction lead-time through nuclear regulatory reform so that nuclear power will be more competitive with coal. 19 refs., 4 figs., 3 tabs

  10. An overview of the licensing approach of the South African nuclear regulatory authority

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Hill, T.F.; Henderson, N.R.; Keenan, N.H.; Metcalf, P.E.; Mysenkov, A.

    1997-01-01

    This paper describes the approach adopted by the South African Nuclear Regulatory Authority, the Council for Nuclear Safety (CNS) in licensing nuclear installations in South Africa. An introduction to the current South African legislation and the CNS philosophy pertaining to the licensing of nuclear installations is discussed. A typical process for granting a nuclear licence is then presented. The risk assessment process, which is used to verify compliance with the fundamental safety standards and to establish licensing requirements for a specific nuclear installation, is discussed. Based on the outcome of this assessment process, conditions of licence are set down. The generic content of a nuclear licence and mechanisms to ensure ongoing compliance with the risk criteria are presented. The regulatory process discussed in this paper, based on such a fundamental approach, may be adapted to any type of nuclear installation taking into account plant specific designs and characteristics. (author)

  11. The development of regulatory expectations for computer-based safety systems for the UK nuclear programme

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P. J. [HM Nuclear Installations Inspectorate Marine Engineering Submarines Defence Nuclear Safety Regulator Serco Assurance Redgrave Court, Merton Road, Bootle L20 7HS (United Kingdom); Westwood, R.N; Mark, R. T. [FLEET HQ, Leach Building, Whale Island, Portsmouth, PO2 8BY (United Kingdom); Tapping, K. [Serco Assurance,Thomson House, Risley, Warrington, WA3 6GA (United Kingdom)

    2006-07-01

    The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

  12. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2001

    International Nuclear Information System (INIS)

    Seliga, M.

    2002-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste (RAW); (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; (13) Conclusion; (14) Appendix: Abbreviations; Radiation safety

  13. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  14. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2014-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acting as the regulatory body of the Swiss Federation assesses and monitors nuclear facilities in Switzerland: these include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the overview required concerning nuclear safety. It ensures that the facilities comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes operational experience, systems technology, radiological protection and management in all the nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2013, the five nuclear power plants in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were all operated safely and had complied with their approved operating conditions. The nuclear safety at all plants was rated as being good. 34 events were reported. During operation, no reactor scrams were recorded. On the INES scale, ranging from 0-7, ENSI rated all reportable events as Level 0. The ENSI safety evaluation reflects both reportable events and the results of the approximately 460 inspections conducted during 2013. ZWILAG consists of several storage halls, a conditioning plant and a plasma plant. At the end of 2013, the cask storage hall

  15. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2015-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI), acting as the regulatory body of the Swiss Federation, assesses and monitors nuclear facilities in Switzerland: the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety. It ensures that they comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes the operational experience, systems technology, radiological protection and management in all nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2014, all five nuclear power plants in Switzerland (Beznau Units I and 2, Muehleberg, Goesgen and Leibstadt) were operated safely. The nuclear safety at all plants was rated as good. 38 events were reported. There was one reactor scram at the Leibstadt nuclear power plant. On the International Event Scale (INES), ranging from 0--7, 37 events were rated as Level 0; one event was rated as INES 1: drill holes had penetrated the steel wall of the containment to secure two hand-held fire extinguishers. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant. At the end of 2014, the cask storage hall contained 42

  16. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  17. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  18. Provincial nuclear regulatory authority?: The case of the province of Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo; Ocana, F.; Scoles, R.

    1999-01-01

    The evolution of social and political events in the province of Cordoba after the Law 8157 of 1992, that establishes the provincial nuclear policy, are analysed as well as the recent sanction and veto of the Law 8775, which creates the provincial Nuclear Regulatory Authority. The authors conclude that is necessary and convenient to enforce provincial nuclear regulations and controls

  19. Nuclear Regulatory Commission Issuances, May 81

    International Nuclear Information System (INIS)

    1981-05-01

    Contents: Issuances of the Nuclear Regulatory Commission--Consolidated Edison Company of New York, Inc. (Indian Point, Unit No. 2), Power Authority of the State of New York (Indian Point, No. 3 Nuclear Power Plant), Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2), Statement of Policy on Conduct of Licensing Proceedings, Uranium Mill Licensing Requirements; Issuances of Atomic Safety and Licensing Appeal Boards--Houston Lighting and Power Company, et al. (South Texas Project, Units 1 and 2), Metropolitan Edison Company, et al. (Three Mile Island Nuclear Station, Unit No. 2), Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc. (Susquehanna Steam Electric Station, Units 1 and 2), Philadelphia Electric Company et al. (Peach Bottom Atomic Power Station, Units 2 and 3), Public Service Electric and Gas Company (Hope Creek Generating Station, Units 1 and 2); Issuances of the Atomic Safety and Licensing Boards--Duke Power Company (William B. McGuire Nuclear Station, Units 1 and 2), Florida Light and Power Company (Turkey Point Nuclear Generating, Units 3 and 4), Illinois Power Company, et al. (Clinton Power Station, Units 1 and 2), Sacramento Municipal Utility District (Rancho Seco Nuclear Generating Station); Issuances of the Directors Denial--Commonwealth Edison Company (Byron Station, Units 1 and 2), Consolidated Edison Company of New York, Inc. (Indian Point Unit No. 2), Gulf States Utilities Company (River Bend Station Units 1 and 2), Petition to Suspend All Operating Licenses for Pressurized Water Reactors (River Bend Station Units 1 and 2), Portland General Electric Company (Trojan Nuclear

  20. Regulatory Endorsement Activities for ASME Nuclear Codes and Standards

    International Nuclear Information System (INIS)

    West, Raymond A.

    2006-01-01

    The ASME Board on Nuclear Codes and Standards (BNCS) has formed a Task Group on Regulatory Endorsement (TG-RE) that is currently in discussions with the United States Nuclear Regulatory Commission (NRC) to look at suggestions and recommendations that can be used to help with the endorsement of new and revised ASME Nuclear Codes and Standards (NC and S). With the coming of new reactors in the USA in the very near future we need to look at both the regulations and all the ASME NC and S to determine where we need to make changes to support these new plants. At the same time it is important that we maintain our operating plants while addressing ageing management needs of our existing reactors. This is going to take new thinking, time, resources, and money. For all this to take place the regulations and requirements that we use must be clear concise and necessary for safety and to that end both the NRC and ASME are working together to make this happen. Because of the influence that the USA has in the world in dealing with these issues, this paper is written to inform the international nuclear engineering community about the issues and what actions are being addressed under this effort. (author)

  1. Regulatory challenges facing the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Lyman, Edwin S.

    2007-01-01

    In January 2006 the Department of Energy (DOE) announced the creation of the Global Nuclear Energy Partnership (GNEP), an ambitious plan to reshape the nuclear energy production sector both in the United States and worldwide. If fully realized in the United States, GNEP would entail the construction of a large number of sodium-cooled fast reactors utilizing actinide-based fuels, multiple commercial-scale reprocessing plants for both light-water and fast reactors, and fast reactor fuel fabrication plants. It appears likely that the first commercial-scale GNEP facilities, as well as a future full-scale GNEP complex, would fall under the licensing jurisdiction of the Nuclear Regulatory Commission (NRC). This will be a challenging endeavor for the NRC, primarily because the proposed GNEP facilities will in large part be based on novel and untested designs and processes that have not been developed on a commercial scale. In order to effectively regulate the GNEP complex, the NRC will have to quickly address the many technical and policy questions that will arise in any GNEP licensing scheme. This paper identifies some difficult issues that will be encountered in GNEP licensing by examining the potential implications of NRC's current policies and regulatory requirements, and analyzing the impacts of some emerging post-9/11 security issues. (author)

  2. Development Perspective of Regulatory Audit Code System for SFR Nuclear Safety Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Lee, Gil Soo; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    A sodium-cooled fast reactor (SFR) in Korea is based on the KALIMER-600 concept developed by KAERI. Based on 'Long-term R and D Plan for Future Reactor Systems' which was approved by the Korea Atomic Energy Commission in 2008, the KAERI designer is scheduled to apply the design certification of the prototype SFR in 2017. In order to establish regulatory infrastructure for the licensing of a prototype SFR, KINS has develop the regulatory requirements for the demonstration SFR since 2010, and are scheduled to develop the regulatory audit code systems in regard to core, fuel, and system, etc. since 2012. In this study, the domestic code systems used for core design and safety evaluation of PWRs and the nuclear physics and code system for SFRs were briefly reviewed, and the development perspective of regulatory audit code system for SFR nuclear safety evaluation were derived

  3. Regulatory activities

    International Nuclear Information System (INIS)

    2001-01-01

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information

  4. Strategic considerations for the sustainable remediation of nuclear installations.

    Science.gov (United States)

    Mobbs, S; Orr, P; Weber, I

    2017-08-05

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable the sites or parts of the sites to be reused. Although this is relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic detriments and benefits that should be taken into account. Recent experience of OECD Nuclear Energy Agency (NEA) member countries in the remediation of contaminated land, predominantly contaminated soil and groundwater, on nuclear sites during decommissioning has been assessed by an NEA task group. The experience was used to identify strategic considerations for nuclear site remediation, to consider the application of sustainability principles to nuclear site remediation, to describe good practice, and to make recommendations for further research and development. The key aspects that were identified were that 1) site remediation should be sustainable by resulting in an overall net benefit; and 2) an adaptive approach is essential in order to take into account the inherent uncertainty associated with the decommissioning and site remediation timescales. A report describing the findings was published by OECD/NEA in 2016. The conclusions provide insights to decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so that they can achieve sustainable remediation of nuclear sites, now and in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Organizational Learning, Building and Sustaining Core Competencies: Knowledge Management Initiatives on Inspection and Regulatory Enforcement in BAPETEN Indonesia

    International Nuclear Information System (INIS)

    Daeng Beta, W. P.; Nurwidi Astuti, Y. H.; Hermawan, A. S.; Syaifulloh, S.

    2016-01-01

    Full text: Regulatory inspection and law enforcement are among the core competencies of the Indonesia Nuclear Energy Regulatory Agency (BAPETEN). Knowledge management (KM) initiatives are based on strategic planning of BAPETEN. KM in BAPETEN is in its early stage, it is realized since 2015–2016, although its elements have stayed in service for 18 years. Its architecture and performance-information are: to conduct risk based inspection for medical, industrial and research facilities; to plan, monitor and evaluate of effective inspection, including standard operating procedures (SOPs); to utilize inspectors for safety security of radiation sources along with coordination with related stakeholders; to enforce the safety and security facilities report to users; to optimize reliable data communication, processing and information technology (B@LIS); to perform regulatory enforcement along with other related stakeholders. KM processes are performed through the “Socialization, Externalization, Combination, Internalization” (SECI) model. Technical knowledge for inspectors are based on the IAEA–TECDOC–1526 plus supporting knowledge. With KM, innovation products can easily be used, because they are documented, distributed in a KM portal, knowledge is shared through the BAPETEN website, B@LIS database and others. Our challenge is that KM initiatives still need a tremendous effort, not only internally, but also externally, especially in coordination and collaboration. Information access brings about not only positive but also negative impacts. Innovations in regulatory inspection and law enforcement in BAPETEN are planned innovations, sustained, and systematically performed. (author

  6. Nuclear Regulatory Infrastructure in the Philippines

    International Nuclear Information System (INIS)

    Leonin, Teofilo V. Jr.

    2015-01-01

    Regulating the use of radioactive materials in the Philippines involves the adherence to legislation, regulations, standards and regulatory guides. It is based on a detailed review and assessment of the radiation safety program of owners and users of these materials and associated equipment against safety requirements and on additional verification of the operating practices and procedures. Republic Acts 5207 and 2067, both as amended, are implemented through the regulations which are titled Code of PNRI Regulations or CPRs are developed and issued together with supporting regulatory guides, Bulletins and other documents detailing the safety requirements. These issuance adhere to internationally accepted requirements on radiation protection, and nuclear safety and security, as well as safeguards. Design documents and technical Specifications of important radioactive materials, equipment and components are required to be submitted and reviewed by the PNRI before the issuance of an authorization in the form of a license Verification of adherence to regulations and safety requirements are periodically checked through the implementation of an inspection and enforcement program. The ISO certified regulatory management system of PNRI is documented in a QMS manual that provides guidance on all work processes. It involves systematic planning and evaluation of activities, multiple means of getting feedback on the work processes, and continuous efforts to improve its effectiveness. Efforts are implemented in order to strengthen the transparency openness, independence, technical competence and effectiveness of the regulatory body. (author)

  7. Nuclear power in the frame of sustainable development

    International Nuclear Information System (INIS)

    Constantin, M.

    2003-01-01

    Nuclear energy is treated taking into account the three dimensions of sustainable development: economic, environmental and social. Some nuclear energy relevant indicators are identified and used in the analysis. The economic efficiency is a relevant indicator insofar as market prices reflect the full costs for society of a given product or activity. For nuclear energy the economic criteria applicable to market competition and subsidies are used. The core indicators for the environmental dimension of sustainable development include criteria related to natural resource management, climate change, air and water quality, biodiversity and landscaping. The nuclear electricity generation chain does not release gases or particles that acidify rains, contribute to urban smog or deplete of the ozone layer. The human and social dimension comprises human capital in the form of knowledge, education and employment opportunities, human welfare, equity and participation, social capital in the form of effective institutions and voluntary associations, the rule of law, and social cohesion. From this point of view the nuclear energy is characterized by a net contribution to human and social capital and a challenge in terms of public acceptability and widely varying perceptions of the risks and benefits. (authors)

  8. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2000-01-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants

  9. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  10. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - France

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General (The French nuclear power programme and its main players; French nuclear law); 2. Mining Regime; 3. Radioactive Substances and Nuclear Equipment (Regulatory diversity; Radioactive sources; Medical activities); 4. Trade in Nuclear Materials and Equipment (Basic nuclear installations - INB; Tax on basic nuclear installations, Additional taxes, Funding nuclear costs; Installations classified for environmental protection purposes (ICPE) using radioactive substances; Nuclear pressure equipment - ESPN; Defence-related nuclear installations and activities - IANID; Emergency plans); 5. Trade in Nuclear Materials and Equipment (General provisions; Patents); 6. Radiation protection (Protection of the public; Protection of workers; Radiation protection inspectors; Labour inspectors; Protection of individuals in a radiological emergency); 7. Radioactive Waste Management (General regulations; Radioactive waste regulations; Discharge of effluents); 8. Non-proliferation and physical protection (Materials not used for the nuclear deterrent; Materials used for the nuclear deterrent); 9. Transport (Licensing and notification regime: Transport of radioactive materials, Transport of nuclear materials, Transport of radioactive substances between member states of the European Union; Methods of transport: Land transport, Sea transport, Air transport, Transport by post); 10

  12. Importance of loss-of-benefits considerations in nuclear regulatory decision-making

    International Nuclear Information System (INIS)

    Buehring, W.A.; Peerenboom, J.P.

    1982-01-01

    This paper identifies and discusses some of the important consequences of nuclear power plant unavailability, and quantifies a number of technical measures of loss of benefits that may help the Nuclear Regulatory Commission make decisions involving nuclear power plant licensing and operation. The loss-of-benefits analysis presented here is based on the results of a series of case studies developed by Argonne National Laboratory in cooperation with four electric utilities on hypothetical nuclear plant shutdowns

  13. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2015-01-01

    Full Text Available The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. The INPRO task titled “Global scenarios” is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21st century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries’ different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies.

  14. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    International Nuclear Information System (INIS)

    Mao, Grace; Brody, James P.

    2007-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s -1 . We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase

  15. Nuclear power and sustainable development: a vision from a developing country

    International Nuclear Information System (INIS)

    Sbaffoni, Monica; Harriague, Santiago

    2008-01-01

    From the understanding of sustainable development as 'growing assets and opening options - not foreclosing them' (IAEA, 2006a), an analysis is made on sustainability conditions for nuclear power in a developing country, based on Argentinean experience. The necessity of developing an autonomous decision-making capability and a technological-industrial infrastructure is stressed. As an example, a brief history of nuclear power in Argentina is summarized, focusing in key elements that contributed to sustainability and also pointing out some draw-backs that may have affected it. Finally, some lessons learned are presented, with the aim of sharing the experience and offering a contribution to the present debate on nuclear energy deployment in the periphery. (authors)

  16. The Regulatory Cooperation Forum, an Opportunity to Strengthen International Cooperation

    International Nuclear Information System (INIS)

    Lachaume, J.L.; Mamoru, M.

    2016-01-01

    The Regulatory Cooperation Forum (RCF) is a member-driven forum of nuclear power regulators created in 2010 that promotes the sharing of regulatory knowledge and experience through international cooperation and collaboration using the IAEA Safety Standards as its basis. The RCF involves countries with advanced nuclear power programmes, countries embarking on nuclear power for the first time and countries with smaller programmes considering expansion. The primary objectives of the RCF are: • To promote collaboration and cooperation among RCF members to improve coordination of support for regulatory infrastructure development; • To contribute to achieving and sustaining a high level of nuclear safety, consistent with the IAEA Safety Standards and Guidance; • To optimize resources among RCF members and avoid unnecessary support duplication through improved coordination. Membership of the RCF is open to all Member States of the IAEA. Participants in RCF activities will normally be senior representatives from regulatory bodies in Member States and from other providers, including the IAEA, European Commission (EC) and the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development (OECD). So far, more than 30 countries are members of the RCF. The RCF has developed Action Plans to support Jordan, Vietnam, Belarus and Poland. The IAEA’s Nuclear Safety Action Plan urges Member States to strengthen the effectiveness of national regulatory bodies as well as base the development of their nuclear infrastructures on IAEA Safety Standards. The RCF assists Member States in implementing both of these actions for embarking, existing and expanding nuclear programmes. (author)

  17. A systemic approach to the discussion of sustainability of nuclear energy

    International Nuclear Information System (INIS)

    Aegerter, Irene

    2001-01-01

    In 1998 the four Swiss Scientific Academies formed a working group to study sustainability of electricity production. Having been a member of this group since the beginning I witnessed the evolution of the discussion that led to a consensus. The group found the criteria of sustainability to be special for nuclear energy. While the resource uranium is not needed for any other purpose and thus the use of uranium is sustainable, the possible harm to future generations by nuclear reactors is difficult to evaluate: the potential damage can be large but the probability of its occurrence is very small. Therefore some people judge nuclear power as an environmentally friendly source of electricity production and an important contribution towards a sustainable energy future whereas others look at the potential damage and value nuclear power as not sustainable. The discussion of alternatives then reveals that it is definitely not sustainable to replace nuclear power by fossil fuels. This was a consensus reached by the members of the working group, which consists of the pro and anti nuclear camp. Sustainable energy production is a complex topic and not easy to tackle with our everyday methods. The group decided to solve the problem with a systemic approach to get to know the hidden and indirect effects of electricity production and usage. A system approach brings a new concept into the often blocked discussion of proponents and antinuclear people. In order to assure that a holistic evaluation results which reaches a high degree of consensus, several subgroups were formed representing divergent views on the issues analysed. These groups do not communicate their findings while work on their cross impact matrices (CIMs) is under way. The results are compared and discrepancies are discussed. Usually this shows that once the wording of the variables is corrected and their interpretations are shared by the parties involved, consensus concerning evaluations is achieved

  18. Energy and climate change: the role of nuclear energy for sustainable development

    International Nuclear Information System (INIS)

    Voss, A.; Schmid, G.

    1997-01-01

    Nuclear energy is an important part of a balanced energy mix. Nuclear energy has the potential to make a significant contribution both to economic development and to a significant cost-effective reduction in carbon emissions, probably the two most salient aspects of sustainable development. Nuclear energy has clearly demonstrated its usefulness and favorable contribution in the past. Continuous development of nuclear technologies is warranted to achieve future sustainable development. Therefore, an open discussion on the potential future role of nuclear can be helpful to remove some political motivated constraints on nuclear power development. (author) 1 fig., 2 refs

  19. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2007. Annual report

    International Nuclear Information System (INIS)

    2007-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2007 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials; (8) Emergency planning and preparedness; (9) International activities; (10) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) Abbreviations

  20. Contribution of nuclear techniques towards a sustainable agriculture

    International Nuclear Information System (INIS)

    Muniz Ugarte, O.

    1997-01-01

    The papers mentions the main nuclear techniques applied in order to achieve a sustainable agriculture, the technical support given to Cuba by the IAEA mainly in training and in the creation of a infrastructure (Laboratories) to enable the application of nuclear techniques to agricultural research related to soil fertility, plant nutrition and water usage

  1. Regulatory requirements for nuclear power plant site selection in Malaysia-a review.

    Science.gov (United States)

    Basri, N A; Hashim, S; Ramli, A T; Bradley, D A; Hamzah, K

    2016-12-01

    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.

  2. Nuclear energy for the 21. century

    International Nuclear Information System (INIS)

    2005-03-01

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  3. Regulatory challenges related to the licensing of a new nuclear power plant

    International Nuclear Information System (INIS)

    Maris, M.

    2010-01-01

    Assuring the safety and security of nuclear power plants is recognized world-wide as a challenge for all stakeholders. Particular attention goes to plants planned to be built in countries with not sufficiently developed industrial and regulatory infrastructure and experience. A construction and commissioning project, which is usually an international undertaking, gives opportunities to all national stakeholders to develop further their organisations and competences. In the present paper the duties of a regulatory body are recalled as well as the human resources and competences needed for the licensing of a new nuclear power plant. The regulatory body and its technical safety organization(s) should be strengthened and the international cooperation should contribute to this in a systematic and coordinated way. In particular, the donor country should support the necessary development of the regulatory competences and of an effective safety assessment process supporting the national licensing process. Appropriate support can be provided by the International Atomic Energy Agency (IAEA) and through other bi-lateral or multi-lateral programmes

  4. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  5. What factors facilitate regulatory competence in supervising the safety of nuclear technology?

    International Nuclear Information System (INIS)

    Mishar, Marina

    2012-01-01

    The proposed utilization of nuclear energy for electricity generation as the alternative energy source requires Atomic Energy Licensing Board (AELB), the Malaysian nuclear regulatory body taking key role in supervising the safety of the program. This study looked into factors influencing the competency of current AELB human resource as technical competency has been identified as one of the main contributors to the success of a civil nuclear power program. The four quadrant competency model developed by International Atomic Energy Agency was utilized as the required competency. A comprehensive study on 81 personnel from five states in different geographic regions of the country were carried out to investigate the impact of six factors related to competency (educational level, years of working experience, trainings attended, participation in technical committees, numbers of technical papers written and number of technical presentation presented) on four dependent measures in the areas of regulatory competency (legal basis, technical disciplines, regulatory practices and personal and interpersonal effectiveness). Multiple regression (method enter) identified factors that had significant contribution to level of competency while stepwise regression resulted in identifying predictors to enhance competencies. Results were mixed but each of the independent factors is a predictor to different competencies. This study had identified the best predictors that could significantly contribute to the enhancement of regulatory. (author)

  6. NUCLEAR 2010 international conference on sustainable development through nuclear research and education.Part 2/2

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2010-01-01

    The Proceedings of the 'NUCLEAR 2010 international conference on sustainable development through nuclear research and education' held at INR-Pitesti on May, 26 - 28 2010 contain communications published in two parts. The second part contains 34 talks adressing themes of nuclear energy, in the following three sections: Section 2.1 - Radioactive waste management (13 papers); Section 2.2 and 3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation, and knowledge transfer (1 paper); Section 3. - International Partnership for a sustainable development (2 papers); Section 3.4 - Research infrastructure (3 papers)

  7. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  8. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    International Nuclear Information System (INIS)

    Murphy, E.L.; Sullivan, E.J.

    1997-01-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with

  9. Nuclear Regulatory Authority of the Slovak Republic. Annual Report 2002

    International Nuclear Information System (INIS)

    Seliga, M.

    2003-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic in 2002 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Assessment and inspection of nuclear installations; (4) Safety analyses; (5) Nuclear materials and physical protection of nuclear installations; (6) Radioactive waste; (7) Quality assurance; (8) Personnel qualification and training; (9) Emergency preparedness; (10) International co-operation; (11) Public information; (12) Personnel and economy data; Appendix: Abbreviations; Special Enclosure: 10. Years of the Nuclear Regulation Authority of the Slovak Republic. An independent and professional state regulatory authority supervising the nuclear safety is one of prerequisites of the safe operation of nuclear installations in each country. In the Slovak Republic this role has been fulfilled by the Nuclear Regulatory Authority (UJD) since 1993. The main mission of UJD set down by the law is to guarantee for the Slovak citizens as well as for international society that the nuclear power on the territory of the Slovak Republic will be used exclusively for peaceful purposes and that the Slovak nuclear installations are designed, constructed, operated and decommissioned in compliance with relevant legal documents. The mission of UJD is also to tender the operation of nuclear installations so that their operation would not jeopardise the nuclear power plant staff or public and would not cause detrimental effects to the environment or property. UJD prepares laws or comments to the laws and issues decrees in the area of its competencies, issues authorisations for operators of nuclear facilities, reviews and evaluates the safety documentation of nuclear installations, performs the inspections at nuclear installations comparing whether the legal requirements are fulfilled and whether the real status of nuclear installations and their operation is or not in compliance with

  10. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    International Nuclear Information System (INIS)

    2000-01-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants

  11. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  12. Legislative and regulatory aspects of nuclear power reactor licensing in the U.S.A

    International Nuclear Information System (INIS)

    Malsch, M.G.

    1976-01-01

    An explanation of the origins, statutory basis and development of the present regulatory system in the US. A description of the various actions which must be taken by a license applicant and by the USNRC before a nuclear power plant can be constructed and placed on-line. Account of the current regulatory practices followed by the USNRC in licensing nuclear power reactors. (orig./HP) [de

  13. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Rosen, M.

    2000-01-01

    The substantial increase in global energy consumption in coming decades will be driven principally by the developing world. Although there is some awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favored option in a sustainable energy future. This paper, after discussion of rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  14. Establishment of the nuclear regulatory framework for the process of decommissioning of nuclear installations in Mexico; Establecimiento del marco regulador nuclear para el proceso de cierre de instalaciones nucleares en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    Today has not managed any process of decommissioning of nuclear installations in the country; however because of the importance of the subject and the actions to be taken to long term, the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) in Mexico, accordance with its objectives is developing a National Nuclear Regulatory Framework and defined requirements to ensure the implementation of appropriate safety standards when such activities are performed. In this regard, the national nuclear regulatory framework for nuclear installations and the particular case of nuclear power reactors is presented, as well as a proposed licensing process for the nuclear power plant of Laguna Verde based on international regulations and origin country regulations of the existing reactors in nuclear facilities in accordance with the license conditions of operation to allow to define and incorporate such regulation. (Author)

  15. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2009. Annual report

    International Nuclear Information System (INIS)

    2010-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2009 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials and physical protection of nuclear materials; (8) Emergency planning and preparedness; (9) International activities; (10) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) UJD SR organization chart; (13) Abbreviations.

  16. Report on activities of Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear installations in the Slovak Republic in 2008. Annual report

    International Nuclear Information System (INIS)

    Zemanova, D.; Pirozekova, M.

    2009-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2008 is presented. These activities are reported under the headings: (1) Foreword; (2) Legislation; (3) Issuance of authorizations, assessment, supervisory activities and enforcement; (4) Nuclear safety of nuclear installations in the Slovak Republic; (5) Safety of other nuclear installations; (6) Management of radioactive waste; (7) Nuclear materials and physical protection of nuclear materials; (8) Activity of Building Office; (9) Emergency planning and preparedness; (10) International activities; (11) Public communication; (11) Nuclear Regulatory Authority of the Slovak Republic; (12) UJD SR organization chart; (13) Abbreviations

  17. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  18. Sustainable promotion nuclear power enterprise procurement bidding risk management

    International Nuclear Information System (INIS)

    Wu Yimin

    2014-01-01

    Nuclear power enterprise procurement bidding work faced with certain risk in recent years, the domestic nuclear power enterprises in the bidding work never stop research and explore the effective ways to guard against legal risks, and has made considerable progress, the eighteenth big country advocates the safety and efficiency of nuclear power development policy, in the face of the subsequent nuclear power construction projects have started, nuclear power enterprise bidding risk management work shoulder heavy responsibilities article through nuclear power enterprise procurement bidding risk management present situation, proposed the sustainable promotion nuclear power enterprise procurement bidding risk management countermeasures. (author)

  19. Enhancement of Nuclear Safety in Korea: A Regulatory Perspective

    International Nuclear Information System (INIS)

    Chung, K.Y.

    2016-01-01

    In the aftermath of Fukushima Daiichi accident in 2011 Korean regulatory body immediately performed special inspections on nuclear power plants (NPPs) and a research reactor in Korea, and issued an enforcement order for the licensees to implement fifty Fukushima action items to address the safety issues identified by the inspections. Subsequently, the licensees have established the implementation plans for resolution of the action items. By the implementation of the action items, the possibility of severe accident due to the extreme hazards has been greatly reduced and the capabilities to mitigate the severe accident, should it occur, have been upgraded. To improve the consistency and predictability of the regulation on severe accidents, Nuclear Safety and Security Commission (NSSC) the regulatory body in Korea, is revising the regulatory framework for severe accidents. The new framework will require the licensee to enhance the capabilities for prevention and mitigation of severe accidents in view of the defence in depth principle, to assess the radiological effects from the severe accidents, and to improve current accident management procedures and guidelines necessary for the prevention and mitigation of severe accidents. This rulemaking also considers the safety principles provided by the IAEA Vienna Declaration in 2015, which require new NPPs to prevent large radioactive releases. (author)

  20. Communications in the Nuclear Regulatory Authority of the Slovakia

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    1998-01-01

    Full text: The Nuclear Regulatory Authority of the Slovak Republic (UJD SR) as the state authority provides information related to its competence, namely information on safety operation of nuclear installations, independently from nuclear operators and it enables the public and media to examine information on nuclear facilities. The important aspect is proving that the nuclear energy in the Slovak Republic is due to obligatory rules acceptable and its operation is regulated by the State through the independent institution - UJD SR. UJD SR considers the whole area of public relations as essential component of its activity. UJD SR intends to serve the public true, systematic, qualified, understandable and independent information regarding nuclear safety of nuclear power plants, as well as regarding methods and results of UJD SR work. Communication on reactor incidents or more broadly on operational events at nuclear power plants represents a substantial part of public information- Generally, public information is considered as significant contribution to creation of confidence into the regulatory work. A communication programme must be tested in practice. Our communication programme is regularly evaluated in emergency exercises held at the UJD SR. Inviting journalists to participate in or observe the exercises has intensified this, or by having staff members simulate the mass media and the public. The communication means, tools and channels developed and enhanced during the recent years has increased the UJD SR's functional capability to carry out its information policy. However, communication cannot achieve its goals unless the receiver is willing to accept the message. If the receiver is suspicious about the sender's intentions, good communication is almost impossible. Maintaining the trust with the media and the public as well as increasing radiation and nuclear safety knowledge in the society is therefore essential. UJD SR communication and information activities

  1. Nuclear energy sustainable development and public awareness

    International Nuclear Information System (INIS)

    Murty, G.S.

    2001-01-01

    This paper provides the latest information about the importance of energy needs and its growth in the years to come, the role of the nuclear energy and the need for public awareness and acceptability of the programs to achieve sustainable development

  2. Evolution of nuclear security regulatory activities in Brazil

    International Nuclear Information System (INIS)

    Mello, Luiz A. de; Monteiro Filho, Joselio S.; Belem, Lilia M.J.; Torres, Luiz F.B.

    2009-01-01

    The changing of the world scenario in the last 15 years has increased worldwide the concerns about overall security and, as a consequence, about the nuclear and radioactive material as well as their associated facilities. Considering the new situation, in February 2004, the Brazilian National Nuclear Energy Commission (CNEN), decided to create the Nuclear Security Office. This Office is under the Coordination of Nuclear Safeguards and Security, in the Directorate for Safety, Security and Safeguards (Regulatory Directorate). Before that, security regulation issues were dealt in a decentralized manner, within that Directorate, by different licensing groups in specific areas (power reactors, fuel cycle facilities, radioactive facilities, transport of nuclear material, etc.). This decision was made in order to allow a coordinated approach on the subject, to strengthen the regulation in nuclear/radioactive security, and to provide support to management in the definition of institutional security policies. The CNEN Security Office develops its work based in the CNEN Physical Protection Regulation for Nuclear Operational Units - NE-2.01, 1996, the Convention on the Physical Protection of Nuclear Material and the IAEA Nuclear Security Series . This paper aims at presenting the activities developed and the achievements obtained by this new CNEN office, as well as identifying the issues and directions for future efforts. (author)

  3. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the comprehensive nuclear-test-ban treaty. Annual report 2007

    International Nuclear Information System (INIS)

    Haemaelaeinen, M.; Karhu, P.

    2008-04-01

    Regulatory control of nuclear materials (nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. In order to uphold our part of the international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). Nuclear safeguards are applied to all materials and activities that can lead to the proliferation of nuclear weapons or sensitive nuclear technology. These safeguards include nuclear materials accountancy, control, security and reporting. The results of STUK's nuclear safeguards inspection activities in 2007 continued to demonstrate that Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations. STUK remarked on the nuclear safeguards systems of two licence holders in 2007, setting required actions for them to correct their reporting and to update the descriptions of their procedures. Neither the IAEA nor the European Commission made any remarks nor did they present any required actions based on their inspections. By their nuclear materials accountancy and control systems, all licence holders enabled STUK to fulfil its own obligations under the international agreements relevant to nuclear safeguards

  4. 75 FR 52046 - Development of U.S. Nuclear Regulatory Commission Safety Culture Policy Statement: Public Meeting

    Science.gov (United States)

    2010-08-24

    ... is working towards increasing the attention that is given to safety culture as part of its efforts to... NUCLEAR REGULATORY COMMISSION Development of U.S. Nuclear Regulatory Commission Safety Culture..., Nevada hearing facility to solicit comments on the revision of its draft safety culture policy statement...

  5. 77 FR 9273 - WORKSHOP Sponsored by the Nuclear Regulatory Commission and the Electric Power Research Institute...

    Science.gov (United States)

    2012-02-16

    ... Commission and the Electric Power Research Institute on the Treatment of Probabilistic Risk Assessment.... SUMMARY: The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), in cooperation with the Electric Power Research Institute (EPRI), will hold a joint workshop on the Treatment of...

  6. Improvements of the Regulatory Framework for Nuclear Installations in the Areas of Human and Organizational Factors and Safety Culture

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea, C.

    2016-01-01

    The paper presents the development of regulatory requirements in the area of human and organizational factors taking account of the lessons learned from major accidents in the nuclear industry and in particular of the factors that contributed to the Fukushima Daiichi accident and the improvement of the regulatory oversight of nuclear safety culture. New requirements have been elaborated by the National Commission for Nuclear Activities Control (CNCAN) on the nuclear safety policy of licencees for nuclear installations, on independent nuclear safety oversight, on safety conscious work environment and on the assessment of nuclear safety culture. The regulatory process for the oversight of nuclear safety culture within licencees’ organizations operating nuclear installations and the associated procedure and guidelines, based on the IAEA Safety Standards, have been developed in 2010-2011. CNCAN has used the 37 IAEA attributes for a strong safety culture, grouped into five areas corresponding to safety culture characteristics, as the basis for its regulatory guidelines providing support to the reviewers and inspectors, in their routine activities, for recognising and gathering information relevant to safety culture. The safety culture oversight process, procedure and guidelines are in process of being reviewed and revised to improve their effectiveness and to align with the current international practices, using lessons learned from the Fukushima Daiichi accident. Starting with July 2014, Romania has a National Strategy for Nuclear Safety and Security, which includes strategic objectives, associated directions for action and concrete actions for promoting nuclear safety culture in all the organizations in the nuclear sector. The progress with the implementation of this strategy with regard to nuclear safety culture is described in the paper. CNCAN started to define its own organizational culture model and identifying the elements that promote and support safety

  7. Nuclear Power Plants and Sustainable Development on a Liberalized Market

    International Nuclear Information System (INIS)

    Androcec, I.; Stanic, Z.; Tomsic, Z.

    2002-01-01

    Finding a way to generate electricity so as to satisfy the terms of sustainable development of the entire society is the only way which will secure safe energy future. If we talk about energy in the context of sustainable development, one of the most important element is environmental protection. Since CO 2 emissions stemming from electricity generation have predominant impact on climate change, one of the options for reducing emissions is the use of fuels without carbon, such as e.g. nuclear fuel. The future of nuclear power plants was considered in view of: nuclear fuel supply; potential impact of fuel cycle on environment, power plant operation, decommissioning and secondary products from electricity generation; and the entire nuclear power plant economy. Nuclear power plants were also examined in the context of the Kyoto Protocol stipulating reduction of greenhouse gases emissions. Nuclear power plants can not reduce CO 2 emissions in a short-term because they already operate with maximum output, but in a long-run they can play a significant role. This paper is aiming to analyse the role of nuclear power plants in long term environmental sustainability in electricity sector reform (liberalisation, deregulation, privatisation) in small or medium sized power supply systems. Nuclear power plants are associated with certain environmental aspects which will be taken into account. A comparison will be made through externalities with other energy resources, especially fossil fuels, which are prevailing energy resources, considering possible use of nuclear power plants in the countries with small and medium-size grids. It will be given an example of the role of NPP Krsko on air emissions reduction in Croatia. (author)

  8. Overview of maintenance principles and regulatory supervision of maintenance activities at nuclear power plants in Slovakia

    International Nuclear Information System (INIS)

    Rohar, S.; Cepcek, S.

    1997-01-01

    The maintenance represents one of the most important tools to ensure safe and reliable operation of nuclear power plants. The emphasis of Nuclear Regulatory Authority of the Slovak Republic to the maintenance issue is expressed by requirements in the regulations. The current practice of maintenance management in operated nuclear power plants in Slovak Republic is presented. Main aspects of maintenance, as maintenance programme, organization of maintenance, responsibilities for maintenance are described. Activities of nuclear regulatory authority in maintenance process are presented too. (author)

  9. IAEA Team Concludes Peer Review of Sweden's Nuclear Regulatory Framework, 17 February 2012, Stockholm, Sweden

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of senior nuclear safety and radiation protection experts today concluded a 12-day mission to review the regulatory framework for nuclear and radiation safety in Sweden. The Integrated Regulatory Review Service (IRRS) mission, which was conducted at the request of Sweden, noted good practices in the country's nuclear regulatory system and also made recommendations and suggestions for the Swedish Radiation Safety Authority (SSM) and the government. These are aimed at strengthening the effectiveness of the country's regulatory framework and functions in line with IAEA Safety Standards. ''Throughout the mission, the IRRS team received full cooperation from SSM staff in its review of Sweden's regulatory, technical and policy issues,'' said Georg Schwarz, mission leader and Deputy Director General of the Swiss nuclear regulator (ENSI). 'The staff were open and candid in their discussions and provided the fullest practicable assistance', he commented. The main observations of the IRRS Review team included the following: SSM operates as an independent regulator in an open and transparent manner with well-organized regulatory processes; SSM is receptive to feedback and strives to maintain a culture of continuous learning; and Following the TEPCO Fukushima Daiichi accident, SSM responded promptly to public demand for information and communicated effectively with the national government, the public and other interested parties. Good practices identified by the IRRS team included, though they are not limited to, the following: The consolidation of the two previous national regulatory authorities into SSM was successful; Overall, SSM's management system is comprehensive and contributes to staff efficiency and effectiveness; The nuclear power plant refurbishment programme as required by SSM enhanced safety; and Sweden's regulatory framework for high-level waste disposal is comprehensive and technically sound. The IRRS Review team identified

  10. Forum of Nuclear Regulatory Bodies in Africa: A Peer Review Mechanism

    International Nuclear Information System (INIS)

    Elegba, S.B.

    2010-01-01

    Uses of Radiation Sources in Africa has Safety and Security Implications that include exposure of workers in all and exposure of Patients in Medical Application. The Safety Principle is primarily: the prevention of harm and protection of health, safety and the environment. The Security Principle recognizes the importance of preventing diversion or malicious acts. Security of Radioactive Sources during use, storage, transportation and Disposal of radioactive waste is of great concern. IAEA Model Project on the “Establishment of Radiation Protection Infrastructure” in Member Sates started in 1995. During the 49. General Conference Statements made by several African Member States revealed the desire of the various Member States to embark on nuclear power for electricity generation. This development thus expanded the original scope of the discussion from radiation protection to now include nuclear safety and nuclear security. During the 50. General Conference of September 2006 Special Event entitled “New Framework for the Utilization of Nuclear Energy in the 21. Century: Assurances of Nuclear Supply and Non-Proliferation was established. Basic Safety Fundamentals SF-1, 2006 shows those basic safety principles for nuclear safety, radiation protection; Waste management and transport safety are similar. Regional Cooperation formed an organization to be known as the Forum of Nuclear Regulatory Bodies in Africa (FNRBA) to provide for the enhancement, strengthening and harmonization of the radiation protection, nuclear safety and security regulatory infrastructure and framework among the members of FNRBA

  11. NUCLEAR 2009 international conference on sustainable development through nuclear research and education. Book of Abstracts

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2009-01-01

    The Book of abstracts of the papers submitted to 'NUCLEAR 2009 international conference on sustainable development through nuclear research and education' held at INR-Pitesti on May, 27 - 29 2009 contain 109 abstracts of the communications submitted for two plenary sessions (6 and 4 talks, respectively) and three sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (8 papers); Section 1.2 - Nuclear reactors (15 papers); Section 1.3 - Nuclear technologies and materials (32 papers); Section 2.1 - Radioactive waste management (18 papers; Section 2.2 and Section 2.3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Education, continuous formation and knowledge transfer (9 papers); Section 3.2 -Strategies in energy (Round table) (5 papers). A number of 17 papers are presented only as abstracts in this book, the rest were presented fully during the conference. The proceedings of the conference are separately processed and introduced as such in the INIS database

  12. Development of regulatory requirements/guides for desalination unit coupled with nuclear plant

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik

    2005-10-01

    The basic design of System-integrated Modular Advanced Reactor (SMART), a small-to-medium sized integral type pressurized water reactor (PWR) with the capacity of 330MWth, has been developed in Korea. In order to demonstrate the safety and performance of the SMART design, 'Development Project of SMART-P (SMART-Pilot Plant)' has been being performed as one of the 'National Mid and Long-term Atomic Energy R and D Programs', which includes design, construction, and start-up operation of the SMART-P with the capacity of 65MWth, a 1/5 scaled-down design of the SMART. At the same time, a study on the development of regulatory requirements/guides for the desalination unit coupled with nuclear plant has been carried out by KINS in order to prepare for the forthcoming SMART-P licensing. The results of this study performed from August of 2002 to October of 2005 can be summarized as follows: (1) The general status of desalination technologies has been survey. (2) The design of the desalination plant coupled with the SMART-P has been investigated. (3) The regulatory requirements/guides relevant to a desalination unit coupled with a nuclear plant have been surveyed. (4) A direction on the development of domestic regulatory requirements/guides for a desalination unit has been established. (5) A draft of regulatory requirements/guides for a desalination unit has been developed. (6) Expert technical reviews have been performed for the draft regulatory requirements/guides for a desalination unit. The draft regulatory requirements/guides developed in this study will be finalized and can be applied directly to the licensing of the SMART-P and SMART. Furthermore, it will be also applied to the licensing of the desalination unit coupled with the nuclear plant

  13. Services of the Nuclear Regulatory Authority Library

    International Nuclear Information System (INIS)

    Carregado, M.A.; Wallingre, G.V.

    2011-01-01

    Full text; The main of this work is to present the services and activities of the ARN (Autoridad Regulatoria Nuclear) Library to potential users from the biological dosimetry area in the framework of the intercomparison Meeting of the Latin American Biological Dosimetry Network held in Buenos Aires from October 27-30 of 2008. It makes a short chronology of the library; the services offered to each type of users and the tasks related to technical and international cooperation with other organizations such as: the terminology Committee of IRAM (Instituto Argentino de Normalizacion y Certificacion); the input of national literature to the INIS Database of the IAEA; the retrospective digitalisation, indexing and bibliographic description of institutional publications to be submitted to the repository of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations and the participation in nuclear information networks. Finally it shown some relevant data from the internal statistics. (authors)

  14. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances.

  15. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances

  16. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems - 15483

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.

    2015-01-01

    The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21. century in a sustainable manner. The INPRO task titled 'Global scenarios' is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21. century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries' different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies. (authors)

  17. Comparison of ISO 9000 and recent software life cycle standards to nuclear regulatory review guidance

    International Nuclear Information System (INIS)

    Preckshot, G.G.; Scott, J.A.

    1998-01-01

    Lawrence Livermore National Laboratory is assisting the Nuclear Regulatory Commission with the assessment of certain quality and software life cycle standards to determine whether additional guidance for the U.S. nuclear regulatory context should be derived from the standards. This report describes the nature of the standards and compares the guidance of the standards to that of the recently updated Standard Review Plan

  18. Regulatory quality assurance requirements for the operation of nuclear R and D facilities in Korea

    International Nuclear Information System (INIS)

    Kwon, H.I.; Lim, N.J.

    2006-01-01

    Full text: Korea Atomic Energy Research Institute (KAERI) has many R and D facilities in operation. including HANARO research reactor, radioactive waste treatment facility (RWTF), post-irradiation examination facility (PIEF) and irradiated material test facility (IMEF). Recently. nation-wide interest is focused on the safety and security of major industrial facilities. Safe operation of nuclear facilities is imperative because of the consequence of public disaster by radiological release/contamination, in case of an accident. Recently, Ministry of Science and Technology (MOST) of the Korean government announced amendments of Atomic Energy laws to enforce requirements of the physical protection and radiological emergency. All provisions on nuclear safety regulation and radiation protection are entrusted to the Atomic Energy Act(AEA). The Act is enacted as the main law concerning the safety regulation of nuclear installations, and is supplemented by the Enforcement Decree and Enforcement Regulation of the Act. These Atomic Energy laws include provisions on the construction permission and the operation license of nuclear installations, such as nuclear power reactors, research reactors, nuclear ships, nuclear fuel fabrication facilities, spent fuel treatment facilities, etc. Regulatory requirements for the regulatory inspection and the safety measures for operation are also defined in the laws. The Notice of the MOST prescribes specific issues including regulatory requirements and technical standards, as entrusted by the AEA, the Decree and the Regulation. Detailed QA requirements for nuclear installations are specified differently, depending upon the type of facility. The guidelines for safety reviews and regulatory inspections are developed by the Korea Institute of Nuclear Safety (KINS), which is an exclusive organization for safety regulation of nuclear installations in Korea. In this paper, the context of the Atomic Energy laws were reviewed to confirm the

  19. The Slovak nuclear regulatory authority and start-up of the Mochovce NPP

    International Nuclear Information System (INIS)

    Seliga, M.; Micankova, J.

    2000-01-01

    A major element of providing information is the demonstration that the area of nuclear energy uses has its binding rules in the Slovak Republic and the observance thereof is controlled by the state through an independent institution Slovak Nuclear Regulatory Authority (UJD). As early as 1995 were laid on the UJD the foundations of the concept of broadly keeping the public informed on UJD activity and the safety of nuclear installations by opening the UJD Information Centre that provides by its activity communications with the public and mass media, which is instrumental in creating in the public a favourable picture of the independent state nuclear regulation. Clear communication policy is the key to credibility and is based on perceptions which give ride to varying levels of confidence. It has been consistently found in opinion research that credibility is the single most powerful persuasive force. Public communication programmes are the principal currency for the Regulatory Authority to inform the public on issues like costs, benefit requirements and risks

  20. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J [comp.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  1. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    International Nuclear Information System (INIS)

    Baum, J.W.; Boccio, J.L.; Diamond, D.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987

  3. The Report on Activities of the Nuclear Regulatory Authority of the Slovak Republic and on Safety of Nuclear Installations in the Slovak Republic in 2010

    International Nuclear Information System (INIS)

    2010-05-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in 2010 is presented. These activities are reported under the headings: Address of the Chairperson; (1) Legislative activities; (2) Issuance of authorizations, assessment, supervisory activities and enforcement; (3) Nuclear safety of nuclear power plants; (4) Nuclear materials and physical protection of nuclear materials; (5) Powers of the office building; (6) Emergency planning and preparedness; (7) International activities; (8) Public communication; (9) Nuclear Regulatory Authority of the Slovak Republic; (10) Appendix: UJD SR organization chart; The International Nuclear Event Scale (INES); Abbreviations.

  4. Regulator's role in sustainability of nuclear power

    International Nuclear Information System (INIS)

    Bansal, Parikshat; Sinha, Soumen; Bhattacharya, Ramdas

    2015-01-01

    A development which is environmentally benign, economically viable as well socially acceptable is regarded as sustainable development. Nuclear power scores extremely well with the first two parameters: i.e its cost of production is competitive with that of other power sources and is considered a clean source of power as the greenhouse gas emissions and discharge of other hazardous pollutants are insignificant. However, when it comes to acceptability by the society at large, there are issues. Early shutting down of power plants like Superphénix at France, abandonment of Yucca mountain project, agitation during commissioning of KKNPP etc. are few examples where the public perception was the main reason for such actions. These events tell us about the importance of public perception in sustainability of a project or nuclear power as a whole. In this backdrop, the role of regulator to present the safety aspects in correct perspective assumes enormous significance and goes in a long way in clearing unwarranted apprehensions, thereby playing a pivotal role in sustainability of nuclear power. The nuclear regulator needs to build long lasting trust and confidence with stakeholders. Therefore it needs to be continuously in touch with public, not only during crisis but also during peace time, disseminating information on safe use of ionizing radiation and atomic energy without undue risk to the health of the people and environment. (author)

  5. A regulatory view of nuclear containment on UK licensed sites

    International Nuclear Information System (INIS)

    Bradford, P.M.; McNair, I.J.

    1997-01-01

    Members of the UK regulatory body, HM Nuclear Installations Inspectorate (NII) have previously presented conference papers and official reports which have dealt separately with either reactor applications or chemical plant applications. The objective of this paper is to draw together a brief overview of the role of containment in protecting against potential radiological and related hazards, and to describe the factors which influence the NII's assessment of containment safety cases. It draws upon the NII's experience of regulating many types of nuclear facility, from those designed in the late 1940s through to the modern plants, such as Sizewell 'B' and THORP. The paper reviews the legislative and regulatory background within which the facilities exist and are operated. Finally, the paper reviews recent, ongoing and planned research in the field of containment, which has been designed to behave under challenge. (author)

  6. Degree of Sustainability of Various Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Brogli, R.; Krakowski, R.A.

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a similar evaluation

  7. Degree of Sustainability of Various Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A. [Los Alamos National Laboratory, New Mexico (United States)

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a

  8. Evaluation Indicators for Analysis of Nuclear Fuel Cycle Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Ko, Won Il; Chang, Hong Lae

    2008-01-15

    In this report, an attempt was made to derive indicators for the evaluation of the sustainability of the nuclear fuel cycle, using the methodologies developed by the INPRO, OECD/NEA and Gen-IV. In deriving the indicators, the three main elements of the sustainability, i.e., economics, environmental impact, and social aspect, as well as the technological aspect of the nuclear fuel cycle, considering the importance of the safety, were selected as the main criteria. An evaluation indicator for each criterion was determined, and the contents and evaluation method of each indicator were proposed. In addition, a questionnaire survey was carried out for the objectivity of the selection of the indicators in which participated some experts of the Korea Energy Technology and Emergency Management Institute (KETEMI) . Although the proposed indicators do not satisfy the characteristics and requirements of general indicators, it is presumed that they can be used in the analysis of the sustainability of the nuclear fuel cycle because those indicators incorporate various expert judgment and public opinions. On the other hand, the weighting factor of each indicator should be complemented in the future, using the AHP method and expert advice/consultations.

  9. Regulatory oversight of maintenance activities at nuclear power plants

    International Nuclear Information System (INIS)

    Pape, M.

    1997-01-01

    Regulation of nuclear safety in the UK is based on monitoring of compliance with licence conditions. This paper discusses legislation aspects, license conditions, license requirements for maintenance and maintenance activities in the UK. It also addresses the regulator utility interaction, the regulatory inspection of maintenance and the trends in maintenance. (author)

  10. Regulatory practice for safety of nuclear energy in the German Democratic Republic

    International Nuclear Information System (INIS)

    Krueger, F.W.; Arndt, H.; Nessau, L.; Rabold, H.; Roehnsch, W.; Scheel, H.

    1988-01-01

    An outline of the regulatory practice applied in the GDR to ensure the safe use of nuclear energy is given in the form of answers to a questionnaire issued by the IAEA with the objective of giving the international community confidence in the safety of nuclear power programmes. (author)

  11. Amendment to the Decree of the Slovak Nuclear Regulatory Authority on details concerning emergency planning in case of nuclear incident or accident

    International Nuclear Information System (INIS)

    Biharyová, Michaela

    2018-01-01

    Following up amendment to the Slovak Atomic Act, the Decree No. 55/2006 on details concerning emergency planning in case of nuclear incident or accident has also been amended now. Following a short introductory text by the author, the entire text of the ‘Decree of the Nuclear Regulatory Authority of the Slovak Republic No 9/2018 Coll. of 2 January 2018 amending Decree of the Nuclear Regulatory Authority of the Slovak Republic No 55/2006 Coll. on details in emergency planning in case of nuclear incident or accident as amended by Decree No. 35/2012 Coll.’ is reproduced. The Amendment entered into force 1 February 2018. (orig.)

  12. Considerations about the impact of the Convention on Nuclear Safety on the regulatory action of the CNEN in Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Camargo, Claudio; Pontedeiro, Auro

    1995-01-01

    Preliminary discussion is conducted about the impact of the terms of the Convention on Nuclear safety, adopted by Diplomatic Conference in September 1994 in the International Atomic Energy Agency, on the regulatory action of Brazilian Nuclear Regulatory Body - CNEN. Following the Convention articles structure, the paper emphasizes technical aspects of the nuclear safety standards adopted in the licensing process of Brazilian Nuclear Power Plants. The recent experience in the issuance of Angra-1 NPP Permanent Operation Authorization is used to demonstrate that current safety standards in Brazil are in compliance with the international compromises and in agreement with what is expected by the so called Safety Culture. (author). 9 refs

  13. Regulatory control of radioactivity and nuclear fuel cycle in Canada

    International Nuclear Information System (INIS)

    Hamel, P.E.; Jennekens, J.H.

    1977-01-01

    The mining of pitchblende for the extraction of radium some four decades ago resulted in a largely unwanted by-product, uranium, which set the stage for Canada to be one of the first countires in the world to embark upon a nuclear energy program. From this somewhat unusual beginning, the Canadian program expanded beyond mining of uranium-bearing ores to include extensive research and development in the field of radio-isotope applications, research and power reactors, nuclear-fuel conversion and fabrication facilities, heavy-water production plants and facilities for the management of radioactive wastes. As in the case of any major technological development, nuclear energy poses certain risks on the part of those directly engaged in the industry and on the part of the general public. What characterizes these risks is not so much their physical nature as the absence of long-term experience and the confidence resulting from it. The early development of regulatory controls in the nuclear field in Canada was very much influenced by security considerations but subsequently evolved to include radiological protection and safety requirements commensurate with the expanding application of nuclear energy to a wide spectrum of peaceful uses. A review of Canadian nuclear regulatory experience will reveal that the risks posed by the peaceful uses of nuclear energy can be controlled in such a manner as to ensure a high level of safety. Recent events and development have shown however that emphasis on the risks associated with low-probability, high-consequence events must not be allowed to mask the importance of health and safety measures covering the entire fuel cycle

  14. Banquet speech: nuclear power, competition and sustainable development

    International Nuclear Information System (INIS)

    Strong, M.F.

    1995-01-01

    The essential ingredients of sustainable development are economics and efficiency in the use of energy and materials, and in the prevention, disposal and recycling of wastes. Nuclear power will continue to be an important means of electricity generation for the foreseeable future but the extent to which this will be the case depends on the nuclear industry resolving public concerns over environmental, health and safety risks, and competing successfully with other generating technologies. In the final analysis, the future of nuclear power will be determined primarily by economic considerations. (UK)

  15. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  16. Regulatory oversight on nuclear safety in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T-T. [Atomic Energy Council, New Taipei City, Taiwan (China)

    2014-07-01

    Taiwan is a densely populated island and over 98% of its energy is imported, 16.5% of which is nuclear, in the form of materials and services. Ensuring that the most stringent nuclear safety standards are met therefore remains a priority for the government and the operator, Taiwan power Company (Taipower). There are eight nuclear power reactors in Taiwan, six of which are in operation and two are under construction. The first began operating nearly 40 years ago. For the time being the issue of whether to decommission or extend life of the operating units is also being discussed and has no conclusion yet. Nuclear energy has been a hot issue in debate over the past decades in Taiwan. Construction of Lungmen nuclear power plant, site selection of a final low-level waste disposal facility, installation of spent fuel dry storage facilities and safety of the currently operating nuclear power reactors are the issues that all Taiwanese are concerned most. In order to ensure the safety of nuclear power plant, the Atomic Energy Council (AEC) has implemented rigorous regulatory work over the past decades. After the Fukushima accident, AEC has conducted a reassessment program to re-evaluate all nuclear power plants in Taiwan, and asked Taipower to follow the technical guidelines, which ENSREG has utilized to implement stress test over nuclear power plants in Europe. In addition, AEC has invited two expert teams from OECD/NEA and ENSREG to conduct peer reviews of Taiwan's stress test national report in 2013. My presentation will focus on activities regulating safety of nuclear power programs. These will cover (A) policy of nuclear power regulation in Taiwan, (B)challenges of the Lungmen Plant, (C) post-Fukushima safety re-assessment, and (D)radioactive waste management. (author)

  17. Innovative training techniques in the Canadian nuclear regulatory environment

    International Nuclear Information System (INIS)

    Martin, D.J.

    1996-01-01

    One of the contributors to the safety of nuclear installations is properly-trained personnel. This applies equally to the staff of a regulatory agency, as they are charged with the task of evaluating the safety of installations and operations involving radioactive materials. In 1990, the nuclear regulatory agency of Canada, the Atomic Energy Control Board, set up a Training Center to train AECB staff and to provide assistance to foreign regulatory agencies who had asked for such assistance. In setting up the Training Centre, the authors considered factors which adversely affect the efficacy of training courses. The technical content must, of course, be of sufficiently high quality, but there are other, significant factors which are independent of the content: consider a presentation in which the lecturer shows a slide which is unreadable from the back of the room. The training value of this slide is zero, even though the content may be sound. Pursuing this thought, they decided to examine the mechanics of presentations and the form of training materials, with a view to optimizing their effectiveness in training. The results of this examination were that they decided to use three technologies as the basis for production of training, support and presentation materials. This paper briefly describes these technologies and their advantages. The technologies are: desktop publishing, video and multimedia

  18. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J [comp.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  19. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs

  20. Regulatory Body Safety Culture in Non-nuclear HROs: Lessons for Nuclear Regulators

    International Nuclear Information System (INIS)

    Fleming, M.; Bowers, K.

    2016-01-01

    Regulator safety culture is a relatively new area of investigation, even though deficiencies in regulatory oversight have been identified in a number of public inquiries (e.g., Piper Alpha, Deep Water Horizon). More recently the IAEA report into the Fukushima disaster specifically identified the need for regulatory bodies to have a positive safety culture. While there are clear parallels between duty holder safety culture and regulator safety culture there are also likely to be differences. To date they have been no published studies investigating regulator safety culture. In order to develop a framework to understand regulator safety culture we conducted a literature review and interviewed safety culture subject matter experts from a range of HRO domains (e.g., offshore oil and gas). There was general consensus among participants that regulatory safety culture was an important topic that was worthy of further investigation. That there was general agreement that regulatory safety culture was multi-dimensional and that some of the elements of existing safety culture models applied to regulator culture (e.g., learning and leadership). The participants also identified unique dimensions of regulator safety culture including commitment to high standards and ethics, transparency and perceived role of the regulator. In this paper we will present the results of the interviews and present a model of regulator safety culture. This model will be contrasted with models being used in the nuclear industry. Implications for assessing regulatory safety culture will be discussed. (author)

  1. Upgrading Atucha 1 nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Caruso, G.

    1998-01-01

    Atucha 1 nuclear power plant has unique design and its commercial operation started in 1974. The upgrading decisions, the basis for an upgrading program and its status of implementation are presented. Regulatory decisions derived from the performance-based approach have the advantage that they enable balancing of the overall plant risk and identifying at different plant levels the areas where improvements are necessary. (author)

  2. 1992 Nuclear Regulatory Commission Annual Report

    International Nuclear Information System (INIS)

    1993-01-01

    This is the 18th annual report of the US Nuclear Regulatory Commission (NRC), covering events and activities occurring in fiscal year 1992 (the year ending September 30, 1992), with some treatment of events from the last quarter of calendar year 1992. The NRC was created by enactment in the Congress of the Energy Reorganization Act of 1974. It is an independent agency of the Federal Government. The five NRC Commissioners are nominated by the President and confirmed by the United States Senate. The Chairman of the Commission is appointed by the President from among the Commissioners confirmed

  3. Sustainable operations in nuclear research reactors. A bibliographical study

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  4. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  5. The nuclear regulatory body and the principles of utility, legality and legitimacy

    International Nuclear Information System (INIS)

    Wieland, Patricia; Almeida, Ivan P. Salati de; Almeida, Claudio Ubirajara

    2007-01-01

    The nuclear regulation is justified by the principles of usefulness, legality and legitimacy. Usefulness is defined as the value that regulation adds to the society; legality is when the society manifests its will for regulation and this is done by the laws, establishing the regulatory body scope and responsibilities. Legitimacy is the less evident concept, as it depends more on the public perception and acceptance than on any other parameter. The nuclear regulator credibility depends basically on its autonomy and independence to make decisions. The challenge is to keep neutrality against political and industrial interests and to overcome difficulties such as the lack of objectivity and criteria, lack of specific competence and excess of dependence in individual decisions. This paper deals with the effectiveness of nuclear regulatory bodies and proposes a basic structure of an ideal management model. (author)

  6. Training related research and development conducted at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Haas, P.M.

    1985-01-01

    For a number of years Oak Ridge National Laboratory (ORNL) has conducted a sizeable program of human factors research and development in support of the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission (NRC). The history of this effort has in many ways paralleled the growth of human factors R and D throughout the nuclear industry and the program has contributed to advances in the industry as well as to NRC regulatory and research programs. This paper reviews the major projects and products of the program relevant to training and concludes with an identification of future R and D needs

  7. International Expert Team Concludes IAEA Peer Review of Bulgaria's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: An international team of senior nuclear safety and radiation protection experts today concluded a 12-day mission to review the regulatory framework for nuclear and radiation safety in Bulgaria. The Integrated Regulatory Review Service (IRRS) mission, conducted at the request of the Government of Bulgaria, identified a series of good practices and made recommendations to help enhance the overall performance of the regulatory system. IRRS missions, which were initiated in 2006, are peer reviews based on the IAEA Safety Standards; they are not inspections or audits. ''Bulgaria has a clear national policy and strategy for safety, which are well in line with international standards and practices and contribute to a high level of nuclear safety,'' said Mission Team Leader Marta Ziakova, Chairperson of the Nuclear Regulatory Authority of the Slovak Republic. The mission team, which conducted the review from 8 to 19 April, was made up of 16 senior regulatory experts from 16 nations, and six IAEA staff. ''The results of the IRRS mission will be valuable for the future development and reinforcement of the Bulgarian Nuclear Safety Agency (BNRA). The use of international standards and good practices helps to improve global harmonization in all areas of nuclear safety and radiation protection,'' said Sergey Tzotchev, Chairman of the BNRA. Among the main observations in its preliminary report, the IRRS mission team found that BNRA operates as an independent regulatory body and conducts its regulatory processes in an open and transparent manner. In line with the IAEA Action Plan on Nuclear Safety, the mission reviewed the regulatory implications for Bulgaria of the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station in Japan. It found that the BNRA's response to the lessons learned from that accident was both prompt and effective. Strengths and good practices identified by the IRRS team include the following: A no-blame policy is enshrined in law for

  8. Decision-making behavior of experts at nuclear power plants. Regulatory focus influence on cognitive heuristics

    International Nuclear Information System (INIS)

    Beck, Johannes

    2015-09-01

    The goal of this research project was to examine factors, on the basis of regulatory focus theory and the heuristics and biases approach, that influence decision-making processes of experts at nuclear power plants. Findings show that this group applies anchoring (heuristic) when evaluating conjunctive and disjunctive events and that they maintain a constant regulatory focus characteristic. No influence of the experts' characteristic regulatory focus on cognitive heuristics could be established. Theoretical and practical consequences on decision-making behavior of experts are presented. Finally, a method for measuring the use of heuristics especially in the nuclear industry is discussed.

  9. A new start for European nuclear energy: the forum and the sustainable nuclear energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [E.ON Kernkraft GmbH, Hanover (Germany)

    2009-06-15

    In the next years we will face significant switch stands regarding the future energy mix in Europe. In general, European energy policy has to address three energy challenges for a competitive electricity production (1): - Security of supply; - Limitation of greenhouse gas emissions; and - Providing affordable energy to consumers. Regarding climate precaution the goal of a low carbon economy is very ambitious. The NPP in operation already today contribute to all three goals. Nuclear energy generates two thirds of the EU' low carbon electricity, is one of the most economic energy sources and is less vulnerable to fuel price changes, thereby protecting EU economies against the price volatility of raw materials (2). The investment decisions, which have to been taken in the next 5 to 10 years, will determine the electricity production portfolio in the European Union for the next 50 years: 1. Around 800-900 GWe capacity will be required by 2030 to replace the existing capacity and to address increasing demand. 2. More than 50 % of the electricity in 2030 will be generated in plants have not been build today. 3. A total of 57.6 GWe of new nuclear power plants are projected to be commissioned between 2000 and 2030 (3). Only 9.4 GW of these are already certain investments. To ensure sustainable investment decisions, there needs to be reliable and effective framework conditions with the underlying principles: - competition among vendors; - efficient licensing; - solvent capital markets; - political framework; and - public acceptance. With regard to public acceptance, the Commission launched, based on the results of the EU summit in 2007, a platform for a broad stakeholder discussion about risks, challenges and opportunities of nuclear energy, the European Nuclear Energy Forum (ENEF). E.ON is actively involved in both discussion during the annual ENEF-summit and the working group sessions throughout the year. We appreciate these discussion and we face up the pros and

  10. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-07-29

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  11. Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa (FNRBA)

    International Nuclear Information System (INIS)

    Severa, R.

    2010-01-01

    Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa(FNRBA) is a regional organization comprising of nuclear regulatory bodies it’s goals are to promote the establishment of regulatory infrastructure in all countries of the Region to adopt joint action plan for implementation of self-assessment and work with Member States to upgrade their regulatory infrastructures, develop and promote a framework for capacity building in areas of radiation and nuclear safety and security, to create an opportunity for mutual support and coordination of regional initiatives by leveraging the development and utilization of regional and international resources and expertise and to serve as reference body on matters relating to nuclear and radiation safety and security in the Region. Radioactive active sources continue to play an increasingly important role in socio-economic activities on the African continent. There is also an ever increasing need to ensure that radioactive sources are utilized in a safe and secure manner

  12. Proceedings of NUCLEAR 2013 the 6th annual international conference on sustainable development through nuclear research and education. Part 1/3

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2013-01-01

    The proceedings of the NUCLEAR 2013 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 2-24 2013 contain 79 communications presented in two plenary sessions (6 and 8 talks, respectively) and three sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development . In turn these sections are addressing the following items: Section 1.1 - Nuclear Technology and Materials (33 papers); Section 1.2 Nuclear Safety and Sever Accidents (16 papers); 1.3 Nuclear Reactors and Gen IV (20 papers); 2.1 Radioactive Waste Management (13 papers); 2.2 Radioprotection and 2.3 Air, Water, Soil Protection (17 papers); 3.1 Polices and Strategies in Nuclear Research (0 papers); 3.2 International Partnership for a Sustainable Development (2 papers); 3.3 Education, Continuous Formation and Knowledge Transfer (1 papers). These papers are presented as abstracts in 'Nuclear 2013 - Book of Abstracts', separately processed

  13. Proceedings of NUCLEAR 2015 the 8th annual international conference on sustainable development through nuclear research and education. Part 1/3

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2015-01-01

    The proceedings of the NUCLEAR 2015 the 8"t"h annual international conference on sustainable development through nuclear research and education. Part 1/3 held at INR-Pitesti on May, 27-29 contain 62 communications presented in two plenary sessions and three sections addressing the themes of Nuclear energy, Environmental protection and Sustainable development. In turn these sections are addressing the following items: Section 1.1 Nuclear safety and severe accidents (7 papers); Section 1.2 Nuclear reactors and gen. IV (5 papers); Section 1.3 Nuclear technology and materials (19 papers); Section 2.1 Radioprotection & air, water and soil protection (1 paper); Section 2.2 Radioactive waste management (9 papers); Section 3.1 policies and strategies in nuclear research (1 paper); Section 3.2 Education, training and knowledge management (16 papers); Section 3.3 International partnership for a sustainable development (4 papers). These papers are presented as abstracts in 'Nuclear 2015 - Book of Abstracts', separately processed

  14. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    nuclear heat. With more than 20% of the total energy generated by nuclear energy, even its most adamant adversaries could not pretend its role is marginal for sustainable development. The niche is there: will we be able to fill it?

  15. Regulatory trends and practices related to nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Cantor, R.A.

    1984-01-01

    In the next several decades, the electric utility industry will be faced with the retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this paper is to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers

  16. US Nuclear Regulatory Commission organization charts and functional statements

    International Nuclear Information System (INIS)

    1997-01-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed

  17. US Nuclear Regulatory Commission organization charts and functional statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  18. Proceedings of NUCLEAR 2016 the 9th annual international conference on sustainable development through nuclear research and education. Part 1/3

    International Nuclear Information System (INIS)

    Paraschiv, Irina Maria

    2016-01-01

    The Proceedings of the NUCLEAR 2016 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 18-20, contain 81 communications presented in two plenary sessions and three sections addressing the themes of Nuclear energy, Environmental protection and Sustainable development. This section (Part 1/3) are addressing the following items: Section 1.1 Nuclear safety and severe accidents (6 papers); Section 1.2 Nuclear reactors and gen. IV (7 papers); Section 1.3 Nuclear technology and materials (29 papers); These papers are presented as abstracts in 'Nuclear 2016 - Book of Abstracts', separately processed

  19. Nuclear Security Recommendations on Nuclear and other Radioactive Material out of Regulatory Control: Recommendations (Spanish Edition); Recomendaciones de Seguridad Fisica Nuclear sobre Materiales Nucleares y otros Materiales Radiactivos no sometidos a Control Reglamentario: Recomendaciones

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This publication presents recommendations for the nuclear security of nuclear and other radioactive material that is out of regulatory control. It is based on national experiences and practices and guidance publications in the field of security as well as the nuclear security related international instruments. The recommendations include guidance for States with regard to the nuclear security of nuclear and other radioactive material that has been reported as being out of regulatory control as well as for material that is lost, missing or stolen but has not been reported as such, or has been otherwise discovered. In addition, these recommendations adhere to the detection and assessment of alarms and alerts and to a graded response to criminal or unauthorized acts with nuclear security implications.

  20. Key elements of a sustainable nuclear business case

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, D [Nuclear Consultants International - South Africa and AMEC Nuclear - United Kingdom, 20-35th Avenue, Umhlatuzana, Chatsworth, Durban (South Africa)

    2008-07-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  1. Key elements of a sustainable nuclear business case

    International Nuclear Information System (INIS)

    Naidoo, D

    2008-01-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  2. Regulatory analysis for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This regulatory analysis provides the supporting information for the final rule (10 CFR Part 54) that defines the Nuclear Regulatory Commission's requirements for renewing the operating licenses of commercial nuclear power plants. A set of four specific alternatives for the safety review of license renewal applications is defined and evaluated. These are: Alternative A-current licensing basis; Alternative B-extension of Alternative A to require assessment and managing of aging; Alternative C -- extension of Alternative B to require assessment of design differences against selected new-plant standards using probabilistic risk assessment; and Alternative D -- extension of Alternative B to require compliance with all new-plant standards. A quantitative comparison of the four alternatives in terms of impact-to-value ratio is presented, and Alternative B is the most cost-beneficial safety review alternative

  3. Sustainability indicators for innovation and research institutes of nuclear area in Brazil

    International Nuclear Information System (INIS)

    Alves, S.F.; Barreto, A.A.; Rodrigues, P.C.H.; Feliciano, V.M.D.

    2016-01-01

    Indicators are relevant tools for measuring sustainability process. In this study, the relevance of sustainability indicators appropriate for research and innovation institutes in Brazil is discussed. As reference for case study, nuclear research and innovation institutes were chosen. Sixty-nine sustainability indicators were considered. Some of these indicators were obtained from lists in the literature review, distributed between the dimensions environmental, economic, social, cultural and institutional. The other indicators were developed through discussions between professionals from nuclear, environmental, economic, social and cultural areas. Among the investigated indicators, 32 were selected as being the most relevant. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed. (author)

  4. Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Poplavskaya, E.

    2013-01-01

    The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

  5. The public information aspects of nuclear regulatory inspection in the United States

    International Nuclear Information System (INIS)

    Volgenau, E.

    1977-01-01

    The public information aspects of the regulation of nuclear power present a unique set of problems. Not only must the regulators communicate often complex technical information to the public, they must also assure the public, the press and the legislative bodies of the adequacy of the regulatory process and the safety of power plant operations. The United States Nuclear Regulatory Commission (NRC), recognizing the importance of a continuing, open dialogue with the public, has placed particular emphasis on informing the public of its operations. NRC's experiences have been both good and bad. On balance, however, the NRC believes it is following the best course by conducting its operations openly and candidly. (author)

  6. Quality manual. Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    2006-03-01

    This quality manual of the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. Basic characteristics of the UJD, Quality manual operative control, and Quality management system (QMS) are described. Management responsibility, Processes realization, Measurement, analysis (assessment) and improvement of the quality management system, Cancellation provision as well as abbreviations used in the Quality Manual are presented.

  7. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    International Nuclear Information System (INIS)

    Ichikawa, M.

    1994-01-01

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs

  8. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-12-31

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs.

  9. Regulatory oversight strategy for chemistry program at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Kameswaran; Ram

    2012-09-01

    Chemistry program is one of the essential programs for the safe operation of a nuclear power plant. It helps to ensure the necessary integrity, reliability and availability of plant structures, systems and components important to safety. Additionally, the program plays an important role in asset preservation, limiting radiation exposure and environmental protection. A good chemistry program will minimize corrosion of materials, reduce activation products, minimize of the buildup of radioactive material leading to occupational radiation exposure and it helps limit the release of chemicals and radioactive materials to the environment. The legal basis for the chemistry oversight at Canadian NPPs is established by the Nuclear Safety and Control Act and its associated regulations. It draws on the Canadian Nuclear Safety Commission's regulatory framework and NPP operating license conditions that include applicable standards such as CAN/CSA N286-05 Management System Requirements for Nuclear Power Plants. This paper focuses on the regulatory oversight strategy used in Canada to assess the performance of chemistry program at the nuclear power plants (NPPs) licensed by CNSC. The strategy consists of a combination of inspection and performance monitoring activities. The activities are further supported from information gathered through staff inspections of cross-cutting areas such as maintenance, corrective-action follow-ups, event reviews and safety related performance indicators. (authors)

  10. Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  11. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    International Nuclear Information System (INIS)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  12. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  13. Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  14. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  15. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  16. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    International Nuclear Information System (INIS)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection

  17. Recommended revisions to Nuclear Regulatory Commission seismic design criteria. Technical report

    International Nuclear Information System (INIS)

    Coats, D.W.

    1980-05-01

    This report recommends changes in the Nuclear Regulatory Commission's (NRC's) criteria now used in the seismic design of nuclear power plants. Areas covered include ground motion, soil-structure interaction, structures, and equipment and components. Members of the Engineering Mechanics Section of the Nuclear Test Engineering Division at Lawrence Livermore Laboratory (LLL) generally agreed upon the recommendations, which are based on (1) reports developed under the NRC's Task Action Plan A-40, (2) other available engineering literature, and (3) recommendations of nationally recognized experts retained by LLL specifically for this task

  18. Sustainability assessment of nuclear power: Discourse analysis of IAEA and IPCC frameworks

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Laes, Erik

    2015-01-01

    Highlights: • Sustainability assessments (SAs) are methodologically precarious. • Discourse analysis reveals how the meaning of sustainability is constructed in SAs. • Discourse analysis is applied on the SAs of nuclear power of IAEA and IPCC. • For IAEA ‘sustainable’ equals ‘complying with best international practices’. • The IAEA framework largely inspires IPCC Fifth Assessment Report. - Abstract: Sustainability assessments (SAs) are methodologically precarious. Value-based judgments inevitably play a role in setting the scope of the SA, selecting assessment criteria and indicators, collecting adequate data, and developing and using models of considered systems. Discourse analysis can reveal how the meaning and operationalization of sustainability is constructed in and through SAs. Our discourse-analytical approach investigates how sustainability is channeled from ‘manifest image’ (broad but shallow), to ‘vision’, to ‘policy targets’ (specific and practical). This approach is applied on the SA frameworks used by IAEA and IPCC to assess the sustainability of the nuclear power option. The essentially problematic conclusion is that both SA frameworks are constructed in order to obtain answers that do not conflict with prior commitments adopted by the two institutes. For IAEA ‘sustainable’ equals ‘complying with best international practices and standards’. IPCC wrestles with its mission as a provider of “policy-relevant and yet policy-neutral, never policy-prescriptive” knowledge to decision-makers. IPCC avoids the assessment of different visions on the role of nuclear power in a low-carbon energy future, and skips most literature critical of nuclear power. The IAEA framework largely inspires IPCC AR5

  19. Ongoing enhancements in the German nuclear regulatory framework with respect to fire safety

    Energy Technology Data Exchange (ETDEWEB)

    Elsche, Bjoern [e.on Kernkraft, Hannover (Germany); Roewekamp, Marina [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Neugebauer, Wilfried [AREVA NP, Erlangen (Germany); Gersinska, Rainer [Bundesamt fuer Strahlenschutz (BfS), Salzgitter (Germany). KTA-Geschaeftsstelle

    2015-12-15

    In the recent past, the regulatory framework for nuclear power plants (NPP) in Germany has been updated and enhanced comprising on the one hand comprehensive high level regulatory documents such as the 'Safety Requirements for Nuclear Power Plants' and, on the other hand, revised state-of-the-art nuclear safety standards and rules being incorporated in a corresponding legal structure. A major enhancement concerns the nuclear fire and explosion protection standards being already available as so-called green print for final comments which are expected to be officially published end of 2015. The update became necessary after approx. ten years for better addressing some lessons learnt form the operating experience, the consideration of post- Fukushima insights, such as more systematically addressing event combinations with fires and taking into account deviations from non-nuclear standards for escape and rescue routes. Moreover, fire protections remains an important issue for nuclear power plants in Germany during the longer term post-commercial safe shutdown period before decommissioning during which the spent fuel elements remain either in the containment or in the spent fuel pool for further years requiring suitable fire protection means being in place.

  20. Structural radioactive waste from 'retubing/refurbishment' of Embalse nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Alvarez, Daniela E.; Lee Gonzales, Horacio M.; Medici, Marcela A.; Piumetti, Elsa H.

    2009-01-01

    Unlike the building of a new nuclear reactor, the 'retubing / refurbishment' of nuclear reactors that have been in operation for many years, involves the replacement of components in a radioactive environment. This requires a carefully planned radiation protection program to ensure protection of workers, the public and the environment as well as a radioactive waste management program for those radioactive waste generated during the process, which go beyond those generated during the normal operation and maintenance of the plant. Nucleoelectrica Argentina Sociedad Anonima (NA-SA) is scheduled to conduct the Life Extension Process of Embalse Nuclear Power Plant (CNE) which essentially consist of 'retubing / refurbishment' of the installation. The Nuclear Regulatory Authority (ARN) will then have an important activity related to the above process. In particular, this paper will describe some points of interest related to the generation and management of radioactive waste during the 'retubing / refurbishment' of the CNE, from the regulatory point of view. (author)