WorldWideScience

Sample records for sustainable nuclear energy

  1. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  2. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  3. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  4. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  5. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Gonzalez, E.

    2005-01-01

    To sustain decent environmental conditions, it is essential to contain the emission of greenhouse gases. to a great extent, this can be achieved by reducing the almost exclusive dependence of fossil fuels for producing electricity and by championing nuclear energy and the renewable, which in the end are the least contaminating. Specifically, operation of the European nuclear fleet avoids the yearly emission of 700 million tons of CO 2 to the atmosphere. The need to combat climate change is very serious and increasingly imminent, especially if we remember that the World Health Organization has said that climate change could eventually cause 300,000 deaths. The different social players are aware of the problem. In fact, the European Union's Cabinet of Ministers approved the post-kyoto Environmental Strategy, which underlines the need to reduce CO e missions by 80% by the year 2050. It seems obvious that, in the long run, technological research and development will be fundamental pieces in the battle against environmental change and in the effort to one day provide 2,000 million people with access to electricity. (Author)

  6. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  7. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  8. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  9. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    2000-01-01

    The concept of sustainable development, which emerged from the report of the 1987 World Commission on Environment and Development (the Brundtland report), is of increasing interest to policy makers and the public. In the energy sector, sustainable development policies need to rely on a comparative assessment of alternative options, taking into account their economic, health, environmental and social aspects, at local, regional and global levels. This publication by the OECD Nuclear Energy Agency investigates nuclear energy from a sustainable development perspective, and highlights the opportunities and challenges that lie ahead in this respect. It provides data and analyses that may help in making trades-off and choices in the energy and electricity sectors at the national level, taking into account country-specific circumstances and priorities. It will be of special interest to policy makers in the nuclear and energy fields

  10. Nuclear energy sustainable development and public awareness

    International Nuclear Information System (INIS)

    Murty, G.S.

    2001-01-01

    This paper provides the latest information about the importance of energy needs and its growth in the years to come, the role of the nuclear energy and the need for public awareness and acceptability of the programs to achieve sustainable development

  11. The Role of Nuclear Energy in Establishing Sustainable Energy Paths

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.; Van der Zwaan, B.C.C.

    2001-10-01

    This study juxtaposes the major facts and arguments about nuclear energy and its potential role in establishing sustainable energy paths. The notion of sustainability has a strong normative character and can be interpreted in a variety of ways. Therefore, also the sustainability of energy supply technologies possesses a normative nature. This paper analyses what the major dimensions are that ought to be addressed when nuclear energy technology is compared, in sustainability terms, with its fossil-fuelled and renewable counterparts. It is assessed to what extent energy supply portfolios including nuclear energy are more, or less, sustainable in comparison to those that exclude this technology. It is indicated what this inventory of collected facts and opinions means for both policy and research regarding nuclear energy in the case of the Netherlands. 32 refs

  12. Nuclear energy and sustainability in Latin America

    International Nuclear Information System (INIS)

    Sterner, Thomas

    1991-01-01

    The concept of sustainability has been given numerous interpretations, some overlapping or complementary, some contradictory. Thus it is difficult to judge whether the nuclear industry does, or does not, meet sustainability criteria; particularly as the present nuclear technologies are not renewable. Uranium resources appear to be of the same order of magnitude as oil and gas resources. This implies that they are a transitional source of energy. There are also other potential arguments against the sustainability of nuclear power: its pollution, risks and costs. Environmental damage may come from various parts of the nuclear fuel cycle. Two types of risk will be discussed: first the risk of major accidents and thereby exceptional environmental damage, and second the risks associated with the proliferation of nuclear weapons. Each of these factors, as well as the pure economic cost of nuclear electricity, ought to be compared to the environmental damage, risks and costs of the available alternatives. Only the Latin American experience will be considered. For example, the need for Mexico to use nuclear power when it has large oil and gas supplies, is considered. (author)

  13. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  14. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  15. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  16. Nuclear power - an inevitable component of a sustainable energy mix

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2000-01-01

    Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)

  17. Renewability and sustainability aspects of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Sümer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 İncek, Gölbaşı, Ankara (Turkey)

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission

  18. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  19. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  20. Assessment of nuclear energy sustainability index using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Aly, Naguib; Nagy, Mohammad; Agamy, Saeed

    2010-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions. In this paper, the nuclear energy, whose sustainability will be assessed, is governed by the dynamics of three subsystems: environmental, economic, and sociopolitical. The overall sustainability is then a non-linear function of the individual sustainabilities. Each subsystem is evaluated by means of many components (pressure, status, and response). The combination of each group of indicators by means of fuzzy logic provides a measurement of sustainability for each subsystem.

  1. Is Nuclear Energy Sustainable - A Comparative Perspective

    International Nuclear Information System (INIS)

    Hirschberg, S.

    2002-01-01

    The electric utility sector is of central importance for economic growth and social development. While numerous societal and economic benefits arise from electricity production, it can also have impacts which may not be fully and unanimously reconciled with the concept of sustainability. Moving the electricity sector towards sustainable development calls for the integration of environmental, social and economic aspects in the decision-making process. As an input to such a process, one needs to assess how the different options perform with respect to specific sustainability criteria. As a part of the ''Comprehensive Assessment of Energy Systems'', carried out by the Paul Scherrer Institute (PSI), the electricity and heat supply systems are examined in view of sustainability criteria and the associated indicators, thus allowing operationalization of the sustainability concept

  2. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  3. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  4. Nuclear energy an asset for sustainable development

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The energy issue is now a worldwide concern. It is showed that nuclear energy combined with renewable energies are the only efficient response to face the challenge of climate warming by cutting drastically the emission of greenhouse gases in the electricity production. The second asset of nuclear energy is to be able to meet the growing need for electric power of developing countries. Energy conservation is a good thing to do in western countries but it is far to be sufficient. The success of France's nuclear energy program has enabled the country to be independent from other countries concerning its electricity production, to produce electricity at moderate and stable costs even on the long term, and to develop nuclear industry operators that are world leaders. According to the 28 june 2006 bill that clarifies the management of radioactive wastes, the disposal of high-level radioactive wastes in deep geological layers, will be put into service in 2025. The law has let the possibility of recovering the waste containers during a certain period after their burial if new solutions will have emerged. In the context of an expected renaissance of nuclear energy, the EPR (European Pressurized Reactor) is a valuable offer that must be developed. The construction of an EPR unit on the Flamanville site is necessary to perfect its design. (A.C.)

  5. Sustainability and acceptance - new challenges for nuclear energy

    International Nuclear Information System (INIS)

    Lensa, W. von

    2001-01-01

    This paper discusses the concept of sustainability in relation to acceptance of nuclear energy. Acceptance is viewed in terms of public acceptance, industrial acceptance, and internal acceptance/consensus within the nuclear community. It addresses sustainability criteria, the need for innovation, and the different levels of acceptability. The mechanisms of risk perception are discussed along with the technological consequences from risk perception mechanisms leading to specific objections against nuclear energy. (author)

  6. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  7. Nuclear energy-the strategic role and sustainability in china

    International Nuclear Information System (INIS)

    Pan Ziqiang; Shen Wenquan

    2007-01-01

    By analyzing the challenges of China's energy supply, an excellent perspective of nuclear power development in china has been described. Taking into account the mid-long term development requirements, a comprehensive, coordinated and sustainable nuclear power strategic consideration and proposal is put forward.Thus our national nuclear industry can not only catch up with the world advanced level in proper time, but also possess the enough stamina of sustainability. (authors)

  8. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  9. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  10. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  11. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  12. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    nuclear power. For the medium term, 2030-2050, new reactors aiming at reducing capital costs, enhancing safety and improving the efficiency of natural resource use are being developed by designers. In order to address new challenges of deregulated markets, innovative reactor designs should enhance economic competitiveness and reduce financial risks of nuclear energy. The renewed interest of governments for the nuclear option (e.g., US, Finland) has triggered national and international initiatives (GIF, INPRO) aiming at defining and implementing co-operative R and D programmes leading to the deployment of a new generation of nuclear systems meeting the economic, environmental and social goals of sustainable development. International co-operation is essential for a successful renaissance of nuclear energy in the competitive context of the new millennium. Sharing experience, expertise and know-how across countries offers unique opportunities for synergy and cost effectiveness. Intergovernmental organisations such as NEA can play a key role in this regard through providing a framework for exchanging information and undertaking joint projects. (author)

  13. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  14. Sustainability, Ethics and Nuclear Energy : Escaping the Dichotomy

    NARCIS (Netherlands)

    Kermisch, C.F.N.; Taebi, B.

    2017-01-01

    In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions,

  15. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  16. Sustainability, Ethics and Nuclear Energy: Escaping the Dichotomy

    Directory of Open Access Journals (Sweden)

    Céline Kermisch

    2017-03-01

    Full Text Available In this paper we suggest considering sustainability as a moral framework based on social justice, which can be used to evaluate technological choices. In order to make sustainability applicable to discussions of nuclear energy production and waste management, we focus on three key ethical questions, namely: (i what should be sustained; (ii why should we sustain it; and (iii for whom should we sustain it. This leads us to conceptualize the notion of sustainability as a set of values, including safety, security, environmental benevolence, resource durability, and economic viability of the technology. The practical usefulness of sustainability as a moral framework is highlighted by demonstrating how it is applicable for understanding intergenerational dilemmas—between present and future generations, but also among different future generations—related to nuclear fuel cycles and radioactive waste management.

  17. Sustainable development - the potential contribution of nuclear energy

    International Nuclear Information System (INIS)

    Bourdier, Jean-Pierre; Barre, Bertrand; Durret, Louis-Francois

    1998-01-01

    Sustainable development combines development, durability and sustainability. Energy is crucial for development: it brings work, nutrition, health, security, community, etc. Electrical energy offers the most possibilities for the consumer, particularly as regards the problems of pollution on the site of consumption. Nuclear generation is one of the best ways of producing electricity. Midway between stock energies and flow energies, it has several advantages: low consumption of resources, safety, compactness and cleanliness. Waste is not a specifically nuclear problem: it should be considered in terms of a life cycle analysis; construction, dismantling and functioning have to be assessed. The size of certain energies' contribution to the greenhouse effect is therefore made clear. Reprocessing represents a saving of energy, without environmental or health damage. It contributes to energy control, and therefore to sustainable development

  18. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  19. Sustainable Nuclear Energy for the 21st Century

    International Nuclear Information System (INIS)

    2010-09-01

    Concerns over energy resource availability, energy security and climate change suggest an important role for nuclear power in supplying sustainable energy in the 21st century. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000 by a resolution of the IAEA General Conference to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. It is a mechanism for IAEA Member States that have joined the project as INPRO members to collaborate on topics of joint interest. By 2010, INPRO membership had grown to 30 countries and the European Commission. The results of INPRO's activities, however, are made available to all IAEA Member States

  20. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  1. Sustainable development and peaceful use of nuclear energy in Romania

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin; Popescu, Dan

    2004-01-01

    The concept of sustainable development was elaborated in the late 1980s and was defined as a development that fulfills the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable development incorporates equity within and across countries as well as across generations, and integrates economic growth, environmental protection and social welfare. To analyze nuclear energy from a sustainable development perspective it is necessary to consider its economic, environmental and social impacts characteristics, both positive and negative. It is obvious that the development of nuclear energy broadens the natural resource base usable for energy production, and increases human and man-made capital. There are also many arguments in favor of nuclear energy as a reliable source such as: the large size of the nuclear power plants, their long periods of operation and the existent experience for operation. The risks associated with radiation are among the most extensively studied hazards known by man, but several factors are preserving public anxiety about radiation. Radiation is inaccessible to human senses, difficult to understand, and probabilistic in its effects, which to the public means uncertainty. Hence, radiological protection is essential to ensure that nuclear energy is compatible with sustainable development. Nuclear energy has, in normal operation, a low impact on health and environment. In order to meet the sustainable development goals, it is necessary to maintain its high standards of safety in spite of increasing competition in the electricity sector and reactors ageing in order to achieve a higher level of public acceptance. The complex technologies used by nuclear fuel cycle facilities are controlled and regulated by international and national institutions. A framework of regulatory, institutional and technical measures is already in place ensuring that the use of nuclear energy does not significantly modify

  2. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  3. Energy and climate change: the role of nuclear energy for sustainable development

    International Nuclear Information System (INIS)

    Voss, A.; Schmid, G.

    1997-01-01

    Nuclear energy is an important part of a balanced energy mix. Nuclear energy has the potential to make a significant contribution both to economic development and to a significant cost-effective reduction in carbon emissions, probably the two most salient aspects of sustainable development. Nuclear energy has clearly demonstrated its usefulness and favorable contribution in the past. Continuous development of nuclear technologies is warranted to achieve future sustainable development. Therefore, an open discussion on the potential future role of nuclear can be helpful to remove some political motivated constraints on nuclear power development. (author) 1 fig., 2 refs

  4. In sustainable way with nuclear energy

    International Nuclear Information System (INIS)

    Kopriva, J.; Svolik, S.; Placek, V.

    2009-01-01

    Company, which wants to be successful in an open market, must continuously improve its existing production capacities taking into account competitiveness - by improving safety and reliability, minimising the risk of damages and losses due to unplanned outages.. At the same time the company has to optimise operation, e.g. by shortening of the planned outages, decreasing emissions and waste, water and fuel consumption, automatisation as well as using the reserves of existing production equipment. Based on the last mentioned example the company Slovenske elektrarne is an excellent company, which after the shut down of unit 1 in the state-owned V1 Bohunice NPP, was able to deliver 150 MWe of new capacity to the grid in the period 2008- 2009 (or 180 MWe by 2010), and thus increase energy security in Slovakia. (authors)

  5. Nuclear power and sustainable energy supply for Europe

    International Nuclear Information System (INIS)

    Hilden, W.

    2006-01-01

    Developing and promoting a farsighted energy policy is a key aspect in achieving sustainable development in the European Union. Factors to be coped with in this context are the Union's increasing dependence on energy imports, and the threats facing the climate. Moreover, it is imperative that the Lisbon strategy be pursued, according to which Europe is to be made the world's most dynamic knowledge-based economic region by 2010. As early as in 2000, the EU Commission published its Green Paper, ''Towards a European Strategy of Continuity in Power Supply.'' Continuity of supply, in this context, not only stands for maximized self-sufficiency or minimized dependencies. What is at stake is a reduction of the risks stemming from dependence on imports and from changes in the environment. This goal can be achieved through a balanced and diverse structure both of energy resources and of the geographic origins of fuels. The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig.)

  6. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  7. Sustainability of nuclear energy in Mexico: comparison with other sources

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J. L.

    2006-01-01

    Because of the importance of energy to sustainable development of Mexico, it is necessary to develop a tool which permits to make a comparative assessment of energy alternative options. This tool must take into a count their characteristics in terms of their economic, health, environmental and social impacts, both, positive and negative, local, regional and global. This paper describes a methodology to measure the sustainability of nuclear and other different sources for electricity generation. The first step consists on the search of common indicators to be compared. These indicators take into account the great variety of economic, social, and environmental impacts to be considered in the specific Mexican country. A total of fourteen indicators were considered grouped in three dimensions: economic, environmental and social. The second step is to obtain the values of all the indicators for each of the alternative options being compared. These values must be calculated taking into account the economic and technological characteristics of the country. The third step is to utilize an aggregation method to integrate all the indicators in an overall sustainable qualification. Fuzzy Logic was applied for the aggregation of indicators and was used to make sensitive analyses. Finally this paper presents the results for the case of the Mexican power system generation. The main result of the comparison is that nuclear energy in Mexico is an option more sustainable than gas, coal, and hydroelectric. Some sensitive analyses were also made to investigate the implication of the uncertainties in the indicator's values. Coal was in all cases the least sustainable option with largest environmental impacts. Wind energy was also included in a study case, the results of this assessment comparison showed that wind option in Mexico has an overall qualification very close to nuclear option when a backup power system is not included

  8. Nuclear energy and opportunity to strengthen the sustainable electricity sector

    International Nuclear Information System (INIS)

    Robles N, A. G.

    2016-09-01

    The beginning of electricity in Mexico was through the use and exploitation of natural resources; as the demand grew, more generation power plants were required with great capacity and at the same time the fuels used varied, although, oil continued to be the main fuel. At present, due to the effects of climate change, the Conference of the Parties has proposed to reduce the consumption of fossil fuels to give way to clean energy (wind, solar, geothermal, nuclear, etc.), which entails gradually modifying the energy matrix of the electricity sector. The National Development Plan and the National Electricity Sector Development Program, this coordinated by the Energy Secretariat in Mexico, establish policies to promote sustainable development, increasing electricity generation through clean energy sources, including nuclear energy. However, such plans are not accurate in the strategy to be followed to ensure compliance with the increased participation of nuclear energy. This article proposes a nuclear program for the Mexican electricity sector, under the terms of a State policy, aimed at crystallizing a sustainable electricity development 2015-2036; considering that the application to the electricity sector constitutes a representative and justified example of the incorporation of environmental aspects in decision processes for the preservation of the environment. In order to determine the quantity and type of reactors, as well as the number of nuclear power plants and increase of the installed capacity, the general planning scheme of the electric sector was used, taking as reference the modeling criteria of the WASP planning system. Finally, is concluded that the electricity generated by fission of radioactive elements is an opportunity to fulfill the commitments made by Mexico at COP 21 and to meet in an environmentally friendly way the energy requirement that our country needs. (Author)

  9. A new start for European nuclear energy: the forum and the sustainable nuclear energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [E.ON Kernkraft GmbH, Hanover (Germany)

    2009-06-15

    In the next years we will face significant switch stands regarding the future energy mix in Europe. In general, European energy policy has to address three energy challenges for a competitive electricity production (1): - Security of supply; - Limitation of greenhouse gas emissions; and - Providing affordable energy to consumers. Regarding climate precaution the goal of a low carbon economy is very ambitious. The NPP in operation already today contribute to all three goals. Nuclear energy generates two thirds of the EU' low carbon electricity, is one of the most economic energy sources and is less vulnerable to fuel price changes, thereby protecting EU economies against the price volatility of raw materials (2). The investment decisions, which have to been taken in the next 5 to 10 years, will determine the electricity production portfolio in the European Union for the next 50 years: 1. Around 800-900 GWe capacity will be required by 2030 to replace the existing capacity and to address increasing demand. 2. More than 50 % of the electricity in 2030 will be generated in plants have not been build today. 3. A total of 57.6 GWe of new nuclear power plants are projected to be commissioned between 2000 and 2030 (3). Only 9.4 GW of these are already certain investments. To ensure sustainable investment decisions, there needs to be reliable and effective framework conditions with the underlying principles: - competition among vendors; - efficient licensing; - solvent capital markets; - political framework; and - public acceptance. With regard to public acceptance, the Commission launched, based on the results of the EU summit in 2007, a platform for a broad stakeholder discussion about risks, challenges and opportunities of nuclear energy, the European Nuclear Energy Forum (ENEF). E.ON is actively involved in both discussion during the annual ENEF-summit and the working group sessions throughout the year. We appreciate these discussion and we face up the pros and

  10. New nuclear projects in the world. Sustainable Nuclear Energy; Nuevos proyectos nucleares en el mundo. energia nuclear sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Leon, P. T.

    2011-07-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO{sub 2} emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  11. Sustainable minireactors: A framework for decentralized nuclear energy systems

    International Nuclear Information System (INIS)

    Harms, A.A.; Sassin, W.W.

    1983-01-01

    The concept of a nuclear energy system consisting of numerous small, specialized nuclear reactors providing heat or electricity for localized/regional purposes is considered. It is envisaged that a ''parent'' nuclear facility would sustain the fuel needs of many small nuclear energy ''satellites'' and possibly provide other fuel-management services. The choice of fuel cycle and the operational features of these satellites may be determined by the form of energy required, public and social preferences, and institutional factors. Three distinct classes of distributed systems, each based on extensions of existing nuclear technology, are identified and discussed. In addition to the points emphasized concerning the types of minireactors and the fuel cycles chosen, it is important to recognize the potential for mass-production of these smaller facilities. Also, if the fuel-consuming part of the system is widely distributed geographically and if the fuel can be stored, the simultaneous failure of substantial parts of the energy supply system seems unlikely. Finally, if there were a local need for medium-power facilities, provision for the stacking of minireactors to attain a specified power level could be introduced

  12. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Yongping; Zhao Shoufeng; Zheng Yuhui

    2005-01-01

    The status and role of nuclear energy in the sustainable energy development strategy in China are discussed in this research report. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development, and major tasks proposed to carry out the strategy of energy sustainable development are expounded in the first part. In the second part, the position and role of nuclear energy in China are elaborated and analyzed in detail. Firstly, it is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. From the viewpoint of climate and environment protection, energy mix is required to transit from conventional fossil fuels to clean and high-quality energy sources. The potential role of nuclear energy in energy structure optimization in China is compared with that of hydro and other renewable energy sources. Secondly, it is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future, mainly from the point of nuclear power providing stable and reliable power supply, relieving the burden of coal exploitation and transportation and reducing the risk of energy security caused by dependence on oil and natural gas. Thirdly, it is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. It is given further details that nuclear energy is a clean and economical energy option, a preference coinciding with the principles of the circular economy, a feasible technical choice to greatly reduce emission of greenhouse gases, a selection contributing to

  13. Nuclear energy for sustainable energy growth in developing countries

    International Nuclear Information System (INIS)

    Galvao, R.

    2005-01-01

    Nuclear energy is a tool to eliminate poverty in developing countries and there is a need for training and expertise. The international community is asked to support the development of generation IV reactors and fusion reactors. No policy is yet established for a wide range international collaboration. A mechanism for secondary participation in major international nuclear energy projects should be established and less expensive projects complementary to the main stream ones should be developed. IGNITOR Project is not established as a broad international collaboration. However its cost, approximately one tenth of ITER, time to construct, estimated around five years, and main physical objective, i.e, a burning-plasma experiment, makes it very attractive for participation of developing countries. Remote operation and data analysis: ITER GRID: real time interactions of large, geographically extended teams; real time interactions between small specialized groups; requirement of fast between-pulse analysis; simulations producing very large data sets (GB → TB → PB); grid can be assembled with many small computers clusters; suitable for participation of low-budget groups; expertise available from high-energy physics

  14. Nuclear energy - the global solution for sustainable development in Romania

    International Nuclear Information System (INIS)

    Gorea, Valica; Popescu, Dan; Cristescu, Catalin

    2006-01-01

    The global population growth of the planet during the next 50 years will be accompanied by a dramatic increase in the demand for energy. Almost two-thirds of the world's population today has no access to electricity in developing countries. Without energy, the entire infrastructure would collapse: agriculture, transportation, waste collection. Developing and industrialized nations alike must address - both individually and collectively - how they can achieve sustainable growth. To date about 16 % of the world's electricity is produced by 443 reactors in 31 countries. They have a combined total capacity of 362 GW of electricity and produced a combined total of 2618 TWh in 2004, according to the International Atomic Energy Agency statistics. These reactors produce electricity for their respective countries safely, reliably and with the lowest environmental impact of any major energy source. Nuclear power provides steady energy at a consistent price without competing for resources from other countries. Some deficient in fossil fuels large countries (like France) rely on nuclear power up to about 80 % of their power necessities. United States (US) has the greatest number of commercial reactors in operation, but the share of nuclear power doesn't exceed 20 %, because of their abundant oil resources. On a percentage basis, Romania is one of the smaller users of nuclear energy. In Romania, according to the official data of the Romanian Ministry of Economy and Trade, nuclear energy share is only 10% of the gross power generation structure, with 5.560 GWh during the year 2004. Construction of the first unit of the Nuclear Power Plant (NPP) Cernavoda started in 1980 and of units 2-5 in 1982. Unit 1 was connected to the grid in mid of 1996 and entered commercial operation in December 1996. The state nuclear power corporation, Societatea Nationala Nuclearelectrica (SNN), established in 1998, operates Cernavoda NPP. Its capacity factor has averaged over 86 % so far and

  15. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Wang Yongping; Zhao Shoufeng; Zheng Yuhui; Yuan Yujun; Rao Shuang; Liu Qun; Ding Ruijie

    2006-03-01

    The status and role of nuclear energy in the energy security and sustainable energy development strategy in China are discussed. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development are expounded. It is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. It is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future. It is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. Nuclear energy is a preference coinciding with the principles of the circular economy, a selection contributing to improvement of ecological environment and an inexhaustible resource in the long term. Some suggestions are put forward to the nuclear energy development in China. (authors)

  16. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  17. Economics of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2006-01-01

    The paper is based on a recent OECD study on projected costs of generating electricity and other NEA studies on external costs including carbon emissions and global climate change risks. The overall objective of the analysis is to provide key elements for assessing nuclear energy in a sustainable development perspective, taking into account social and environmental aspects. Levelised lifetime costs of generating electricity are presented and compared for nuclear power plants and alternative generation technologies including gas-fired, coal-fired and wind power plants. The data presented refer to state-of-the-art power plants that could be commissioned by 2015 or earlier. Cost drivers and their variability from country to country and technology to technology are analysed. The paper also addresses external costs and benefits of nuclear energy as compared with those of alternative options. In particular, it provides insights regarding the impact of policy measures to reduce greenhouse gas emissions on the relative competitiveness of fossil-fuelled power plants and nearly carbon-free technologies (e.g., nuclear or wind). Other external costs such as social concerns, environmental impacts of residual emissions and contribution to security of energy supply are discussed

  18. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  19. Nuclear energy. Choice for GHG emission reduction and sustainable energy development in China

    International Nuclear Information System (INIS)

    Zhang Rui; Zou Lin; Wang Yongping

    2007-01-01

    In this paper, the sustainability of China's energy development and the major challenges in four energy priorities are discussed by establishing and applying of Indicators of Sustainable Energy Development (ISED) with consideration of nuclear power as one viable option. On this basis, China's Energy Strategy to 2020 is discussed in detail. On the other hand, the crucial role that nuclear energy will play in the fields of emission reduction and climate change is discussed by analyzing illustrative models under different energy development scenarios. An assessment on what could look like in a fast developing country like China when an equivalent fund was invested in five different energy options of hydro-power, coal-fired power, nuclear power, wind power and gas-fired power would be presented with a discussion about possible future international climate protection regimes and the methodologies to evaluate the potential roles of those energy options, especially, the nuclear energy. (author)

  20. The use of nuclear energy to guarantee the sustainable development

    International Nuclear Information System (INIS)

    Spitalnik, J.

    1994-01-01

    Energy requirements and environmental constraints represent some of the main challenges for an acceptable approach to global sustainable development in the coming years. Foreseeable solutions will be based on appropriate energy source mixes that would cause minimum impact on the supply. Next century will witness an increasing expectation, among less developed societies, for better quality of life standards, with the ensuing consequence of substantial increase in primary energy consumption. Good quality of life standards are attained when the per capita consumption reaches some 100 G j. Word Bank estimates show that, by the year 2100, world population will hit the mark of more than 11 billion inhabitants. Considering the environmental impacts associated with energy resources, the use of fossil fuels, particularly coal, may suffer serious restrictions. Analysing two possible scenarios for energy supply-without and with coal use restrictions, the mix of energy sources will show, by the end of next century, an important nuclear participation in either case: 30% of total demand if there are no restrictions to coal use, or 50%, if such restrictions are implemented. (author). 4 refs, 7 figs

  1. Energy forum 2005: Nuclear power - in competition with sustainable energy supply in Europe. Lectures

    International Nuclear Information System (INIS)

    2005-01-01

    The forum of energy for future organized on 29st September 2005 the annual Energy Forum at Berlin. The Energy Forum 2005 dealt with nuclear power in competition with sustainable energy supply in Europe and didn't only give their members the possibility of a discussion on this actual theme. Furtheron demanding aims on CO2-reduction, increased raw material- and energy prices as the construction of a new Finnish nuclear power plant have countries moved to evaluate again the future-oriented role of nuclear power. (orig./GL)

  2. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    introduction of climate change prevention measures. However, the general public and particularly politicians of many countries are set against nuclear power (both the existing and new reactors), and some even use law mechanisms to ban any activity in that respect. Since nuclear power has thus been a political issue for too long, now a mature and a more realistic approach is needed to the nuclear energy in terms of security of supply, as well as of the market competitiveness and sustainable development. A very important contribution is made by nuclear in terms of the avoidance of greenhouse gas emissions. If the existing nuclear plants were phased out and replaced with other conventional generating plant, it would be impossible to achieve the Kyoto objectives. Although the use of nuclear power instead of burning fossil fuels to generate electricity makes a significant contribution to reducing electricity-related CO 2 emissions, it is nevertheless often criticized on the grounds of the radioactive waste it produces. Radioactive waste is an issue where the technical solutions most definitely exist and further research is also being continued on the development of possible alternative solutions, but for the implementation of these solutions, a more and better communication is necessary to obtain consensus and political acceptance. Existing nuclear power stations are very cheap to run. Once the capital costs have been incurred, there are therefore huge economic advantages in keeping them going for their full lifespan. The existing reactor units in Europe produce electricity at a cost of between 1.6 and 1.9 cents per kWh, compared with 2.5-2.7 cents per kWh for plants that burn natural gas. The decision for a premature closure of the existing stations faced in Sweden and in Germany, is not only a waste of an important capital resource, but it requires a switch to alternative generation that may produce power at much higher costs, and in the same time is likely to have a worse

  3. India - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Nema, A.K.; Pathak, B.K.; Grover, R.B.

    2000-01-01

    The increasing use of the earth's resources to improve our quality of life has led to certain deleterious effects on the environment. The increased concentration of greenhouse gases (GHGs) is one such important effect. GHG emissions have come primarily from industrialized countries. Currently industrialized countries emit 11.4 tonnes of carbon per year per capita. For India the corresponding figure is 1.0, and for China it is 2.7. We recognize the necessity of both meeting the development needs of all the countries in the South, and ensuring that such development is sustainable. The CDM may have an important role to play, although the positions of a number of countries, including India, with respect to the CDM appear to be still evolving. In any event, nuclear energy should be an important energy option under the CDM, if and when the CDM is ready to be implemented. The present study is an attempt to understand the implications of setting up a nuclear power plant (NPP) in India as a CDM project

  4. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  5. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  6. Nuclear energy option for energy security and sustainable development in India

    International Nuclear Information System (INIS)

    Mallah, Subhash

    2011-01-01

    India is facing great challenges in its economic development due to the impact on climate change. Energy is the important driver of economy. At present Indian energy sector is dominated by fossil fuel. Due to international pressure for green house gas reduction in atmosphere there is a need of clean energy supply for energy security and sustainable development. The nuclear energy is a sustainable solution in this context to overcome the environmental problem due to fossil fuel electricity generation. This paper examines the implications of penetration of nuclear energy in Indian power sector. Four scenarios, including base case scenario, have been developed using MARKAL energy modeling software for Indian power sector. The least-cost solution of energy mix has been measured. The result shows that more than 50% of the electricity market will be captured by nuclear energy in the year 2045. This ambitious goal can be expected to be achieved due to Indo-US nuclear deal. The advanced nuclear energy with conservation potential scenario shows that huge amounts of CO 2 can be reduced in the year 2045 with respect to the business as usual scenario.

  7. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  8. Nuclear Power and Sustainable Energy Policy: Promises and Perils

    OpenAIRE

    Ioannis N. Kessides

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  9. Considerations for a sustainable nuclear fission energy in Europe

    International Nuclear Information System (INIS)

    Cognet, G.; Ledermann, P.; Cacuci, D.

    2005-01-01

    Presented is the global energy perspectives and and sustainable development fission vision scenario. Described are the innovative concepts with technological breakthroughs concerning the fuel cycle and evolution of the spent fuel radiotoxic contents

  10. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  11. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2015-01-01

    Full Text Available The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. The INPRO task titled “Global scenarios” is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21st century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries’ different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies.

  12. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems - 15483

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.

    2015-01-01

    The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21. century in a sustainable manner. The INPRO task titled 'Global scenarios' is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21. century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries' different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies. (authors)

  13. The role of nuclear power in sustainable energy strategies

    International Nuclear Information System (INIS)

    Semenov, B.A.; Bennett, L.L.; Bertel, E.

    1993-01-01

    The purpose of this paper is to provide an overview of future demand outlooks for energy, electricity and nuclear power, as a background for discussion of the design and operation aspects of advanced nuclear power systems. The paper does not attempt to forecast the actual outcomes of nuclear power programmes, since this will depend upon many factors that cannot be predicted with certainty. Rather, the paper outlines the size of the opportunity for nuclear power, in terms of the expected growth in energy and electricity demands, the need to diversify energy supply options and substitute depletable fossil fuels by other energy sources, and the need to mitigate health and environmental impacts including in particular those arising from the the atmospheric emissions from burning of fossil fuels. 7 refs

  14. Nuclear power and sustainable energy supply for Europe; Kernenergie im Kontext einer nachhaltigen Energieversorgung fuer Europa

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, W. [Commission of the European Communities, Brussels (Belgium)

    2005-07-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  15. Does nuclear energy have a chance in the political minefield between sustainability and competition?

    International Nuclear Information System (INIS)

    Bourdier, J.P.

    1999-01-01

    Sustainability harmonizes economy and ecology. The demand for energy will continue to increase over and beyond several decades. Nuclear energy not only has the advantages of 'energy on tap' (renewable energy), but also those of 'energy in store'. However, it also creates problems, which should not be underestimated. But the criticism levelled at nuclear energy is open to criticism in itself. As far as the public is concerned, nuclear waste is still the main stumbling block. Nevertheless, there is room for this form of energy between competition and sustainability. (orig.) [de

  16. Energy for the future - with Risoe from nuclear power to sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Jastrup, M. (ed.)

    2008-07-01

    The title of the book is inspired by Risoe's mission which, at the time of its 50th anniversary, remains uncannily close to that given to Risoe when it was inaugurated in 1958. First and foremost, then as now, Risoe is engaged in the development of tomorrow's energy technologies. In 1958, it was nuclear power. On the occasion of its 50th anniversary, Risoe is working with a palette of sustainable energy sources. (author)

  17. Safe management of nuclear energy. A key towards sustainable development

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2011-01-01

    Management of nuclear risks - crucial factor for acceptance of novel nuclear projects. We propose an interdisciplinary approach to societal optimization of nuclear energy management. As the keystones we choose: self-organization concept, 2) the principle of the requisite variety. A primary source of growth of internal variety - information and knowledge. Comprehensive knowledge management and informational support firstly is needed in: Technical issues: a) nuclear energy indicators of safety and reliability, b) extensive research and development of advanced technologies, c) multilateral cooperation in common projects; Societal issues: a) general nuclear awareness, b) risk management, engagement in decision-making, personnel education and training, staff renascence, c) public education, stakeholder involvement. There is shown: public education and social learning - efficient self-organization mechanisms, thereby forming a learning and knowledge-creating community. Such an acquired and created knowledge could facilitate solution of key socio-technical issues of nuclear safety as a) public acceptance, in particular, of siting of novel nuclear power plant and radioactive waste disposal objects, b) promotion of adequate perception of risk, equity and trust factors, and c) elevation of safety level of nuclear facilities and adequate management of nuclear risks. The importance of multi-level confidence building at global, regional and national levels is emphasized. (author)

  18. Energy security, sustainable development, which place for the Nuclear in the world?

    International Nuclear Information System (INIS)

    2006-01-01

    Facing the increase of the energy consumption and the necessity of the greenhouse gases emission decrease, the authors define the role of the nuclear energy in a policy of a sustainable development. They recall the leadership part of the France in the nuclear research and development and the channel of the nuclear production. The second part of the paper proposes sheets of countries energy policy and nuclear program situation: USA, Europe, Russian, China and India. (A.L.B.)

  19. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    International Nuclear Information System (INIS)

    Herring, J. Stephen

    2010-01-01

    Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  20. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  1. Pakistan - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Ahmad, Mohammad; Jalal, A.I.; Mumtaz, A.; Latif, M.

    2000-01-01

    Although Pakistan's contribution to global GHG emissions is very small (currently only 0.3% of world-wide emissions), it shares with the world community the concerns of climate change due to the build-up of GHGs. Pakistan is committed to co-operating with global efforts to avert the potential threat of global warming and is already working towards its own socio-economic development in a sustainable manner. However, due to the country's limited technical and financial capabilities, its efforts are diluted and limited to only high priority areas of national interest. There is a large potential for expanding these efforts, if the necessary technical and financial support can be made available, and such an expansion would contribute significantly to the collective global objective of sustainable development. One such step is the reduction of GHG emissions from Pakistan's power sector by introducing advanced cleaner technologies. Nuclear power is one such technology

  2. Nuclear energy-the strategic role and sustain ability in china

    International Nuclear Information System (INIS)

    Pan Ziqiang; Shen Wenquan

    2008-01-01

    By analyzing the challenges of China's energy supply, an excellent perspective of nuclear power development in china has been described. Taking into account the mid-long term development requirements, a comprehensive, coordinated and sustainable nuclear power strategic consideration and proposal is put forward. National nuclear industry can not only catch up with the world advanced level in proper time, but also possess the enough stamina of sustainability. (authors)

  3. Industrial prospects for the optimized use of U, Pu and Th for sustainable nuclear energy deployment

    International Nuclear Information System (INIS)

    Durpel, Luc Van Den; Guesdon, Bernard; Lecomte, Michel; Greneche, Dominique

    2010-01-01

    'Nuclear energy is part of a sustainable energy future' is a conclusion which is increasingly reached by a variety of energy scenario studies by world-renown institutions such as the IAEA, OECD/IEA and OECD/NEA, World Energy Council, and also reached by different national energy assessment reports. Nuclear does own various unique features that make this energy technology a prime candidate to fulfill a large part of our energy needs, beyond today's use of nuclear energy for our electricity needs. The previous 'wave' of nuclear energy deployment since the 1970's was, and still is, governed by the use of 235 U as main driver to spur this deployment of nuclear energy with gradually the introduction of the U/Pu -cycle in the thermal neutron spectrum reactor park (essentially LWR-technology). Technological progress and good economics of the U/Pu - cycle and especially the economic competitiveness of the LWR's have made this U/Pu-cycle essentially the standard worldwide. Fast spectrum reactors (FRs) haven't yet been developed at sufficient large and industrial scale to make full benefit of the U/Pu-cycle and there are no prospects that the world would massively turn to such FRs in the immediate future. On the verge of a second wave of nuclear deployment, increasing interest is and has to be given to synergies between various nuclear reactor technologies and especially the global nuclear fuel cycle as enabler towards sustainable nuclear energy deployment. Those synergies aim at a reduced reliance on natural uranium resources, continued good economic competitiveness of nuclear energy in local markets, safe and nonproliferant use of nuclear energy, and a reduction of ultimate wastes to be disposed of. This paper provides an overview of various avenues towards sustainable nuclear energy deployment and perspectives from the nuclear industry leader AREVA. (author)

  4. Nuclear energy and sustainable development: contradiction or challenge?

    International Nuclear Information System (INIS)

    Laes, E.; Meskens, G.

    2001-01-01

    The concept of sustainable development is widely accepted as a principle for decision-making. However, it needs to be put into operation. Two classical approaches, cost-benefit analysis and multi-criteria analysis, are not suitable on account of the underlying rational choice theory and value system. Insights from these methods need to be complemented by the inherently pluralistic approach of cultural theory. This offers the prospects of the identification of all relevant criteria for the comparison of different energy vectors, broadening the perspective through an interdisciplinary working process, confronting uncertainty at a fundamental level, and the explicit integration of values and world views. (author)

  5. Nuclear energy and sustainable development: contradiction or challenge?

    Energy Technology Data Exchange (ETDEWEB)

    Laes, E.; Meskens, G. [SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium)

    2001-07-01

    The concept of sustainable development is widely accepted as a principle for decision-making. However, it needs to be put into operation. Two classical approaches, cost-benefit analysis and multi-criteria analysis, are not suitable on account of the underlying rational choice theory and value system. Insights from these methods need to be complemented by the inherently pluralistic approach of cultural theory. This offers the prospects of the identification of all relevant criteria for the comparison of different energy vectors, broadening the perspective through an interdisciplinary working process, confronting uncertainty at a fundamental level, and the explicit integration of values and world views. (author)

  6. Technology Platform on Sustainable Nuclear Energy - a report on the vision

    International Nuclear Information System (INIS)

    Potocnik, J.

    2008-01-01

    The aim of the report is to prepare the establishment of the Technology Platform on Sustainable Nuclear Energy (SNP-TP). The report puts forth a version of the short-term, medium-term and long-term development of nuclear fission technologies, whose goal it is to achieve sustainable nuclear power generation, significant improvement of its economic indices, and continuous safety improvement, and to prevent it from abuse. The document includes proposals for timescales and milestones of the development and deployment of potentially sustainable nuclear technologies and provisions for a harmonization of educational and training activities in all EU Member States and for innovation of their research infrastructures. For the development of nuclear it is vital that it gains public acceptance. Therefore it is necessary to support research in the safety of nuclear facilities, staff and public protection from ionizing radiation, handling of all kinds of nuclear waste, and inspection methods involving the public. The time plans proposed will form the backbone of the Strategic Research Agenda (SRA), which should help Europe keep its leadership position in nuclear power, both in the research domain and in the industrial domain. The report emphasizes that nuclear will hold a key position among European energy sources, and calls upon European countries to make all efforts to meet the vision for a sustainable nuclear energy in line with European Commission's Strategic Plan for Energy Technologies. (author)

  7. CEA - Nuclear Energy Division. Report on Sustainable Radioactive Waste Management

    International Nuclear Information System (INIS)

    2012-12-01

    The Sustainable Radioactive Waste Management Act of June 28, 2006, specified clear guidelines for spent nuclear fuel management. It states two complementary principles: - The policy of treating and recycling spent nuclear fuel is valid for reducing the quantity and toxicity of suitably packaged ultimate radioactive waste-forms. - The reference process for high-activity and long-lived ultimate waste is deep geological disposal. The report prepared by the CEA in response to these requirements was completed after several years of work in cooperation with the other French actors in this field (EDF, AREVA) and with contribution of the CNRS and Andra. It addresses the following topics in several volumes: n guidelines for research on 4. generation systems, and a description of the various systems examined; - the results of research coordinated by the CEA on partitioning and transmutation of long-lived radioactive elements; - choices proposed for the Astrid integrated technology demonstrator - a sodium-cooled fast reactor (SFR) - and a reasonable timetable for its construction; - a review of research conducted around the world on 4. generation systems based on fast neutron reactors (FNRs). The principal results and findings compiled by the CEA from these studies are summarized in this document

  8. Deregulation and sustainable energy supply: perspectives of nuclear power and renewable energies

    International Nuclear Information System (INIS)

    Voss, A.

    2001-01-01

    In the concept expressed by the Brundtland Commission and in the Rio Declaration, sustainability incorporates the need - contradictory at first sight - to make sparing use of the environment and promote economic and social development at the same time. Future generations must not be stripped of their possibilities to live and develop. In this comprehensive interpretation, some quantitative orientation for various energy options can be obtained by means of lifetime analyses. The parameters available for evaluation are resource, environmental and economic aspects. Introducing competition and deregulation in the power industry is legitimate not only for reasons of economic theory. Experience has shown that efficient growth and careful management of scarce resources are achieved not by government planning and regulation, but by the allocation efficiency of the markets. This makes competition a key factor of sustainable development. Against this background, perspectives of nuclear power and of renewable energy sources are evaluated. (orig.) [de

  9. Analysis on long-term perspectives of sustainable nuclear energy towards global warming protection

    International Nuclear Information System (INIS)

    Yamazawa, M.; Ichimura, E.; Shibata, Y.; Kobayashi, K.; Wajima, T.

    1998-01-01

    Study of long-term perspectives of the nuclear power generation was made from the point of views of both CO 2 emission constraints and sustainability of nuclear energy. To this end, STREAM (Semi-empirical TRiple E Analysis Model) program, as a social model, has been developed by Tokyo Electric Power Co. and Hitachi, Ltd. Using this program, long-term world demands of primary and nuclear energy were deduced, in view of the protection against the global warming due to the CO 2 gas accumulation. The inevitable conclusion has been drawn that nuclear energy plays an indispensable role in the reduction of green house effect. Evaluations were then made on conditions that the nuclear power system would be the long-term major sustainable energy source. (author)

  10. IAEA technical meeting on fissile material strategies for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy; Koyama, Kazutoshi

    2005-01-01

    A Technical Meeting (TM) on 'Fissile Material Management Strategies for Sustainable Nuclear Energy' was organized by the International Atomic Energy Agency (IAEA) in Vienna from 12 to 15 September 2005. Prior to the TM, three Working Groups (WG) composed of experts from 10 countries prepared Key Issues papers on: 1) Uranium Demand and Supply through 2050; 2) Back-end Fuel Cycle Options; and 3) Sustainable Nuclear Energy beyond 2050: Cross-cutting Issues. Some 36 papers, including 3 key issue papers, were presented during the TM in 3 different sessions. The present paper summarizes the deliberations of the TM. (author)

  11. Sustaining the future: the role of nuclear power in meeting future world energy needs

    International Nuclear Information System (INIS)

    Duffey, R.; Sun, Y.

    2003-01-01

    A description is given of recently informed analyses showing the potential that nuclear power has in meeting global energy demands. For both the electricity and transportation sectors, we can quantify the beneficial effects on the environment, and we show how nuclear power deserves credit for its role in assisting future world energy, environmental and economic sustainability. The continuing expansion of the world's and Asia's energy needs, coupled with the need to reduce greenhouse gas (GHG) and other emissions, will require new approaches for large scale energy production and use. This is particularly important for China and Asia with respect to meeting both the energy demand and sustainability challenges. We show and explore the role of nuclear power for large-scale energy applications, including electricity production and hydrogen for transportation. Advanced nuclear technologies, such as those like CANDU's next generation ACR, can meet future global energy market needs, avoid emissions, and mitigate the potential for global climate change. We use the latest IPCC Scenarios out to the year 2100 as a base case, but correct them to examine the sensitivity to large scale nuclear and hydrogen fuel penetration. We show a significant impact of nuclear energy on energy market penetration, and in reducing GHGs and other emissions in the coming century, particularly in the industrial developing world and in Asia. This is achieved without needing emissions credits, as are used or needed as economic support for other sources, or for subsidies via emissions trading schemes. Nuclear power offers the relatively emissions-free means, both to provide electricity for traditional applications and, by electrolytic production of hydrogen, to extend its use deep into the transportation sector. For the published IPCC Marker Scenarios for Asia we show the reduction in GHG emissions when electrolysis using electricity from nuclear power assists the introduction of hydrogen as a fuel

  12. Expected role of nuclear science and technology to support the sustainable supply of energy in Indonesia

    International Nuclear Information System (INIS)

    Soentono, Soedyartomo; Aziz, Ferhat

    2008-01-01

    Energy resources are available in Indonesia but small per capita. The increase of oil price and its reserve depletion rate dictates to decrease the oil consumption. Therefore, it is imperative to increase the shares of other fossils as well as the new and renewable sources of energy in various energy sectors substituting the oil. The introduction of nuclear power plant becomes more indispensable, although the share is to be small but significantly important for electric generation in Java-Madura-Bali grid. Nuclear technology can have also important role enabling the increase of the shares of renewable, e.g. geothermal, hydro and bio-fuels as well as fossil energies to meet more sustainable energy mix sufficing the energy demand to attain intended economic and population growths while maintaining the environment. The first introduced nuclear power plant is to be the proven ones, but the innovative nuclear energy systems being developed by various countries will eventually also be partially employed to further improve the sustainability. The nuclear science and technology are to be symbiotic and synergistic to other sources of energy to enhance the sustainable supply of energy. (author)

  13. New Technologies for a sustainable nuclear energy and your effect in the management of radioactive waste

    International Nuclear Information System (INIS)

    Gonzalez Romero, E. M.

    2009-01-01

    The probable worldwide increase and distribution of nuclear energy for electricity generation, replacing partially fossil fuels, is promoting the development of technologies that foster its long-term sustain ability. Fast neutron system, combined with closed fuel cycles, are the key elements for the sustain ability. When combined, they can provide a significant reduction on the final high level wastes of the nuclear generation. In particular, Partitioning and Transmutation of actinides would allow the reduction of the nuclear wastes radiotoxicity, their content in fissile material and the heat load to the repository. (Author) 8 refs

  14. Development of integrated systems dynamics models for the sustainability assessment of nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2005-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions allowing full stakeholder involvement in deciding on the role of nuclear energy as part of a sustainable energy generation mix in the future. Integrated system dynamics models of nuclear energy systems are interesting tools for such assessment studies allowing performing material flow accounting, environmental impact, economic competitiveness and socio-political analysis and this for time-evolving nuclear energy systems. No single tool today is capable of covering all the dimensions for such integrated assessment while various developments are ongoing in different places around the world to make such tools available in the nearby future. Argonne National Laboratory has embarked on such tool development since the year 2000 and has developed various tools among which the DANESS-code shall be described in some more detail in this paper. (author)

  15. Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Poplavskaya, E.

    2013-01-01

    The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

  16. A systemic approach to the discussion of sustainability of nuclear energy

    International Nuclear Information System (INIS)

    Aegerter, Irene

    2001-01-01

    In 1998 the four Swiss Scientific Academies formed a working group to study sustainability of electricity production. Having been a member of this group since the beginning I witnessed the evolution of the discussion that led to a consensus. The group found the criteria of sustainability to be special for nuclear energy. While the resource uranium is not needed for any other purpose and thus the use of uranium is sustainable, the possible harm to future generations by nuclear reactors is difficult to evaluate: the potential damage can be large but the probability of its occurrence is very small. Therefore some people judge nuclear power as an environmentally friendly source of electricity production and an important contribution towards a sustainable energy future whereas others look at the potential damage and value nuclear power as not sustainable. The discussion of alternatives then reveals that it is definitely not sustainable to replace nuclear power by fossil fuels. This was a consensus reached by the members of the working group, which consists of the pro and anti nuclear camp. Sustainable energy production is a complex topic and not easy to tackle with our everyday methods. The group decided to solve the problem with a systemic approach to get to know the hidden and indirect effects of electricity production and usage. A system approach brings a new concept into the often blocked discussion of proponents and antinuclear people. In order to assure that a holistic evaluation results which reaches a high degree of consensus, several subgroups were formed representing divergent views on the issues analysed. These groups do not communicate their findings while work on their cross impact matrices (CIMs) is under way. The results are compared and discrepancies are discussed. Usually this shows that once the wording of the variables is corrected and their interpretations are shared by the parties involved, consensus concerning evaluations is achieved

  17. International seminar on the role of nuclear energy for sustainable development

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Atomic Energy in collaboration with the International Atomic Energy Agency, organised a two-day International Seminar on The Role of Nuclear Energy for Sustainable Development, during September 8 and 9, 1997 at New Delhi. Dr R. Chidambaram, Chairman, Atomic Energy Commission in his Welcome Address dealt with the disparity in per capita consumption of energy between developed and developing countries in the world and also told that for India the requirement of power generation capacity for accelerated growth and industrial and infrastructural development to attain a reasonable standard of living for all its citizens would call for substantial increase in the per capita electricity consumption. He also told that nuclear energy can play a very important role in meeting the future energy requirements of India. In the seminar a scenario where nuclear power is called upon to play a major role in meeting the energy requirements of mankind and the peaceful uses of nuclear energy like the application of radiation and radioactive isotopes in agriculture, industry, health care etc. was discussed in detail. The design and construction of fast breeder reactors, the indigenous design of advanced heavy water reactors with passive safety features, uranium resources for global energy requirements, manufacturing of nuclear components, fusion energy, role of nuclear energy in some countries like Brazil, Islamic Republic of Iran, France, China, Bangladesh and India were some of the other topics covered. Papers relevant to INIS are indexed separately

  18. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  19. Nuclear energy economics in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Morrison, R.

    2001-01-01

    In order to contribute effectively to sustainable development goals, a technology option must meet the test of economic efficiency to justify its use of scarce capital. However, in a sustainable development perspective, this test should be considered in a broad context, taking into account the need to preserve capital assets of all kinds: natural, man-made, human and social. Assessments of competitiveness in this context should be based upon comparisons of full costs to society of a product or a service. At present, many of the costs associated with the supply of goods and services are not reflected in their market prices. Economists are looking for ways of valuing these costs and incorporating them into price, i.e. internalizing the externalities. Within a sustainable development framework, getting the prices right so that market mechanisms can operate efficiently implies taking into account social and environmental costs for present and future generations. On that basis, the comparative assessment of alternative technologies will become an effective policy-making tool. (authors)

  20. Towards a new world: The contributions of nuclear energy to a sustainable future

    International Nuclear Information System (INIS)

    Duffey, R. B.; Miller, A. I.; Fehrenbach, P. J.; Kuran, S.; Tregunno, D.; Suppiah, S.

    2007-01-01

    Over the last few years, the world has seen growing concern about the sustainability of the Planet when supplying increasing energy use. The major issues are: increased energy prices in the world markets; growing energy demand in emerging economies; security and stability of oil and gas supply; potentially adverse climate change due to carbon-based emissions; and the need to deploy economic, sustainable and reliable alternates. Large undefined 'wedges' of alternate energy technologies are needed. In light of these major difficulties, there is renewed interest and need for a greater role for nuclear energy as a safe, sustainable and economic energy contributor. The shift has been, from being viewed by some as politically discounted, to being accepted as absolutely globally essential. We have carefully considered, and systematically, extensively and technically analyzed the contributions that nuclear energy can and should make to a globally sustainable energy future. These include restraining emissions, providing safe and secure power, operating synergistically with other sources, and being both socially and fiscally attractive. Therefore, we quantify in this paper the major contributions: a) The reduction in climate change potential and the global impact of future nuclear energy deployment through emissions reduction, using established analysis tools which varying the plausible future penetration and scale of nuclear energy. b) The minimization of economic costs and the maximization of global benefits, including investment requirements, carbon price implications, competitive market penetration, and effect of variable daily pricing. c) The introduction of fuel switching, including base-load nuclear energy synergistically enabling both hydrogen production and the introduction of significant wind power. d) The management and reduction of waste streams, utilizing intelligent designs and fuel cycles that optimize fuel resource use and minimize emissions, waste disposal

  1. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  2. China - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Liu Deshun; Zhao Xiusheng; Zheng Jiantao

    2000-01-01

    Coal-fired power plants are the major source of electricity in China, accounting in 1998 for 73% of total installed capacity. However coal-fired plants create serious air pollution problems, and their fuel transport requirements place a heavy burden on the transportation system. Nuclear power plants (NPPs) are therefore a potentially attractive option for China, particularly in the coastal regions, which are both more economically developed and far from the main coal mines in northern and western China. Currently, China has no capability to build large-scale nuclear power plants. Nor would nuclear power plants in China be financially competitive with coal-fired plants under fair market conditions. China does have three NPPs currently in operation, built partly with French and British expertise and assistance, and eight more under construction. These have all benefited from a number of favourable government policies - i.e. exemptions from taxes on imported equipment and from value-added taxes, and an electricity purchase agreement at an artificially high price

  3. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact from Depletion of Resources

    International Nuclear Information System (INIS)

    2015-01-01

    INPRO is an international project to help ensure that nuclear energy is available to contribute in a sustainable manner to meeting the energy needs of the 21st century. A basic principle of INPRO in the area of environmental impact from depletion of resources is that a nuclear energy system will be capable of contributing to the energy needs in the 21st century while making efficient use of non-renewable resources needed for construction, operation and decommissioning. Recognizing that a national nuclear energy programme in a given country may be based both on indigenous resources and resources purchased from abroad, this publication provides background materials and summarizes the results of international global resource availability studies that could contribute to the corresponding national assessments

  4. The acceptability of the nuclear energy in the sustainable development context

    International Nuclear Information System (INIS)

    Spitalnik, J.

    1993-01-01

    From the principles of ethics that gives support to the standard quality of life and the knowledge in the existing energy limitations there is no way in the next century, to disregard a significant increase in the nuclear energy. Considering the above statement and from United Nations Conference on Environment Development 92 (UNCED's-92) decisions, the author analysis points of importance such as demographic explosion needs of energy, available sources of sustainable energy and social policy. With respect to energy distribution two possible scenarios are presented. First without limitation in the coal fossil fuel 52%, nuclear-28% and renewable 20%. Second, with limitation in the coal use: nuclear-52, renewable-46% and fossil fuel-2%. (B.C.A.). 06 refs, 09 figs

  5. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  6. Evaluation of nuclear power development scenarios in romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C.; Apostol, M.; Visan, I.; Prodea, I.

    2015-01-01

    The paper summarizes the results of RATEN ICN Pitesti experts' activities in the IAEA's Collaborative Project INPRO-SYNERGIES. Romanian study proposes to evaluate and analyze development of the nuclear capacity and increasing of its share in national energy sector, envisaging the long term national and regional energy sustainability by keeping options open for the future while bringing solutions to short/medium-term challenges. The study focused on the modelling of national NES (Nuclear Energy System) development on short and medium-term (time horizon 2050), considering the existing NFC (Nuclear Fuel Cycle) infrastructure and legislation, provisions of strategic documents in force and including also the possibility of regional collaboration regarding U/fresh fuel supply and SF (Spent Fuel) storage, as services provided at international market prices. The energy system modelling was realized by using the IAEA's MESSAGE program. The study results offer a clear image and also the possible answer to several key questions regarding: potential of nuclear energy to participate with an important share in national energy mix, in conditions of cost competitiveness, safety and security of supply; impact on national energy mix portfolio of capacities and electricity production; impact on Uranium domestic resources; economic projection/investments needed for new nuclear capacities addition; fresh fuel requirements for nuclear capacities; SF annually discharged and transferred to interim wet storage for cooling; SF volume in interim dry storage, etc. (authors)

  7. Nuclear and sustainable development

    International Nuclear Information System (INIS)

    Audebert, P.; Balle, St.; Barandas, Ch.; Basse-Cathalinat, B.; Bellefontaine, E.; Bernard, H.; Bouhand, M.H.; Bourg, D.; Bourgoignon, F.; Bourlat, Y.; Brunet, F.; Buclet, N.; Buquet, N.; Caron, P.; Cartier, M.; Chagneau, E.; Charles, D.; Chateau, G.; Collette, P.; Collignon, A.; Comtesse, Ch.; Crammer, B.; Dasnias, J.; Decroix, G.; Defoy, B.; Delafontaine, E.; Delcroix, V.; Delerue, X.; Demet, M.; Dimmers, G.; Dodivers, S.; Dubigeon, O.; Eimer, M.; Fadin, H.; Foos, J.; Ganiage, D.; Garraud, J.; Girod, J.P.; Gourod, A.; Goussot, D.; Guignard, C.; Heloury, J.; Hondermarck, B.; Hurel, S.; Jeandron, C.; Josse, A.; Lagon, Ch.; Lalleron, Ch.; Laurent, M.; Legrand, H.; Leveau, E.

    2006-01-01

    On September 15. and 16., 2004, at Rene Delcourt invitation, President of the C.L.I. of Paluel and Penly, took place the 4. colloquium of the A.N.C.L.I.. Jean Dasnias, new President of the C.L.I., welcomed the colloquium. Hundred of persons participated. The place of the nuclear power in the energy perspectives of tomorrow, its assets and its weaknesses in front of the other energies and within the framework of a sustainable development, are so many subjects which were discussed. The different tackled subjects are: the stakes in the sustainable development; energy perspectives; the reactors of the fourth generation; nuclear power and transparency; sustainable development and I.R.S.N. (N.C.)

  8. ILK statement on sustainability - evaluation of nuclear energy and other electricity supply technologies

    International Nuclear Information System (INIS)

    2004-01-01

    The electricity utility sector is of central importance for economic growth and societal development. While numerous societal and economic benefits arise from electricity consumption, its production can also have impacts which may not be fully and unanimously reconciled with the concept of sustainability. Consideration of sustainability issues plays an increasingly important role in decisions affecting the current and future energy supply. Judgements on the sustainability of specific electricity supply options are, however, mostly made in an ad hoc manner, and are susceptible to bias and arbitrariness. The German Federal Government singles out nuclear energy in particular as not sustainable for the future and considers it in a fundamentally critical manner separately from the other options. The ILK's opinion is that all options of interest, including nuclear, need to be evaluated in a comparative perspective based on a systematic and comprehensive approach. Therefore, the ILK considered it worthwhile to investigate this matter in more detail and express its views in the form of the present statement. The ILK statement on sustainability takes into consideration the most relevant international and national developments. These form the background and input for the establishment of ILK's position. A limited scope comparative study on the sustainability of different electricity supply technologies under German conditions was carried out by the Paul Scherrer Institut (PSI) in order to demonstrate the applicability of a systematic approach and generate reasonably consistent results from which robust conclusions can be derived. (orig.) [de

  9. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2016-09-01

    Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems.

  10. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact of Stressors. INPRO Manual

    International Nuclear Information System (INIS)

    2016-01-01

    This publication provides guidance on assessing of sustainability of a nuclear energy system (NES) in the area of environmental impact of stressors. The INPRO methodology is a comprehensive tool for the assessment of sustainability of an NES. Basic principles, user requirements and criteria have been defined in different areas of INPRO methodology. These include economics, infrastructure, waste management, proliferation resistance, environmental impact of stressors, environmental impact from depletion of resources, and safety of nuclear reactors and fuel cycle facilities. The ultimate goal of the application of the INPRO methodology is to check whether the assessed NES fulfils all the criteria, and hence the user requirements and basic principles, and therefore presents a system for a Member State that is sustainable in the long term

  11. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  12. Which issue is important for nuclear energy: sustainability, competition, climate change?

    International Nuclear Information System (INIS)

    Dragusin, Octavian

    2003-01-01

    This paper tries to explore the implications of three important energy policy issues: sustainability, global climate change, and competition in electricity markets. We know that nuclear energy is another way to generate electricity, so it is impossible to discuss the outlook for nuclear without understanding the need for electricity. The issue for society is how to produce electricity at reasonable costs without damaging the environment. Unfortunately, there are no perfect alternatives. Key considerations include the capital and operating costs of electrical generating facilities, reliability, safety, environmental impact as well as assumptions on future economic growth. Nuclear energy offers good solution. Nuclear power energy scores very well against the three criteria for electricity generation, which matter most to our society - availability, affordability and sustainability. Nuclear power has proven to be highly reliable as shown by the performance of more than 400 reactors now operating in the world. These reactors compete with coal or gas- generated electricity and often offer a significant cost advantage. New reactor designs will be faster to build, safer and competitive with the best clean coal or gas-burning technologies now available. Nuclear power is also sustainable, not only because it contains all the waste it generates but also because the safety of the technology is now well established. The disposal of used fuel, despite the claims of those who are ideologically opposed to nuclear energy, is in my opinion not a problem without solution. The public should have confidence in the feasibility of long-term storage and the eventual safe disposal of radioactive wastes. What are the views for short- and for long-term? Reactor owners are seeking increased power output and plant life extensions, encouraged by the competitive cost of electricity produced and improving operational performance. However, while the lifetime for present reactors is extended and

  13. Assessment of nuclear energy cost competitiveness against alternative energy sources in Romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C. A.

    2016-01-01

    The paper includes some of the results obtained by RATEN ICN Pitesti experts in the IAEA.s Collaborative Project INPRO-SYNERGIES. The case study proposed to evaluate and analyze the nuclear capacity development and increasing of its share in the national energy sector, envisaging the long term national and regional energy sustainability by keeping collaboration options open for the future while bringing solutions to short/medium-term challenges. The following technologies, considered as future competing technologies for electric energy generation in Romania, were selected: nuclear technology (represented by PHWR CANDU Units 3 and 4 - CANDU new, advanced HWR - Adv. HWR, and advanced PWR - Adv. PWR) and, as alternative energy sources, classical technology (represented by Coal-fired power plant using lignite fossil fuel, with carbon capture - Coal_new, and Gas-fired power plant operating on combined cycle, with carbon capture - Gas_new). The study included assessment of specific economic indicators, sensitivity analyses being performed on Levelised Unit Energy Cost (LUEC) variation due to different perturbations (e.g. discount rate, overnight costs, etc). Robustness indices (RI) of LUEC were also calculated by considering simultaneous variation of input parameters for the considered power plants. The economic analyses have been performed by using the IAEA.s NEST program. The study results confirmed that in Romania, under the national specific conditions defined, electricity produced by nuclear power plants is cost competitive against coal and gas fired power plants electricity. The highest impact of considered perturbations on LUEC has been observed for capital intensive technologies (nuclear technologies) comparatively with the classic power plants, especially for discount rate changes. (authors)

  14. Risks and benefits of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2008-01-01

    Based on a study published by the OECD Nuclear Energy Agency in mid-2007, the paper covers economic, environmental and social aspects of nuclear and other energy chains. It describes an analytical framework and identifies indicators to assess different energy chains on a comprehensive basis. Illustrative results of authoritative studies on life cycle analysis of electricity generation chains are presented to highlight benefits and drawbacks of alternative options. Examples of quantitative and qualitative indicators for different chains, covering environmental burdens such as air emissions and solid waste streams, social aspects such as health impacts and aversion to risk, and economic factors, are analyzed and compared. A key finding from the review of published literature is that nuclear energy systems in operation have very good performance for a wide range of indicators covering economic, environmental and social aspects. Although the results of analytical studies are case and context specific, they indicate that the nuclear option offers attractive characteristics for sustainable future energy mixes. The importance of policy goals and priorities in the assessment of alternative options is highlighted and the paper offers some insights on the use of multi-criteria decision tools to support policy making. It is shown in particular that the ranking of nuclear and other electricity generation systems may differ depending on the respective weights of economic, environmental and social factors. The role of technology progress is underlined as a major tool to enhance the performance of nuclear energy systems in order to design and implement advanced reactors and fuel cycle schemes addressing better the challenges of the 21. century in the energy sector. The evolution from the current generation of reactors to generation III+ and eventually generation IV systems is described and their role in strengthening the potential contribution of nuclear energy to sustainable

  15. Nuclear energy and the Green Paper of the European Commission 'An European strategy for sustainable, competitive and secure energy'

    International Nuclear Information System (INIS)

    Metes, Mircea

    2006-01-01

    At present the energy is for European Union officials an issue of top priority. In the beginning of 2006 the natural gas crisis between Russia and Ukraine remembered menacingly to the Europeans that energy supply of the continent depends decisively on importation from other geographic areas and that these importation raise risks of a great variety. In addition to the power problems, disastrous effects on the economy, human life and eco-systems appeared to have the climate changes produced by fossil fuel burning. Consequently, a common energetic policy of Europe should be targeted at three main objectives: sustainability, competitiveness and security of supply. Six directions of action were identified: 1. EU must finalize the construction of internal European gas and electricity market; 2. EU should ensure that its energy market guaranties the security of supply under a solidary policy of the member states; 3. It is necessary that a large debate to have place about different sources of energy including the problems of costs and impact on climatic change, security and supply competitiveness and sustainability; 4. EU should approach the climatic change issues in agreement with the objectives established at Lisbon conference aiming at placing EU in the forefront of technological and scientific progress; 5. A strategic plan concerning the energy technology; 6. A common foreign policy in the field of energy. It is worthy to stress that the present Green Paper of EU has a manifestly different position concerning the nuclear energy with respect to the prior Green Paper of November 2000. While, in 2000 the EU Commission viewed the nuclear energy as being 'in limbo', in the 2006 version the Commission declared the nuclear energy as the most important source of power in Europe without CO 2 emissions. It is stated that all the energy options should be kept open while the Europe states have the right to establish their own energy mix, which they consider optimal, and in which

  16. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  17. Nuclear energy and opportunity to strengthen the sustainable electricity sector; Energia nuclear una oportunidad para fortalecer el sector electrico sustentable

    Energy Technology Data Exchange (ETDEWEB)

    Robles N, A. G. [Comision Federal de Electricidad, Direccion de Proyectos de Inversion Financiada, Gerencia de Proteccion Ambiental, Paseo de la Reforma No. 164, Col. Juarez, 06600 Ciudad de Mexico (Mexico)

    2016-09-15

    The beginning of electricity in Mexico was through the use and exploitation of natural resources; as the demand grew, more generation power plants were required with great capacity and at the same time the fuels used varied, although, oil continued to be the main fuel. At present, due to the effects of climate change, the Conference of the Parties has proposed to reduce the consumption of fossil fuels to give way to clean energy (wind, solar, geothermal, nuclear, etc.), which entails gradually modifying the energy matrix of the electricity sector. The National Development Plan and the National Electricity Sector Development Program, this coordinated by the Energy Secretariat in Mexico, establish policies to promote sustainable development, increasing electricity generation through clean energy sources, including nuclear energy. However, such plans are not accurate in the strategy to be followed to ensure compliance with the increased participation of nuclear energy. This article proposes a nuclear program for the Mexican electricity sector, under the terms of a State policy, aimed at crystallizing a sustainable electricity development 2015-2036; considering that the application to the electricity sector constitutes a representative and justified example of the incorporation of environmental aspects in decision processes for the preservation of the environment. In order to determine the quantity and type of reactors, as well as the number of nuclear power plants and increase of the installed capacity, the general planning scheme of the electric sector was used, taking as reference the modeling criteria of the WASP planning system. Finally, is concluded that the electricity generated by fission of radioactive elements is an opportunity to fulfill the commitments made by Mexico at COP 21 and to meet in an environmentally friendly way the energy requirement that our country needs. (Author)

  18. Nuclear electricity generation a sustainable energy resource for Romania along the next two decades

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2008-01-01

    The main goal of the paper is to evaluate different electricity generation costs inside of the National Romanian energy sector along the next two decades. The IAEA -MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. Due to the natural gas crisis started at the beginning of 2006, Romania has adopted a courageous energy policy based on increasing nuclear electricity share. Since then, the second nuclear Unit was commissioned at Cernavoda in 2007 and the other two CANDU-6 (700 MWe) were scheduled to be operational in 2015. On the other side the European integration of Romania asks for doubling the indigenous gas price during this year, 2008, and also for reducing the atmospheric gaseous emissions from the fossil fuel technologies. Therefore, we evaluated the economical competition between all electricity technologies in the Romanian energy sector in the next two decades for which our MESSAGE model was developed. We focused on coal, gas and, of course, nuclear electricity technologies. Some representative energy scenarios centered on nuclear share electricity growing were considered and MESSAGE results were analyzed from the energetic sustainable point of view. (authors)

  19. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    nuclear heat. With more than 20% of the total energy generated by nuclear energy, even its most adamant adversaries could not pretend its role is marginal for sustainable development. The niche is there: will we be able to fill it?

  20. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  1. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A. [Oak Ridge National Laboratory, P.O. Box 2008, MS-6152, Oak Ridge TN 37831 (United States)

    2012-07-01

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study

  2. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A. [Oak Ridge National Laboratory, P.O. Box 2008, MS-6152, Oak Ridge TN 37831 (United States)

    2012-07-01

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study concludes that

  3. Nuclear energy and sustainable development: Towards a better support for decision-making

    International Nuclear Information System (INIS)

    Laes, E.

    2007-01-01

    It is a well-known problem for decision makers to clearly indicate what is meant by 'sustainable development'. Scientific research approaches in the field seem to be divided between the 'objective' approach of the subject (argued to be based on 'hard' scientific facts, e.g. risk assessment, environmental impact assessment, various indicator systems, etc.) and more 'subjective' or 'participatory' approaches (argued to incorporate 'ethical values', 'worldviews', 'cultural perspectives', etc.). Another (related) division seems to be between approaches which acknowledge and conceptualise their role in the political sphere, and others which deny, pass over or minimise such a role. In this PhD research project, we go beyond this unproductive distinction between 'objective' and 'subjective' approaches. Our approach is based on the insight (and demonstration) that actually both approaches represent a particular interpretation of more general schemes of justification (and are both inherently political). This does not mean that we abandon every hope of a rational discussion, but rather that we have to abandon all pretensions of one 'transcendental' and 'correct' viewpoint (i.e. based on 'hard' criteria and targets) from which we could judge whether or not a certain development is sustainable. In order to substantiate this point of view, we investigate the relevant literature on both 'objective' and 'participatory' approaches, and consider concrete applications in the context of the nuclear energy debate. Throughout these different research phases, we aim not only to evaluate present-day practices in the context of energy policy making (concerning both 'processes', i.e. rules of interaction, participation, etc. - and 'products' - i.e. the results), but also propose a new combined scientific/political practice. The overarching research objective was finding an answer to the following overarching question: Can nuclear energy contribute to a development process leading to

  4. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  5. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  6. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    International Nuclear Information System (INIS)

    2012-05-01

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  7. Viet Nam - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Le Doan Phac; Nguyen Tien Nguyen; Le Van Hong; Nguyen Huu Thanh; Nguyen Anh Tuan

    2000-01-01

    The Government of Viet Nam has recently formulated a national energy programme entitled Strategy and Policy of Sustainable Energy Development. Its aim is to define a development policy for the country for the period from 2000 to 2020. The main objectives of the national energy programme are: 1. Increasing energy efficiency and demand side management (DSM) 2. Expanding rural electrification 3. Defining an energy price policy (e.g. pricing such that revenues cover costs) 4. Minimizing environmental impacts 5. Encouraging private investment in the energy and electricity sectors 6. Energy supply security 7. Diversifying energy sources, and 8. Exploring the potential role of nuclear power in Viet Nam. In formulating this programme, one of the objectives has been to minimize environmental impacts, including those caused by the electricity sector. Nevertheless, the shortage of investment capital in Viet Nam and the difficulty of securing favourable financial arrangements are crucial obstacles to the introduction of new technology options to mitigate GHG emissions. Viet Nam views CDM as an opportunity to find ways to overcome such problems and expects that all GHG mitigating technologies will be considered equally under the CDM

  8. Powering Africa's sustainable development: The potential role of nuclear energy

    International Nuclear Information System (INIS)

    Kessides, Ioannis N.

    2014-01-01

    The electricity deficit is one of the most serious contemporary issues facing sub-Saharan Africa. Many countries in the region have insufficient generation capacity to meet rapidly rising demand. Electricity shortages have become a binding and powerful constraint on the continent's sustainable development. Their resolution will require coordinated effort to improve the effectiveness and governance of the region's utilities and to significantly scale-up generation capacity. A broad portfolio of low carbon (low-C) technologies needs to be deployed in order to address the electricity deficit in a cost-effective way and not be disruptive to economic growth. Since nuclear power can deliver low-C electricity in bulk, reliably and without intermittency, it could make a significant contribution towards resolving Africa's power crisis. However, the post-Fukushima safety concerns related to large nuclear plants with substantial radioactive inventories will be especially pronounced in Africa. Moreover, large scale reactors with huge upfront investment requirements are likely to be unsuitable for capital-constrained African countries with small electricity grids. One promising direction for nuclear development in Africa might be to downsize reactors from the gigawatt scale to less-complex smaller units (with substantially smaller radioactive inventory) that are more affordable. - Highlights: • We examine the potential role of nuclear power in Africa. • There is growing African interest in nuclear power. • Nuclear power in Africa will require grid strengthening. • Small modular reactors could enhance Africa's energy security. • There are concerns about Africa's safety culture for nuclear power

  9. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  10. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  11. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2010-01-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  12. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  13. Sustainable markets for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  14. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2006-04-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  15. Holistic-integrated analysis and evaluation of nuclear energy for sustainable energy supply; Ganzheitlich-integrierte Betrachtung der Kernenergie im Hinblick auf eine nachhaltige Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wissel, Steffen [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    2012-11-01

    Germany has decided in 2011 nuclear phase-out by the end of 2022. The European Commission is still convinced of the safe use of nuclear energy as option for carbon reduction in the energy supply. In the European energy market the decisions of neighboring countries have an impact on the national energy systems. The contribution covers a holistic-integrated analysis based on technical, economic and ecologic aspects of nuclear energy for sustainable energy supply in comparison with other fossil and renewable systems.

  16. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  17. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  18. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Grimston, M.C.

    1994-01-01

    The United Kingdom Government's strategy aimed at securing sustainable development has recently been published, and is analysed here by the Energy Issues Adviser, for the British Nuclear Industry Forum. The energy framework aims to ensure secure supplies of energy at competitive prices and to minimise possible adverse environmental impacts of energy use. It is argued here that both of these aims will be promoted by the continued and growing use of nuclear power in the United Kingdom. As the cost of nuclear electricity depends chiefly on the price of uranium, which is likely to stabilize due to increased supplies from nuclear weapons destruction, uranium recycling and mixed oxide fuel reprocessing, it is unlikely that world fuel price inflation will affect these costs. Secondly, nuclear power is not associated with acid rain or the threat of global warming, so its environment protection claims can be substantiated. Indeed, unlike other fuel sources, nuclear power already pays for its waste and decommissioning procedures. (UK)

  19. Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability

    International Nuclear Information System (INIS)

    Poinssot, C.; Grandjean, S.; Masson, M.; Bouillis, B.; Warin, D.

    2013-01-01

    Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion

  20. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Rosen, M.

    2000-01-01

    The substantial increase in global energy consumption in coming decades will be driven principally by the developing world. Although there is some awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favored option in a sustainable energy future. This paper, after discussion of rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  1. A study on the role of nuclear energy in overcoming environment and resource crisis -For the establishment of sustainable energy policy-

    International Nuclear Information System (INIS)

    Han, Pil Soon; Choi, Yung Myung; Ham, Chul Hoon; Cho, Il Hoon; Jung, Heum Soo; Lee, Tae Joon; Lee, Duk Sun

    1995-04-01

    This study is mainly composed of the analyses of the current circumstances and the future views on the global warming and the exhaustion of energy resources related to the use of energy, and the suggestion on the role of nuclear energy as the most prospective countermeasure on energy crisis. The effects of the problems of global warming and energy crisis on the 21st century are look upon and the strategies of each countries to their crises are analyzed in this study. In energy source and the characteristics of nuclear energy resource, and the necessity of the sustainable development of nuclear energy was emphasized. We suggested the enlargement of the development of nuclear energy in the aspects of the international trends, the national economic options and the deficiency of energy resources, and proposed the detail of the short - and long - term strategies on these matters. 22 figs, 39 tabs, 45 refs. (Author)

  2. A 'must-go path' scenario for sustainable development and the role of nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    Jeong, Hae-Yong; Kim, Young-In; Lee, Yong-Bum; Ha, Kwi-Seok; Won, Byung-Chool; Lee, Dong-Uk; Hahn, Dohee

    2010-01-01

    An increase in the world population has accelerated the consumption of fossil fuels and deepened the pollution of global environment. As a result of these human activities, it is now difficult to clearly guarantee the sustainable future of humankind. An intuitional 'must-go path' scenario for the sustainable development of human civilization is proposed by extrapolating the human historical data over 30 years between 1970 and 2000. One of the most important parameters in order to realize the 'must-go path' scenario is the sustainability of energy without further pollution. In some countries an expanded use of nuclear energy is advantageous to increase sustainability, but fast reactor technology and closed fuel cycle have to be introduced to make it sustainable. In other countries, the development of cost-effective renewable energy, and the clean use of coal and oil are urgently needed to reduce pollution. The effect of fast nuclear reactor technology on sustainability as an option for near-term energy source is detailed in this paper. More cooperation between countries and worldwide collaboration coordinated by international organizations are essential to make the 'must-go path' scenario real in the upcoming 20 or 30 years.

  3. 2017 NEA Annual Report: Nuclear Power in 2017; Innovation and Education: Necessary Enablers for Sustainable Nuclear Energy, or the Virtuous Circle; NEA Activities by Sector

    International Nuclear Information System (INIS)

    2018-01-01

    The NEA Annual Report of the OECD Nuclear Energy Agency (NEA) for the year ending on 31 December 2017 provides an overview of the status of nuclear power in OECD countries and illustrative descriptions of the Agency's activities and international joint projects. Content: 1 - Message from the Director-General; 2 - Innovation and Education: Necessary Enablers for Sustainable Nuclear Energy, or the Virtuous Circle; 3 - Nuclear Technology in 2017; 4 - NEA Activities by Sector: Nuclear Development, Nuclear Safety and Regulation, Human Aspects of Nuclear Safety, Radiological Protection, Radioactive Waste Management, Nuclear Science, Data Bank, Legal Affairs, 5 - General Information: Information and Communications, Organisational Structure of the NEA, NEA Committee Structure in 2017, NEA Management Structure in 2017, NEA Publications and Brochures Produced in 2017

  4. Achieving Nuclear Sustainability through Innovation

    International Nuclear Information System (INIS)

    2013-01-01

    In 2000, the IAEA Member States recognized that concerted and coordinated research and development is needed to drive innovation that ensures that nuclear energy can help meet energy needs sustainably in the 21st century. Following an IAEA General Conference resolution, an international 'think tank' and dialogue forum were established. The resulting organization, the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), helps nuclear technology holders and users coordinate the national and international studies, research and other activities needed to achieve innovations in nuclear reactor designs and fuel cycles. Currently, 38 countries plus the European Commission are participating in the project. This group includes both developing and developed economies that represent more than 75% of the world's population and 85% of its gross domestic product. INPRO undertakes collaborative projects among IAEA Member States, which analyse development scenarios and examine how nuclear energy can support the United Nations' goals for sustainable development in the 21st century. The results of these projects can be applied by IAEA Member States in their national nuclear energy strategies and can lead to international cooperation resulting in beneficial innovations in nuclear energy technology and its deployment. For example, INPRO studies the 'back end' of the fuel cycle, including recycling of spent fuel to increase resource use efficiency and to reduce the waste disposal burdens.

  5. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  6. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  7. JHR. A high performance MTR under construction for a sustainable nuclear energy

    International Nuclear Information System (INIS)

    Iracane, Daniel; Cordier, Pierre-Yves

    2009-01-01

    The Access to an up-to-date Material Testing Reactor (MTR) is essential to support a sustainable nuclear energy, meeting industry and public needs, and keeping a high level of scientific expertise. This includes services to existing and coming reactor technologies for major stakes such as safety and competitiveness, lifetime management, operation optimization, development of innovative structural material and fuel required for future systems (innovative Gen III, Gen IV, fusion...), etc. The JHR copes with this context. Design phase has been completed by the end of 2005 and JHR is now under construction. Start of operation is scheduled in 2014. As a new MTR taking benefit of a large available worldwide experience, JHR offers new major experimental capability that will be presented. JHR will be operated within an international users' consortium that will guarantee effective and cost-effective operation. This innovative way to operate a MTR, as a user-facility for the benefit of industry and public bodies, will be presented. (author)

  8. Prospects of nuclear power plants for sustainable energy development in Islamic Republic of Iran

    International Nuclear Information System (INIS)

    Ghorashi, Amir Hossien

    2007-01-01

    This paper presents the feasible contributive share of electricity generation from each energy resources. This includes the economical feasibilities and all demographic projections involved in forecasting methodology, which explicitly reflect on overall national power demand projection in the Energy prospects of Islamic Republic of Iran till 2033. The Energy demand and reliability are presented with a view to elaborate on significant role and required capacity of Nuclear Power Plants (NPP) towards fulfillment of an energy mix policy in the country

  9. Analysis of opinion about nuclear energy and sustainability in a graduate level population

    International Nuclear Information System (INIS)

    Meza L, C.D.; Arredondo S, C.

    2007-01-01

    The Mexican society has a modest knowledge of the nuclear energy, even at the participant students of superior education level in this survey is finds a scarce compression with regard to their obtaining, use and manage. As a result of the lack of interest of the same society and at the problems that know each other like they are: the pollutants that it produces those nuclear waste and the possible use or warlike end, a fear is believed about this energy type. In the Superior School of Physics and Mathematics there is the possibility to make studies so much at master degree level in the one fear of the nuclear energy and the applications of the same one in peaceful uses. However, particularly the studies at master level seem to be immersed in a crisis that requires of different supports to be resolved. For all it previous was thought in carrying out a survey inside a student population with superior level to know the opinion and the knowledge on the nuclear energy in Mexico. In this work the results of the survey are analyzed with the purpose of to determine which is the knowledge of the community mentioned regarding the other energy types, the impact that they have these in the environment, the sustenance of the same ones and in particular on knowledge about the nuclear energy considering the aspects before mentioned. With base had said analysis settles down that the interviewed community knows very little about the nuclear energy but they show interest to study and to obtain bigger information about the same one, for what is very important to diffuse but and better information on the nuclear energy to the population's strata, because it is of supposing that the rest of the population has erroneous information on the nuclear energy. In particular for the community of the Superior School of Physics and Mathematics the diffusion of all the benefits of the peaceful applications of the nuclear energy, including the capacity to generate enormous quantities and energy

  10. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  11. Energy security, sustainable development, which place for the Nuclear in the world?; Securite energetique, developpement durable, quelle place pour le nucleaire dans le monde?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Facing the increase of the energy consumption and the necessity of the greenhouse gases emission decrease, the authors define the role of the nuclear energy in a policy of a sustainable development. They recall the leadership part of the France in the nuclear research and development and the channel of the nuclear production. The second part of the paper proposes sheets of countries energy policy and nuclear program situation: USA, Europe, Russian, China and India. (A.L.B.)

  12. Globally sustainable and stable nuclear energy resources for the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.

    2010-09-15

    We address the issues of future resource unsustainability, energy demand uncertainty and supply unpredictability. Inexorably growing global energy demand increases the costs of energy sources, and raises concerns about security of energy supply and environmental emissions of carbon dioxide and other greenhouse gases (GHGs). Taking the viewpoint of developing a sustainable global fuel cycle, we propose alternate paths outside the present rather traditional thinking. Nevertheless, they still represent existing and known technology opportunities that may run counter to many current national positions, and today's commercial and technical interests, while still presenting very large opportunities.

  13. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  14. Challenges of nuclear power for the sustainable role in Korean energy policy

    International Nuclear Information System (INIS)

    Lee, Y. E.

    2007-01-01

    This study aims to introduce the current role of nuclear power of Korea as the economic and low carbon emitter in the long term expansion planning and to improve the public acceptance of nuclear as the environmentally friendliness energy source. Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide more than 60% of total electricity generation in Korea for quite some time. National energy policy addressing environmental friendliness, stable supply and least cost has made it difficult to decide which energy resource is the best for the long term energy planning. Climate change regime will diminish the coal power plants in generation amount, the public still keeps nuclear at a distance and insists to replace nuclear by renewable and renewable doesn't any guarantee of stable supply although its economics is fast being improved. Therefore, it is necessary to analyze the long-term power expansion planning in various points of view such as environmental friendliness, benefit of carbon reduction and system reliability as well as least cost operation. The objective and approach of this study are to analyze the proper role of nuclear power by comparing the different types of scenarios in terms of the system cost changes, CO 2 emission reduction and system reliability. The results from this analysis are useful for the Korean government in charge of long-term energy policy to go over what kinds of role can each electric resources play and what are the best way to solve the triangular dilemma as economics, environmental friendliness, stable supply of the electricity

  15. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made

  16. Sustainable development and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made. Figs, tabs.

  17. Nuclear buildings and sustainable development

    International Nuclear Information System (INIS)

    Gomah, A.M.H

    2009-01-01

    The main proposal of this thesis based on some practical notes and the theoretical readings, the mathematical equations which led to existing a shared relationship between the nuclear institutions and the economical development with preserving the environment and its recourses which achieves the concept of the sustainable development. The thesis aims also at recognizing the most important characteristics of the nuclear institutions , as the study interests in understanding how the nuclear energy can be distinguished from the other energy resources. Furthermore, the study in its intellectual framework interests in comparing a number of the nuclear institutions that the study finds them related to the research topic and assists in achieving the study goals, which represent in the environmental evaluation of the nuclear institutions inside its biological surroundings. The study consists of four main chapters in addition to the introduction and the conclusion as follows: The first chapter: Recognizing the nuclear institutions and their effect on the environment. The second chapter: Recognizing planning and generalizing the nuclear institutions. The third chapter: Recognizing the limits and standards of the planning and the designing of a nuclear institution. The fourth chapter: The nuclear institutions inside the suburban places.

  18. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    ) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse...... of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO2 into fuels using renewable or nuclear energy, considering three stages—CO2 capture, H2O and CO2...... by Fischer–Tropsch synthesis is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis...

  19. Nuclear Power Introduction in Indonesia : Securing the National Energy Supply for Sustainable Development

    International Nuclear Information System (INIS)

    Sriyana; Sudi Ariyanto; Arnold Y Soetrisnanto

    2005-01-01

    Nuclear power construction planning study has already done by BATAN. The studies that cover various aspects have also done related to this preparation. The research centers in BATAN that have activities in energy application are directed to this preparation. This paper will generally describe the activities and result of the preparation study, especially related to technology aspect, site aspect, and social-economic impact. The preparation study has taken into account of some aspects, but still need updated and some more complementary study. The choice of technology will determine the ability for technology transfer. Industrial infrastructure and the design and engineering capability are the key role for self reliance in nuclear power technology. But the technology transfer will not succeed without government support. Muria Peninsula, precisely in Ujung Lemahabang has become the first candidate site, while Ujung Grenggengan and Ujung Watu as a second and third candidate sites. Though site could accommodate 7.000 MWe installed capacity, but are need to consider stability and capacity of transmission line to channeling the nuclear power out put in Jawa-Madura-Bali grid interconnection. From the economic impact aspect, nuclear power is competitive among other power plant system in order the role of nuclear power to give a solution in energy optimum mix policy and will reduce oil fuel consumption. (author)

  20. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  1. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  2. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  3. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  5. Planning for decommissioning of nuclear facilities - Nuclear as a semi-sustainable energy source, the views of younger stakeholders - 59222

    International Nuclear Information System (INIS)

    Lindskog, Staffan; Labor, Bea

    2012-01-01

    Document available in abstract form only. Full text of publication follows: It is planned that many nuclear facilities will be decommissioned in the near future. This challenge includes certified repositories for LLW and ILW, procedures for classification and free release, systems for transportation, planning activities, and liaison with the public. The last item can have a substantial impact on the efficiency of decommissioning projects. Insufficient dialogue with various stakeholder groups can be a factor that drives costs, whilst appropriate programs, means and environments for communication and knowledge transfer may facilitate the establishment of contemporary and comprehensive bases for decisions and thereby also enhance the possibility for consensus and thereby achieve feasible and sustainable solutions. The programs thus decided for the decommissioning of nuclear facilities and the management of the nuclear waste must then be communicated openly and constitute an integral part of the stakeholder related activities. The nuclear renaissance implies as well as calls for newer platforms for communications with the stakeholders. This communication must include how compliance with the Polluter Pays Principle (PPP) (and also preferably the Extended Polluter Responsibility, EPR) is to be achieved

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  7. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Reuss, Paul

    2012-01-01

    With simple and accessible explanations, this book presents the physical principles, the history and industrial developments of nuclear energy. More than 25 years after the Chernobyl accidents and few months only after the Fukushima one, it discusses the pros and cons of this energy source with its assets and its risks. (J.S.)

  9. The contribution of nuclear energy to a sustainable energy system. Volume 3 in the CASCADE MINTS project

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Martinus, G.H.; Rosler, H.; Van der Zwaan, B.C.C.; Szabo, L.; Russ, P.; Mantzos, L.; Zeka-Paschou, M.; Blesl, M.; Ellersdorfer, I.; Fahl, U.; Bohringer, C.; Loschel, A.; Pratlong, F.; Le Mouel, P.; Hayhow, I.; Kydes, A.S.; Martin, L.; Rafaj, P.; Kypreos; Sano, F.; Akimoto, K.; Homma, T.; Tomoda, T.

    2006-03-01

    This report provides an overview of the main results from the scenarios analysed in the CASCADE MINTS project to assess the role of nuclear energy in solving global and European energy and environmental issues. Two contrasting scenarios have been analysed, comparing the impacts of a phase-out of nuclear power capacities to a situation where conventional nuclear power plants achieve a 25% investment cost reduction, both under a rather strong climate pol-icy. Two main conclusions can be drawn. First, the analyses have shown that a nuclear phase-out in Europe is feasible, even in a future with a strong climate policy. However, in this case, renewables, natural gas and advanced coal-fired plants with CCS are key options, and achieving climate goals is more costly. Consequently, the dependency on natural gas imports would increase even further than already expected in a business as usual scenario. Secondly, nuclear energy could be an important component of carbon mitigation strategies, under the condition that the risks related to reactor safety and proliferation are dealt with or accepted, and that long-term solutions for the disposal of radioactive waste are found. With the assumption that carbon prices reach a level of 100 euro/tonne CO2 in 2030, nuclear power plants could somewhat reduce the import dependency of natural gas, and could contribute to up to 50% of Western Europe's power generation mix

  10. Framework for Assessing Dynamic Nuclear Energy Systems for Sustainability: Final Report of the INPRO Collaborative Project GAINS

    International Nuclear Information System (INIS)

    2013-01-01

    , with Argentina as an observer. The objective of the CP was to develop a standard framework - including a methodological platform, assumptions and boundary conditions - for assessing future nuclear energy systems (NESs), taking into account sustainable development, and to validate the simulation results through sample analyses. In the first stage of the project's implementation (2008-2009), nuclear energy needs during the twenty-first century were estimated, basic scenarios for the study were defined, essential data on current and future reactor systems were compiled, and a heterogeneous multigroup model of a global NES was developed. In the second stage (2010-2011), the results of calculations performed in the first stage using national and IAEA tools were cross-checked, and the sustainability of sample global nuclear energy architectures differing by the level of technical and institutional innovations were analysed, compared and assessed in the light of the INPRO methodology. Interim results of the study were submitted to INPRO Steering Committee meetings held in Vienna in the course of 2008-2011 and at several international conferences and meetings. The overall results and findings of the project are summed up in this report and supporting material is included on the attached CD-ROM

  11. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  12. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  13. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  14. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  15. Nuclear energy

    International Nuclear Information System (INIS)

    Luxo, Armand.

    1977-01-01

    The reasons and conditions of utilizing nuclear power in developing countries are examined jointly with the present status and future uses already evaluated by some organizations. Some consequences are deduced in the human, financial scientific and technological fields, with provisional suggestions for preparing the nuclear industry development in these countries. As a conclusion trends are given to show how the industrialized countries having gained a long scientific and technological experience in nuclear energy can afford their assistance in this field, to developing countries [fr

  16. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Hans-Holger Rogner; Sanborn Scott, D.

    2001-01-01

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO 2 ) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  17. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  18. Sustainable Energy for All

    DEFF Research Database (Denmark)

    - renewable energy and energy efficiency. The promise of renewable energy can only be realised through significant R&D investments on technologies such as solar, biomass, wind, hydropower, geothermal power, ocean energy sources, solar-derived hydrogen fuel coupled with energy storage technologies necessary......Energy crisis is one of the most pressing issues of our century. The world currently invests more than $1 trillion per year in energy, much of it going toward the energy systems of the past instead of building the clean energy economies of the future. Effectively, the provision of energy should...... be such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. Investment in sustainable energy is a smart strategy for growing markets, improving competitiveness, and providing greater equity and opportunity. Sustainable energy has two key elements...

  19. Hydrogen production through nuclear energy, a sustainable scenario in Mexico; Produccion de hidrogeno mediante energia nuclear, un escenario sostenible en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega V, E.; Francois L, J.L. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: iqoren@gmail.com

    2007-07-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  20. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  1. Chemistry of sustainable energy

    CERN Document Server

    Carpenter, Nancy E

    2014-01-01

    Energy BasicsWhat Is Energy?Energy, Technology, and SustainabilityEnergy Units, Terms, and AbbreviationsElectricity Generation and StorageOther ResourcesReferencesFossil FuelsFormation of Oil and GasExtraction of Fossil FuelsRefiningCarbon Capture and StorageSummaryOther ResourcesOnline Resources Related to Carbon Capture andSequestrationReferencesThermodynamicsIntroductionThe First Law of ThermodynamicsThe Second Law and Thermodynamic Cycles: the Carnot EfficiencyExerg

  2. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  3. Let nuclear technology create new brilliancy for china's sustainable development

    International Nuclear Information System (INIS)

    Du Xiangwan

    2008-01-01

    This paper summarizes the development and application directions of nuclear technology, including five aspects: nuclear technology and energy nuclear technology and medicine, nuclear anclear analysis technology, nuclear radiation technology, astronautics and voyage's nuclear power, etc. The paper discusses the importance of them to sustainable development and generalizes the development trilogy of nuclear science and technology and its prospect. (authors)

  4. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  5. The NRNU MEPhI activities in the development and applications of advanced tools for innovative nuclear energy systems sustainability assessments - 5020

    International Nuclear Information System (INIS)

    Andrianov, A.; Dogov, A.; Kuptsov, I.; Fedorova, E.; Svetlichnyy, L.; Utianskaia, T.; Korovin, Y.

    2015-01-01

    This report delineates the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE developed at the National Research Nuclear University MEPhI and the Obninsk Institute for Nuclear Power Engineering intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty. The authors present some results of implementation of these tools for multi-objective nuclear energy system optimization studies. The developed software allows searching for compromises between the conflicting factors that determine the nuclear energy systems' effectiveness and calculating corresponding trade-off rates; carrying out comparative multi-criteria analysis of alternatives as well as choosing, ranking, and sorting corresponding options taking into account the evolution dynamics, structure and organization of a nuclear fuel cycle and the most important system constraints and restrictions. (authors)

  6. Nuclear Buildings And Sustainable Development

    International Nuclear Information System (INIS)

    Gomah, A.El.M.H.

    2009-01-01

    The main proposal of this Thesis based on some practical notes and the theoretical readings, the mathematical equations which led to existing a shared relationship between the nuclear institutions and the economical development with preserving the environment and its recourses which achieves the concept of the sustainable development. The Thesis aims also at recognizing the most important characteristics of the nuclear institutions, as the study interests in understanding how the nuclear energy can be distinguished from the other energy resources. Furthermore, the study in its intellectual framework interests in comparing a number of the nuclear institutions that the study finds them related to the research topic and assists in achieving the study goals ,which represent in the environmental evaluation of the nuclear institutions inside its biological surroundings. The study consists of four main chapters in addition to the introduction and the conclusion as follows: The first chapter: recognizing the nuclear institutions and their effect on the environment. This chapter includes studying the characteristics of the nuclear institutions in the frame of its existence in the atmospheric surroundings and this chapter includes: 1- The kinds of the nuclear institutions, the troubles and incidents resulting in them and comparing between it and the study of the nuclear fuel. 2- The economical importance of the nuclear institutions and participating it in the process of developing. The role of the agency of preserving the environment and the extent of its ability to deal with the nuclear incidents and training and guiding the inhabitants how to deal with these incidents.The second chapter: recognizing planning and generalizing the nuclear institutions.This chapter handles by the study and analysis the nature of the nuclear institutions and the development in their designs according to the development in the designs of the nuclear institutions and this chapter includes:1- The

  7. A new paradigm for core design aimed at the sustainability of nuclear energy: The solution of the extended equilibrium state

    International Nuclear Information System (INIS)

    Artioli, Carlo; Grasso, Giacomo; Petrovich, Carlo

    2010-01-01

    The future expansion of nuclear energy, a technology identified as one of the main candidates for reducing the world's dependence on fossil fuels, requires a thorough analysis of the sustainability of this energy source for long-term supply. Generation-IV nuclear systems could represent a turning point for energy production by minimizing the environmental footprint of the fuel cycle. A new paradigm is thus required for reactor design, focusing, at the core design level, on both the closure of the fuel cycle and the effective utilization of natural resources. Within this framework, the so-called 'adiabatic core' concept represents a particularly interesting solution. It is based on the idea of ensuring by design a condition of equilibrium in the fuel cycle (i.e., an equilibrium 'fuel vector'), foreseeing nuclear power systems able to maintain a constant total amount of both plutonium and minor actinides (TRU), consuming only uranium (either natural or depleted), while discharging to the environment only fission products and reprocessing losses. Under such a hypothesis, all actinides can be continuously recycled in the same system, reducing both the waste volume and its long-term radiotoxicity, as well as utilizing effectively uranium resources. Two mathematical approaches have been devised to find the 'extended' equilibrium solution for the fuel vector. These methods are compared, validated with the codes MCNPX and FISPACT and applied to the European lead-cooled fast reactor ELSY, confirming the potential of this approach (e.g., a reduction by two orders of magnitude of the TRU mass in the final waste in comparison with the fuel cycle of Light Water Reactors operated in a once-through scenario).

  8. Nuclear Power and Sustainable Development (French Edition)

    International Nuclear Information System (INIS)

    2008-01-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [fr

  9. Nuclear Power and Sustainable Development (Spanish Edition)

    International Nuclear Information System (INIS)

    2008-02-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible [es

  10. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  11. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  12. Institute for Sustainable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay [Univ. of Alabama, Tuscaloosa, AL (United States)

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  13. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Richter, Jiri

    2012-01-01

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  14. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  15. Energy and sustainability

    International Nuclear Information System (INIS)

    Brunner, D.

    2001-01-01

    This article describes the further education concepts of the Swiss Federal Government and the Swiss Cantons in the energy area with particular emphasis on post-graduate courses on energy and sustainability in building and civil engineering. The activities of a working group on further education in these areas and the basic objectives of the concepts in the planning, implementation and operational areas are discussed. The courses offered by various Swiss technical colleges in the building and energy areas are examined and experience gained within the framework of the Swiss 'Energy 2000' programme is discussed. Finally, the Penta Project on renewable energy sources, set up jointly by the SwissEnergy programme and various professional associations to provide further education and training for target audiences in the energy and building technical services areas, is looked at

  16. Hybrid nuclear cycles for nuclear fission sustainability

    International Nuclear Information System (INIS)

    Piera, M.; Martinez-Val, M. M.

    2007-01-01

    Nuclear fission can play and must play an important role in paving the road to Energy Sustainability. Nuclear Fission does not produce CO 2 emissions, and it is already exploited at commercial level with the current NPP (Nuclear Power Plants). Most of them are based on LWR reactors, which have a very good safety record. It must be noted, however, that all LWR (including the advanced or evolutionary ones) have some drawbacks, particularly their very poor efficiency in exploiting the natural resources of nuclear fuels. In this paper, an analysis is presented on how to maximize the energy actually generated from the potential contents of fission natural resources. The role of fertile-to-fissile breeding is highlighted, as well as the need of attaining a very high safety performance in the reactors and other installations of the fuel cycle. The proposal presented in this paper is to use advanced and evolutionary LWR as energy producing reactors, and to use subcritical fast assemblies as breeders. The main result would be to increase by two orders of magnitude the percentage of energy effectively exploited from fission natural resources, while keeping a very high level of safety standards in the full fuel cycle. Breeders would not be intended for energy production, so that safety standards could rely on very low values of the thermal magnitudes, so allowing for very large safety margins for emergency cooling. Similarly, subcriticality would offer a very large margin for not to reach prompt criticality in any event. The main drawback of this proposal is that a sizeable fraction of the energy generated in the cycle (about 1/3, maybe a little more) would not be useful for the thermodynamic cycle to produce electricity. Besides that, a fraction of the generated electricity, between 5 and 10 %, would have to be recirculated to feed the accelerator activating the neutron source. Even so, the overall result would be very positive, because more than 50 % of the natural

  17. Complex fluids, divided solids and their interfaces: Open scientific questions addressed at the Institute of Separation Chemistry of Marcoule for a sustainable nuclear energy

    International Nuclear Information System (INIS)

    Leroy, M.; Henge-Napoli, M.H.; Zemb, Th.

    2007-01-01

    Key issues in radiochemistry, physical chemistry of separation and chemistry of materials needed for a sustainable nuclear energy production are described. These driving questions are at the origin of the creation of the Institute of Separation Chemistry at Marcoule. Each of the domains has been described extensively in recent reports for science and technology of the French academy of Science. (authors)

  18. Nuclear energy and civilization

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    The role of energy is indeed very important since without it there will be no living-things in this world. A country's ability to cultivate energy determines the levels of her civilization and wealth. Sufficient energy supply is needed for economic growth, industrialization, and modernization. In a modern civilization, the prosperity and security of a country depends more on the capability of her people rather than the wealth of her natural resources. Energy supplies the wealth, prosperity and security, and sufficient reliable continuous supply of energy secures the sustainable development. The energy supply to sustain the development has to improve the quality of life covering also the quality of environment to support the ever increasing demand of human race civilization. Energy has a closer relationship with civilization in a modern society and will have to become even closer in the future more civilized and more modern society. The utilization of nuclear energy has, however, some problems and challenges, e.g. misleading information and understanding which need serious efforts for public information, public relation, and public acceptance, and possible deviation of nuclear materials for non-peaceful uses which needs serious efforts for technological and administrative barriers, precaution, prevention, safety, physical protection, safeguard, and transparency. These require cooperation among nuclear community. The cooperation should be more pronounced by heterogeneous growing Asian countries to reach harmony for mutual benefits toward better civilization. (J.P.N.)

  19. Nuclear energy for the 21st century to sustain our civilization

    International Nuclear Information System (INIS)

    Akimoto, Yumi

    1998-01-01

    Since the Industrial Revolution, mankind's consumption of energy has increased as our civilization has developed and our standard of living has improved. This mass consumption of energy has naturally brought about a number of environmental problems. The first incidences of pollution were regional and even local problems involving things like dust, sulfur dioxide and nitrogen oxide. Pollution has since become an urgent dilemma in some rapidly industrializing nations, but in most so-called 'advanced nations' it is well under control, with lesser significant public health threats. The most serious environmental problem facing us today is global warming, caused by carbon dioxide and other greenhouse gases. Unlike other forms of pollution restricted to certain regions or countries, this phenomenon affects the stability of the global carbon cycle, and will require synthetic solutions based on very long-term prospect. In terms of both time and space, humanity has never before faced a challenge of such global problem. We cannot halt the emission of carbon dioxide gas as long as we use fossil fuels, but we will not be able to solve this problem if we continue to view it in terms of shortsighted equations like 'control of fossil fuel equals control of energy.' In developing countries, there is a strong link between increased energy consumption and economic growth, and the ongoing population explosion in such countries more or less ensures that their energy consumption will continue to grow. In advanced nations, too, the spread of information technology is leading to greater energy consumption in homes and offices. Energy is also needed to process and recycle various kinds of waste. Even if we promote energy saving, it is realistic to expect the demand for energy to continue growing gradually. Some argue that the use of energy should be restricted, even if it affects our standard of living - but lifestyle choices are personal decisions, and this approach would be unlikely to

  20. A 'must-go path' scenario for sustainable development and the role of nuclear energy in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Yong; Kim, Young-In; Lee, Yong-Bum; Ha, Kwi-Seok; Won, Byung-Chool; Lee, Dong-Uk; Hahn, Dohee [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea)

    2010-04-15

    An increase in the world population has accelerated the consumption of fossil fuels and deepened the pollution of global environment. As a result of these human activities, it is now difficult to clearly guarantee the sustainable future of humankind. An intuitional 'must-go path' scenario for the sustainable development of human civilization is proposed by extrapolating the human historical data over 30 years between 1970 and 2000. One of the most important parameters in order to realize the 'must-go path' scenario is the sustainability of energy without further pollution. In some countries an expanded use of nuclear energy is advantageous to increase sustainability, but fast reactor technology and closed fuel cycle have to be introduced to make it sustainable. In other countries, the development of cost-effective renewable energy, and the clean use of coal and oil are urgently needed to reduce pollution. The effect of fast nuclear reactor technology on sustainability as an option for near-term energy source is detailed in this paper. More cooperation between countries and worldwide collaboration coordinated by international organizations are essential to make the 'must-go path' scenario real in the upcoming 20 or 30 years. (author)

  1. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  2. Nuclear Data for Safe Operation and Waste Transmutation: ANDES (Accurate Nuclear Data for nuclear Energy Sustainability); Datos nucleares para la operacion segura y la transmutacion de residuos: Andes (Datos Nucleares Precisos para la Sostenibilidad de la Energia Nuclear)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E. M.

    2014-07-01

    Nuclear research within the 7th Framework Program (FP7 and FP7+2) of EURATOM has devoted a significant fraction of its efforts to the development of advanced nuclear fuel cycles and reactor concepts, mainly fast reactors, aiming to improve the long term sustainability by reduction of the final wastes, optimal use of natural resources and improvement of safety in the present and future nuclear installations. The new design need more accurate basic nuclear data for isotopes, like minor actinides, potentially playing an important role in the operation, fuel concept, safety or final wastes of those reactors and fuel cycles. Four projects, ANDES, ERINDA, EUFRAT and CHANDA, supported by EURATOM within the FP7 and FP7+2, have put together most of the European Nuclear Data community to respond efficiently and in a coordinated way to those needs. This paper summarizes the objectives, and main achievements of ANDES, the project responsible for most of the measurements and technical achievements that was coordinated by CIEMAT. Indeed, CIEMAT has coordinated the nuclear data R and D projects within EURATOM during the last 7 years (NUDATRA domain of EUROTRANS, and ANDES) and will continue this coordination in the CHANDA project till 2017. (Author)

  3. Energy for sustainable development

    International Nuclear Information System (INIS)

    Toepfer, Klaus

    2003-01-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new sustainable energy enterprises

  4. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  5. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  6. Energy and sustainable lifestyle

    International Nuclear Information System (INIS)

    Lausmaa, Toenu

    1997-01-01

    Sustainable development sets limits to our energy use within our economy. The main reason is the anthropologic greenhouse effect, limiting our fossil fuel consumption. It is important to emphasise that the greenhouse effect is not a political slogan but a well established scientific fact, with solid evidence brought into limelight about the phenomena over the last hundred years. But care should be taken about energy use even if we switch over to renewable s, for the sun radiation energy is not unlimited either. There is no danger that limitations on energy use would bring our life quality down, for we could produce all the needed goods and services with lower energy intensity, increasing the efficiency of our production processes and switching over from fossil fuels to renewable s. One should notice that it is impossible to solve the problems of excessive energy use only on the economical level. It's needed to change the public attitudes to ensure the proper support in combating the climate change and meeting the requirements of sustainable development

  7. Hopi Sustainable Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  8. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Wade, D.C.; Moisseytsev, A.

    2008-01-01

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus

  9. Republic of Korea - Nuclear power for GHG mitigation and sustainable energy development

    International Nuclear Information System (INIS)

    Lim, Chae-Young; Lee, Keun-Sung

    2000-01-01

    The Republic of Korea occupies the southern half of the Korean Peninsula. Korea's population in 2000 is 47.3 million, and the population density is over 450 persons per km 2 , the third highest in the world. However, the effective implementation of family planning policies has slowed population growth from 3.0% in 1960 to less than 1% currently. Korea's economy has changed markedly in every respect since the government launched a series of economic development plans in the early 1970s. Average economic growth over the last decade was above 8% per year, excluding the financial crisis period. High economic growth has inevitably led to rapid growth in energy consumption. Due to a lack of domestic energy resources, the overseas dependence rate of energy consumption has continuously increased from 47.5% in 1970 to 97.5% in 1997. Especially fossil fuels, such as oil, coal and gas, accounted for 88.2% of total energy consumption in 1997. These also caused a rapid increase in greenhouse gas emissions including CO 2 . In 1997, 140 million tonnes of carbon (MtC) were emitted - 1.8% of total world greenhouse gas (GHG) emissions

  10. Energy - Economy - Sustainability

    International Nuclear Information System (INIS)

    Meier, R.; Renggli, M.; Previdoli, P.

    2000-01-01

    This book, published by leading experts working for and on behalf of the Swiss Federal Office of Energy (SFOE) presents in a compact collection of reports the findings of various projects carried out within the framework of a research programme on energy economics. This SFOE programme is to provide the basic information needed in the process of defining Swiss energy policy. The book covers, in particular, data on energy consumption, energy perspectives and analyses of the consequences of the various scenarios along with evaluation of the measures proposed. The 25 individual reports are grouped under 7 headings: Under 'Data', three reports cover indicators for selected cantonal energy measures, energy and electricity consumption in offices and decision-making in the services sector. The 'Perspectives' section contains reports on the SFOE's energy perspectives and two analyses that look at energy consumption and its development in the industry and service sectors. The 'Energy Models and Analysis of the Effects of Measures' collection includes three reports covering the economic impact of energy levies (an analysis using balance models), the social and geographical distribution effects of energy levies as well as overall economic models for the questions of the future. Under 'Costs and Economics', two contributions investigate the future of regional and local district heating schemes and the question of liability in connection with nuclear power installations. Eight contributions make up the section on 'Measures to be taken in the Energy Area and their Implementation in Energy Policy'. The topics covered are: Promotion strategies for the implementation of an energy levy, special regulations for energy-intensive industry sectors, the impact of 'Energy 2000' activities on energy, environment and employment, energy contracting in Switzerland, innovation and energy use in industry, the marketing of solar power by utilities, energy politics in the federalist system and

  11. Nuclear energy

    International Nuclear Information System (INIS)

    2007-01-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  12. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  13. Toward sustainable energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Pasztor, J. (United Nations Environment Programme, Nairobi (Kenya))

    1990-01-01

    All energy systems have adverse as well as beneficial impacts on the environment. They vary in quality, quantity, in time and in space. Environmentally sensitive energy management tries to minimize the adverse impacts in an equitable manner between different groups in the most cost-effective ways. Many of the enviornmental impacts of energy continue to be externalized. Consequently, these energy systems which can externalize their impacts more easily are favoured, while others remain relatively expensive. The lack of full integration of environmental factors into energy policy and planning is the overriding problem to be resolved before a transition towards sustainable energy futures can take place. The most pressing problem in the developing countries relates to the unsustainable and inefficient use of biomass resources, while in the industrialized countries, the major energy-environment problems arise out of the continued intensive use of fossil fuel resources. Both of these resource issues have their role to play in climate change. Although there has been considerable improvement in pollution control in a number of situations, most of the adverse impacts will undoubtedly increase in the future. Population growth will lead to increased demand, and there will also be greater use of lower grade fuels. Climate change and the crisis in the biomass resource base in the developing countries are the most critical energy-environment issues to be resolved in the immediate future. In both cases, international cooperation is an essential requirement for successful resolution. 26 refs.

  14. Energy for a sustainable world

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Reddy, A.K.N.; Williams, R.H.

    1988-01-01

    The book is devoted to the problem of energy planning for a sustainable world. The principal objective of the conventional approach to energy problem is economic growth and consequently the primary goal of conventional energy planning is to make energy supply expansion possible. This conventional approach is aggravating societal inequalities, environmental and security problems, and eroding self-reliance. On the other hand societal goals in energy planning should be equity, economic efficiency, environmental harmony, long-term viability, self-reliance and peace. These goals are relevant to both developing and industrialised countries. These goals should, therefore, be incorporated in a normative approach to energy planning. This can be done by focussing on end-uses of energy and the services which energy performs. In the first chapter, the relation of global energy problem with other major global problems such as North-South disparities, environmental degradation, climate change, population explosion and nuclear weapons is brought out. The energy strategies for industrialized countries and for developing countries are examined in chapters 2 and 3 respectively. The focus in both chapters is on end-uses of enegy, management of energy demand and exploitation of synergisms. In chapter 4, rough estimates of global energy demand are given and an illustrative energy scenario compatible with societal goals is described. In chapter 5, the policies necessary to implement end-use-oriented energy strategies are outlined. These policies relate to market mechanisms, administrative allocation of energy carriers, regulation and taxes. In the concluding chapter 6, the political feasibility of implementing the kind of energy future envisaged is discussed. The main finding of the authors is that it is possible to formulate energy strategies compatible with the solution of major global problems referred to in chapter 1 with about the same level of global energy use as today. (M.G.B.)

  15. Alternative long term strategies for sustainable development: Rapidly increasing electricity consumption in Asian countries and future role of nuclear energy

    International Nuclear Information System (INIS)

    Sagawa, N.

    1997-01-01

    Many people in the world express the concern that global warming will become an increasingly serious problem. A rapid increase in population and demand for energy in the Asian region must be discussed in this context. Despite the forecast of an increase in demand for energy, the Asian region is short of oil and natural gas resources. In addition, only less energy can be supplied by renewable energy sources in the Asian region than in the other regions because of high population density. Nuclear energy is an important energy resource for fulfilling the future increasing energy demand in the Asian region and for contributing to the suppression of carbon dioxide emissions. In the Asian region alone, however, we cannot rely limitlessly on LWR which does not use plutonium. According to a scenario analysis, the total capacity of nuclear power plants in the Asian region would reach large scale and the cumulative amount of demand for natural uranium will increase to about 5 million tons in the Asian region alone. Just the nuclear power plants of this scale in Asia alone will rapidly consume the world's cheap natural uranium resources if we rely only on natural uranium. In the Asian region, few countries have embarked on nuclear power generation and the capacity of equipment is still small. Currently, however, many plans for nuclear power generation are being designed. Many Asian countries obviously consider nuclear power generation as a valid option. Many potential policies must be examined in the light of future uncertainty. In the future, both renewable energy and nuclear energy must be resorted to. When nuclear energy is utilized, the use of plutonium and FBR in the Asian region must be taken into account in order to attain continual growth and development. (author)

  16. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    This brochure is intended as a contribution to a better and more general understanding of one of the most urgent problems of present society. Emphasis is laid on three issues that are always raised in the nuclear debate: 1) Fuel cycle, 2) environmental effects of nuclear power plants, 3) waste disposal problems. (GL) [de

  17. Analytical framework for the analysis/assessment of transition scenarios to sustainable nuclear energy systems and its applications

    International Nuclear Information System (INIS)

    Kuznetsov, V.

    2013-01-01

    IAEA/INPRO (in cooperation with the IAEA's Planning and Economic Studies Section) have developed an internationally verified analytical framework to assist Member States in Nuclear energy development modelling, including material flow analysis, economic assessment and least cost model optimization (IAEA Nuclear Energy Series No. NP-T-1.14 in print). The INPRO Group (in cooperation with the IAEA's Planning and Economic Studies Section) provides training to Member States on mastering and application of this analytical framework to particular problems of national/ collaborative nuclear energy development. For small programmes of the fast reactors/closed nuclear fuel cycle deployment the economic benefits from their introduction would be substantially lower than the amount of investments needed for RD&D, licensing and deployment. Only a few countries in the world with large nuclear energy programmes (30 GW(e) for fast reactors) can bear the burden of the technology development for fast reactors/closed nuclear fuel cycle. Therefore, global nuclear energy system would follow a heterogeneous world model, at least, within the present century

  18. New Technologies for a sustainable nuclear energy and your effect in the management of radioactive waste; Nuevas tecnologias para una energia nuclear sostenible y su efecto en la gestion de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Romero, E. M.

    2009-07-01

    The probable worldwide increase and distribution of nuclear energy for electricity generation, replacing partially fossil fuels, is promoting the development of technologies that foster its long-term sustain ability. Fast neutron system, combined with closed fuel cycles, are the key elements for the sustain ability. When combined, they can provide a significant reduction on the final high level wastes of the nuclear generation. In particular, Partitioning and Transmutation of actinides would allow the reduction of the nuclear wastes radiotoxicity, their content in fissile material and the heat load to the repository. (Author) 8 refs.

  19. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  20. Nuclear Energy in Romania

    International Nuclear Information System (INIS)

    Biro, L.

    2003-01-01

    The new energy approach towards nuclear, due to the growing political support at the beginning of this century, is the result of a complexity of economical, social, political and technological factors. The history of peaceful use of nuclear energy in Romania goes back 45 years. Considering the strategic importance of the energy sector in developing the national economy on sustainable basis, the sector evolution should be outlined through prognosis and strategies on different horizons of time, so that the development perspectives and the energy supply to be correctly estimated. This necessity is emphasized in the Governmental Program of the present administration, which takes into consideration Romanian Economic Strategy on medium term and also The Government Action Plan on 2000-2004, agreed with the European Commission. In order to implement the Governmental Program, the Ministry of Industries and Resources elaborates the National Energy Strategy. The Government Action Plan draw up the conclusion that Unit 2 from Cernavoda NPP must be finalized. This solution fits the least-cost energy development planning and answers to environment requirements. Romania became a Member State of the Agency in 1957. From the mid-1960s to the mid-1970s its technical co-operation program with the Agency covered mainly research in nuclear physics and some medical and other applications of radiation and isotopes. Since 1976, when the Romanian nuclear power program was embarking to use CANDU-type reactors, the Agency has supported mainly the activities related to the Cernavoda NPP. In the framework of the Romanian accession process to the European structures, CNCAN co-operates with European Commission for transposition of the communautaire acquis in the field of nuclear activities. Romania has had laws in place governing the regulation of nuclear activities since 1974. They were remained in force throughout and subsequent to the national constitutional changes started in 1989 until 1996

  1. Nuclear energy technology innovation and restructuring electric power industry for sustainable development in Korea in 21st century - issues and strategies

    International Nuclear Information System (INIS)

    Lee, B.W.; Chae, K.N.

    2001-01-01

    After TMI and Chernobyl accidents, concerns on nuclear safety and radiation health risk from radioactive wastes become the target issues for anti-nuclear. Nevertheless, nuclear power is a substantial contributor to the world electricity production, supplying more than 16 % of global electricity. The objectives of Korean nuclear energy technology innovation are to improve safety, economic competitiveness, energy security and the effectiveness of radioactive waste management in harmony with environment. Meeting such objectives, public concerns on safety and health risks would be cleared. Innovative nuclear energy system will certainly enhance socio-political acceptance and enable wider application of nuclear energy for sustainable development in Korea in the 21st Century. In parallel to such technology innovations, the effective first phase restructuring of electric power industry is in progress to enhance management efficiency and customer services. The power generation division of the former state-run utility, Korea Electric Power Corporation (KEPCO) was separated and divided into six companies - five thermal power and one hydro and nuclear power generation companies - in last April. After the reorganization of KEPCO and the break-up of monopoly, the new electric power industry will be driven by market force. (author)

  2. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  3. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  4. Creating a comprehensive, efficient, and sustainable nuclear regulatory structure. A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Davis, Gregory E.; Brownell, Lorilee; Wright, Troy L.; Tuttle, John D.; Cunningham, Mitchel E.; O'Brien, Patricia E.

    2006-01-01

    This paper describes the strategies and process used by the U.S. Department of Energy's (DOE) nuclear Material Protection, Control and Accounting (MPC and A) Regulatory Development Project (RDP) to restructure its support for MPC and A regulations in the Russian Federation. The RDP adopted a project management approach to defining, implementing, and managing an effective nuclear regulatory structure. This approach included defining and developing the regulatory documents necessary to provide the Russian Federation with a comprehensive regulatory structure that supports an effective and sustainable MPC and A Program in Russia. This effort began in February 2005, included a series of three multi-agency meetings in April, June, and July, and culminated in August 2005 in a mutually agreed-upon plan to define and populate the nuclear regulatory system in the Russian Federation for non-military, weapons-usable material. This nuclear regulatory system will address all non-military Category I and II nuclear material at the Russian Federal Atomic Energy Agency (Rosatom), the Russian Agency for Industry (Rosprom), and the Federal Agency for Marine and River Transport (FAMRT) facilities; nuclear material in transport and storage; and nuclear material under the oversight of the Federal Environmental, Industrial and Nuclear Supervisory Service of Russia (Rostechnadzor). The Russian and U.S. MPC and A management teams approved the plan, and the DOE National Nuclear Security Administration's (NNSA) NA-255, Office of Infrastructure and Sustainability (ONIS), is providing funding. The Regulatory Development Project is managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's (DOE) NNSA

  5. Nuclear for Sustainable Future

    International Nuclear Information System (INIS)

    Wambani, S.

    2017-01-01

    Since 2010, Male and female Kenyan life expectancy has gone up from 55 to 57 and 56 to 59 respectively (A United Nations Population Fund report released Wednesday ( 27th Nov 2011). In Kenya, for example CT scanners have increased by over 80% in the last decade resulting in over seventy facilities. Although the benefit from a radiological procedure to the patient outweighs the potential radiation risk, the total number of patients was large and increasing. Therefore, small individual radiation risk, multiplied by the large number of patient, adds up resulting in a major public health problem that may not become clearly evident for many years under inadequate quality assurance program. Most examinations are relatively infrequent, contributing less than 5% each to the total number of x-ray examinations in Kenya. The procedures are arranged in descending order of their collective dose. In setting optimization strategy for a country, it is important that the choice of examinations be based on collective dose contribution and the frequency of the examination to maximize the overall benefit to a given population. According to Grid Radiography - Optimization of patient protection in Kenya is possible. Capacity building and developing technical capabilities in quality assurance (QA) & control (QC) is required. Networking and research data exchange of African Nuclear Scientists in developing African Standards in Nuclear Applications

  6. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  7. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  8. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  9. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  10. Nuclear energy

    International Nuclear Information System (INIS)

    Lotter, A.C.

    1979-01-01

    The recent, terrifying threat of a major calamity at Pennsylvania's Three Mile Island power plant near Harrisburg reverberated across practically the whole of the civilised world. An almost incredible sequence of human and mechanical failures at this installation had stopped just short of disaster and had brought the unthinkable perilously close to happening. The accident had sprayed radioactive waste into the air and had led to the large scale evacuation of people from the endangered area, disrupted hundreds of thousands of lives and caused a crippling setback to the nuclear industry. In this article the author discusses the impact the Harrisburg incident has had on the nuclear industry

  11. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  12. Nuclear Energy

    International Nuclear Information System (INIS)

    1982-11-01

    A brief indication is given of the United Kingdom nuclear power programme including descriptions of the fission process, the Magnox, AGR and PWR type reactors, the recycling process, waste management and decommissioning, safety precautions, the prototype fast reactor at Dounreay, and the JET fusion experiment. (U.K.)

  13. Making nuclear power sustainable

    Energy Technology Data Exchange (ETDEWEB)

    Barre, B. [European Nuclear Society, Bruxelles (Belgium)

    2004-05-01

    Even though it is almost 35 years old, there is a picture which still cannot be seen without emotion: the first photograph of the Earth shown as a modest white and blue dot in the black sky, beyond the barren desolation of the Moon in the foreground. This tiny planet, surrounded by the fragile bubble of its atmosphere, is our only home, and it will be eons, if ever, before humans can find another place to live. And our home is endangered. Let's state the facts: Today over 6 billion human beings inhabit the earth, many of whom do not have enough available energy to enjoy a decent life. Tomorrow, there shall be 9 billion of us. Within a mere century, we have pumped so much carbon dioxide and other greenhouse gases (GHGs) into the atmosphere that their concentration exceeds by far any level ever experienced by humans since their mastery of fire, half a million years ago. All the available models predict that if we do not curb drastically our GHG emissions, we are bound for a catastrophe with dire consequences, a catastrophe which may be irreversible by human standards. In summary, we must double our energy production while dividing by a factor of two our GHG emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO{sub 2} released in the atm sphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. (author)

  14. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B.

    2004-01-01

    Even though it is almost 35 years old, there is a picture which still cannot be seen without emotion: the first photograph of the Earth shown as a modest white and blue dot in the black sky, beyond the barren desolation of the Moon in the foreground. This tiny planet, surrounded by the fragile bubble of its atmosphere, is our only home, and it will be eons, if ever, before humans can find another place to live. And our home is endangered. Let's state the facts: Today over 6 billion human beings inhabit the earth, many of whom do not have enough available energy to enjoy a decent life. Tomorrow, there shall be 9 billion of us. Within a mere century, we have pumped so much carbon dioxide and other greenhouse gases (GHGs) into the atmosphere that their concentration exceeds by far any level ever experienced by humans since their mastery of fire, half a million years ago. All the available models predict that if we do not curb drastically our GHG emissions, we are bound for a catastrophe with dire consequences, a catastrophe which may be irreversible by human standards. In summary, we must double our energy production while dividing by a factor of two our GHG emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO 2 released in the atm sphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. (author)

  15. Energy sustainability under the framework of telecoupling

    International Nuclear Information System (INIS)

    Fang, Baling; Tan, Yi; Li, Canbing; Cao, Yijia; Liu, Jianguo; Schweizer, Pia-Johanna; Shi, Haiqing; Zhou, Bin; Chen, Hao; Hu, Zhuangli

    2016-01-01

    Energy systems, which include energy production, conversion, transportation, distribution and utilization, are key infrastructures in modern society. Interactions among energy systems are generally studied under the framework of energy trade. Although such studies have generated important insights, there are limitations. Many distant interactions (e.g. those due to the Fukushima nuclear crisis) are not in the form of trade, but affect energy sustainability. Even when distant interactions are related to energy trade, they are not systematically analyzed. Environmental impacts of trade are often not integrated with economic analysis of trade. In this paper, to identify and fill important knowledge gaps, we apply an integrated framework of telecoupling (socioeconomic and environmental interactions over distances). The framework of telecoupling, which is more comprehensive and cross-disciplinary than the energy trade framework, is a useful theoretical and methodological tool for analyzing distant interactions among coupled human and natural systems (including energy systems). Telecouplings widely exist in energy systems with various forms and link energy sustainability of different countries closely, so we proposed some methods for energy sustainability analysis under the framework of telecoupling. From the aspect of causes, a method is proposed to judge whether the telecoupling driven by economic factors is conducive to energy sustainability. From the aspect of effects, a method is proposed to assess whether an event is conducive to energy sustainability. The telecoupling framework presents opportunities for more profound and comprehensive understanding of energy sustainability. - Highlights: • A new perspective to study energy sustainability under telecoupling is proposed. • Methods for assessing the causes and effects of energy sustainability are proposed. • Some specific examples of telecoupling in the energy systems are demonstrated.

  16. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  17. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  18. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  19. Energy for sustainable rural development

    NARCIS (Netherlands)

    Hulscher, W.S.; Hulscher, W.S.; Hommes, E.W.; Hommes, E.W.

    1992-01-01

    Rural energy in developing countries is discussed with a view to sustainable development. The project-oriented approach in rural energy which has often dominated in the past, is contrasted with an overall strategy for sustainable rural energy demand and supply. An outline for a demand-oriented

  20. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  1. Synopsis of sustainability and nuclear power

    International Nuclear Information System (INIS)

    Ahmad, Ishfaq

    2001-01-01

    Full text: World population is steadily increasing and yet one-third of them - over two billion people - lack access to electricity. Development depends on energy, including electricity, and the alternative to development is poverty, disease, misery, and death. This is a recipe for chaos, instability and widespread violence. During the next fifty years energy demand is expected to triple while the demand for electricity will grow nearly five-fold; a substantial portion of the demand coming from developing countries. It will be an immense challenge to meet the increased demand in energy without sustaining long term damage to the environment including the surface and air pollution as well as global warming and associated ecological disasters. While most of world's energy is derived from fossil fuels and hydroelectric power, still with 434 nuclear reactors operating worldwide, nuclear power is meeting 16% of the world's annual electricity needs and providing it to more than a billion people. Nuclear power has the potential for meeting a substantial portion of the world's growing energy needs in an environment friendly and sustainable manner contributing to a prosperous and safe world for posterity. The problems that developing countries face in imbibing nuclear technology and promoting the use of nuclear power are daunting. However, as nuclear technology is a proven technology, then in a shrinking world a sharing of knowledge and technology should make it much easier. If the world has to move towards shared political values and a global economy it is imperative that there should be a global access to civilian nuclear technology. (author)

  2. Nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Administrative Court of Braunschweig judges the Ordinance on Advance Funding of Repositories (EndlagervorausleistungsVO) to be void. The Hannover Regional Court passes a basic judgment concerning the Gorleben salt mine (repository) and an action for damages. The Federal Administrative Court dismisses actions against part-permits for the Hanau fuel element fabrication plant. The Koblenz Higher Administrative Court dismisses actions against a part-permit for the Muelheim-Kaerlich reactor. 31st Amendment of the German Criminal Code passed, involving amendments in environmental criminal code, defined in the 2nd amendment to the Act on Unlowful Practices Causing Damage to the Environment (UKG); here: Amendments to the law relating to the criminal code and penal provisions governing unlawful conduct in the operation of nuclear installations. (orig.) [de

  3. Nuclear energy: obstacles and promises

    International Nuclear Information System (INIS)

    Bacher, P.

    2003-01-01

    Nuclear energy has distinctive merits (sustainable resources, low costs, no greenhouse gases) but its development must overcome serious hurdles (fear of accidents, radio-phobia, waste management). The large unit size of present-day reactors is compatible only with large electrical grids, and involves a high capital cost. Taking into account these different factors, the paper outlines how nuclear energy may contribute to the reduction of greenhouse gases, and which are the most promising developments. (author)

  4. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  5. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  6. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  7. Analysis of opinion about nuclear energy and sustainability in a graduate level population; Analisis de opinion sobre la energia nuclear y sustentabilidad en una poblacion de nivel superior

    Energy Technology Data Exchange (ETDEWEB)

    Meza L, C.D.; Arredondo S, C. [IPN, ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: angie2esa@hotmail.com

    2007-07-01

    The Mexican society has a modest knowledge of the nuclear energy, even at the participant students of superior education level in this survey is finds a scarce compression with regard to their obtaining, use and manage. As a result of the lack of interest of the same society and at the problems that know each other like they are: the pollutants that it produces those nuclear waste and the possible use or warlike end, a fear is believed about this energy type. In the Superior School of Physics and Mathematics there is the possibility to make studies so much at master degree level in the one fear of the nuclear energy and the applications of the same one in peaceful uses. However, particularly the studies at master level seem to be immersed in a crisis that requires of different supports to be resolved. For all it previous was thought in carrying out a survey inside a student population with superior level to know the opinion and the knowledge on the nuclear energy in Mexico. In this work the results of the survey are analyzed with the purpose of to determine which is the knowledge of the community mentioned regarding the other energy types, the impact that they have these in the environment, the sustenance of the same ones and in particular on knowledge about the nuclear energy considering the aspects before mentioned. With base had said analysis settles down that the interviewed community knows very little about the nuclear energy but they show interest to study and to obtain bigger information about the same one, for what is very important to diffuse but and better information on the nuclear energy to the population's strata, because it is of supposing that the rest of the population has erroneous information on the nuclear energy. In particular for the community of the Superior School of Physics and Mathematics the diffusion of all the benefits of the peaceful applications of the nuclear energy, including the capacity to generate enormous quantities and

  8. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  9. Sustainability indicators for the assessment of nuclear power

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2011-01-01

    Electricity supplies an increasing share of the world's total energy demand and that contribution is set to increase. At the same time, there is increasing socio-political will to mitigate impacts of climate change as well as to improve energy security. This, in combination with the desire to ensure social and economic prosperity, creates a pressing need to consider the sustainability implications of future electricity generation. However, approaches to sustainability assessment differ greatly in their scope and methodology as currently there is no standardised approach. With this in mind, this paper reviews sustainability indicators that have previously been used to assess energy options and proposes a new sustainability assessment methodology based on a life cycle approach. In total, 43 indicators are proposed, addressing the techno-economic, environmental and social sustainability issues associated with energy systems. The framework has been developed primarily to address concerns associated with nuclear power in the UK, but is applicable to other energy technologies as well as to other countries. -- Highlights: → New framework for life cycle sustainability assessment of nuclear power developed. → The framework comprises 43 indicators addressing techno-economic, environmental and social sustainability. → Completely new indicators developed to address different sustainability issues, including nuclear proliferation, energy supply diversity and intergenerational equity. → The framework enables sustainability comparisons of nuclear and other electricity technologies. → Indicators can be used by various stakeholders, including industry, policy makers and NGOs to help identify more sustainable electricity options.

  10. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  11. Nuclear power for sustainable development

    International Nuclear Information System (INIS)

    Corpuz, Antonio T.

    1997-01-01

    The need for stable and reliable energy supply was clearly illustrated by the Philippine experience of the last five years where the bleak energy supply situation caused massive losses in productivity. Indigenous energy resources even if exploited to full capacity is not sufficient to support the progress needed to give our growing population the quality of life it deserves. Important too is the fact that world energy resources especially oil and natural gas is estimated to last up to the first half of the next century. Thus the entry of nuclear power as a vital contributor to a safe, reliable, competitive and cost effective source of energy supply become a necessity. (author)

  12. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  13. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  14. Neutrons and sustainable energy research

    International Nuclear Information System (INIS)

    Peterson, V.

    2009-01-01

    Full text: Neutron scattering is essential for the study of sustainable energy materials, including the areas of hydrogen research (such as its separation, storage, and use in fuel-cells) and energy transport (such as fuel-cell and battery materials). Researchers at the Bragg Institute address critical questions in sustainable energy research, with researchers providing a source of expertise for external collaborators, specialist analysis equipment, and acting as a point of contact for the study of sustainable energy materials using neutron scattering. Some recent examples of sustainable energy materials research using neutron scattering will be presented. These examples include the storage of energy, in the form of hydrogen through a study of its location in and interaction with new porous hydrogen storage materials [1-3] and in battery materials through in-situ studies of structure during charge-discharge cycling, and use of energy in fuel cells by studying proton diffusion through fuel cell membranes.

  15. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  16. Nuclear technology for a sustainable future

    International Nuclear Information System (INIS)

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  17. Proceedings of SES International Conference on Can Slovakia secure energy supply and sustainable development without nuclear? Go Nuke Slovakia!

    International Nuclear Information System (INIS)

    2004-01-01

    The Conference proceedings included 28 papers. The Conference included the following sessions: (I): International views; (II): National views; (III): Industry views. Focused in its objective, the is aimed to send a clear, hard-hitting message to decision-makers. This is that: Slovakia cannot secure future energy supply, if it does not complete its partially built reactors and if it closes its safe and effective ones. Nuclear has to remain an indispensable part of the country's future energy mix. The event was opened with invited presentations by officials at the highest level of organisations such as the IAEA, the IEA, OECD/NEA, the NEI, the WNA and WANO, as well as the European Commission and Parliament. This line-up was followed by a host of speakers from the political and nuclear industrial arenas in Slovakia, the Czech Republic, Finland, Hungary and the Russian Federation

  18. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  19. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  20. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  1. Innovative global architecture for sustainable nuclear power

    International Nuclear Information System (INIS)

    Wheeler, John; Kagramanyan, Vladimir; Poplavskaya, Elena; Edwards, Geoffrey; Dixon, Brent; Usanov, Vladimir; Hayashi, Hideyuki; Beatty, Randall

    2011-01-01

    The INPRO collaborative project 'Global architecture of innovative nuclear energy systems based on thermal and fast reactors with the inclusion of a closed nuclear fuel cycle (GAINS)' was one of several scenario studies implemented in the IAEA in recent years. The objective of GAINS was to develop a standard framework for assessing future nuclear energy systems (NESs) taking into account sustainable development, and to validate the results through sample analyses. Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, USA, the European Commission and Argentina as an observer participated in the project. The results received are discussed in the paper, including: development of a heterogeneous multi-group model of a global NES, estimation of nuclear energy demand, identification of a representative set of reactors and fuel cycles, evaluation capability of available analytical and modelling tools, and quantitative analysis of the different options of the global architecture. It was shown that the approach used contributes to development of a coherent vision of driving forces for nuclear energy system development and deployment. (author)

  2. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  3. Religious organizations debate nuclear energy

    International Nuclear Information System (INIS)

    Dowell, T.

    1984-08-01

    This paper reviews the history of the religious debate on nuclear energy over the last thirty years. In the 1950s, religious statements recognized the peaceful uses of atomic energy as a blessing from God and called upon world leaders to promote its use. Nuclear energy programmes were launched in this decade. In the 1960s, there was still religious approval of nuclear energy, but questions about ethics arose. It was not until the 1970s, after the oil crisis, that serious questioning and criticism of nuclear energy emerged. This was particularly true in the United States, where the majority of statements originated - especially in 1979, the year of the Three Mile Island accident. Around this time, the World Council of Churches developed the concept of the just, participatory and sustainable society. The meaning and use of these terms in the nuclear energy debate is examined. This paper also compares the balanced debate of the World Council with the case against the plutonium economy prepared by the National Council of the Churches of Christ in the USA. Three religious statements from the 1980s are examined. A United Church of Canada resolution, critical of nuclear energy, is compared with a favourable report from the Methodist Church in England. Both use similar values: in one case, justice, participation and sustainability; in the other case, concern for others, participation and stewardship. There are not many Catholic statements on nuclear energy. One which is cautious and favourable is examined in detail. It is concluded that the use of concepts of justice, participation and sustainability (or their equivalents) has not clarified the nuclear debate

  4. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  5. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  6. The energy highways. The three safety barriers at nuclear power plants. Where does coal fit into the energy mix?. Sustainable urban development in Hanover. Energy in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This issue of Alternatives newsletter contains a main press-kit about the economics of interconnected power distribution systems and 4 articles dealing with reactors safety, the advantages and drawbacks of coal in the energy mix, the environmental policy of Hanover city, and the energy situation in sub-Saharan Africa: 1 - 'The energy highways': Spotlight on the electrical power grids. From the much needed modernization of existing installations to the extension of networks in developing countries, Alternatives takes a look at these infrastructures that shape our environment, which can be considered as veritable 'energy highways' ensuring the coverage of our planet. 2 - 'The three safety barriers at nuclear power plants': Review of the three protective barriers deployed in the nuclear industry to ensure reactor safety. 3 - 'Where does coal fit into the energy mix?': Two experts put into perspective the challenges related to the use of coal, its efficiency and its environmental impact, on the basis of the Chinese and Polish examples. 4 - 'Sustainable urban development in Hanover': Bringing together quality of living and energy savings, this is the challenge taken up by Hanover in the Kronsberg area. Alternatives has examined this original model, which could serve as an example for other European cities. 5 - 'Energy in sub-Saharan Africa': Relatively abundant resources but which are poorly utilized and distributed characterize the energy situation in sub-Saharan Africa. Analysis of the situation and explanation of this paradox

  7. Sustainable energy in Baltic States

    International Nuclear Information System (INIS)

    Klevas, Valentinas; Streimikiene, Dalia; Grikstaite, Ramute

    2007-01-01

    Integration of New Member States to the European Union has created a new situation in the frame of implementation of the Lisbon strategy and EU Sustainable Development. The closure of Ignalina NPP is the biggest challenge to the energy sector development of the Baltic States. The Baltic States have quite limited own energy resources and in the Accession agreement with the EU Lithuania, Latvia and Estonia have verified their targets to increase the share of electricity produced from renewable energy sources (RES-E) by the year 2010. A wider use of renewable energy and increase of energy efficiency can make a valuable contribution to meeting the targets of sustainable development. The article presents a detailed overview of the present policies and measures implemented in the Baltic States, aiming to support the use of RES and the increase of energy efficiency. The review of possibilities to use the EU Structural Funds (SF) for the implementation of sustainable energy projects in the Baltic States was performed.The use of regional social-economic-environmental indicators is the main key to integrate sustainable energy development at the program deployment level. The indicators to be used should describe the contribution of energy programs to the sustainable development, medium- and long-term trends and inter-relationship between them and the typical energy indicators (saved toe, improved energy efficiency, percentage of RES). Municipalities may play a considerable role by promoting sustainable energy since local authorities are fulfilling their functions in the energy sector via a number of roles. The Netherlands' example shows that municipalities may act as facilitators by implementing national environmental policy and increasing energy efficiency in an integral part of these activities. The guidelines for Lithuanian local sustainable energy development using the SF co-financing have been presented

  8. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  9. Sustainable Energy Survey. Main report

    International Nuclear Information System (INIS)

    2011-02-01

    This report shows the results of a quick survey of current developments in the Dutch sustainable energy market. The companies and organizations, which are all members of the branch organizations under the umbrella of the Duurzame Energie Koepel, were interviewed about their situation in relation to the credit crisis and their vision on what is needed to put a halt to (further) slumping in the sustainable energy branch and in fact to promote the growth in turnover and employment. [nl

  10. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  11. Providing sustainability in energy

    International Nuclear Information System (INIS)

    2004-12-01

    This report has five chapters: free market system and reestablishment, general energy planning and supply security, energy and environment, energy efficiency and demand side management and financing. 31 figures and 37 tables are included

  12. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  13. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  14. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  15. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  16. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  17. A sustainable energy development

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to encourage electric power production through renewable energies (such as wind energy with the Eole 2000 plan, solar water heaters in overseas departments, wood energy for space heating in buildings, photovoltaic energy), demand side management and cogeneration, and to enhance its purchase conditions by the government-owned EDF utility. Laws have been also introduced concerning air quality and the rational use of energy

  18. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  19. Nuclear energy safety - new challenges

    International Nuclear Information System (INIS)

    Rausch, Julio Cezar; Fonseca, Renato Alves da

    2011-01-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  20. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  1. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  2. Statement of participants at the International Conference on Can Slovakia secure energy supply and sustainable development without nuclear?

    International Nuclear Information System (INIS)

    Mikus, T.; Suchomel, J.

    2004-01-01

    The participants at the Conference called on decision makers both in the European Union (EU) and in Slovakia to provide fair treatment to nuclear power compared with other energy sources, especially with renewable, without prejudice to nuclear safety. This implies ensuring equality in terms of economics, tax, and accounting for externalities. The participants called on the Slovak government to initiate studies that compare the full life-cycle costs, impacts and risks, across the spectrum of energy sources and uses. They should also internalize the external costs. The participants called for a debate on the Slovak energy needs, taking into account the environmental impact of all potential sources of energy and the costs of providing electricity from those sources, and in addition a rational and objective analysis of the security of supply of those sources. It is necessary to have a range of sources for electricity generation that are cost effective and reliable, and respect the environment. The Slovak economy cannot withstand a sudden loss of its guaranteed energy supply. The participants believe that the major government role is setting overall policy for the economy, energy and the environment, with an adequate base in legislation and institutional competence. The Slovak government should have clear strategies for achieving self-sufficient energy-policy goals with reserve power and for meeting climate-change and air-quality goals. The Conference concluded that the nuclear option should remain open in Slovakia, as part of a balanced energy mix, in line with developments abroad and the EU Green Paper from 2000; the alternative is Slovak's failure to secure an affordable energy supply for its citizens. The participants supported the completion of Mochovce 3, 4, complying with enhanced safety requirements, as the most effective option. In Slovenske elektrarne, a.s. (SE) privatization, the government should insist on as large an involvement of Slovak firms in the

  3. International trends on sustainable energy Issues

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2007-01-01

    At the U.N. Commission on Sustainable Development (CSD), the role of nuclear power for a carbon free emission supply of energy is now being recognized although with certain reticence or opposition. Such recognition is taking place at the current cycle of discussions devoted to sustainable energy, industrial development, atmospheric pollution and climate change issues. This paper focuses on the arguments and facts provided during CSD deliberations for considering nuclear energy as a valid option: all available energy sources will need to be considered for an adjustment to a world that requires much less carbon liberation to the environment; in the transportation sector, actions need to be urgently implemented for promoting cleaner fuels and more efficient vehicles; massive reduction of greenhouse gas emissions must be urgently implemented in order to mitigate the impacts of global warming; sustainable energy solutions for developed economies are not always adequate in developing countries; the development evolution requires specifically tailored solutions to conditions of large annual growth-rates of energy demand. Consequently, nuclear power will provide the answer to many of these problems. (Author)

  4. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  5. SWOT of nuclear power plant sustainable development

    International Nuclear Information System (INIS)

    Abbaspour, M.; Ghazi, S.

    2008-01-01

    SWOT Analysis is a Useful tool that can he applied to most projects or business ventures. In this article we are going to examine major strengths, weaknesses, opportunities and threats of nuclear power plants in view of sustainable development. Nuclear power plants have already attained widespread recognition for its benefits in fossil pollution abatement, near-zero green house gas emission, price stability and security of energy supply. The impressive new development is that these virtues are now a cost -free bonus, because, in long run, nuclear energy has become an inexpensive way to generate electricity. Nuclear energy's pre-eminence economically and environmentally has two implications for government policy. First, governments should ensure that nuclear licensing and safety oversight arc not only rigorous but also efficient in facilitating timely development of advanced power plants. Second, governments should be bold incentivizing the transformation to clean energy economics, recognizing that such short-term stimulus will, in the case of nuclear plants, simply accelerate desirable changes that now have their own long-term momentum. The increased competitiveness of nuclear power plant is the result of cost reductions in all aspects of nuclear economics: Construction, financing, operations, waste management and decommissioning. Among the cost-lowering factors are the evolution to standardized reactor designs, shorter construction periods, new financing techniques, more efficient generation technologies, higher rates of reactor utilization, and longer plant lifetimes. U.S World Nuclear Association report shows that total electricity costs for power plant construction and operation were calculated at two interest rates. At 10%, midrange generating costs per kilowatt-hour are nuclear at 4 cents, coal at 4.7 cents and natural gas at 5.1 cent. At a 5% interest rate, mid-range costs per KWh fall to nuclear at 2.6 cents, coal at 3.7 cents and natural gas at 4.3 cents

  6. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  7. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  8. Energy indicators for sustainable development

    International Nuclear Information System (INIS)

    Vera, Ivan; Langlois, Lucille

    2007-01-01

    Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies-two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development

  9. Contribution of Nuclear Science in Agriculture Sustainability

    International Nuclear Information System (INIS)

    Soliman, S.M.; Galal, Y.G.M.

    2017-01-01

    Sustainable agricultural systems employ natural processes to achieve acceptable levels of productivity and food quality while minimizing adverse environmental impacts. Sustainable agriculture must, by definition, be ecologically sound, economically viable, and socially responsible. Sustainable agriculture must nurture healthy co systems and support the sustainable management of land, water and natural resources, while ensuring world food security. To be sustainable, agriculture must meet the needs of present and future generations for its products and services, while ensuring profitability, environmental health and social and economic equity. The global transition to sustainable food and agriculture will require major improvements in the efficiency of resource use, in environmental protection and in systems resilience. In Mediterrane an environments, crops are grown mainly in the semiarid and sub-humid are as. In arid and semiarid are as dry land farming, techniques are of renewed interest in the view of sustain ability. They are aimed to increase water accumulation in the soil, reduce runoff and soil evaporation losses, choose species and varieties able to make better use of rainwater, and rationalize fertilization plans, sowing dates, and weed and pest control. Fertilization plans should be based on well-defined principles of plant nutrition, soil chemistry, and chemistry of the fertilizer elements. Starting from the calculation of nutrient crop uptake (based on the actually obtainable yield), dose calculation must be corrected by considering the relation ship between the availability of the trace elements in soil and the main physical and chemical parameters of the soil (ph, organic matter content, mineralization rate, C/N, ratio of solubilization of phosphorus, active lime content, presence of antagonist ions, etc.). In the Egyptian Atomic Energy Authority, Soil and Water Research Department, nuclear techniques including radio and stable isotopes in addition to

  10. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  11. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  12. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  13. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  14. Energy Security, Innovation & Sustainability Initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-30

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy

  15. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  16. Hawaii Energy Sustainable Program

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Richard [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Griffin, James [Univ. of Hawaii, Honolulu, HI (United States); Maskrey, Arthur [Univ. of Hawaii, Honolulu, HI (United States); Antal, Jr., Michael [Univ. of Hawaii, Honolulu, HI (United States); Busquet, Severine [Univ. of Hawaii, Honolulu, HI (United States); Cooney, Michael [Univ. of Hawaii, Honolulu, HI (United States); Cole, John [Univ. of Hawaii, Honolulu, HI (United States); Dubarry, Matthieu [Univ. of Hawaii, Honolulu, HI (United States); Ewan, James [Univ. of Hawaii, Honolulu, HI (United States); Liaw, Bor Yann [Univ. of Hawaii, Honolulu, HI (United States); Matthews, Dax [Univ. of Hawaii, Honolulu, HI (United States); Coffman, Makena [Univ. of Hawaii, Honolulu, HI (United States)

    2016-12-31

    The objective of HESP was to support the development and deployment of distributed energy resource (DER) technologies to facilitate increased penetration of renewable energy resources and reduced use of fossil fuels in Hawaii’s power grids. All deliverables, publications and other public releases have been submitted to the DOE in accordance with the award and subsequent award modifications.

  17. Nuclear energy for the 21. century

    International Nuclear Information System (INIS)

    2005-03-01

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  18. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  19. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  20. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure: A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    International Nuclear Information System (INIS)

    Wright, Troy L.; O'Brien, Patricia E.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Schlegel, Steven C.

    2010-01-01

    With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy's (DOE) Nuclear Material Protection, Control and Accounting (MPC and A) program to complete its transition of MPC and A responsibility to the Russian Federation, National Nuclear Security Administration (NNSA) management directed its MPC and A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC and A regulatory foundation. This paper describes the systematic process used by DOE's MPC and A Regulatory Development Project (RDP) to develop an effective and sustainable MPC and A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy 'Rosatom,' the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE's project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: (1) Define MPC and A Structural Elements; (2) Analyze the existing regulatory documents using the identified Structural Elements; (3) Validate the analysis with Russian colleagues and define the list of documents to be

  1. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  2. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  3. Sustainable energy policy - implementation needs

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, M. [Global Energy and Environmental Consultants, Felmersham (United Kingdom)

    2000-07-01

    Implementation of sustainable energy must address current needs arising from poverty, inequity, unreliability of supplies, social and economic development requirements, and increasing efficiency as well as widening the fuel mix, accelerating the deployment of appropriate new renewable energy schemes, and giving the necessary consideration to protection of the biosphere and the needs of future generations. To achieve these multiple goals markets need to work better, additional investments need to be mobilised in sustainable energy, technological innovation needs to be encouraged, technological diffusion and capacity building in developing countries needs to be supported, and both sounder domestic policies and greater international co-operation are required. (author)

  4. The path towards sustainable energy

    Science.gov (United States)

    Chu, Steven; Cui, Yi; Liu, Nian

    2017-01-01

    Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

  5. Nuclear energy–Any solution for sustainability and climate protection?

    International Nuclear Information System (INIS)

    Mez, Lutz

    2012-01-01

    For the future of nuclear power it will be decisive whether or not nuclear fission technologies offer a sustainable solution to global energy problems. The impressive expansion of nuclear reactors in the 1960s and 1970 slowed down after the meltdown in Harrisburg and the nuclear explosion in Chernobyl. Since the end of the 1980s installed nuclear capacity has stagnated, and in Europe declined. However, a nuclear revival or renaissance has been predicted for 30 years. This article reviews global scenarios and national nuclear programmes and analyses problems in the nuclear industry. Special attention is given to nuclear power and global warming and the nexus between nuclear power and nuclear proliferation. - Highlights: ► The status of nuclear programmes in the world is examined. ► Nuclear power has taken a nose-dive in Western industrialised countries. ► The nuclear renaissance has been announced since 1981 but never materialised. ► Share of nuclear power is 15.7% of global electricity but only 2.3% of global FEC. ► Nuclear energy is no sustainable solution and cannot avoid global warming.

  6. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  7. Human development and sustainability of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar on human development and sustainability was jointly organized by the French agency of environment and energy mastery (Ademe) and Enerdata company. This document summarises the content of the different presentations and of the minutes of the discussions that took place at the end of each topic. The different themes discussed were: 1 - Political and methodological issues related to sustainability (sustainability concept in government policy, sustainability and back-casting: lessons from EST); 2 - towards a socially viable world: thematic discussions (demography and peoples' migration; time budget and life style change - equal sex access to instruction and labour - geopolitical regional and inter-regional universal cultural acceptability; welfare, poverty and social link and economics); 3 - building up an environmentally sustainable energy world, keeping resources for future generations and preventing geopolitical ruptures (CO{sub 2} emissions; nuclear issues; land-use, noise, and other industrial risks). The memorandum on sustainability issues in view of very long term energy studies is reprinted in the appendix. The transparencies of seven presentations are attached to this document. (J.S.)

  8. Sustainable cities and energy policies

    International Nuclear Information System (INIS)

    Capello, R.; Nijkamp, P.; Pepping, G.

    1999-01-01

    This book starts out with the optimistic perspective that modern cities can indeed play a strategic role in the necessary pathway to sustainable development, with particular emphasis on the opportunities offered by local energy and environmental initiatives. Our study aims to demonstrate that an urban sustainability policy has many socio-economic benefits, while it also seeks to identify the critical success and failure factors of sustainable city innovations. After a comprehensive review of various opportunities and experiences, attention is focused particularly on renewable energy resources which may offer new potential for the active involvement of local authorities. The study also highlights major impediments regarding the adoption and implementation of renewable energies, in particular, the development of advanced energy-environmental technology in a world dominated by natural (public) monopolies and/or monopolistic competition elements. In this context both theoretical and empirical elements are discussed, as well as institutional aspects. The theory and methodology is tested by a thorough empirical investigation into local renewable energy initiatives in three European countries, viz. Greece, Italy and The Netherlands. Based on an extensive data base, various statistical models are estimated in order to identify the key elements and major driving forces of sustainable development at the city level. And finally, the study is concluded with a long list of applicable and operational policy guidelines for urban sustainability. These lessons are largely based on meta-analytic comparative studies of the various initiatives investigated. (orig.)

  9. Sustainable energy in Korea

    International Nuclear Information System (INIS)

    IJspelder, S.

    2010-10-01

    This report provides an overview of the renewable energy sector in South Korea, with attention to the hitherto small size of the market, the strong growth of investments in the last five years, the market concentration consisting of a number of large conglomerates and many SMEs, the entry barriers to the market for Dutch companies, and the market penetration. [nl

  10. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  11. Nuclear Energy Stakeholders in Argentina

    International Nuclear Information System (INIS)

    Gadano, Julian

    2017-01-01

    Mr Gadano, Undersecretary for Nuclear Energy, Argentina spoke from the perspective of a country looking forward to becoming a member of the NEA. He reviewed the place of nuclear energy in his country's energy mix and called attention to its role in positively addressing the global challenges of climate change and energy security. Mr Gadano also described the federal system which governs Argentina. Drawing on his expertise as a lawmaker and nuclear regulator but also as an academic sociologist, he stressed that reaching agreement on siting initiatives for example requires a sustainable relation with stakeholders, including regional governments. This is important because in the end, 'the best project is the one you can finish'

  12. Development of Secure and Sustainable Nuclear Infrastructure in Emerging Nuclear Nations Such as Vietnam

    International Nuclear Information System (INIS)

    Shipwash, Jacqueline L; Kovacic, Donald N

    2008-01-01

    The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energy program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam

  13. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  14. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  15. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  16. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  17. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  18. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  19. Nanotechnology for sustainable energy

    International Nuclear Information System (INIS)

    Ali, M.; Ali, A.

    2011-01-01

    Nanotechnology and its applications have captured a worldwide market. Nanomaterials that have been developed using this technology can be incorporated into the devices so that renewable energy can be converted or generated more efficiently. Nanomaterials have the potential to change the way we generate, deliver and use energy. Hydrogen cells are used in auto industry as a viable power source. Compressed hydrogen tanks are used to supply Hydrogen, and Oxygen is used from the air directly. There is no pollution caused by hydrogen fuel cell autos since the only emission is water. Organic dyes (dye sensitizers), which are sensitive to light, can absorb a broader range of the sun's spectrum. A dye-sensitized solar cell has three primary parts. On top is a transparent anode made of fluoride-doped tin dioxide (SnO/sub 2/: F) deposited on the back typically of a glass plate. On the back of this conductive plate is a thin layer of titanium dioxide (TiO/sub 2/), which forms into a highly nanoporous structure with an extremely large surface-area. After soaking the film in the dye solution, a thin layer of the dye is left covalently bonded to the surface of the TiO/sub 2/ . Computational material science and nanoscience can play many critical roles in renewable energy research. These include: finding the right materials for hydrogen storage; finding the most reliable and efficient catalyst for water dissociation in hydrogen production; finding a cheap, environmentally benign, and stable material for efficient solar cell applications; and understanding the photo-electron process in a nanosystem, and hence helping design efficient nanostructure solar cells. (author)

  20. A Conceptual Study on the Sustainability of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Choi, Hang Bok; Lim, Chae Young; Yoon, Ji Sup; Park, Seong Won

    2007-06-15

    Due to the current population growth and industrialization, energy consumption is increasing continuously. The world population and energy consumption were 2.5 billion and 1.5 billion tons of equivalent oil in 1950, but they are expected to be 9.2 billion and 60 tons, respectively, in 2100. This amount of energy consumption will result in an exhaustion of fossil resources and cause a serious environmental problem such as global warming. Therefore it is necessary to develop sustainable energy resources that maintain current economic growth and social welfare level without burdening a next generation's life style. Nuclear energy has an excellent competitiveness from the viewpoint of a sustainability. Especially nuclear power can effectively reduce greenhouse gas emissions and can be developed in a complementary way with a new and renewable energy, such as solar and wind power, and hydrogen energy. It is expected that nuclear power will maintain its sustainability in the following directions: Implementation of a fast reactor fuel cycle with a high uranium utilization efficiency, Implementation of a pyro-process with an excellent proliferation-resistance, Activity on the enhancement of a domestic social acceptance for nuclear power, International cooperation and joint research for the enhancement of an international nuclear transparency, Optimization of a nuclear grid structure through an accommodation of new and renewable energy resources, Application to a mass production of hydrogen energy.

  1. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  2. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  3. Introduction to nuclear energy

    International Nuclear Information System (INIS)

    2004-01-01

    After some descriptions about atoms, fission and fusion, explanations are given about the functioning of a nuclear power plant. The safety with the different plans of emergency and factors that lead to a better nuclear safety are exposed, then comes a part for the environmental protection; the fuel cycle is tackled. Some historical aspects of nuclear energy finish this file. (N.C.)

  4. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  5. New Croatian Energy Strategy - Towards sustainable energy

    International Nuclear Information System (INIS)

    Vujec, N.

    2010-01-01

    The Republic of Croatia has been building the Krsko Nuclear Power Plant and is participating in all the activities necessary for a successful operating of the plant now for almost thirty years. However, in the light of the nuclear energy renaissance it is necessary to prepare ourselves for new challenges, stricter criteria of safety and protection, respect the indispensability of continuous re-examination of safety of procedures and methods. The of Croatia has strictly committed herself to the nuclear energy programme development-CRONEP in accordance with the methodology of the International Atomic Energy Agency. Certainly, in the first moment till the possible decision on the building of nuclear power plant, it will be necessary to make an institutional framework and create human resources and such an infrastructure that will be able to, when the decision will be taken, support the project and realize it with maximal efficiency. We consider it the unique way in which it is possible to avoid what proved to be the weakness of some projects of nuclear power plants, that is missing a deadline and problems concerning financing that are intolerable taking into account the value of the investment. Likewise, since the Conference is dedicated to small and medium-sized electric networks or to small nuclear power programmes, it needs to be mentioned that except the largest facilities it should be promoted researching of nuclear power reactors of medium size whose development somehow falls behind in this moment Medium size reactors gives great advantages to smaller economies in technical and financial sense. From the current standpoint solutions of viability of nuclear programmes through re-processing of the spent nuclear fuel in new generation of power plants are discernible. Since today's technologies are sufficiently safe there is no need to wait with this development and fuel from one generation shall be re-processed into the fuel for the next generation of reactors. In

  6. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    In the coming years, Denmark and other countries worldwide are set to increase their focus on transforming their energy supplies towards more sustainablew technologies. As part of this process, they can make extensive use of the knowledge generated by the Technical University of Denmark (DTU...... technologies, energy systems and energy consumption in buildings, the transport sector and for lighting purposes. The university alsolooks at challenges, opportunities and limitations.This publication present a selection of the sustainable energy related activities at DTU, which all point towards future...

  7. Energy strategies and nuclear power

    International Nuclear Information System (INIS)

    Hafele, W.

    1983-01-01

    The results of two quantitative scenarios balancing global energy supply with demand for the period 1980-2030 are reviewed briefly. The results suggest that during these 50 years there will be a persistent demand worldwide for liquid fuels, a continuing reliance on ever more expensive and ''dirty'' fossil fuels, and a limited penetration rate of nuclear generated electricity into the energy market. The paper therefore addresses a possible ''second'' grid driven by nuclear heat - a grid based not on electricity but on ''clean'' liquid fuels manufactured from gaseous and solid fossil fuels using nuclear power. Such a second grid would be an important complement to the electricity grid if the world is to progress towards a truly sustainable energy system after 2030

  8. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  9. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  10. Clean energy for sustainable development

    International Nuclear Information System (INIS)

    Piro, P.

    2002-01-01

    The question of energy in developing countries is now taking an increasingly significant place on the agenda of the major international forums. It is to be a central issue at the UN Summit on Sustainable Development in Johannesburg next August. (author)

  11. Business strategies in sustainable energy

    NARCIS (Netherlands)

    van den Buuse, D.J.H.M.

    2018-01-01

    Moving towards a more sustainable energy future is widely regarded as one the key challenges for the decades to come, related to the negative economic, political, environmental, and social externalities associated with fossil fuel dependence. The international diffusion of technologies which enable

  12. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  13. Nuclear energy, economy, ecology

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1995-01-01

    As its operating role, its economic competitiveness and its technological control in the area of nuclear energy, the France has certainly to take initiatives in a nuclear renewal activity. The France is criticized in the world for its exclusive position about nuclear energy, but it is well situated to attract attention on the coal risks and particularly about its combustion for environment. (N.C.)

  14. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  15. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  16. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  17. Is nuclear energy justifiable?

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    This is a comment on an article by Prof. Haerle a theologist, published earlier under the same heading, in which the use of nuclear energy is rejected for ethical reasons. The comment contents the claim mode by the first author that theologists, because they have general ethical competency, must needs have competency to decide on the fittest technique (of energy conversion) for satisfying, or potentially satisfying, the criteria of responsible action. Thus, an ethical comment on, for instance, nuclear energy is beyond the scope of the competency of the churches. One is only entitled as a private person to objecting to nuclear energy, not because of one's position in the church. (HSCH) [de

  18. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  19. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  20. Building capacity for energy and electricity planning for sustainable development

    International Nuclear Information System (INIS)

    2008-09-01

    The IAEA, through its Planning and Economic Studies Section (PESS), assists Member States to build their capacities to perform analyses for developing alternative strategies for sustainable energy development, evaluate the energy-economic-environmental implications and assess the potential contribution of nuclear energy in securing affordable and clean supplies of energy

  1. Nuclear power - Sustainable development - Professional skill

    International Nuclear Information System (INIS)

    Comsa, Olivia; Paraschiva, M.V.; Banutoiu, Maria

    2002-01-01

    Sustainable development of society implies taking political decisions integrating harmoniously ingredients like these: - technological maturity; - socio-economic efficiency; - rational and equitable use of natural resources; - compliance with requirements concerning the environment and population; - professional ethics; - communications with the public and media; - professional skill; - public opinion acceptance. A rational analysis of these factors shows clearly that nuclear power appears to be an optimal ground for a sustainable power source besides the hydro and thermo-electric systems. Such a conclusion was confirmed by all types of analyses, methodologies or programs like for instance: MAED, WASP, FINPLAN, DECADES, ENPEP and more recently MESSAGE. The paper describes applications of these analytical methodologies for two scenarios of Cernavoda NPP future development. To find the optimal development strategy for the electric system, implying minimal costs the optimization analysis mode of the ELECSAM analysis module was used. The following conclusions were reached: - the majority of Romania's classical electrical stations are old; consequently, part of them should be decommissioned while others will be refurbished. Instead of installing new power groups these options will result in lowering the investment cost, as well as, in reduction of noxious gas emission; - the nuclear power system developed in Romania upon the CANDU technology appears to be one of the most performing and safe technology in the world. Cernavoda NPP Unit 1 commissioned on December 2, 1996 covers about 10% to 12% of the energy demand of the country. The CANDU systems offers simultaneously secure energy supply, safe operation, low energy costs and practically a zero impact upon the environment. The case study for Romania by means of DECADES project showed that the development program with minimal cost for electrical stations implies construction of new 706.5 MW nuclear units and new 660 MW

  2. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  3. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  4. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  5. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  6. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  7. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  8. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  9. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  10. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  11. Nuclear Waste, Risks and Sustainable Development

    International Nuclear Information System (INIS)

    Karlsson, Mikael; Swahn, Johan

    2006-01-01

    to increase trust in so far as gaining public commitment for a repository, but only as long as long-term environmental safety is made the central objective. Trust will also increase along with continued transfer to a sustainable energy system. The problems of dealing with nuclear waste are often seen as a 'show-stopper' for nuclear power. It must, however, be emphasised that nuclear power does not become compatible with sustainable development even if the best environmental solution is found for the already existing waste. Nuclear power is fundamentally based on finite resources. The technology relies on environmentally harmful mining and creates extremely hazardous waste. It also has an intrinsic risk for catastrophic release of harmful radiation and increases the risk of nuclear weapons proliferation

  12. Nuclear Waste, Risks and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Swedish Society for Nature Conservation, Stockholm (Sweden); Swahn, Johan [Swedish NGO Office for Nuclear Waste Review (MKG), Goeteborg (Sweden)

    2006-09-15

    believe it is possible to increase trust in so far as gaining public commitment for a repository, but only as long as long-term environmental safety is made the central objective. Trust will also increase along with continued transfer to a sustainable energy system. The problems of dealing with nuclear waste are often seen as a 'show-stopper' for nuclear power. It must, however, be emphasised that nuclear power does not become compatible with sustainable development even if the best environmental solution is found for the already existing waste. Nuclear power is fundamentally based on finite resources. The technology relies on environmentally harmful mining and creates extremely hazardous waste. It also has an intrinsic risk for catastrophic release of harmful radiation and increases the risk of nuclear weapons proliferation.

  13. Reflections on psycho social aspects of nuclear energy within the framework of sustainable development, liability and damages related thereto

    International Nuclear Information System (INIS)

    Carvalho, Ana Bandeira de; Damasceno, Edson

    1995-01-01

    The main subject of this paper is the impact caused by radiation exposure, its psychological implications on human beings and the causality relation between the radiation (cause) and people directly and indirectly affected (effect) by psychosomatic consequences, within the framework of the principles and guidelines of sustainable development. (author). 2 tabs

  14. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers). The conference proceedings where divided into two parts. This item refers particularly to the second part

  15. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers)

  16. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  17. Sustainability, energy technologies, and ethics

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J. [National Renewable Energy Lab., Golden, CO (United States); Carasso, M.

    1999-01-01

    A study of the economic, social-political, and environmental consequences of using renewable energy technologies (RETs, e.g., photovoltaics, wind, solar thermal, biofuels) as compared to those of conventional energy technologies (CETs e.g., oil, coal, gas) would show that RETs are singularly consistent with a whole ethic that is implicit in the concept of sustainability. This paper argues for sustainability as an ethical, as well as a pragmatic, imperative and for RETs as an integral part of this imperative. It brings to the fore some of the specific current economic, political, and environmental assumptions and practices that are inconsistent with both sustainability and with a rapid deployment of RETs. Reflecting an emerging planetary awareness and a pressing need to come to terms with intra- and intergenerational equity, the concept of sustainability explicitly entails the right of future generations to the same opportunity of access to a healthy ecological future and the finite endowment of the Earth`s resources as that of the present generation. (Author)

  18. A reconsideration on deep sea bed disposal of high level radiological wastes. A post-Fukushima reflection on sustainable nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2013-01-01

    The ultimate disposal of high-level radioactive waste (HLW) is a common issue among all nuclear developing countries. However, this becomes especially a hard issue for sustainable nuclear energy in Japan after Fukushima Daiichi accident. In this paper, the difficulty of realizing underground HLW disposal in Japanese islands is first discussed from socio-political aspects. Then, revival of old idea of deep seabed disposal of HLW in Pacific Ocean is proposed as an alternative way of HLW disposal. Although this old idea had been abandoned in the past for the reason that it would violate London Convention which prohibits dumping radioactive wastes in public sea, the author will stress the merit of seabed disposal of HLW deep in Pacific Ocean not only from the view point of more safe and ultimate way of disposing HLWs (both vitrified and spent fuel) than by underground disposal, but also the emergence of new marine project by synergetic collaboration of rare-earth resource exploration from the deep sea floor in Pacific Ocean. (author)

  19. Sustainable Plus-energy Houses

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    This study is an outcome of Elforsk, project number 344-060, Bæredygtige Energi-Plus huse (Sustainable plus-energy houses). The focus of this report is to document the approach and the results of different analyses concerning a plus-energy, single family house. The house was designed...... for an international student competition, Solar Decathlon Europe 2012 and after the competition it was used as a full-scale experimental facility for one year. During this period, different heating and cooling strategies were tested and the performance of the house regarding the thermal indoor environment and energy...... was monitored. This report is structured as follows. Chapter 1 presents the project and briefly explains the different phases of the project. The details of the house’s construction and its HVAC system are explained in Chapter 2, along with the energy efficiency measures and innovations. Chapter 3 introduces...

  20. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  1. Axiology of nuclear energy

    International Nuclear Information System (INIS)

    Sawada, Tetsuo

    2003-01-01

    Nuclear energy was born in World War II and it has grown within the regime of Cold War. When the Cold War came to the end around early 1990 s, we who have benefited by the development of nuclear energy must have been challenged with a new tide of civilization change. Although it has not been so much closely questioned since then, such a new movement, that was submerging, abruptly manifested on September 11, 2001. Then, many of us realized that global circumstances, especially concerned with security, must have actually changed with the reordering of the world basic structures. This paper describes on the thoughts to reveal the cause and background of the event on September 11 with the linkage to nuclear energy development, or nuclear civilization in pursuit of the future regime of nuclear in harmonization with the global society in 21st century. (author)

  2. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  3. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  4. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  5. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  6. Sustainable energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E.

    1996-12-31

    Finland tops the statistics for the industrialised world in the utilisation of bioenergy. In 1995 bioenergy, including peat-fired heat and power, accounted for 20 % of the total energy consumption. The declared goal of the government is to increase the use of bioenergy by not less than 25 % (1.5 million toe by the year 2005). Research and development plays a crucial role in the promotion of the expanded use of bioenergy in Finland. The aim is to identify and develop technologies for establishing and sustaining economically, environmentally and socially viable bioenergy niches in the energy system

  7. Journalism and nuclear energy

    International Nuclear Information System (INIS)

    Mills, M.P.

    1987-01-01

    The question as to why nuclear energy is a point of friction between journalists and the expert community is discussed. The areas in which the two communities fail to communicate are highlighted and the opportunities that exist for improved nuclear journalism are identified briefly. (author)

  8. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  9. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  14. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  15. Nuclear energy in Europe

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A country by country study of nuclear energy in the various European countries: Austria, Belgium, Bulgaria, Czechoslovakia, Denmark, Federal German Republic, Finland, German Democratic Republic, Great Britain, Holland, Hungary, Italy, Poland, Rumania, Spain, Sweden, Switzerland, USSR and Yugoslavia [fr

  16. Desalting and Nuclear Energy

    Science.gov (United States)

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  17. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  18. Nuclear energy and information

    International Nuclear Information System (INIS)

    Chen Baisong

    1996-01-01

    The information tells us that since the first chain reaction discovery about 50 years ago up to now, there are more than 400 commercial nuclear power plants connected to electricity supply net works. The electricity supplied by nuclear power plants has exceeded 2000 TWH, which represents almost 17% of the total electricity generated in the world and this proportion is still increasing. The accumulated operating experience of nuclear power plants reach more than 6000 reactor-year. Quite high average life time energy availability factors demonstrate the good reliability of nuclear power plants. The present status of the electricity development in the world shows that nuclear power has become an imperative and exclusively realistic alternative energy source. All of these information demonstrate that nuclear power as a safe, clean and less cost power source has already been widely accepted in the world. In Asia and Pacific region, the fast development of economy provides a vast possibility for the development of nuclear power. In China, shortage of electricity has become the 'bottle neck' which retards the economic development nowadays. China has already drawn up the plan for the development of nuclear power. The information is of great significance to promote the development of nuclear power. It could be said that without information, nuclear power could not be smoothly introduced in any country or region. (J.P.N.)

  19. That compromising nuclear energy

    International Nuclear Information System (INIS)

    Mink, E.

    1981-01-01

    This book discusses a wide range of aspects of nuclear energy and its problems. Social and ideological as well as more technical sides of the nuclear controversy are dealt with. The author argues that just more information on the subject cannot solve the problem anyhow, as technologists naively hold. Being a christian, the author believes that the Bible can show us a way out, even as to these energy problems. (G.J.P.)

  20. Risk communication: Nuclear energy

    International Nuclear Information System (INIS)

    Peters, H.P.

    1991-01-01

    The emphasis is put on communication processes, here in particular with regard to nuclear energy. Not so much dealt with are questions concerning political regulation, the constellation of power between those becoming active and risk perception by the population. Presented are individual arguments, political positions and decision-making processes. Dealt with in particular are safety philosophies, risk debates, and attempts to 'channel' all sides to the subject of nuclear energy. (DG) [de

  1. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  2. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  3. Nuclear energy in Turkey. Recent developments

    International Nuclear Information System (INIS)

    Alper, Z.

    2014-01-01

    Full text : The global demand for electricity is rapidly increasing. There is growing uncertainty in regard to the supply and prices of oil and natural gas. These considerations have opened new prospects for the development of nuclear energy on a global state. Despite the negative impact of the Fukushima Daichi accident, still some countries are considering or have expressed interest in developing nuclear power programmes. As the country using nuclear technology is primarily responsible for safety and as operational safety cannot be out sourced, building of sound safety expertise and strong safety culture is an essential precondition for the country introducing nuclear technology. Turkey's energy policy is naturally focused on the security, sustainability and competitiveness of energy supply. It is designed to sustain targeted economic and social growth in the long run. Turkey remains resolutely committed to the goal of ensuring safe, secure and peaceful utilization of nuclear energy

  4. Nuclear fuel cycle and sustainable development: strategies for the future

    International Nuclear Information System (INIS)

    Bouchard, J.

    2004-01-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  5. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  6. Sustainable development and nuclear liability

    International Nuclear Information System (INIS)

    Schwartz, J.

    2001-01-01

    Although the high safety standards of the nuclear industry mean that the risk of an accident is low, the magnitude of damage that could result to third parties from such an accident is considerable. It was thus recognised from the very inception of the nuclear power industry that a special legal regime would need to be established to provide for the compensation of victims of a nuclear accident. The ordinary rules of tort and contract law were simply not suited to addressing such a situation in an efficient and effective manner. (authors)

  7. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  8. Public communication and nuclear energy

    International Nuclear Information System (INIS)

    Cornado, A.

    2006-01-01

    The article tries to explain why on occasion the public's perception of nuclear is more negative than of any other form of electricity generation or issue related to this field, when in reality public opinion has been gradually losing interest in nuclear in recent years. In fact, we could say that as nuclear loses its interest, its presence in the media grows in relation to the environmental aspects of electricity generation, of which nuclear form a part. Of the accusations directed at the nuclear industry, probably the most frequent one concerns the lack of transparency and lack of information on its activities. This article shows how the nuclear sector is probably one that generates more and better information on its own business. However, the lack of social acceptance of this activity, and of the energy business in general, is recognized. To solve this, mention is made of the example of France and Finland, where a well planned communication policy, implemented on a sustained basis over time, and the invitation to society to take part in these issues have favored a substantial improvement of public acceptance of electric generation sources, and specifically the nuclear option. The article ends with some recommendations that could be applied to Spain. (Author)

  9. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  10. Nuclear energy terms

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy.

  11. Nuclear energy terms

    International Nuclear Information System (INIS)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy

  12. Nuclear and sustainable development; Nucleaire et developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, P.; Balle, St.; Barandas, Ch.; Basse-Cathalinat, B.; Bellefontaine, E.; Bernard, H.; Bouhand, M.H.; Bourg, D.; Bourgoignon, F.; Bourlat, Y.; Brunet, F.; Buclet, N.; Buquet, N.; Caron, P.; Cartier, M.; Chagneau, E.; Charles, D.; Chateau, G.; Collette, P.; Collignon, A.; Comtesse, Ch.; Crammer, B.; Dasnias, J.; Decroix, G.; Defoy, B.; Delafontaine, E.; Delcroix, V.; Delerue, X.; Demet, M.; Dimmers, G.; Dodivers, S.; Dubigeon, O.; Eimer, M.; Fadin, H.; Foos, J.; Ganiage, D.; Garraud, J.; Girod, J.P.; Gourod, A.; Goussot, D.; Guignard, C.; Heloury, J.; Hondermarck, B.; Hurel, S.; Jeandron, C.; Josse, A.; Lagon, Ch.; Lalleron, Ch.; Laurent, M.; Legrand, H.; Leveau, E

    2006-07-01

    On September 15. and 16., 2004, at Rene Delcourt invitation, President of the C.L.I. of Paluel and Penly, took place the 4. colloquium of the A.N.C.L.I.. Jean Dasnias, new President of the C.L.I., welcomed the colloquium. Hundred of persons participated. The place of the nuclear power in the energy perspectives of tomorrow, its assets and its weaknesses in front of the other energies and within the framework of a sustainable development, are so many subjects which were discussed. The different tackled subjects are: the stakes in the sustainable development; energy perspectives; the reactors of the fourth generation; nuclear power and transparency; sustainable development and I.R.S.N. (N.C.)

  13. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  14. Parliament and nuclear energy

    International Nuclear Information System (INIS)

    Laermann, K.H.

    1993-01-01

    The paper provides a historical review of the behaviour of Parliament in the discussion about utilizing nuclear energy. An analysis of the positions taken and reasons advanced so far is necessary, because it is only from its results that promising strategies appropriate to bring about a consensus can be derived. There is no doubt that it is a genuine task of the democratically legitimated bodies to strive for a consensus in energy policy, in particular nuclear energy, in the interest of the whole State, with the legislative, executive and economic bodies combining their efforts. The reservedness of Parliament is regrettable. At the moment, however, there is the positive effect of the discussion being revived. It should be conducted rationally in the joint interest of reaching a political consensus and, on that basis, a broad acceptance of nuclear energy utilization. (orig./HSCH) [de

  15. Nuclear energy and society

    International Nuclear Information System (INIS)

    Baiquni, A.

    1982-01-01

    A great deal of energy will be needed for industrial development. The risks of energy production can be either individual or social in nature. Individual risk occurs in different places and different times to individuals in a certain period of time. Social risk occurs to several people in a time. People tend to refuse a nuclear power plant because of its social risk. This attitude is based more on feelings than reason. In fact radiation from a nuclear power plant is only 0.15% while radiation from medical instruments and from the environment is 99%. From the safety, pollution effect, price, and uses point of view, it can be concluded that nuclear energy is the most appropriate energy to face the future of the nation. (RUW)

  16. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  17. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  18. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  19. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  20. Nuclear energy is promising

    International Nuclear Information System (INIS)

    Spitz, H.

    2000-02-01

    This document summarizes the different talks given by the participants to the winter meeting on nuclear energy which took place in Germany on January 27 and 28 2000. Representatives of the following companies and organisations attended the meeting: Deutsches Atomforum e.V., Bayernwerk AG, IG Bergau, Chemie und Energie, Siemens AG - energy production, VEBA AG and one public opinion poll institute. (J.S.)

  1. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  2. How competitive is nuclear energy?

    International Nuclear Information System (INIS)

    Keppler, J.H.

    2010-01-01

    the volatility of electricity prices. These factors are discussed in this article. In conclusion, the real competitiveness of nuclear energy cannot be determined once and for all in the abstract. It is clear that in an environment with low financing costs, high carbon prices and stable electricity prices, the competitiveness of nuclear energy is manifest. On the other hand, in an environment with high financing costs, low or absent carbon prices and volatile electricity prices, the economic case for nuclear energy is harder to sustain. Both observations also apply to renewable energies, which just as nuclear energy are high fixed cost, low-carbon technologies. Following the above observations, in order to bolster the long-term competitiveness of nuclear energy, the nuclear industry and governments would need to: 1. develop financing mechanisms with the help of long-term investors that keep financing costs at a minimum; 2. help establish, perhaps in co-operation with the renewable energy industry, a stable, long-term carbon price; 3. help create, again possibly in cooperation with the renewable energy industry, market conditions that minimise electricity price volatility. So far the industry and governments have just begun to address the first point. The sector's long-term competitiveness will, however, also depend on progress made in addressing the second and third

  3. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Ekener, H.

    1997-01-01

    It examines the technical, scientific and legal issues relating to the peaceful use of atomic energy in Turkey. The first fifteen chapters give a general overview of the atom and radioactivity; the chapters which follow this section are more technical and deal with the causes of nuclear accidents in reactors.A number of chapters cover legal issues, for example the conditions and procedures involved in the insurance market and the risks linked to operation of a nuclear power plant.The following subjects are examined in relation to nuclear insurance: risks during construction; fire during operation of the plants and other causes of accidents; risks due to the transport of radioactive materials and waste etc. The final chapters reproduce the principle legislative texts in force in Turkey in the field of nuclear energy, and also certain regulations which establish competent regulatory bodies

  4. Sustainable Development in India - A case for Nuclear Power - 189

    International Nuclear Information System (INIS)

    Thakur, S.

    2010-01-01

    India needs a sustained high economic growth to realize its objectives of poverty alleviation and improving the standard of living of its population. Energy/ Electricity being the key driver for economic growth, there is a pressing need for large augmentation in generation capacity, infrastructure and enhancement of energy efficiency to ensure that there is equity amongst population as far as energy availability is concerned. India is not very energy rich and has limited resources of fossil fuels. India's nuclear power resources profile comprises of very modest uranium but abundant thorium resources. A unique three stage programme, based on optimum utilization of indigenous resources, offers a solution for the country's long term energy security and sustainability. India's nuclear power programme is based on a closed fuel cycle. The philosophy, apart from increasing the energy potential of the resource manifold, reduces the amount waste considerably. There is also the benefit of nuclear power being clean free. While the indigenous nuclear power programme is robust and on course, a much faster nuclear capacity addition in the near term, to meet the rising demand and mitigating existing energy shortages, is contemplated through additionalities based on international cooperation. (authors)

  5. Energy supply and nuclear energy

    International Nuclear Information System (INIS)

    Heitzer, H.

    1977-01-01

    The author emphasizes the necessity and importance of nuclear energy for the energy supply and stresses the point that it is extremely important to return to objective arguments instead of having emotional disputes. In this connection, it would be necessary for the ministries in question to have clear-cut political responsibility from which, under no circumstances, they may escape, and which they cannot pass on to the courts either. Within the framework of listing present problems, the author is concerned with the possibility of improved site planning, the introduction of a plan approval procedure and questions concerning immediately enforceable nuclear licences. He also deals with a proposal, repeatedly made, to improve nuclear licensing procedures on the one hand by introducing a project-free site-appointment procedure, and on the other hand by introducing a simplified licensing procedure for facilities of the same kind. Splitting the procedure into site and facility would make sense solely for the reason that in many cases the objections are, above all, directed against the site. (HP) [de

  6. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  7. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  8. Key elements of a sustainable nuclear business case

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, D [Nuclear Consultants International - South Africa and AMEC Nuclear - United Kingdom, 20-35th Avenue, Umhlatuzana, Chatsworth, Durban (South Africa)

    2008-07-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  9. Key elements of a sustainable nuclear business case

    International Nuclear Information System (INIS)

    Naidoo, D

    2008-01-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  10. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  11. Nuclear energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The film stresses that a drastic reduction in carbon dioxide emissions, mainly from the burning of fossil fuels, must be achieved to limit a dangerous concentration of greenhouse gases in the atmosphere. It compares the environmental costs of different energy sources, in particular the wastes of a coal-fired versus a nuclear plant, and mentions the measures taken to reinforce protection against the risk of nuclear accidents

  12. Teachers and nuclear energy

    International Nuclear Information System (INIS)

    1994-01-01

    The aims of the seminar were: to exchange national experience in informing and assisting teachers in the nuclear field, and to determine the conditions for improving the effectiveness of these programmes; to develop an international understanding on the basic training and information requirements to assist secondary-school teachers in discussing nuclear energy in an appropriately wide and balanced context at school; to study the respective contributions of national authorities, industry and relevant institutes in this endeavour

  13. Sustainable energy supply; Baerekraftig energioppdekning

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kr.; Rosenberg, Eva [Institutt for energiteknikk, Kjeller(Norway); Kubberud Trond ECON, Oslo (Norway)

    1999-07-01

    This report discusses the potential for reducing the use of energy and quantifies the environmental disadvantages and estimated environmental costs of various energy carriers in Norway. The MARKAL model is used to work out three scenarios for a more sustainable use of energy. It is found that the environmental impact of NOx emissions are much greater than that of sulfur emissions. The damage caused by CO2 and NOx are of the same order of magnitude. The studies indicate that if the damage to the environment is internalized into the energy system, then it will lead to increased use of gas in the industry and transport sectors. The results are sensitive with respect to the cost development for the cleaning technology of conventional energy carriers and for storage and transport of gas. Internalizing the external costs is not enough to eliminate the environmental damage, at least not as this is valued today and with the technology supposed to be available for the next 30-40 years.

  14. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The aim of this French-English bilingual Guide is to present a synthesis embracing all the aspects and all the implications of the development of nuclear energy by situating it both within the French administrative and professional framework and in the world context. Special attention has been paid to the protection of man and the environment and to safety and security problems; most of the other questions -technological, economic, industrial- which arise at all points in the nuclear cycle. Teaching and research are outlined and a special appendix is devoted to nuclear information [fr

  15. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  16. First Conference on African Youth Nuclear Summit 2017: Nuclear for a Sustainable Future

    International Nuclear Information System (INIS)

    2017-03-01

    Kenyan Young Generation in Nuclear (KYGN) hosted the inaugural African Youth Nuclear Summit, dubbed AYNS2017 that took place on the 27th to 30th March, 2017, Nairobi, Kenya. The participants were drawn from academia, research and development institutes, radiation services providers, health institutions, nuclear facilities and regulatory bodies. They shared experiences, exchanged ideas and built networks on issues related to safe application of nuclear science and technology. The theme of the summit was ''Nuclear for a Sustainable future'', which centered on three thematic areas: Nuclear powering Africa, Radiation Protection and safety culture; and application of nuclear science and technology for a sustainable future. The Director General, World Nuclear Association who pointed out that nuclear energy had made a major contribution to world energy output and was set to increase by two and half time by 2040. The importance of nuclear science and technology for a sustainable socio-economic development in Africa shared and highlight on many areas IAEA has helped member states in improving the life of its populations. The main activities of project 60 whose focus is to strengthen the nuclear security culture in East and Central Africa through improved regulation, training, capacity and awareness were highlighted

  17. French nuclear energy policy

    International Nuclear Information System (INIS)

    Ferrari, A.; Bertel, E.

    1980-11-01

    The French energy policy is supported by a lucid view of the situation of our country and the constraints linked to the international context. This statement implies, the definition of a French policy or energy production essentially based on national resources, uranium, and especially for long term, technical know how which allows using plutonium in breeder reactors. This policy implies an effort in R and D, and industrial development of nuclear field, both in reactor construction and at all levels of fuel cycle. This coherent scientific and financial effort has been pursued since the beginning of years 60, and has placed France among the first nuclear countries in the world. Now this effort enables the mastership of a strong nuclear industry capable to assure the energy future of the country [fr

  18. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  19. The nuclear energy in the frame of the energy sources

    International Nuclear Information System (INIS)

    Bogas, J.

    2008-01-01

    This article analyses the different technological alternatives for addressing the energy challenges of our society (security of supply, competitiveness and sustain ability), emphasizing the need for nuclear energy to achieving those goals. Recently, the view of society about nuclear power has shifted from a position of outright hostility towards an acceptance still not totally defined. That is so, that people of environmentalism as the founders of Green peace James Love lock, Patrick Moore or the writer Gwyneth Cravens have said that nuclear energy is the option to produce energy that less increases CO 2 emissions, and that without it targets for reduction may not meet. (Author) 4 refs

  20. Nuclear technology for sustainable development

    International Nuclear Information System (INIS)

    2001-01-01

    Introduces three of the IAEA's current programmes: Promoting food security - use of the sterile insect technique to eradicate the tsetse fly in Sub-Saharan Africa; Managing water resources - use of isotope hydrology to check water for traces of arsenic in Bangladesh; Improving human health - use of nuclear techniques for diagnosis, imaging and cancer treatment in developing countries

  1. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  2. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  3. Nuclear Power Plants and Sustainable Development on a Liberalized Market

    International Nuclear Information System (INIS)

    Androcec, I.; Stanic, Z.; Tomsic, Z.

    2002-01-01

    Finding a way to generate electricity so as to satisfy the terms of sustainable development of the entire society is the only way which will secure safe energy future. If we talk about energy in the context of sustainable development, one of the most important element is environmental protection. Since CO 2 emissions stemming from electricity generation have predominant impact on climate change, one of the options for reducing emissions is the use of fuels without carbon, such as e.g. nuclear fuel. The future of nuclear power plants was considered in view of: nuclear fuel supply; potential impact of fuel cycle on environment, power plant operation, decommissioning and secondary products from electricity generation; and the entire nuclear power plant economy. Nuclear power plants were also examined in the context of the Kyoto Protocol stipulating reduction of greenhouse gases emissions. Nuclear power plants can not reduce CO 2 emissions in a short-term because they already operate with maximum output, but in a long-run they can play a significant role. This paper is aiming to analyse the role of nuclear power plants in long term environmental sustainability in electricity sector reform (liberalisation, deregulation, privatisation) in small or medium sized power supply systems. Nuclear power plants are associated with certain environmental aspects which will be taken into account. A comparison will be made through externalities with other energy resources, especially fossil fuels, which are prevailing energy resources, considering possible use of nuclear power plants in the countries with small and medium-size grids. It will be given an example of the role of NPP Krsko on air emissions reduction in Croatia. (author)

  4. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  5. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  6. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    McCarthy, K.; Romanello, V.; Schwenk-Ferrero, A.; Vezzoni, B.; Gabrielli, F.; Maschek, W.; Rineiski, A.; Salvatores, M.

    2013-01-01

    . In this respect, it is considered that the potential future scarcity of uranium resources is not at all unreasonable, but it is a very serious perspective for the regions of the world where the energy demand growth is and will very probably continue to be significant with the use of nuclear energy to meet at least partially that demand. In fact, despite the seriousness of the recent Fukushima Daiichi accident, only a few countries (essentially in the OECD region) have reacted with an abrupt decision to phase out nuclear power. Most countries, where the energy demand growth corresponds to an urgent need to achieve widely improved living standards, have launched or completed extensive reviews of their nuclear programmes, but are also continuing with ongoing construction projects. The results of this study are very much related to the hypotheses made, in particular in terms of energy demand growth. However, some general trends seem to be of a general value and can motivate further studies. It was confirmed in this investigation that a rapid development of fast reactors, especially in areas with expanding economies and strong energy demand growth, is essential for nuclear energy sustainability, for saving natural uranium resources worldwide and for reducing high-level waste generation requiring disposal. A key parameter is the fast reactor doubling time which has to be chosen appropriately in order to meet energy requirements. In the case of an open cycle, a potential increase in pressure on the uranium market could be expected towards the end of the current century. Moreover, the increase in mining needs of unequally distributed resources can be a factor of uncertainty with an impact potentially even more important of uranium cost considerations. It would, however, be a very significant challenge to develop suitable fuel cycle infrastructure especially in the world regions that presently have a limited number of (or no) nuclear power plants. In fact, the needed fuel

  7. Energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Omer, Abdeen Mustafa

    2008-01-01

    level of building performance (BP), which can be defined as indoor environmental quality (IEQ), energy efficiency (EE) and cost efficiency (CE). circle Indoor environmental quality is the perceived condition of comfort that building occupants experience due to the physical and psychological conditions to which they are exposed by their surroundings. The main physical parameters affecting IEQ are air speed, temperature, relative humidity and quality. circle Energy efficiency is related to the provision of the desired environmental conditions while consuming the minimal quantity of energy. circle Cost efficiency is the financial expenditure on energy relative to the level of environmental comfort and productivity that the building occupants attained. The overall cost efficiency can be improved by improving the indoor environmental quality and the energy efficiency of a building. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this paper. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. (author)

  8. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  9. The geometry of nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1992-01-01

    In a personal assessment of the ethics of nuclear energy, the author challenges some of the conventional wisdom surrounding the subject, and concludes that for many applications nuclear energy is the energy source of ethical choice

  10. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  11. Nuclear energy and communication

    International Nuclear Information System (INIS)

    1998-01-01

    This article contains information related to the support that the Latin-American countries have counted, from the International Atomic Energy Agency, for the development and application of the nuclear energy in different fields. In the particular case of Costa Rica, it mentions some projects included in the program ARCAL. The achievements reached in the year 1998 and the goals proposed for 1999-2000. (S. Grainger) [es

  12. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  13. Sustainable energy development (May 2011) with some game-changers

    International Nuclear Information System (INIS)

    Lior, Noam

    2012-01-01

    This paper presents the opening talk that briefly surveys the present (May 2011) situation in sustainable energy development. Recent estimates and forecasts of the oil, gas, coal resources and their reserve/production ratio, nuclear and renewable energy potential, and energy uses are surveyed. A brief discussion of the status, sustainability (economic, environmental and social impact), and prospects of fossil, nuclear and renewable energy use, and of power generation is presented. Comments about energy use in general, with more detailed focus on recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, and effects of the recent global economy downturn of global sustainability, are brought up. Ways to resolve the problem of the availability, cost, and sustainability of energy resources alongside the rapidly rising demand are discussed. The author’s view of the promising energy R and D areas, their potential, foreseen improvements and their time scale, and last year’s trends in U.S. government energy funding are presented. -- Highlights: ► The present (May 2011) situation in sustainable energy development is surveyed. ► Recently emerging game-changing developments of postponement of “peak oil”, nuclear power future following the disaster in Japan, ad effects of the recent global economy downturn of global sustainability, are brought up. ► Promising energy R and D areas, their potential, foreseen improvements and their time scale. ► Last year’s trends in U.S. government energy funding are presented.

  14. Keeping options open. Energy, technology and sustainable development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger; Langlois, Lucille; McDonald, Alan

    2001-01-01

    The Ninth Session of the the Commission for Sustainable Development (CSD-9) in April 2001 provided an excellent opportunity for a full debate on the role of nuclear power in sustainable development, as part of its over-all discussion of energy, transport and the atmospheric change issues. On nuclear power, there were two important conclusions. First, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text recognizes that some countries view nuclear power as incompatible with sustainable development while others believe it is an important contributor to sustainable development. For each case, the reasoning is presented in the text. The second conclusion, on which there was consensus agreement, is that 'the choice of nuclear energy rests with countries'. The arguments in favor of an important role for nuclear power role in sustainable development are that it broadens the resource base by putting uranium to productive use; it reduces harmful emissions; it expands electricity supplies and it increases the world's stock of technological and human capital. It is ahead of other energy technologies in internalizing all externalities, from safety to waste disposal to decommissioning - the costs of all of these are already included in the price of nuclear electricity in most countries. The complete nuclear power chain, from resource extraction to waste disposal including reactor and facility construction, emits only two to kilowatt-hour -- about the same as wind and solar power and two orders of magnitude below coal, oil, and even natural gas. In addition, nuclear power avoids the emission of many other air pollutants, such as SO 2 , NO x and particulates

  15. Vision of nuclear energy

    International Nuclear Information System (INIS)

    1987-01-01

    A study about the perspectives of nuclear energy, in Japan, for the next 40 years is shown. The present tendencies are analyzed as well as the importance that the subject adquires for the economy and the industry. At the same time, the parameters of the governmental, private and foreign participation are established in the frame of the technological development. The aim fixed for the year 2030 can be divided into; 1: from 1986 to 2010-development of the technology of nuclear fuel cycle already stablished and in process of maturity. The LWR technology will reach a very advanced stage. The fast breeder reactors (FBRs) will become commercially available, and the nuclear fuel cycle will reach its maturity in Japan; 2: from 2011 to 2030-commercial use of the FBRS and further advance in the nuclear fuel cycle. (M.E.L.) [es

  16. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  17. Obligation target for sustainable energy

    International Nuclear Information System (INIS)

    Lensink, S.M.; Hekkenberg, M.

    2012-01-01

    The Dutch Ministry of Economic Affairs, Agriculture and Innovation asked ECN several questions about the development of a supplier's obligation. These questions addressed the volume of the certificates market. The questions are worded as follows by ECN: What is a realistic level to be set for the obligation for sustainable energy or for renewable electricity (in percentage of delivered electricity or TWh/year)? How far into the future should these obligations minimally be set? Is it desirable to limit the certificate issuance time to for example the economic life of an installation? This memo addresses the questions, knowing that the entire policy development process will still take considerable time. At the time of publication of this memo, large uncertainties still existed about the eventual shaping of future policy. [nl

  18. Banquet speech: nuclear power, competition and sustainable development

    International Nuclear Information System (INIS)

    Strong, M.F.

    1995-01-01

    The essential ingredients of sustainable development are economics and efficiency in the use of energy and materials, and in the prevention, disposal and recycling of wastes. Nuclear power will continue to be an important means of electricity generation for the foreseeable future but the extent to which this will be the case depends on the nuclear industry resolving public concerns over environmental, health and safety risks, and competing successfully with other generating technologies. In the final analysis, the future of nuclear power will be determined primarily by economic considerations. (UK)

  19. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  20. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  1. Nuclear energy and climate change; Energia nuclear y cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Jimenez, A.

    2002-07-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO{sub 2} emissions. (Author)

  2. Circular economy and nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    Circular economy means no production of waste through re-using and recycling. As other industries, nuclear industry has committed itself to a policy of sustainability and resource preservation. EDF has developed a 5 point strategy: 1) the closure of the fuel cycle through recycling, 2) operating nuclear power plants beyond 40 years, 3) reducing the volume of waste, 4) diminishing the consumption of energy through the implementation of new processes (for instance the enrichment through centrifugation uses 50 times less power than gaseous diffusion enrichment) and 5) making evolve the prevailing doctrine concerning the management of very low level radioactive waste: making possible the re-use of slightly contaminated steel scrap or concrete instead of storing them in dedicated disposal centers. (A.C.)

  3. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  4. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  5. Sustainable nuclear development and public confidence

    International Nuclear Information System (INIS)

    Gagarinski, A.

    2000-01-01

    This report discusses the objective preconditions, which would lead the world community to acceptance of nuclear energy. The following conditions deserve special emphasis: (a) Demographic growth, resulting in the increase of energy demand and promoting the understanding of the fact, that the world energy resources are limited and all possible energy sources, including nuclear ones, should be used. (b) Development of the 'third-world' countries, creating additional energy demand, which cannot be met without nuclear power. (c) Global (and influencing the plans of each country) need of availability and acceptable costs together with reliability and safety of energy supply, and, consequently, the interest to energy sources diversification in order to eliminate the dependence of fossil fuels import. The paper considers the ways to solve this strategic task. Its solution could take a long time (several decades) and should be properly perceived by the generation of specialists now starting their career in nuclear science and industry. Now it is a good time for the new generation of nuclear specialists to solve this problem - the large-scale NPP development is not yet needed, there is a large accumulated experience and perspective ideas, and there is enough time to analyze the problems in detail, propose and prepare the solutions and convince the general public, that these solutions are correct. And then the next phase of nuclear energy development would be based not only on correct technical solutions, but also on a favourable social environment. (authors)

  6. The future of nuclear energy (group 17)

    International Nuclear Information System (INIS)

    Moncomble, J.E.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the perspective of nuclear energy in France. Nuclear energy is an important element to assure the stability of the energy supply of the country. Uranium purchases appear to be safe for being diversified and the price of the nuclear fuel contributes to only 20% of the price of the kWh compared to 40% for natural gas. Today the competitiveness of nuclear energy is assured but technological progress concerning gas turbines might challenge it in the years to come. Sustainable development implies not only abundant energy for all but also a preserved environment for the generations to come. The development of nuclear energy is hampered by the lack of satisfactory answers to the problem of fuel back-end cycle and more generally to the issue of radioactive wastes. On the other hand nuclear energy presents serious assets concerning the preservation of environment: nuclear energy as a whole from the uranium ore mining to the production of electricity emits very few atmospheric pollutants and greenhouse effect gases, and requires little room for its installations. The composition of the future energy mix will depend greatly on opinions and assumptions made about the reserves of fossil fuels, technological perspectives and the perception by the public of industrial risks (environmental damage, nuclear accidents...). (A.C.)

  7. Nuclear energy and society Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    2010-01-01

    Since the very beginning of its brief history, nuclear energy was doomed to public attention - because of its first application. For 50 years of existence it failed to become one of traditional energy technologies, which the society would assess on the basis of its actual advantages (such as energy efficiency, resource availability and environmental acceptability). Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude to nuclear. This paper considers the basic antinuclear arguments, such as proliferation, waste and severe accidents. The current status of relations between nuclear energy and the public is still close (not only in Russia, but also in almost all European countries) to this state of politicization of nuclear and constant irrational fear radiation causes among people. Nevertheless, the positive trend in the attitude towards nuclear energy is obvious, both in Russia and in the world. In 2006, the long-expected 'new nuclear energy policy' (with returned budgetary financing of the new nuclear build) was announced in Russia at the highest governmental level. After that the worldwide recognition of the need to develop nuclear energy was only growing. The scale of global energy development is so large that all sources capable of making a contribution will find their demand. In the same time, public opinion in the world inseparably connects the issue of energy security with measures to combat climate changes. The '2 deg. C problem', if solvable at all, could be addressed only by simultaneous implementation of all possible emission reduction measures (including carbon-free energy technologies) on an unprecedented scale. Emission-free nuclear energy can actually become a system capable of sustainable and prompt development. This paper considers the issues, which could hamper nuclear development and negatively impact the public attitude towards nuclear. (authors)

  8. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  9. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  10. Romanian nuclear power in the context of sustainable development

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Bilegan, Iosif C.

    2003-01-01

    Energy use is a vital force for the economic welfare. It drives many aspects of the economic activity and is essential to a high quality life. However, the unwanted side-effects of energy use, including local pollution and the global warming due mainly to release of greenhouse gases such as carbon dioxide (CO 2 ), are detrimental to life quality and may induce climate changes at a large-scale. The nuclear power has a lot of economical, social and environmental benefits. The paper deals with aspects referring to the CANDU nuclear technology that is developed in Romania, within the sustainable development framework. (authors)

  11. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  12. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  13. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  14. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  15. Nuclear power in the frame of sustainable development

    International Nuclear Information System (INIS)

    Constantin, M.

    2003-01-01

    Nuclear energy is treated taking into account the three dimensions of sustainable development: economic, environmental and social. Some nuclear energy relevant indicators are identified and used in the analysis. The economic efficiency is a relevant indicator insofar as market prices reflect the full costs for society of a given product or activity. For nuclear energy the economic criteria applicable to market competition and subsidies are used. The core indicators for the environmental dimension of sustainable development include criteria related to natural resource management, climate change, air and water quality, biodiversity and landscaping. The nuclear electricity generation chain does not release gases or particles that acidify rains, contribute to urban smog or deplete of the ozone layer. The human and social dimension comprises human capital in the form of knowledge, education and employment opportunities, human welfare, equity and participation, social capital in the form of effective institutions and voluntary associations, the rule of law, and social cohesion. From this point of view the nuclear energy is characterized by a net contribution to human and social capital and a challenge in terms of public acceptability and widely varying perceptions of the risks and benefits. (authors)

  16. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  17. Nuclear Weapons Enterprise Transformation - A Sustainable Approach

    International Nuclear Information System (INIS)

    O'Brien, K H

    2005-01-01

    Nuclear weapons play an essential role in United States (U.S.) National Security Policy and a succession of official reviews has concluded that nuclear weapons will continue to have a role for the foreseeable future. Under the evolving U.S. government policy, it is clear that role will be quite different from what it was during the Cold War. The nuclear-weapons stockpile as well as the nuclear-weapons enterprise needs to continue to change to reflect this evolving role. Stockpile reductions in the early 1990s and the Stockpile Stewardship Program (SSP), established after the cessation of nuclear testing in 1992, began this process of change. Further evolution is needed to address changing security environments, to enable further reductions in the number of stockpiled weapons, and to create a nuclear enterprise that is cost effective and sustainable for the long term. The SSP has successfully maintained the U.S. nuclear stockpile for more than a decade, since the end of nuclear testing. Current plans foresee maintaining warheads produced in the 1980s until about 2040. These warheads continue to age and they are expensive to refurbish. The current Life Extension Program plans for these legacy warheads are straining both the nuclear-weapons production and certification infrastructure making it difficult to respond rapidly to problems or changes in requirements. Furthermore, refurbishing and preserving Cold-War-era nuclear weapons requires refurbishing and preserving an infrastructure geared to support old technology. Stockpile Stewardship could continue this refurbishment approach, but an alternative approach could be considered that is more focused on sustainable technologies, and developing a more responsive nuclear weapons infrastructure. Guided by what we have learned from SSP during the last decade, the stewardship program can be evolved to address this increasing challenge using its computational and experimental tools and capabilities. This approach must start

  18. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  19. Green energy strategies for sustainable development

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim; Ay, Murat

    2006-01-01

    In this study we propose some green energy strategies for sustainable development. In this regard, seven green energy strategies are taken into consideration to determine the sectoral, technological, and application impact ratios. Based on these ratios, we derive a new parameter as the green energy impact ratio. In addition, the green energy-based sustainability ratio is obtained by depending upon the green energy impact ratio, and the green energy utilization ratio that is calculated using actual energy data taken from literature. In order to verify these parameters, three cases are considered. Consequently, it can be considered that the sectoral impact ratio is more important and should be kept constant as much as possible in a green energy policy implementation. Moreover, the green energy-based sustainability ratio increases with an increase of technological, sectoral, and application impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy (e.g., wind, solar, tidal, biomass) is abundantly produced. Therefore, the investment in green energy supply and progress should be encouraged by governments and other authorities for a green energy replacement of fossil fuels for more environmentally benign and sustainable future

  20. Circular economy and nuclear energy

    International Nuclear Information System (INIS)

    2017-01-01

    This article first recalls what circular economy is, and its main principles (sustainable supply, eco-design, industrial and territorial ecology, economy of function rather than of possession, extension of product lifetime, recycling). It outlines its different benefits: improved resilience, inclusion of all actors of the territory, creation of local jobs, a global vision. In the next part, the nuclear industry is presented as a pioneer in this respect through various trends and developments: closure of the fuel cycle and saving of uranium and energy in the upstream part, reduction of wastes in the downstream part, exploitation of plants on a longer term, management of the production of conventional wastes, reduction of energy consumption, evolution of the doctrine in terms of management of very low level radioactive wastes

  1. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  2. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Dow, J.C.

    1989-01-01

    It was the risk of contamination of ships from the Pacific atmospheric atomic bomb tests in the 1940's that seems first to have set insurers thinking that a limited amount of cover would be a practical possibility if not a commercially-attractive proposition. One Chapter of this book traces the early, hesitant steps towards the evolution of ''nuclear insurance'', as it is usually called; a term of convenience rather than exactitude because it seems to suggest an entirely new branch of insurance with a status of its own like that of Marine, Life or Motor insurance. Insurance in the field of nuclear energy is more correctly regarded as the application of the usual, well-established forms of cover to unusual kinds of industrial plant, materials and liabilities, characterised by the peculiar dangers of radioactivity which have no parallel among the common hazards of industry and commerce. It had, and still has, the feature that individual insurance underwriters are none too keen to look upon nuclear risks as a potential source of good business and profit. Only by joining together in Syndicates or Pools have the members of the national insurance markets been able to make proper provision for nuclear risks; only by close international collaboration among the national Pools have the insurers of the world been able to assemble adequate capacity - though still, even after thirty years, not sufficient to provide complete coverage for a large nuclear installation. (author)

  3. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    1990-01-01

    TNC 90 focuses on nuclear energy technology. Some more basic or less central terms which were included in the previous glossary, TNC 55, have not been included in this version. About 1200 definitions in swedish included together with translations to english, german and french. The terms have been listed in alphabetical order. To make it easier to look up a certain term or terms that stand for related concepts the terms have been systematically arranged in a special index. (L.E.)

  4. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  5. Nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Jacob, F.X.

    1996-01-01

    The Malaysian Vision 2020 envisages doubling of the its economy every ten years for the next three decades. The Second Outline Perspective plan 1991-2000 (OPP2), also known as the National Development Policy (NDP) will set the pace to enable Malaysia to become a fully developed nation by the year 2020. The Malaysian economy is targeted to grow at 7 percent per annum in the decade of OPP2. In view of the targets set under Vision 2020, it is important to ensure that energy does not become a constraint to growth, and this sector develops in a least cost basis. Energy is crucial for industrialization and no modern industrial state can function without it. The paper presents a description of the main utilities in the country. Their installed capacities, maximum demand, generation mix and customers served are discussed. The electricity demand forecast till the year 2020 is presented. The paper presents this for 4 scenarios - a low growth, business as usual scenario, a moderate growth, business as usual scenario, a moderate growth, energy efficient scenario and a targeted growth, energy efficient scenario. The energy resources in the country is described together with its energy policy. The country's four-fuel policy is elaborated with the various options discussed. The environmental and pricing policies with regards to energy is also briefly given. Finally the nuclear option is presented in this context of the country's energy policy. The country had undertaken various studies for the nuclear option. These studies are given in the paper. The purpose of these studies and what the government decided is also discussed. Finally the prospects for the nuclear option in the future for the country is discussed. It is concluded that while, for the present, the nuclear option is not considered by the government, this may not be so in the future. The various reasons for this is given and the paper concludes that it may be prudent to keep this option under constant review. (J.P.N.)

  6. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  7. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  8. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  9. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  10. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  11. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  12. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  13. On nuclear power, population and sustainable global civilization

    International Nuclear Information System (INIS)

    Ishiguro, Yuji

    2007-01-01

    Humanity is facing a multitude of difficult problems that threaten not only human development but the very continuity of civilization. The fundamental cause is the size of the human population but at present the subject is not discussed in international fora. It is not clear if it is wishfully avoided or if it is not recognized as the fundamental problem. Without limiting fertility and population globally, there will be no future for civilization as we know it and there will be no need for nuclear power as a source of energy. Instead, nuclear power will be the principal agent of the end. The nuclear community is in a position to point out the problem and propose a solution. Principles of sustainability and a path to a sustainable global civilization are shown. (author)

  14. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  15. The role of nuclear power in sustainable development

    International Nuclear Information System (INIS)

    Mourogov, V.M.; Juhn, P.E.; Kagramanian, V.S.

    1999-01-01

    Today's developing countries, with some three-quarters of the world population, consume only one-fourth of the global energy. In coming decades, the global energy consumption is anticipated to increase substantially, to a large extent driven by the developing world. Responsive long-term energy strategies that exploit energy sources with a minimum of greenhouse-gas emissions need be developed and implemented as rapidly as possible to limit environmental pollution. The energy mix that evolves will not depend only on environmental considerations, but also on economic, technological, supply and political factors. On the global level, fossil fuels will continue to be the major energy source, probably with natural gas as the major component. Nuclear power is currently a significant source of energy supply, but there is no consensus regarding its future role. Its use has stagnated in Europe and in North America, but it maintains its position as a strong option in Asian countries. Economy and security of supply, along with an awareness of environmental benefits, have been principal considerations in the choice of nuclear power and these three factors will also determine its long-term role in a sustainable energy future. Comparative assessments of the full energy chain of energy options consider a number of issues: fuel and land requirements; environmental pollutants; confinement vs. dispersion of waste; greenhouse gas emissions; natural resources; and external costs, e.g. interest and depreciation, waste management, and energy taxes. Such assessments will help clarify the merits of nuclear power. (author)

  16. The dual sustainability of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jonathan B.; Venkateswaran, Anand [413 Hayden Hall, College of Business, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States)

    2009-06-15

    Academics, practitioners, and policy makers continue to debate the benefits and costs of alternative sources of energy. Environmental and economic concerns have yet to be fully reconciled. One view is that decisions that incorporate both society's concern with the environment and investors' desire for shareholder value maximization are more likely to be truly sustainable. We coin the term dual sustainability to mean the achievement of environmental and financial sustainability simultaneously. Many experts believe that wind energy can help to meet society's needs without harming future generations. It is clean and renewable. Because the fuel is free it provides the ultimate in energy independence. Wind energy has emerged as a leading prospect, in part, because it is considered by many to be environmentally sustainable. However, a key question that remains is whether wind energy is financially sustainable without the extensive government support that has helped to create and nurture this growth industry. Using reliable, proprietary data from field research, our analysis employs a capital budgeting framework to evaluate the financial economics of investments in wind energy. We find that because of the convergence of improved technology, greater efficiency, and with the increasing cost of traditional, competing sources such as oil and natural gas, wind energy is close to becoming self-sustaining financially without the extensive federal government support that exists today. Wind energy can provide the best of both worlds. It is sustainable from an environmental perspective and it is becoming sustainable financially. In short, those companies investing in wind energy will be able to do well by doing good. Perhaps the achievement of dual sustainability is true sustainability. Our research findings and dual sustainability have several interesting and important implications for public policy towards wind energy. All imply that public policy can now be

  17. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  18. Global nuclear markets in the context of climate change and sustainable development. Chapter 2

    International Nuclear Information System (INIS)

    Morrison, R.

    2001-01-01

    This article (Chapter Two) focuses on the global nuclear markets in the context of policies regarding climate change and sustainable development. The global market realities and the export potential of the canadian nuclear industry are becoming crucial features of the nuclear political economy. The article examines the role of exports in the evolution of nuclear policy in Canada, and looks more closely at nuclear power and CANDU projects in the specific context of global competitive markets. It examines the trends in electricity and nuclear energy in the market for nuclear reactors. Finally, this article locates these changes in the context of the issues that are inherent in climate change and sustainable development

  19. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  20. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  1. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  2. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  3. Sustainable energy landscapes: The power of imagination

    NARCIS (Netherlands)

    Stremke, S.

    2012-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Sustainable energy transition necessitates a transformation of large parts of the existing built environment and presents one of the great challenges of present-day

  4. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  5. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  6. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  7. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  8. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  9. Costs and benefits of relaunching nuclear energy in Italy

    OpenAIRE

    Ivan Faiella; Luciano Lavecchia

    2012-01-01

    This paper supplies elements for assessing the costs and benefits of electronuclear energy in order to pursue three objectives: security of supply, cost reduction, and environmental sustainability. The study reached the following conclusions: 1) the use of nuclear energy increases the diversification of the energy mix and of energy suppliers, raising energy security levels, but it does not reduce Italy�s dependence on foreign energy; 2) the use of nuclear energy would not imply a reduction ...

  10. Mexican energy policy and sustainability indicators

    International Nuclear Information System (INIS)

    Sheinbaum-Pardo, Claudia; Ruiz-Mendoza, Belizza Janet; Rodríguez-Padilla, Víctor

    2012-01-01

    The authors analyze the Mexican energy policy taking as reference the methodological framework for sustainable energy development proposed by the Economic Commission for Latin America and the Caribbean. This methodology takes eight related indicators to the social, environmental and economic dimensions in order to calculate a general sustainability indicator for the energy sector. In this methodology, the weight of each dimension is different; namely, the social and environmental issues have less relevance than the economic issues. The authors use this methodology because government institutions as the Department of Energy and the Department of Environment and Natural Resources have used some indicators from such a methodology to propose plans, programs, projects and bills. Authors know of the existence of other methodologies about sustainability. Nonetheless, opting for the Economic Commission for Latin America and the Caribbean's methodology is convenient because this organization is a respectable authority for civil servants from the Mexican institutions. Our objective is just to contrast the sustainability grade of the energy sector between 1990 and 2008 for Mexico whose government started reforms in the 1990s. It concludes that those reforms did not bring about a higher sustainability level for the energy sector. - Highlights: ► We used the OLADE, CEPAL and GTZ's methodology to calculate sustainability indicators for the Mexican energy sector. ► We studied the Mexican energy policy from 1990 to date and presented it. ► Currently, the Mexican energy sector is less sustainable than in 1990.

  11. Nuclear and energy policy in Korea. Unchanging illusion of nuclear energy and citizens' challenge

    International Nuclear Information System (INIS)

    Leem, S.J.

    2006-01-01

    Korea is the tenth largest energy consumer in the world; the country ranks sixth in oil consumption, seventh in electricity consumption, and ninth in total CO2 emission. Korea now has 20 reactors in operation, nuclear power producing about 40% of its electricity. Its generating capacity from nuclear power plants is the sixth largest in the world; Korea currently exports nuclear technology. The rapid growth of this industry is attributed to extensive subsidy and protection from the Korean government; supported by government-initiated programs a powerful interest group, which consists of nuclear industries, technocrats, and governmental organizations concerned with nuclear policy, now exerts a major influence upon Korea's energy policy for nuclear expansion. Korea's nuclear power policymakers have, however, met opposition since End of the 1980s. The government's attempt to build a nuclear waste repository has provoked strong resistance from environmental movements and local citizens. Even if the government recently succeeded in designating Kyoungju as the nuclear waste site, the nuclear waste issue has awakened public interest in nuclear problems and strengthening public denunciation of Korea's expansive nuclear power policy. In addition, the activation of the Kyoto Protocol in February 2005 has impelled the government to redirect its energy policy towards a sustainable direction. This article focuses on the status and perspectives of Korea's nuclear power policy, enabling a discussion of the degree to which Korea's nuclear and energy policy has changed yet in many ways remains unchanged. (orig.)

  12. Inevitability of nuclear energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1997-01-01

    The Indian atomic energy programme that has been launched in the late 1940s, with the courageous vision of Homi Bhabha, had made remarkable progress during the fifties, sixties and till the mid-seventies, leading to the establishment of a comprehensive base of nuclear science, technology and engineering, and the setting up of nuclear power stations. After the Pokharan experiment in 1974, the programme had to face a hostile attitude from the Western powers, with the stoppage of flow of technology and equipment from the West. The programme had shown the resilience to face the challenge, and march ahead, developing a range of indigenous capabilities both within the Department and in the Indian industry, though with a certain loss in the momentum. The successful design, construction and operation of the 100 Mw(t) research reactor Dhruva in Trombay, and the successful commissioning of the Fast Breeder Test Reactor in Kalpakkam, with a unique plutonium-uranium carbide fuel of Indian design, are significant capability demonstrations in the latter phase. On the power front, the twin-unit power stations at Narora (UP) and Kakrapar (Gujarat) have shown excellent performance, with respect to plant availability and capacity factor. This article presents an assessment of the progress achieved so far, amidst the difficulties encountered. Factors accounting for the apparently slow pace of growth are discussed, and the public concerns regarding nuclear safety and safety regulations are also addressed. In a situation where acute power shortages have become a fact of life, and difficulties can be foreseen in the development of coal and hydel resources (which are also limited in extent), the importance of pursuing the nuclear energy option is re-iterated. The need for unstinted government support to the program at this stage is also emphasized. (author)

  13. Nuclear energy and independence

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The pro-nuclear lobby in the United Kingdom won its battle. The Report on the Windscale Inquiry strongly endorsed the application by British Nuclear Fuels (a company owned by the government) to set up a plant to reprocess spent oxide fuels from thermal reactors; a motion in Parliament to postpone a decision was heavily defeated. The Windscale Inquiry was an attempt to settle in a civilized manner what has been tried in other countries by demonstrations and violence. In this exercise, a High Court Judge was given the task of assessing an enormous mass of highly complex technical and medical material, as well as economic, social, and political arguments. The outcome is bitterly disappointing to the objectors, all of whose arguments were rejected. Although the question of whether Britain should embark on a fast breeder reactor program was specifically excluded from the Inquiry, it clearly had a bearing on it. A decision not to proceed with the reprocessing plant would have made a fast breeder program impossible; indeed, the Report argues that such a decision would involve throwing away large indigenous energy resources, a manifest advocacy of the fast breeder. Other arguments for the decision to go ahead with the reprocessing plant included the need to keep the nuclear industry alive, and the profit which Britain will make in processing fuels from other countries, particularly Japan. The author comments further on present UK policy, taking a dissenting view, and then comments on the paper, Nuclear Energy and the Freedom of the West, by A.D. Sakharov

  14. Sustainable development: the nuclear power and non-nuclear power in the XXI century

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2000-01-01

    The paper presents the concept of sustainable development and the role of energy in the implementation of this concept. The Rio de Janeiro Agenda 21, the objectives and managerial rules for the long term implementation of sustainable development, as well as its general principles are issued addressed with a special emphasis on the sustainable energy supply. The problem of the radioactive wastes produced by the nuclear energy is especially assessed. The implementation of the sustainable developments principles implies a triangle formed of university, industry and society. While university is ensuring education and sciences the industry's role is to ensure efficiency and technical innovation. The society is appealed then to support science and technology. This talk given in front of Romanian Academy concludes with the following wording by Carl Friedrich von Weizsaecker: All dangers we face are not technically or technologically unsurpassable but rather reflect our inability to use our own innovative and discovery power

  15. Promoting nuclear power, achieving sustainable development of nuclear industry in China

    International Nuclear Information System (INIS)

    Kang, R.

    2006-01-01

    The past 5 decades witnessed the rapid growth of China's nuclear industry. The sustained and rapid economic growth and continuous improvement of people's living standards have placed higher requirements for energy and power supplies. As a safe and clean energy source, nuclear energy has been gradually and widely accepted by the Chinese government and the public. The Chinese government has adopted the policy a ctively pushing forward the nuclear power development , set up the target to reach 40GWe of nuclear power installed capacity by 2020, accounting for about 4% of the total installed capacity in China. In this regard, this paper presents the China's nuclear program to illustrate how China is going to achieve the target. The paper is composed of 3 parts. The first part gives a review of the achievements in nuclear power in the last 20 years. The second part presents China's ''three approach'' strategy for furthering the nuclear power development: carrying out duplication projects at the existing plant sites; introducing GUI technology via international bidding; developing the brand C NP1000 , i.e. Chinese Nuclear Power lOOOMwe class, with China's own intellectual property. This part also explores the ways of securing the fuel supply for nuclear power development. The third part concludes with CNNC's ''3221'' strategy which aims at building a world class conglomerate, and expresses its sincere wish to work with the nuclear community to push the nuclear industry worldwide by strengthening international cooperation

  16. Energy sustainable communities - social and psychological aspects

    International Nuclear Information System (INIS)

    Schweizer-Ries, P.; Baasch, St.; Jagszent, J.

    2004-01-01

    Besides technical, political and economic aspects of energy sustainability there are several social, behavioural and psychological dimensions of vital importance for a successful implementation of Renewable Energy Systems (RES) and Rational Use of Energy (RUE) within communities. The European Project ''Sustainable Communities-on the energy dimension'' pursues an interdisciplinary approach to detect essential success and facilitating factors. In the last years social and psychological aspects in the process of sustainability came to the fore more and more. Not only as a complementary science to facilitate the technical aims in the change process but also as an essential part for success. (authors)

  17. Nuclear installations in the baltic sea region and the stake holders cooperation: a crucial step towards energy security, environmental sustainability and political stability in the region

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Mandere, N.; Olsson, L. [Lund Univ., Centre for Sustainability Studies (LUCSUS) (Sweden)

    2006-07-01

    Radiation hazards are trans-boundary. The prevention of accidents must be managed locally. But the awareness, preparedness, and the responsibilities in the case of emergencies must be managed at the local and regional level, and must rely on close interaction between the local and regional levels. The Baltic Sea Region contains over 40 nuclear reactors contributing to energy security, but also posing a potential threat to human, environmental, and political security. The aim of this paper is to integrate the four fields of security: health, environment, energy, and political by analysing awareness, preparedness responsibility and decision making related to nuclear installations. With increasing political, economical, cultural and physical (in term of energy infrastructure) integration, the region needs to take a comprehensive approach to create adequate structure for managing risks and thereby promote security. (authors)

  18. Nuclear installations in the baltic sea region and the stake holders cooperation: a crucial step towards energy security, environmental sustainability and political stability in the region

    International Nuclear Information System (INIS)

    Zakaria, M.; Mandere, N.; Olsson, L.

    2006-01-01

    Radiation hazards are trans-boundary. The prevention of accidents must be managed locally. But the awareness, preparedness, and the responsibilities in the case of emergencies must be managed at the local and regional level, and must rely on close interaction between the local and regional levels. The Baltic Sea Region contains over 40 nuclear reactors contributing to energy security, but also posing a potential threat to human, environmental, and political security. The aim of this paper is to integrate the fo